WO2012147283A1 - 水素生成装置および燃料電池システム - Google Patents

水素生成装置および燃料電池システム Download PDF

Info

Publication number
WO2012147283A1
WO2012147283A1 PCT/JP2012/002366 JP2012002366W WO2012147283A1 WO 2012147283 A1 WO2012147283 A1 WO 2012147283A1 JP 2012002366 W JP2012002366 W JP 2012002366W WO 2012147283 A1 WO2012147283 A1 WO 2012147283A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
flow path
reformer
hydrogen
hydrogen generator
Prior art date
Application number
PCT/JP2012/002366
Other languages
English (en)
French (fr)
Inventor
鵜飼 邦弘
藤原 誠二
友也 竹内
千絵 原田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12775919.9A priority Critical patent/EP2703340B1/en
Priority to US13/817,395 priority patent/US9090464B2/en
Priority to JP2012555247A priority patent/JP5214076B1/ja
Publication of WO2012147283A1 publication Critical patent/WO2012147283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator and a fuel cell system. More specifically, the present invention relates to a hydrogen generator equipped with a desulfurizer and a fuel cell system.
  • a fuel cell system supplies a hydrogen-containing gas and an oxygen-containing gas to a fuel cell stack (hereinafter simply referred to as a “fuel cell”), which is a main body of a power generation unit, to advance an electrochemical reaction between hydrogen and oxygen.
  • the generated chemical energy is extracted as electrical energy to generate electricity.
  • the fuel cell system is capable of high-efficiency power generation and can easily use the thermal energy generated during power generation operation, so it has been developed as a distributed power generation system that can achieve high energy use efficiency. Is underway.
  • the hydrogen generator includes a reforming unit.
  • the reforming unit uses a natural gas (fuel gas) mainly composed of natural gas supplied from an existing infrastructure or a raw material such as LPG at a temperature of 600 to 700 ° C. using a Ru catalyst or Ni catalyst. Reforming reaction with steam.
  • a odorant containing sulfur such as DMS, TBM, and THT is added to raw materials such as city gas or LPG supplied from the infrastructure in order to facilitate detection of raw material leakage.
  • sulfur compound derived from a raw material is also contained.
  • sulfur compounds poison catalysts such as Ru catalysts or Ni catalysts used in the reforming section and inhibit the reforming reaction. .
  • the hydrogen generator is generally equipped with a desulfurizer that removes sulfur compounds in the raw material before being introduced into the reforming section.
  • a desulfurizer there is a hydrodesulfurizer in which hydrogen is added to a sulfur compound at a high temperature by a hydrogenation catalyst (hereinafter referred to as a hydrogenation catalyst) to form hydrogen sulfide, and the hydrogen sulfide is removed by chemical adsorption (for example, patent literature). 1).
  • the hydrodesulfurizer has the feature that the desulfurization capacity is increased because the sulfur compound is converted to hydrogen sulfide and removed, and the desulfurizer can be downsized.
  • the present invention solves such a problem, and the concentration of the sulfur compound in the raw material supplied to the reformer is higher than that in the case of desulfurization using a hydrodesulfurizer in a state where the oxygen concentration in the raw material is high.
  • An object of the present invention is to provide a hydrogen generator and a fuel cell system in which the possibility of increase is reduced.
  • the present inventors have intensively studied the cause of the decrease in the reactivity of the hydrogenation reaction in the hydrodesulfurizer when the oxygen concentration in the raw material is high. As a result, the following knowledge was obtained.
  • a hydrogen generator of the present invention includes a reformer that reforms a raw material to generate a hydrogen-containing gas, and a hydrodesulfurizer that removes a sulfur compound in the raw material.
  • An adsorbent desulfurizer that removes sulfur compounds in the raw material, and a first raw material flow path through which the raw material supplied to the reformer passes through the hydrodesulfurizer without passing through the adsorbent desulfurizer A second raw material flow path through which the raw material supplied to the reformer via the adsorptive desulfurizer flows, and a flow path through which the raw material flows are the first raw material flow path and the second raw material flow path.
  • the switch causes the raw material to be
  • the second flow path is the first raw material flow path, and the oxygen concentration in the raw material is relatively high. If a state, and a control unit to the second material flow path a flow path in which the material flows by the switch.
  • the fuel cell system of the present invention includes the hydrogen generator and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
  • the sulfur compound in the raw material supplied to the reformer is reduced.
  • the possibility of increasing the concentration is reduced.
  • FIG. 1 is a conceptual diagram illustrating an example of a schematic configuration of the hydrogen generator in the first embodiment.
  • FIG. 2 is a flowchart showing an example of an operation method of the hydrogen generator in the first embodiment.
  • FIG. 3 is a conceptual diagram showing an example of a schematic configuration of the hydrogen generator in the example of the first embodiment.
  • FIG. 4 is a conceptual diagram showing an example of a schematic configuration of a hydrogen generator in a modification of the first embodiment.
  • FIG. 5 is a flowchart showing an example of an operation method of the hydrogen generator in the second embodiment.
  • FIG. 6 is a flowchart illustrating an example of an operation method of the hydrogen generator in the third embodiment.
  • FIG. 7 is a flowchart showing an example of an operation method of the hydrogen generator in the fourth embodiment.
  • FIG. 8 is a conceptual diagram showing an example of a schematic configuration of a fuel cell system according to the fifth embodiment.
  • the hydrogen generator of the first embodiment removes sulfur compounds in a raw material, a reformer that generates a hydrogen-containing gas by reforming the raw materials, a hydrodesulfurizer that removes sulfur compounds in the raw materials, and the like.
  • Adsorption desulfurizer first raw material flow path through which the raw material supplied to the reformer passes through the hydrodesulfurizer without passing through the adsorptive desulfurizer, and is supplied to the reformer via the adsorptive desulfurizer
  • the controller includes a controller that changes the flow path through which the raw material flows by the switch to the second raw material flow path.
  • Such a configuration reduces the possibility of an increase in the concentration of sulfur compounds in the raw material supplied to the reformer compared to the case where desulfurization is performed using a hydrodesulfurizer in a state where the oxygen concentration in the raw material is high. .
  • the first raw material flow path and the second raw material flow path may be completely independent, or a part of the flow paths may be common.
  • the switch may be in any form as long as the flow path through which the raw material flows can be switched between the first raw material flow path and the second raw material flow path.
  • the switch may be configured by an on-off valve provided in each of the first raw material flow path and the second raw material flow path, and among the first raw material flow path and the second raw material flow path Further, it may be configured by an on-off valve provided on one side and a fixed orifice provided on the other side.
  • the hydrogen generator of this embodiment includes a first detector that detects the temperature of the hydrodesulfurizer, and if the detected value of the first detector is less than the first threshold, the controller causes the switch to supply the raw material.
  • the flow path is the first raw material flow path and the detection value of the first detector is equal to or higher than the second threshold value, which is a value equal to or higher than the first threshold value, the flow path through which the raw material flows by the switch is the second raw material flow path. You may be comprised so that it may become.
  • the second raw material flow path may be connected to a hydrodesulfurizer.
  • the reformer may include a reforming catalyst having at least one of Pt and Rh as a constituent element.
  • FIG. 1 is a conceptual diagram showing an example of a schematic configuration of a hydrogen generator in the first embodiment.
  • the hydrogen generator 100 of the present embodiment includes a reformer 1, an adsorptive desulfurizer 3, a hydrodesulfurizer 4, a first raw material channel 15, and a second raw material channel. 16, a first valve 17, a second valve 18, and a controller 12.
  • the reformer 1 generates a hydrogen content by reforming the raw material.
  • the raw material includes at least an organic compound having carbon and hydrogen as constituent elements, and specific examples include natural gas, hydrocarbons such as LPG and LNG, and alcohols such as methanol and ethanol.
  • the reforming reaction may be any reforming reaction, and specific examples include a steam reforming reaction, an autothermal reaction, and a partial oxidation reaction.
  • the adsorptive desulfurizer 3 removes sulfur compounds in the raw material by physical adsorption.
  • a normal temperature adsorptive desulfurizer capable of adsorbing and removing sulfur compounds at normal temperature is preferably used.
  • the hydrodesulfurizer 4 converts sulfur compounds in the raw material into hydrogen sulfide by a hydrogenation reaction and chemisorbs hydrogen sulfide.
  • a sulfur compound in the raw material that is disposed on the first raw material flow channel 15 and flows through the inside of the first raw material flow channel 15 is removed.
  • the first raw material flow path 15 branches from the second raw material flow path 16 on the upstream side of the adsorptive desulfurizer 3 and joins the second raw material flow path 16 on the downstream side of the adsorptive desulfurizer 3 via the hydrodesulfurizer 4. .
  • the first valve 17 is a valve that opens and closes the second raw material flow path 16.
  • the first valve 17 is provided in the second raw material flow path 16 from the time when it branches from the first raw material flow path 15 until it merges with the first raw material flow path 15.
  • the first valve 17 is provided upstream of the adsorptive desulfurizer 3.
  • the first valve 17 can be provided at any location as long as it is the second raw material flow path 16 from the time it branches from the first raw material flow path 15 until it merges with the first raw material flow path 15, For example, it may be provided downstream of the adsorptive desulfurizer 3.
  • the second valve 18 is a valve that opens and closes the first raw material flow path 15.
  • the second valve 18 is provided in the first raw material flow path 15 from when it branches from the second raw material flow path 16 to when it merges with the second raw material flow path 16.
  • the second valve 18 is provided upstream of the hydrodesulfurizer 4.
  • the second valve 18 can be provided at any location as long as it is the first raw material flow path 15 from the time it branches from the second raw material flow path 16 until it merges with the second raw material flow path 16.
  • it may be provided downstream of the hydrodesulfurizer 4.
  • first valve 17 and the second valve 18 for example, an electromagnetic valve or the like can be used.
  • first valve 17 and the second valve 18 constitute a switch.
  • the hydrogen-containing gas discharged from the reformer 1 is supplied to a hydrogen utilization device (not shown) through the hydrogen supply path 10.
  • a return path 11 branches from the hydrogen supply path 10.
  • the return path 11 is connected to the first raw material flow path 15 upstream of the hydrodesulfurizer 4, and the hydrogen-containing gas generated in the reformer 1 is converted into the first raw material flow upstream of the hydrodesulfurizer 4. Supply to path 15.
  • Such a hydrogen-containing gas is mixed with the raw material before flowing into the hydrodesulfurizer 4, supplied to the hydrodesulfurizer 4, and used for the hydrogenation reaction.
  • the return path 11 is configured to be connected to the first raw material flow path 15 upstream from the portion branched from the second raw material flow path 16. You may provide in the 1st raw material flow path 15 upstream from the addition desulfurizer 4.
  • the reformer 1 may include a reforming catalyst containing at least one of Pt and Rh as a constituent element.
  • the controller 12 only needs to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) for storing a control program.
  • Examples of the arithmetic processing unit include an MPU and a CPU.
  • An example of the storage unit is a memory.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other (in other embodiments and modifications thereof). The same applies to the controller).
  • the controller 12 is communicably connected to the combustor 2, the first valve 17, and the second valve 18.
  • the hydrogen generator 100 further includes a raw material supplier (not shown) in the first raw material flow path 15 downstream from the portion where the return path 11 is connected to the first raw material flow path 15 and upstream from the hydrodesulfurizer 4.
  • the raw material supplier is constituted by, for example, at least one of a booster and a flow rate adjustment valve.
  • the raw material supply device (not shown) is downstream of the portion connected to the return path 11 and the second raw material flow path. 16 may be provided on the first raw material flow path 15 upstream from the portion branched from the 16.
  • the hydrogen generator 100 further includes an oxygen concentration state detector (not shown) that detects the state of the oxygen concentration contained in the raw material.
  • the oxygen concentration state detector may be any detector as long as it can detect the state of the oxygen concentration contained in the raw material.
  • the state of oxygen concentration is defined as meaning at least one of an oxygen concentration value in the raw material and a relative high or low state of the oxygen concentration in the raw material.
  • the oxygen concentration state detector is at least one of a detector that directly detects the state of oxygen concentration contained in the raw material and a detector that indirectly detects the state of oxygen concentration contained in the raw material. Used.
  • a detector that directly detects the state of oxygen concentration contained in the raw material an oxygen concentration detector provided in the raw material flow path, information acquisition that acquires oxygen concentration information from an external information holding body that holds oxygen concentration information
  • An example is a container. Examples of the information holding body include a server that holds oxygen concentration information, a distributor that holds oxygen concentration information, and the like.
  • the detector that indirectly detects the state of the oxygen concentration contained in the raw material is a detector that detects a physical quantity that correlates with the state of the oxygen concentration in the raw material.
  • a detector for indirectly detecting the state of the oxygen concentration contained in the raw material in addition to the first detector for detecting the temperature of the hydrodesulfurizer, the second detector for detecting the temperature of the reformer, the raw material
  • Examples of the raw material composition information correlated with the oxygen concentration state include information indicating that peak shaving is being performed.
  • the oxygen concentration state detector is communicably connected to the controller 12, and transmits information on the oxygen concentration state (for example, the temperature of the hydrodesulfurizer, the temperature of the reformer, or the oxygen concentration) to the controller 12. And send.
  • the oxygen concentration state for example, the temperature of the hydrodesulfurizer, the temperature of the reformer, or the oxygen concentration
  • the first detector detects the magnitude of heat generation when the oxygen in the raw material and the hydrogen in the hydrogen-containing gas supplied to the hydrodesulfurizer undergo an oxidation reaction as the temperature of the hydrodesulfurizer. And the controller 12 can determine the relative high / low state of oxygen concentration based on the value acquired from the 1st detector.
  • the first detector may be any detector as long as the temperature of the hydrodesulfurizer can be detected. Specifically, at least one of a detector that directly detects the temperature of the hydrodesulfurizer and a detector that indirectly detects the temperature of the hydrodesulfurizer is used as the first detector.
  • the detector that directly detects the temperature of the hydrodesulfurizer may be provided at any location as long as the temperature of the hydrodesulfurizer can be detected. Specifically, a detector that detects the temperature of the outer shell of the hydrodesulfurizer, the gas temperature in the hydrodesulfurizer, the gas temperature that has passed through the hydrodesulfurizer, the catalyst temperature in the hydrodesulfurizer, etc. Is done.
  • the detector that indirectly detects the temperature of the hydrodesulfurizer is a detector that detects a physical quantity correlated with the temperature of the hydrodesulfurizer.
  • Detectors that indirectly detect the temperature of the hydrodesulfurizer include detectors that detect the concentration of sulfur compounds in the raw material that has passed through the hydrodesulfurizer, and the concentration of carbon monoxide in the raw material that has passed through the hydrodesulfurizer. Examples include a detector that detects the temperature, an ambient temperature of the hydrodesulfurizer, and a detector that detects an indirect temperature correlated with the temperature of the hydrodesulfurizer.
  • the methanation reaction of carbon monoxide proceeds and hydrogen is consumed in the methanation reaction. .
  • the hydrogenation reaction amount of the sulfur compound decreases, and the concentration of the sulfur compound contained in the raw material passing through the hydrodesulfurizer increases.
  • the detector that detects the sulfur compound concentration in the raw material that has passed through the hydrodesulfurizer can detect the increase in the temperature of the hydrodesulfurizer indirectly by detecting the increase in the sulfur compound concentration in the raw material. become.
  • the detector that detects the concentration of carbon monoxide in the raw material that has passed through the hydrodesulfurizer indirectly detects the increase in the temperature of the hydrodesulfurizer by detecting the increase in the concentration of carbon monoxide. Is possible.
  • the second detector detects, as the temperature of the reformer, the magnitude of heat generated when the oxygen in the raw material supplied to the reformer and the hydrogen generated in the reformer undergo an oxidation reaction. And the controller 12 can determine the relative high and low state of oxygen concentration based on the temperature acquired from the 2nd detector.
  • the second detector may be any detector as long as the temperature of the reformer can be detected. Specifically, at least one of a detector that directly detects the temperature of the reformer and a detector that indirectly detects the temperature of the reformer is used as the second detector.
  • the detector that directly detects the temperature of the reformer may be provided at any location as long as the temperature of the reformer can be detected. Specifically, a detector that detects the temperature of the outer shell of the reformer, the temperature of the reforming catalyst, the gas temperature in the reformer, the gas temperature that has passed through the reformer, and the like is exemplified.
  • the detector that indirectly detects the temperature of the reformer is a detector that detects a physical quantity correlated with the temperature of the reformer.
  • a detector that indirectly detects the temperature of the reformer a hydrogen concentration detector that detects the hydrogen concentration in the hydrogen-containing gas that has passed through the reformer, a device that receives heat transfer from the reformer (for example, Hydrodesulfurization temperature), temperature detectors that detect the temperature of equipment (for example, transformers) through which hydrogen-containing gas that has passed through the reformer, ambient temperature of the reformer, etc. Examples thereof include a temperature detector that detects an indirect temperature correlated with the temperature of the mass device.
  • the controller 12 can determine that the oxygen concentration in the raw material is high by peak shaving.
  • the oxygen concentration detector can detect the oxygen concentration value itself.
  • the ammonia concentration detector detects the ammonia concentration in the hydrogen-containing gas.
  • oxygen is mixed into the raw material
  • air is usually mixed into the raw material, so that not only oxygen but also nitrogen is mixed into the raw material.
  • Nitrogen mixed in the raw material reacts with hydrogen generated in the reformer 1 to generate ammonia. Therefore, based on the concentration acquired from the ammonia concentration detector, it is possible to determine the relative level of the oxygen concentration.
  • a carbon monoxide reducer for reducing the carbon monoxide concentration in the hydrogen-containing gas may be provided in the flow path on the downstream side of the reformer 1.
  • the carbon monoxide reducer for example, at least one of a transformer and a carbon monoxide remover is used.
  • the transformer reduces carbon monoxide by a shift reaction.
  • the carbon monoxide remover reduces carbon monoxide in at least one of an oxidation reaction and a methanation reaction.
  • FIG. 2 is a flowchart showing an example of an operation method of the hydrogen generator in the first embodiment.
  • the operation method of the hydrogen generator 100 will be described with reference to FIG.
  • the controller 12 determines whether or not the oxygen concentration state is the first state based on the information received from the oxygen concentration state detector. Is determined (step S101).
  • the first state refers to a state in which the oxygen concentration in the raw material is relatively lower than that in the second state.
  • the second state refers to a state in which the oxygen concentration in the raw material is relatively higher than that in the first state.
  • step S101 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S101 is Yes, and the controller 12 closes the first valve 17 and opens the second valve 18 so that the raw material is The flow path is switched to the first raw material flow path 15 (step S102), and the determination operation is ended (end). As a result, the raw material passes through the first raw material flow path 15 and the hydrodesulfurizer 4 and is supplied to the reformer 1. At this time, in the configuration of FIG. 1, the raw material does not pass through the adsorptive desulfurizer 3.
  • step S102 When the state of the oxygen concentration in the raw material is the second state, the determination result in step S102 is No, and the controller 12 opens the first valve 17 and closes the second valve 18 so that the raw material is The flowing channel is switched to the second raw material channel 16 (step S103), and the determination operation is ended (end). Thereby, the raw material passes through the second raw material flow path 16 and the adsorptive desulfurizer 3 and is supplied to the reformer 1. At this time, in the configuration of FIG. 1, the raw material does not pass through the hydrodesulfurizer 4.
  • the hydrogen generator of the present embodiment includes a first detector that detects the temperature of the hydrodesulfurizer as an oxygen concentration state detector.
  • the configuration other than the above can be configured in the same manner as the hydrogen generator of the first embodiment.
  • FIG. 3 is a conceptual diagram showing an example of a schematic configuration of the hydrogen generator in the example of the first embodiment.
  • the hydrogen generator 100A of this example illustrated in FIG. 3 further detects the temperature of the hydrodesulfurizer as the oxygen concentration state detector in the hydrogen generator of the first embodiment illustrated in FIG. A first detector 5 is provided. Since other components can be the same as those of the hydrogen generator 100 shown in FIG. 1, the same reference numerals and names are used for the same components in FIGS. 1 and 3, and the description thereof is omitted. .
  • the first detector 5 for example, a temperature detector such as a thermocouple can be used.
  • the first detector 5 is disposed, for example, on the outer wall or inside of the hydrodesulfurizer 4, is connected to the controller 12 so as to be communicable, and sends the temperature of the hydrodesulfurizer 4 to the controller 12.
  • the operation method of the hydrogen generator in this embodiment can be the same as that shown in FIG. That is, in step S101 of FIG. 2, the controller 12 in the present embodiment determines the state of the oxygen concentration in the raw material based on the detection value of the first detector 5. When the detection value of the first detector 5 is less than the first threshold, it is determined that the oxygen concentration in the raw material is in the first state, and when the detection value of the first detector 5 is greater than or equal to the first threshold, It is determined that the oxygen concentration in the raw material is in the second state.
  • the other operations are the same as those in FIG.
  • the raw material does not pass through the hydrodesulfurizer 4.
  • the temperature of the hydrodesulfurizer 4 is not affected by the oxygen concentration in the raw material, and the first detector 5 cannot detect the oxygen concentration state. Therefore, another oxygen concentration state detector (for example, the second detector) different from the first detector 5 is further provided in the reformer 1 or the like, and detects that the oxygen concentration state has become the first state. Then, you may make it return to a 1st raw material flow path.
  • the controller 12 indicates that the oxygen concentration in the raw material is the first state when the detection value of the second detector is less than the second threshold, and the oxygen concentration in the raw material is greater than or equal to the second threshold. Is configured to determine that the state is a second state.
