JP2016181369A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2016181369A
JP2016181369A JP2015060393A JP2015060393A JP2016181369A JP 2016181369 A JP2016181369 A JP 2016181369A JP 2015060393 A JP2015060393 A JP 2015060393A JP 2015060393 A JP2015060393 A JP 2015060393A JP 2016181369 A JP2016181369 A JP 2016181369A
Authority
JP
Japan
Prior art keywords
container
raw material
hydrodesulfurizer
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015060393A
Other languages
English (en)
Inventor
徹 壽川
Toru Sugawa
徹 壽川
鵜飼 邦弘
Kunihiro Ukai
邦弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015060393A priority Critical patent/JP2016181369A/ja
Publication of JP2016181369A publication Critical patent/JP2016181369A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】排ガスの熱を利用して原料ガスおよび水添脱硫器を加熱し得るとともに、従来よりも、装置を大型化することなく、水添脱硫器からの放熱を有効に活用し得る燃料電池システムを提供する。
【解決手段】燃料電池システムは、原料ガスに含まれる硫黄成分を除去する水添脱硫器3と、水添脱硫器を通過した原料ガスを用いて改質ガスを生成する改質器5と、改質器からの改質ガスを燃料として発電する燃料電池7と、燃料電池で未利用の燃料を燃焼する燃焼器8と、燃焼器で生成した排ガスが流通する排ガス経路9と、排ガス経路の一部に設けられ、水添脱硫器を収容する収容器10と、収容器の外側に沿って設けられ、収容器に流入する前の原料ガスを収容器の熱によって加熱する第1原料ガス加熱部1と、収容器の内側、かつ、水添脱硫器の外側に設けられ、水添脱硫器に流入する前の原料ガスを排ガスの熱によって加熱する第2原料ガス加熱部2と、を備える。
【選択図】図1

Description

本開示は、燃料電池システムに関する。
原料ガスとして炭化水素を用いる燃料電池システムでは、原料ガスの改質反応が行われる。この改質反応を促進するために改質触媒を用いるが、原料ガス中には付臭剤として、例えば、硫黄化合物が含まれており、硫黄化合物によって改質触媒が劣化する恐れがある。そこで、改質触媒の劣化を抑制するために、原料ガス中の硫黄化合物を除去する脱硫装置が利用されている。
この脱硫装置として、従来、吸着脱硫器および水添脱硫器が用いられている。特に、水添脱硫器は、硫黄化合物を吸着されやすい硫化水素に転化して、この硫化水素を吸着剤に吸着し除去するもので、吸着脱硫器に比べ吸着容量が大きいという長所がある。
水添脱硫器において脱硫性能を高めるためには、水添脱硫器を適切な温度まで昇温する必要がある。また、水添脱硫器に流入する原料ガスを予め加熱することで、水添脱硫器の温度低下を防止することができる。
例えば、特許文献1には、原料ガスを予熱するためのゾーンおよび脱硫触媒層を排ガスダクトの外周部を覆うように設ける燃料電池用改質装置が開示されている。この構成では、排ガスダクトを流通する排ガスによって脱硫触媒層および脱硫触媒層に流入する原料ガスが加熱されるので、脱硫器の温度低下を抑制できる。
特開平10−265201号公報
しかし、従来の燃料電池システムは、脱硫器からの放熱の有効利用および装置のコンパクト化については十分に検討されていない。
上記事情を鑑み、限定的ではない例示的なある実施形態は、排ガスの熱を利用して原料ガスおよび水添脱硫器を加熱し得るとともに、従来よりも、装置を大型化することなく、水添脱硫器からの放熱を有効に活用し得る燃料電池システムを提供する。
上記課題を解決するため、本開示の燃料電池システムは、原料ガスに含まれる硫黄成分を除去する水添脱硫器と、前記水添脱硫器を通過した前記原料ガスを用いて改質ガスを生成する改質器と、前記改質器からの前記改質ガスを燃料として発電する燃料電池と、前記燃料電池で未利用の燃料を燃焼する燃焼器と、前記燃焼器で生成した排ガスが流通する排ガス経路と、前記排ガス経路の一部に設けられ、前記水添脱硫器を収容する収容器と、前記収容器の外側に沿って設けられ、前記収容器に流入する前の前記原料ガスを前記収容器の熱によって加熱する第1原料ガス加熱部と、前記収容器の内側かつ前記水添脱硫器の外側に設けられ、前記水添脱硫器に流入する前の前記原料ガスを前記排ガスの熱によって加熱する第2原料ガス加熱部と、を備える。
本開示の燃料電池システムは、排ガスの熱を利用して原料ガスおよび水添脱硫器を加熱することができる。また、従来よりも、装置を大型化することなく、水添脱硫器からの放熱を有効に活用し得る。
図1は、実施の形態1に係る燃料電池システムの構成の一例を示す模式図である。 図2は、実施の形態1に係る燃料電池システムに用いる収容器の一例を示す模式図である。 図3は、実施の形態2に係る燃料電池システムに用いる収容器の一例を示す模式図である。 図4は、実施の形態3に係る燃料電池システムの構成の一例を示す模式図である。 図5は、実施の形態4に係る燃料電池システムの構成の一例を示す模式図である。 図6は、実施の形態5に係る燃料電池システムの構成の一例を示す模式図である。 図7は、実施の形態6に係る燃料電池システムの構成の一例を示す模式図である。 図8は、実施の形態7に係る燃料電池システムの構成の一例を示す模式図である。 図9は、実施の形態8に係る燃料電池システムに用いる収容器の一例を示す模式図である。 図10は、実施の形態9に係る燃料電池システムの構成の一例を示す模式図である。 図11は、実施の形態10に係る燃料電池システムの構成の一例を示す模式図である。
発明者らは、水添脱硫器からの放熱の有効利用および装置のコンパクト化について鋭意検討し、以下の知見を得た。
特許文献1の燃料電池システムでは、排ガスダクトの外周部を覆うように脱硫触媒層および原料ガスを予熱するためのゾーンが設けられている。このため、これらの表面積が増大することで脱硫器から外部への放熱が促進されるので、脱硫器からの放熱を有効に利用できない。また、脱硫器が大型化する。
そこで、本開示の第1の態様の燃料電池システムは、原料ガスに含まれる硫黄成分を除去する水添脱硫器と、水添脱硫器を通過した原料ガスを用いて改質ガスを生成する改質器と、改質器からの改質ガスを燃料として発電する燃料電池と、燃料電池で未利用の燃料を燃焼する燃焼器と、燃焼器で生成した排ガスが流通する排ガス経路と、排ガス経路の一部に設けられ、水添脱硫器を収容する収容器と、収容器の外側に沿って設けられ、収容器に流入する前の原料ガスを収容器の熱によって加熱する第1原料ガス加熱部と、収容器の内側かつ水添脱硫器の外側に設けられ、水添脱硫器に流入する前の原料ガスを排ガスの熱によって加熱する第2原料ガス加熱部と、を備える。
かかる構成によると、排ガスの熱を利用して原料ガスおよび水添脱硫器を加熱し得るとともに、従来よりも、装置を大型化することなく、水添脱硫器からの放熱を有効に活用し得る。つまり、水添脱硫器を収容器で覆うことで、水添脱硫器からの放熱を有効に活用して水添脱硫器の昇温時間を短縮できる。
本開示の第2の態様の燃料電池システムは、第1の態様の燃料電池システムにおいて、原料ガスが、第1原料ガス加熱部、第2原料ガス加熱部および水添脱硫器の順に流通する。
かかる構成によると、原料ガスが、第1原料ガス加熱部において収容器の熱で加熱された後、さらに、第2原料ガス加熱部において排ガスの熱で直接加熱される。これにより、水添脱硫器に流入する前の原料ガスを適温に加熱するための十分な加熱量を確保できる。
本開示の第3の態様の燃料電池システムは、第1の態様または第2の態様の燃料電池システムにおいて、収容器の排ガスと、第1原料ガス加熱部の原料ガスとが、少なくとも一部は略並行または略対向して流れている。
かかる構成によると、上記のガスの流通方向が、例えば、直交する場合等に比べ、原料ガスと排ガスとの間の熱交換が行われる距離を長くできる。
本開示の第4の態様の燃料電池システムは、第1の態様、第2の態様および第3の態様のいずれかの燃料電池システムにおいて、収容器の外側に設けられた断熱材を備え、断熱材の内面と収容器の外壁面との間に第1原料ガス加熱部が配置されている。
かかる構成によると、収容器の外側に断熱材を設けない構成に比べ、収容器からの放熱を有効に活用して原料ガスを加熱することができる。
本開示の第5の態様の燃料電池システムは、第1の態様、第2の態様、第3の態様および第4の態様のいずれかの燃料電池システムにおいて、第1原料ガス加熱部は、収容器の外壁面に接している。
かかる構成によると、第1原料ガス加熱部において、収容器の内部を流通する排ガスの熱により昇温した収容器の熱が原料ガスに容易に伝熱される。よって、収容器の内部を流通する排ガスと原料ガス加熱部の内部を流通する原料ガスとの熱交換における熱損失が抑制される。
以下、添付図面を参照しつつ、本開示の実施形態について説明する。
以下で説明する実施形態は、いずれも本開示の一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態は一例であり、本開示を限定するものではない。また、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比等については正確な表示ではない場合がある。
(実施の形態1)
図1は、実施の形態1にかかる燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、および収容器10を備える。
水添脱硫器3は、原料ガス中の硫黄化合物を除去する。水添脱硫器3は、容器に水添脱硫剤が充填される。水添脱硫剤として、例えば、銅および亜鉛を含む水添触媒を用いることができる。水添脱硫剤は、本例に限定されるものではなく、Ni−Mo系またはCo−Mo系触媒と酸化亜鉛系触媒とを組合せた触媒でも構わない。水添脱硫剤が銅および亜鉛を含む場合、水添脱硫剤は約150℃−350℃が適温の動作範囲となる。
改質器5は、水添脱硫器3を通過した原料ガスを用いて改質ガスを生成する。具体的には、改質器5において、原料ガスが改質反応して、水素含有ガスが生成される。改質反応はいずれも形態であってもよい。改質反応は、例えば、水蒸気改質反応、オートサーマル反応および部分酸化改質反応等が挙げられる。ただし、燃料電池システムの高効率な動作を実現するには、部分酸化反応だけでなく、水蒸気改質反応も行える仕様にしておくとよい。改質反応が水蒸気改質反応であれば、水蒸気を生成する蒸発器、および蒸発器に水を供給する水供給器等を設けるとよい。また、水蒸気改質反応は、部分酸化改質反応よりも、同量の原料ガスから生成できる水素量がより多くなるため効率に優れるが、吸熱反応であるため、熱量を補う必要がある。そこで、かかる熱量として、燃焼器8からの輻射熱などを利用するとよい。なお、原料ガスは、メタンを主成分とする都市ガス、メタンを主成分とする天然ガス、LPG等の少なくとも炭素および水素から構成される有機化合物を含むガスである。改質器5の改質触媒としては、例えば、Al(アルミナ)の球体表面にNiを含浸し、担持した触媒、またはAlの球体表面にルテニウムを付与した触媒等を用いることができる。なお、改質器5で生成された改質ガスは、改質ガス経路を経て燃料電池7に供給される。
燃料電池7は、改質器5からの改質ガスを燃料として発電する。具体的には、改質器5からの改質ガスと外部からの空気とを利用して燃料電池7が発電反応により発電する。燃料電池7は、いずれの種類の燃料電池であってもよい。燃料電池7として、例えば、高分子電解質形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、およびリン酸形燃料電池等が挙げられる。燃料電池7が高温(例えば、600℃以上)で発電する場合には、固体酸化物形燃料電池および溶融炭酸塩形燃料電池がより好適に用いることができる。なお、燃料電池の電極での原料ガスの内部改質のみで燃料電池が発電することも可能であるが、燃料電池の耐久性を鑑みれば改質器を設置した方がよい。そこで、以下、燃料電池7として固体酸化物形燃料電池を用い、改質器5を設置したシステム構成について説明する。
燃焼器8は、燃料電池7で未利用の燃料を燃焼する。燃焼器8は、燃料電池7で未利用の燃料を燃焼できれば、どのような構成であっても構わない。燃焼器8として、例えば、燃焼バーナが挙げられる。燃焼器8の燃料としては、例えば、燃料電池7より排出されるアノードオフガスが挙げられる。
排ガス経路9は、燃焼器8で生成した排ガスが流通する。収容器10は、排ガス経路9の一部に設けられ、第2原料ガス加熱部2および水添脱硫器3を収容する。つまり、収容器10は、排ガス入口および排ガス出口を備え、収容器10内に排ガスを流通するようにして、排ガス経路9の一部を形成している。本実施形態では、図1に示すように、水添脱硫器3は少なくとも一部が収容器10の内部の中心より排ガス出口側にあるように配置され、第2原料ガス加熱部2は少なくとも一部が収容器10の内部の中心より排ガス入口側にあるように配置されている。収容器の外部には第1原料ガス加熱部1を備え、原料ガスは第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3の順に流通する。
図2に示すように、第1原料ガス加熱部1および第2原料ガス加熱部2は、原料ガスが流通する原料ガス配管11を備える。以下、第1原料ガス加熱部1および第2原料ガス加熱部2について説明する。
第1原料ガス加熱部1は収容器10の外部に備えられ、原料ガスが流通する原料ガス配管11を備え、収容器10に流入する前の原料ガスを加熱する。具体的には、第1原料ガス加熱部1を構成する原料ガス配管11が収容器10の外側に沿って設けられている。つまり、原料ガス配管11が、収容器10の外壁面に沿うように延在している。よって、収容器10内部を流通する排ガスの熱により昇温した収容器10の熱と、原料ガス配管11の内部を流通する原料ガスと、が容易に熱交換する。これにより、収容器10に流入する前の原料ガスが加熱され、加熱された原料ガスが収容器10に流入する。
第2原料ガス加熱部2は、収容器10の内部かつ水添脱硫器3の外部に備えられ、原料ガスが流通する原料ガス配管11を備える。よって、水添脱硫器3に流入する前の原料ガスが加熱される。具体的には、収容器10を流通する排ガスと、第2原料ガス加熱部2を構成する原料ガス配管11の内部を流通する原料ガスと、が原料ガス配管11のみを介して直接熱交換する。これにより、水添脱硫器3に流入する前の原料ガスが加熱され、加熱された原料ガスが水添脱硫器3に流入する。また、水添脱硫器3の水添脱硫剤が、排ガスとの熱交換で直接加熱される。
なお、本実施形態では、第2原料ガス加熱部2を構成する原料ガス配管11が、第1原料ガス加熱部1を構成する原料ガス配管11と直交するように延びているが、これに限らない。
以上の構成により、装置を大型化することなく、また、簡易な構成で製造コストを低減しつつ、排ガスの熱を利用して原料ガスおよび水添脱硫器3を加熱し、水添脱硫器3の昇温時間および温度ムラを低減することができる。具体的には、例えば、第1原料ガス加熱部1において収容器10の熱により約150℃まで加熱した原料ガスを、さらに第2原料ガス加熱部2において排ガスの熱で直接加熱することで、水添脱硫器3に流入する前の原料ガスを、約250℃の適温に加熱するための十分な加熱量を確保できる。また、水添脱硫器3を収容器10で覆うことで、水添脱硫器3からの放熱を有効に活用して水添脱硫器3の昇温時間を短縮できる。さらに、十分に加熱された原料ガスが水添脱硫器3に流入することで水添脱硫器3の温度ムラを低減し、水添脱硫剤の温度分布を均一に保つことができる。
なお、上記の原料ガスの加熱温度は例示であって、本例に限定されない。原料ガスの加熱温度は、燃料電池システムの構成等に合わせて適宜、設定して構わない。
(実施の形態2)
図3は実施の形態2に係る燃料電池システム100に用いる収容器10の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、および断熱材12を備える。実施の形態2に係る燃料電池システム100は、第1原料ガス加熱部1が収容器10の外壁面に接しており、また、収容器10の外側に断熱材12を設け、断熱材12の内側かつ収容器10の外側に第1原料ガス加熱部1が配置されている点において、実施の形態1と異なっている。実施の形態2に係る燃料電池システム100は、上記の点以外は、実施の形態1の燃料電池システム100と同様に構成してもよい。実施の形態1と同様の構成については説明を省略する。
図3に示すように、第1原料ガス加熱部1を構成する原料ガス配管11は、収容器10の外壁面と接している。これは単に原料ガス配管11と収容器10の外壁面が接するよう配置するだけでもよく、ロウ付けや溶接によって接合し、原料ガス配管11と収容器10が一体となる構造に形成してもよい。この構成により、第1原料ガス加熱部1において、収容器10の内部を流通する排ガスの熱により昇温した収容器10の熱が原料ガス配管11の内部を流れる原料ガスに容易に伝熱される。よって、収容器10の内部を流通する排ガスと、原料ガス配管11の内部を流通する原料ガスとの熱交換における熱損失が抑制される。このため、実施の形態1の構成と比較して、収容器10に流入する前の原料ガスを第1原料ガス加熱部1においてより高い温度まで加熱でき、水添脱硫器3の温度ムラをさらに低減することができる。
なお、原料ガス配管11を収容器10に全て接合しなくてもよく、収容器10の内部を流通する排ガスと原料ガス配管11の内部を流通する原料ガスとが効率よく熱交換できる構成であれば、原料ガス配管11の一部を収容器10に接合してもよい。
また、収容器10および原料ガス配管11の外側に、収容器10および原料ガス配管11を覆う断熱材12を備えている。断熱材12の例としては、約150℃−350℃の中高温領域に使用できる断熱材である、グラスウールなどの無機繊維体や無機発泡体、真空断熱材などが例示される。また、約600−800℃の高温領域に使用できる、日本マイクロサーム株式会社製の商標名「マイクロサーム」などの断熱性能の高い断熱材を使用してもよい。断熱材12を収容器10の外側に備え、さらに断熱材12の内面と収容器10の外壁面との間に第1原料ガス加熱部1を構成する原料ガス配管11を設けることで、収容器10の外側に断熱材12を設けない構成に比べ、収容器10からの放熱を有効に活用して原料ガスを加熱することができる。
なお、断熱材12は収容器10の外壁面および原料ガス配管11を全て覆ってもよいし、十分な断熱性能が得られるのであれば、全ては覆わず一部を覆ってもよい。
(実施の形態3)
図4は実施の形態3に係る燃料電池システム100の構成の一例を示す模式図である。実施の形態3に係る燃料電池システム100は、実施の形態1または実施の形態2のいずれかの燃料電池システムにおいて、収容器10の排ガスと、第1原料ガス加熱部1の原料ガスとが、少なくとも一部は略対向または略並行して流れている。また、収容器10が略円筒形状であり、水添脱硫器3の原料ガスの流通方向200は略鉛直方向である。実施の形態3に係る燃料電池システム100は、上記の点以外は、実施の形態1または実施の形態2のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1または実施の形態2と同様の構成については説明を省略する。なお、図4において重力は「上」から「下」に作用するものとする。
図4に示すように、第1原料ガス加熱部1の内部の原料ガスは下から上に流通し、収容器10の内部の排ガスは排ガス入口側を上から下に流通した後、排ガス出口側を下から上に流通している。すなわち、第1原料ガス加熱部1の内部の原料ガスと、収容器10の内部の排ガスとが少なくとも一部は略対向(つまり、逆方向)して流れている。なお、図示を省略するが、第1原料ガス加熱部1の内部の原料ガスを、例えば、上から下に流通するように構成しても構わない。この場合、第1原料ガス加熱部1の内部の原料ガスと、収容器10の内部の排ガスとが少なくとも一部は略並行(つまり、同方向)して流れる。
このような構成により、原料ガスの流通方向200が、排ガスの流通方向200に対して逆方向または同方向となるので、これらのガスの流通方向が、例えば、直交する場合等に比べ、原料ガスと排ガスとの間の熱交換が行われる距離を長くできる。
また、収容器10は略円筒形状であるとよい。この構成により、収容器10の製造が、例えば、収容器10が直方体である場合に比べ、溶接個所を少なくできるので容易となる。
なお、収容器10は水添脱硫器3を収容できるものであれば、略円筒形状に限るものではない。例えば、収容器10は略直方体であってもよい。収容器10が略直方体であるとき、燃料電池スタックを含む直方形状の内部筐体(ホットモジュール)と収容器10とを容易に配置することができる。
収容器10の内部の水添脱硫器3の原料ガスは上から下に向けて略鉛直方向へ流通している。水添脱硫器3の水添脱硫剤がペレット状の場合は、熱負荷の影響で水添脱硫剤が粉体になることがあり、この場合に仮に水添脱硫器3を横置きにすると、重力の作用により水添脱硫剤の粉体が水添脱硫器3の下方に集まることで原料ガスの流れが不均一になる可能性がある。そこで上記のような構成をとり、水添脱硫器3の原料ガスを略鉛直方向に流通させることで、原料ガスの流れが不均一化する可能性を低減できる。
なお、図4では排ガスは収容器10の内部で排ガス入口側を上から下に流通した後、排ガス出口側を下から上に流通しているが、排ガス入口側を下から上に流通した後、排ガス出口側を上から下に流通してもよい。また、原料ガスは水添脱硫器3を図4のように上から下に流通してもよいし、下から上に流通してもよい。
(実施の形態4)
図5は実施の形態4に係る燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、および仕切り部材13を備える。実施の形態4に係る燃料電池システム100は、第2原料ガス加熱部2と水添脱硫器3との間に仕切り部材13を備えている点において実施の形態1〜3と異なっている。実施の形態4に係る燃料電池システム100は、上記の点以外は、実施の形態1〜3のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜3と同様の構成については説明を省略する。
図5に示すように、板状の仕切り部材13が第2原料ガス加熱部2と水添脱硫器3との間に配置され、仕切り部材13の上端部が収容器10の内壁面に溶接され、仕切り部材13の下端部の端面と収容器10の内壁面との間に、排ガスの通路が形成されている。すなわち、収容器10の排ガスは、仕切り部材13の端部で折り返すように流通している。原料ガス配管11は、仕切り部材13を貫通して設けられている。また、図5に示すように、仕切り部材13と水添脱硫器3の間に隙間を設ける構成にすることで、仕切り部材13と水添脱硫器3の間に排ガスの通路を形成することができる。仕切り部材13の配置はこれに限るものではなく、仕切り部材13と水添脱硫器3とを溶接する構成でもよい。
この構成により、収容器10に仕切り部材13を設けない場合に比べ、排ガスを仕切り部材13に沿うように導き得るので、第2原料ガス加熱部2の原料ガスと排ガスとの熱交換、および排ガスと水添脱硫器3との熱交換が容易となり、水添脱硫器3に流入する前の原料ガスを昇温しやすくなるとともに、水添脱硫器3の昇温時間を短縮することができる。
(実施の形態5)
図6は実施の形態5に係る燃料電池システム100の構成の一例を示す模式図である。実施の形態5に係る燃料電池システム100は、実施の形態1〜4のいずれかの燃料電池システムにおいて、収容器10の内部の排ガスと、第2原料ガス加熱部2の内部の原料ガスとが、少なくとも一度は略対向および略並行して流れている。なお、図4と同様、図6において重力は「上」から「下」に作用するものとする。実施の形態5に係る燃料電池システム100は、上記の点以外は、実施の形態1〜4のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜4と同様の構成については説明を省略する。
図6に示すように、第2原料ガス加熱部2の原料ガス経路は、収容器10内の上方部と下方部で折り返す蛇行流路(サーペンタイン状の流路)となるように形成され、水添脱硫器3に接続している。また、排ガスは収容器10の排ガス入口側を上から下に流通した後、排ガス出口側を下から上に流通している。
このような構成により、原料ガスの流量に対して第2原料ガス加熱部2の内部の原料ガスの流通方向200における距離が十分に取れない場合でも、第2原料ガス加熱部2を原料ガスの流通方向200に長く設けることなく原料ガスの熱交換に必要な伝熱面積を十分に確保できるので、水添脱硫器3に流入する前の原料ガスを十分に昇温できる。また、直交流および並行流に比べ、対向流の方が熱交換の伝熱性能が高いので、水添脱硫器3に流入する前の原料ガスを排ガスによって十分に加熱することができる。
(実施の形態6)
図7は実施の形態6に係る燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫部3Aと水添脱硫部3Bと連結部14からなる水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、および仕切り部材15を備える。実施の形態6に係る燃料電池システム100は、水添脱硫器3が複数の水添脱硫部3A、3Bと、隣り合う水添脱硫部を連結する連結部14を備え、原料ガスは連結部14で折り返すように流通している点において実施の形態1〜5と異なっている。実施の形態6に係る燃料電池システム100は、上記の点以外は、実施の形態1〜5のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜5と同様の構成については説明を省略する。
図7に示すように、水添脱硫器3は、複数の水添脱硫部3A,3Bと、隣り合う水添脱硫部3A、3Bを連結する連結部14を備える。連結部14として、パイプを例示できる。原料ガスは、水添脱硫部3Aの上部より水添脱硫器3に流入し、水添脱硫器3の下部に位置する連結部14で折り返し、水添脱硫部3Bの上部へと流通する。
また、板状の仕切り部材15が隣り合う水添脱硫部3A、3Bの間に配置され、仕切り部材15の上端部が収容器10の内壁面に溶接され、仕切り部材15の下端部の端面と収容器10の内壁面との間に、排ガスの通路が形成されている。連結部14は、仕切り部材15の下端部を貫通して設けられている。収容器10の内部の排ガスは、仕切り部材15の端部で折り返すように流通する。
このような構成により、原料ガスの流通方向の上流側の水添脱硫部3Aを通過した原料ガスを連結部14で混合することができる。すなわち、上流側の水添脱硫部3Aで未脱硫だった原料ガスが、下流側の水添脱硫部3Bを通過する際に脱硫されやすくなる。
また、収容器10に仕切り部材15を設けない場合に比べ、排ガスを仕切り部材15に沿うように導き得るので、第2原料ガス加熱部2における原料ガスと排ガスとの熱交換、および排ガスと水添脱硫器3との熱交換が容易となり、水添脱硫器3に流入する前の原料ガスを昇温しやすくするとともに、水添脱硫器3の昇温時間を短縮することができる。
(実施の形態7)
図8は実施の形態7に係る燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫部3Aと水添脱硫部3Bと連結部14からなる水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、仕切り部材15、および伝熱促進部材16を備える。実施の形態7に係る燃料電池システム100は、伝熱促進部材16を備えている点において実施の形態1〜6と異なっている。実施の形態7に係る燃料電池システム100は、上記の点以外は、実施の形態1〜6のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜6と同様の構成については説明を省略する。
図8に示すように、伝熱促進部材16は水添脱硫器3の壁部の周囲、具体的には水添脱硫器3の壁部と収容器10の内壁とで形成される排ガス経路に配置されており、水添脱硫器3の壁部の熱通過率を大きくする機能を備える。伝熱促進部材16は、水添脱硫器3の熱通過率を大きくすることができれば、どのような構成であっても構わない。伝熱促進部材16として、例えば、金属製のワイヤーメッシュを例示できる。ワイヤーメッシュの充填量は、排ガス経路に対して水添脱硫器3の下流側に行くほど多くなるように設けるとよい。具体的には、上流部分である水添脱硫部3Aの壁部の周囲よりも、下流部分である水添脱硫部3Bの壁部の周囲の方がワイヤーメッシュの充填量が多くなるように設け、さらにワイヤーメッシュの充填量が水添脱硫部3Bの下流側に行くほど多くなるように設けるとよい。また、図8に示すように、水添脱硫部3Bの壁部の周囲にのみワイヤーメッシュを充填する構成でも良い。
このように伝熱促進部材16を構成することは、以下の理由による。
排ガスから水添脱硫器3に伝わる伝熱量Qは、以下の式(1)で表すことができる。
Q=K・A・(T−T)・・・(1)
なお、式(1)において、Kは、熱通過率[W/m・K]、Aは、伝熱面積[m]、Tは、排ガスの温度[℃]、Tは、水添脱硫器3の壁部の外壁面の温度[℃]である。式(1)の通り、排ガスの温度Tが低下すると、伝熱量Qが低下する。すなわち、収容器10を流通する排ガスの温度が排ガス経路に対して下流側のほうが上流側よりも低いことから、水添脱硫器3の下流側の温度は、上流側部分の温度に比べ低くなる。すると、水添脱硫器3の温度ムラが生じる。
そこで、本実施形態では、上記の通り、伝熱促進部材16の機能により、排ガス経路に対して水添脱硫器3の下流側壁部の熱通過率Kを上流側壁部の熱通過率Kよりも大きくしている。このような構成により、水添脱硫器3の下流部分であっても、上流部分と同等の伝熱量Qを得ることができる。よって、水添脱硫器3の下流側部分の温度低下を抑制でき、水添脱硫器3の温度ムラも抑制できる。
(実施の形態8)
図9は実施の形態8に係る燃料電池システム100に用いる収容器10の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、および加熱器17を備える。実施の形態8に係る燃料電池システム100は、加熱器17を備えている点において実施の形態1〜7と異なっている。実施の形態9に係る燃料電池システム100は、上記の点以外は、実施の形態1〜7のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜7と同様の構成については説明を省略する。
図9に示すように、加熱器17は第1原料ガス加熱部1および第2原料ガス加熱部2を加熱する。また、加熱器17はONおよびOFFの制御が可能である。加熱器17は、第1原料ガス加熱部1および第2原料ガス加熱部2を加熱でき、かつONおよびOFFの制御が可能であれば、どのような構成であっても構わない。加熱器17として、図9に示すように、原料ガスが流れる原料ガス配管11の表面に設けられたヒータを例示できる。
この構成により、燃料電池7の起動時において水添脱硫器3を短時間に適温まで昇温することができない可能性を低減できる。すなわち、燃料電池7の起動時には加熱器17をONにして原料ガスを加熱することで、第1原料ガス加熱部1および第2原料ガス加熱部2において排ガスとの熱交換による原料ガス加熱能力が不足する可能性を低減し、水添脱硫器3を短時間に適温まで昇温するとともに水添脱硫器3の温度ムラを低減することができる。また、水添脱硫器3が適温まで昇温した後には、加熱器17をOFFにすることで、消費電力を削減できる。
なお、図示を省略するが、第1原料ガス加熱部1および第2原料ガス加熱部2を加熱する加熱器17とは別に、水添脱硫器3を加熱する加熱器を備えてもよい。加熱器として、水添脱硫器3の外壁面に設けられたヒータを例示できる。この構成により、起動時においてさらに短時間で水添脱硫器3を適温まで昇温することができる。
(実施の形態9)
図10は実施の形態9に係る燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、内部筐体19、断熱材20、および外部筐体21を備える。実施の形態9に係る燃料電池システム100は、内部筐体19、断熱材20、および外部筐体21を備えている点において実施の形態1〜8と異なっている。実施の形態10に係る燃料電池システム100は、上記の点以外は、実施の形態1〜8のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜8と同様の構成については説明を省略する。
図10に示すように、内部筐体19は、改質器5、燃料電池7および燃焼器8を収納する。断熱材20は、内部筐体19外に設けられる。外部筐体21は、断熱材20外に設けられる。このように、燃料電池システム100では、改質器5と燃料電池7と燃焼器8が1つの内部筐体19(ホットモジュール)に収容された構成をとる。
このとき、原料ガスは、内部筐体19内から、断熱材20を通過して、外部筐体21外へと流通した後、第1原料ガス加熱部1へと流通する。これにより、第1原料ガス加熱部1へ流入する前の原料ガスが、内部筐体19の内部で加熱される。
このような構成により、第1原料ガス加熱部1による原料ガスの加熱能力が不足している場合、原料ガスが高温の内部筐体19の内部を経ることで、加熱量を補うことができる。また、内部筐体19での加熱で原料ガスが昇温しすぎた場合であっても、第1原料ガス加熱部1および第2原料ガス加熱部2において、原料ガスと収容器10内の排ガスとが熱交換できるので、水添脱硫器3に流入する原料ガスを排ガスにより適温まで冷却できる。よって、いずれの場合でも適温の原料ガスを水添脱硫器3へと供給できる。
(実施の形態10)
図11は実施の形態10に係る燃料電池システム100の構成の一例を示す模式図である。燃料電池システム100は、第1原料ガス加熱部1、第2原料ガス加熱部2、水添脱硫器3、改質器5、燃料電池7、燃焼器8、排ガス経路9、収容器10、リサイクルガス経路22、および熱交換器23を備える。実施の形態10に係る燃料電池システム100は、リサイクルガス経路22および熱交換器23を備えている点において実施の形態1〜9と異なっている。実施の形態10に係る燃料電池システム100は、上記の点以外は、実施の形態1〜9のいずれかの燃料電池システム100と同様に構成してもよい。実施の形態1〜9と同様の構成については説明を省略する。
リサイクルガス経路22は、改質器5からの改質ガスの一部をリサイクルガスとして、水添脱硫器3よりも上流の原料ガスに供給するための経路である。リサイクルガス経路22の上流端は、改質器5より送出された水素を含有する改質ガスが流れる流路であれば、いずれの箇所に接続されていても構わない。本実施形態では、図11に示すように、リサイクルガス経路22は、改質器5と燃料電池7との間の改質ガス供給経路から分岐し、水添脱硫器3よりも上流の原料ガス経路に合流する。これにより、水添脱硫器3に流入する原料ガスに水素を添加でき、水添脱硫器3はこの水素を利用して原料ガスの水添脱硫を行うことができる。
熱交換器23は、第1原料ガス加熱部1に流入する前の原料ガスとリサイクルガスとが熱交換する。
このような構成により、第1原料ガス加熱部1および第2原料ガス加熱部2による原料ガスの加熱能力が不足している場合、第1原料ガス加熱部1に流入する前の原料ガスとリサイクルガスとが熱交換することで、加熱量を補うことができる。また、リサイクルガスとの熱交換で原料ガスが昇温しすぎた場合であっても、第1原料ガス加熱部1および第2原料ガス加熱部2において、原料ガスと収容器10内の排ガスとが熱交換できるので、水添脱硫器3に流入する原料ガスを排ガスにより適温まで冷却できる。よって、いずれの場合でも適温の原料ガスを水添脱硫器3へと供給できる。
上記説明から、当業者にとっては、本開示の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
本開示の一態様は、例えば、燃料電池システムに利用できる。
1 第1原料ガス加熱部
2 第2原料ガス加熱部
3 水添脱硫器
5 改質器
7 燃料電池
8 燃焼器
9 排ガス経路
10 収容器
11 原料ガス配管
12、20 断熱材
13、15 仕切り部材
14 連結部
16 伝熱促進部材
17 加熱器
19 内部筐体
21 外部筐体
22 リサイクルガス経路
23 熱交換器
100 燃料電池システム

Claims (5)

  1. 原料ガスに含まれる硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器を通過した前記原料ガスを用いて改質ガスを生成する改質器と、
    前記改質器からの前記改質ガスを燃料として発電する燃料電池と、
    前記燃料電池で未利用の燃料を燃焼する燃焼器と、
    前記燃焼器で生成した排ガスが流通する排ガス経路と、
    前記排ガス経路の一部に設けられ、前記水添脱硫器を収容する収容器と、
    前記収容器の外側に沿って設けられ、前記収容器に流入する前の前記原料ガスを前記収容器の熱によって加熱する第1原料ガス加熱部と、
    前記収容器の内側かつ前記水添脱硫器の外側に設けられ、前記水添脱硫器に流入する前の前記原料ガスを前記排ガスの熱によって加熱する第2原料ガス加熱部と、を備える燃料電池システム。
  2. 前記原料ガスが、前記第1原料ガス加熱部、前記第2原料ガス加熱部および前記水添脱硫器の順に流通する請求項1に記載の燃料電池システム。
  3. 前記収容器の前記排ガスと、前記第1原料ガス加熱部の前記原料ガスとが、少なくとも一部は略対向または略並行して流れている請求項1または請求項2に記載の燃料電池システム。
  4. 前記収容器の外側に設けられた断熱材を備え、
    前記断熱材の内面と前記収容器の外壁面との間に前記第1原料ガス加熱部が配置されている請求項1〜3のいずれか1項に記載の燃料電池システム。
  5. 前記第1原料ガス加熱部は、前記収容器の外壁面に接している請求項1〜4のいずれか1項に記載の燃料電池システム。
JP2015060393A 2015-03-24 2015-03-24 燃料電池システム Pending JP2016181369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060393A JP2016181369A (ja) 2015-03-24 2015-03-24 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060393A JP2016181369A (ja) 2015-03-24 2015-03-24 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2016181369A true JP2016181369A (ja) 2016-10-13

Family

ID=57131091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060393A Pending JP2016181369A (ja) 2015-03-24 2015-03-24 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2016181369A (ja)

Similar Documents

Publication Publication Date Title
JP5507119B2 (ja) 燃料電池システム
JP6611040B2 (ja) 燃料電池システム
JP2012020898A (ja) 水素生成装置及びそれを備える燃料電池システム
JP5468713B1 (ja) 水素生成装置および燃料電池システム
JP6405211B2 (ja) 燃料電池システム
JP2010212038A (ja) 燃料電池
JP2014107187A (ja) 固体酸化物形燃料電池システム
JP5807167B2 (ja) 水素生成装置
JP6518086B2 (ja) 燃料電池システム
JP5539754B2 (ja) 燃料電池用脱硫器の加熱方法及び燃料電池システム
JP5895169B2 (ja) 水素生成装置
JP2012041238A (ja) 水素生成装置及び燃料電池システム
JP2009096706A (ja) 燃料電池用改質装置
JP2016181369A (ja) 燃料電池システム
JP5531168B2 (ja) 水素生成装置
JP6893308B2 (ja) 燃料電池装置
JP5948605B2 (ja) 水素生成装置
JP5938580B2 (ja) 水素生成装置
JP2014107186A (ja) 固体酸化物形燃料電池システム
JP6218591B2 (ja) 燃料電池システム
JP6205581B2 (ja) 水素生成装置及びそれを用いた燃料電池システム
JP6089210B2 (ja) 水素生成装置
JP2016100183A (ja) 燃料電池システム
JP2017077992A (ja) 水素生成装置及びそれを用いた燃料電池システム
JP2023157683A (ja) 脱硫器