WO2012169199A1 - 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法 - Google Patents

水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法 Download PDF

Info

Publication number
WO2012169199A1
WO2012169199A1 PCT/JP2012/003738 JP2012003738W WO2012169199A1 WO 2012169199 A1 WO2012169199 A1 WO 2012169199A1 JP 2012003738 W JP2012003738 W JP 2012003738W WO 2012169199 A1 WO2012169199 A1 WO 2012169199A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurizer
hydrogen generator
temperature
gas
raw material
Prior art date
Application number
PCT/JP2012/003738
Other languages
English (en)
French (fr)
Inventor
前西 晃
脇田 英延
藤原 誠二
政樹 信岡
洋史 川口
田口 清
悟 成田
鵜飼 邦弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012552175A priority Critical patent/JP5681211B2/ja
Priority to EP12796524.2A priority patent/EP2719658B1/en
Priority to US14/115,563 priority patent/US9005829B2/en
Priority to RU2013158879/05A priority patent/RU2013158879A/ru
Publication of WO2012169199A1 publication Critical patent/WO2012169199A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • B01J2208/00646Means for starting up the reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator, a fuel cell system including the same, and a method for operating the hydrogen generator.
  • a hydrogen generator uses natural gas or hydrocarbon fuel such as LPG as a raw material gas, and performs a steam reforming reaction of the raw material gas and steam using a reforming catalyst, thereby producing hydrogen, methane, carbon monoxide, carbon dioxide. And a reforming section for generating a reformed gas containing steam as a component, and a carbon monoxide reducing section for reducing carbon monoxide in the reformed gas using a shift catalyst or a selective oxidation catalyst.
  • natural gas or hydrocarbon fuel such as LPG as a raw material gas
  • a reforming catalyst for generating a reformed gas containing steam as a component
  • a carbon monoxide reducing section for reducing carbon monoxide in the reformed gas using a shift catalyst or a selective oxidation catalyst.
  • natural gas or LPG which is a raw material gas, contains a sulfur compound derived from gas mining or a sulfur compound added as an odorant for the purpose of leakage detection.
  • This sulfur compound is a substance such as DMS (sulfides), TBM (mercaptans), or THT (thiophenes), and when supplied to a reforming catalyst, a shift catalyst, or a selective oxidation catalyst, the active site of the catalyst And the catalyst performance cannot be exhibited.
  • the raw material gas supplied to the hydrogen generator using the catalyst is a gas in which sulfur compounds are hardly contained by removing sulfur compounds in advance.
  • the main methods for removing sulfur compounds are the adsorption desulfurization method in which the sulfur compounds are physically adsorbed in the desulfurizing agent as they are, and the hydrogen compounds converted into hydrogen sulfide by reacting the sulfur compounds with hydrogen.
  • the hydrodesulfurization method has a smaller amount of desulfurization agent (for example, a fraction of the amount of the adsorbing desulfurization agent) and the same amount of sulfur compound. Can be removed.
  • the hydrodesulfurization type desulfurization agent includes a catalyst that converts a sulfur compound into hydrogen sulfide by supplying hydrogen (such as a Co—Mo type or Cu—Zn type) and a catalyst that chemisorbs hydrogen sulfide (such as a ZnO type or Cu—Zn type). ).
  • a catalyst that converts a sulfur compound into hydrogen sulfide by supplying hydrogen such as a Co—Mo type or Cu—Zn type
  • a catalyst that chemisorbs hydrogen sulfide such as a ZnO type or Cu—Zn type.
  • the present invention relates to a hydrogen generator equipped with a hydrodesulfurization-type desulfurization agent that requires reduction, and can reduce the cost by performing reduction of the Cu—Zn catalyst after the hydrogen generator is installed. It is an object of the present invention to provide an apparatus, a fuel cell system including the apparatus, and a method for operating the hydrogen generator.
  • the hydrogen generator of the present invention includes a first desulfurizer that removes sulfur components in a raw material gas at room temperature, a second desulfurizer that removes the sulfur components by hydrogenation, A reformer that generates a reformed gas containing hydrogen from the source gas from which sulfur has been removed by at least one of the first desulfurizer and the second desulfurizer; and the reformer that is generated by the reformer.
  • the cost it is possible to reduce the cost.
  • FIG. 1 is a block diagram schematically showing a schematic configuration of a fuel cell system including a hydrogen generator according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a hydrogen generator in the fuel cell system shown in FIG.
  • FIG. 3 is a block diagram schematically showing a schematic configuration of a fuel cell system including the hydrogen generator according to the second embodiment.
  • FIG. 4 is a graph in which the temperatures detected by the temperature detectors installed on the upstream, middle stream, and downstream of the second desulfurizer are plotted.
  • the hydrogen generator according to Embodiment 1 includes a first desulfurizer that removes sulfur components in a raw material gas at room temperature, a second desulfurizer that removes sulfur components by hydrogenation, a first desulfurizer, and a second desulfurizer.
  • a reformer that reforms raw material gas and water from which sulfur has been removed in at least one of the desulfurizers into a reformed gas containing hydrogen using a reforming catalyst, and reforming from the reformer
  • the raw material gas is supplied to the reformer via the first desulfurizer, and the catalyst of the second desulfurizer is After being activated, the feed gas is supplied to the reformer via the second desulfurizer. It illustrates the manner that is configured to be.
  • the hydrogen generator according to Embodiment 1 includes a switch that switches the source of the raw material gas to the first desulfurizer or the second desulfurizer, and a controller. After installation or maintenance, at least one of an integrated value of the supply amount of the source gas to the hydrogen generator, an integrated value of the time during which the source gas is supplied to the hydrogen generator, and an integrated value of the operation time of the hydrogen generator.
  • the switching device is controlled so that the raw material gas is supplied to the first desulfurizer until one value is equal to or greater than a predetermined first threshold value, so that the second desulfurizer is reduced with the reformed gas. It may be configured.
  • the operating method of the hydrogen generator according to Embodiment 1 includes a first desulfurizer that removes sulfur components in the raw material gas at room temperature, a second desulfurizer that removes sulfur components by hydrogenation, and a first desulfurizer.
  • a reformer for reforming raw material gas and water from which sulfur has been removed in at least one of the desulfurizer and the second desulfurizer into a reformed gas containing hydrogen using a reforming catalyst; and reforming And a recycle path for mixing a part of the reformed gas from the reactor with the raw material gas supplied to the second desulfurizer, and a second desulfurization having an unreduced catalyst in the operation method of the hydrogen generator A step of mounting the gas generator on the hydrogen generator, a step of installing the hydrogen generator, a step of supplying the raw material gas to the first desulfurizer after the hydrogen generator is installed, and reducing the second desulfurizer with the reformed gas And comprising.
  • Embodiment 1 an example of the hydrogen generator according to Embodiment 1 and a fuel cell system including the hydrogen generator will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a block diagram schematically showing a schematic configuration of a fuel cell system including a hydrogen generator according to Embodiment 1. As shown in FIG. 1
  • the fuel cell system 200 including the hydrogen generator 100 according to the first embodiment includes a fuel cell 101 and an oxidant gas supplier 102.
  • the fuel cell 101 has a fuel gas channel 101A and an oxidant gas channel 101B.
  • a polymer electrolyte fuel cell can be used as the fuel cell 101.
  • the fuel cell 101 used in the first embodiment is configured in the same manner as a general fuel cell, and thus detailed description thereof is omitted.
  • the hydrogen generator 100 is connected to the fuel gas passage 101 ⁇ / b> A of the fuel cell 101 via the fuel gas supply passage 13.
  • an oxidant gas supply device 102 is connected to the oxidant gas flow path 101 ⁇ / b> B of the fuel cell 101 via an oxidant gas supply path 15.
  • the fuel gas generated by the hydrogen generator 100 is supplied to the anode (not shown) of the fuel cell 101 through the fuel gas supply path 13 and the fuel gas path 101A. Further, the oxidant gas is supplied from the oxidant gas supply device 102 through the oxidant gas supply path 15 and the oxidant gas flow path 101B of the fuel cell 101, and is supplied to the cathode (not shown) of the fuel cell 101. .
  • the fuel gas supplied to the anode and the oxidant gas supplied to the cathode react to generate electricity and heat.
  • the generated electricity is supplied to an external power load (for example, home electrical equipment) by a power regulator (not shown).
  • the generated heat is recovered by a heat medium flowing through a heat medium flow path (not shown).
  • the heat recovered by the heat medium can be used, for example, to heat water.
  • Fuel gas that has not been used in the fuel cell 101 flows through the fuel gas discharge passage 14 and is supplied to the combustor 12 of the hydrogen generator 100 to be used as combustion fuel. Further, the oxidant gas that has not been used in the fuel cell 101 flows through the oxidant gas discharge path 16 and is discharged out of the fuel cell system 200.
  • the hydrogen generator 100 includes a first desulfurizer 1, a second desulfurizer 2, a reformer 3, and a recycle path 6, and after the installation or maintenance of the hydrogen generator 100, the catalyst of the second desulfurizer 2 is The raw material gas is supplied to the reformer 3 via the first desulfurizer 1 until it is activated by the mixed gas of the reformed gas and the raw material gas supplied via the recycle path 6, and the second desulfurization is performed. After the catalyst of the vessel 2 is activated, the raw material gas is supplied to the reformer 3 via the second desulfurizer 2.
  • the hydrogen generator 100 according to Embodiment 1 includes the second desulfurizer 2 before the installation of the hydrogen generator 100 or the second desulfurizer 2 when the second desulfurizer 2 is replaced by maintenance.
  • the catalyst of the second desulfurizer 2 is in a state where it has not been reduced, and the catalyst of the second desulfurizer 2 is reduced when the operation of the hydrogen generator 100 and thus the fuel cell system 200 is executed. Has been.
  • a heat insulating material 20 is disposed around the second desulfurizer 2, the reformer 3, the CO remover 4, and the combustor 12 of the hydrogen generator 100 so as to surround these devices.
  • the second desulfurizer 2, the reformer 3, the CO remover 4, the combustor 12, the heat insulating material 20, and the like are referred to as a hydrogen generator 50.
  • the reformer 3 is supplied with a source gas via a source gas supply path 11.
  • a raw material gas supply unit 8 is connected to the upstream end of the raw material gas supply path 11.
  • An infrastructure such as natural gas or LPG, which is a source gas supply source, is connected to the source gas supply unit 8.
  • the raw material gas supply unit 8 is configured to supply a raw material gas from a raw material gas supply source while adjusting the flow rate to the reformer 3.
  • the source gas supply unit 8 is configured by, for example, at least one of a booster and a flow rate adjustment valve.
  • An example of the booster is a booster pump.
  • the source gas supply unit 8 has a part of functions such as supply and stop of the source gas, measurement of the source gas flow rate, and control of the source gas flow rate.
  • the raw material gas supply unit 8 is arranged on the upstream side of the first desulfurizer 1, but is not limited thereto.
  • the raw material gas supply device 8 may be disposed in a route between a portion where the downstream end of the recycle route 6 of the raw material gas supply route 11 is connected and a portion where the second desulfurizer 2 is provided.
  • a hydrocarbon-based fuel such as natural gas or LPG can be used as the source gas.
  • a first desulfurizer 1 and a second desulfurizer 2 are provided in this order.
  • the first desulfurizer 1 is filled with an adsorptive desulfurization agent that removes sulfur compounds at room temperature.
  • an adsorptive desulfurization agent activated carbon, zeolite, metal compound, or the like can be used, and even when the temperature of the hydrogen generator 100 is not operated, the temperature when the hydrogen generator 100 is operated. Even so, a material capable of exhibiting performance is used.
  • the second desulfurizer 2 is filled with a hydrodesulfurization agent that hydrogenates sulfur compounds by reaction with hydrogen and chemically adsorbs them.
  • the hydrodesulfurizing agent includes a hydrogen sulfide generating agent that generates hydrogen sulfide by a hydrogenation reaction and a hydrogen sulfide adsorbing agent that adsorbs hydrogen sulfide.
  • a catalyst containing Cu—Zn as a main component is used, and a catalyst that needs to be reduced is used in order to exert a catalytic function.
  • the hydrodesulfurization agent of the second desulfurizer 2 is in a state where all or part of the desulfurization agent is oxidized by oxygen in the air in the air environment when the hydrogen generator 100 is filled.
  • a switching device 7 is provided upstream of the first desulfurizer 1 in the raw material gas supply path 11.
  • An upstream end of a bypass line (bypass path) 5 is connected to the switch 7.
  • the downstream end of the bypass line 5 is connected to a portion of the raw material gas supply path 11 on the downstream side of the first desulfurizer 1.
  • the switching unit 7 is configured to switch the flow destination of the gas such as the raw material gas flowing through the raw material gas supply path 11 to the first desulfurizer 1 or the second desulfurizer 2.
  • An example of the switch 7 is a three-way valve.
  • an open / close valve can be used as the switch 7.
  • the upstream end of the bypass line 5 is connected to a portion upstream of the first desulfurizer 1 of the raw material gas supply path 11, and in the middle of the bypass line 5 and the bypass line 5 in the raw material gas supply path 11.
  • An on-off valve is provided in a path between a portion to which the upstream end of the first end is connected and a portion where the first desulfurizer 1 is provided.
  • an opening / closing valve may be provided in a path between the portion of the source gas supply passage 11 where the first desulfurizer 1 is provided and the portion where the downstream end of the bypass line 5 is connected.
  • downstream end of the recycle path 6 is connected between the part where the downstream end of the bypass line 5 of the source gas supply path 11 is connected and the part where the second desulfurizer 2 is provided. .
  • the upstream end of the recycle path 6 is connected in the middle of the fuel gas supply path 13. Further, an on-off valve 17 is provided in the middle of the recycling path 6.
  • the reformer 3 has a reforming catalyst.
  • the reforming catalyst for example, any substance may be used as long as it can catalyze a steam reforming reaction that generates a hydrogen-containing gas from a raw material and steam, such as a noble metal such as Pt, Ru, Rh, or the like. Base metals such as Ni can be used.
  • a catalyst capable of performing an autothermal reforming reaction may be used as the reforming catalyst of the reformer 3.
  • the concentration of hydrogen containing CO is high due to the reforming reaction between the raw material gas supplied from the raw material gas supply device 8 and from which the sulfur compound (sulfur component) has been removed and the separately supplied water vapor. A reformed gas is generated. The generated reformed gas is supplied to the CO remover 4.
  • the CO remover 4 is configured to remove CO in the reformed gas.
  • the CO remover 4 include a shifter having a shift catalyst (for example, Fe—Cr or Cu—Zn) or a selective oxidizer having an oxidation catalyst (for example, a ruthenium-based catalyst).
  • the reformed gas from which CO has been removed by the CO remover 4 is supplied to the fuel cell 101 as fuel gas.
  • the CO remover 4 may have a methanation catalyst.
  • off-gas combustion fuel
  • the combustor 12 includes a burner or a combustion catalyst.
  • off-gas and separately supplied air (oxygen) are combusted to generate combustion exhaust gas.
  • the generated combustion exhaust gas flows through the combustion exhaust gas path 18 and is discharged out of the fuel cell system 200.
  • the second desulfurizer 2, the reformer 3, and the CO remover 4 are heated by the heat generated when the combustion exhaust gas is generated.
  • the hydrogen generator 100 fuel cell system 200
  • the raw material gas is supplied to the combustor 12.
  • the controller 9 may be in any form as long as it is a device that controls each device constituting the hydrogen generator 100.
  • the controller 9 includes an arithmetic processing unit exemplified by a microprocessor, a CPU and the like, a storage unit configured by a memory storing a program for executing each control operation, a time measuring unit having a clock function, It has. Then, in the controller 9, the arithmetic processing unit reads out a predetermined control program stored in the storage unit and executes it, thereby processing the information, and the hydrogen generator 100 including these controls. Various controls are performed.
  • controller 9 is not only configured as a single controller, but also configured as a controller group in which a plurality of controllers cooperate to execute control of the hydrogen generator 100. I do not care.
  • the controller 9 is also configured to control each device constituting the fuel cell system 200.
  • the controller 9 may be configured by a micro control, and may be configured by an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a hydrogen generator in the fuel cell system shown in FIG.
  • the hydrogen generator 50 has a plurality of concentric quadruple pipe shapes, and the first cylinder 21, the second cylinder 22, the third cylinder 23, and the fourth cylinder 24 in order from the inside. Is arranged.
  • the fourth cylinder 24 has a stepped portion and is formed so that the upper diameter is larger than the lower diameter.
  • the combustor 12 is disposed inside the first cylinder 21.
  • a combustion exhaust gas passage 25 is formed by an annular space formed between the first cylinder 21 and the second cylinder 22.
  • the reformer 3 and the like are heated while the combustion exhaust gas generated by the combustor 12 flows through the combustion exhaust gas passage 25.
  • the reformer 3 is disposed below the annular space formed between the second cylinder 22 and the third cylinder 23. Further, the space above the reformer 3 constitutes the evaporator 26. In the evaporator 26, the water supplied from outside the hydrogen generator 100 is heated to become steam, and the steam and the raw material gas are mixed and supplied to the reformer 3.
  • the CO remover 4 is disposed in the upper part of the annular space formed between the third cylinder 23 and the fourth cylinder 24. Specifically, the transformer 4a and the selective oxidizer 4b are disposed, and the transformer 4a is disposed below the selective oxidizer 4b. An air flow path 27 for supplying air to the selective oxidizer 4b is connected between the transformer 4a and the selective oxidizer 4b.
  • a concentric fifth cylinder 28 and sixth cylinder 29 are arranged outside the fourth cylinder 24.
  • the second desulfurizer 2 is disposed in an annular space formed between the fifth cylinder 28 and the sixth cylinder 29.
  • the second desulfurizer 2 is provided with a pipe constituting the source gas supply path 11 so as to penetrate the second desulfurizer 2 in the vertical direction. Thereby, the raw material gas flowing through the raw material gas supply path 11 is discharged to the lower part of the second desulfurizer 2. And since the source gas flows from the lower part of the second desulfurizer 2 toward the upper part, it flows uniformly in the second desulfurizer 2.
  • the raw material gas desulfurized in the second desulfurizer 2 flows through the raw material gas supply path 11 and is supplied to the evaporator 26.
  • the temperatures of the second desulfurizer 2 and the CO remover 4 are respectively predetermined.
  • the second desulfurizer 2 is 200 to 300 ° C.
  • the transformer 4 a is 200 to 320 ° C.
  • the selective oxidizer 4 b is 120 to 160 ° C.
  • the heating of the reformer 3 and the like is not limited to the heat transfer from the combustion exhaust gas generated by the combustor 12, but by arranging a heater around the reformer 3 and operating the heater, You may heat the reformer 3 grade
  • the temperature of the second desulfurizer 2 is increased according to the amount of hydrogen supplied to the second desulfurizer 2.
  • the desulfurization agent has a heat limit (300 ° C. for a Cu—Zn catalyst), so that the amount of hydrogen supplied through the recycle route 6 is such that the temperature of the desulfurizer does not exceed the heat limit. It is configured. Specifically, for example, a flow rate adjustment valve or an orifice is provided in the middle of the recycle path 6 to adjust the flow rate of the fuel gas flowing through the recycle path 6.
  • a Cu—Zn catalyst is used as the desulfurizing agent of the second desulfurizer 2, and the catalyst is not reduced in the hydrogen generator 100. It is installed. And the hydrogen generator 100 and the fuel cell system 200 provided with this are installed in the state which has not reduced the catalyst.
  • the controller 9 sets the switch 7 so that the raw material gas flows through the first desulfurizer 1. Control. Thereby, the sulfur compound contained in the raw material gas is adsorbed by the first desulfurizer 1.
  • the raw material gas desulfurized by the first desulfurizer 1 flows through the raw material gas supply path 11 and is supplied to the reformer 3.
  • a reformed gas is generated by a reforming reaction between the raw material gas and separately supplied steam.
  • the generated reformed gas is supplied to the CO remover 4.
  • CO contained in the reformed gas is reduced to about several ppm, and fuel gas is generated.
  • the generated fuel gas flows through the fuel gas supply path 13 and is supplied to the fuel cell 101.
  • a part of the fuel gas flowing through the fuel gas supply path 13 (hereinafter referred to as recycle gas) flows through the recycle path 6 and is mixed with the source gas flowing through the source gas supply path 11 to form the second desulfurization. Is supplied to the vessel 2.
  • the fuel gas (hydrogen gas) supplied to the second desulfurizer 2 reduces (activates) the unreduced Cu—Zn catalyst in the second desulfurizer 2.
  • the controller 9 determines that the predetermined amount (for example, 50% or more of the total amount, preferably 70% or more of the total amount) in the second desulfurizer 2 or the total amount of the Cu—Zn catalyst has been reduced.
  • the switch 7 is controlled so that the gas flows through the bypass line 5 (bypassing the first desulfurizer 1) and is supplied to the second desulfurizer 2.
  • switching of the source of the source gas by the switcher 7 is performed by integrating the integrated value of the supply amount of the source gas to the hydrogen generator 100, the integrated value of the time during which the source gas is supplied to the hydrogen generator 100, and hydrogen. It may be performed when at least one of the integrated values of the operating time of the generator becomes equal to or greater than a predetermined first threshold value.
  • the first threshold is set based on the operating conditions of the hydrogen generator 100.
  • the raw material gas supply unit 8 measures the raw material gas flow rate. By grasping the integrated value, the amount of hydrogen in the product gas can be calculated. For this reason, the amount of hydrogen flowing through the recycle path 6 can be predicted, and the amount of hydrogen supplied to the second desulfurizer 2 can be grasped. Since the reduction state of the desulfurizing agent in the second desulfurizer 2 is determined by the amount of supplied hydrogen, it is determined whether or not the catalyst in the second desulfurizer 2 has been sufficiently reduced by grasping the total amount of supplied hydrogen. it can.
  • the controller 9 7 may be used to switch the source of the source gas.
  • the controller 9 the controller 9
  • the source gas supply destination may be switched by the switch 7.
  • the time during which the raw material gas is flowing is, for example, warm-up operation (for example, raising the temperature of the second desulfurizer 2 or the like with a heater) after the start command for the hydrogen generator 100 is input to the controller 9. Excluding time, it is almost the same as the operation time of the hydrogen generator 100. Further, the length of time for performing the warm-up operation can be assumed in advance. For this reason, the amount of hydrogen supplied to the second desulfurizer 2 can be grasped by grasping the integrated value of the operation time of the hydrogen generator 100 in consideration of the time such as warm-up operation.
  • warm-up operation for example, raising the temperature of the second desulfurizer 2 or the like with a heater
  • the controller 9 feeds the source gas from the switch 7. It is sufficient to switch the supply destination.
  • the capacity of the Cu—Zn catalyst in the second desulfurizer 2 is 2 L, and the amount of hydrogen gas necessary to reduce the 1 L Cu—Zn catalyst is 200 L.
  • the hydrogen generator 100 shown in FIGS. 1 and 2 when the flow rate of the source gas is 3 L / min, the flow rate of the recycle gas flowing through the recycle path 6 is 300 mL / min, and hydrogen in the recycle gas 300 mL It is assumed that the gas amount is 200 mL.
  • the first threshold value is the operating condition of the hydrogen generator 100, for example, the capacity of the Cu—Zn catalyst of the second desulfurizer 2, the flow rates of the raw material gas and the recycle gas, and the hydrogen gas content in the recycle gas. It can be set as appropriate based on the above.
  • the thus configured hydrogen generator 100 according to Embodiment 1 and the fuel cell system 200 including the same are mounted on the hydrogen generator 100 without reducing the Cu—Zn catalyst of the second desulfurizer 2.
  • the Cu—Zn catalyst is reduced while the hydrogen generator 100 is in use, so that the catalyst is reduced before installation, as compared with a conventional hydrogen generator and a fuel cell system including the same.
  • cost reduction can be achieved.
  • the integration of the above “integrated value of the raw material gas flow rate”, “integrated value of the time when the raw material gas is flowing”, or “integrated value of the operating time” is performed as the hydrogen generating device after the hydrogen generating device is manufactured. It is the integrated value from the beginning of use.
  • the integration may start from the first operation after installing the device in a place where it is actually used. Check the status of the device before or after installation in the place where it will be used. You may start from the time of the trial run.
  • the integrated value of the power generation amount and the integrated value of the power generation time of the fuel cell system is predetermined.
  • An example is shown in which the raw material gas is supplied to the reformer via the second desulfurizer when the third threshold value is reached.
  • the structure of the hydrogen generator 100 in this modification 1 and the fuel cell system 200 provided with the same is the same as the structure of the hydrogen generator 100 according to Embodiment 1 and the fuel cell system 200 provided with the same, Detailed description is omitted.
  • the amount of hydrogen in the fuel gas can be calculated from the integrated value of the raw material gas flow rate. From the amount of hydrogen, the amount of power generated by the fuel cell system 200 can also be calculated. Therefore, when the integrated value of the power generation amount of the fuel cell system 200 is equal to or greater than the third threshold value, which is the amount by which the catalyst in the second desulfurizer 2 is sufficiently reduced, the controller 9 feeds the source gas from the switch 7. It is sufficient to switch the supply destination.
  • the third threshold value which is the amount by which the catalyst in the second desulfurizer 2 is sufficiently reduced
  • controller 9 may acquire the power generation amount of the fuel cell system 200 from a power regulator not shown in FIGS. 1 and 2. Further, the third threshold value can be calculated based on the first threshold value.
  • the operation time of the hydrogen generator 100 is substantially the same as the operation time of the fuel cell system 200. Therefore, when the integrated value of the operation time of the fuel cell system 200 is equal to or greater than the third threshold value, which is the amount by which the catalyst in the second desulfurizer 2 is sufficiently reduced, the controller 9 feeds the source gas by the switch 7. It is sufficient to switch the supply destination.
  • the third threshold value which is the amount by which the catalyst in the second desulfurizer 2 is sufficiently reduced
  • the hydrogen generator according to Embodiment 2 includes a temperature detector that detects the temperature of the second desulfurizer, and when the temperature of the second desulfurizer detected by the temperature detector is equal to or higher than a predetermined first temperature.
  • a temperature detector that detects the temperature of the second desulfurizer, and when the temperature of the second desulfurizer detected by the temperature detector is equal to or higher than a predetermined first temperature.
  • An example is shown in which the raw material gas is supplied to the reformer via the second desulfurizer.
  • the hydrogen generator according to Embodiment 2 includes a switch that switches the source of the source gas to the first desulfurizer or the second desulfurizer, and a controller, and the hydrogen generator generates the hydrogen
  • the second desulfurizer is designed to have a preset third temperature during operation of the apparatus, and the controller detects that the temperature detected by the temperature detector after installation or maintenance of the hydrogen generator is the third temperature.
  • the switch is controlled so that the raw material gas is supplied to the first desulfurizer until the temperature equal to or higher than the first temperature which is higher than the temperature is detected, and the second desulfurizer is reduced with the reformed gas. It may be configured as follows.
  • the operation method of the hydrogen generator according to Embodiment 2 includes a first desulfurizer that removes sulfur components in the raw material gas at room temperature, a second desulfurizer that removes sulfur components by hydrogenation, and a first desulfurizer.
  • a hydrogen generator comprising: a recycle path for mixing a part of the reformed gas from the vessel with the raw material gas supplied to the second desulfurizer; and a temperature detector for detecting the temperature of the second desulfurizer.
  • the hydrogen generator is designed such that the second desulfurizer has a preset third temperature during operation of the hydrogen generator, and the second desulfurizer having an unreduced catalyst is hydrogenated.
  • FIG. 3 is a block diagram schematically showing a schematic configuration of a fuel cell system including the hydrogen generator according to the second embodiment.
  • the hydrogen generator 100 according to the second embodiment and the fuel cell system 200 including the same are the same in basic configuration as 100 according to the first embodiment and the fuel cell system 200 including the same. There is a difference in that a temperature detector 10 for detecting the temperature of the second desulfurizer 2 is provided.
  • the temperature detector 10 directly detects the surface temperature of the fifth cylinder 28 or the sixth cylinder 29 constituting the second desulfurizer 2, or the temperature of the Cu—Zn catalyst in the second desulfurizer 2, and detects the detected temperature. It is configured to output to the controller 9.
  • a temperature sensor such as a thermocouple or a thermistor can be used as the temperature detector 10.
  • the temperature of the reformer 3 is set to a predetermined temperature (for example, 550 to 700 ° C.)
  • the temperature of the second desulfurizer 2 is 200 to 300. It is designed to be 0 ° C. (third temperature). Further, when the Cu—Zn catalyst in the second desulfurizer 2 is reduced, heat is generated and the temperature of the second desulfurizer 2 is raised.
  • FIG. 4 is a graph plotting the temperatures detected by the temperature detectors installed upstream, middle and downstream of the second desulfurizer. The second temperature in FIG. 4 will be described later.
  • FIG. 4 shows the results under the following conditions.
  • a heater is installed around the upstream portion of the second desulfurizer 2, and the heater is turned on so that the temperature detected by the upstream temperature detector becomes a constant value.
  • the second desulfurizer 2 is heated by OFF control.
  • each temperature detector when the hydrogen generator 50 whole is heated with the combustion exhaust gas produced
  • the plotted temperature is plotted.
  • the temperature in the second desulfurizer 2 As shown in FIG. 4, as for the temperature in the second desulfurizer 2, first, the temperature of the middle stream portion is increased, and then the temperature of the downstream portion is increased. Moreover, after raising temperature in both the middle stream part and the downstream part, the temperature is lowered.
  • the temperature detected by the temperature detector 10 is the third temperature. It can be determined that the Cu—Zn catalyst of the second desulfurizer 2 has been sufficiently reduced when a temperature equal to or higher than the first temperature (eg, 260 to 280 ° C.), which is higher than the temperature, is detected. For this reason, the controller 9 should just switch the supply destination of the source gas by the switch 7, if the temperature which the temperature detector 10 detects becomes more than 1st temperature which is temperature higher than 3rd temperature.
  • the first temperature eg, 260 to 280 ° C.
  • the first temperature may be a constant value (for example, 270 ° C.), may be set based on the operating conditions of the hydrogen generator 100, and may be set in advance through experiments or the like. For example, when a heater is arranged around the second desulfurizer 2 and the heater is controlled so as to keep the temperature of the second desulfurizer 2 at a predetermined value, the first temperature is set to a constant value. Also good.
  • the first temperature is preferably set based on the operating conditions of the hydrogen generator 100.
  • the first temperature is preferably set based on the operating conditions of the hydrogen generator 100.
  • the second desulfurization is performed.
  • the temperature of the vessel 2 is designed to be a predetermined temperature.
  • the flow rate and flow rate of the raw material gas supplied to the hydrogen generator 100 are increased. For this reason, the temperature of the 2nd desulfurizer 2 becomes lower than the predetermined temperature by the raw material gas in the 2nd desulfurizer 2 and the raw material gas supply path 11 which penetrates the inside of the 2nd desulfurizer 2 .
  • the fuel cell system 200 is operated at a rated condition and the Cu—Zn catalyst of the second desulfurizer 2 is reduced.
  • the Cu—Zn catalyst of the second desulfurizer 2 is sufficiently reduced by setting the first temperature to a temperature higher than that at the rated condition. This can be determined more accurately.
  • the first temperature is set at 240 to 260 ° C.
  • the fuel cell system 200 is set under low load conditions (for example, 1/3 of the rated conditions).
  • the first temperature may be set at 270 to 280 ° C.
  • the temperature detector 10 can detect that the catalyst in the upstream portion of the second desulfurizer 2 where the temperature detector 10 is disposed has been reduced. It is preferable that the temperature of the downstream part (downstream part) of the second desulfurizer 2 is detected.
  • the downstream portion of the second desulfurizer 2 is, for example, described with reference to FIG. 2, and is 1/2 of the length in the vertical direction from the upstream end of the second desulfurizer 2 (upward). A region from the portion to the downstream end of the second desulfurizer 2 is referred to.
  • the catalyst arranged downstream of the temperature detector 10 has not yet been reduced, but by continuing the operation of the hydrogen generator 100, Recycle gas is supplied to the second desulfurizer 2 and the catalyst disposed downstream of the temperature detector 10 is reduced.
  • the hydrogen generator 100 according to the second embodiment and the fuel cell system 200 including the same are configured as described above. The same effect is obtained.
  • the temperature of the second desulfurizer detected by the temperature detector becomes equal to or higher than a first temperature that is set in advance, and then falls below a second temperature that is lower than the first temperature. If it becomes, the aspect comprised so that raw material gas may be supplied to a reformer via a 2nd desulfurizer is illustrated.
  • the configuration of the hydrogen generator 100 and the fuel cell system 200 including the same in the first modification is the same as the configuration of the hydrogen generator 100 according to the second embodiment and the fuel cell system 200 including the same. Detailed description is omitted.
  • the temperature in the second desulfurizer 2 decreases after the temperature is raised (see FIG. 4). For this reason, when the temperature detected by the temperature detector 10 detects a temperature equal to or higher than the first temperature and then detects a temperature equal to or lower than the second temperature, which is lower than the first temperature, the second desulfurizer. It can be judged more accurately that the second Cu—Zn catalyst has been sufficiently reduced.
  • a temperature equal to or higher than the first temperature is detected and then a temperature equal to or lower than the second temperature that is lower than the first temperature is detected” means that the hydrogen generator 100 is in operation (the fuel cell system). 200 during power generation operation; during generation of fuel gas of the hydrogen generator 100).
  • the temperature detector 10 is activated when the hydrogen generator 100 is started or when the hydrogen generator 100 is stopped (including when the hydrogen generator 100 is stopped). 2 Except when temperature is detected.
  • the controller 9 switches the source of the source gas using the switch 7. Good.
  • the second temperature is the temperature of the second desulfurizer 2 during operation of the hydrogen generator 100, and thus becomes a temperature equal to or higher than the third temperature.
  • the second temperature may be a constant value (for example, 240 ° C.), may be set based on the operating conditions of the hydrogen generator 100, and may be set in advance through experiments or the like.
  • the temperature of the second desulfurizer 2 varies depending on the operating conditions of the hydrogen generator 100, the fuel cell system 200 is compared to the case where the fuel cell system 200 is operated under the rated conditions, similarly to the first temperature. Is operated under low load conditions (for example, 1/3 of the rated conditions), by setting the second temperature to a higher temperature, the Cu—Zn catalyst of the second desulfurizer 2 is sufficiently produced. It can be judged more accurately that the reduction has occurred.
  • the second temperature is set at 200 to 230 ° C., and the fuel cell system 200 is set under low load conditions (for example, 1/3 of the rated conditions).
  • the second temperature may be set to 240 to 250 ° C.
  • the hydrogen generator 100 according to the first modification and the fuel cell system 200 including the hydrogen generator 100 configured as described above are the same as the hydrogen generator 100 according to the second embodiment and the fuel cell system 200 including the hydrogen generator 100 according to the second embodiment. Has an effect.
  • Modification 2 In the hydrogen generator of Modification 2 in Embodiment 2, the supply amount of the raw material gas to the hydrogen generator after the temperature of the second desulfurizer detected by the temperature detector becomes equal to or higher than a predetermined first temperature.
  • a predetermined first temperature When at least one of the integrated value, the integrated value of the time during which the source gas is supplied to the hydrogen generator, and the integrated value of the operating time of the hydrogen generator is equal to or greater than a predetermined second threshold value, An example in which the raw material gas is configured to be supplied to the reformer via the second desulfurizer is illustrated.
  • the configuration of the hydrogen generator 100 and the fuel cell system 200 including the same in the second modification is the same as the configuration of the hydrogen generator 100 and the fuel cell system 200 including the same according to the second embodiment. Detailed description is omitted.
  • the hydrogen generator 100 and the fuel cell system 200 of the second modification have the same basic operations as the hydrogen generator 100 and the fuel cell system 200 of the first modification, but after the temperature detector 10 detects the first temperature.
  • the operation of is different. Specifically, among the integrated value of the supply amount of the source gas to the hydrogen generator 100, the integrated value of the time during which the source gas is supplied to the hydrogen generator 100, and the integrated value of the operation time of the hydrogen generator 100 When at least one of the values becomes equal to or greater than a predetermined second threshold value, the raw material gas is supplied to the reformer 3 via the second desulfurizer 2.
  • the timing at which the temperature detected by the temperature detector 10 becomes equal to or lower than the second temperature is the integrated value of the supply amount of the source gas to the hydrogen generator 100 and the source gas is supplied to the hydrogen generator 100. It is configured to make a determination based on at least one of the accumulated time value and the accumulated value of the operation time of the hydrogen generator 100. For this reason, the second threshold value can be set in advance by experiments or the like. Note that the second threshold value may be set based on the operating conditions of the hydrogen generator 100, similarly to the second temperature.
  • the hydrogen generator according to Embodiment 3 is configured to supply a source gas to the second desulfurizer by bypassing the temperature detector that detects the temperature of the second desulfurizer and the first desulfurizer. A bypass path, and after the second desulfurizer is activated, if the temperature detected by the temperature detector is lower than the third temperature, which is lower than the first temperature, the source gas is supplied to the first desulfurizer. When the temperature is supplied and the temperature of the temperature detector becomes the third temperature, the raw material gas is supplied to the second desulfurizer via the bypass path.
  • the configuration of the hydrogen generator 100 according to the third embodiment and the fuel cell system 200 including the same are the same as the configuration of the hydrogen generator 100 according to the second embodiment and the fuel cell system 200 including the same. Detailed description thereof will be omitted.
  • the hydrogen generator 100 (hydrogen generator 50) is designed so that the temperature of the second desulfurizer 2 becomes the third temperature when the temperature of the reformer 3 is set to a predetermined temperature.
  • the third temperature is a temperature range in which the Cu—Zn catalyst of the second desulfurizer 2 can desulfurize the sulfur compound in the raw material gas.
  • the second desulfurizer 2 After the second desulfurizer 2 is activated, if the temperature of the second desulfurizer 2 reaches the third temperature, the reformer 3 has sufficiently generated the reformed gas (hydrogen gas), The sulfur compound in the raw material gas can be desulfurized by the second desulfurizer 2. On the other hand, when the temperature of the second desulfurizer 2 is lower than the third temperature, even if the return gas is supplied to the second desulfurizer 2, the sulfur compound in the raw material gas cannot be desulfurized.
  • the controller 9 supplies the source gas to the first desulfurizer 1 when the temperature of the second desulfurizer 2 is lower than the third temperature,
  • the switch 7 is controlled so that the raw material gas is supplied to the second desulfurizer 2.
  • the hydrogen generator 100 according to the third embodiment and the fuel cell system 200 including the same are configured as described above. The same effect is obtained.
  • the hydrogen generator of the present invention eliminate the reduction treatment process at the time of manufacture in a small hydrogen generator using a desulfurizing agent that requires reduction treatment. Thus, cost reduction can be realized, which is useful in the field of fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の水素発生装置は、第1脱硫器(1)と、第2脱硫器(2)と、第1脱硫器(1)及び第2脱硫器(2)のうちの少なくとも一方の脱硫器で硫黄が除去された原料ガスから水素を含む改質ガスを生成する改質器(3)と、改質器(3)で生成された改質ガスの一部を第2脱硫器(2)に供給される原料ガスに混合するためのリサイクル経路(6)と、を備え、水素発生装置の設置後又はメンテナンス後に、第2脱硫器(2)の触媒がリサイクル経路(6)を介して供給される改質ガスと原料ガスとの混合ガスにより活性化されるまでは、原料ガスが第1脱硫器(1)を経由して改質器(3)に供給され、第2脱硫器(2)の触媒が活性化された後は、原料ガスが第2脱硫器(2)を経由して改質器(3)に供給されるように構成されている。

Description

水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法
 本発明は、水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法に関するものである。
 水素発生装置は、天然ガス又はLPG等の炭化水素系燃料を原料ガスとし、原料ガスと水蒸気とを改質触媒を用いて水蒸気改質反応させることによって、水素やメタン、一酸化炭素、二酸化炭素や水蒸気を成分とする改質ガスを生成する改質部と、改質ガス中の一酸化炭素を変成触媒や選択酸化触媒を用いて低減する一酸化炭素低減部と、により構成されている。
 ところで、原料ガスである天然ガス又はやLPG中には、ガス採掘時由来の硫黄化合物又は漏洩検知の目的で付臭剤として添加された硫黄化合物が含まれている。この硫黄化合物は、DMS(サルファイド類)、TBM(メルカプタン類)、又はTHT(チオフェン類)等の物質であり、改質触媒、変成触媒、又は選択酸化触媒に供給されると、触媒の活性点を覆い、触媒の性能が発揮できない状態としてしまう。
 したがって、触媒を用いた水素発生装置に供給する原料ガスは、あらかじめ硫黄化合物を除去し、硫黄化合物がほとんど含まれない状態のガスとする必要がある。硫黄化合物を除去する主な方法としては、硫黄化合物をそのままの状態で脱硫剤中に物理吸着する吸着脱硫方式と、硫黄化合物を水素と反応させることで硫化水素に変えて、変換した硫化水素を吸着触媒により吸着させる水添脱硫方式と、がある。
 水素発生装置を用いた家庭用の燃料電池システムでは、装置のメンテナンスを極力なくして、水素発生装置を10年以上使用できるようにする必要がある。ここで、脱硫剤として吸着脱硫方式と水添脱硫方式を比べると、水添脱硫方式の方が少ない量の脱硫剤(例えば、吸着脱硫剤量の数分の1)で同じ量の硫黄化合物を除去することが出来る。
 このため、起動時において、原料中の硫黄化合物を常温脱硫器で除去し、その後、水添脱硫器を使用可能な状態になると、常温脱硫器に代えて水添脱硫器で原料中の硫黄化合物を除去する燃料電池の燃料水素製造用原燃料の脱硫システムが知られている(例えば、特許文献1)。
特開2009-249203号公報
 水添脱硫方式の脱硫剤は、水素の供給により硫黄化合物を硫化水素に変換する触媒(Co-Mo系又はCu-Zn系等)と硫化水素を化学吸着する触媒(ZnO系又はCu-Zn系)により構成される。ここで、Cu-Zn系の触媒を使用しようとすると、触媒を還元状態としておく必要がある。そこで、一般的には、Cu-Zn触媒を水素発生装置に組み入れた後に、Cu-Zn触媒を200℃以上に加熱して、水素を供給し、水素雰囲気下で、還元している。なお、Cu-Zn触媒の還元時には、水素との反応により、Cu-Zn触媒は発熱する。
 ところで、触媒は高温化しすぎるとシンタリングとよばれる現象が起こり、触媒活性が低下する。Cu-Zn触媒では、300℃以上となるとシンタリングが起こる。一般的に水素発生装置は、熱効率を高くするため触媒の周囲は断熱材を設置し、熱が逃げ難くなっている。したがって、ヒータ等で最低温度を維持しながら、触媒がシンタリングする温度を越えないように、水素の供給量を制御しながら、Cu-Zn触媒の還元を行う必要がある。
 このため、燃料電池システムを商品として完成させる前に、水素発生装置におけるCu-Zn触媒の還元を行おうとすると、製造工程で還元を行うための還元装置が必要となる。また、触媒を還元させるために、かなりの時間が必要となってくる。さらに、還元させるための水素ガスや還元装置を動かすための電気代等のインフラ代も必要となる。これらの還元装置や還元に必要な時間、装置を動かすためのインフラ等は、全てコストとして商品の値段を高くする要因となってくる。
 本発明は、還元が必要な水添脱硫方式の脱硫剤を備える水素発生装置において、Cu-Zn触媒の還元を水素発生装置の設置後に実行することにより、低コスト化を図ることができる水素発生装置、それを備える燃料電池システム、及び水素発生装置の運転方法を提供することを目的とするものである。
 前記従来の課題を解決するために、本発明の水素発生装置は、原料ガス中の硫黄成分を常温で除去する第1脱硫器と、前記硫黄成分を水素化して除去する第2脱硫器と、前記第1脱硫器及び前記第2脱硫器のうちの少なくとも一方の脱硫器で硫黄が除去された前記原料ガスから水素を含む改質ガスを生成する改質器と、前記改質器で生成された前記改質ガスの一部を前記第2脱硫器に供給される前記原料ガスに混合するためのリサイクル経路と、を備える、水素発生装置において、前記水素発生装置の設置後又はメンテナンス後に、前記第2脱硫器の触媒が前記リサイクル経路を介して供給される前記改質ガスと前記原料ガスとの混合ガスにより活性化されるまでは、前記原料ガスは前記第1脱硫器を経由して前記改質器に供給され、前記第2脱硫器の触媒が活性化された後は、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている。
 これによって、水素発生装置の使用前の還元処理を行う必要がなくなり、水素発生装置のコストを低減することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明の水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法によれば、還元が必要な触媒を備える水素発生装置において、触媒の還元を水素発生装置の設置後に実行することにより、低コスト化を図ることが可能となる。
図1は、本実施の形態1に係る水素発生装置を備える燃料電池システムの概略構成を模式的に示すブロック図である。 図2は、図1に示す燃料電池システムにおける水素生成器の概略構成を示す断面図である。 図3は、本実施の形態2に係る水素発生装置を備える燃料電池システムの概略構成を模式的に示すブロック図である。 図4は、第2脱硫器の上流、中流、及び下流のそれぞれに設置した温度検知器が検知した温度をプロットしたグラフである。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素を抜粋して図示しており、その他の構成要素については図示を省略している場合がある。さらに、本発明は以下の実施の形態に限定されない。
 (実施の形態1)
 本実施の形態1に係る水素発生装置は、原料ガス中の硫黄成分を常温で除去する第1脱硫器と、硫黄成分を水素化して除去する第2脱硫器と、第1脱硫器及び第2脱硫器のうちの少なくとも一方の脱硫器で硫黄が除去された原料ガスと水とを改質触媒を用いて水素を含む改質ガスに改質する改質器と、改質器からの改質ガスの一部を第2脱硫器に供給される原料ガスに混合するためのリサイクル経路と、を備える、水素発生装置において、水素発生装置の設置後又はメンテナンス後に、第2脱硫器の触媒がリサイクル経路を介して供給される改質ガスと原料ガスとの混合ガスにより活性化されるまでは、原料ガスは第1脱硫器を経由して改質器に供給され、第2脱硫器の触媒が活性化された後は、原料ガスは第2脱硫器を経由して改質器に供給されるように構成されている態様を例示するものである。
 また、本実施の形態1に係る水素発生装置では、原料ガスの供給先を第1脱硫器又は第2脱硫器に切り替える切替器と、制御器と、を備え、制御器が、水素発生装置の設置後又はメンテナンス後に、水素発生装置への原料ガスの供給量の積算値、原料ガスが水素発生装置に供給されている時間の積算値、及び水素発生装置の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第1閾値以上になるまで、原料ガスが第1脱硫器に供給されるように、切替器を制御して、改質ガスで第2脱硫器を還元させるように構成されていてもよい。
 さらに、本実施の形態1に係る水素発生装置の運転方法は、原料ガス中の硫黄成分を常温で除去する第1脱硫器と、硫黄成分を水素化して除去する第2脱硫器と、第1脱硫器及び第2脱硫器のうちの少なくとも一方の脱硫器で硫黄が除去された原料ガスと水とを改質触媒を用いて水素を含む改質ガスに改質する改質器と、改質器からの改質ガスの一部を第2脱硫器に供給される原料ガスに混合するためのリサイクル経路と、を備える、水素発生装置の運転方法において、還元されていない触媒を有する第2脱硫器を水素発生装置に搭載させる工程と、水素発生装置を設置する工程と、水素発生装置の設置後に、原料ガスを第1脱硫器に供給し、改質ガスで第2脱硫器を還元する工程と、を備える。
 以下、本実施の形態1に係る水素発生装置、及びそれを備える燃料電池システムの一例について、図1及び図2を参照しながら説明する。
 [燃料電池システムの構成]
 図1は、本実施の形態1に係る水素発生装置を備える燃料電池システムの概略構成を模式的に示すブロック図である。
 図1に示すように、本実施の形態1に係る水素発生装置100を備える燃料電池システム200は、燃料電池101と酸化剤ガス供給器102を備えている。燃料電池101は、燃料ガス流路101Aと酸化剤ガス流路101Bを有している。なお、燃料電池101としては、例えば、高分子電解質形燃料電池等を用いることができる。また、本実施の形態1で用いられる燃料電池101は、一般的な燃料電池と同様に構成されているため、その詳細な説明は省略する。
 燃料電池101の燃料ガス流路101Aには、燃料ガス供給路13を介して、水素発生装置100が接続されている。また、燃料電池101の酸化剤ガス流路101Bには、酸化剤ガス供給路15を介して、酸化剤ガス供給器102が接続されている。
 そして、水素発生装置100で生成された燃料ガスが、燃料ガス供給路13及び燃料ガス流路101Aを通流して、燃料電池101のアノード(図示せず)に供給される。また、酸化剤ガス供給器102から酸化剤ガスが、酸化剤ガス供給路15及び燃料電池101の酸化剤ガス流路101Bを通流して、燃料電池101のカソード(図示せず)に供給される。
 燃料電池101では、アノードに供給された燃料ガスとカソードに供給された酸化剤ガスが反応して電気と熱が発生する。なお、発生した電気は、図示されない電力調整器により、外部電力負荷(例えば、家庭の電気機器)に供給される。また、発生した熱は、図示されない熱媒体流路を通流する熱媒体が回収する。熱媒体が回収した熱は、例えば、水を加熱するのに使用することができる。
 燃料電池101で使用されなかった燃料ガス(以下、オフガス)は、燃料ガス排出路14を通流して、水素発生装置100の燃焼器12に供給され、燃焼用燃料として使用される。また、燃料電池101で使用されなかった酸化剤ガスは、酸化剤ガス排出路16を通流して、燃料電池システム200外に排出される。
 [水素発生装置の構成]
 次に、本実施の形態1に係る水素発生装置100について、図1及び図2を参照しながら説明する。
 まず、図1を参照しながら、水素発生装置100の概略構成について説明する。
 水素発生装置100は、第1脱硫器1、第2脱硫器2、改質器3、リサイクル経路6を備えていて、水素発生装置100の設置後又はメンテナンス後に、第2脱硫器2の触媒がリサイクル経路6を介して供給される改質ガスと原料ガスとの混合ガスにより活性化されるまでは、原料ガスは第1脱硫器1を経由して改質器3に供給され、第2脱硫器2の触媒が活性化された後は、原料ガスは第2脱硫器2を経由して改質器3に供給されるように構成されている。
 すなわち、本実施の形態1に係る水素発生装置100は、水素発生装置100の設置前の第2脱硫器2、又はメンテナンスにより、第2脱硫器2が交換された場合の第2脱硫器2は、該第2脱硫器2が有する触媒が還元されていない状態であり、水素発生装置100、ひいては燃料電池システム200の運転を実行する際に、第2脱硫器2の触媒を還元するように構成されている。
 水素発生装置100の第2脱硫器2、改質器3、CO除去器4、及び燃焼器12の周囲には、これらの機器を囲むように、断熱材20が配置されている。なお、以下においては、第2脱硫器2、改質器3、CO除去器4、燃焼器12、及び断熱材20等を水素生成器50という。
 改質器3には、原料ガス供給路11を介して、原料ガスが供給される。原料ガス供給路11の上流端には、原料ガス供給器8が接続されている。原料ガス供給器8には、原料ガス供給源である、天然ガス又はLPG等のインフラが接続されている。
 原料ガス供給器8は、原料ガス供給源から、改質器3にその流量を調整しながら原料ガスを供給するように構成されている。原料ガス供給器8は、例えば、昇圧器と流量調整弁との少なくともいずれか一方により構成される。昇圧器としては、ブースターポンプ等が例示される。
 なお、原料ガス供給器8は、原料ガスの供給や停止、原料ガスの流量の測定、原料ガスの流量の制御等の機能の一部を有している。また、本実施の形態1においては、原料ガス供給器8は、第1脱硫器1よりも上流側に配置したが、これに限定されない。原料ガス供給器8は、原料ガス供給路11のリサイクル経路6の下流端が接続される部分と、第2脱硫器2が設けられている部分との間の経路に配置してもよい。さらに、原料ガスとしては、天然ガス又はLPG等の炭化水素系燃料を使用することができる。
 原料ガス供給路11の途中には、第1脱硫器1と第2脱硫器2がこの順で設けられている。第1脱硫器1には、常温で硫黄化合物を除去する吸着脱硫剤が充填されている。吸着脱硫剤としては、活性炭、ゼオライト、又は金属化合物等を使用することができ、水素発生装置100を運転していないときの温度であっても、水素発生装置100を運転しているときの温度であっても、性能を発揮することができるものが用いられる。
 第2脱硫器2には、水素との反応により硫黄化合物を水素化して化学吸着する水添脱硫剤が充填されている。水添脱硫剤は、水添反応により硫化水素を生成する硫化水素生成剤と硫化水素を吸着する硫化水素吸着剤とを備える。水添脱硫剤としては、Cu-Znを主成分とした触媒が用いられ、触媒機能を発揮させるためには、還元する必要がある触媒が用いられる。
 すなわち、第2脱硫器2の水添脱硫剤は、水素発生装置100に充填された時には空気環境下で空気中の酸素により脱硫剤の全体もしくは一部が酸化されている状態であり、水添脱硫剤としての性能を発揮するためには、水素雰囲気下で、第2脱硫器2の温度を上げて、還元処理を行うことが必要となる。
 また、原料ガス供給路11の第1脱硫器1よりも上流側には、切替器7が設けられている。切替器7には、バイパスライン(バイパス経路)5の上流端が接続されている。バイパスライン5の下流端は、原料ガス供給路11の第1脱硫器1よりも下流側の部分に接続されている。
 切替器7は、原料ガス供給路11を通流する原料ガス等のガスの通流先を第1脱硫器1又は第2脱硫器2に切り替えるように構成されている。切替器7としては、三方弁が例示される。また、切替器7として、開閉弁を使用することができる。この場合、バイパスライン5の上流端は、原料ガス供給路11の第1脱硫器1よりも上流側の部分に接続されていて、バイパスライン5の途中と、原料ガス供給路11におけるバイパスライン5の上流端が接続されている部分と第1脱硫器1が設けられている部分との間の経路と、に開閉弁が設けられている。なお、原料ガス供給路11における第1脱硫器1が設けられている部分とバイパスライン5の下流端が接続されている部分との間の経路にも開閉弁を設けてもよい。
 さらに、原料ガス供給路11のバイパスライン5の下流端が接続されている部分と、第2脱硫器2が設けられている部分との間には、リサイクル経路6の下流端が接続されている。リサイクル経路6の上流端は、燃料ガス供給路13の途中に接続されている。また、リサイクル経路6の途中には、開閉弁17が設けられている。
 改質器3は、改質触媒を有している。改質触媒としては、例えば、原料と水蒸気とから水素含有ガスを発生させる水蒸気改質反応を触媒することができれば、どの様な物質を使用してもよく、Pt、Ru、Rh等の貴金属又はNi等の卑金属を使用することができる。また、改質器3の改質触媒としては、オートサーマル改質反応を行うことができる触媒を使用してもよい。
 改質器3では、原料ガス供給器8から供給され、硫黄化合物(硫黄成分)が除去された原料ガスと、別途供給された水蒸気と、の改質反応により、COを含んだ水素濃度が高い改質ガスが生成される。生成された改質ガスは、CO除去器4に供給される。
 CO除去器4は、改質ガス中のCOを除去するように構成されている。CO除去器4としては、変成触媒(例えば、Fe-Cr又はCu-Zn等)を有する変成器、又は酸化触媒(例えば、ルテニウム系触媒)を有する選択酸化器が例示される。そして、CO除去器4でCOを除去された改質ガスは、燃料ガスとして、燃料電池101に供給される。なお、CO除去器4は、メタン化触媒を有していていもよい。
 上述したように、燃料電池101で使用されなかったオフガス(燃焼用燃料)は、燃焼器12に供給される。燃焼器12は、バーナ又は燃焼触媒等で構成されている。燃焼器12では、オフガスと別途供給された空気(酸素)が燃焼して、燃焼排ガスが生成される。生成された燃焼排ガスは、燃焼排ガス経路18を通流して、燃料電池システム200外に排出される。なお、燃焼排ガスが生成されるときの熱により、第2脱硫器2、改質器3、及びCO除去器4が加熱される。また、水素発生装置100(燃料電池システム200)の起動時には、燃焼器12には、原料ガスが供給される。
 制御器9は、水素発生装置100を構成する各機器を制御する機器であれば、どのような形態であってもよい。制御器9は、マイクロプロセッサ、CPU等に例示される演算処理部と、各制御動作を実行するためのプログラムを格納した、メモリ等から構成される記憶部と、時計機能を有する計時部と、を備えている。そして、制御器9は、演算処理部が、記憶部に格納された所定の制御プログラムを読み出し、これを実行することにより、これらの情報を処理し、かつ、これらの制御を含む水素発生装置100に関する各種の制御を行う。
 なお、制御器9は、単独の制御器で構成される形態だけでなく、複数の制御器が協働して水素発生装置100の制御を実行する制御器群で構成される形態であっても構わない。また、制御器9は、燃料電池システム200を構成する各機器も制御するように構成されている。さらに、制御器9は、マイクロコントロールで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。
 次に、図2を参照しながら、水素発生装置100(正確には、水素生成器50)の構成をさらに詳細に説明する。
 図2は、図1に示す燃料電池システムにおける水素生成器の概略構成を示す断面図である。
 図2に示すように、水素生成器50は、複数の同心円状の4重管形状を有し、内側から順に、第1筒21、第2筒22、第3筒23、及び第4筒24が配置されている。なお、第4筒24は、段部を有していて、上部の直径が下部の直径よりも大きくなるように形成されている。
 第1筒21の内部には、燃焼器12が配置されている。また、第1筒21と第2筒22の間に形成される環状空間により、燃焼排ガス流路25が形成される。これにより、燃焼器12で生成された燃焼排ガスが、燃焼排ガス流路25を通流する間に、改質器3等が加熱される。
 第2筒22と第3筒23の間に形成される環状空間の下部には、改質器3が配置されている。また、改質器3の上方の空間が、蒸発器26を構成する。蒸発器26では、水素発生装置100外から供給された水が、加熱されて水蒸気となり、水蒸気と原料ガスが混合されて、改質器3に供給される。
 第3筒23と第4筒24の間に形成される環状空間の上部には、CO除去器4が配置されている。具体的には、変成器4aと選択酸化器4bが配置されていて、変成器4aが選択酸化器4bの下方に配置されている。また、変成器4aと選択酸化器4bの間には、選択酸化器4bに空気を供給するための空気流路27が接続されている。
 また、第4筒24の外方には、さらに同心円状の第5筒28及び第6筒29が配置されている。第5筒28と第6筒29との間に形成される環状空間には、第2脱硫器2が配置されている。第2脱硫器2には、原料ガス供給路11を構成する配管が、該第2脱硫器2を上下方向に突き抜けるように、設けられている。これにより、原料ガス供給路11を通流する原料ガスが、第2脱硫器2の下部に放出される。そして、原料ガスは、第2脱硫器2の下部から上部に向かって通流するため、第2脱硫器2内を均一に流れる。第2脱硫器2内で脱硫された原料ガスは、原料ガス供給路11を通流して、蒸発器26に供給される。
 このように構成された水素生成器50は、改質器3の温度を所定の温度(例えば、550~700℃)にすると、第2脱硫器2及びCO除去器4の温度が、それぞれ、所定の温度(例えば、第2脱硫器2が200~300℃、変成器4aが200~320℃、及び選択酸化器4bが120~160℃)になるように、設計されている。
 なお、改質器3等の加熱は、燃焼器12で生成された燃焼排ガスからの伝熱だけでなく、ヒータを改質器3等の周囲に配置して、該ヒータを作動させることにより、改質器3等の加熱を行ってもよい。
 また、上述したように、第2脱硫器2における水素による還元反応は発熱反応であるため、第2脱硫器2に供給される水素量に応じて、第2脱硫器2は昇温する。一方、脱硫剤には耐熱限界(Cu-Zn触媒では300℃)が存在するため、リサイクル経路6により供給される水素量が、脱硫剤の温度が耐熱限界を超えないように、リサイクル経路6は構成されている。具体的には、例えば、リサイクル経路6の途中に、流量調整弁又はオリフィス等を設けて、リサイクル経路6を通流する燃料ガスの流量を調整する。
 [水素発生装置及び燃料電池システムの動作]
 次に、図1及び図2を参照しながら、本実施の形態1に係る水素発生装置100及びこれを備える燃料電池システム200の動作について説明する。なお、本実施の形態1に係る水素発生装置100の水素発生動作は、通常の水素発生装置の水素発生動作と同様に行われ、燃料電池システム200の発電動作は、通常の燃料電池システムの発電動作と同様に行われるので、これらの詳細な説明は省略する。
 まず、本実施の形態1に係る水素発生装置100では、第2脱硫器2の脱硫剤として、Cu-Zn触媒を使用しており、当該触媒は、還元されていない状態で水素発生装置100に搭載されている。そして、触媒を還元していない状態で、水素発生装置100及びこれを備える燃料電池システム200は設置される。
 水素発生装置100及び燃料電池システム200の設置後、燃料電池システム200の発電運転を開始するときに、制御器9は、原料ガスが第1脱硫器1を通流するように、切替器7を制御する。これにより、原料ガス中に含まれる硫黄化合物は、第1脱硫器1で吸着される。
 第1脱硫器1で脱硫された原料ガスは、原料ガス供給路11を通流して、改質器3に供給される。改質器3では、原料ガスと別途供給された水蒸気との改質反応により、改質ガスが生成される。生成された改質ガスは、CO除去器4に供給される。CO除去器4では、改質ガス中に含まれるCOが数ppm程度にまで低減され、燃料ガスが生成される。
 生成された燃料ガスは、燃料ガス供給路13を通流して、燃料電池101に供給される。燃料ガス供給路13を通流する燃料ガスの一部(以下、リサイクルガスという)は、リサイクル経路6を通流して、原料ガス供給路11を通流する原料ガスと混合されて、第2脱硫器2に供給される。
 第2脱硫器2に供給された燃料ガス(水素ガス)は、第2脱硫器2の還元されていないCu-Zn触媒を還元する(活性化する)。そして、制御器9は、第2脱硫器2内の所定量(例えば、全量の50%以上、好ましくは、全量の70%以上)、又は全量のCu-Zn触媒が還元されたと判断すると、原料ガスが、バイパスライン5を通流して(第1脱硫器1をバイパスして)、第2脱硫器2に供給されるように、切替器7を制御する。
 ここで、切替器7による原料ガスの供給先の切り替えは、水素発生装置100への原料ガスの供給量の積算値、原料ガスが水素発生装置100に供給されている時間の積算値、及び水素発生装置の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第1閾値以上になったときに行ってもよい。なお、第1閾値は、水素発生装置100の運転条件に基づいて設定される。
 例えば、水素生成器50(改質器3)で生成される燃料ガス(改質ガス)中の水素量は原料ガス流量に応じてほぼ決まるため、原料ガス供給器8で原料ガス流量を測定して、その積算値を把握すれば、生成ガス中の水素量が算出できる。このため、リサイクル経路6を流れる水素量が予測でき、第2脱硫器2に供給された水素量を把握することができる。第2脱硫器2の脱硫剤の還元状態は供給された水素量で決まるため、供給された水素の総量を把握することで、第2脱硫器2内の触媒が十分に還元されたかどうかは判断できる。したがって、制御器9は、水素発生装置100への原料ガスの供給量の積算値が、第2脱硫器2内の触媒が十分に還元される量である、第1閾値以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 また、原料ガス供給器8で原料ガスの流量を直接測定しなくても、原料ガスが流れているかどうかが把握できれば、制御器9で原料ガスが流れている時間を積算することで、少なくとも原料ガスがどれくらい流れているか予測できる。このため、上記と同様に、原料ガスが水素発生装置100に供給されている時間の積算値を把握することで、第2脱硫器2に供給された水素量を把握することができる。したがって、制御器9は、原料ガスが水素発生装置100に供給されている時間の積算値が、第2脱硫器2内の触媒が十分に還元される量である、第1閾値以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 さらに、原料ガスが通流している時間は、制御器9に水素発生装置100の起動指令が入力されてから、暖機運転(例えば、第2脱硫器2等をヒータで昇温する)等の時間を除くと、水素発生装置100の運転時間とほぼ同じである。また、暖機運転を行う時間の長さは、予め想定することができる。このため、暖機運転等の時間を考慮して、水素発生装置100の運転時間の積算値を把握することで、第2脱硫器2に供給された水素量を把握することができる。したがって、制御器9は、水素発生装置100の運転時間の積算値が、第2脱硫器2内の触媒が十分に還元される量である、第1閾値以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 具体的には、例えば、第2脱硫器2内のCu-Zn触媒の容量が、2Lであり、1LのCu-Zn触媒を還元するのに必要な水素ガス量が200Lであるとする。また、図1および図2に示す水素発生装置100において、原料ガスの流量が3L/minのとき、リサイクル経路6を通流するリサイクルガスの流量が300mL/minであり、リサイクルガス300mL中の水素ガス量が200mLであるとする。
 このような水素発生装置100の運転条件において、第2脱硫器2内のCu-Zn触媒を完全に還元するためには、400(L)/0.2(L/min)/60(min)=33.3(h)必要となる。
 このため、原料ガスが水素発生装置100に供給されている時間の積算値の第1閾値は、33.3h(≒34h)となる。また、水素発生装置100への原料ガスの供給量の積算値の第1閾値は、3(L/min)×33.3(h)×60(min/h)=5994Lとなる。
 さらに、暖機運転に0.4h必要とし、34h原料ガスを供給する間に、起動及び停止を5回行ったとすると、水素発生装置100の運転時間の積算値の第1閾値は、34(h)+0.4(h)×5=36hとなる。
 このように、第1閾値は、水素発生装置100の運転条件、例えば、第2脱硫器2のCu-Zn触媒の容量、原料ガス及びリサイクルガスの流量、及びリサイクルガス中の水素ガスの含有量等に基づいて、適宜設定することができる。
 このように構成された、本実施の形態1に係る水素発生装置100及びそれを備える燃料電池システム200は、第2脱硫器2のCu-Zn触媒を還元せずに水素発生装置100に搭載して、水素発生装置100の設置後に、水素発生装置100の使用中にCu-Zn触媒を還元することで、設置前に触媒を還元する従来の水素発生装置及びこれを備える燃料電池システムに比して、低コスト化を図ることができる。
 なお、上記の「原料ガス流量の積算値」、「原料ガスが流れている時間の積算値」、又は「運転時間の積算値」の積算は、水素発生装置が製造された後に水素発生装置として使用され始めたときからの積算値のことである。また、その積算の開始は装置を実際使用する場所に設置した後の初めての運転時から開始してもよく、実際に使用する場所に設置する前、又は設置した後に、装置の状況を確認するために行う試運転時から開始してもよい。
 [変形例1]
 次に、本実施の形態1に係る水素発生装置100及びこれを備える燃料電池システム200の変形例について説明する。
 本実施の形態1における変形例1の水素発生装置及びこれを備える燃料電池システムは、燃料電池システムの発電量の積算値及び発電時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第3閾値以上になると、原料ガスが第2脱硫器を経由して改質器に供給されるように構成されている態様を例示するものである。なお、本変形例1における水素発生装置100及びこれを備える燃料電池システム200の構成は、実施の形態1に係る水素発生装置100及びこれを備える燃料電池システム200の構成と同じであるため、その詳細な説明は省略する。
 [水素発生装置及び燃料電池システムの動作]
 上述したように、原料ガス流量の積算値から、燃料ガス中の水素量が算出できる。そして、水素量から、燃料電池システム200で発電される発電量も算出することができる。したがって、制御器9は、燃料電池システム200の発電量の積算値が、第2脱硫器2内の触媒が十分に還元される量である、第3閾値以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 なお、制御器9は、燃料電池システム200の発電量を、図1及び図2では図示されない電力調整器から取得してもよい。また、第3閾値は、第1閾値を基に算出することができる。
 また、水素発生装置100の運転時間は、燃料電池システム200の運転時間とほぼ同じである。したがって、制御器9は、燃料電池システム200の運転時間の積算値が、第2脱硫器2内の触媒が十分に還元される量である、第3閾値以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 このように構成された本変形例1の水素発生装置100及びこれを備える燃料電池システム200であっても、実施の形態1に係る水素発生装置100及びこれを備える燃料電池システム200と同様の作用効果を奏する。
 (実施の形態2)
 本実施の形態2に係る水素発生装置は、第2脱硫器の温度を検知する温度検知器を備え、温度検知器が検知する第2脱硫器の温度が、予め定められる第1温度以上になると、原料ガスが第2脱硫器を経由して改質器に供給されるように構成されている態様を例示するものである。
 また、本実施の形態2に係る水素発生装置では、原料ガスの供給先を第1脱硫器又は第2脱硫器に切り替える切替器と、制御器と、を備え、水素発生装置が、該水素発生装置の運転時に第2脱硫器が予め設定された第3温度になるように設計されており、制御器は、水素発生装置の設置後又はメンテナンス後に、温度検知器が検知する温度が、第3温度よりも高い温度である第1温度以上の温度を検知するまで、原料ガスが第1脱硫器に供給されるように、切替器を制御して、改質ガスで第2脱硫器を還元させるように構成されていてもよい。
 さらに、本実施の形態2に係る水素発生装置の運転方法は、原料ガス中の硫黄成分を常温で除去する第1脱硫器と、硫黄成分を水素化して除去する第2脱硫器と、第1脱硫器及び第2脱硫器のうちの少なくとも一方の脱硫器で硫黄が除去された原料ガスと水とを改質触媒を用いて水素を含む改質ガスに改質する改質器と、改質器からの改質ガスの一部を第2脱硫器に供給される原料ガスに混合するためのリサイクル経路と、第2脱硫器の温度を検知する温度検知器と、を備える、水素発生装置の運転方法において、水素発生装置が、該水素発生装置の運転時に第2脱硫器が予め設定された第3温度になるように設計されており、還元されていない触媒を有する第2脱硫器を水素発生装置に搭載させる工程と、水素発生装置を設置する工程と、水素発生装置の設置後に、温度検知器が検知する温度が、第3温度よりも高い温度である第1温度以上の温度を検知するまで、原料ガスを第1脱硫器に供給し、改質ガスで第2脱硫器を還元する工程と、を備える。
 [燃料電池システムの構成]
 図3は、本実施の形態2に係る水素発生装置を備える燃料電池システムの概略構成を模式的に示すブロック図である。
 図3に示すように、本実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200は、実施の形態1に係る100及びこれを備える燃料電池システム200と基本的構成は同じであるが、第2脱硫器2の温度を検知する温度検知器10が設けられている点が異なる。
 温度検知器10は、第2脱硫器2を構成する第5筒28又は第6筒29の表面温度、又は第2脱硫器2内のCu-Zn触媒の温度を直接検知し、検知した温度を制御器9に出力するように構成されている。温度検知器10としては、例えば、熱電対やサーミスタ等の温度センサーを用いることができる。
 [水素発生装置及び燃料電池システムの動作]
 次に、図3及び図4を参照しながら、本実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200の動作について説明する。なお、本実施の形態2に係る水素発生装置100の水素発生動作は、通常の水素発生装置の水素発生動作と同様に行われ、燃料電池システム200の発電動作は、通常の燃料電池システムの発電動作と同様に行われるので、これらの詳細な説明は省略する。
 上述したように、水素発生装置100(水素生成器50)は、改質器3の温度を所定の温度(例えば、550~700℃)にすると、第2脱硫器2の温度が、200~300℃(第3温度)になるように設計されている。また、第2脱硫器2のCu-Zn触媒の還元時には、発熱して、第2脱硫器2の温度が昇温する。
 ここで、図4を参照しながら、第2脱硫器2のCu-Zn触媒の還元時における、第2脱硫器2の温度状態について、説明する。
 図4は、第2脱硫器の上流、中流、及び下流のそれぞれに設置した温度検知器が検知した温度をプロットしたグラフである。なお、図4の第2温度については、後述する。
 図4においては、以下の条件での結果を示している。図2に示す水素生成器50を用いて、第2脱硫器2の上流部分の周囲にヒータを設置し、上流の温度検知器が検知する温度が、一定値になるように、ヒータをON-OFF制御して、第2脱硫器2を加熱している。そして、燃焼器12で生成された燃焼排ガスで水素生成器50全体を加熱し、第2脱硫器2にリサイクルガスを供給して、第2脱硫器2を還元したときの各温度検知器が検知した温度をプロットしている。
 図4に示すように、第2脱硫器2内の温度は、まず、中流部分の温度が昇温し、ついで、下流部分の温度が昇温している。また、中流部分及び下流部分ともに、昇温した後、温度が低下している。
 これは、リサイクルガスが供給されて、触媒が還元されるときに、還元されている箇所で反応熱が生じ、当該部分が局所的に上昇するためである。そして、触媒の還元が終了すると、水素が供給されても還元は行われないため、反応熱も生じず、温度が低下する。
 また、触媒の還元が終了すると、当該部分で水素が消費されないので、下流側に十分の水素を含有するリサイクルガスが流れ、下流側部分で、触媒の還元が行われる。このため、下流側は上流側よりも遅れて昇温する。
 したがって、水素発生装置100の運転時に第2脱硫器2が予め設定された第3温度(例えば、250℃)になるように設計されている場合、温度検知器10が検知する温度が、第3温度よりも高い温度である第1温度(例えば、260~280℃)以上の温度を検知したときに、第2脱硫器2のCu-Zn触媒が十分に還元されたと判断することができる。このため、制御器9は、温度検知器10が検知する温度が、第3温度よりも高い温度である第1温度以上となると、切替器7による原料ガスの供給先の切り替えを行えばよい。
 なお、第1温度は一定値(例えば、270℃)としてもよく、水素発生装置100の運転条件に基づいて設定してもよく、予め実験等により設定することができる。例えば、第2脱硫器2の周囲にヒータを配置して、第2脱硫器2の温度を所定値に保つように、ヒータを制御する場合には、第1温度は一定値に設定されていてもよい。
 また、第2脱硫器2の温度が、水素発生装置100の運転条件によって変動する場合には、第1温度は、水素発生装置100の運転条件に基づいて設定することが好ましい。例えば、図2に示す水素生成器50を有する水素発生装置100の場合、燃焼器12で生成された燃焼排ガスからの伝熱により、改質器3の温度を所定の温度にすると、第2脱硫器2の温度が、所定の温度になるように設計されている。
 水素発生装置100で生成する燃料ガスを増加させる場合(燃料電池システム200の発電量を増加させる場合)、水素発生装置100に供給される原料ガスの流量及び流速は大きくなる。このため、第2脱硫器2及び該第2脱硫器2内を挿通する原料ガス供給路11内の原料ガスによって、第2脱硫器2の温度が、設定されている所定の温度よりも低くなる。
 一方、水素発生装置100で生成する燃料ガスを減少させる場合(燃料電池システム200の発電量を減少させる場合)、水素発生装置100に供給される原料ガスの流量及び流速は小さくなる。このため、第2脱硫器2の温度が、設定されている所定の温度よりも高くなる。
 したがって、燃料電池システム200を定格条件で運転し、第2脱硫器2のCu-Zn触媒を還元する場合に比して、燃料電池システム200を定格条件よりも低い、低負荷条件(例えば、定格条件の1/3の発電量)で運転する場合の方が、第1温度を定格条件の時よりも高い温度に設定することで、第2脱硫器2のCu-Zn触媒が十分に還元されたことを、より正確に判断することができる。
 具体的には、例えば、燃料電池システム200を定格条件で運転する場合には、第1温度を240~260℃で設定し、燃料電池システム200を低負荷条件(例えば、定格条件の1/3の発電量)で運転する場合には、第1温度を270~280℃と設定してもよい。
 なお、温度検知器10は、第2脱硫器2における温度検知器10が配置されている部分よりも上流側の部分の触媒が還元されたことを検知することができるので、温度検知器10は、第2脱硫器2の下流部(下流部分)の温度を検知するように構成されていることが好ましい。ここで、第2脱硫器2の下流部は、例えば、図2を用いて説明すると、第2脱硫器2の上流端から(上方向に向かって)上下方向の長さ寸法の1/2の部分から第2脱硫器2の下流端までの間の領域をいう。
 温度検知器10よりも下流側に配置されている触媒は、温度検知器10が第1温度を検知した時には、まだ還元が完了されていないが、水素発生装置100の運転を継続することで、第2脱硫器2にリサイクルガスが供給され、温度検知器10よりも下流側に配置されている触媒の還元が行われる。
 このように構成された、本実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200であっても、実施の形態1に係る水素発生装置100及びこれを備える燃料電池システム200と同様の作用効果を奏する。
 [変形例1]
 次に、本実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200の変形例について説明する。
 本実施の形態2における変形例1の水素発生装置は、温度検知器が検知する第2脱硫器の温度が、予め定められる第1温度以上になった後に第1温度より低い第2温度以下になると、原料ガスが第2脱硫器を経由して改質器に供給されるように構成されている態様を例示するものである。なお、本変形例1における水素発生装置100及びこれを備える燃料電池システム200の構成は、実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200の構成と同じであるため、その詳細な説明は省略する。
 [水素発生装置及び燃料電池システムの動作]
 上述したように、第2脱硫器2内の温度は、昇温した後、低下する(図4参照)。このため、温度検知器10が検知する温度が、第1温度以上の温度を検知した後に、該第1温度よりも低い温度である第2温度以下の温度を検知したときに、第2脱硫器2のCu-Zn触媒が十分に還元されたことが、より正確に判断することができる。
 ここで、「第1温度以上の温度を検知した後に、該第1温度よりも低い温度である第2温度以下の温度を検知したとき」とは、水素発生装置100の運転中(燃料電池システム200の発電運転中;水素発生装置100の燃料ガス生成中)をいい、水素発生装置100の起動処理時、又は水素発生装置100の停止時(停止処理時を含む)に温度検知器10が第2温度を検知した場合を除くものである。
 したがって、制御器9は、温度検知器10が、第1温度以上の温度を検知した後に、第2温度以下の温度を検知したときに、切替器7による原料ガスの供給先の切り替えを行えばよい。なお、第2温度は、水素発生装置100の運転時における第2脱硫器2の温度であるため、第3温度以上の温度となる。
 また、第2温度は一定値(例えば、240℃)としてもよく、水素発生装置100の運転条件に基づいて設定してもよく、予め実験等により設定することができる。第2脱硫器2の温度が、水素発生装置100の運転条件によって変動する場合には、第1温度と同様に、燃料電池システム200を定格条件で運転する場合に比して、燃料電池システム200を低負荷条件(例えば、定格条件の1/3の発電量)で運転する場合の方が、第2温度を高い温度に設定することで、第2脱硫器2のCu-Zn触媒が十分に還元されたことを、より正確に判断することができる。
 具体的には、例えば、燃料電池システム200を定格条件で運転する場合には、第2温度を200~230℃で設定し、燃料電池システム200を低負荷条件(例えば、定格条件の1/3の発電量)で運転する場合には、第2温度を240~250℃と設定してもよい。
 このように構成された、本変形例1の水素発生装置100及びこれを備える燃料電池システム200であっても、実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200と同様の作用効果を奏する。
 [変形例2]
 本実施の形態2における変形例2の水素発生装置は、温度検知器が検知する第2脱硫器の温度が予め定められる第1温度以上になった後に、水素発生装置への原料ガスの供給量の積算値、原料ガスが水素発生装置に供給されている時間の積算値、及び水素発生装置の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第2閾値以上になると、原料ガスが第2脱硫器を経由して改質器に供給されるように構成されている態様を例示するものである。なお、本変形例2における水素発生装置100及びこれを備える燃料電池システム200の構成は、実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200の構成と同じであるため、その詳細な説明は省略する。
 [水素発生装置及び燃料電池システムの動作]
 変形例2の水素発生装置100及び燃料電池システム200は、変形例1の水素発生装置100及び燃料電池システム200と基本的動作は同じであるが、温度検知器10が第1温度を検知した後の動作が異なる。具体的には、水素発生装置100への原料ガスの供給量の積算値、原料ガスが水素発生装置100に供給されている時間の積算値、及び水素発生装置100の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第2閾値以上になると、原料ガスが第2脱硫器2を経由して改質器3に供給されるように構成されている。
 すなわち、本変形例2では、温度検知器10が検知する温度が第2温度以下になるタイミングを、水素発生装置100への原料ガスの供給量の積算値、原料ガスが水素発生装置100に供給されている時間の積算値、及び水素発生装置100の運転時間の積算値のうちの少なくとも一つの値で判断するように構成されている。このため、第2閾値は、予め実験等により設定することができる。なお、第2閾値は、上記第2温度と同様に、水素発生装置100の運転条件に基づいて設定してもよい。
 このように構成された、本変形例2の水素発生装置100及びこれを備える燃料電池システム200であっても、変形例1の水素発生装置100及びこれを備える燃料電池システム200と同様の作用効果を奏する。
 (実施の形態3)
 本実施の形態3に係る水素発生装置は、第2脱硫器の温度を検知する温度検知器と、第1脱硫器をバイパスして、第2脱硫器に原料ガスを供給するように構成されたバイパス経路と、を備え、第2脱硫器が活性化された後、温度検知器が検知する温度が第1温度よりも低い温度である第3温度未満であれば原料ガスを第1脱硫器に供給し、温度検知器の温度が第3温度になれば原料ガスはバイパス経路を介して第2脱硫器に供給されるように構成されている態様を例示するものである。なお、本実施の形態3に係る水素発生装置100及びこれを備える燃料電池システム200の構成は、実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200の構成と同じであるため、その詳細な説明は省略する。
 [水素発生装置及び燃料電池システムの動作]
 上述したように、水素発生装置100(水素生成器50)は、改質器3の温度を所定の温度にすると、第2脱硫器2の温度が、第3温度になるように設計されている。なお、第3温度は、第2脱硫器2のCu-Zn触媒が、原料ガス中の硫黄化合物を脱硫することができる温度領域である。
 このため、第2脱硫器2が活性化された後、第2脱硫器2の温度が第3温度になれば、改質器3で改質ガス(水素ガス)が十分に生成されており、第2脱硫器2で原料ガス中の硫黄化合物を脱硫することができる。一方、第2脱硫器2の温度が、第3温度未満である場合、第2脱硫器2にリターンガスを供給しても、原料ガス中の硫黄化合物を脱硫することができない。
 したがって、制御器9は、第2脱硫器2が活性化された後、第2脱硫器2の温度が第3温度未満である場合には、原料ガスを第1脱硫器1に供給して、該第1脱硫器1で硫黄化合物を脱硫させ、第2脱硫器2の温度が第3温度になると、第2脱硫器2に原料ガスが供給されるように、切替器7を制御する。
 このように構成された、本実施の形態3に係る水素発生装置100及びこれを備える燃料電池システム200であっても、実施の形態2に係る水素発生装置100及びこれを備える燃料電池システム200と同様の作用効果を奏する。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明の水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法は、還元処理が必要な脱硫剤を使用した小型の水素発生装置において、製造時の還元処理工程を廃止することで、低コスト化を実現することができ、燃料電池の分野で有用である。
 1 第1脱硫器
 2 第2脱硫器
 3 改質器
 4 CO除去器
 4a 変成器
 4b 選択酸化器
 5 バイパスライン
 6 リサイクル経路
 7 切替器
 8 原料ガス供給器
 9 制御器
 10 温度検知器
 11 原料ガス供給路
 12 燃焼器
 13 燃料ガス供給路
 14 燃料ガス排出路
 15 酸化剤ガス供給路
 16 酸化剤ガス排出路
 17 開閉弁
 18 燃焼排ガス経路
 20 断熱材
 21 第1筒
 22 第2筒
 23 第3筒
 24 第4筒
 25 燃焼排ガス流路
 26 蒸発器
 27 空気流路
 28 第5筒
 29 第6筒
 50 水素生成器
 100 水素発生装置
 101 燃料電池
 101A 燃料ガス流路
 101B 酸化剤ガス流路
 102 酸化剤ガス供給器
 200 燃料電池システム
 
 
 
 

Claims (15)

  1.  原料ガス中の硫黄成分を常温で除去する第1脱硫器と、
     前記硫黄成分を水素化して除去する第2脱硫器と、
     前記第1脱硫器及び前記第2脱硫器のうちの少なくとも一方の脱硫器で硫黄成分が除去された前記原料ガスから水素を含む改質ガスを生成する改質器と、
     前記改質器で生成された前記改質ガスの一部を前記第2脱硫器に供給される前記原料ガスに混合するためのリサイクル経路と、を備える、水素発生装置において、
     前記水素発生装置の設置後又はメンテナンス後に、前記第2脱硫器の触媒が前記リサイクル経路を介して供給される前記改質ガスと前記原料ガスとの混合ガスにより活性化されるまでは、前記原料ガスは前記第1脱硫器を経由して前記改質器に供給され、
     前記第2脱硫器の触媒が活性化された後は、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、水素発生装置。
  2.  前記第2脱硫器の触媒が前記リサイクル経路を介して供給される前記改質ガスにより還元された場合に、前記第2脱硫器の触媒が活性化されたと判断されるように構成されている、請求項1に記載の水素発生装置。
  3.  前記水素発生装置への前記原料ガスの供給量の積算値、前記原料ガスが前記水素発生装置に供給されている時間の積算値、及び前記水素発生装置の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第1閾値以上になると前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、請求項1又は2に記載の水素発生装置。
  4.  前記第2脱硫器の温度を検知する温度検知器を備え、
     前記温度検知器が検知する前記第2脱硫器の温度が、予め定められる第1温度以上になると、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、請求項1又は2に記載の水素発生装置。
  5.  前記温度検知器が検知する前記第2脱硫器の温度が、予め定められる第1温度以上になった後に前記第1温度より低い第2温度以下になると、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、請求項4に記載の水素発生装置。
  6.  前記温度検知器が検知する前記第2脱硫器の温度が予め定められる第1温度以上になった後に、前記水素発生装置への前記原料ガスの供給量の積算値、前記原料ガスが前記水素発生装置に供給されている時間の積算値、及び前記水素発生装置の運転時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第2閾値以上になると、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、請求項4に記載の水素発生装置。
  7.  前記温度検知器が、前記第2脱硫器の下流部の温度を検知するように構成されている、請求項4~6のいずれか1項に記載の水素発生装置。
  8.  前記第1閾値は、前記水素発生装置の運転条件に基づいて設定される、請求項3に記載の水素発生装置。
  9.  前記第1温度は、前記水素発生装置の運転条件に基づいて設定される、請求項4~6のいずれか1項に記載の水素発生装置。
  10.  前記第2温度は、前記水素発生装置の運転条件に基づいて設定される、請求項5に記載の水素発生装置。
  11.  前記第2閾値は、前記水素発生装置の運転条件に基づいて設定される、請求項6に記載の水素発生装置。
  12.  前記第2脱硫器の温度を検知する温度検知器と、
     前記第1脱硫器をバイパスして、前記第2脱硫器に前記原料ガスを供給するように構成されたバイパス経路と、を備え、
     前記第2脱硫器が活性化された後、前記温度検知器が検知する温度が前記第1温度よりも低い温度である第3温度未満であれば前記原料ガスを前記第1脱硫器に供給し、前記温度検知器の温度が前記第3温度になれば前記原料ガスは前記バイパス経路を介して前記第2脱硫器に供給されるように構成されている、請求項1~10のいずれか1項に記載の水素発生装置。
  13.  請求項1又は2に記載の水素発生装置を備える燃料電池システムであって、
     前記燃料電池システムの発電量の積算値及び発電時間の積算値のうちの少なくとも一つの値が、それぞれ予め定められる第3閾値以上になると、前記原料ガスが前記第2脱硫器を経由して前記改質器に供給されるように構成されている、燃料電池システム。
  14.  請求項1~12のいずれか1項に記載の水素発生装置を備える、燃料電池システム。
  15.  原料ガス中の硫黄成分を常温で除去する第1脱硫器と、
     前記硫黄成分を水素化して除去する第2脱硫器と、
     前記第1脱硫器及び前記第2脱硫器のうちの少なくとも一方の脱硫器で硫黄成分が除去された前記原料ガスから改質ガスを生成する改質器と、
     前記改質器で生成された前記改質ガスの一部を前記第2脱硫器に供給される前記原料ガスに混合するためのリサイクル経路と、を備える、水素発生装置の運転方法において、
     前記水素発生装置の設置後又はメンテナンス後に、前記第2脱硫器の触媒が前記リサイクル経路を介して供給される前記改質ガスと前記原料ガスとの混合ガスにより活性化されるまでは、前記原料ガスは前記第1脱硫器を経由して前記改質器に供給され、
     前記第2脱硫器の触媒が活性化された後は、前記原料ガスは前記第2脱硫器を経由して前記改質器に供給される、水素発生装置の運転方法。
     
     
     
PCT/JP2012/003738 2011-06-08 2012-06-07 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法 WO2012169199A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012552175A JP5681211B2 (ja) 2011-06-08 2012-06-07 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法
EP12796524.2A EP2719658B1 (en) 2011-06-08 2012-06-07 Method of operating a hydrogen generation apparatus
US14/115,563 US9005829B2 (en) 2011-06-08 2012-06-07 Hydrogen generation apparatus, fuel cell system including the same, and method of operating hydrogen generation apparatus
RU2013158879/05A RU2013158879A (ru) 2011-06-08 2012-06-07 Устройство генерации водорода, система топливного элемента, включающая такое устройство, и способ применения устройства генерации водорода

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011127870 2011-06-08
JP2011-127870 2011-06-08
JP2011248330 2011-11-14
JP2011-248330 2011-11-14

Publications (1)

Publication Number Publication Date
WO2012169199A1 true WO2012169199A1 (ja) 2012-12-13

Family

ID=47295782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003738 WO2012169199A1 (ja) 2011-06-08 2012-06-07 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法

Country Status (5)

Country Link
US (1) US9005829B2 (ja)
EP (1) EP2719658B1 (ja)
JP (1) JP5681211B2 (ja)
RU (1) RU2013158879A (ja)
WO (1) WO2012169199A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644564A1 (fr) * 2012-03-27 2013-10-02 IFP Energies nouvelles Réacteur de désulfuration temporaire permettant le prétraitement d'une charge hydrocarbonée avant vaporéformage en vue d'une production d'hydrogène
JP2014181151A (ja) * 2013-03-19 2014-09-29 Panasonic Corp 水素生成装置
WO2014167850A1 (ja) * 2013-04-09 2014-10-16 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
EP2985259A4 (en) * 2013-04-11 2016-04-13 Panasonic Ip Man Co Ltd HYDROGEN GENERATING DEVICE AND FUEL CELL SYSTEM EQUIPPED WITH SAME

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312554B2 (en) * 2011-05-27 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
US20150303502A1 (en) * 2012-12-17 2015-10-22 Panasonic Intellectual Property Management Management Co., Ltd. Hydrogen generator
JP5589155B1 (ja) 2012-12-27 2014-09-17 パナソニック株式会社 水素生成装置及び燃料電池システム
JP6284102B2 (ja) * 2013-01-16 2018-02-28 パナソニックIpマネジメント株式会社 水素生成装置及び燃料電池システム
EP2919310B1 (en) 2014-03-14 2018-07-11 Panasonic Corporation Fuel cell system
FR3040313B1 (fr) * 2015-08-24 2017-08-25 Air Liquide Echangeur-reacteur integrant les reactions de vaporeformage et de gaz a l'eau pour la production d'hydrogene
CN109241643B (zh) * 2018-09-19 2023-04-14 深圳信息职业技术学院 重整反应制氢过程反应模压装置温度场分布确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275697A (ja) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp 改質装置
JP2003017109A (ja) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd 固体高分子型燃料電池発電システム及び固体高分子型燃料電池発電方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2006008459A (ja) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd 水素生成装置、および燃料電池システム
JP2006092764A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 脱硫用改質リサイクルガスの供給システムを備えた燃料電池発電装置
JP2009249203A (ja) * 2008-04-02 2009-10-29 Tokyo Gas Co Ltd 燃料電池の燃料水素製造用原燃料の脱硫システム
JP2010044885A (ja) * 2008-08-09 2010-02-25 Tokyo Gas Co Ltd 燃料電池の燃料水素製造用原燃料の前処理システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968580B1 (ko) 2007-11-06 2010-07-08 (주)퓨얼셀 파워 다중 탈황 구조를 갖는 연료처리장치 및 이를 구비한연료전지 시스템
US9334164B2 (en) 2009-12-25 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
JP5636001B2 (ja) 2009-12-25 2014-12-03 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
EP2716597B1 (en) 2011-05-27 2019-09-11 Panasonic Intellectual Property Management Co., Ltd. Hydrogen-generating device and fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275697A (ja) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp 改質装置
JP2003017109A (ja) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd 固体高分子型燃料電池発電システム及び固体高分子型燃料電池発電方法
JP2003272691A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
JP2006008459A (ja) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd 水素生成装置、および燃料電池システム
JP2006092764A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 脱硫用改質リサイクルガスの供給システムを備えた燃料電池発電装置
JP2009249203A (ja) * 2008-04-02 2009-10-29 Tokyo Gas Co Ltd 燃料電池の燃料水素製造用原燃料の脱硫システム
JP2010044885A (ja) * 2008-08-09 2010-02-25 Tokyo Gas Co Ltd 燃料電池の燃料水素製造用原燃料の前処理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644564A1 (fr) * 2012-03-27 2013-10-02 IFP Energies nouvelles Réacteur de désulfuration temporaire permettant le prétraitement d'une charge hydrocarbonée avant vaporéformage en vue d'une production d'hydrogène
FR2988622A1 (fr) * 2012-03-27 2013-10-04 IFP Energies Nouvelles Reacteur de desulfuration temporaire permettant le pretraitement d'une charge hydrocarbonnee avant vaporeformage en vue d'une production d'hydrogene
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production
JP2014181151A (ja) * 2013-03-19 2014-09-29 Panasonic Corp 水素生成装置
WO2014167850A1 (ja) * 2013-04-09 2014-10-16 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
EP2985829A4 (en) * 2013-04-09 2016-02-17 Panasonic Ip Man Co Ltd FUEL CELL SYSTEM AND METHOD FOR OPERATING A FUEL CELL SYSTEM
EP2985259A4 (en) * 2013-04-11 2016-04-13 Panasonic Ip Man Co Ltd HYDROGEN GENERATING DEVICE AND FUEL CELL SYSTEM EQUIPPED WITH SAME

Also Published As

Publication number Publication date
EP2719658A1 (en) 2014-04-16
EP2719658B1 (en) 2020-08-05
US9005829B2 (en) 2015-04-14
US20140072892A1 (en) 2014-03-13
EP2719658A4 (en) 2014-04-16
JPWO2012169199A1 (ja) 2015-02-23
RU2013158879A (ru) 2015-07-20
JP5681211B2 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5681211B2 (ja) 水素発生装置、これを備える燃料電池システム、及び水素発生装置の運転方法
JP5636001B2 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
US9334164B2 (en) Hydrogen generator and fuel cell system
EP2716597B1 (en) Hydrogen-generating device and fuel cell system
JP5214076B1 (ja) 水素生成装置および燃料電池システム
EP2138456B1 (en) Method for stopping the operation of hydrogen generator
WO2013001753A1 (ja) 水素生成装置及び燃料電池システム
JP2013224242A (ja) 水素生成装置及び燃料電池システム
JP2013032238A (ja) 水素生成装置、および燃料電池システム
JP2014101264A (ja) 水素生成装置の運転方法及び燃料電池システムの運転方法
EP2821367B1 (en) Method for operating hydrogen generation device
JP2004296102A (ja) 燃料電池システムおよび燃料電池システム停止方法
JP2015159061A (ja) 燃料電池システム並びにその運転方法
US9290385B2 (en) Hydrogen generation apparatus and fuel cell system
JP2013134920A (ja) 燃料電池システム
JP2014125387A (ja) 水素生成装置、燃料電池システム、水素生成装置の運転方法及び燃料電池システムの運転方法
JP2012171850A (ja) 水素生成装置、それを備える燃料電池システム、及び水素生成装置の製造方法
JP2015095417A (ja) 燃料電池システム
JP2012153535A (ja) 水素生成装置及び水素生成装置を備えた燃料電池システム
JP2012171849A (ja) 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
JP2013203616A (ja) 水素生成装置およびこの水素生成装置を備えている燃料電池システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012552175

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012796524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14115563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013158879

Country of ref document: RU

Kind code of ref document: A