  • the second raw material flow path is connected to the hydrodesulfurizer.
  • the configuration other than the above may be configured similarly to the hydrogen generator of the first embodiment.
  • FIG. 4 is a conceptual diagram showing an example of a schematic configuration of the hydrogen generator in the modified example of the first embodiment.
  • the hydrogen generator 100B of the present modification illustrated in FIG. 4 is the same as the hydrogen generator of the first embodiment illustrated in FIG. 1 except that the second raw material flow path 16 is a first upstream of the hydrodesulfurizer 4. It is configured to branch from the raw material flow path 15 and merge with the first raw material flow path 15 of the hydrodesulfurizer 4.
  • the hydrogen generator 100B is provided with a first detector 5 that detects the temperature of the hydrodesulfurizer 4.
  • the other components are the same as those of the hydrogen generator 100 shown in FIG. 1, and the components common to FIGS. 1 and 4 are given the same reference numerals and names, and description thereof is omitted.
  • the operation method of the hydrogen generator in this modification can be the same as in FIG. However, in this modification, when it is determined that the oxygen concentration in the raw material is in the second state, the raw material passes through the adsorption desulfurizer 3 and then passes through the hydrodesulfurizer 4 to be supplied to the reformer 1. Is done.
  • the controller performs the operation of suppressing the temperature rise of the reformer after the flow path through which the raw material flows is changed to the second raw material flow path by the switch.
  • Such a configuration can suppress overheating of the reformer accompanying an increase in the oxygen concentration in the raw material.
  • the hydrogen generator of the present embodiment may be configured in the same manner as the hydrogen generator of at least any one of the first embodiment, its examples, and its modifications except for those described above.
  • the hardware configuration of the present embodiment can be the same as that shown in FIG.
  • the “operation for suppressing the temperature rise of the reformer” is, for example, control for reducing the fuel supply amount to the combustor 2, increasing the combustion air supply amount to the combustor 2, and increasing the air ratio ( ⁇ ).
  • This is at least one of the control and the control to increase the S / C by increasing the amount of steam supplied to the reformer 1.
  • the air ratio is an actual air amount with respect to a theoretical air amount necessary for complete combustion.
  • S / C is the ratio of the number of moles of water molecules in the steam supplied to the reformer to the number of moles of carbon atoms in the raw material fed to the reformer.
  • FIG. 5 is a flowchart showing an example of an operation method of the hydrogen generator in the second embodiment.
  • the operation method of the hydrogen generator in the second embodiment will be described with reference to FIG.
  • the controller 12 determines whether the oxygen concentration state is the first state based on the information received from the oxygen concentration state detector. Determination is made (step S201).
  • step S201 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S201 becomes Yes, and the controller 12 closes the first valve 17 and opens the second valve 18 so that the raw material is The flowing channel is switched to the first raw material channel 15 (step S202), and the determination operation is ended (end). As a result, the raw material passes through the first raw material flow path 15 and the hydrodesulfurizer 4 and is supplied to the reformer 1.
  • step S202 When the state of the oxygen concentration in the raw material is the second state, the determination result in step S202 is No, and the controller 12 opens the first valve 17 and closes the second valve 18 so that the raw material is The flowing channel is switched to the second raw material channel 16 (step S203). And the operation
  • the controller modifies the flow when the raw material flows through the first raw material flow path when the flow path through which the raw material flows is the second raw material flow path.
  • the temperature of the reformer is controlled so as to be higher than the temperature of the mass device.
  • the configuration other than the above may be configured in the same manner as that of at least one of the hydrogen generators of the first embodiment, the second embodiment, examples thereof, and modifications thereof. Good.
  • the hardware configuration of the present embodiment can be the same as that shown in FIG.
  • controlling the temperature of the reformer so as to be higher than the temperature of the reformer when the flow path for the raw material is the first raw material flow path is, for example,
  • the control target temperature of the mass device is set higher than the control target temperature of the reformer in the second state.
  • the operation of controlling the temperature of the reformer can be performed by controlling the amount of heating by the combustor 2 or the like.
  • FIG. 6 is a flowchart showing an example of an operation method of the hydrogen generator in the third embodiment.
  • the operation method of the hydrogen generator in the third embodiment will be described with reference to FIG.
  • the controller 12 determines whether the oxygen concentration state is the first state based on the information received from the oxygen concentration state detector. Determination is made (step S301).
  • step S301 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S301 is Yes, and the controller 12 closes the first valve 17 and opens the second valve 18 so that the raw material is The flowing channel is switched to the first raw material channel 15 (step S302), and the determination operation ends (end). As a result, the raw material passes through the first raw material flow path 15 and the hydrodesulfurizer 4 and is supplied to the reformer 1.
  • step S302 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S302 is No, and the controller 12 opens the first valve 17 and closes the second valve 18 so that the raw material is The flowing channel is switched to the second material channel 16 (step S303). Then, the control target temperature of the reformer is raised (step S304), and the determination operation is ended (end).
  • the raw material passes through the second raw material flow path 16 and the adsorptive desulfurizer 3 and is supplied to the reformer 1, and is set higher than when the control target temperature of the reformer is in the first state.
  • the temperature of the reformer 1 is controlled to be higher than the temperature of the reformer 1 when the flow path for the raw material is the first raw material flow path 15.
  • the hydrogen generator of the fourth embodiment includes a second detector that detects the temperature of the reformer, and the controller uses the switch to change the flow path of the raw material to the second raw material flow path, and then performs the second detection. The operation is stopped when the detected value of the container becomes the third threshold value or more.
  • the third threshold value can be defined as a value corresponding to a temperature higher than the control temperature of the reformer.
  • the configuration of the hydrogen generator of the present embodiment is the same as that of at least one of the hydrogen generators of the first embodiment, the second embodiment, the third embodiment, examples thereof, and modifications thereof except for the above. You may comprise.
  • the hardware configuration of the present embodiment can be the same as that shown in FIG. Illustration of the second detector is omitted.
  • the second detector for example, a temperature detector such as a thermocouple can be used.
  • the second detector is disposed, for example, on the outer wall or inside of the reformer 1, is communicably connected to the controller 12, and sends the temperature of the reformer 1 to the controller 12.
  • the temperature control of the reformer 1 is performed after the flow path for the raw material is changed to the second raw material flow path 16, and the flow path for the raw material is changed to the first raw material flow path 15. Even if it is a form which changes from when it is, it may be a form which is not changed.
  • the hydrogen generator may be operated to suppress the temperature rise of the reformer as in the second embodiment, for example.
  • the hydrogen generator has a temperature higher than the temperature of the reformer when the flow path for the raw material is the first raw material flow path as in the third embodiment, for example.
  • the temperature of the reformer may be controlled.
  • FIG. 7 is a flowchart showing an example of an operation method of the hydrogen generator in the fourth embodiment.
  • the operation method of the hydrogen generator in the fourth embodiment will be described with reference to FIG.
  • the controller 12 determines whether the oxygen concentration state is the first state based on the information received from the oxygen concentration state detector. Determination is made (step S401).
  • step S401 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S401 is Yes, and the controller 12 closes the first valve 17 and opens the second valve 18 so that the raw material is The flow path is switched to the first raw material flow path 15 (step S402), and the determination operation is ended (end). As a result, the raw material passes through the first raw material flow path 15 and the hydrodesulfurizer 4 and is supplied to the reformer 1.
  • step S402 When the state of the oxygen concentration in the raw material is the first state, the determination result in step S402 is No, and the controller 12 opens the first valve 17 and closes the second valve 18 so that the raw material is The flowing channel is switched to the second raw material channel 16 (step S403). Thereby, the raw material passes through the second raw material flow path 16 and the adsorptive desulfurizer 3 and is supplied to the reformer 1.
  • the controller 12 determines whether or not the temperature of the reformer 1 is equal to or higher than the upper limit temperature based on the detection result of the second detector (step S404). Specifically, for example, it is determined whether or not the detection value of the second detector is greater than or equal to a third threshold value.
  • the third threshold value is defined as a value corresponding to a temperature higher than the control temperature of the reformer when the flow path for the raw material is the second raw material flow path.
  • the second detector is a detector that directly detects the temperature of the reformer 1
  • the third threshold is defined as a temperature higher than the control temperature of the reformer.
  • the state of the oxygen concentration in the raw material can be indirectly detected by detecting the temperature of the reformer 1 with the second detector.
  • step S404 If the determination result of step S404 is No, the determination of step S404 is executed again.
  • step S404 If the determination result in step S404 is Yes, the controller 12 stops the operation of the hydrogen generator (step S405) and ends the determination operation (end).
  • the fuel cell system of the fifth embodiment includes a hydrogen generator and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
  • the hydrogen generator includes at least one of the first embodiment and its examples and modifications, the second embodiment and its modifications, the third embodiment and its modifications, the fourth embodiment and its modifications. One hydrogen generator may be applied.
  • FIG. 8 is a conceptual diagram showing an example of a schematic configuration of a fuel cell system according to the fifth embodiment.
  • a fuel cell system 200 of the present embodiment illustrated in FIG. 8 includes a fuel cell 20 in addition to the hydrogen generator 100 of the first embodiment illustrated in FIG. Since the other components can be the same as those of the hydrogen generator 100 shown in FIG. 1, the components common to FIGS. 1 and 8 are denoted by the same reference numerals and names, and the description thereof is omitted. .
  • the fuel cell 20 is a fuel cell that generates power using the hydrogen-containing gas supplied from the hydrogen generator 100.
  • the fuel cell 20 is a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC). And so on.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • the hydrogen generator and the fuel cell system according to the present invention are useful as a hydrogen generator and a fuel cell system that can suppress a decrease in the reactivity of the hydrogenation reaction in the desulfurizer when oxygen is mixed into the raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 原料を改質反応させて水素含有ガスを生成する改質器(1)と、原料中の硫黄化合物を除去する水添脱硫器(4)と、原料中の硫黄化合物を除去する吸着脱硫器(3)と、吸着脱硫器を経由せず、水添脱硫器を経由して改質器に供給される原料が流れる第1原料流路(15)と、吸着脱硫器を経由して改質器に供給される原料が流れる第2原料流路(16)と、原料が流れる流路を第1原料流路と第2原料流路との間で切替える切替器(17、18)と、改質器において水素含有ガスを生成しているときに、原料中の酸素濃度が相対的に低い第1の状態である場合は、切替器により原料が流れる流路を第1原料流路にし、原料中の酸素濃度が相対的に高い第2の状態である場合は、切替器により原料が流れる流路を第2原料流路にする制御器(12)と、を備える水素生成装置および燃料電池システム。

Description

水素生成装置および燃料電池システム
 本発明は、水素生成装置および燃料電池システムに関する。より詳細には、脱硫器を備えた水素生成装置および燃料電池システムに関する。
 燃料電池システムは、発電部の本体である燃料電池スタック(以下、単に「燃料電池」という)に、水素含有ガスと酸素含有ガスとを供給して、水素と酸素との電気化学反応を進行させ、発生した化学的なエネルギーを、電気的なエネルギーとして取り出して発電する。燃料電池システムは、高効率発電が可能であり、発電運転の際に発生する熱エネルギーを簡単に利用することができるので、高いエネルギー利用効率を実現することが可能な分散型の発電システムとして開発が進められている。
 一般的に、水素含有ガスを供給するためのインフラストラクチャーが整備されていないことが多い。このため従来の燃料電池システムには、多くの場合、水素生成装置が配設される。水素生成装置は改質部を備える。改質部は、既存のインフラストラクチャーから供給される天然ガスを主成分とする都市ガス(燃料ガス)、又はLPG等の原料を、Ru触媒、またはNi触媒を用いて600~700℃の温度で水蒸気と改質反応させる。
 インフラストラクチャーから供給される都市ガス、又はLPG等の原料には、一般に、原料漏れを検出しやすくするため、DMS、TBM、及びTHTといった硫黄を含有する付臭剤が添加されている。また、原料由来の硫黄化合物も含まれる。それらの硫黄を含有する付臭剤、及び硫黄化合物(総称して硫黄化合物とする)は、改質部等で用いられるRu触媒、またはNi触媒といった触媒を被毒させ、改質反応を阻害させる。
 このため水素生成装置では、硫黄化合物による被毒を防止するため、一般に、改質部に導入する前の原料中の硫黄化合物を除去する脱硫器を備える。脱硫器としては、水素添加触媒(以下、水添触媒)で高温下の硫黄化合物に水素を添加して硫化水素にし、硫化水素を化学吸着により除去する水添脱硫器がある(例えば、特許文献1参照)。水添脱硫器は、硫黄化合物を硫化水素に変換して除去するので脱硫容量が大きくなり、脱硫器を小型化できる特徴を有する。
 さて、原料には、インフラストラクチャー側の事情に起因して、酸素が一時的に混入することがある。そこで、酸素を含むプロセスガス、例えば天然ガス、ピークシェービングガス、LPGなどの予備改質方法が提案されている(例えば、特許文献2参照)。
特開平7-57756号公報 特開2001-80907号公報
 ここで、上記特許文献1に記載の水素生成装置において、上記特許文献2記載のように原料中の酸素濃度が高くなると、水添脱硫器における水素添加反応(以下、水添反応)の反応性が低下し、改質器に供給される硫黄化合物の濃度が増加する可能性があった。
 本発明は、かかる課題を解決するもので、原料中の酸素濃度が高い状態において水添脱
硫器を使用して脱硫する場合に比べ、改質器に供給される原料中の硫黄化合物の濃度が増加する可能性が低減される水素生成装置および燃料電池システムを提供することを目的とする。
 本発明者らは、原料中の酸素濃度が高い状態であるときに、水添脱硫器における水添反応の反応性が低下する原因について鋭意検討を行った。その結果、以下の知見を得た。
 すなわち、高温下では、硫黄化合物に水素を添加する水添触媒において水素と酸素が反応し、水添反応に必要な水素が消費される。これにより、水添反応の反応性が低下しうる。また、水素と酸素の反応熱により、水添反応に使用される触媒の温度が好適な範囲から外れる場合がある。これによっても、水添反応の反応性が低下しうる。かかる問題に対応するためには、酸素濃度が高い状態であるときに、水添脱硫器ではなく、吸着脱硫器を使用して、原料の脱硫を行うことが有効である。
 上記従来の課題を解決するために、本発明の水素生成装置は、原料を改質反応させて水素含有ガスを生成する改質器と、前記原料中の硫黄化合物を除去する水添脱硫器と、前記原料中の硫黄化合物を除去する吸着脱硫器と、前記吸着脱硫器を経由せず、前記水添脱硫器を経由して前記改質器に供給される前記原料が流れる第1原料流路と、前記吸着脱硫器を経由して前記改質器に供給される前記原料が流れる第2原料流路と、前記原料が流れる流路を前記第1原料流路と前記第2原料流路との間で切替える切替器と、前記改質器において水素含有ガスを生成しているときに、原料中の酸素濃度が相対的に低い第1の状態である場合は、前記切替器により前記原料が流れる流路を前記第1原料流路にし、原料中の酸素濃度が相対的に高い第2の状態である場合は、前記切替器により前記原料が流れる流路を前記第2原料流路にする制御器と、を備える。
 また、本発明の燃料電池システムは、上記水素生成装置と、前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える。
 本発明の水素生成装置および燃料電池システムによれば、原料中の酸素濃度が高い状態において水添脱硫器を使用して脱硫する場合に比べ、改質器に供給される原料中の硫黄化合物の濃度が増加する可能性が低減される。
図1は、第1実施形態における水素生成装置の概略構成の一例を示す概念図である。 図2は、第1実施形態における水素生成装置の動作方法の一例を示すフローチャートである。 図3は、第1実施形態の実施例における水素生成装置の概略構成の一例を示す概念図である。 図4は、第1実施形態の変形例における水素生成装置の概略構成の一例を示す概念図である。 図5は、第2実施形態における水素生成装置の動作方法の一例を示すフローチャートである。 図6は、第3実施形態における水素生成装置の動作方法の一例を示すフローチャートである。 図7は、第4実施形態における水素生成装置の動作方法の一例を示すフローチャートである。 図8は、第5実施形態における燃料電池システムの概略構成の一例を示す概念図である。
 (第1実施形態)
 第1実施形態の水素生成装置は、原料を改質反応させて水素含有ガスを生成する改質器と、原料中の硫黄化合物を除去する水添脱硫器と、原料中の硫黄化合物を除去する吸着脱硫器と、吸着脱硫器を経由せず、水添脱硫器を経由して改質器に供給される原料が流れる第1原料流路と、吸着脱硫器を経由して改質器に供給される原料が流れる第2原料流路と、原料が流れる流路を第1原料流路と第2原料流路との間で切替える切替器と、改質器において水素含有ガスを生成しているときに、原料中の酸素濃度が相対的に低い第1の状態である場合は、切替器により原料が流れる流路を第1原料流路にし、原料中の酸素濃度が相対的に高い第2の状態である場合は、切替器により原料が流れる流路を第2原料流路にする制御器と、を備える。
 かかる構成により、原料中の酸素濃度が高い状態において水添脱硫器を使用して脱硫する場合に比べ、改質器に供給される原料中の硫黄化合物の濃度が増加する可能性が低減される。
 第1原料流路と第2原料流路とは、完全に独立していてもよいし、一部の流路が共通であってもよい。
 切替器は、原料が流れる流路を第1原料流路と第2原料流路との間で切替え可能であれば、いずれの形態であっても構わない。例えば、切替器は、第1原料流路及び第2原料流路のそれぞれに設けられた開閉弁で構成される形態であってもよいし、第1原料流路及び第2原料流路のうち、一方に設けられた開閉弁と、他方に設けられた固定オリフィスとで構成される形態であってもよい。
 本実施形態の水素生成装置において、水添脱硫器の温度を検出する第1検知器を備え、制御器は、第1検知器の検出値が第1閾値未満であると、切替器により原料が流れる流路を第1原料流路にし、第1検知器の検出値が、第1閾値以上の値である第2閾値以上であると、切替器により原料が流れる流路を第2原料流路にするように構成されていてもよい。
 かかる構成では、水添脱硫器の温度に基づいて、原料中の酸素濃度の状態を間接的に把握することができる。原料中の酸素濃度が上昇すると、水添触媒上で酸素と水素とが反応し、温度が上昇するからである。
 本実施形態の水素生成装置において、第2原料流路は、水添脱硫器に接続されていてもよい。
 本実施形態の水素生成装置において、改質器は、Pt及びRhの少なくともいずれか一方を構成元素とする改質触媒を備えていてもよい。
 かかる構成では、脱硫器を通過した酸素が改質器に供給されても、Ru、Ni等を構成元素とする他の改質触媒に比べ改質触媒の劣化が抑制される。
 図1は、第1実施形態における水素生成装置の概略構成の一例を示す概念図である。図1に示されるように、本実施形態の水素生成装置100は、改質器1と、吸着脱硫器3と、水添脱硫器4と、第1原料流路15と、第2原料流路16と、第1弁17と、第2弁18と、制御器12とを備えている。
 改質器1は、原料を改質反応させて水素含有を生成する。原料は、少なくとも炭素及び水素を構成元素とする有機化合物を含み、具体的には、天然ガス、LPG、LNG等の炭化水素、及びメタノール、エタノール等のアルコールが例示される。改質反応は、いずれの改質反応でもよく、具体的には、水蒸気改質反応、オートサーマル反応及び部分酸化反応が例示される。
 吸着脱硫器3は、原料中の硫黄化合物を物理吸着により除去する。吸着脱硫器3としては、常温で硫黄化合物を吸着除去できる、常温吸着脱硫器が好適に用いられる。
 水添脱硫器4は、原料中の硫黄化合物を水添反応により硫化水素に変換し、硫化水素を化学吸着する。第1原料流路15の上に配設され、第1原料流路15の内部を通流する原料中の硫黄化合物を除去する。
 第1原料流路15は、吸着脱硫器3の上流側の第2原料流路16から分岐し、水添脱硫器4を経て吸着脱硫器3の下流側の第2原料流路16に合流する。
 第1弁17は、第2原料流路16を開閉する弁である。第1弁17は、第1原料流路15から分岐してから第1原料流路15に合流するまでの間の第2原料流路16に設けられる。図1の例では、第1弁17が、吸着脱硫器3の上流に設けられている。ただし、第1弁17は、第1原料流路15から分岐してから第1原料流路15に合流するまでの間の第2原料流路16であれば任意の箇所に設けることができ、例えば、吸着脱硫器3の下流に設けられても構わない。
 第2弁18は、第1原料流路15を開閉する弁である。第2弁18は、第2原料流路16から分岐してから第2原料流路16に合流するまでの間の第1原料流路15に設けられる。図1の例では、第2弁18が水添脱硫器4の上流に設けられている。ただし、第2弁18は、第2原料流路16から分岐してから第2原料流路16に合流するまでの間の第1原料流路15であれば任意の箇所に設けることができ、例えば、水添脱硫器4の下流に設けられても構わない。
 第1弁17および第2弁18には、例えば、電磁弁などを用いることができる。図1に示す例では、第1弁17と第2弁18とで切替器が構成される。
 改質器1から排出される水素含有ガスは、水素供給路10により水素利用機器(図示せず)へと供給される。水素供給路10からはリターン経路11が分岐している。リターン経路11は、水添脱硫器4よりも上流の第1原料流路15に接続され、改質器1で生成された水素含有ガスを、水添脱硫器4よりも上流の第1原料流路15に供給する。かかる水素含有ガスは、水添脱硫器4に流入する前の原料と混合され、水添脱硫器4へと供給され、水添反応に利用される。なお、図1では、リターン経路11が、第2原料流路16から分岐する部位よりも上流の第1原料流路15に接続するよう構成されているが、上記分岐する部位よりも下流かつ水添脱硫器4よりも上流の第1原料流路15に設けても構わない。
 改質器1は、Pt及びRhの少なくともいずれか一方を構成元素として含む改質触媒を備えていてもよい。
 制御器12は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。制御器は、集中制御を行う単独の制御器で構成されていてもよく、互いに協働して分散制御を行う複数の制御器で構成されていてもよい(他の実施形態およびその変形例の制御器においても同様)。制御器12は、燃焼器2、第1弁17、および第2弁18に通信可能に接続される。
 水素生成装置100は、さらに、リターン経路11が第1原料流路15に接続される部位よりも下流かつ水添脱硫器4よりも上流の第1原料流路15に、図示されない原料供給器を備える。原料供給器は、例えば、昇圧器及び流量調整弁の少なくともいずれか一方により構成される。なお、吸着脱硫器への原料供給器と共通化するために、図1に示すように、原料供給器(図示せず)は、リターン経路11と接続する部位よりも下流かつ第2原料流路16から分岐する部位よりも上流の第1原料流路15上に設けてもよい。
 水素生成装置100は、さらに、原料中に含まれる酸素濃度の状態を検知する、図示されない酸素濃度状態検知器を備える。酸素濃度状態検知器は、原料中に含まれる酸素濃度の状態を検知可能であれば、いずれの検知器であっても構わない。ここで、酸素濃度の状態とは、原料中の酸素濃度値及び原料中の酸素濃度の相対的な高低状態の少なくともいずれか一方の意味として定義される。
 酸素濃度状態検知器は、具体的には、原料中に含まれる酸素濃度の状態を直接検知する検知器及び原料中に含まれる酸素濃度の状態を間接的に検知する検知器の少なくともいずれかが用いられる。原料中に含まれる酸素濃度の状態を直接検知する検知器としては、原料流路に設けられた酸素濃度検知器、酸素濃度情報を保持する外部の情報保持体より酸素濃度情報を取得する情報取得器等が例示される。上記情報保持体としては、酸素濃度情報を保持するサーバ、酸素濃度情報を保持するディストリビュータ等が例示される。
 原料中に含まれる酸素濃度の状態を間接的に検知する検知器は、原料中の酸素濃度の状態に相関する物理量を検知する検知器である。原料中に含まれる酸素濃度の状態を間接的に検知する検知器としては、水添脱硫器の温度を検出する第1検知器の他、改質器の温度を検知する第2検知器、原料の供給圧を検知する圧力検知器、及び水素供給路10に設けられたアンモニア濃度検知器、外気温を検知する温度検知器、酸素濃度の状態に相関する原料組成情報を取得する情報取得器などが例示される。酸素濃度の状態に相関する原料組成情報としては、ピークシェービング中であることを示す情報等が例示される。
 酸素濃度状態検知器は、制御器12に通信可能に接続され、酸素の濃度状態に関する情報(例えば、水添脱硫器の温度、改質器の温度、または酸素濃度など)を、制御器12へと送る。
 なお、第1検知器は、原料中の酸素と水添脱硫器に供給される水素含有ガス中の水素とが酸化反応した際の発熱の大きさを水添脱硫器の温度として検知する。そして、制御器12は、第1検知器から取得した値に基づき、酸素濃度の相対的な高低状態を判定することができる。
 なお、第1検知器は、水添脱硫器の温度を検知可能であれば、いずれの検知器でも構わない。第1検知器は、具体的には、水添脱硫器の温度を直接検知する検知器及び水添脱硫器の温度を間接的に検知する検知器の少なくともいずれかが用いられる。
 水添脱硫器の温度を直接検知する検知器は、水添脱硫器の温度が検知できれば何れの箇所に設けられていてもよい。具体的には、水添脱硫器の外殻の温度、水添脱硫器内のガス温度、水添脱硫器を通過したガス温度、水添脱硫器内の触媒温度等を検知する検知器が例示される。
 水添脱硫器の温度を間接的に検知する検知器は、水添脱硫器の温度に相関する物理量を検知する検知器である。水添脱硫器の温度を間接的に検知する検知器としては、水添脱硫器を通過した原料中の硫黄化合物濃度を検知する検知器、水添脱硫器を通過した原料中の一酸化炭素濃度を検知する検知器、水添脱硫器の周辺温度等、水添脱硫器の温度と相関のある間接的な温度を検知する検知器等が例示される。
 水添脱硫器の温度が上昇すると、水添脱硫触媒の種類(例えば、CoMo系の水添脱硫触媒)によっては、一酸化炭素のメタン化反応が進行し、メタン化反応に水素が消費される。すると、硫黄化合物の水添反応量が低下し、水添脱硫器を通過する原料中に含まれる硫黄化合物濃度が上昇する。水添脱硫器を通過した原料中の硫黄化合物濃度を検知する検知器が、原料中の硫黄化合物濃度上昇を検知することで、間接的に水添脱硫器の温度の上昇を検知することが可能になる。
 また、水添脱硫器の温度が上昇すると、水添脱硫触媒の種類(例えば、CuZn系の水添脱硫触媒)によっては、逆シフト反応が進行し、一酸化炭素の濃度が上昇する。そこで、水添脱硫器を通過した原料中の一酸化炭素濃度を検知する検知器が、一酸化炭素濃度の上昇を検知することで、間接的に水添脱硫器の温度の上昇を検知することが可能になる。
 第2検知器は、改質器に供給される原料中の酸素と改質器で生成した水素とが酸化反応した際の発熱の大きさを改質器の温度として検知する。そして、制御器12は、第2検知器から取得した温度に基づき、酸素濃度の相対的な高低状態を判定することができる。
 なお、第2検知器は、改質器の温度を検知可能であれば、いずれの検知器でも構わない。第2検知器は、具体的には、改質器の温度を直接検知する検知器及び改質器の温度を間接的に検知する検知器の少なくともいずれかが用いられる。
 改質器の温度を直接検知する検知器は、改質器の温度を検知可能であれば、いずれの箇所に設けても構わない。具体的には、改質器の外殻の温度、改質触媒の温度、改質器内のガス温度、改質器を通過したガス温度等を検知する検知器が例示される。
 改質器の温度を間接的に検知する検知器は、改質器の温度に相関する物理量を検知する検知器である。改質器の温度を間接的に検知する検知器としては、改質器を通過した水素含有ガス中の水素濃度を検知する水素濃度検知器、改質器からの伝熱を受ける機器(例えば、水添脱硫器)の温度を検知する温度検知器、改質器を通過した水素含有ガスが流れる機器(例えば、変成器)の温度を検知する温度検知器、改質器の周辺温度等、改質器の温度と相関のある間接的な温度を検知する温度検知器等が例示される。
 通常、ピークシェービングの実行前は原料供給圧が低下し、そして、ピークシェービング実行後に、低下していた原料供給圧が戻る。制御器12は、圧力検知器により検知された上記圧力変化に基づき、ピークシェービングにより原料中の酸素濃度が高い状態にあると判定することができる。
 また、外気温が低く熱需要が高いときに、不足する原料を補うためピークシェービングが発生する。従って、外気温を検出する温度検知器の検出値が、ピークシェービングが発生すると推定される値(例えば、-5℃)以下であるときに、ピークシェービングにより原料中の酸素濃度が高い状態にあると判定することができる。
 酸素濃度検知器は、酸素濃度値自体を検知することができる。
 アンモニア濃度検知器は、水素含有ガス中のアンモニア濃度を検知する。原料に酸素が混入されるとき、通常、原料に空気を混入するため、原料には酸素だけでなく窒素も混入される。原料に混入された窒素は、改質器1で生成した水素と反応し、アンモニアを生成する。従って、アンモニア濃度検知器から取得した濃度に基づき、酸素濃度の相対的な高低状態を判定することができる。
 なお、図1には図示してないが、改質器1の下流側の流路に、水素含有ガス中の一酸化炭素濃度を低減するための一酸化炭素低減器を設けてもよい。一酸化炭素低減器としては、例えば、変成器および一酸化炭素除去器の少なくともいずれか一方、が用いられる。変成器は、シフト反応により一酸化炭素を低減する。一酸化炭素除去器は、酸化反応およびメタン化反応の少なくともいずれか一方で一酸化炭素を低減する。
 図2は、第1実施形態における水素生成装置の動作方法の一例を示すフローチャートである。以下、図2を参照しつつ、水素生成装置100の動作方法について説明する。
 水素生成装置100が酸素の濃度状態の判定動作を開始すると(スタート)、制御器12は、酸素濃度状態検知器から受け取った情報に基づき、酸素の濃度状態が第1の状態であるか否かを判定する(ステップS101)。ここで、第1の状態とは、原料中の酸素濃度が第2の状態よりも相対的に低い状態をいう。また、第2の状態とは、原料中の酸素濃度が第1の状態よりも相対的に高い状態をいう。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS101の判定結果はYesとなり、制御器12は、第1弁17を閉止すると共に第2弁18を開放して、原料が流れる流路を第1原料流路15に切替え(ステップS102)、判定動作を終了する(エンド)。これにより、原料は第1原料流路15および水添脱硫器4を通過して改質器1へと供給される。このとき、図1の構成では、原料は吸着脱硫器3を通過しない。
 原料中の酸素濃度の状態が、第2の状態であるとき、ステップS102の判定結果がNoとなり、制御器12は、第1弁17を開放すると共に第2弁18を閉止して、原料が流れる流路を第2原料流路16に切替え(ステップS103)、判定動作を終了する(エンド)。これにより、原料は第2原料流路16および吸着脱硫器3を通過して改質器1へと供給される。このとき、図1の構成では、原料は水添脱硫器4を通過しない。
 [実施例]
 本実施例の水素生成装置は、酸素濃度状態検知器として、水添脱硫器の温度を検出する第1検知器を備えている。本実施形態の水素生成装置において、上記以外の構成は、第1実施形態の水素生成装置と同様に構成することができる。
 図3は、第1実施形態の実施例における水素生成装置の概略構成の一例を示す概念図である。図3に例示される本実施例の水素生成装置100Aは、図1に例示される第1実施形態の水素生成装置において、さらに、酸素濃度状態検知器として、水添脱硫器の温度を検出する第1検知器5を備えている。その他の構成要素は、図1に示す水素生成装置100と同様とすることができるので、図1と図3とで共通する構成要素については、同一の符号および名称を付して説明を省略する。
 第1検知器5としては、例えば、熱電対などの温度検知器を用いることができる。第1検知器5は、例えば水添脱硫器4の外壁あるいは内部に配置され、制御器12に通信可能に接続され、水添脱硫器4の温度を制御器12へと送る。
 本実施例における水素生成装置の動作方法は、図2と同様とすることができる。すなわち、図2のステップS101において、本実施例における制御器12は、第1検知器5の検出値に基づいて、原料中の酸素濃度の状態を判定する。第1検知器5の検出値が第1閾値未満であると、原料中の酸素濃度が第1の状態にあると判定し、第1検知器5の検出値が第1閾値以上であると、原料中の酸素濃度が第2の状態にあると判定する。その他の動作については、図2と同様であるので説明を省略する。
 なお、本実施例では、一旦、第2原料流路へ切替えると、原料が水添脱硫器4を通過しない。水添脱硫器4の温度は原料中の酸素濃度の影響を受けず、第1検知器5では酸素濃度の状態が検知できない。そこで、第1検知器5と異なる他の酸素濃度状態検知器(例えば、第2検知器)がさらに改質器1などに設けられ、該酸素濃度状態が第1の状態になったことを検知すると第1原料流路に戻すようにしてもよい。例えば、制御器12は、第2検知器の検出値が、第2閾値未満であると原料中の酸素濃度の状態が第1の状態であり、第2閾値以上であると原料中の酸素濃度の状態が第2の状態であると判定するよう構成される。
 [変形例]
 本変形例の水素生成装置では、第2原料流路が、水添脱硫器に接続されている。本変形例の水素生成装置において、上記以外の構成は、第1実施形態の水素生成装置と同様に構成してもよい。
 次に、本変形例の水素生成装置について詳細に説明する。
 図4は、第1実施形態の変形例における水素生成装置の概略構成の一例を示す概念図である。図4に例示される本変形例の水素生成装置100Bは、図1に例示される第1実施形態の水素生成装置において、第2原料流路16が、水添脱硫器4の上流の第1原料流路15から分岐し、かつ水添脱硫器4の第1原料流路15に合流するように構成されている。そして、水素生成装置100Bは、水添脱硫器4の温度を検知する第1検知器5が付加されている。その他の構成要素は、図1に示す水素生成装置100と同様であり、図1と図4とで共通する構成要素については、同一の符号および名称を付して説明を省略する。
 本変形例における水素生成装置の動作方法は、図2と同様とすることができる。ただし本変形例では、原料中の酸素濃度が第2状態にあると判定された場合、原料は吸着脱硫器3を通過した後、水添脱硫器4を通過して改質器1へと供給される。
 (第2実施形態)
 第2実施形態の水素生成装置において、制御器は、切替器により原料が流れる流路を第2原料流路にした後、改質器の温度上昇を抑制する動作を実行する。
 かかる構成では、原料中の酸素濃度上昇に伴う改質器の過熱を抑制できる。
 本実施形態の水素生成装置は、上記以外の構成は、第1実施形態、その実施例およびその変形例の少なくともいずれか一つの水素生成装置と同様に構成してもよい。
 次に、本実施形態の水素生成装置について詳細に説明する。
 本実施形態のハードウェア構成は、図1と同様とすることができるので、詳細な説明は省略する。
 「改質器の温度上昇を抑制する動作」は、例えば、燃焼器2への燃料供給量を低下させる制御、燃焼器2への燃焼空気供給量を増加させ、空気比(λ)を増加させる制御、及び改質器1への水蒸気供給量を増加させ、S/Cを増加させる制御の少なくともいずれか一つである。ここで、空気比は、完全燃焼に必要な理論空気量に対する実際の空気量である。S/Cは、改質器に供給される原料中の炭素原子のモル数に対する改質器に供給される水蒸気中の水分子のモル数の比率である。
 図5は、第2実施形態における水素生成装置の動作方法の一例を示すフローチャートである。以下、図5を参照しつつ、第2実施形態における水素生成装置の動作方法について説明する。
 水素生成装置が酸素の濃度状態の判定動作を開始すると(スタート)、制御器12は、酸素濃度状態検知器から受け取った情報に基づき、酸素の濃度状態が第1の状態であるか否かを判定する(ステップS201)。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS201の判定結果がYesとなり、制御器12は、第1弁17を閉止すると共に第2弁18を開放して、原料が流れる流路を第1原料流路15に切替え(ステップS202)、判定動作を終了する(エンド)。これにより、原料は第1原料流路15および水添脱硫器4を通過して改質器1へと供給される。
 原料中の酸素濃度の状態が、第2の状態であるとき、ステップS202の判定結果がNoとなり、制御器12は、第1弁17を開放すると共に第2弁18を閉止して、原料が流れる流路を第2原料流路16に切替える(ステップS203)。そして、改質器の温度上昇を抑制する動作を実行し(ステップS204)、判定動作を終了する(エンド)。これにより、原料は第2原料流路16および吸着脱硫器3を通過して改質器1へと供給されると共に、改質器の温度上昇が抑制される。
 (第3実施形態)
 第3実施形態の水素生成装置において、制御器は、切替器により原料が流れる流路を第2原料流路にしているとき、原料が流れる流路を第1原料流路にしているときの改質器の温度よりも高い温度となるように改質器の温度を制御する。
 かかる構成では、原料中の酸素濃度の状態が相対的に高いとき改質器の温度が上昇しても、制御目標温度が上昇するため、改質器の高温異常と判定される可能性が低下する。
 本実施形態の水素生成装置において、上記以外の構成は、第1実施形態、第2実施形態、それらの実施例およびそれらの変形例の少なくともいずれか一つの水素生成装置と同様に構成してもよい。
 次に、本実施形態の水素生成装置について詳細に説明する。
 本実施形態のハードウェア構成は、図1と同様とすることができるので、詳細な説明は省略する。
 「原料が流れる流路を第1原料流路にしているときの改質器の温度よりも高い温度となるように改質器の温度を制御する」とは、具体的には、例えば、改質器の制御目標温度を、第2の状態における改質器の制御目標温度よりも高く設定することなどが挙げられる。改質器の温度を制御する動作は、具体的には、燃焼器2による加熱量を制御することなどにより行なわれうる。
 図6は、第3実施形態における水素生成装置の動作方法の一例を示すフローチャートである。以下、図6を参照しつつ、第3実施形態における水素生成装置の動作方法について説明する。
 水素生成装置が酸素の濃度状態の判定動作を開始すると(スタート)、制御器12は、酸素濃度状態検知器から受け取った情報に基づき、酸素の濃度状態が第1の状態であるか否かを判定する(ステップS301)。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS301の判定結果がYesとなり、制御器12は、第1弁17を閉止すると共に第2弁18を開放して、原料が流れる流路を第1原料流路15に切替え(ステップS302)、判定動作を終了する(エンド)。これにより、原料は第1原料流路15および水添脱硫器4を通過して改質器1へと供給される。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS302の判定結果がNoとなり、制御器12は、第1弁17を開放すると共に第2弁18を閉止して、原料が流れる流路を第2原料流路16に切替え(ステップS303)る。そして、改質器の制御目標温度を上げ(ステップS304)、判定動作を終了する(エンド)。これにより、原料は第2原料流路16および吸着脱硫器3を通過して改質器1へと供給されると共に、改質器の制御目標温度が第1の状態であるときより高く設定され、原料が流れる流路を第1原料流路15にしているときの改質器1の温度よりも高い温度となるように改質器1の温度が制御される。
 (第4実施形態)
 第4実施形態の水素生成装置は、改質器の温度を検出する第2検知器を備え、制御器は、切替器により原料が流れる流路を第2原料流路にした後、第2検知器の検出値が第3閾値以上になると、運転を停止するように構成されている。
 かかる構成では、水素生成装置の運転を継続すると改質器への熱ダメージが過大となるレベルにまで原料中の酸素濃度が上昇した場合に、改質器へのダメージの拡大を抑制することができる。
 ここで、第3閾値は、改質器の制御温度よりも高い温度に対応する値として定義されうる。
 本実施形態の水素生成装置は、上記以外の構成は、第1実施形態、第2実施形態、第3実施形態、それらの実施例およびそれらの変形例の少なくともいずれか一つの水素生成装置と同様に構成してもよい。
 次に、本実施形態の水素生成装置について詳細に説明する。
 本実施形態のハードウェア構成は、図1と同様とすることができるので、詳細な説明は省略する。第2検知器の図示は省略する。
 第2検知器としては、例えば、熱電対などの温度検知器を用いることができる。第2検知器は、例えば、改質器1の外壁あるいは内部に配置され、制御器12に通信可能に接続され、改質器1の温度を制御器12へと送る。
 なお、本実施の形態の水素生成装置は、原料が流れる流路を第2原料流路16にした後の改質器1の温度制御を、原料が流れる流路を第1原料流路15にしている時から変更する形態であっても、変更しない形態であってもいずれであっても構わない。
 上記変更する形態として、水素生成装置は、例えば、第2実施形態のように、改質器の温度上昇を抑制する動作が実行されてもよい。または、上記変更する形態として、水素生成装置は、例えば、第3実施形態のように、原料が流れる流路を第1原料流路にしているときの改質器の温度よりも高い温度となるように改質器の温度が制御されてもよい。
 図7は、第4実施形態における水素生成装置の動作方法の一例を示すフローチャートである。以下、図7を参照しつつ、第4実施形態における水素生成装置の動作方法について説明する。
 水素生成装置が酸素の濃度状態の判定動作を開始すると(スタート)、制御器12は、酸素濃度状態検知器から受け取った情報に基づき、酸素の濃度状態が第1の状態であるか否かを判定する(ステップS401)。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS401の判定結果がYesとなり、制御器12は、第1弁17を閉止すると共に第2弁18を開放して、原料が流れる流路を第1原料流路15に切替え(ステップS402)、判定動作を終了する(エンド)。これにより、原料は第1原料流路15および水添脱硫器4を通過して改質器1へと供給される。
 原料中の酸素濃度の状態が、第1の状態であるとき、ステップS402の判定結果がNoとなり、制御器12は、第1弁17を開放すると共に第2弁18を閉止して、原料が流れる流路を第2原料流路16に切替える(ステップS403)。これにより、原料は第2原料流路16および吸着脱硫器3を通過して改質器1へと供給される。
 その後、制御器12は、第2検知器の検出結果に基づいて、改質器1の温度が上限温度以上になっているか否かを判定する(ステップS404)。具体的には、例えば、第2検知器の検出値が、第3の閾値以上であるか否かを判定する。
 ここで、第3の閾値は、原料が流れる流路を第2原料流路にしているときの改質器の制御温度よりも高い温度に対応する値として定義される。第2検知器が、改質器1の温度を直接的に検知する検知器であるときは、第3の閾値は、改質器の制御温度よりも高い温度として定義される。
 原料中の酸素濃度が上昇すると、改質器1において水素と酸素が反応し、改質器1の温度が上昇する。一方で、原料中の酸素濃度が低下すると、改質器1における水素と酸素の反応が減少し、改質器1の温度が低下する。よって、改質器1の温度を第2検知器で検知することで、間接的に、原料中の酸素濃度の状態を検知することができる。
 ステップS404の判定結果がNoの場合、再びステップS404の判定が実行される。
 ステップS404の判定結果がYesの場合、制御器12は、水素生成装置の運転を停止し(ステップS405)、判定動作を終了する(エンド)。
 (第5実施形態)
 第5実施形態の燃料電池システムは、水素生成装置と、該水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える。
 該水素生成装置には、第1実施形態およびその実施例および変形例、第2実施形態およびその変形例、第3実施形態およびその変形例、第4実施形態およびその変形例の少なくともいずれかを一つの水素生成装置を適用してもよい。
 次に、本実施形態の水素生成装置について詳細に説明する。
 図8は、第5実施形態における燃料電池システムの概略構成の一例を示す概念図である。図8に例示される本実施形態の燃料電池システム200は、図1に例示される第1実施形態の水素生成装置100に加え、燃料電池20を備えている。その他の構成要素は、図1に示す水素生成装置100と同様とすることができるので、図1と図8とで共通する構成要素については、同一の符号および名称を付して説明を省略する。
 燃料電池20は、水素生成装置100より供給される水素含有ガスを用いて発電する燃料電池であって、例えば、固体高分子形燃料電池(PEFC)、あるいは、固体酸化物形燃料電池(SOFC)などとすることができる。
 上記説明から、当業者にとっては、本発明の多くの改良および他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。
 本発明にかかる水素生成装置および燃料電池システムは、原料に酸素が混入した際の脱硫器における水添反応の反応性低下を抑制できる水素生成装置および燃料電池システムとして有用である。
 1 改質器
 2 燃焼器
 3 吸着脱硫器
 4 水添脱硫器
 5 第1検知器
 10 水素供給路
 11 リターン経路
 12 制御器
 15 第1原料流路
 16 第2原料流路
 17 第1弁
 18 第2弁
 20 燃料電池
 100 水素生成装置
 100A 水素生成装置
 100B 水素生成装置
 200 燃料電池システム

Claims (8)

  1.  原料を改質反応させて水素含有ガスを生成する改質器と、
     前記原料中の硫黄化合物を除去する水添脱硫器と、
     前記原料中の硫黄化合物を除去する吸着脱硫器と、
     前記吸着脱硫器を経由せず、前記水添脱硫器を経由して前記改質器に供給される前記原料が流れる第1原料流路と、
     前記吸着脱硫器を経由して前記改質器に供給される前記原料が流れる第2原料流路と、
     前記原料が流れる流路を前記第1原料流路と前記第2原料流路との間で切替える切替器と、
     前記改質器において水素含有ガスを生成しているときに、
     原料中の酸素濃度が相対的に低い第1の状態である場合は、前記切替器により前記原料が流れる流路を前記第1原料流路にし、
     原料中の酸素濃度が相対的に高い第2の状態である場合は、前記切替器により前記原料が流れる流路を前記第2原料流路にする制御器と、
     を備える水素生成装置。
  2.  前記水添脱硫器の温度を検出する第1検知器を備え、前記制御器は、
     前記第1検知器の検出値が第1閾値未満であると、前記切替器により前記原料が流れる流路を前記第1原料流路にし、
     前記第1検知器の検出値が、前記第1閾値以上の値である第2閾値以上であると、前記切替器により前記原料が流れる流路を前記第2原料流路にするように構成されている、請求項1に記載の水素生成装置。
  3.  前記制御器は、前記切替器により前記原料が流れる流路を前記第2原料流路にした後、前記改質器の温度上昇を抑制する動作を実行する、請求項1または2に記載の水素生成装置。
  4.  前記制御器は、前記切替器により前記原料が流れる流路を前記第2原料流路にしているとき、前記原料が流れる流路を前記第1原料流路にしているときの前記改質器の温度よりも高い温度となるように前記改質器の温度を制御する、請求項1乃至3のいずれかに記載の水素生成装置。
  5.  前記改質器の温度を検出する第2検知器を備え、前記制御器は、前記切替器により前記原料が流れる流路を前記第2原料流路にした後、前記第2検知器の検出値が第3閾値以上になると、運転を停止するように構成されている、請求項1乃至4のいずれかに記載の水素生成装置。
  6.  前記第2原料流路は、前記水添脱硫器に接続されている、請求項1乃至5のいずれかに記載の水素生成装置。
  7.  前記改質器は、Pt及びRhの少なくともいずれか一方を構成元素とする改質触媒を備える、請求項1乃至6のいずれかに記載の水素生成装置。
  8.  請求項1乃至7のいずれかに記載の水素生成装置と、前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える、燃料電池システム。
PCT/JP2012/002366 2011-04-26 2012-04-04 水素生成装置および燃料電池システム WO2012147283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12775919.9A EP2703340B1 (en) 2011-04-26 2012-04-04 Hydrogen generation apparatus and fuel cell system
US13/817,395 US9090464B2 (en) 2011-04-26 2012-04-04 Hydrogen generation apparatus and fuel cell system
JP2012555247A JP5214076B1 (ja) 2011-04-26 2012-04-04 水素生成装置および燃料電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011097853 2011-04-26
JP2011-097853 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147283A1 true WO2012147283A1 (ja) 2012-11-01

Family

ID=47071817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002366 WO2012147283A1 (ja) 2011-04-26 2012-04-04 水素生成装置および燃料電池システム

Country Status (4)

Country Link
US (1) US9090464B2 (ja)
EP (1) EP2703340B1 (ja)
JP (1) JP5214076B1 (ja)
WO (1) WO2012147283A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167864A1 (ja) * 2013-04-11 2014-10-16 パナソニック株式会社 水素生成装置及びこれを備える燃料電池システム
JP2018096616A (ja) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837594B1 (en) * 2012-04-10 2024-05-01 Panasonic Intellectual Property Management Co., Ltd. Method for operating hydrogen generation device and method for operating fuel cell system
US9312555B2 (en) 2012-12-27 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
US9966620B2 (en) * 2014-11-25 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
US10056634B2 (en) 2015-06-10 2018-08-21 Honeywell International Inc. Systems and methods for fuel desulfurization
WO2018212214A1 (ja) * 2017-05-18 2018-11-22 株式会社デンソー 燃料電池システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275697A (ja) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp 改質装置
JPH0757756A (ja) 1993-08-06 1995-03-03 Toshiba Corp 燃料電池発電システム
JP2001080907A (ja) 1999-08-19 2001-03-27 Haldor Topsoe As 酸素含有ガスの予備改質方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2008138153A (ja) * 2006-11-09 2008-06-19 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
WO2010041471A1 (ja) * 2008-10-09 2010-04-15 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114414A (ja) * 1991-10-21 1993-05-07 Mitsubishi Electric Corp 燃料電池発電装置
JPH10214632A (ja) 1997-01-31 1998-08-11 Toshiba Corp 燃料電池発電装置
JP3885521B2 (ja) * 2001-06-15 2007-02-21 日産自動車株式会社 燃料電池システム
US7131264B2 (en) * 2003-01-29 2006-11-07 Delphi Technologies, Inc. Method of operating a reformer and a vehicle
JP2007131462A (ja) 2005-11-08 2007-05-31 Toyota Motor Corp 制御装置およびそれを備えた燃料改質システム
JP2009249203A (ja) * 2008-04-02 2009-10-29 Tokyo Gas Co Ltd 燃料電池の燃料水素製造用原燃料の脱硫システム
JP5143663B2 (ja) 2008-08-09 2013-02-13 東京瓦斯株式会社 燃料電池の燃料水素製造用原燃料の前処理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275697A (ja) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp 改質装置
JPH0757756A (ja) 1993-08-06 1995-03-03 Toshiba Corp 燃料電池発電システム
JP2001080907A (ja) 1999-08-19 2001-03-27 Haldor Topsoe As 酸素含有ガスの予備改質方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2008138153A (ja) * 2006-11-09 2008-06-19 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
WO2010041471A1 (ja) * 2008-10-09 2010-04-15 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167864A1 (ja) * 2013-04-11 2014-10-16 パナソニック株式会社 水素生成装置及びこれを備える燃料電池システム
JP2018096616A (ja) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法

Also Published As

Publication number Publication date
US9090464B2 (en) 2015-07-28
EP2703340A1 (en) 2014-03-05
EP2703340B1 (en) 2017-07-19
EP2703340A4 (en) 2014-03-05
US20130143136A1 (en) 2013-06-06
JPWO2012147283A1 (ja) 2014-07-28
JP5214076B1 (ja) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5214076B1 (ja) 水素生成装置および燃料電池システム
EP2719658B1 (en) Method of operating a hydrogen generation apparatus
WO2014115502A1 (ja) 燃料電池システム
WO2011077752A1 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
US9116528B2 (en) Hydrogen generation apparatus, fuel cell system, and method of operating the same
JP2006137649A (ja) 水素製造装置および燃料電池システムの起動停止方法
US20130316257A1 (en) Fuel cell system
US10014536B2 (en) Fuel cell system
JP5886483B1 (ja) 固体酸化物形燃料電池システム及びその停止方法
WO2013001753A1 (ja) 水素生成装置及び燃料電池システム
JP2013224242A (ja) 水素生成装置及び燃料電池システム
JP5687147B2 (ja) 燃料電池システム
JP2014101264A (ja) 水素生成装置の運転方法及び燃料電池システムの運転方法
EP2821367A1 (en) Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
US20140193729A1 (en) Fuel cell system and method of operating the same
JP2016130193A (ja) 水素生成装置およびそれを用いた燃料電池システム並びにその運転方法
JP2016119151A (ja) 燃料電池システム、及び燃料電池システムの運転方法
EP2985259B1 (en) Hydrogen generator and fuel cell system including the same
JP2012229137A (ja) 水素生成装置、燃料電池システム及び水素生成装置の運転方法
JP2014211942A (ja) 燃料電池システム及びその運転方法
JP5903573B2 (ja) 燃料電池システム
JP2014125387A (ja) 水素生成装置、燃料電池システム、水素生成装置の運転方法及び燃料電池システムの運転方法
JP2016021282A (ja) 脱硫システム、及び、脱硫方法
JP2012230800A (ja) 燃料電池システム及びその運転方法
JP2012153535A (ja) 水素生成装置及び水素生成装置を備えた燃料電池システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012555247

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775919

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012775919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012775919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE