WO2014167850A1 - 燃料電池システム及び燃料電池システムの運転方法 - Google Patents

燃料電池システム及び燃料電池システムの運転方法 Download PDF

Info

Publication number
WO2014167850A1
WO2014167850A1 PCT/JP2014/002033 JP2014002033W WO2014167850A1 WO 2014167850 A1 WO2014167850 A1 WO 2014167850A1 JP 2014002033 W JP2014002033 W JP 2014002033W WO 2014167850 A1 WO2014167850 A1 WO 2014167850A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
cell system
oxidizing gas
flow path
Prior art date
Application number
PCT/JP2014/002033
Other languages
English (en)
French (fr)
Inventor
繁 飯山
洋文 國分
貴広 楠山
北川 宏昭
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP14782458.5A priority Critical patent/EP2985829B1/en
Priority to US14/406,462 priority patent/US9455457B2/en
Priority to JP2014553372A priority patent/JP5874041B2/ja
Publication of WO2014167850A1 publication Critical patent/WO2014167850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a method for operating the fuel cell system.
  • a catalyst that undergoes an oxidation reaction with an oxidizing gas is used.
  • a method has been proposed in which a part of the catalyst is oxidized and the stability of the catalyst in the air is improved before the catalyst is sealed in the apparatus (for example, patent document). 1).
  • Patent Document 1 does not describe a process to be performed when a catalyst in which an oxidation reaction occurs is to be performed when the catalyst is taken out from a container in which the catalyst is stored for disposal or maintenance of the fuel cell system or the hydrogen generator. .
  • One aspect of the present invention has been made in view of such circumstances, and a fuel that can reduce the amount of heat generated by an oxidation reaction of the catalyst when the catalyst is taken out from a container containing the catalyst to the outside as compared with the conventional case. It is an object of the present invention to provide a battery system and a fuel cell system operation method.
  • a fuel cell system includes a fuel cell that generates power using a hydrogen-containing gas, a catalyst that performs an oxidation reaction with an oxidizing gas, an oxidizing gas supplier that supplies the oxidizing gas to the catalyst, and the catalyst. And a controller for controlling the oxidizing gas supply device to oxidize the catalyst before taking it out.
  • the operating method of the fuel cell system is a method in which the fuel cell generates electric power using a hydrogen-containing gas during operation, and before taking out a catalyst that performs an oxidation reaction with the oxidizing gas to the outside. Is controlled to oxidize the catalyst.
  • the amount of heat generated by the oxidation reaction of the catalyst can be reduced when the catalyst is taken out from the container containing the catalyst.
  • FIG. 1 is a diagram illustrating an example of a fuel cell system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a fuel cell system according to a second example of the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a fuel cell system according to a third example of the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a fuel cell system according to a seventh example of the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a fuel cell system according to an eighth example of the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a fuel cell system according to a ninth example of the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a fuel cell system according to a tenth example of the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a fuel cell system according to a first modification of the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a fuel cell system according to a second modification of the first embodiment.
  • FIG. 10 is a timing chart illustrating an example of a control method for the fuel cell system according to the first embodiment.
  • FIG. 11 is a timing chart illustrating an example of a control method for the fuel cell system according to the first embodiment.
  • FIG. 12 is a timing chart illustrating an example of a control method for the fuel cell system according to the first embodiment.
  • FIG. 13 is a diagram illustrating an example of a fuel cell system according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of a fuel cell system according to an example of the second embodiment.
  • FIG. 10 is a timing chart illustrating an example of a control method for the fuel cell system according to the first embodiment.
  • FIG. 11 is a timing chart illustrating an example of a control method for the fuel cell
  • FIG. 15 is a flowchart illustrating an example of the operation of the fuel cell system according to the third embodiment.
  • FIG. 16 is a diagram illustrating an example of a fuel cell system according to the fourth embodiment.
  • FIG. 17 is a flowchart showing an example of the operation of the fuel cell system of the fifth embodiment.
  • FIG. 18 is a diagram illustrating an example of a fuel cell system according to the sixth embodiment.
  • FIG. 19 is a diagram illustrating an example of a fuel cell system according to an example of the sixth embodiment.
  • FIG. 20 is a diagram illustrating an example of a fuel cell system according to the seventh embodiment.
  • FIG. 21 is a diagram illustrating an example of a fuel cell system according to an example of the seventh embodiment.
  • FIG. 22 is a diagram illustrating an example of a fuel cell system according to the eighth embodiment.
  • FIG. 23 is a diagram illustrating an example of a fuel cell system according to an example of the eighth embodiment.
  • FIG. 24 is a diagram illustrating an example of a fuel cell system according to the ninth embodiment.
  • the container containing the catalyst When disposing of the fuel cell system or the hydrogen generator, the container containing the catalyst is dismantled and the catalyst that undergoes an oxidation reaction with the oxidizing gas is released to the outside (atmosphere). Generates heat. This is undesirable for workers who perform disposal.
  • the inventors for example, by oxidizing the catalyst in advance before taking the catalyst out of the container, the amount of heat generated by the catalyst when the catalyst is taken out of the container in the disposal process. I thought it could be reduced.
  • the fuel cell system includes a fuel cell that generates power using a hydrogen-containing gas, a catalyst that oxidizes with an oxidizing gas, an oxidizing gas supplier that supplies the catalyst with the oxidizing gas, and a catalyst externally. And a controller that oxidizes the catalyst by controlling the oxidizing gas supply device.
  • the operating method of the fuel cell system according to the first embodiment is that the fuel cell generates power using a hydrogen-containing gas during operation, and before the catalyst that performs an oxidation reaction with the oxidizing gas is taken out, Control and oxidize the catalyst.
  • the amount of heat generated by the oxidation reaction of the catalyst can be reduced.
  • the power generation stop of the fuel cell is a power generation stop of the fuel cell in the case where disposal is refrained after the power generation stop.
  • the oxidation treatment may be performed at any timing within the above period.
  • the oxidation process may be executed as a stop process after power generation is stopped, or may be executed when an input for instructing the oxidation process is given to the fuel cell system after the stop process is completed.
  • FIG. 1 is a diagram illustrating an example of a fuel cell system according to the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a catalyst 4, an oxidizing gas supply device 6, and a controller 7.
  • the fuel cell 3 generates power using a hydrogen-containing gas. Specifically, in the fuel cell 3, oxygen in the air and hydrogen in the hydrogen-containing gas chemically react to generate power and generate heat.
  • the fuel cell 3 may be of any type, and examples thereof include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell.
  • Catalyst 4 performs an oxidation reaction with an oxidizing gas. Therefore, when the inside of the apparatus is opened due to the disposal of the fuel cell system 100 or the hydrogen generator, the oxidation reaction of the catalyst 4 occurs. Then, the catalyst 4 generates heat.
  • the oxidizing gas is a gas containing oxygen. Examples of the oxidizing gas include air. Specific examples of the catalyst 4 will be described in the following examples.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the catalyst 4.
  • the oxidizing gas supply device 6 may have any configuration as long as the oxidizing gas can be supplied to the catalyst 4. Examples of the oxidizing gas supply device 6 include an air blower.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the catalyst 4 before taking the catalyst 4 out. For example, the controller 7 may stop the power generation of the fuel cell system 100 until the catalyst 4 is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator, and the oxidizing gas. When the hydrogen-containing gas is not flowing on the catalyst 4 that undergoes the oxidation reaction, the oxidation gas supply device 6 may be controlled to oxidize the catalyst 4.
  • the controller 7 may have any configuration as long as it has a control function.
  • the controller 7 may include an arithmetic processing unit and a storage unit that stores a control program.
  • Examples of the arithmetic processing unit include an MPU and a CPU.
  • Examples of the storage unit include a memory.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the catalyst 4 before taking the catalyst 4 out.
  • the controller 7 may stop the power generation of the fuel cell system 100 until the catalyst 4 is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator, and the oxidizing gas.
  • the oxidation gas supply device 6 may be controlled to oxidize the catalyst 4.
  • the oxidation treatment of the catalyst 4 is performed before the catalyst 4 is taken out. Therefore, when the catalyst 4 is taken out from the container in which the catalyst 4 is stored in the disposal process, the catalyst 4 is removed. The amount of heat generated by the oxidation reaction can be reduced.
  • the fuel cell system according to the first example of the first embodiment is the same as the fuel cell system according to the first embodiment, but the controller generates a larger amount of oxidizing gas than when the normal power generation is stopped before taking out the catalyst to the outside.
  • the catalyst is oxidized by controlling the oxidizing gas supplier so that the catalyst is supplied to the catalyst.
  • the operating method of the fuel cell system according to the first example of the first embodiment is a larger amount than that at the time of normal power generation stop before the catalyst is taken out in the operating method of the fuel cell system of the first embodiment.
  • the catalyst is oxidized by controlling the oxidizing gas supply device so that the oxidizing gas is supplied to the catalyst.
  • the catalyst is oxidized using a larger amount of oxidizing gas than when the normal power generation is stopped before the catalyst is taken out, the catalyst is removed from the container containing the catalyst in the disposal process compared to the conventional case.
  • the amount of heat generated by the oxidation reaction of the catalyst can be reduced.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the first embodiment except for the above features.
  • the operating method of the fuel cell system of the present embodiment may be the same as the operating method of the fuel cell system of the first embodiment except for the above features.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 oxidizes the catalyst 4 by controlling the oxidizing gas supplier 6 so that a larger amount of oxidizing gas is supplied to the catalyst 4 than when the normal power generation is stopped before the catalyst 4 is taken out. . Specifically, an oxidizing gas having a larger cumulative supply amount than that at the time of normal power generation stop is supplied to the catalyst 4 during the period from the stop of power generation of the fuel cell system 100 refraining from disposal until the catalyst is taken out from the container. .
  • the catalyst 4 is oxidized using a larger amount of oxidizing gas than when normal power generation is stopped before the catalyst 4 is taken out to the outside, the catalyst 4 is accommodated in the disposal process compared to the conventional case.
  • the amount of heat generated by the oxidation reaction of the catalyst 4 can be reduced.
  • the fuel cell system of the first example of the first embodiment is the same as the fuel cell system of the first embodiment, but the catalyst includes a base metal.
  • Such a configuration can reduce the amount of heat generated by the oxidation reaction of the catalyst containing the base metal when the catalyst is taken out from the container housing the catalyst in the disposal process, compared to the conventional case.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the first embodiment except for the above features.
  • FIG. 2 is a diagram illustrating an example of a fuel cell system according to a second example of the first embodiment.
  • the fuel cell system 100 includes a fuel cell 3, a catalyst 4 ⁇ / b> C, an oxidizing gas supplier 6, and a controller 7.
  • the fuel cell 3 Since the fuel cell 3, the oxidizing gas supply device 6, and the controller 7 are the same as those in the first embodiment, the description thereof is omitted.
  • Catalyst 4C contains a base metal. That is, a base metal can be exemplified as the catalyst metal of the catalyst 4C that oxidizes with the oxidizing gas.
  • the catalyst 4C needs to be kept in a reduced state during the operation of the fuel cell system 100, the oxidation reaction of the catalyst 4C occurs abruptly when the catalyst 4C is taken out from the container housing the catalyst 4C in the disposal process. Then, the catalyst 4C generates a large amount of heat.
  • Ni, Cu, Zn, etc. are illustrated as such a base metal.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supply device 6 to oxidize the catalyst 4C before taking out the catalyst 4C containing the base metal to the outside.
  • the oxidation process of the catalyst 4C is performed before the catalyst 4C containing the base metal is taken out. Therefore, when the catalyst 4C is taken out from the container housing the catalyst 4C in the disposal process, compared to the conventional case, The amount of heat generated by the oxidation reaction of the catalyst 4C can be reduced.
  • the fuel cell system according to a third example of the first embodiment includes a reactor including a catalyst in the fuel cell system according to the first embodiment, and the controller includes at least a volume of the reactor in the reactor in the oxidation process.
  • the oxidizing gas supplier is controlled so that the oxidizing gas is supplied.
  • the operating method of the fuel cell system of the third example of the first embodiment is the operating method of the fuel cell system of the first embodiment.
  • the oxidizing gas supply device is at least in a reactor including a catalyst. Supply oxidizing gas in excess of reactor volume.
  • the oxidation treatment of the catalyst is performed using an oxidizing gas larger than the volume of the reactor, the oxidation reaction of the catalyst when the catalyst is taken out from the container storing the catalyst in the disposal processing as compared with the conventional case.
  • the amount of heat generated by can be reduced.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the first embodiment except for the above features.
  • the operating method of the fuel cell system of the present embodiment may be the same as the operating method of the fuel cell system of the first embodiment except for the above features.
  • FIG. 3 is a diagram illustrating an example of a fuel cell system according to a third example of the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a catalyst 4, a reactor 5, an oxidizing gas supply device 6, and a controller 7.
  • the reactor 5 includes a catalyst 4. That is, the catalyst 4 is filled in the reactor 5.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supplier 6 so that at least the oxidizing gas of the volume of the reactor 5 or more is supplied to the reactor 5 in the oxidation process.
  • the amount of oxidizing gas supplied to the reactor 5 may be any amount as long as the volume of the reactor 5 or more.
  • an oxidizing gas containing an amount of oxygen that can be completely oxidized by the catalyst 4 (specifically, about three times the volume of the reactor 5) may be supplied to the catalyst 4.
  • the oxidation treatment of the catalyst 4 is performed using the oxidizing gas having a volume larger than that of the reactor 5. Therefore, when the catalyst 4 is taken out from the reactor 5 containing the catalyst 4 in the disposal treatment compared to the conventional case. In addition, the amount of heat generated by the oxidation reaction of the catalyst 4 can be reduced.
  • the fuel cell system of the fourth example of the first embodiment is the same as the fuel cell system of the first embodiment, in which the controller supplies at least a molar equivalent of oxygen necessary for the oxidation reaction of the catalyst in the oxidation treatment. Control the oxidizing gas supply.
  • the catalyst is oxidized using a molar equivalent of oxygen necessary for the oxidation reaction of the catalyst. Therefore, when the catalyst is taken out from the container containing the catalyst in the disposal process compared to the conventional case, The amount of heat generated by the oxidation reaction of the catalyst can be reduced.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the first embodiment except for the above features.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supplier 6 so that at least a molar equivalent of oxygen necessary for the oxidation reaction of the catalyst 4 is supplied in the oxidation treatment.
  • the catalyst 4 is taken out from the container in which the catalyst 4 is accommodated in the disposal treatment as compared with the conventional case.
  • the amount of heat generated by the oxidation reaction of the catalyst 4 can be reduced.
  • the fuel cell system according to the fifth example of the first embodiment is the same as the fuel cell system according to any one of the first embodiment and the first to fourth examples of the first embodiment. Provide periods not flowing.
  • the operating method of the fuel cell system of the fifth example of the first embodiment is the same as that of the operating method of the fuel cell system of any one of the first embodiment, the first and third examples of the first embodiment.
  • the treatment includes a period during which the raw material does not flow on the catalyst.
  • the oxidation treatment of the catalyst if a raw material is flowed over the catalyst, the raw material and oxygen react due to catalytic combustion of the raw material, and the amount of oxygen used in the oxidation treatment of the catalyst may be reduced.
  • the catalyst oxidation treatment such a possibility can be reduced by providing a period in which the raw material does not flow on the catalyst. Therefore, the amount of heat generated by the oxidation reaction of the catalyst is reduced when the catalyst is taken out from the container containing the catalyst in the disposal process, compared to the case where the catalyst is not provided with a period during which the raw material does not flow. Can do.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to fourth examples of the first embodiment except for the above characteristics.
  • the operating method of the fuel cell system of the present embodiment may be the same as the operating method of the fuel cell system of any one of the first embodiment and the first and third embodiments of the first embodiment except for the above characteristics. Good.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the catalyst 4 before taking the catalyst 4 out.
  • the oxidation treatment of the catalyst 4 includes a period in which the raw material does not flow on the catalyst 4.
  • the raw material includes, for example, an organic compound composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, and LPG.
  • the raw material and oxygen react due to catalytic combustion of the raw material, and the amount of oxygen used in the oxidation treatment of the catalyst 4 may be reduced.
  • such a possibility can be reduced by providing a period in which the raw material does not flow on the catalyst 4. Therefore, the oxidation reaction of the catalyst 4 when the catalyst 4 is taken out from the container storing the catalyst 4 in the disposal process, compared with the case where the period during which the raw material does not flow through the catalyst 4 is not provided in the oxidation process of the catalyst 4. The amount of heat generated by can be reduced.
  • a fuel cell system according to a sixth example of the first embodiment is the same as the fuel cell system according to any one of the first embodiment and the first to fourth examples of the first embodiment. A period in which no other gas is flowing is provided.
  • the operating method of the fuel cell system of the fifth example of the first embodiment is the same as that of the operating method of the fuel cell system of any one of the first embodiment, the first and third examples of the first embodiment.
  • the treatment includes a period in which no gas other than the oxidizing gas flows on the catalyst.
  • the gas and oxygen may react with each other due to catalytic combustion of the gas, and the amount of oxygen used in the oxidation treatment of the catalyst may be reduced.
  • the oxidation treatment of the catalyst such a possibility can be reduced by providing a period in which no gas other than the oxidizing gas flows on the catalyst. Therefore, compared with the case where the catalyst is not provided with a period during which no gas other than the oxidizing gas flows in the catalyst oxidation treatment, the catalyst is oxidized when the catalyst is taken out from the container housing the catalyst in the disposal processing. The calorific value can be reduced.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to fourth examples of the first embodiment except for the above characteristics.
  • the operating method of the fuel cell system of the present embodiment may be the same as the operating method of the fuel cell system of any one of the first embodiment and the first and third embodiments of the first embodiment except for the above characteristics. Good.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the catalyst 4 before taking the catalyst 4 out.
  • the oxidation treatment of the catalyst 4 includes a period during which no gas other than the oxidizing gas flows on the catalyst 4.
  • the catalyst is a shift catalyst.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to sixth embodiments except for the above characteristics.
  • FIG. 4 is a diagram illustrating an example of a fuel cell system according to a seventh example of the first embodiment.
  • the fuel cell system 100 of this embodiment includes a fuel cell 3, a shift catalyst 4A, an oxidizing gas supply device 6, and a controller 7.
  • the shift catalyst 4A can be exemplified as the catalyst 4 that undergoes an oxidation reaction with the oxidizing gas. That is, since the shift catalyst 4A needs to be kept in a reduced state during the operation of the fuel cell system 100, when the shift catalyst 4A is taken out from the container that stores the shift catalyst 4A in the disposal process, the shift catalyst 4A is oxidized. The reaction occurs rapidly. Then, the shift catalyst 4A generates a large amount of heat.
  • examples of the catalyst metal of the shift catalyst 4A include Cu and Zn.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100. At this time, carbon monoxide in the hydrogen-containing gas is reduced by a shift reaction that proceeds on the shift catalyst 4A.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the shift catalyst 4A before taking out the shift catalyst 4A to the outside.
  • the controller 7 stops the power generation of the fuel cell system 100 and waits for the removal of the fuel cell system 100 or the hydrogen generator from the container to the outside during the disposal of the fuel cell system 100 or the hydrogen generator, and the like.
  • the shift catalyst 4A may be oxidized by controlling the oxidizing gas supply device 6.
  • the fuel cell system of Example 8 of the first embodiment is the hydrodesulfurization catalyst in the fuel cell system according to any one of the first embodiment and the first to sixth fuel cell systems of the first embodiment. .
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to sixth embodiments except for the above characteristics.
  • FIG. 5 is a diagram illustrating an example of a fuel cell system according to an eighth example of the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a hydrodesulfurization catalyst 4 ⁇ / b> B, an oxidizing gas supplier 6, and a controller 7.
  • Examples of the catalyst 4 that undergoes an oxidation reaction with an oxidizing gas include a hydrodesulfurization catalyst 4B.
  • the hydrodesulfurization catalyst 4B needs to be kept in a reduced state during the operation of the fuel cell system 100. Therefore, when the hydrodesulfurization catalyst 4B is taken out from the container that houses the hydrodesulfurization catalyst 4B in the disposal process, The oxidation reaction of the hydrodesulfurization catalyst 4B occurs abruptly. Then, the hydrodesulfurization catalyst 4B generates a large amount of heat.
  • hydrodesulfurization catalyst 4B for example, a CuZn-based catalyst having both a function of converting a sulfur compound into hydrogen sulfide and a function of adsorbing hydrogen sulfide are exemplified.
  • the type of the hydrodesulfurization catalyst 4B is not limited to this.
  • a zinc oxide catalyst and a Mo-based catalyst may be used alone or in combination of a plurality of catalysts.
  • the shift catalyst 4A may be provided on the fluid flow path between the hydrodesulfurization catalyst 4B and the fuel cell 3.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • a hydrogen-containing gas is added to the hydrodesulfurization catalyst 4B.
  • the sulfur compound in the raw material supplied to the reformer (not shown) is removed by the hydrodesulfurization catalyst 4B.
  • the above hydrogen-containing gas is generated by the reforming reaction of the raw material in this reformer.
  • the controller 7 controls the oxidizing gas supply device 6 to oxidize the hydrodesulfurization catalyst 4B before taking out the hydrodesulfurization catalyst 4B to the outside.
  • the controller 7 is from when the power generation of the fuel cell system 100 is stopped until the hydrodesulfurization catalyst 4B is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator.
  • the hydrodesulfurization catalyst 4B may be oxidized by controlling the oxidizing gas supply device 6.
  • the hydrodesulfurization is carried out from the container containing the hydrodesulfurization catalyst 4B in the disposal process as compared with the conventional case.
  • the catalyst 4B is taken out, the amount of heat generated by the oxidation reaction of the hydrodesulfurization catalyst 4B can be reduced.
  • the catalyst is a methanation catalyst.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to sixth embodiments except for the above characteristics.
  • FIG. 6 is a diagram illustrating an example of a fuel cell system according to a ninth example of the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a methanation catalyst 4D, an oxidizing gas supplier 6, and a controller 7.
  • the methanation catalyst 4D can be exemplified as the catalyst 4 that undergoes an oxidation reaction with the oxidizing gas. That is, Ni may be used as the catalyst metal of the methanation catalyst 4D.
  • the methanation catalyst 4D needs to maintain a reduced state in the operation of the fuel cell system 100, when the methanation catalyst 4D is taken out from the container that houses the methanation catalyst 4D in the disposal process, The oxidation reaction of the catalyst 4D occurs abruptly. Then, the methanation catalyst 4D generates a large amount of heat.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100. At this time, carbon monoxide in the hydrogen-containing gas is reduced by the CO methanation reaction that proceeds on the methanation catalyst 4D.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the methanation catalyst 4D before taking out the methanation catalyst 4D to the outside.
  • the controller 7 stops the power generation of the fuel cell system 100 until the methanation catalyst 4D is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator,
  • the methanation catalyst 4D may be oxidized by controlling the oxidizing gas supplier 6.
  • the methanation catalyst 4D is removed from the container for storing the methanation catalyst 4D in the disposal process compared to the conventional case.
  • the amount of heat generated by the oxidation reaction of the methanation catalyst 4D can be reduced.
  • the catalyst is a reforming catalyst.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to sixth embodiments except for the above characteristics.
  • FIG. 7 is a diagram illustrating an example of a fuel cell system according to a tenth example of the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a reforming catalyst 4E, an oxidizing gas supplier 6, and a controller 7.
  • An example of the catalyst 4 that undergoes an oxidation reaction with an oxidizing gas is a reforming catalyst 4E. That is, Ni which is a base metal may be used as the catalyst metal of the reforming catalyst 4E.
  • the reforming catalyst 4E since the reforming catalyst 4E needs to be kept in a reduced state during the operation of the fuel cell system 100, when the reforming catalyst 4E is taken out from the container in which the reforming catalyst 4E is stored in the disposal process, the reforming catalyst 4E is modified. The oxidation reaction of the catalyst 4E occurs abruptly. Then, the reforming catalyst 4E generates a large amount of heat.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100. At this time, the raw material undergoes a reforming reaction by the reforming catalyst 4E to generate a hydrogen-containing gas.
  • the controller 7 controls the oxidizing gas supplier 6 to oxidize the hydrodesulfurization catalyst 4B before taking out the reforming catalyst 4E.
  • the controller 7 is from when the power generation of the fuel cell system 100 is stopped to when the reforming catalyst 4E is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator,
  • the reforming catalyst 4E may be oxidized by controlling the oxidizing gas supply device 6.
  • the oxidation treatment of the reforming catalyst 4E is performed before the reforming catalyst 4E is taken out. Therefore, compared to the conventional method, the reforming catalyst 4E is removed from the container housing the reforming catalyst 4E in the disposal process. When it is taken out, the amount of heat generated by the oxidation reaction of the reforming catalyst 4E can be reduced.
  • a fuel cell system according to a first modification of the first embodiment is the same as the fuel cell system according to any one of the first embodiment and the first to tenth examples of the first embodiment.
  • a CO remover that reduces by an oxidation reaction is provided, and the oxidizing gas supply device supplies the oxidizing gas to the CO remover.
  • the oxidation process of the catalyst can be performed using an oxidizing gas supply unit that supplies the oxidizing gas to the CO remover, so there is no need to provide an oxidizing gas supply unit for the oxidation process, and the system configuration is simplified. Is done.
  • the fuel cell system according to this modification may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to tenth examples of the first embodiment, except for the above-described features.
  • FIG. 8 is a diagram illustrating an example of a fuel cell system according to a first modification of the first embodiment.
  • the fuel cell system 100 of the present modification includes a fuel cell 3, a hydrogenation catalyst 4B, a shift catalyst 4A, an oxidizing gas supplier 6, a CO remover 9, a controller 7, .
  • the CO remover 9 reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the oxidizing gas supplier 6 supplies the oxidizing gas to the CO remover 9.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • a hydrogen-containing gas is added to the hydrodesulfurization catalyst 4B.
  • the sulfur compound in the raw material supplied to the reformer (not shown) is removed by the hydrodesulfurization catalyst 4B.
  • the above hydrogen-containing gas is generated by the reforming reaction of the raw material in this reformer.
  • carbon monoxide in the hydrogen-containing gas is reduced by the shift catalyst 4 ⁇ / b> A and the CO remover 9, the hydrogen-containing gas is sent to the fuel cell 3.
  • the controller 7 controls the oxidizing gas supply unit 6 to oxidize the shift catalyst 4A and the hydrodesulfurization catalyst 4B before taking out the shift catalyst 4A and the hydrodesulfurization catalyst 4B from the containers containing them. To process. For example, the controller 7 stops the power generation of the fuel cell system 100 and then disposes the shift catalyst 4A and the hydrodesulfurization catalyst 4B from the containers for storing the fuel catalyst system 100 or the hydrogen generator 4B in the disposal.
  • the shift gas catalyst 6A is controlled by controlling the oxidizing gas supplier 6 and The hydrodesulfurization catalyst 4B may be oxidized.
  • the oxidation treatment of the shift catalyst 4A and the hydrodesulfurization catalyst 4B can be performed using the oxidation gas supply device 6 that supplies the oxidation gas to the CO remover 9, an oxidation gas supply device for oxidation treatment is separately provided. There is no need, and the system configuration is simplified.
  • a fuel cell system according to a second modification of the first embodiment is the fuel cell system according to any one of the first embodiment and the first to tenth examples of the first embodiment, wherein the oxidizing gas supplier is a fuel cell. Supply oxidizing gas.
  • the oxidation treatment of the catalyst can be performed using the oxidation gas supply device that supplies the oxidation gas to the fuel cell. Therefore, it is not necessary to separately provide the oxidation gas supply device for the oxidation treatment, and the system configuration is simplified.
  • the fuel cell system according to the present embodiment may be configured in the same manner as the fuel cell system according to any one of the first embodiment and the first to tenth embodiments of the first embodiment except for the above characteristics.
  • FIG. 9 is a diagram illustrating an example of a fuel cell system according to a second modification of the first embodiment.
  • the fuel cell system 100 of the present modification includes a fuel cell 3, a catalyst 4, an oxidizing gas supplier 6, and a controller 7, as in FIG. 1.
  • the apparatus configuration of the fuel cell system 100 of the present modification is the same as that of the first embodiment except that the oxidizing gas supply device 6 supplies the oxidizing gas to the fuel cell 3.
  • the fuel cell 3 During the operation of the fuel cell system 100, the fuel cell 3 generates power using hydrogen in the hydrogen-containing gas and oxygen in the oxidizing gas from the oxidizing gas supplier 6.
  • the hydrogen-containing gas is generated by the reforming reaction of the raw material in a reformer (not shown).
  • the controller 7 controls the oxidizing gas supply device 6 to oxidize the catalyst 4 before taking the catalyst 4 out of the container containing the catalyst 4 to the outside.
  • the controller 7 may stop the power generation of the fuel cell system 100 until the catalyst 4 is taken out from the container storing the catalyst 4 in the disposal of the fuel cell system 100 or the hydrogen generator.
  • the oxidizing gas supply device 6 may be controlled to oxidize the catalyst 4.
  • the oxidation treatment of the catalyst 4 can be performed using the oxidation gas supply device 6 that supplies the oxidation gas to the battery 3, there is no need to separately provide an oxidation gas supply device for oxidation treatment, and the system configuration is simple. It becomes.
  • the fuel cell system of the first control example of the first embodiment is any one of the first embodiment, the first to tenth examples of the first embodiment, and the first to second modifications of the first embodiment.
  • the controller stops the oxidizing gas supply device when the temperature of the catalyst becomes equal to or higher than the first threshold value.
  • the operation method of the fuel cell system of the first control example of the first embodiment is the same as that of the fuel cell system of any one of the first embodiment and the first, third, and fifth to sixth examples of the first embodiment.
  • the oxidizing gas supplier is stopped.
  • the safety is improved when the oxidation treatment is not stopped when the first threshold value or more is reached.
  • the fuel cell system of this control example has the fuel of any one of the first embodiment, the first to tenth examples of the first embodiment, and the first to second modifications of the first embodiment except for the above characteristics. You may comprise similarly to a battery system.
  • the operation method of the fuel cell system of this control example is the operation of the fuel cell system according to any one of the first embodiment and the first, third, and fifth to sixth examples of the first embodiment, except for the above characteristics. It may be similar to the method.
  • the apparatus configuration of the fuel cell system 100 of this control example is any one of the fuel cells of the first embodiment, the first to tenth examples of the first embodiment, and the first to second modifications of the first embodiment. Since it is the same as one of the systems, the description is omitted.
  • the controller 7 stops the oxidizing gas supply device 6 when the temperature of the catalyst 4 becomes equal to or higher than the first threshold value 101.
  • the controller 7 stops the oxidizing gas supply device 6 when the temperature of the catalyst 4 becomes equal to or higher than the first threshold value 101.
  • the controller 7 oxidizes the catalyst 4. Specifically, an instruction signal 103 for operating the oxidizing gas supply device 6 is issued to the oxidizing gas supply device 6. As a result, the oxidizing gas is supplied to the catalyst 4. Then, an oxidation reaction occurs in the catalyst 4 and the catalyst temperature 102 rises.
  • the controller 7 acquires detection data from a temperature detector (not shown) for detecting the catalyst temperature 102 every predetermined sampling period.
  • the controller 7 issues an instruction signal 104 for stopping the oxidizing gas supply device 6.
  • the first threshold value 101 may be set to 300 ° C. Thereby, the supply of the oxidizing gas to the catalyst 4 is stopped. Then, the oxidation reaction of the catalyst 4 is stopped, and the catalyst temperature 102 is lowered at an appropriate time.
  • the first threshold value 101 is set as appropriate, but for example, a temperature lower than the heat-resistant temperature of the container housing the catalyst 4 is set.
  • the safety is improved as compared with the case where the oxidation treatment is not stopped.
  • the 1st threshold value 101 is 300 degreeC above, this is an illustration and is not limited to this example.
  • the controller is configured such that the temperature of the catalyst is smaller than the first threshold value.
  • the threshold value of 2 or more is reached, the operation of the oxidizing gas supplier is resumed.
  • the operating method of the fuel cell system of the second control example of the first embodiment is the second operating method of the fuel cell system of the first control example of the first embodiment, in which the temperature of the catalyst is smaller than the first threshold value. When the threshold value is exceeded, the operation of the oxidizing gas supplier is resumed.
  • the oxidation treatment of the catalyst can be appropriately continued while suppressing the heat generation amount of the catalyst in the oxidation treatment.
  • the fuel cell system of this control example may be configured in the same manner as the fuel cell system of the first control example of the first embodiment, except for the above characteristics.
  • the operation method of the fuel cell system of this control example may be the same as the operation method of the fuel cell system of the first control example of the first embodiment, except for the above characteristics.
  • the apparatus configuration of the fuel cell system 100 of the present control example is the same as any of the first embodiment, the first to tenth examples of the first embodiment, and the first to second modifications of the first embodiment. Therefore, explanation is omitted.
  • the controller 7 restarts the operation of the oxidizing gas supply device 6 when the temperature of the catalyst 4 becomes equal to or lower than the second threshold value 106 which is smaller than the first threshold value 101.
  • the controller 7 restarts the operation of the oxidizing gas supply device 6 when the temperature of the catalyst 4 becomes equal to or lower than the second threshold value 106 which is smaller than the first threshold value 101.
  • the controller 7 oxidizes the catalyst 4. Specifically, an instruction signal 103 for operating the oxidizing gas supply device 6 is issued to the oxidizing gas supply device 6. As a result, the oxidizing gas is supplied to the catalyst 4. Then, an oxidation reaction occurs in the catalyst 4 and the catalyst temperature 102 rises.
  • the controller 7 acquires detection data from a temperature detector (not shown) for detecting the catalyst temperature 102 every predetermined sampling period.
  • the controller 7 issues an instruction signal 104 for stopping the oxidizing gas supply device 6.
  • the first threshold value 101 may be set to 300 ° C. Thereby, the supply of the oxidizing gas to the catalyst 4 is stopped. Then, the oxidation reaction of the catalyst 4 is stopped, and the catalyst temperature 102 is lowered at an appropriate time.
  • the controller 7 when the catalyst temperature 102 becomes equal to or lower than the second threshold value 106 which is smaller than the first threshold value 101, the controller 7 outputs an instruction signal 105 for restarting the operation of the oxidizing gas supply device 6.
  • the second threshold 106 may be set to 200 ° C., for example.
  • the first threshold value 101 and the second threshold value 106 are set as appropriate.
  • a temperature lower than the heat resistant temperature of the container that houses the catalyst 4 is set.
  • the oxidation treatment of the catalyst 4 can be appropriately continued while suppressing the heat generation amount of the catalyst 4 in the oxidation treatment.
  • the 1st threshold value 101 and the 2nd threshold value 106 are set to 300 degreeC and 200 degreeC, respectively above, these are illustrations and are not limited to this example.
  • the fuel cell system of the third control example of the first embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment.
  • the controller stops the oxidizing gas supplier when the temperature of the catalyst when the oxidizing gas supplier is operating does not increase. .
  • the operation method of the fuel cell system of the third control example of the first embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first of the first embodiment. -In the operation method of the fuel cell system of the second control example, when the temperature of the catalyst when the oxidizing gas supply device is operating does not tend to increase, the oxidizing gas supply device is stopped.
  • the fuel cell system of this control example is the same as that of the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment, except for the above characteristics.
  • the fuel cell system may be configured similarly to any one of the first to second control examples.
  • the operating method of the fuel cell system of this control example is the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to second examples of the first embodiment, except for the above features.
  • the operation method of any one of the two control examples may be the same.
  • the apparatus configuration of the fuel cell system 100 of the present control example is the same as any of the first embodiment, the first to tenth examples of the first embodiment, and the first to second modifications of the first embodiment. Therefore, explanation is omitted.
  • the controller 7 stops the oxidizing gas supplier 6 when the temperature of the catalyst 4 when the oxidizing gas supplier 6 is operating does not increase.
  • a specific example of control of the fuel cell system 100 will be described with reference to FIG.
  • the controller 7 oxidizes the catalyst 4. Specifically, an instruction signal 103 for operating the oxidizing gas supply device 6 is issued to the oxidizing gas supply device 6. As a result, the oxidizing gas is supplied to the catalyst 4. Then, an oxidation reaction occurs in the catalyst 4 and the catalyst temperature 102 rises.
  • the controller 7 acquires detection data from a temperature detector (not shown) for detecting the catalyst temperature 102 every predetermined sampling period.
  • the controller 7 issues an instruction signal 104 for stopping the oxidizing gas supply device 6.
  • the first threshold value 101 may be set to 300 ° C. Thereby, the supply of the oxidizing gas to the catalyst 4 is stopped. Then, the oxidation reaction of the catalyst 4 is stopped, and the catalyst temperature 102 is lowered at an appropriate time.
  • the controller 7 when the catalyst temperature 102 becomes equal to or lower than the second threshold value 106 which is smaller than the first threshold value 101, the controller 7 outputs an instruction signal 105 for restarting the operation of the oxidizing gas supply device 6.
  • the first threshold value 101 may be set to 200 ° C.
  • the controller 7 outputs an instruction signal 107 for stopping the oxidizing gas supplier 6 when the catalyst temperature 102 when the oxidizing gas supplier 6 is operating does not tend to increase. For example, when the profile of the catalyst temperature 102 becomes flat as shown in FIG. 12, the controller 7 determines that the catalyst temperature 102 has ceased to increase. Thereby, it is determined that the oxidation treatment of the catalyst 4 can be completed.
  • the first threshold value 101 and the second threshold value 106 are set as appropriate.
  • a temperature lower than the heat resistant temperature of the container that houses the catalyst 4 is set.
  • the 1st threshold value 101 and the 2nd threshold value 106 are set to 300 degreeC and 200 degreeC, respectively above, these are illustrations and are not limited to this example.
  • the fuel cell system 100 is configured to repeatedly perform the oxidation process by setting the first threshold value 101 and the second threshold value 106. However, the fuel cell system 100 does not perform such a repeated process. You may adopt. That is, the oxidation process may be terminated when the catalyst temperature 102 of the catalyst 4 does not tend to increase in the first oxidation process.
  • the fuel cell system of the second embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • a branch path that is branched from the fluid flow path upstream of the catalyst and opened to the atmosphere, a first switch provided in the branch path, and a downstream of the catalyst
  • a second switch provided in the fluid flow path the oxidizing gas supply unit is configured to supply the oxidizing gas to the fluid flow path between the catalyst and the second switch
  • the controller includes: In the above oxidation treatment, the first switch is opened and the second switch is closed.
  • the operation method of the fuel cell system of the second embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third control examples of the first embodiment.
  • the first switch provided in the branch path branched from the fluid flow path upstream of the catalyst and opened to the atmosphere is opened, and the downstream of the catalyst
  • the second switch provided in the fluid flow path is closed, and the oxidizing gas supply device supplies the oxidizing gas to the fluid flow path between the catalyst and the second switch.
  • the oxidation treatment of the catalyst can be executed, the amount of heat generated by the oxidation reaction of the catalyst can be reduced when the catalyst is taken out from the container housing the catalyst in the disposal treatment compared to the conventional case.
  • the fuel cell system of the present embodiment is the same as that of the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment except for the above features.
  • the fuel cell system may be configured in the same manner as any one of the first to third control examples.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to first of the first embodiment, except for the above features. It may be the same as the operation method of any one of the three control examples.
  • FIG. 13 is a diagram illustrating an example of a fuel cell system according to the second embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a catalyst 4, an oxidizing gas supplier 6, a branch path 11, a first switch 12, and a second switch. And a controller 7.
  • the branch path 11 is a path that is branched from the fluid flow path upstream of the catalyst 4 and opened to the atmosphere. Note that the upstream end of the branch path 11 may be connected to any location as long as it is a fluid flow path upstream of the catalyst 4.
  • the first switch 12 is provided in the branch path 11. By opening the first switch 12, the branch path 11 is opened to the atmosphere.
  • the first switch 12 may have any configuration as long as it can open and close the branch path 11. Examples of the first switch 12 include an on-off valve.
  • the second switch 13 is provided in the fluid flow path downstream of the catalyst 4.
  • the second switch 13 may be provided at any location as long as it is downstream of the catalyst 4.
  • the second switch 13 may be provided in the fluid flow path between the catalyst 4 and the fuel cell 3 as shown in FIG. 13 or may be provided downstream of the fuel cell 3.
  • the second switch 13 may have any configuration as long as the fluid flow path downstream of the catalyst 4 can be opened and closed. Examples of the second switch 13 include an on-off valve.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the controller 7 can oxidize the catalyst 4 by controlling the oxidizing gas supply device 6 before taking out the catalyst 4 from the container that houses the catalyst 4 to the outside.
  • the controller 7 may stop the power generation of the fuel cell system 100 until the catalyst 4 is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator, and the oxidizing gas.
  • the oxidation gas supply device 6 may be controlled to oxidize the catalyst 4.
  • the controller 7 operates the oxidizing gas supply device 6 to open the first switch 12 and close the second switch 13 in the above oxidation process. Then, as shown by the one-dot chain line in FIG. 13, the oxidizing gas is supplied to the fluid flow path between the catalyst 4 and the second switch 13, and then flows through the catalyst 4 and the branch path 11 in this order to the outside. Released. Thereby, oxidizing gas is supplied to the catalyst 4 and the catalyst 4 is oxidized. That is, this embodiment is characterized in that the oxidizing gas supply device 6, the branch path 11, and the first switch 12 are used for the oxidation treatment of the catalyst 4.
  • the controller 7 may acquire detection data from the temperature detector for detecting the catalyst temperature every predetermined sampling period.
  • temperature control in the oxidation treatment of the catalyst 4 may be the same as any one of the first to third control examples.
  • the oxidation treatment of the catalyst 4 can be executed by introducing the oxidizing gas from the catalyst 4 to the branch path 11. Therefore, compared with the prior art, when the catalyst 4 is taken out from the container housing the catalyst 4 in the disposal process, the amount of heat generated by the oxidation reaction of the catalyst 4 can be reduced.
  • the fuel cell system of the example of the second embodiment is the same as the fuel cell system of the second embodiment, wherein the catalyst is at least a shift catalyst, and the oxidizing gas supplier reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction. An oxidizing gas is supplied to the CO remover.
  • the oxidation treatment of the shift catalyst can be executed. Therefore, when the shift catalyst is taken out from the container that stores the shift catalyst in the disposal process, the amount of heat generated by the oxidation reaction of the shift catalyst can be reduced. .
  • the oxidation treatment of the catalyst can be performed using the oxidation gas supply device that supplies the oxidation gas to the CO remover, there is no need to separately provide an oxidation gas supply device for oxidation treatment, and the system configuration is simplified. .
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the second embodiment except for the above features.
  • FIG. 14 is a diagram illustrating an example of a fuel cell system according to an example of the second embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a shift sulfur catalyst 4 ⁇ / b> A, a hydrodesulfurization catalyst 4 ⁇ / b> B, an oxidizing gas supplier 6, a CO remover 9, and a reformer.
  • a switch 10 a branch path 11, a first switch 12, a second switch 13, and a controller 7.
  • the catalyst 4 is at least a shift catalyst 4A, a hydrodesulfurization catalyst 4B, a reformer 10 and a CO remover 9, and an oxidizing gas supplier 6
  • the second embodiment is the same as the second embodiment except that the oxidizing gas is supplied to the CO remover 9 that reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the reformer 10 generates a hydrogen-containing gas using the raw material. Specifically, in the reformer 10, the raw material undergoes a reforming reaction to generate a hydrogen-containing gas. Any form may be sufficient as reforming reaction, for example, steam reforming reaction, autothermal reaction, partial oxidation reaction, etc. are illustrated. Although not shown in FIG. 14, equipment necessary for each reforming reaction is provided as appropriate. For example, if the reforming reaction is a steam reforming reaction, a combustor that heats the reformer, an evaporator that generates steam, and a water supplier that supplies water to the evaporator are provided. If the reforming reaction is an autothermal reaction, an air supply device for supplying air to the reformer is further provided.
  • a raw material contains the organic compound comprised from carbon and hydrogen at least, such as city gas which has methane as a main component, natural gas, LPG, for example.
  • the fuel cell system 100 includes the shift catalyst 4A and the CO remover 9, but the fuel cell system 100 may not include this.
  • the reforming catalyst in the reformer 10 becomes a catalyst that requires oxidation treatment.
  • the branch path 11 may be a path that is branched from the fluid flow path upstream of the reformer 10 and opened to the atmosphere.
  • the upstream end of the branch path 11 may be connected to any location as long as it is a fluid flow path upstream of the reformer 10.
  • the upstream end of the branch path 11 may be connected to a fluid flow path between the hydrodesulfurization catalyst 4B and the reformer 10 as in this example, or the fluid flow upstream of the hydrodesulfurization catalyst 4B. May be connected to the road.
  • the main branch 11 is used for purposes other than the purpose of discharging exhaust gas to the atmosphere in the oxidation treatment.
  • the first switch 12 may be opened to release the pressure of the reformer 10 to the atmosphere, and the inside of the reformer 10 may be decompressed.
  • the branch path 11 leads to the evaporator
  • the water in the evaporator may be used to dispose of the fuel outside the fuel cell system 100 by opening the first switch 12.
  • the hydrodesulfurization catalyst 4B another desulfurization catalyst may be used.
  • room temperature desulfurization catalyst, high temperature desulfurization catalyst and the like are exemplified.
  • the room temperature desulfurization catalyst is a catalyst that is desulfurized by physical adsorption at room temperature
  • the high temperature desulfurization catalyst is a catalyst that is desulfurized by physical adsorption at a temperature higher than normal temperature (for example, 200 ° C.).
  • the fuel cell system 100 includes the hydrodesulfurization catalyst 4B.
  • the fuel cell system 100 may not include a desulfurization catalyst such as the hydrodesulfurization catalyst 4B.
  • the second switch 13 may be provided in a fluid flow path between the CO cell 9 and the fuel cell 3 downstream of the shift catalyst 4A, which is an example of the catalyst 4, It may be provided downstream of the fuel cell 3.
  • the shift catalyst 4A which is an example of the catalyst 4
  • the second switch 13 When the second switch 13 is opened, the hydrogen-containing gas is supplied from the reformer 10 to the fuel cell 3, and when the second switch 13 is closed, the supply of the hydrogen-containing gas to the fuel cell 3 is shut off.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • a hydrogen-containing gas is added to the hydrodesulfurization catalyst 4B.
  • the sulfur compound in the raw material supplied to the reformer 10 is removed by the hydrodesulfurization catalyst 4B.
  • the hydrogen-containing gas is generated by the reforming reaction of the raw material in the reformer 10.
  • the oxidizing gas supply unit 6 supplies the oxidizing gas to the CO remover 9 that reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the second switch 13 When the operation of the fuel cell system 100 is stopped, the second switch 13 is closed, and the communication between the reformer 10 and the atmosphere is shut off. That is, the reformer 10 is sealed.
  • the inside of the reformer 10 may become a high pressure as the remaining water evaporates.
  • the first switch 12 is opened, the pressure of the reformer 10 is temporarily opened to the atmosphere, and the interior is depressurized.
  • the controller 7 can oxidize the shift catalyst 4 ⁇ / b> A by controlling the oxidizing gas supply device 6 before taking the shift catalyst 4 ⁇ / b> A out of the container that houses the shift catalyst 4 ⁇ / b> A.
  • the controller 7 stops the power generation of the fuel cell system 100 and waits for the removal of the fuel cell system 100 or the hydrogen generator from the container to the outside during the disposal of the fuel cell system 100 or the hydrogen generator, and the like.
  • the shift catalyst 4A may be oxidized by controlling the oxidizing gas supply device 6.
  • the controller 7 operates the oxidizing gas supply device 6 to open the first switch 12 and close the second switch 13 in the above oxidation process. Then, the oxidizing gas is supplied to the fluid flow path between the reformer 10 and the second switch 13 as indicated by the one-dot chain line in FIG. 14, and then the shift catalyst 4A, the reformer 10 and the branch path. 11 flows in this order and is discharged to the outside. As a result, the oxidizing gas is supplied to the shift catalyst 4A, and the shift catalyst 4A is oxidized.
  • the reforming catalyst in the reformer 10 is a catalyst that undergoes an oxidation reaction with the oxidizing gas
  • the oxidizing gas supply device 6, the branch path 11, and the first switch 12 are used for the oxidation treatment of the shift catalyst 4.
  • the oxidizing gas passes through the shift catalyst 4A, the reformer 10, the hydrodesulfurization catalyst 4B, and the branch path. It flows in this order and is discharged to the outside. Thereby, the oxidizing gas is supplied to the shift catalyst 4A and the hydrodesulfurization catalyst 4B, and the respective catalysts are oxidized. That is, this example is characterized in that the oxidizing gas supply device 6, the branch path 11, and the first switch 12 are used for the oxidation treatment of the shift catalyst 4A and the hydrodesulfurization catalyst 4B.
  • the controller 7 may acquire detection data from the temperature detector for detecting the shift catalyst temperature every predetermined sampling period. Moreover, the controller 7 may acquire the detection data from the temperature detector for detecting the hydrodesulfurization catalyst temperature every predetermined sampling period.
  • temperature control in the oxidation treatment of the shift catalyst 4A and the hydrodesulfurization catalyst 4B may be the same as in any of the first to third control examples described above.
  • At least the oxidation treatment of the shift catalyst 4A can be executed by introducing the oxidizing gas from the reformer 10 to the branch path 11. Therefore, compared with the prior art, in the disposal process, when the shift catalyst 4A is taken out from the container that stores the shift catalyst 4A, the amount of heat generated by the oxidation reaction of the shift catalyst 4A can be reduced. Further, when the upstream end of the branch path is connected to the fluid flow path upstream of the hydrodesulfurization catalyst 4B, the oxidation catalyst 4A and the hydrogenation catalyst 4A and the hydrogenation catalyst are guided by introducing the oxidizing gas from the hydrodesulfurization catalyst 4B to the branch path. The oxidation treatment of the desulfurization catalyst 4B can be executed.
  • the fuel cell system of the third embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • the controller includes an operating device operated by the operator, and when the operator manually inputs to the operating device, the controller is The above oxidation treatment is performed.
  • the operation method of the fuel cell system of the third embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third control examples of the first embodiment.
  • the operation method of the fuel cell system according to any one of the second and second embodiments when the operator manually inputs the operation device, the above-described oxidation treatment is executed.
  • the execution of the catalyst oxidation treatment can be started in a timely manner by manual input of the operating device by the operator.
  • the fuel cell system of the present embodiment is the same as that of the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment except for the above features.
  • the fuel cell system may be configured similarly to any one of the first to third control examples, the second embodiment, and the examples of the second embodiment.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to first of the first embodiment, except for the above features.
  • the operation method of the fuel cell system according to any of the three control examples and the second embodiment may be the same.
  • the apparatus configuration of the fuel cell system 100 of the present embodiment is the same as that of the first embodiment, the first to tenth examples of the first embodiment, and the first embodiment of the first embodiment, except that the fuel cell system 100 includes an operating device. 1 to 2nd modification, 1st to 3rd control example of 1st embodiment, 2nd embodiment and any of 2nd embodiment example, and thus description thereof is omitted.
  • FIG. 15 is a flowchart illustrating an example of the operation of the fuel cell system according to the third embodiment.
  • the controller 7 waits until the catalyst 4 is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator after the power generation of the fuel cell system 100 is stopped.
  • the operator manually inputs the operating device (step S1).
  • the controller 7 performs the oxidation process of the catalyst 4 (step S2).
  • the control program of the controller 7 may be rewritten instead of the manual input of the operator by the operator in step S ⁇ b> 1.
  • it may be configured to start the oxidation treatment of the catalyst 4 by installing software for the oxidation treatment of the catalyst 4 in the controller 7. This software may be stored in a storage medium or installed via a network.
  • temperature control in the oxidation treatment of the catalyst 4 may be the same as in any of the first to third control examples.
  • the oxidation treatment of the catalyst 4 can be executed in a timely manner by manual input of the operating device by the operator.
  • the fuel cell system of the fourth embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first and second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • the fuel cell system includes a receiver that receives an instruction to perform an oxidation process from the outside. When the command for executing the oxidation process is received by the receiver, the above oxidation process is executed.
  • the operation method of the fuel cell system of the fourth embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third control examples of the first embodiment.
  • the oxidation process is performed.
  • the execution of the oxidation treatment of the catalyst can be started in a timely manner by the command for executing the oxidation treatment in the receiver.
  • the fuel cell system of the present embodiment is the same as that of the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment except for the above features.
  • the fuel cell system according to any one of the first to third control examples, the second embodiment, the example of the second embodiment, and the third embodiment may be used.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to first of the first embodiment, except for the above features.
  • the operation method of the fuel cell system according to any of the three control examples and the second to third embodiments may be the same.
  • FIG. 16 is a diagram illustrating an example of a fuel cell system according to the fourth embodiment.
  • the fuel cell system 100 of this embodiment includes a fuel cell 3, a catalyst 4, an oxidizing gas supply device 6, a controller 7, and a receiver 20.
  • the fuel cell 3 Since the fuel cell 3, the oxidizing gas supply device 6, and the controller 7 are the same as those in the first embodiment, the description thereof is omitted.
  • the receiver 20 receives a command for executing oxidation treatment from the outside. And the controller 7 will perform the oxidation process of the catalyst 4, if the instruction
  • the execution of the oxidation treatment of the catalyst 4 can be started in a timely manner by the command for the execution of the oxidation treatment in the receiver 20.
  • the fuel cell system of the fifth embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • the controller executes the above oxidation treatment when the life of the fuel cell system is stopped. To do.
  • the operating method of the fuel cell system of the fifth embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third control examples of the first embodiment.
  • the oxidation treatment is performed when the life of the fuel cell system is stopped.
  • the catalyst oxidation process can be automatically started.
  • the fuel cell system of the present embodiment is the same as that of the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment except for the above features.
  • the fuel cell system according to any one of the first to third control examples, the second embodiment, the second embodiment, and the third to fourth embodiments may be configured.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to first of the first embodiment, except for the above features.
  • the operation method of the fuel cell system according to any of the three control examples and the second to fourth embodiments may be the same.
  • the device configuration of the fuel cell system 100 of the present embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first configuration of the first embodiment. Since it is the same as any one of the 1-third control example, the second embodiment, the second embodiment, and the third to fourth embodiments, the description thereof will be omitted.
  • FIG. 17 is a flowchart showing an example of the operation of the fuel cell system of the fifth embodiment.
  • step S3 it is determined whether or not the fuel cell system 100 has reached the end of its life.
  • the controller 7 automatically executes the oxidation process of the catalyst 4 (step S2). For example, when the timer stored in the controller 7 indicates that the fuel cell system 100 has reached the end of its life, the oxidation process in step S2 is automatically started.
  • the timer can be set based on, for example, the cumulative operation time of the fuel cell system 100, the energization time to the fuel cell system 100, and the like.
  • temperature control in the oxidation treatment of the catalyst 4 may be the same as in any of the first to third control examples.
  • the oxidation treatment of the catalyst 4 can be automatically executed when the life of the fuel cell system 100 is stopped. Further, in the present embodiment, the controller 7 automatically executes the oxidation process of the catalyst 4 without waiting for the disposal process work, so that the burden of the disposal process work can be reduced and the disposal process work time can be shortened. .
  • the fuel cell system of the sixth embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • the catalyst is a hydrodesulfurization catalyst, a reformer that generates hydrogen-containing gas using raw materials, and a hydrogen-containing gas sent from the reformer.
  • the controller is configured to supply gas, and the controller opens the first switch and the second switch in the oxidation process. As well as it closed, operating the oxidizing gas supplier.
  • the operation method of the fuel cell system of the sixth embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third controls of the first embodiment.
  • the first switch provided in the branch path opened from the fluid flow path upstream of the reformer and opened to the atmosphere is opened.
  • the second switch provided in the fluid flow path downstream from the hydrodesulfurization catalyst, which is the above catalyst, is closed, and the oxidizing gas supplier is provided between the reformer and the second switch. An oxidizing gas is supplied to the fluid flow path.
  • the oxidation treatment of the hydrodesulfurization catalyst can be executed, compared with the conventional method, when the hydrodesulfurization catalyst is taken out from the container containing the hydrodesulfurization catalyst in the disposal process, The amount of heat generated by can be reduced.
  • the fuel cell system of the present embodiment is the same as the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment, except for the above features.
  • the fuel cell system may be configured in the same manner as any one of the first to third control examples.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first 1 of the first embodiment, except for the above features. It may be the same as the operation method of any one of the fuel cell systems in the third control example.
  • FIG. 18 is a diagram illustrating an example of a fuel cell system according to the sixth embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a hydrodesulfurization catalyst 4B, an oxidizing gas supplier 6, a reformer 10, a branch path 11, and a first A switch 12, a second switch 13, a recycling flow path 14, and a controller 7 are provided. That is, in the present embodiment, the catalyst 4 is the hydrodesulfurization catalyst 4B.
  • the fuel cell 3, the hydrodesulfurization catalyst 4B, the oxidizing gas supplier 6, the reformer 10, the branch path 11, the first switch 12, the second switch 13, and the controller 7 are the same as described above. Description is omitted.
  • the recycle channel 14 is a channel for supplying a part of the hydrogen-containing gas sent from the reformer 10 to the hydrodesulfurization catalyst 4B. Thereby, hydrogen-containing gas can be added to the hydrodesulfurization catalyst 4B.
  • the upstream end of the recycle channel 14 may be connected to any location as long as the hydrogen-containing gas sent from the reformer 10 flows.
  • voltage riser which is not shown in the fluid flow path between the junction and the branch path 11 where the recycle flow path 14 merges. Thereby, the pressure of the fluid supplied to the reformer 10 can be increased, and the fluid flow rate is adjusted.
  • the booster may have any configuration as long as the pressure of the fluid flowing through the fluid flow path can be increased. Examples of the booster include a constant displacement pump.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the hydrogen-containing gas flowing through the recycle passage 14 is added to the hydrodesulfurization catalyst 4B. Then, the sulfur compound in the raw material supplied to the reformer 10 is removed by the hydrodesulfurization catalyst 4B. The hydrogen-containing gas is generated by the reforming reaction of the raw material in the reformer 10.
  • the controller 7 can oxidize the hydrodesulfurization catalyst 4B by controlling the oxidizing gas supply unit 6 to operate before taking out the hydrodesulfurization catalyst 4B to the outside.
  • the controller 7 stops the power generation of the fuel cell system 100, and then disposes the hydrodesulfurization catalyst 4B to the outside from the container that stores the hydrodesulfurization catalyst 4B in the disposal of the fuel cell system 100 or the hydrogen generator.
  • the hydrodesulfurization catalyst 4B is controlled by controlling the oxidant gas supply device 6 to operate when the hydrogen-containing gas is not flowing over the hydrodesulfurization catalyst 4B that oxidizes with the oxidant gas.
  • An oxidation treatment may be performed.
  • the controller 7 opens the first switch 12, closes the second switch 13, and operates the oxidizing gas supply 6 in the above oxidation process.
  • the booster (not shown) may be operated.
  • the present embodiment is characterized in that the oxidizing gas supply device 6, the recycle flow channel 14, the branch channel 11 and the first switch 12 are used for supplying the oxidizing gas to the hydrodesulfurization catalyst 4B.
  • the oxidizing gas is supplied to the fluid flow path between the reformer 10 and the second switch 13, and then passes through the reformer 10 and the branch path 11 in this order. It flows and is discharged to the outside.
  • the reforming catalyst in the reformer 10 is a catalyst that undergoes an oxidation reaction with the oxidizing gas, not only the hydrodesulfurization catalyst 4B but also the reforming catalyst is oxidized.
  • the controller 7 may acquire detection data from a temperature detector for detecting the hydrodesulfurization catalyst temperature for each predetermined sampling period. Further, the temperature control in the oxidation treatment of the hydrodesulfurization catalyst 4B may be the same as in any of the first to third control examples.
  • the branch path 11 is used for purposes other than the purpose of discharging exhaust gas to the atmosphere in the oxidation treatment.
  • the first switch 12 may be opened to release the pressure of the reformer 10 to the atmosphere, and the inside of the reformer 10 may be decompressed.
  • the branch path 11 leads to the evaporator the water in the evaporator may be used to dispose of the fuel outside the fuel cell system 100 by opening the first switch 12.
  • the hydrogenation can be performed in the disposal treatment as compared with the conventional case.
  • the hydrodesulfurization catalyst 4B is taken out from the container containing the desulfurization catalyst 4B, the amount of heat generated by the oxidation reaction of the hydrodesulfurization catalyst 4B can be reduced.
  • the fuel cell system of an example of the sixth embodiment is the same as the fuel cell system of the sixth embodiment, and further includes a shift catalyst as a catalyst, and the oxidizing gas supplier reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • An oxidizing gas is supplied to the CO remover.
  • the oxidation treatment of the shift catalyst can be executed, and therefore, compared to the conventional case, when the catalyst is taken out from the container that stores the shift catalyst in the disposal process, the amount of heat generated by the oxidation reaction of the shift catalyst can be reduced.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the sixth embodiment except for the above features.
  • FIG. 19 is a diagram illustrating an example of a fuel cell system according to an example of the sixth embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a shift sulfur catalyst 4 ⁇ / b> A, a hydrodesulfurization catalyst 4 ⁇ / b> B, an oxidizing gas supplier 6, a CO remover 9, and a reformer.
  • a vessel 10 a branch path 11, a first switch 12, a second switch 13, a recycle channel 14, and a controller 7.
  • the point provided with the conversion catalyst 4A further as the catalyst 4, the point provided with CO removal device 9, and the oxidizing gas supply device 6 are the carbon monoxide in hydrogen containing gas.
  • the sixth embodiment is the same as the sixth embodiment except that the oxidizing gas is supplied to the CO remover 9 that is reduced by the oxidation reaction.
  • the upstream end of the recycle channel 14 may be connected to any location as long as the hydrogen-containing gas sent from the reformer 10 flows.
  • the fluid between the CO remover 9 and the fuel cell 3 is disposed at the upstream end of the recycle channel 14. It may be connected to the flow path. Further, the upstream end of the recycle channel 14 may be connected to a fluid channel between the shift catalyst 4A and the CO remover 9, or connected to a fluid channel between the reformer 10 and the shift catalyst 4A. May I.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the CO removing device 9 that reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the hydrogen-containing gas is sent to the fuel cell 3.
  • the second switch 13 When the operation of the fuel cell system 100 is stopped, the second switch 13 is closed, and the communication between the reformer 10 and the atmosphere is shut off. That is, the reformer 10 is sealed.
  • the inside of the reformer 10 may become a high pressure as the remaining water evaporates.
  • the first switch 12 is opened, the pressure of the reformer 10 is temporarily opened to the atmosphere, and the interior is depressurized.
  • the controller 7 can oxidize the shift catalyst 4A and the hydrodesulfurization catalyst 4B by controlling the oxidizing gas supply device 6 to operate before taking out the shift catalyst 4A and the hydrodesulfurization catalyst 4B to the outside.
  • the controller 7 stops the power generation of the fuel cell system 100 and then disposes the shift catalyst 4A and the hydrodesulfurization catalyst 4B from the containers for storing the fuel catalyst system 100 or the hydrogen generator 4B in the disposal.
  • the shift is controlled so that the oxidizing gas supply device 6 operates.
  • the catalyst 4A and the hydrodesulfurization catalyst 4B may be oxidized.
  • the controller 7 opens the first switch 12, closes the second switch 13, and operates the oxidizing gas supply 6 in the above oxidation process.
  • the booster (not shown) may be operated.
  • the shift catalyst 4A After the oxidizing gas is supplied to the fluid flow path between the reformer 10 and the second switch 13 as shown by the one-dot chain line in FIG. 19, the shift catalyst 4A, the reformer 10 and the branch path are supplied. 11 flows in this order and is discharged to the outside. As a result, the oxidizing gas is supplied to the shift catalyst 4A, and the shift catalyst 4A is oxidized.
  • the reforming catalyst in the reformer 10 is a catalyst that undergoes an oxidation reaction with an oxidizing gas, not only the shift catalyst 4A and the hydrodesulfurization catalyst 4B but also the reforming catalyst is oxidized.
  • the present embodiment is characterized in that the oxidizing gas supplier 6, the recycle passage 14, the branch passage 11, and the first switch 12 are used to supply the oxidizing gas to the shift catalyst 4A and the hydrodesulfurization catalyst 4B. There is.
  • the controller 7 may acquire detection data from the temperature detector for detecting the shift catalyst temperature every predetermined sampling period. Moreover, the controller 7 may acquire the detection data from the temperature detector for detecting the hydrodesulfurization catalyst temperature every predetermined sampling period.
  • temperature control in the oxidation treatment of the shift catalyst 4A and the hydrodesulfurization catalyst 4B may be the same as in the first to third control examples.
  • At least the hydrodesulfurization catalyst 4B and the shift catalyst 4A can be oxidized by introducing the oxidizing gas from the recycle channel 14 to the branch channel 11, so that the waste treatment is performed as compared with the prior art.
  • the hydrodesulfurization catalyst 4B is taken out from the container containing the hydrodesulfurization catalyst 4B, the amount of heat generated by the oxidation reaction of the hydrodesulfurization catalyst 4B can be reduced.
  • the oxidation treatment of the shift catalyst 4A can be performed by guiding the oxidizing gas from the reformer 10 to the branch path 11, the shift catalyst 4A is removed from the container that stores the shift catalyst 4A in the disposal process compared to the conventional case. When it is taken out, the amount of heat generated by the oxidation reaction of the shift catalyst 4A can be reduced.
  • the fuel cell system according to the seventh embodiment includes the third switch provided in the fluid flow path upstream of the joining point with the recycle flow path in the fuel cell system according to the sixth embodiment, and the controller includes: In the above oxidation treatment, the third switch is closed.
  • the third switch is closed in the oxidation treatment of the hydrodesulfurization catalyst, so that the oxidizing gas can be prevented from flowing backward to the raw material supply source side.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the sixth embodiment except for the above features.
  • FIG. 20 is a diagram illustrating an example of a fuel cell system according to the seventh embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a hydrodesulfurization catalyst 4B, an oxidizing gas supplier 6, a reformer 10, a branch path 11, and a first A switch 12, a second switch 13, a recycling flow path 14, a third switch 17, and a controller 7 are provided.
  • the fuel cell 3, hydrodesulfurization catalyst 4B, oxidizing gas supplier 6, reformer 10, branch path 11, first switch 12, second switch 13, recycle path 14 and controller 7 are described above. Since it is the same as that, description is abbreviate
  • the third switch 17 is provided in the fluid flow path upstream from the junction with the recycle flow path 14.
  • the third switch 17 When the third switch 17 is opened, the raw material is supplied from a raw material supply source (not shown) to the hydrodesulfurization catalyst 4B.
  • the third switch 17 When the third switch 17 is closed, the supply of the raw material to the hydrodesulfurization catalyst 4B is cut off. Is done.
  • the third switch 17 may have any configuration as long as it can open and close the fluid flow path upstream from the junction with the recycle flow path 14. Examples of the third switch 17 include an on-off valve.
  • the raw material supply source has a predetermined supply pressure, and examples thereof include a raw material cylinder and a raw material infrastructure.
  • the controller 7 controls the oxidizing gas supply unit 6 to oxidize the hydrodesulfurization catalyst 4B before taking out the hydrodesulfurization catalyst 4B to the outside. For example, the controller 7 stops the power generation of the fuel cell system 100, and then disposes the hydrodesulfurization catalyst 4B to the outside from the container that stores the hydrodesulfurization catalyst 4B in the disposal of the fuel cell system 100 or the hydrogen generator. Until it is taken out, the oxidizing gas is supplied to the hydrodesulfurization catalyst 4B by introducing the oxidizing gas from the recycling passage 14 to the branch passage 11. Then, in the oxidation treatment of the hydrodesulfurization catalyst 4B, the third switch 17 is closed to prevent the oxidizing gas from flowing back to the raw material supply source side.
  • the operation of the fuel cell system 100 of the present embodiment may be the same as the operation of the fuel cell system 100 of the sixth embodiment except for the above features.
  • the fuel cell system of an example of the seventh embodiment is the same as the fuel cell system of the seventh embodiment, and further includes a shift catalyst as a catalyst, and the oxidizing gas supplier reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction. An oxidizing gas is supplied to the CO remover.
  • the oxidation treatment of the shift catalyst can be executed, and therefore, compared to the conventional case, when the catalyst is taken out from the container that stores the shift catalyst in the disposal process, the amount of heat generated by the oxidation reaction of the shift catalyst can be reduced.
  • the fuel cell system of this example may be configured in the same manner as the fuel cell system of the seventh embodiment except for the above features.
  • FIG. 21 is a diagram illustrating an example of a fuel cell system according to an example of the seventh embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a shift sulfur catalyst 4 ⁇ / b> A, a hydrodesulfurization catalyst 4 ⁇ / b> B, an oxidizing gas supplier 6, a CO remover 9, and a reformer.
  • a device 10 a branch path 11, a first switch 12, a second switch 13, a recycle channel 14, a third switch 17, and a controller 7.
  • the point provided with the conversion catalyst 4A further as the catalyst 4, the point provided with CO removal device 9, and the oxidizing gas supply device 6 are the carbon monoxide in hydrogen containing gas. It is the same as that of 7th Embodiment except the point which supplies oxidizing gas to the CO remover 9 reduced by oxidation reaction.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the CO removing device 9 that reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the hydrogen-containing gas is sent to the fuel cell 3.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the fluid flow path between the reformer 10 and the second switch 13. Therefore, the controller 7 can oxidize the shift catalyst 4A and the hydrodesulfurization catalyst 4B by controlling the oxidizing gas supply device 6 to operate before taking out the shift catalyst 4A and the hydrodesulfurization catalyst 4B to the outside.
  • the third switch 17 is closed, so that the oxidizing gas can be prevented from flowing back to the raw material supply source side.
  • the operation of the fuel cell system 100 of the present embodiment may be the same as the operation of the fuel cell system 100 of the sixth embodiment except for the above features.
  • the fuel cell system of the eighth embodiment includes the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first to first examples of the first embodiment.
  • the catalyst is a hydrodesulfurization catalyst, a reformer that generates hydrogen-containing gas using raw materials, and a hydrogen-containing gas sent from the reformer.
  • a third switch provided in the fluid flow path upstream of the location, and the oxidizing gas supply device supplies the oxidizing gas to the fluid flow path between the reformer and the upstream end of the recycling flow path
  • the controller is configured to close the third switch in the oxidation process. To, to operate the booster and the oxidizing gas supplier.
  • the operating method of the fuel cell system of the eighth embodiment includes the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to third controls of the first embodiment.
  • the fuel cell system operation method of any of the examples in the oxidation treatment described above, from a joining point with a recycle channel for supplying a part of the hydrogen-containing gas sent from the reformer to the hydrodesulfurization catalyst.
  • the third switch provided in the upstream fluid flow path is closed, and the booster provided in the fluid flow path between the junction where the recycle flow path joins and the reformer is operated to
  • the gas supply device supplies the oxidizing gas to the fluid flow path between the reformer and the upstream end of the recycle flow path.
  • the oxidation treatment of the hydrodesulfurization catalyst can be executed, compared with the conventional method, when the hydrodesulfurization catalyst is taken out from the container containing the hydrodesulfurization catalyst in the disposal process, The amount of heat generated by can be reduced.
  • the fuel cell system of the present embodiment is the same as the first embodiment, the first to tenth examples of the first embodiment, the first to second modifications of the first embodiment, and the first embodiment, except for the above features.
  • the fuel cell system may be configured in the same manner as any one of the first to third control examples.
  • the operating method of the fuel cell system of this embodiment is the same as that of the first embodiment, the first, third, fifth to sixth examples of the first embodiment, and the first to first of the first embodiment, except for the above features. It may be the same as the operation method of any one of the three control examples.
  • FIG. 22 is a diagram illustrating an example of a fuel cell system according to the eighth embodiment.
  • the fuel cell system 100 of this embodiment includes a fuel cell 3, a hydrodesulfurization catalyst 4B, an oxidizing gas supplier 6, a reformer 10, a recycle channel 14, and a booster. 16, a third switch 17, and a controller 7.
  • the device configuration of the fuel cell system 100 of the present embodiment is the seventh embodiment except that the booster 16 is provided and the branch path 11, the first switch 12 and the second switch 13 are not provided. It is the same.
  • the booster 16 is provided in the fluid flow path between the junction where the recycle flow path 14 joins and the reformer 10. Thereby, the pressure of the fluid supplied to the reformer 10 can be increased, and the fluid flow rate is adjusted.
  • the booster 16 may have any configuration as long as the pressure of the fluid flowing through the fluid flow path can be increased.
  • An example of the booster 16 is a constant displacement pump.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the hydrogen-containing gas flowing through the recycle passage 14 is added to the hydrodesulfurization catalyst 4B. Then, the sulfur compound in the raw material supplied to the reformer 10 is removed by the hydrodesulfurization catalyst 4B. The hydrogen-containing gas is generated by the reforming reaction of the raw material in the reformer 10.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the fluid flow path between the reformer 10 and the upstream end of the recycling flow path 14.
  • the booster 16 supplies the oxidizing gas to the fluid flow path from the recycle flow path 14 to the upstream end of the recycle flow path 14. Therefore, the controller 7 can oxidize the hydrodesulfurization catalyst 4B by controlling the oxidizing gas supply device 6 and the booster 16 to operate before taking out the hydrodesulfurization catalyst 4B to the outside. For example, the controller 7 stops the power generation of the fuel cell system 100, and then disposes the hydrodesulfurization catalyst 4B to the outside from the container that stores the hydrodesulfurization catalyst 4B in the disposal of the fuel cell system 100 or the hydrogen generator.
  • the oxidizing gas supply device 6 and the booster 16 are controlled to operate to perform hydrogenation.
  • the desulfurization catalyst 4B may be oxidized.
  • the controller 7 closes the third switch 17 and operates the oxidizing gas supply unit 6 and the booster 16 in the above oxidation process.
  • the oxidizing gas is supplied to the fluid channel between the recycling channel 14 and the upstream end of the recycling channel 14. 16, the hydrodesulfurization catalyst 4B, the reformer 10, and the fuel cell 3 flow in this order and are discharged to the outside. Thereby, oxidizing gas is supplied to the hydrodesulfurization catalyst 4B, and the hydrodesulfurization catalyst 4B is oxidized. That is, the present embodiment is characterized in that the recycle flow path 14 and the booster 16 are used for supplying the oxidizing gas to the hydrodesulfurization catalyst 4B.
  • the reforming catalyst in the reformer 10 is a catalyst that undergoes an oxidation reaction with an oxidizing gas, not only the hydrodesulfurization catalyst 4B but also the reforming catalyst is oxidized.
  • the controller 7 may acquire detection data from a temperature detector for detecting the hydrodesulfurization catalyst temperature for each predetermined sampling period.
  • the temperature control in the oxidation treatment of the hydrodesulfurization catalyst 4B may be the same as any one of the first to third control examples described above.
  • the branch path 11 is used for purposes other than the purpose of exhausting exhaust gas to the atmosphere in the oxidation treatment.
  • the first switch 12 may be opened to release the pressure of the reformer 10 to the atmosphere, and the inside of the reformer 10 may be decompressed.
  • the branch path 11 leads to the evaporator the water in the evaporator may be used to dispose of the fuel outside the fuel cell system 100 by opening the first switch 12.
  • the oxidation treatment of the hydrodesulfurization catalyst 4B can be executed by introducing the oxidizing gas from the recycle flow path 14 in the order of the hydrodesulfurization catalyst 4B and the reformer 10, conventionally.
  • the hydrodesulfurization catalyst 4B is taken out from the container housing the hydrodesulfurization catalyst 4B in the disposal process, the amount of heat generated by the oxidation reaction of the hydrodesulfurization catalyst 4B can be reduced.
  • the fuel cell system 100 can be configured simply.
  • the fuel cell system of an example of the eighth embodiment is the same as the fuel cell system of the eighth embodiment, further comprising a shift catalyst as a catalyst, and the oxidizing gas supplier reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • An oxidizing gas is supplied to the CO remover.
  • the oxidation treatment of the shift catalyst can be executed, and therefore, compared to the conventional case, when the catalyst is taken out from the container that stores the shift catalyst in the disposal process, the amount of heat generated by the oxidation reaction of the shift catalyst can be reduced.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the eighth embodiment except for the above features.
  • FIG. 23 is a diagram illustrating an example of a fuel cell system according to an example of the eighth embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a shift sulfur catalyst 4A, a hydrodesulfurization catalyst 4B, an oxidizing gas supplier 6, a CO remover 9, and a reformer.
  • the point provided with the conversion catalyst 4A further as the catalyst 4 the point provided with CO removal device 9, and the oxidizing gas supply device 6 are the carbon monoxide in hydrogen containing gas. It is the same as that of 8th Embodiment except the point which supplies oxidizing gas to the CO remover 9 reduced by oxidation reaction.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the CO removing device 9 that reduces carbon monoxide in the hydrogen-containing gas by an oxidation reaction.
  • the hydrogen-containing gas is sent to the fuel cell 3.
  • the oxidizing gas supply device 6 supplies the oxidizing gas to the fluid flow path between the reformer 10 and the upstream end of the recycling flow path 14. Further, the booster 16 supplies the oxidizing gas to the fluid flow path from the recycle flow path 14 to the upstream end of the recycle flow path 14. Therefore, the controller 7 controls the oxidizing gas supply unit 6 and the booster 16 to operate before taking out the shift catalyst 4A and the hydrodesulfurization catalyst 4B to oxidize the shift catalyst 4A and the hydrodesulfurization catalyst 4B. It can be processed.
  • the controller 7 stops the power generation of the fuel cell system 100 and then disposes the shift catalyst 4A and the hydrodesulfurization catalyst 4B from the containers for storing the fuel catalyst system 100 or the hydrogen generator 4B in the disposal.
  • the oxidizing gas supply device 6 and the booster 16 are operated when the hydrogen-containing gas is not flowing over the shift catalyst 4A and the hydrodesulfurization catalyst 4B that undergo an oxidation reaction with the oxidizing gas.
  • the shift conversion catalyst 4A and the hydrodesulfurization catalyst 4B may be oxidized to be controlled.
  • the controller 7 closes the third switch 17 and operates the oxidizing gas supply unit 6 and the booster 16 in the above oxidation process.
  • the oxidizing gas is supplied to the fluid channel between the recycling channel 14 and the upstream end of the recycling channel 14. 16, the hydrodesulfurization catalyst 4B, the reformer 10, the shift catalyst 4A, the CO remover 9, and the fuel cell 3 flow in this order and are discharged to the outside. Thereby, the oxidizing gas is supplied to the shift catalyst 4A and the hydrodesulfurization catalyst 4B, and the respective catalysts are oxidized. That is, the present embodiment is characterized in that the recycle channel 14 and the booster 16 are used for supplying the oxidizing gas to the shift catalyst 4A and the hydrodesulfurization catalyst 4B.
  • the reforming catalyst in the reformer 10 is a catalyst that undergoes an oxidation reaction with an oxidizing gas, not only the shift catalyst 4A and the hydrodesulfurization catalyst 4B but also the reforming catalyst is oxidized.
  • the controller 7 may acquire detection data from the temperature detector for detecting the shift catalyst temperature every predetermined sampling period. Moreover, the controller 7 may acquire the detection data from the temperature detector for detecting the hydrodesulfurization catalyst temperature every predetermined sampling period.
  • thermocontrol in the oxidation treatment of the shift catalyst 4A and the hydrodesulfurization catalyst 4B is the same as in the first to third control examples described above, and a description thereof will be omitted.
  • At least the hydrodesulfurization catalyst 4B and the shift catalyst 4A can be oxidized by introducing the oxidizing gas from the recycle flow path 14 in the order of the hydrodesulfurization catalyst 4B and the reformer 10. Therefore, compared with the prior art, when the hydrodesulfurization catalyst 4B is taken out from the container housing the hydrodesulfurization catalyst 4B in the disposal process, the amount of heat generated by the oxidation reaction of the hydrodesulfurization catalyst 4B can be reduced.
  • the oxidation treatment of the shift catalyst 4A can also be performed, the amount of heat generated by the oxidation reaction of the shift catalyst 4A is reduced when the shift catalyst 4A is taken out from the container that stores the shift catalyst 4A in the disposal process compared to the conventional case. Can do. Furthermore, compared to the fuel cell system 100 of the seventh embodiment, since it is not necessary to use the branch path 11 and the first switch 12 in the oxidation process, the fuel cell system 100 can be configured simply.
  • the fuel cell system according to the ninth embodiment is the fuel cell system according to any one of the first embodiment, the first to tenth examples of the first embodiment, and the first to third control examples of the first embodiment.
  • a raw material supply device arranged in a raw material supply path upstream of the catalyst is provided, and the raw material supply device supplies an oxidizing gas to the catalyst as an oxidizing gas supply device in the oxidation treatment.
  • the fuel cell system according to the present embodiment is the fuel of any one of the first to tenth examples of the first embodiment and the first embodiment and the first to third control examples of the first embodiment, except for the above characteristics. You may comprise similarly to a battery system.
  • FIG. 24 is a diagram illustrating an example of a fuel cell system according to the ninth embodiment.
  • the fuel cell system 100 of the present embodiment includes a fuel cell 3, a catalyst 4, a raw material supplier 18, and a controller 7.
  • the raw material supplier 18 is disposed in the raw material supply path upstream of the catalyst 4.
  • the raw material supplier 18 is a device that adjusts the flow rate of the raw material, and is composed of, for example, a booster and a flow rate regulating valve, but may be composed of any one of these.
  • As the booster for example, a constant displacement pump is used, but is not limited thereto.
  • the raw material is supplied to the raw material supplier 18 from a raw material supply source.
  • the raw material supply source has a predetermined supply pressure, and examples thereof include a raw material cylinder and a raw material infrastructure.
  • a raw material contains the organic compound comprised from carbon and hydrogen at least, such as city gas which has methane as a main component, natural gas, LPG, for example.
  • the raw material supplier 18 supplies an oxidizing gas to the catalyst 4 as an oxidizing gas supplier in the oxidation process of the catalyst 4. Specifically, when the raw material supply source upstream of the raw material supplier 18 is removed, the upstream of the raw material supplier 18 is opened to the atmosphere. Therefore, air, which is an example of the oxidizing gas, is supplied to the catalyst 4 using the raw material supplier 18 as an oxidizing gas supplier.
  • the fuel cell 3 generates power using the hydrogen-containing gas during the operation of the fuel cell system 100.
  • the hydrogen-containing gas is generated by a reforming reaction of the raw material in a reformer (not shown).
  • the controller 7 oxidizes the catalyst 4 by controlling the raw material supplier 18 as an oxidizing gas supplier before taking out the catalyst 4 to the outside.
  • the controller 7 may stop the power generation of the fuel cell system 100 until the catalyst 4 is taken out from the container in the disposal of the fuel cell system 100 or the hydrogen generator, and the oxidizing gas.
  • the raw material supplier 18 as an oxidizing gas supplier may be controlled to oxidize the catalyst 4.
  • the oxidation treatment of the catalyst 4 can be performed using the raw material supplier 18 as an oxidant gas supplier, so that it is not necessary to separately provide an oxidant gas supplier for the oxidation process, and the system configuration is simplified.
  • the amount of heat generated by the oxidation reaction of the catalyst can be reduced when the catalyst is taken out from the container containing the catalyst in the disposal process. Therefore, one embodiment of the present invention can be used, for example, in a fuel cell system or a method for operating a fuel cell system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 燃料電池システム(100)は、水素含有ガスを用いて発電する燃料電池(3)と、酸化ガスと酸化反応をする触媒(4)と、触媒に酸化ガスを供給する酸化ガス供給器(6)と、触媒(4)を外部に取り出す前に、酸化ガス供給器(6)を制御して触媒(4)を酸化処理する制御器(7)とを備える。

Description

燃料電池システム及び燃料電池システムの運転方法
 本発明は燃料電池システム及び燃料電池システムの運転方法に関する。
 燃料電池システムでは、酸化ガスと酸化反応をする触媒が用いられている。そこで、燃料電池システムの製造過程において、上記の触媒を装置内に密閉する前に、触媒の一部を酸化させ、空気中における触媒の安定性を高める方法が提案されている(例えば、特許文献1参照)。
特開2008-169100号公報
 しかし、特許文献1には、酸化反応が起こる触媒に関して、燃料電池システム又は水素生成装置の廃棄、メンテ等で触媒を収納する容器から触媒を外部に取りだす際に行うべき処理については記載されていない。
 本発明の一態様は、このような事情に鑑みてなされたものであり、従来に比べ、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る燃料電池システム及び燃料電池システムの運転方法を提供することを目的とする。
 本発明の一態様の燃料電池システムは、水素含有ガスを用いて発電する燃料電池と、酸化ガスと酸化反応をする触媒と、前記触媒に酸化ガスを供給する酸化ガス供給器と、前記触媒を外部に取り出す前に、前記酸化ガス供給器を制御して前記触媒を酸化処理する制御器と、を備える。
 また、本発明の一態様の燃料電池システムの運転方法は、運転中に燃料電池が水素含有ガスを用いて発電し、酸化ガスと酸化反応をする触媒を外部に取り出す前に、酸化ガス供給器を制御して前記触媒を酸化処理する。
 本発明の一態様の燃料電池システム及び燃料電池システムの運転方法は、従来に比べ、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
図1は、第1実施形態の燃料電池システムの一例を示す図である。 図2は、第1実施形態の第2実施例の燃料電池システムの一例を示す図である。 図3は、第1実施形態の第3実施例の燃料電池システムの一例を示す図である。 図4は、第1実施形態の第7実施例の燃料電池システムの一例を示す図である。 図5は、第1実施形態の第8実施例の燃料電池システムの一例を示す図である。 図6は、第1実施形態の第9実施例の燃料電池システムの一例を示す図である。 図7は、第1実施形態の第10実施例の燃料電池システムの一例を示す図である。 図8は、第1実施形態の第1変形例の燃料電池システムの一例を示す図である。 図9は、第1実施形態の第2変形例の燃料電池システムの一例を示す図である。 図10は、第1実施形態の燃料電池システムの制御方法の一例を示すタイミングチャートである。 図11は、第1実施形態の燃料電池システムの制御方法の一例を示すタイミングチャートである。 図12は、第1実施形態の燃料電池システムの制御方法の一例を示すタイミングチャートである。 図13は、第2実施形態の燃料電池システムの一例を示す図である。 図14は、第2実施形態の実施例の燃料電池システムの一例を示す図である。 図15は、第3実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図16は、第4実施形態の燃料電池システムの一例を示す図である。 図17は、第5実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図18は、第6実施形態の燃料電池システムの一例を示す図である。 図19は、第6実施形態の実施例の燃料電池システムの一例を示す図である。 図20は、第7実施形態の燃料電池システムの一例を示す図である。 図21は、第7実施形態の実施例の燃料電池システムの一例を示す図である。 図22は、第8実施形態の燃料電池システムの一例を示す図である。 図23は、第8実施形態の実施例の燃料電池システムの一例を示す図である。 図24は、第9実施形態の燃料電池システムの一例を示す図である。
 (第1実施形態)
 発明者らは、廃棄処理、メンテ等で、触媒を収納する容器から触媒を外部に取り出したときの触媒の発熱量を低下させるために行うべき処理について鋭意検討し、以下の知見を得た。
 燃料電池システム又は水素生成装置の廃棄において、触媒を収納する容器が解体され、酸化ガスと酸化反応する触媒が外部(大気)に開放されると、触媒の酸化反応が急激に進み、触媒が大量の熱を発生する。これは、廃棄処理を行う作業者にとって望ましくない。
 そこで、発明者らは、例えば、触媒をその容器から外部に取り出す前に予め触媒を酸化処理してしまうことで、廃棄処理において、触媒をその容器から外部に取り出したときの触媒の発熱量を低下し得ることに想到した。
 よって、第1実施形態の燃料電池システムは、水素含有ガスを用いて発電する燃料電池と、酸化ガスと酸化反応をする触媒と、触媒に酸化ガスを供給する酸化ガス供給器と、触媒を外部に取り出す前に、酸化ガス供給器を制御して触媒を酸化処理する制御器とを備える。
 また、第1実施形態の燃料電池システムの運転方法は、運転中に燃料電池が水素含有ガスを用いて発電し、酸化ガスと酸化反応をする触媒を外部に取り出す前に、酸化ガス供給器を制御して触媒を酸化処理する。
 以上により、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 ここで、「触媒を外部に取り出す前」とは、燃料電池システムの発電停止から、触媒を外部に取り出すまでの期間を意味する。なお、上記燃料電池の発電停止は、その発電停止後に廃棄を控えている場合の燃料電池の発電停止となる。
 従って、上記期間であれば、酸化処理はいずれのタイミングで実行しても構わない。例えば、酸化処理は、発電停止後の停止処理として実行されてもよいし、停止処理完了後に燃料電池システムに対して操作者から酸化処理を指令する入力がなされると実行してもよい。
 [装置構成]
 図1は、第1実施形態の燃料電池システムの一例を示す図である。
 図1に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、触媒4と、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3は、水素含有ガスを用いて発電する。具体的には、燃料電池3では、空気中の酸素と上記水素含有ガス中の水素とが化学反応し、発電及び発熱が行われる。燃料電池3は、いずれの種類であっても良く、例えば、高分子電解質形燃料電池、固体酸化物形燃料電池、及び燐酸形燃料電池等が例示される。
 触媒4は、酸化ガスと酸化反応をする。よって、燃料電池システム100又は水素生成装置の廃棄処理等で、装置内が開放されると、触媒4の酸化反応が起こる。すると、触媒4は発熱する。酸化ガスとは、酸素を含有するガスである。酸化ガスとして、例えば、空気等が例示される。触媒4の具体例は、以下の実施例において述べる。
 酸化ガス供給器6は、触媒4に酸化ガスを供給する。酸化ガス供給器6は、触媒4に酸化ガスを供給できれば、どのような構成あっても構わない。酸化ガス供給器6として、例えば、空気ブロア等が例示される。制御器7は、触媒4を外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4をその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする触媒4上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して触媒4を酸化処理してもよい。
 制御器7は、制御機能を備えるものであれば、どのような構成であっても構わない。制御器7は、例えば、演算処理部と、制御プログラムを記憶する記憶部とを備えてもよい。演算処理部としては、例えば、MPU、CPU等が例示される。記憶部としては、例えば、メモリー等が例示される。制御器は、集中制御を行う単独の制御器で構成されていてもいいし、互いに協働して分散制御を行う複数の制御器で構成されていてもいい。
 [動作]
 以下、本実施形態の燃料電池システム100の動作について図1を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、触媒4を外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理する。
 例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4をその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする触媒4上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して触媒4を酸化処理してもよい。
 以上により、触媒4を外部に取り出す前に、触媒4の酸化処理が実行されるので、従来に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第1実施例)
 第1実施形態の第1実施例の燃料電池システムは、第1実施形態の燃料電池システムにおいて、制御器は、触媒を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスが触媒へ供給されるよう酸化ガス供給器を制御して触媒を酸化処理する。
 また、第1実施形態の第1実施例の燃料電池システムの運転方法は、第1実施形態の燃料電池システムの運転方法において、触媒を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスが触媒へ供給されるよう酸化ガス供給器を制御して触媒を酸化処理する。
 以上により、触媒を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスを用いて、触媒の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態の燃料電池システムと同様に構成してもよい。
 本実施例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態の燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本実施例の燃料電池システムの装置構成は、第1実施形態と同様であるので説明を省略する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図1を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、触媒4を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスが触媒4へ供給されるよう酸化ガス供給器6を制御して触媒4を酸化処理する。具体的には、廃棄を控えた燃料電池システム100の発電停止から触媒を容器から外部に取り出すまでの間に通常の発電停止時よりも累積供給量が多量の酸化ガスが触媒4へ供給される。
 以上により、触媒4を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスを用いて、触媒4の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第2実施例)
 第1実施形態の第1実施例の燃料電池システムは、第1実施形態の燃料電池システムにおいて、触媒が、卑金属を含む。
 かかる構成により、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、卑金属を含む触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図2は、第1実施形態の第2実施例の燃料電池システムの一例を示す図である。
 図2に示す例において、本実施例の燃料電池システム100は、燃料電池3と、触媒4Cと、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については第1実施形態と同様であるので説明を省略する。
 触媒4Cは、卑金属を含む。つまり、酸化ガスと酸化反応をする触媒4Cの触媒金属として、卑金属を例示できる。
 触媒4Cは、燃料電池システム100の運転において、還元状態を保つ必要があるので、廃棄処理において、触媒4Cを収納する容器から触媒4Cを外部に取り出すと、触媒4Cの酸化反応が急激に起こる。すると、触媒4Cは大量の熱を発生する。
 なお、このような卑金属として、Ni、Cu又はZn等が例示される。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図2を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、卑金属を含む触媒4Cを外部に取り出す前に、酸化ガス供給器6を制御して触媒4Cを酸化処理する。
 以上により、卑金属を含む触媒4Cを外部に取り出す前に、この触媒4Cの酸化処理が行われるので、従来に比べ、廃棄処理において、触媒4Cを収納する容器から触媒4Cを外部に取り出すときに、触媒4Cの酸化反応による発熱量が低下し得る。
 (第3実施例)
 第1実施形態の第3実施例の燃料電池システムは、第1実施形態の燃料電池システムにおいて、触媒を備える反応器を備え、制御器は、酸化処理において、反応器に少なくとも反応器の容積以上の酸化ガスが供給されるよう酸化ガス供給器を制御する。
 また、第1実施形態の第3実施例の燃料電池システムの運転方法は、第1実施形態の燃料電池システムの運転方法において、酸化処理において、酸化ガス供給器は、触媒を備える反応器に少なくとも反応器の容積以上の酸化ガスを供給する。
 以上により、反応器の容積以上の酸化ガスを用いて、触媒の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態の燃料電池システムと同様に構成してもよい。
 本実施例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態の燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 図3は、第1実施形態の第3実施例の燃料電池システムの一例を示す図である。
 図3に示す例において、本実施例の燃料電池システム100は、燃料電池3と、触媒4と、反応器5と、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、触媒4、酸化ガス供給器6及び制御器7については第1実施形態と同様であるので説明を省略する。
 反応器5は触媒4を備える。つまり、反応器5の内部に、触媒4が充填されている。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図3を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、酸化処理において、反応器5に少なくとも反応器5の容積以上の酸化ガスが供給されるよう酸化ガス供給器6を制御する。
 なお、酸化処理において、反応器5に供給する酸化ガス量は、反応器5の容積以上であれば、どのような量でも構わない。例えば、触媒4で完全酸化を行い得る量(具体的には、反応器5の容積の3倍程度)の酸素を含む酸化ガスを触媒4に供給してもよい。
 以上により、反応器5の容積以上の酸化ガスを用いて、触媒4の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒4を収納する反応器5から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第4実施例)
 第1実施形態の第4実施例の燃料電池システムは、第1実施形態の燃料電池システムにおいて、制御器は、酸化処理において、少なくとも触媒の酸化反応に必要なモル当量の酸素が供給されるよう酸化ガス供給器を制御する。
 かかる構成により、触媒の酸化反応に必要なモル当量の酸素を用いて、触媒の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 本実施例の燃料電池システムの装置構成は、第1実施形態と同様であるので説明を省略する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図1を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、酸化処理において、少なくとも触媒4の酸化反応に必要なモル当量の酸素が供給されるよう酸化ガス供給器6を制御する。
 以上により、触媒4の酸化反応に必要なモル当量の酸素を用いて、触媒4の酸化処理が行われるので、従来に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第5実施例)
 第1実施形態の第5実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第4実施例のいずれかの燃料電池システムにおいて、酸化処理において、触媒上に原料が流れていない期間を備える。
 また、第1実施形態の第5実施例の燃料電池システムの運転方法は、第1実施形態、第1実施形態の第1及び第3実施例のいずれかの燃料電池システムの運転方法において、酸化処理において、触媒上に原料が流れていない期間を備える。
 触媒の酸化処理において、触媒上に原料を流すと、原料の触媒燃焼により、原料と酸素とが反応し、触媒の酸化処理で利用される酸素の量が低減する可能性がある。しかし、上記のとおり、触媒の酸化処理において、触媒上に原料が流れていない期間を備えることで、このような可能性を低減できる。よって、触媒の酸化処理において触媒に原料が流れていない期間を備えていない場合に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第4実施例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1及び第3実施例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本実施例の燃料電池システムの装置構成は、第1実施形態と同様であるので説明を省略する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図1を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、触媒4を外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理する。このとき、触媒4の酸化処理において、触媒4上に原料が流れていない期間を備える。なお、原料は、例えば、メタンを主成分とする都市ガス、天然ガス、LPG等の少なくとも炭素及び水素から構成される有機化合物を含む。
 触媒4の酸化処理において、触媒4上に原料を流すと、原料の触媒燃焼により、原料と酸素とが反応し、触媒4の酸化処理で利用される酸素の量が低減する可能性がある。しかし、上記のとおり、触媒4の酸化処理において、触媒4上に原料が流れていない期間を備えることで、このような可能性を低減できる。よって、触媒4の酸化処理において触媒4に原料が流れていない期間を備えていない場合に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第6実施例)
 第1実施形態の第6実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第4実施例のいずれかの燃料電池システムにおいて、酸化処理において、触媒上に酸化ガス以外のガスが流れていない期間を備える。
 また、第1実施形態の第5実施例の燃料電池システムの運転方法は、第1実施形態、第1実施形態の第1及び第3実施例のいずれかの燃料電池システムの運転方法において、酸化処理において、触媒上に酸化ガス以外のガスが流れていない期間を備える。
 触媒の酸化処理において、触媒上に酸化ガス以外のガスを流すと、ガスの触媒燃焼により、ガスと酸素とが反応し、触媒の酸化処理で利用される酸素の量が低減する可能性がある。しかし、上記のとおり、触媒の酸化処理において、触媒上に酸化ガス以外のガスが流れていない期間を備えることで、このような可能性を低減できる。よって、触媒の酸化処理において触媒に酸化ガス以外のガスが流れていない期間を備えていない場合に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第4実施例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1及び第3実施例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本実施例の燃料電池システムの装置構成は、第1実施形態と同様であるので説明を省略する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図1を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、制御器7は、触媒4を外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理する。このとき、触媒4の酸化処理において、触媒4上に酸化ガス以外のガスが流れていない期間を備える。
 触媒4の酸化処理において、触媒4上に酸化ガス以外のガスを流すと、ガスの触媒燃焼により、ガスと酸素とが反応し、触媒4の酸化処理で利用される酸素の量が低減する可能性がある。しかし、上記のとおり、触媒4の酸化処理において、触媒4上に酸化ガス以外のガスが流れていない期間を備えることで、このような可能性を低減できる。よって、触媒4の酸化処理において触媒4に酸化ガス以外のガスが流れていない期間を備えていない場合に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (第7実施例)
 第1実施形態の第7実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムにおいて、上記の触媒が、変成触媒である。
 かかる構成により、従来に比べ、廃棄処理において、変成触媒を収納する容器から変成触媒を外部に取り出すときに、変成触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図4は、第1実施形態の第7実施例の燃料電池システムの一例を示す図である。
 図4に示す例において、本実施例の燃料電池システム100は、燃料電池3と、変成触媒4Aと、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については上記と同様であるので説明を省略する。
 燃料電池3が、例えば、高分子電解質形燃料電池である場合、酸化ガスと酸化反応をする触媒4として、変成触媒4Aを例示できる。つまり、変成触媒4Aは、燃料電池システム100の運転において、還元状態を保つ必要があるので、廃棄処理において、変成触媒4Aを収納する容器から変成触媒4Aを外部に取り出すと、変成触媒4Aの酸化反応が急激に起こる。すると、変成触媒4Aは大量の熱を発生する。
 なお、変成触媒4Aの触媒金属としては、例えば、Cu又はZn等が例示される。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図4を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。このとき、変成触媒4A上で進行するシフト反応により水素含有ガス中の一酸化炭素が低減される。
 一方、制御器7は、変成触媒4Aを外部に取り出す前に、酸化ガス供給器6を制御して変成触媒4Aを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、変成触媒4Aをその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする変成触媒4A上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して変成触媒4Aを酸化処理してもよい。
 以上により、変成触媒4Aを外部に取り出す前に、変成触媒4Aの酸化処理が実行されるので、従来に比べ、廃棄処理において、変成触媒4Aを収納する容器から変成触媒4Aを外部に取り出すときに、変成触媒4Aの酸化反応による発熱量が低下し得る。
 (第8実施例)
 第1実施形態の第8実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムにおいて、上記の触媒が、水添脱硫触媒である。
 かかる構成により、従来に比べ、廃棄処理において、水添脱硫触媒を収納する容器から水添脱硫触媒を外部に取り出すときに、水添脱硫触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図5は、第1実施形態の第8実施例の燃料電池システムの一例を示す図である。
 図5に示す例において、本実施例の燃料電池システム100は、燃料電池3と、水添脱硫触媒4Bと、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については上記と同様であるので説明を省略する。
 酸化ガスと酸化反応をする触媒4として、水添脱硫触媒4Bを例示できる。つまり、水添脱硫触媒4Bは、燃料電池システム100の運転において、還元状態を保つ必要があるので、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すと、水添脱硫触媒4Bの酸化反応が急激に起こる。すると、水添脱硫触媒4Bは大量の熱を発生する。
 なお、水添脱硫触媒4Bとしては、例えば、硫黄化合物を硫化水素に変換する機能と硫化水素を吸着する機能を共に備えるCuZn系触媒等が例示される。但し、水添脱硫触媒4Bの種類はこれに限定されない。水添脱硫触媒4Bとして、酸化亜鉛触媒、Mo系触媒をそれぞれ単独、あるいは、複数の触媒の組合せで用いてもよい。
 また、図示を省略しているが、水添脱硫触媒4Bと燃料電池3との間の流体流路上に、上記の変成触媒4Aを設けても構わない。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図5を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。このとき、水添脱硫触媒4Bには水素含有ガスが添加される。すると、水添脱硫触媒4Bにより、図示しない改質器に供給される原料中の硫黄化合物が除去される。なお、この改質器での原料の改質反応により、上記の水素含有ガスが生成される。
 一方、制御器7は、水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6を制御して水添脱硫触媒4Bを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、水添脱硫触媒4Bをその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して水添脱硫触媒4Bを酸化処理してもよい。
 以上により、水添脱硫触媒4Bを外部に取り出す前に、水添脱硫触媒4Bの酸化処理が実行されるので、従来に比べ、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すときに、水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。
 (第9実施例)
 第1実施形態の第9実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムにおいて、上記の触媒が、メタン化触媒である。
 かかる構成により、従来に比べ、廃棄処理において、メタン化触媒を収納する容器からメタン化触媒を外部に取り出すときに、メタン化触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図6は、第1実施形態の第9実施例の燃料電池システムの一例を示す図である。
 図6に示す例において、本実施例の燃料電池システム100は、燃料電池3と、メタン化触媒4Dと、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については上記と同様であるので説明を省略する。
 燃料電池3が、例えば、高分子電解質形燃料電池である場合、酸化ガスと酸化反応をする触媒4として、メタン化触媒4Dを例示できる。つまり、メタン化触媒4Dの触媒金属として、Niを用いる場合がある。この場合、メタン化触媒4Dは、燃料電池システム100の運転において、還元状態を保つ必要があるので、廃棄処理において、メタン化触媒4Dを収納する容器からメタン化触媒4Dを外部に取り出すと、メタン化触媒4Dの酸化反応が急激に起こる。すると、メタン化触媒4Dは大量の熱を発生する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図6を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。このとき、メタン化触媒4D上で進行するCOのメタン化反応により水素含有ガス中の一酸化炭素が低減される。
 一方、制御器7は、メタン化触媒4Dを外部に取り出す前に、酸化ガス供給器6を制御してメタン化触媒4Dを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、メタン化触媒4Dをその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をするメタン化触媒4D上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御してメタン化触媒4Dを酸化処理してもよい。
 以上により、メタン化触媒4Dを外部に取り出す前に、メタン化触媒4Dの酸化処理が実行されるので、従来に比べ、廃棄処理において、メタン化触媒4Dを収納する容器からメタン化触媒4Dを外部に取り出すときに、メタン化触媒4Dの酸化反応による発熱量が低下し得る。
 (第10実施例)
 第1実施形態の第10実施例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムにおいて、上記の触媒が、改質触媒である。
 かかる構成により、従来に比べ、廃棄処理において、改質触媒を収納する容器から改質触媒を外部に取り出すときに、改質触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第6のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図7は、第1実施形態の第10実施例の燃料電池システムの一例を示す図である。
 図7に示す例において、本実施例の燃料電池システム100は、燃料電池3と、改質触媒4Eと、酸化ガス供給器6と、制御器7と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については上記と同様であるので説明を省略する。
 酸化ガスと酸化反応をする触媒4として、改質触媒4Eを例示できる。つまり、改質触媒4Eの触媒金属として、卑金属であるNiを用いる場合がある。この場合、改質触媒4Eは、燃料電池システム100の運転において、還元状態を保つ必要があるので、廃棄処理において、改質触媒4Eを収納する容器から改質触媒4Eを外部に取り出すと、改質触媒4Eの酸化反応が急激に起こる。すると、改質触媒4Eは大量の熱を発生する。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図7を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。このとき、改質触媒4Eにより、原料が改質反応して、水素含有ガスが生成される。
 一方、制御器7は、改質触媒4Eを外部に取り出す前に、酸化ガス供給器6を制御して水添脱硫触媒4Bを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、改質触媒4Eをその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする改質触媒4E上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して改質触媒4Eを酸化処理してもよい。
 以上により、改質触媒4Eを外部に取り出す前に、改質触媒4Eの酸化処理が実行されるので、従来に比べ、廃棄処理において、改質触媒4Eを収納する容器から改質触媒4Eを外部に取り出すときに、改質触媒4Eの酸化反応による発熱量が低下し得る。
 (第1変形例)
 第1実施形態の第1変形例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第10実施例のいずれかの燃料電池システムにおいて、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器を備え、酸化ガス供給器は、CO除去器に酸化ガスを供給する。
 かかる構成により、CO除去器に酸化ガスを供給する酸化ガス供給器を用いて、触媒の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 本変形例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第10実施例のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図8は、第1実施形態の第1変形例の燃料電池システムの一例を示す図である。
 図8に示す例において、本変形例の燃料電池システム100は、燃料電池3と、水添触媒4Bと、変成触媒4Aと、酸化ガス供給器6と、CO除去器9と、制御器7と、を備える。
 燃料電池3、水添脱硫触媒4B、変成触媒4A、酸化ガス供給器6及び制御器7については上記と同様であるので説明を省略する。
 CO除去器9は、水素含有ガス中の一酸化炭素を酸化反応により低減する。そして、本実施形態では、上記の酸化ガス供給器6は、CO除去器9に酸化ガスを供給する。
 [動作]
 以下、本変形例の燃料電池システム100の動作について図8を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に、水素含有ガスを用いて発電する。
 このとき、水添脱硫触媒4Bには水素含有ガスが添加される。すると、水添脱硫触媒4Bにより、図示しない改質器に供給される原料中の硫黄化合物が除去される。なお、この改質器での原料の改質反応により、上記の水素含有ガスが生成される。そして、水素含有ガス中の一酸化炭素が、変成触媒4A及びCO除去器9で低減された後、水素含有ガスが燃料電池3に送られる。
 一方、制御器7は、変成触媒4A及び水添脱硫触媒4Bを、それぞれを収納する容器から外部に取り出す前に、酸化ガス供給器6を制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、変成触媒4A及び水添脱硫触媒4Bを、それぞれを収納する容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする変成触媒4A及び水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理してもよい。
 以上により、CO除去器9に酸化ガスを供給する酸化ガス供給器6を用いて、変成触媒4A及び水添脱硫触媒4Bの酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 (第2変形例)
 第1実施形態の第2変形例の燃料電池システムは、第1実施形態及び第1実施形態の第1-第10実施例のいずれかの燃料電池システムにおいて、酸化ガス供給器が、燃料電池に酸化ガスを供給する。
 かかる構成により、燃料電池に酸化ガスを供給する酸化ガス供給器を用いて、触媒の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 本実施例の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第10実施例のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図9は、第1実施形態の第2変形例の燃料電池システムの一例を示す図である。
 図9に示す例において、本変形例の燃料電池システム100は、図1と同様に、燃料電池3と、触媒4と、酸化ガス供給器6と、制御器7と、を備える。本変形例の燃料電池システム100の装置構成については、酸化ガス供給器6が、燃料電池3に酸化ガスを供給する以外は、第1実施形態の構成と同様である。
 [動作]
 以下、本変形例の燃料電池システム100の動作について図9を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に、水素含有ガス中の水素及び酸化ガス供給器6からの酸化ガス中の酸素を用いて発電する。なお、図示しない改質器での原料の改質反応により、上記の水素含有ガスが生成される。
 一方、制御器7は、触媒4を収納する容器から触媒4を外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4を収納する容器から触媒4を外部に取り出すまでの間であって、酸化ガスと酸化反応をする触媒4上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して触媒4を酸化処理してもよい。
 以上により、料電池3に酸化ガスを供給する酸化ガス供給器6を用いて、触媒4の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 (第1制御例)
 第1実施形態の第1制御例の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第2変形例のいずれかの燃料電池システムにおいて、制御器は、触媒の温度が第1の閾値以上になると、酸化ガス供給器を停止する。
 第1実施形態の第1制御例の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例のいずれかの燃料電池システムの運転方法において、触媒の温度が第1の閾値以上になると、酸化ガス供給器を停止する。
 以上により、触媒の酸化処理において、第1の閾値以上になると酸化処理を停止しない場合に比べ、安全性が向上する。
 本制御例の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第2変形例のいずれかの燃料電池システムと同様に構成してもよい。
 本制御例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本制御例の燃料電池システム100の装置構成は、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第2変形例のいずれかの燃料電池システムのいずれかと同様であるので説明を省略する。
 [動作]
 制御器7は、触媒4の温度が第1の閾値101以上になると、酸化ガス供給器6を停止する。以下、燃料電池システム100の制御の具体例について図10を用いて説明する。
 まず、燃料電池システム100の酸化処理のモードに移行すると、触媒4上を水素含有ガスが流れなくなり、燃料電池3の発電が停止する。
 次に、制御器7は、触媒4を酸化処理する。具体的には、酸化ガス供給器6に対して、酸化ガス供給器6を動作するための指示信号103を出す。これにより、触媒4に酸化ガスが供給される。すると、触媒4で酸化反応が起こり、触媒温度102が上昇する。
 このとき、制御器7は、触媒温度102を検知するための温度検知器(図示せず)からの検知データを所定のサンプリング期間毎に取得する。
 そこで、制御器7は、触媒温度102が第1の閾値101以上になると、酸化ガス供給器6を停止するための指示信号104を出す。第1の閾値101として、例えば、300℃に設定してもよい。これにより、触媒4への酸化ガス供給が停止する。すると、触媒4の酸化反応が停止し、触媒温度102は、適時において下降する。
 ここで、第1の閾値101は、適宜設定されるが、例えば、触媒4を収納する容器の耐熱温度よりも低い温度が設定される。
 以上により、触媒4の酸化処理において、第1の閾値101以上になると酸化処理を停止しない場合に比べ、安全性が向上する。
 なお、上記で第1の閾値101を300℃としているが、これは例示であって、本例に限定されない。
 (第2制御例)
 第1実施形態の第2制御例の燃料電池システムは、第1実施形態の第1制御例のいずれかの燃料電池システムにおいて、制御器は、触媒の温度が、第1の閾値よりも小さい第2の閾値以上になると酸化ガス供給器の動作を再開する。
 第1実施形態の第2制御例の燃料電池システムの運転方法は、第1実施形態の第1制御例の燃料電池システムの運転方法において、触媒の温度が、第1の閾値よりも小さい第2の閾値以上になると酸化ガス供給器の動作を再開する。
 以上により、酸化処理における触媒の発熱量を抑制しつつ、触媒の酸化処理を適切に継続できる。
 本制御例の燃料電池システムは、上記特徴以外は、第1実施形態の第1制御例の燃料電池システムと同様に構成してもよい。
 本制御例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態の第1制御例の燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本制御例の燃料電池システム100の装置構成は、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第2変形例のいずれかと同様であるので説明を省略する。
 [動作]
 制御器7は、触媒4の温度が、第1の閾値101よりも小さい第2の閾値106以下になると酸化ガス供給器6の動作を再開する。以下、燃料電池システム100の制御の具体例について図11を用いて説明する。
 まず、燃料電池システム100の酸化処理のモードに移行すると、触媒4上を水素含有ガスが流れなくなり、燃料電池3の発電が停止する。
 次に、制御器7は、触媒4を酸化処理する。具体的には、酸化ガス供給器6に対して、酸化ガス供給器6を動作するための指示信号103を出す。これにより、触媒4に酸化ガスが供給される。すると、触媒4で酸化反応が起こり、触媒温度102が上昇する。
 このとき、制御器7は、触媒温度102を検知するための温度検知器(図示せず)からの検知データを所定のサンプリング期間毎に取得する。
 そこで、制御器7は、触媒温度102が第1の閾値101以上になると、酸化ガス供給器6を停止するための指示信号104を出す。第1の閾値101として、例えば、300℃に設定してもよい。これにより、触媒4への酸化ガス供給が停止する。すると、触媒4の酸化反応が停止し、触媒温度102は、適時において下降する。
 また、制御器7は、触媒温度102が、第1の閾値101よりも小さい第2の閾値106以下になると、酸化ガス供給器6の動作を再開するための指示信号105を出す。第2の閾値106として、例えば、200℃に設定してもよい。これにより、触媒4への酸化ガス供給が再開し、触媒4で酸化反応が再び起こり、触媒温度102は、適時において上昇する。
 ここで、第1の閾値101及び第2の閾値106は、適宜設定される。例えば、第1の閾値101として、触媒4を収納する容器の耐熱温度よりも低い温度が設定される。
 以上により、酸化処理における触媒4の発熱量を抑制しつつ、触媒4の酸化処理を適切に継続できる。
 なお、上記で第1の閾値101及び第2の閾値106をそれぞれ、300℃及び200℃としているが、これらは例示であって、本例に限定されない。
 (第3制御例)
 第1実施形態の第3制御例の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例及び第1実施形態の第1-第2制御例のいずれかの燃料電池システムにおいて、制御器は、酸化ガス供給器の動作しているときの触媒の温度が、上昇傾向でなくなると、酸化ガス供給器を停止する。
 第1実施形態の第3制御例の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例及び第1実施形態の第1-第2制御例のいずれかの燃料電池システムの運転方法において、酸化ガス供給器の動作しているときの触媒の温度が、上昇傾向でなくなると、酸化ガス供給器を停止する。
 以上により、触媒の温度が上昇傾向でなくなるまで触媒の酸化を進行するので、触媒をその容器から外部に取り出すときの発熱が抑制される。
 本制御例の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例及び第1実施形態の第1-第2制御例のいずれかの燃料電池システムと同様に構成してもよい。
 本制御例の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例及び第1実施形態の第1-第2制御例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本制御例の燃料電池システム100の装置構成は、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第2変形例のいずれかと同様であるので説明を省略する。
 [動作]
 制御器7は、酸化ガス供給器6の動作しているときの触媒4の温度が、上昇傾向でなくなると、酸化ガス供給器6を停止する。以下、燃料電池システム100の制御の具体例について図12を用いて説明する。
 まず、燃料電池システム100の酸化処理のモードに移行すると、触媒4上を水素含有ガスが流れなくなり、燃料電池3の発電が停止する。
 次に、制御器7は、触媒4を酸化処理する。具体的には、酸化ガス供給器6に対して、酸化ガス供給器6を動作するための指示信号103を出す。これにより、触媒4に酸化ガスが供給される。すると、触媒4で酸化反応が起こり、触媒温度102が上昇する。
 このとき、制御器7は、触媒温度102を検知するための温度検知器(図示せず)からの検知データを所定のサンプリング期間毎に取得する。
 そこで、制御器7は、触媒温度102が第1の閾値101以上になると、酸化ガス供給器6を停止するための指示信号104を出す。第1の閾値101として、例えば、300℃に設定してもよい。これにより、触媒4への酸化ガス供給が停止する。すると、触媒4の酸化反応が停止し、触媒温度102は、適時において下降する。
 また、制御器7は、触媒温度102が、第1の閾値101よりも小さい第2の閾値106以下になると、酸化ガス供給器6の動作を再開するための指示信号105を出す。第1の閾値101として、例えば、200℃に設定してもよい。これにより、触媒4への酸化ガス供給が再開し、触媒4で酸化反応が再び起こり、触媒温度102は、適時において上昇する。
 更に、制御器7は、酸化ガス供給器6の動作しているときの触媒温度102が、上昇傾向でなくなると、酸化ガス供給器6を停止するための指示信号107を出す。例えば、制御器7は、触媒温度102のプロファイルが、図12に示す如く、平坦になったとき、触媒温度102が、上昇傾向でなくなったと判断する。これにより、触媒4の酸化処理が終了可能であると判断される。
 ここで、第1の閾値101及び第2の閾値106は、適宜設定される。例えば、第1の閾値101として、触媒4を収納する容器の耐熱温度よりも低い温度が設定される。
 以上により、触媒4の温度が上昇傾向でなくなるまで触媒4の酸化を進行するので、触媒4をその容器から外部に取り出すときの発熱が抑制される。
 なお、上記で第1の閾値101及び第2の閾値106をそれぞれ、300℃及び200℃としているが、これらは例示であって、本例に限定されない。
 また、本例では、燃料電池システム100は、第1の閾値101及び第2の閾値106を設定して繰り返し酸化処理を実行するよう構成されているが、このような繰り返し処理を実行しない形態を採用しても構わない。つまり、最初の酸化処理で触媒4の触媒温度102が上昇傾向でなくなると酸化処理を終了しても構わない。
 (第2実施形態)
 第2実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムにおいて、触媒よりも上流の流体流路より分岐して大気開放される分岐路と、分岐路に設けられた第1の開閉器と、触媒よりも下流の流体流路に設けられた第2の開閉器とを備え、酸化ガス供給器は、触媒から第2の開閉器までの間の流体流路に酸化ガスを供給するよう構成され、制御器は、上記の酸化処理において、第1の開閉器を開放し、第2の開閉器を閉止する。
 第2実施形態の燃料電池システムの運転方法は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法において、酸化処理において、触媒よりも上流の流体流路より分岐して大気開放される分岐路に設けられた第1の開閉器を開放し、触媒よりも下流の流体流路に設けられた第2の開閉器を閉止し、酸化ガス供給器は、触媒から第2の開閉器までの間の流体流路に酸化ガスを供給する。
 以上により、触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 図13は、第2実施形態の燃料電池システムの一例を示す図である。
 図13に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、触媒4と、酸化ガス供給器6と、分岐路11と、第1の開閉器12と、第2の開閉器13と、制御器7と、を備える。
 燃料電池3、触媒4及び酸化ガス供給器6については上記と同様であるので説明を省略する。
 分岐路11は、触媒4よりも上流の流体流路より分岐して大気開放される経路である。なお、分岐路11の上流端は、触媒4よりも上流の流体流路であれば、いずれの箇所に接続されていても構わない。
 第1の開閉器12は、分岐路11に設けられている。第1の開閉器12を開くことにより、上記の分岐路11が大気に開放される。第1の開閉器12は、分岐路11を開放及び閉止できるのであれば、いかなる構成でも構わない。第1の開閉器12として、例えば、開閉弁等が例示される。
 第2の開閉器13は、触媒4よりも下流の流体流路に設けられている。第2の開閉器13は、触媒4よりも下流であれば、いずれの箇所に設けても構わない。例えば、第2の開閉器13は、図13の如く、触媒4と燃料電池3との間の流体流路に設けても構わないし、燃料電池3の下流に設けても構わない。
 第2の開閉器13は、触媒4よりも下流の流体流路を開放及び閉止できるのであれば、いかなる構成でも構わない。第2の開閉器13として、例えば、開閉弁等が例示される。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図13を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 一方、上記の酸化処理において、酸化ガス供給器6は、触媒4から第2の開閉器13までの間の流体流路に酸化ガスを供給する。よって、制御器7は、触媒4を、これを収納する容器から外部に取り出す前に、酸化ガス供給器6を制御して触媒4を酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4をその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする触媒4上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して触媒4を酸化処理してもよい。
 本実施形態では、制御器7は、上記の酸化処理において、酸化ガス供給器6を動作させ、第1の開閉器12を開放し、第2の開閉器13を閉止する。すると、酸化ガスは、図13の一点鎖線で示す如く、触媒4から第2の開閉器13までの間の流体流路に供給された後、触媒4及び分岐路11をこの順に流れ、外部に放出される。これにより、触媒4に酸化ガスが供給され、触媒4が酸化処理される。つまり、本実施形態では、触媒4の酸化処理に、酸化ガス供給器6、分岐路11及び第1の開閉器12を利用する点に特徴がある。
 このとき、制御器7は、触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。
 また、触媒4の酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 このようにして、本実施形態では、触媒4から分岐路11に酸化ガスを導くことにより、触媒4の酸化処理を実行できる。よって、従来に比べ、廃棄処理において、触媒4を収納する容器から触媒4を外部に取り出すときに、触媒4の酸化反応による発熱量が低下し得る。
 (実施例)
 第2実施形態の実施例の燃料電池システムは、第2実施形態の燃料電池システムにおいて、触媒が少なくとも変成触媒であり、酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する。
 かかる構成より、変成触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、変成触媒を収納する容器から変成触媒を外部に取り出すときに、変成触媒の酸化反応による発熱量が低下し得る。
 また、CO除去器に酸化ガスを供給する酸化ガス供給器を用いて、触媒の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 本実施例の燃料電池システムは、上記特徴以外は、第2実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図14は、第2実施形態の実施例の燃料電池システムの一例を示す図である。
 図14に示す例において、本実施例の燃料電池システム100は、燃料電池3と、変成硫触媒4Aと、水添脱硫触媒4Bと、酸化ガス供給器6と、CO除去器9と、改質器10と、分岐路11と、第1の開閉器12と、第2の開閉器13と、制御器7と、を備える。
 本実施例の燃料電池システム100の装置構成については、触媒4が少なくとも変成触媒4Aである点、水添脱硫触媒4B、改質器10及びCO除去器9を備える点、及び酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する点以外は、第2実施形態と同様である。
 改質器10は、原料を用いて水素含有ガスを生成する。具体的には、改質器10において、原料が改質反応して、水素含有ガスが生成される。改質反応は、いずれの形態であってもよく、例えば、水蒸気改質反応、オートサーマル反応及び部分酸化反応等が例示される。図14には示されていないが、改質反応のそれぞれにおいて必要となる機器は適宜、設けられる。例えば、改質反応が水蒸気改質反応であれば、改質器を加熱する燃焼器、水蒸気を生成する蒸発器、及び蒸発器に水を供給する水供給器が設けられる。改質反応がオートサーマル反応であれば、さらに、改質器に空気を供給する空気供給器が設けられる。
 なお、上記のとおり、原料は、例えば、メタンを主成分とする都市ガス、天然ガス、LPG等の少なくとも炭素及び水素から構成される有機化合物を含む。
 また、本例では、燃料電池システム100が、変成触媒4A、CO除去器9を備えているが、これを備えない形態であってもよい。この場合、改質器10内の改質触媒が、酸化処理が必要な触媒となる。
 本例の如く、分岐路11は、改質器10よりも上流の流体流路より分岐して大気開放される経路であってもよい。この場合、分岐路11の上流端は、改質器10よりも上流の流体流路であれば、いずれの箇所に接続されていても構わない。例えば、分岐路11の上流端は、本例の如く、水添脱硫触媒4Bと改質器10との間の流体流路に接続されてもいいし、水添脱硫触媒4Bの上流の流体流路に接続されてもいい。
 なお、本分岐路11は、酸化処理において排ガスを大気に排出する目的以外にも利用される。例えば、改質器10内が高圧になる場合、第1の開閉器12を開いて改質器10の圧力を大気に開放し、改質器10内を圧抜きしてもよい。また、分岐路11が蒸発器に通じる場合、蒸発器内の水を第1の開閉器12を開放して燃料電池システム100外に廃棄するのに利用してもよい。
 また、水添脱硫触媒4Bに代えて他の脱硫触媒を用いてもよい。具体的には、常温脱硫触媒、高温脱硫触媒等が例示される。常温脱硫触媒とは、常温で物理吸着により脱硫する触媒であり、高温脱硫触媒は、常温よりも高温(例えば、200℃)で物理吸着により脱硫する触媒である。
 なお、本例では、燃料電池システム100が、水添脱硫触媒4Bを備えているが、水添脱硫触媒4B等の脱硫触媒を備えない形態であってもよい。
 また、本例の如く、第2の開閉器13は、触媒4の一例である変成触媒4Aよりも下流のCO除去器9と燃料電池3との間の流体流路に設けても構わないし、燃料電池3の下流に設けても構わない。第2の開閉器13を開くと、改質器10から燃料電池3に水素含有ガスが供給され、第2の開閉器13を閉めると、この水素含有ガスの燃料電池3への供給が遮断される。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図14を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、水添脱硫触媒4Bには水素含有ガスが添加される。すると、水添脱硫触媒4Bにより、改質器10に供給される原料中の硫黄化合物が除去される。なお、この改質器10での原料の改質反応により、上記の水素含有ガスが生成される。そして、酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する。これにより、水素含有ガス中の一酸化炭素が、変成触媒4A及びCO除去器9で低減された後、水素含有ガスが燃料電池3に送られる。
 燃料電池システム100の運転を停止するとき、第2開閉器13が閉止され、改質器10と大気との連通が遮断される。つまり、改質器10が封止される。改質器10が封止されると、残留した水の蒸発に伴い改質器10内が高圧になる場合がある。この場合は、第1の開閉器12を開いて、改質器10の圧力を一時的に大気開放にして、本内部を圧抜きする。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10から第2の開閉器13までの間の流体流路に酸化ガスを供給する。よって、制御器7は、変成触媒4Aを、これを収納する容器から外部に取り出す前に、酸化ガス供給器6を制御して変成触媒4Aを酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、変成触媒4Aをその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする変成触媒4A上を水素含有ガスが流れていないときに、酸化ガス供給器6を制御して変成触媒4Aを酸化処理してもよい。
 本実施例では、制御器7は、上記の酸化処理において、酸化ガス供給器6を動作させ、第1の開閉器12を開放し、第2の開閉器13を閉止する。すると、酸化ガスは、図14の一点鎖線で示す如く、改質器10から第2の開閉器13までの間の流体流路に供給された後、変成触媒4A、改質器10及び分岐路11をこの順に流れ、外部に放出される。これにより、変成触媒4Aに酸化ガスが供給され、変成触媒4Aが酸化処理される。
 なお、改質器10内の改質触媒が、酸化ガスと酸化反応をする触媒であるとき、変成触媒4Aだけでなく改質触媒も酸化処理される。つまり、本実施例では、変成触媒4の酸化処理に、酸化ガス供給器6、分岐路11及び第1の開閉器12を利用する点に特徴がある。
 また、分岐路の上流端を、水添脱硫触媒4Bの上流の流体流路に接続する構成を取る場合、酸化ガスは、変成触媒4A、改質器10、水添脱硫触媒4B及び分岐路をこの順に流れ、外部に放出される。これにより、変成触媒4A及び水添脱硫触媒4Bに酸化ガスが供給され、それぞれの触媒が酸化処理される。つまり、本例では、変成触媒4A及び水添脱硫触媒4Bの酸化処理に、酸化ガス供給器6、分岐路11及び第1の開閉器12を利用する点に特徴がある。
 このとき、制御器7は、変成触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。また、制御器7は、水添脱硫触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。
 また、変成触媒4A及び水添脱硫触媒4Bの酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 このようにして、本実施例では、改質器10から分岐路11に酸化ガスを導くことにより、少なくとも変成触媒4Aの酸化処理を実行できる。よって、従来に比べ、廃棄処理において、変成触媒4Aを収納する容器から変成触媒4Aを外部に取り出すときに、変成触媒4Aの酸化反応による発熱量が低下し得る。また、分岐路の上流端を、水添脱硫触媒4Bの上流の流体流路に接続する構成を取ると、水添脱硫触媒4Bから分岐路に酸化ガスを導くことにより、変成触媒4A及び水添脱硫触媒4Bの酸化処理を実行できる。よって、従来に比べ、廃棄処理において、変成触媒4A及び水添脱硫触媒4Bを、それぞれを収納する容器から外部に取り出すときに、変成触媒4A及び水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。
 (第3実施形態)
 第3実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態、及び第2実施形態の実施例のいずれかの燃料電池システムにおいて、操作者が操作する操作器を備え、操作者がこの操作器に手動入力すると、制御器は、上記の酸化処理を実行する。
 第3実施形態の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2実施形態のいずれかの燃料電池システムの運転方法において、操作者がこの操作器に手動入力すると、上記の酸化処理を実行する。
 以上により、操作者による操作器の手動入力により、適時に、触媒の酸化処理の実行を開始できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態及び第2実施形態の実施例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2実施形態のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本実施形態の燃料電池システム100の装置構成は、燃料電池システム100が操作器を備えること以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態及び第2実施形態の実施例のいずれかと同様であるので説明を省略する。
 [動作]
 図15は、第3実施形態の燃料電池システムの動作の一例を示すフローチャートである。
 本実施形態では、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4をその容器から外部に取り出すまでの間に、図15に示す如く、操作者による操作器の手動入力が行われる(ステップS1)。すると、制御器7は、触媒4の酸化処理を実行する(ステップS2)。この触媒4の酸化処理の実行においては、ステップS1の操作者による操作器の手動入力に代えて、制御器7の制御プログラムを書き換える形態であっても構わない。例えば、触媒4の酸化処理のためのソフトを制御器7にインストールすることで、触媒4の酸化処理を開始する形態であっても構わない。本ソフトは、記憶媒体に記憶されていてもいいし、ネットワーク経由でインストールされてもいい。
 なお、触媒4の酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 以上により、操作者による操作器の手動入力で、適時に触媒4の酸化処理を実行できる。
 (第4実施形態)
 第4実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態、第2実施形態の実施例及び第3実施形態のいずれかの燃料電池システムにおいて、外部から酸化処理を実行する指令を受信する受信器を備え、制御器は、受信器で酸化処理を実行する指令を受信すると、上記の酸化処理を実行する。
 第4実施形態の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2-第3実施形態のいずれかの燃料電池システムの運転方法において、外部から酸化処理を実行する指令を受信すると、酸化処理を実行する。
 以上に構成により、受信器における酸化処理実行の指令により、適時に、触媒の酸化処理の実行を開始できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、、第2実施形態、第2実施形態の実施例及び第3実施形態のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2-第3実施形態のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 図16は、第4実施形態の燃料電池システムの一例を示す図である。
 図16に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、触媒4と、酸化ガス供給器6と、制御器7と、受信器20と、を備える。
 燃料電池3、酸化ガス供給器6及び制御器7については第1実施形態と同様であるので説明を省略する。
 受信器20は、外部から酸化処理を実行する指令を受信する。そして、制御器7は、受信器20で酸化処理を実行する指令を受信すると、触媒4の酸化処理を実行する。
 以上により、受信器20における酸化処理実行の指令により、適時に、触媒4の酸化処理の実行を開始できる。
 (第5実施形態)
 第5実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態、第2実施形態の実施例及び第3-第4実施形態のいずれかの燃料電池システムにおいて、制御器は、燃料電池システムの寿命停止時に上記の酸化処理を実行する。
 第5実施形態の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2-第4実施形態のいずれかの燃料電池システムの運転方法において、燃料電池システムの寿命停止時に上記の酸化処理を実行する。
 以上により、燃料電池システムの寿命停止時に、自動的に触媒の酸化処理の実行を開始できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態、第2実施形態の実施例及び第3-第4実施形態のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例及び第2-第4実施形態のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 本実施形態の燃料電池システム100の装置構成は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、第1実施形態の第1-第3制御例、第2実施形態、第2実施形態の実施例及び第3-第4実施形態のいずれかと同様であるので説明を省略する。
 [動作]
 図17は、第5実施形態の燃料電池システムの動作の一例を示すフローチャートである。
 本実施形態では、図17に示す如く、燃料電池システム100が寿命に到達したか否かが判定される(ステップS3)。燃料電池システム100が寿命に到達した場合、制御器7は、自動的に触媒4の酸化処理を実行する(ステップS2)。例えば、制御器7に記憶されたタイマーが燃料電池システム100の寿命到達を示すと、ステップS2の酸化処理が自動的に開始される。なお、本タイマーは、例えば、燃料電池システム100の累積運転時間、燃料電池システム100への通電時間等を元に設定することができる。
 なお、触媒4の酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 以上により、本実施形態では、燃料電池システム100の寿命停止時に、自動的に触媒4の酸化処理を実行できる。また、本実施形態では、廃棄処理作業を待たずに、制御器7が、自動的に触媒4の酸化処理を実行するので、廃棄処理作業の負担を軽減できるとともに、廃棄処理作業時間を短縮できる。
 (第6実施形態)
 第6実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムにおいて、上記の触媒が水添脱硫触媒であり、原料を用いて水素含有ガスを生成する改質器と、改質器より送出された水素含有ガスの一部を水添脱硫触媒に供給するためのリサイクル流路と、改質器よりも上流の流体流路より分岐して大気開放される分岐路と、分岐路に設けられた第1の開閉器と、改質器よりも下流の流体流路に設けられた第2の開閉器と、を備え、酸化ガス供給器は、改質器から第2の開閉器までの間の流体流路に酸化ガスを供給するよう構成され、制御器は、上記の酸化処理において、第1の開閉器を開放し、第2の開閉器を閉止するとともに、酸化ガス供給器を動作させる。
 第6実施形態の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法において、上記の酸化処理において、改質器よりも上流の流体流路より分岐して大気開放される分岐路に設けられた第1の開閉器を開放し、上記の触媒である水添脱硫触媒よりも下流の流体流路に設けられた第2の開閉器を閉止するとともに、酸化ガス供給器は、改質器から第2の開閉器までの間の流体流路に酸化ガスを供給する。
 以上により、水添脱硫触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒を収納する容器から水添脱硫触媒を外部に取り出すときに、水添脱硫触媒の酸化反応による発熱量が低下し得る。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 図18は、第6実施形態の燃料電池システムの一例を示す図である。
 図18に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、水添脱硫触媒4Bと、酸化ガス供給器6と、改質器10と、分岐路11と、第1の開閉器12と、第2の開閉器13と、リサイクル流路14と、制御器7と、を備える。つまり、本実施形態では、上記の触媒4が水添脱硫触媒4Bである。
 燃料電池3、水添脱硫触媒4B、酸化ガス供給器6、改質器10、分岐路11、第1の開閉器12、第2の開閉器13及び制御器7については上記と同様であるので説明を省略する。
 リサイクル流路14は、改質器10より送出された水素含有ガスの一部を水添脱硫触媒4Bに供給するための流路である。これにより、水添脱硫触媒4Bに水素含有ガスを添加できる。リサイクル流路14の上流端は、改質器10より送出された水素含有ガスが流れる流路であれば、いずれの箇所に接続されていても構わない。なお、リサイクル流路14が合流する合流箇所と分岐路11との間の流体流路に、図示しない昇圧器を設けても構わない。これにより、改質器10に供給する流体の圧力を上げることができ、流体流量が調整される。昇圧器は、上記の流体流路を流れる流体の圧力を上げることができるのであれば、いかなる構成でも構わない。昇圧器としては、例えば、定容積型ポンプ等が例示される。
 [動作]
 以下、本実施形態の燃料電池システム100の動作について図18を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、水添脱硫触媒4Bに、リサイクル流路14を流れる水素含有ガスが添加される。すると、水添脱硫触媒4Bにより、改質器10に供給される原料中の硫黄化合物が除去される。なお、この改質器10での原料の改質反応により、上記の水素含有ガスが生成される。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10から第2の開閉器13までの間の流体流路に酸化ガスを供給する。よって、制御器7は、水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6が動作するよう制御して水添脱硫触媒4Bを酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すまでの間であって、酸化ガスと酸化反応をする水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6が動作するよう制御して水添脱硫触媒4Bを酸化処理してもよい。
 本実施形態では、制御器7は、上記の酸化処理において、第1の開閉器12を開放し、第2の開閉器13を閉止するとともに、酸化ガス供給器6を動作させる。なお、本酸化処理において、図示しない上記の昇圧器を動作させてもよい。
 すると、酸化ガスの一部が、リサイクル流路14側に引き込まれる。この酸化ガスは、図18の一点鎖線で示す如く、改質器10から第2の開閉器13までの間の流体流路に供給された後、リサイクル流路14、水添脱硫触媒4B及び分岐路11をこの順に流れ、外部に放出される。これにより、水添脱硫触媒4Bに酸化ガスが供給され、水添脱硫触媒4Bが酸化処理される。つまり、本実施形態では、水添脱硫触媒4Bへの酸化ガス供給に、酸化ガス供給器6、リサイクル流路14、分岐路11及び第1の開閉器12を利用する点に特徴がある。
 また、酸化ガスは、図18の一点鎖線で示す如く、改質器10から第2の開閉器13までの間の流体流路に供給された後、改質器10及び分岐路11をこの順に流れ、外部に放出される。これにより、改質器10内の改質触媒が、酸化ガスと酸化反応をする触媒であるとき、水添脱硫触媒4Bだけでなく改質触媒も酸化処理される。
 このとき、制御器7は、水添脱硫触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。また、水添脱硫触媒4Bの酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 なお、分岐路11は、酸化処理において排ガスを大気に排出する目的以外にも利用される。例えば、改質器10内が高圧になる場合、第1の開閉器12を開いて改質器10の圧力を大気に開放し、改質器10内を圧抜きしてもよい。また、分岐路11が蒸発器に通じる場合、蒸発器内の水を第1の開閉器12を開放して燃料電池システム100外に廃棄するのに利用してもよい。
 このようにして、本実施形態では、リサイクル流路14から分岐路11に酸化ガスを導くことにより、少なくとも水添脱硫触媒4Bの酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すときに、水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。
 (実施例)
 第6実施形態の実施例の燃料電池システムは、第6実施形態の燃料電池システムにおいて、触媒として更に変成触媒を備え、酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する。
 かかる構成より、変成触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、変成触媒を収納する容器から触媒を外部に取り出すときに、変成触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第6実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図19は、第6実施形態の実施例の燃料電池システムの一例を示す図である。
 図19に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、変成硫触媒4Aと、水添脱硫触媒4Bと、酸化ガス供給器6と、CO除去器9と、改質器10と、分岐路11と、第1の開閉器12と、第2の開閉器13と、リサイクル流路14と、制御器7と、を備える。
 本実施例の燃料電池システム100の装置構成については、触媒4として更に変成触媒4Aを備える点、CO除去器9を備える点、及び酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する点以外は、第6実施形態と同様である。
 上記のとおり、リサイクル流路14の上流端は、改質器10より送出された水素含有ガスが流れる流路であれば、いずれの箇所に接続されていても構わない。
 例えば、本例の如く、燃料電池システム100が、変成触媒4Aと、CO除去器9と、を備える場合、リサイクル流路14の上流端を、CO除去器9と燃料電池3との間の流体流路に接続してもいい。また、リサイクル流路14の上流端を、変成触媒4AとCO除去器9との間の流体流路に接続してもいいし、改質器10と変成触媒4Aの間の流体流路に接続してもいい。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図19を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する。これにより、水素含有ガス中の一酸化炭素が、変成触媒4A及びCO除去器9で低減された後、水素含有ガスが燃料電池3に送られる。
 燃料電池システム100の運転を停止するとき、第2開閉器13が閉止され、改質器10と大気との連通が遮断される。つまり、改質器10が封止される。改質器10が封止されると、残留した水の蒸発に伴い改質器10内が高圧になる場合がある。この場合は、第1の開閉器12を開いて、改質器10の圧力を一時的に大気開放にして、本内部を圧抜きする。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10から第2の開閉器13までの間の流体流路に酸化ガスを供給する。よって、制御器7は、変成触媒4A及び水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6が動作するよう制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、変成触媒4A及び水添脱硫触媒4Bを、それぞれを収納する容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする変成触媒4A及び水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6が動作するよう制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理してもよい。
 本実施形態では、制御器7は、上記の酸化処理において、第1の開閉器12を開放し、第2の開閉器13を閉止するとともに、酸化ガス供給器6を動作させる。なお、本酸化処理において、図示しない上記の昇圧器を動作させてもよい。
 すると、酸化ガスは、図19の一点鎖線で示す如く、改質器10から第2の開閉器13までの間の流体流路に供給された後、変成触媒4A、改質器10及び分岐路11をこの順に流れ、外部に放出される。これにより、変成触媒4Aに酸化ガスが供給され、変成触媒4Aが酸化処理される。
 なお、改質器10内の改質触媒が、酸化ガスと酸化反応をする触媒であるとき、変成触媒4A及び水添脱硫触媒4Bだけでなく改質触媒も酸化処理される。
 また、酸化ガスの一部が、リサイクル流路14側に引き込まれる。この酸化ガスは、図19の一点鎖線で示す如く、改質器10から第2の開閉器13までの間の流体流路に供給された後、リサイクル流路14、水添脱硫触媒4B及び分岐路11をこの順に流れ、外部に放出される。これにより、水添脱硫触媒4Bに酸化ガスが供給され、水添脱硫触媒4Bが酸化処理される。つまり、本実施形態では、変成触媒4A及び水添脱硫触媒4Bへの酸化ガス供給に、酸化ガス供給器6、リサイクル流路14、分岐路11及び第1の開閉器12を利用する点に特徴がある。
 このとき、制御器7は、変成触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。また、制御器7は、水添脱硫触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。
 また、変成触媒4A及び水添脱硫触媒4Bの酸化処理における温度制御については、上記の第1-第3制御例と同様であってもよい。
 このようにして、本実施例では、リサイクル流路14から分岐路11に酸化ガスを導くことにより、少なくとも水添脱硫触媒4B及び変成触媒4Aの酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すときに、水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。また、改質器10から分岐路11に酸化ガスを導くことにより、変成触媒4Aの酸化処理を実行できるので、従来に比べ、廃棄処理において、変成触媒4Aを収納する容器から変成触媒4Aを外部に取り出すときに、変成触媒4Aの酸化反応による発熱量が低下し得る。
 (第7実施形態)
 第7実施形態の燃料電池システムは、第6実施形態の燃料電池システムにおいて、リサイクル流路との合流箇所よりも上流の流体流路に設けられた第3の開閉器を備え、制御器は、上記の酸化処理において、第3の開閉器を閉止する。
 かかる構成により、水添脱硫触媒の酸化処理において、第3の開閉器を閉止するので、原料供給源側に酸化ガスが逆流することを抑制できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第6実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図20は、第7実施形態の燃料電池システムの一例を示す図である。
 図20に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、水添脱硫触媒4Bと、酸化ガス供給器6と、改質器10と、分岐路11と、第1の開閉器12と、第2の開閉器13と、リサイクル流路14と、第3の開閉器17と、制御器7と、を備える。
 燃料電池3、水添脱硫触媒4B、酸化ガス供給器6、改質器10、分岐路11、第1の開閉器12、第2の開閉器13、リサイクル流路14及び制御器7については上記と同様であるので説明を省略する。
 第3の開閉器17は、リサイクル流路14との合流箇所よりも上流の流体流路に設けられている。第3の開閉器17を開くと、図示しない原料供給源から水添脱硫触媒4Bに原料が供給され、第3の開閉器17を閉めると、この原料の水添脱硫触媒4Bへの供給が遮断される。第3の開閉器17は、リサイクル流路14との合流箇所よりも上流の流体流路を開放及び閉止できるのであれば、いかなる構成でも構わない。第3の開閉器17として、例えば、開閉弁等が例示される。なお、原料供給源は、所定の供給圧を有し、例えば、原料ボンベ、原料インフラ等が例示される。
 [動作]
 以下、本実施形態の燃料電池システム100の動作について図20を用いて説明する。
 制御器7は、水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6を制御して水添脱硫触媒4Bを酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すまでの間に、リサイクル流路14から分岐路11に酸化ガスを導くことにより、水添脱硫触媒4Bに酸化ガスを供給する。そして、水添脱硫触媒4Bの酸化処理において、第3の開閉器17を閉止することで、原料供給源側に酸化ガスが逆流することを抑制できる。
 本実施形態の燃料電池システム100の動作は、上記特徴以外は、第6実施形態の燃料電池システム100の動作と同様であってもよい。
 (実施例)
 第7実施形態の実施例の燃料電池システムは、第7実施形態の燃料電池システムにおいて、触媒として更に変成触媒を備え、酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する。
 かかる構成より、変成触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、変成触媒を収納する容器から触媒を外部に取り出すときに、変成触媒の酸化反応による発熱量が低下し得る。
 本実施例の燃料電池システムは、上記特徴以外は、第7実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図21は、第7実施形態の実施例の燃料電池システムの一例を示す図である。
 図21に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、変成硫触媒4Aと、水添脱硫触媒4Bと、酸化ガス供給器6と、CO除去器9と、改質器10と、分岐路11と、第1の開閉器12と、第2の開閉器13と、リサイクル流路14と、第3の開閉器17と、制御器7と、を備える。
 本実施例の燃料電池システム100の装置構成については、触媒4として更に変成触媒4Aを備える点、CO除去器9を備える点、及び酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する点以外は、第7実施形態と同様である。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図21を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する。これにより、水素含有ガス中の一酸化炭素が、変成触媒4A及びCO除去器9で低減された後、水素含有ガスが燃料電池3に送られる。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10から第2の開閉器13までの間の流体流路に酸化ガスを供給する。よって、制御器7は、変成触媒4A及び水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6が動作するよう制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理できる。そして、変成触媒4A及び水添脱硫触媒4Bの酸化処理において、第3の開閉器17を閉止することで、原料供給源側に酸化ガスが逆流することを抑制できる。
 本実施形態の燃料電池システム100の動作は、上記特徴以外は、第6実施形態の燃料電池システム100の動作と同様であってもよい。
 (第8実施形態)
 第8実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムにおいて、上記の触媒が水添脱硫触媒であり、原料を用いて水素含有ガスを生成する改質器と、改質器より送出された水素含有ガスの一部を水添脱硫触媒に供給するためのリサイクル流路と、リサイクル流路が合流する合流箇所と改質器との間の流体流路に設けられた昇圧器と、リサイクル流路との合流箇所よりも上流の流体流路に設けられた第3の開閉器と、を備え、酸化ガス供給器は、改質器とリサイクル流路の上流端との間の流体流路に酸化ガスを供給するよう構成され、制御器は、上記の酸化処理において、第3の開閉器を閉止するとともに、昇圧器及び酸化ガス供給器を動作させる。
 第8実施形態の燃料電池システムの運転方法は、第1実施形態、及び第1実施形態の第1、第3、第5-第6実施例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法において、上記の酸化処理において、改質器より送出された水素含有ガスの一部を水添脱硫触媒に供給するためのリサイクル流路との合流箇所よりも上流の流体流路に設けられた第3の開閉器を閉止するとともに、リサイクル流路が合流する合流箇所と改質器との間の流体流路に設けられた昇圧器を動作させ、酸化ガス供給器は、改質器とリサイクル流路の上流端との間の流体流路に酸化ガスを供給する。
 以上により、水添脱硫触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒を収納する容器から水添脱硫触媒を外部に取り出すときに、水添脱硫触媒の酸化反応による発熱量が低下し得る。また、第7実施形態の燃料電池システムに比べ、上記の酸化処理において分岐路及び第1の開閉器を使用する必要がないので、燃料電池システムを簡易に構成できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第1実施形態の第1-第10実施例、第1実施形態の第1-第2変形例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムと同様に構成してもよい。
 本実施形態の燃料電池システムの運転方法は、上記特徴以外は、第1実施形態、第1実施形態の第1、第3、第5-第6実施例、第1実施形態の第1-第3制御例のいずれかの燃料電池システムの運転方法と同様であってもよい。
 [装置構成]
 図22は、第8実施形態の燃料電池システムの一例を示す図である。
 図22に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、水添脱硫触媒4Bと、酸化ガス供給器6と、改質器10と、リサイクル流路14と、昇圧器16と、第3の開閉器17と、制御器7と、を備える。本実施形態の燃料電池システム100の装置構成については、昇圧器16を備える点、及び分岐路11、第1の開閉器12及び第2の開閉器13を備えない点以外は、第7実施形態と同様である。
 昇圧器16は、リサイクル流路14が合流する合流箇所と改質器10との間の流体流路に設けられている。これにより、改質器10に供給する流体の圧力を上げることができ、流体流量が調整される。昇圧器16は、上記の流体流路を流れる流体の圧力を上げることができるのであれば、いかなる構成でも構わない。昇圧器16としては、例えば、定容積型ポンプ等が例示される。
 [動作]
 以下、本実施形態の燃料電池システム100の動作について図22を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、水添脱硫触媒4Bに、リサイクル流路14を流れる水素含有ガスが添加される。すると、水添脱硫触媒4Bにより、改質器10に供給される原料中の硫黄化合物が除去される。なお、この改質器10での原料の改質反応により、上記の水素含有ガスが生成される。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10とリサイクル流路14の上流端との間の流体流路に酸化ガスを供給する。また、昇圧器16は、リサイクル流路14を経てリサイクル流路14の上流端に至るまでの流体流路に酸化ガスを供給する。よって、制御器7は、水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6及び昇圧器16が動作するよう制御して水添脱硫触媒4Bを酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すまでの間であって、酸化ガスと酸化反応をする水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6及び昇圧器16が動作するよう制御して水添脱硫触媒4Bを酸化処理してもよい。
 本実施形態では、制御器7は、上記の酸化処理において、第3の開閉器17を閉止するとともに、酸化ガス供給器6及び昇圧器16を動作させる。
 すると、昇圧器16の動作により、酸化ガスの一部が、リサイクル流路14側に引き込まれる。この酸化ガスは、図22の一点鎖線で示す如く、リサイクル流路14を経てリサイクル流路14の上流端に至るまでの間の流体流路に供給されるように、リサイクル流路14、昇圧器16、水添脱硫触媒4B、改質器10、燃料電池3をこの順に流れ、外部に放出される。これにより、水添脱硫触媒4Bに酸化ガスが供給され、水添脱硫触媒4Bが酸化処理される。つまり、本実施形態では、水添脱硫触媒4Bへの酸化ガス供給に、リサイクル流路14及び昇圧器16を利用する点に特徴がある。なお、改質器10内の改質触媒が、酸化ガスと酸化反応をする触媒であるとき、水添脱硫触媒4Bだけでなく改質触媒も酸化処理される。
 このとき、制御器7は、水添脱硫触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。
 なお、水添脱硫触媒4Bの酸化処理における温度制御については、上記の第1-第3制御例のいずれかと同様であってもよい。
 また、分岐路11は、酸化処理において排ガスを大気に排出する目的以外にも利用される。例えば、改質器10内が高圧になる場合、第1の開閉器12を開いて改質器10の圧力を大気に開放し、改質器10内を圧抜きしてもよい。また、分岐路11が蒸発器に通じる場合、蒸発器内の水を第1の開閉器12を開放して燃料電池システム100外に廃棄するのに利用してもよい。
 このようにして、本実施形態では、リサイクル流路14から水添脱硫触媒4B及び改質器10の順に酸化ガスを導くことにより、少なくとも水添脱硫触媒4Bの酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すときに、水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。更に、第7実施形態の燃料電池システム100に比べ、上記の酸化処理において分岐路11及び第1の開閉器12を使用する必要がないので、燃料電池システム100を簡易に構成できる。
 (実施例)
 第8実施形態の実施例の燃料電池システムは、第8実施形態の燃料電池システムにおいて、触媒として更に変成触媒を備え、酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する。
 かかる構成より、変成触媒の酸化処理を実行できるので、従来に比べ、廃棄処理において、変成触媒を収納する容器から触媒を外部に取り出すときに、変成触媒の酸化反応による発熱量が低下し得る。また、第7実施形態の燃料電池システムに比べ、上記の酸化処理において分岐路及び第1の開閉器を使用する必要がないので、燃料電池システムを簡易に構成できる。
 本実施例の燃料電池システムは、上記特徴以外は、第8実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図23は、第8実施形態の実施例の燃料電池システムの一例を示す図である。
 図23に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、変成硫触媒4Aと、水添脱硫触媒4Bと、酸化ガス供給器6と、CO除去器9と、改質器10と、リサイクル流路14と、昇圧器16と、第3の開閉器17と、制御器7と、を備える。本実施例の燃料電池システム100の装置構成については、触媒4として更に変成触媒4Aを備える点、CO除去器9を備える点、及び酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する点以外は、第8実施形態と同様である。
 [動作]
 以下、本実施例の燃料電池システム100の動作について図23を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。
 このとき、酸化ガス供給器6が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器9に酸化ガスを供給する。これにより、水素含有ガス中の一酸化炭素が、変成触媒4A及びCO除去器9で低減された後、水素含有ガスが燃料電池3に送られる。
 一方、上記の酸化処理において、酸化ガス供給器6は、改質器10とリサイクル流路14の上流端との間の流体流路に酸化ガスを供給する。また、昇圧器16は、リサイクル流路14を経てリサイクル流路14の上流端に至るまでの流体流路に酸化ガスを供給する。よって、制御器7は、変成触媒4A及び水添脱硫触媒4Bを外部に取り出す前に、酸化ガス供給器6及び昇圧器16が動作するよう制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理できる。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、変成触媒4A及び水添脱硫触媒4Bを、それぞれを収納する容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする変成触媒4A及び水添脱硫触媒4B上を水素含有ガスが流れていないときに、酸化ガス供給器6及び昇圧器16が動作するよう制御して変成触媒4A及び水添脱硫触媒4Bを酸化処理してもよい。
 本実施形態では、制御器7は、上記の酸化処理において、第3の開閉器17を閉止するとともに、酸化ガス供給器6及び昇圧器16を動作させる。
 すると、昇圧器16の動作により、酸化ガスの一部が、リサイクル流路14側に引き込まれる。この酸化ガスは、図23の一点鎖線で示す如く、リサイクル流路14を経てリサイクル流路14の上流端に至るまでの間の流体流路に供給されるように、リサイクル流路14、昇圧器16、水添脱硫触媒4B、改質器10、変成触媒4A、CO除去器9、燃料電池3をこの順に流れ、外部に放出される。これにより、変成触媒4A及び水添脱硫触媒4Bに酸化ガスが供給され、それぞれの触媒が酸化処理される。つまり、本実施形態では、変成触媒4A及び水添脱硫触媒4Bへの酸化ガス供給に、リサイクル流路14及び昇圧器16を利用する点に特徴がある。
 なお、改質器10内の改質触媒が、酸化ガスと酸化反応をする触媒であるとき、変成触媒4A及び水添脱硫触媒4Bだけでなく改質触媒も酸化処理される。
 このとき、制御器7は、変成触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。また、制御器7は、水添脱硫触媒温度を検知するための温度検知器からの検知データを所定のサンプリング期間毎に取得してもよい。
 なお、変成触媒4A及び水添脱硫触媒4Bの酸化処理における温度制御については、上記の第1-第3制御例と同様であるので説明を省略する。
 このようにして、本実施例では、リサイクル流路14から水添脱硫触媒4B及び改質器10の順に酸化ガスを導くことにより、少なくとも水添脱硫触媒4B及び変成触媒4Aの酸化処理を実行できるので、従来に比べ、廃棄処理において、水添脱硫触媒4Bを収納する容器から水添脱硫触媒4Bを外部に取り出すときに、水添脱硫触媒4Bの酸化反応による発熱量が低下し得る。また、変成触媒4Aの酸化処理も実行できるので、従来に比べ、廃棄処理において、変成触媒4Aを収納する容器から変成触媒4Aを外部に取り出すときに、変成触媒4Aの酸化反応による発熱量が低下し得る。更に、第7実施形態の燃料電池システム100に比べ、上記の酸化処理において分岐路11及び第1の開閉器12を使用する必要がないので、燃料電池システム100を簡易に構成できる。
 (第9実施形態)
 第9実施形態の燃料電池システムは、第1実施形態、第1実施形態の第1-第10実施例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムにおいて、上記の触媒よりも上流の原料供給路に配された原料供給器を備え、原料供給器は、酸化処理において、酸化ガス供給器として触媒に酸化ガスを供給する。
 かかる構成により、原料供給器を酸化ガス供給器として用いて、触媒の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態及び第1実施形態の第1-第10実施例、及び第1実施形態の第1-第3制御例のいずれかの燃料電池システムと同様に構成してもよい。
 [装置構成]
 図24は、第9実施形態の燃料電池システムの一例を示す図である。
 図24に示す例において、本実施形態の燃料電池システム100は、燃料電池3と、触媒4と、原料供給器18と、制御器7と、を備える。
 燃料電池3、触媒4及び制御器7については上記と同様であるので説明を省略する。
 原料供給器18は、触媒4よりも上流の原料供給路に配されている。原料供給器18は、原料の流量を調整する機器であり、例えば、昇圧器と流量調整弁等により構成されるが、これらのいずれか一方により構成されてもよい。昇圧器は、例えば、定容積型ポンプが用いられるが、これに限定されるものではない。原料は、原料供給源より原料供給器18に供給される。原料供給源は、所定の供給圧を有しており、例えば、原料ボンベ、原料インフラ等が挙げられる。なお、上記のとおり、原料は、例えば、メタンを主成分とする都市ガス、天然ガス、LPG等の少なくとも炭素及び水素から構成される有機化合物を含む。
 本実施形態では、原料供給器18は、触媒4の酸化処理において、酸化ガス供給器として触媒4に酸化ガスを供給する。具体的には、原料供給器18の上流の原料供給源が取り外されると、原料供給器18の上流は大気開放される。よって、原料供給器18を酸化ガス供給器として用いて、触媒4に酸化ガスの一例である空気が供給される。
 [動作]
 以下、本実施形態の燃料電池システム100の動作について図20を用いて説明する。
 燃料電池3は、燃料電池システム100の運転中に水素含有ガスを用いて発電する。なお、このとき、図示しない改質器での原料の改質反応により、上記の水素含有ガスが生成される。
 一方、原料供給器18の上流の原料供給源が取り外されると、原料供給器18の上流は大気開放される。その後、制御器7は、触媒4を外部に取り出す前に、酸化ガス供給器としての原料供給器18を制御して触媒4を酸化処理する。例えば、制御器7は、燃料電池システム100の発電を停止してから、燃料電池システム100又は水素生成装置等の廃棄において、触媒4をその容器から外部に取り出すまでの間であって、酸化ガスと酸化反応をする触媒4上を水素含有ガスが流れていないときに、酸化ガス供給器としての原料供給器18を制御して触媒4を酸化処理してもよい。
 以上により、原料供給器18を酸化ガス供給器として用いて、触媒4の酸化処理を実行できるので、酸化処理用の酸化ガス供給器を別途設ける必要がなく、システム構成が簡素化される。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の一態様は、従来に比べ、廃棄処理において、触媒を収納する容器から触媒を外部に取り出すときに、触媒の酸化反応による発熱量が低下し得る。よって、本発明の一態様は、例えば、燃料電池システム又は燃料電池システムの運転方法に利用できる。
3 燃料電池
4 触媒
4A 変成触媒
4B 水添脱硫触媒
4C 卑金属を含む触媒
4D メタン化触媒
4E 改質触媒
5 反応器
6 酸化ガス供給器
7 制御器
9 CO除去器
10 改質器
11 分岐路
12 第1の開閉器
13 第2の開閉器
14 リサイクル流路
16 昇圧器
17 第3の開閉器
18 原料供給器
20 受信器
100 燃料電池システム

Claims (42)

  1.  水素含有ガスを用いて発電する燃料電池と、酸化ガスと酸化反応をする触媒と、前記触媒に酸化ガスを供給する酸化ガス供給器と、前記触媒を外部に取り出す前に、前記酸化ガス供給器を制御して前記触媒を酸化処理する制御器とを備える燃料電池システム。
  2.  前記制御器は、前記触媒を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスが前記触媒へ供給されるよう前記酸化ガス供給器を制御して前記触媒を酸化処理する、請求項1に記載の燃料電池システム。
  3.  前記触媒が、卑金属を含む請求項1に記載の燃料電池システム。
  4.  前記触媒を備える反応器を備え、前記制御器は、前記酸化処理において、前記反応器に少なくとも前記反応器の容積以上の酸化ガスが供給されるよう前記酸化ガス供給器を制御する、請求項1に記載の燃料電池システム。
  5.  前記制御器は、前記酸化処理において、少なくとも前記触媒の酸化反応に必要なモル当量の酸素が供給されるよう前記酸化ガス供給器を制御する、請求項1に記載の燃料電池システム。
  6.  前記酸化処理において、前記触媒上に原料が流れていない期間を備える、請求項1-5のいずれかに記載の燃料電池システム。
  7.  前記酸化処理において、前記触媒上に前記酸化ガス以外のガスが流れていない期間を備える、請求項1-5のいずれかに記載の燃料電池システム。
  8.  前記触媒が、変成触媒である請求項1-7のいずれかに記載の燃料電池システム。
  9.  前記触媒が、水添脱硫触媒である請求項1-7のいずれかに記載の燃料電池システム。
  10.  前記触媒が、メタン化触媒である請求項1-7のいずれかに記載の燃料電池システム。
  11.  前記触媒が、改質触媒である請求項1-7のいずれかに記載の燃料電池システム。
  12.  水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器を備え、前記酸化ガス供給器は、CO除去器に酸化ガスを供給する、請求項1-11のいずれかに記載の燃料電池システム。
  13.  前記酸化ガス供給器が、前記燃料電池に酸化ガスを供給する、請求項1-11のいずれかに記載の燃料電池システム。
  14.  前記制御器は、前記触媒の温度が第1の閾値以上になると、前記酸化ガス供給器を停止する、請求項1-13のいずれかに記載の燃料電池システム。
  15.  前記制御器は、前記触媒の温度が、前記第1の閾値よりも小さい第2の閾値以下になると前記酸化ガス供給器の動作を再開する、請求項14に記載の燃料電池システム。
  16.  前記制御器は、前記酸化ガス供給器の動作しているときの前記触媒の温度が、上昇傾向でなくなると、前記酸化ガス供給器を停止する、請求項1-15のいずれかに記載の燃料電池システム。
  17.  前記触媒よりも上流の流体流路より分岐して大気開放される分岐路と、前記分岐路に設けられた第1の開閉器と、前記触媒よりも下流の流体流路に設けられた第2の開閉器とを備え、前記酸化ガス供給器は、前記触媒から前記第2の開閉器までの間の流体流路に酸化ガスを供給するよう構成され、前記制御器は、前記酸化処理において、前記第1の開閉器を開放し、第2の開閉器を閉止する、請求項1-16のいずれかに記載の燃料電池システム。
  18.  前記触媒が少なくとも変成触媒であり、前記酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する、請求項17に記載の燃料電池システム。
  19.  操作者が操作する操作器を備え、操作者が前記操作器に手動入力すると、前記制御器は、前記酸化処理を実行する、請求項1-18のいずれかに記載の燃料電池システム。
  20.  外部から前記酸化処理を実行する指令を受信する受信器を備え、前記制御器は、前記受信器で前記酸化処理を実行する指令を受信すると、前記酸化処理を実行する、請求項1-19のいずれかに記載の燃料電池システム。
  21.  前記制御器は、前記燃料電池システムの寿命停止時に前記酸化処理を実行する、請求項1-20のいずれかに記載の燃料電池システム。
  22.  前記触媒が水添脱硫触媒であり、前記原料を用いて水素含有ガスを生成する改質器と、前記改質器より送出された水素含有ガスの一部を前記水添脱硫触媒に供給するためのリサイクル流路と、前記改質器よりも上流の流体流路より分岐して大気開放される分岐路と、前記分岐路に設けられた第1の開閉器と、前記触媒よりも下流の流体流路に設けられた第2の開閉器とを備え、前記酸化ガス供給器は、前記改質器から第2の開閉器までの間の流体流路に酸化ガスを供給するよう構成され、前記制御器は、前記酸化処理において、前記第1の開閉器を開放し、第2の開閉器を閉止するとともに、前記酸化ガス供給器を動作させる、請求項1-16のいずれかに記載の燃料電池システム。
  23.  触媒として更に変成触媒を備え、前記酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する、請求項22に記載の燃料電池システム。
  24.  前記リサイクル流路との合流箇所よりも上流の前記流体流路に設けられた第3の開閉器を備え、前記制御器は、前記酸化処理において、前記第3の開閉器を閉止する、請求項22に記載の燃料電池システム。
  25.  触媒として更に変成触媒を備え、前記酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する、請求項24に記載の燃料電池システム。
  26.  前記触媒が水添脱硫触媒であり、前記原料を用いて水素含有ガスを生成する改質器と、前記改質器より送出された水素含有ガスの一部を前記水添脱硫触媒に供給するためのリサイクル流路と、前記リサイクル流路が合流する合流箇所と前記改質器との間の流体流路に設けられた昇圧器と、前記リサイクル流路との合流箇所よりも上流の前記流体流路に設けられた第3の開閉器と、を備え、前記酸化ガス供給器は、前記改質器と前記リサイクル流路の上流端との間の流体流路に酸化ガスを供給するよう構成され、前記制御器は、前記酸化処理において、前記第3の開閉器を閉止するとともに、前記昇圧器及び前記酸化ガス供給器を動作させる、請求項1-16のいずれかに記載の燃料電池システム。
  27.  触媒として更に変成触媒を備え、前記酸化ガス供給器が、水素含有ガス中の一酸化炭素を酸化反応により低減するCO除去器に酸化ガスを供給する、請求項26に記載の燃料電池システム。
  28.  前記触媒よりも上流の原料供給路に配された原料供給器を備え、
     前記原料供給器は、前記酸化処理において、前記酸化ガス供給器として前記触媒に酸化ガスを供給する、請求項1-11、14-16のいずれかに記載の燃料電池システム。
  29.  運転中に燃料電池が水素含有ガスを用いて発電し、酸化ガスと酸化反応をする触媒を外部に取り出す前に、酸化ガス供給器を制御して前記触媒を酸化処理する、燃料電池システムの運転方法。
  30.  前記触媒を外部に取り出す前に、通常の発電停止時よりも多量の酸化ガスが前記触媒へ供給されるよう前記酸化ガス供給器を制御して前記触媒を酸化処理する、請求項29に記載の燃料電池システムの運転方法。
  31.  前記酸化処理において、前記酸化ガス供給器は、前記触媒を備える反応器に少なくとも前記反応器の容積以上の酸化ガスを供給する、請求項29に記載の燃料電池システムの運転方法。
  32.  前記酸化処理において、前記触媒上に原料が流れていない期間を備える、請求項29-31のいずれかに記載の燃料電池システムの運転方法。
  33.  前記酸化処理において、前記触媒上に前記酸化ガス以外のガスが流れていない期間を備える、請求項29-31のいずれかに記載の燃料電池システムの運転方法。
  34.  前記触媒の温度が第1の閾値以上になると、前記酸化ガス供給器を停止する、請求項29-23のいずれかに記載の燃料電池システムの運転方法。
  35.  前記触媒の温度が、前記第1の閾値よりも小さい第2の閾値以下になると前記酸化ガス供給器の動作を再開する、請求項34に記載の燃料電池システムの運転方法。
  36.  前記酸化ガス供給器の動作しているときの前記触媒の温度が、上昇傾向でなくなると、前記酸化ガス供給器を停止する、請求項29-35のいずれかに記載の燃料電池システムの運転方法。
  37.  前記酸化処理において、
     前記触媒よりも上流の流体流路より分岐して大気開放される分岐路に設けられた第1の開閉器を開放し、
     前記触媒よりも下流の流体流路に設けられた第2の開閉器を閉止し、
     前記酸化ガス供給器は、前記触媒から前記第2の開閉器までの間の流体流路に酸化ガスを供給する、請求項29-36のいずれかに記載の燃料電池システムの運転方法。
  38.  操作者が操作器に手動入力すると、前記酸化処理を実行する、請求項29-37のいずれかに記載の燃料電池システムの運転方法。
  39.  外部から前記酸化処理を実行する指令を受信すると、前記酸化処理を実行する、請求項29-38のいずれかに記載の燃料電池システム。
  40.  前記燃料電池システムの寿命停止時に前記酸化処理を実行する、請求項29-39のいずれかに記載の燃料電池システムの運転方法。
  41.  前記酸化処理において、
     改質器よりも上流の流体流路より分岐して大気開放される分岐路に設けられた第1の開閉器を開放し、
     前記触媒である水添脱硫触媒よりも下流の流体流路に設けられた第2の開閉器を閉止するとともに、
     前記酸化ガス供給器は、前記改質器から第2の開閉器までの間の流体流路に酸化ガスを供給する、請求項29-36のいずれかに記載の燃料電池システムの運転方法。
  42.  前記酸化処理において、
     改質器より送出された水素含有ガスの一部を水添脱硫触媒に供給するためのリサイクル流路との合流箇所よりも上流の流体流路に設けられた第3の開閉器を閉止するとともに、
     前記リサイクル流路が合流する合流箇所と前記改質器との間の流体流路に設けられた昇圧器を動作させ、
     前記酸化ガス供給器は、前記改質器と前記リサイクル流路の上流端との間の流体流路に酸化ガスを供給する、請求項29-36のいずれかに記載の燃料電池システムの運転方法。
     
     
PCT/JP2014/002033 2013-04-09 2014-04-09 燃料電池システム及び燃料電池システムの運転方法 WO2014167850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14782458.5A EP2985829B1 (en) 2013-04-09 2014-04-09 Fuel cell system and method of operating fuel cell system
US14/406,462 US9455457B2 (en) 2013-04-09 2014-04-09 Fuel cell system and method of operating fuel cell system
JP2014553372A JP5874041B2 (ja) 2013-04-09 2014-04-09 燃料電池システム及び燃料電池システムの運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081276 2013-04-09
JP2013081276 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014167850A1 true WO2014167850A1 (ja) 2014-10-16

Family

ID=51689271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002033 WO2014167850A1 (ja) 2013-04-09 2014-04-09 燃料電池システム及び燃料電池システムの運転方法

Country Status (4)

Country Link
US (1) US9455457B2 (ja)
EP (1) EP2985829B1 (ja)
JP (1) JP5874041B2 (ja)
WO (1) WO2014167850A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185197A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2001185196A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2003017109A (ja) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd 固体高分子型燃料電池発電システム及び固体高分子型燃料電池発電方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2006092764A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 脱硫用改質リサイクルガスの供給システムを備えた燃料電池発電装置
JP2008169100A (ja) 2007-01-15 2008-07-24 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
WO2012169199A1 (ja) * 2011-06-08 2012-12-13 パナソニック株式会社 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197051A (ja) 1997-09-22 1999-04-09 Toshiba Corp 燃料電池発電プラントならびにそれに用いられる触媒酸化装置および触媒酸化方法
US6387556B1 (en) * 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
AU2003278810A1 (en) * 2002-09-12 2004-04-30 Metallic Power, Inc. Self-controlling fuel cell power system
JP4486353B2 (ja) 2003-12-05 2010-06-23 パナソニック株式会社 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置
JP2006164939A (ja) 2004-11-12 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
US7964314B2 (en) * 2007-10-30 2011-06-21 Corning Incorporated Segmented solid oxide fuel cell stack and methods for operation and use thereof
JP5086144B2 (ja) 2008-03-19 2012-11-28 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システムの停止方法
JP2010140781A (ja) * 2008-12-12 2010-06-24 Toyota Motor Corp 燃料電池の触媒回収システム及び燃料電池の触媒回収方法
JP5420636B2 (ja) 2009-03-02 2014-02-19 パナソニック株式会社 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
EP2509144A1 (en) 2009-12-01 2012-10-10 Panasonic Corporation Power generation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185197A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2001185196A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2003017109A (ja) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd 固体高分子型燃料電池発電システム及び固体高分子型燃料電池発電方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2006092764A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 脱硫用改質リサイクルガスの供給システムを備えた燃料電池発電装置
JP2008169100A (ja) 2007-01-15 2008-07-24 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
WO2012169199A1 (ja) * 2011-06-08 2012-12-13 パナソニック株式会社 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985829A4 *

Also Published As

Publication number Publication date
JP5874041B2 (ja) 2016-03-01
EP2985829A4 (en) 2016-02-17
EP2985829B1 (en) 2017-10-25
US9455457B2 (en) 2016-09-27
JPWO2014167850A1 (ja) 2017-02-16
EP2985829A1 (en) 2016-02-17
US20150155575A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
EP2518012B1 (en) Method for operating a hydrogen generation device
US9005829B2 (en) Hydrogen generation apparatus, fuel cell system including the same, and method of operating hydrogen generation apparatus
EP2546913A1 (en) Fuel cell system and method for running a fuel cell system
EP2716597B1 (en) Hydrogen-generating device and fuel cell system
US9070915B2 (en) Hydrogen generator, operating method of hydrogen generator, and fuel cell system
EP2937924B1 (en) Fuel cell system and method of operating fuel cell system
JP6367719B2 (ja) 水素生成装置、燃料電池システム、およびこれらの運転方法
JP5874041B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP6319555B2 (ja) 水素生成装置及び燃料電池システム及び水素生成装置の運転方法
JP2014101264A (ja) 水素生成装置の運転方法及び燃料電池システムの運転方法
JP5926866B2 (ja) 固体酸化物形燃料電池システム及びその停止方法
JP2013224242A (ja) 水素生成装置及び燃料電池システム
JP6435511B2 (ja) 水素生成装置及びそれを用いた燃料電池システム並びにその運転方法
JP2017077979A (ja) 水素生成装置およびそれを用いた燃料電池システム並びにその運転方法
WO2018131426A1 (ja) 水素生成システムおよびその運転方法
JP2017019672A (ja) 水素生成装置およびそれを用いた燃料電池システム並びに水素生成装置の運転方法
US20150044583A1 (en) Hydrogen purifier, hydrogen generation apparatus, and fuel cell system
JP2016130193A (ja) 水素生成装置およびそれを用いた燃料電池システム並びにその運転方法
JP2013134920A (ja) 燃料電池システム
JP2015185249A (ja) 燃料電池システムの運転方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014553372

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782458

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014782458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14406462

Country of ref document: US

Ref document number: 2014782458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE