WO2014167228A2 - Découplage des ondulations d'une barrière étanche - Google Patents

Découplage des ondulations d'une barrière étanche Download PDF

Info

Publication number
WO2014167228A2
WO2014167228A2 PCT/FR2014/050819 FR2014050819W WO2014167228A2 WO 2014167228 A2 WO2014167228 A2 WO 2014167228A2 FR 2014050819 W FR2014050819 W FR 2014050819W WO 2014167228 A2 WO2014167228 A2 WO 2014167228A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
corrugations
series
anchoring member
corrugation
Prior art date
Application number
PCT/FR2014/050819
Other languages
English (en)
Other versions
WO2014167228A3 (fr
Inventor
Sébastien DELANOE
Marc BOYEAU
Mickaël HERRY
Antoine PHILIPPE
Virginie Longuet
Fabien PESQUET
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016507033A priority Critical patent/JP6291566B2/ja
Priority to RU2015145298A priority patent/RU2650243C2/ru
Priority to AU2014252973A priority patent/AU2014252973B2/en
Priority to EP14720660.1A priority patent/EP2984382B1/fr
Priority to US14/783,755 priority patent/US10378694B2/en
Priority to KR1020217006726A priority patent/KR102306575B1/ko
Priority to KR1020157031342A priority patent/KR102226313B1/ko
Priority to ES14720660T priority patent/ES2732288T3/es
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to MYPI2015703562A priority patent/MY188268A/en
Priority to CN201480020735.9A priority patent/CN105283704B/zh
Priority to SG11201508308UA priority patent/SG11201508308UA/en
Publication of WO2014167228A2 publication Critical patent/WO2014167228A2/fr
Publication of WO2014167228A3 publication Critical patent/WO2014167228A3/fr
Priority to US16/507,677 priority patent/US11073241B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the present invention relates to a sealed and thermally insulated tank.
  • the present invention relates to a tank for the storage and transport of liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • the invention relates to the decoupling of the waves of the sealed membrane so as to allow a wave discontinuity of a primary or secondary corrugated waterproof membrane. This decoupling can be performed both in a corner area or in a flat area.
  • Corrugated membrane techniques rely on the fact that the waves can absorb membrane deformations under thermal loading and ship beam elongation. To have a satisfactory mechanical strength of the membrane, it is preferable that the stiffness of the membrane in the two directions of stress is substantially continuous.
  • WO2011 / 157915 discloses a membrane formed by corrugated waterproof plates.
  • the sealed plates of this membrane are arranged to align the corrugations of two sealed plates attached.
  • a square window is formed at a junction zone between two sealed plates.
  • a support leg is disposed locally at this window.
  • Two closure plates form a square surface around the support foot on which are anchored the two contiguous corrugated plates which have been perforated to form the window.
  • the undulations of the waterproof plates interrupted by the square window are closed at the level of said square window by caps.
  • An idea underlying the invention is to achieve the tight connection of two corrugated membranes together without creating a high stress concentration zone.
  • the invention provides a sealed and thermally insulated tank comprising a tank wall on a supporting structure, the tank wall, comprising from the outside towards the inside an insulating barrier retained on the supporting structure, the an insulating barrier covering an inner surface of the supporting structure and a sealed barrier resting on the insulating barrier, an elongate, sealed metal anchoring member being secured to a surface beyond the insulated backing,
  • the sealed barrier comprising:
  • the first membrane having an assembly edge oriented parallel to a longitudinal direction of the anchoring member and disposed on the anchoring member, the joining edge of the first membrane being welded in a sealed manner on the member anchoring, the first membrane being corrugated with a first series of parallel corrugations and a second series of parallel corrugations, the respective directions of the two series of corrugations being intersecting, said first series of corrugations extending in one direction secant at the assembly edge of the first membrane, each corrugation of the first series of corrugations of the first membrane being sealed by a cap of the first plurality of caps disposed along the joining edge, the second membrane being undulated with a first series of parallel corrugations and a second series of parallel corrugations, the respective directions of the two series of corrugations being intersecting, said first series of ripples extending in a secant direction at the joining edge of the second diaphragm, each corrugation of the first series of corrugations of the second diaphragm being sealingly closed by a cap of the second pluralit
  • the assembly edge of the second membrane being profiled so as to comprise along the anchoring member, forward portions covering the first membrane and recessed portions, located in the extension of the first series of corrugations of the first membrane so as to discover sealed areas of the anchoring member, the cap of the first plurality being each arranged to overlap the first membrane and the exposed watertight zone of the anchor member, the forward portions being located in alignment with the first series of corrugations of the second membrane, the cap of the second plurality being disposed each time so as to overlap the forward portion of the second membrane and the first membrane,
  • each of the caps having a metal piece having a dome shaped end portion for coupling to the respective corrugation that the cap closes and lowers to a base plate surrounding the end portion of the corrugation , the end portions of corrugation associated with the first series of undulations of the first membrane extending in a direction transverse to the assembly edge in the direction of the second membrane, beyond the end portions of undulations associated with the first series of undulations of the second membrane.
  • such a sealed and thermally insulated tank may include one or more of the following features.
  • the corrugations of the first series of corrugations of the second membrane are not aligned with the corrugations of the first series of corrugations of the first membrane to form an offset in a direction parallel to the assembly edge. , in which the offset is equal to half the interval of the corrugations of the first series of corrugations of the first membrane.
  • the width of an advanced portion of the second membrane is less than the distance between two corrugations of the first wave series of the first membrane.
  • the invention also provides a sealed and thermally insulated tank having a vessel wall on a supporting structure, the vessel wall comprising, from the outside towards the inside, an insulating barrier retained on the supporting structure, the insulating barrier covering an inner surface of the carrier structure and a sealed barrier resting on the insulating barrier, an elongate sealed metal anchoring member being fixed on an upper surface of the insulating barrier,
  • the sealed barrier comprising:
  • the first membrane having an assembly edge oriented parallel to a longitudinal direction of the anchoring member and disposed on the anchoring member, the joining edge of the first membrane being welded in a sealed manner on the member anchoring,
  • the first membrane being corrugated with a first series of parallel corrugations and a second series of parallel corrugations, the respective directions of the two series of undulations being secant, said first series of undulations extending in a secant direction to the assembly edge of the first membrane, each undulation of the first series of undulations of the first membrane being closed in a sealed manner by a cap of the first plurality of caps disposed along the joining edge,
  • the second membrane having an assembly edge oriented parallel to the longitudinal direction of the anchoring member and disposed on the anchoring member, the assembly edge of the second membrane being welded in a sealed manner on the member anchoring,
  • the second membrane being corrugated with a first series of parallel corrugations and a second series of parallel corrugations, the respective directions of the two series of corrugations being intersecting, said first series of corrugations extending in a secant direction at the edge of assembling the second membrane, each corrugation of the first series of corrugations of the second membrane being sealed by a cap of the second plurality of caps disposed along the joining edge,
  • the anchoring member comprising a series of rectangular anchoring plates aligned in the longitudinal direction of the anchoring member
  • the impermeable barrier further comprising a series of reported corrugated junction pieces, each reported corrugated junction piece of the series comprising an elongate dome-shaped shell closed at both ends and lowering to a completely surrounding base plate the elongated shell,
  • each anchor plate of the series comprising two transverse edges, the assembly edge of the first membrane being profiled so as to comprise a series of notches along the anchoring member,
  • the assembly edge of the second membrane being profiled so as to comprise a series of notches along the anchoring member
  • each corrugated connecting piece of the series being disposed at the right of a said transverse interface of two anchor plates, so that the elongate shell overlaps the transverse interface, the corresponding notch of the first diaphragm and the corresponding notch of the second diaphragm, each of the caps having a metal piece having a domed end portion of corrugation, for connection to the respective undulation that the cap closes and lowers to a base plate surrounding the end portion of the corrugation,
  • the waterproof membrane retains flexibility in the connection zone while maintaining the closure of the corrugations for sealing.
  • an elongated shell comprises a central corrugation closed by two caps, the caps comprising a metal piece having a domed end portion of corrugation, connected to one end of the central corrugation.
  • the joining piece has the characteristics of a corrugation, especially the flexibility and is simple to manufacture.
  • the central corrugation of the elongate shell is recti line.
  • the first membrane and the second membrane define two intersecting planes at an angle ⁇ , and in which the central wave of the reported wave comprises rectilinear corrugation portions separated by a bellows, the bellows returning the direction of a first portion of the central corrugation in the direction of a second portion of said central corrugation, according to the angle a.
  • the transverse edges of the anchor plate are parallel to the first series of corrugations of a said membrane. Thanks to these characteristics the forces perpendicular to the direction of the corrugation are integrally taken up by the undulation of the membrane and the reported corrugated junction piece.
  • a notch of the assembly edge of a said membrane is oriented perpendicular to said assembly edge.
  • a width of a notch of the series of notches of the assembly edge of a said membrane is greater than a width of the interface between two adjacent anchoring plates, said width of a notch being less than a width of a corrugated junction piece reported.
  • the contraction accepted by the membrane at a notch is greater than that of the anchoring member, limited by the width of the interface between two plates.
  • a notch of the assembly edge of a said membrane is parallel to the interface between two adjacent anchor plates.
  • the membrane accepts the same compression threshold over the entire depth of the notch.
  • the shell of the corrugated junction insert comprises two walls of plating, having a spacing between the walls uniform along the length.
  • the first series of corrugations of said membranes is perpendicular to the assembly edge of said membranes.
  • the waterproof membrane has an optimal behavior when it is stressed by stresses in the longitudinal direction of the anchoring member.
  • each undulation of the first series of corrugations of the first membrane comprises a first rectilinear portion, a bend and a second rectilinear portion, and wherein the bend has an angle adapted to orient the second straight portion perpendicular to the assembly edge of the first membrane with the anchor member.
  • the corrugations arrive perpendicular to the line of intersection at the two planes and at the longitudinal orientation of the anchoring member.
  • the direction of the second series of corrugations of the second membrane is parallel to the direction of the second series of corrugations of the first membrane.
  • the first series of undulations of a said membrane is perpendicular to the assembly edge of said membrane, and the second series of corrugations of said membrane is parallel to the assembly edge of said membrane.
  • the corrugations of the second series are not intersecting with the assembly edge and do not require end caps on this assembly edge.
  • the two series of corrugations define a regular and uniform grid of the membrane for supporting forces in all directions of the plane defined by the membrane.
  • the direction of the first series of corrugations of the second membrane is parallel to the direction of the first series of corrugations of the first membrane.
  • the corrugations of the first series of corrugations of said membranes are spaced with a regular interval.
  • the behavior of the membrane, in particular to the thermal contraction forces is homogeneous over the entire membrane.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or in deep water, including a LNG tank, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • Some aspects of the invention are based on the idea of producing, in series, blocks equipped at the factory or on the shipyard, including a load-bearing structure, an insulating barrier and a waterproof membrane, with a peripheral zone of the load-bearing structure left free. for welding assembly with an adjacent block.
  • Some aspects of the invention start from the idea after assembling two blocks to fill the assembly space with insulation, and then to close the sealed membrane.
  • Some aspects of the invention start from the idea of achieving a voluntary offset in the plane of the membranes, between the membranes of two adjacent blocks so as to allow, even in case of complementary play, to position the waves of the closure part. between two waves.
  • Figure 1 is a top view, schematic, showing a sealing membrane in a flat connection area.
  • FIG. 2 is a sectional view showing a vessel wall according to FIG.
  • FIG. 3 is a detail in plan view of FIG.
  • Figure 4 is a detail of the profile of a cap according to section A-A of Figure 3.
  • Figure 5 is a schematic view in broken perspective of the corner junction of two walls, one of which is horizontal.
  • FIG. 6 is a diagrammatic, cutaway perspective view of the step of placing the insulating barrier of FIG. 5.
  • FIG. 7 is a diagrammatic perspective view of the step of connecting a first sealed membrane of FIG. 5.
  • Figure 8 is an enlargement of a portion of Figure 5.
  • Figure 9 is a schematic perspective view of the connection of a vertical wall with an inclined wall.
  • Figure 10 is a front view of the vertical wall of Figure 9.
  • Figure 11 is a front view of a detail of Figure 9.
  • Figure 12 is a schematic cutaway representation of a tank of LNG tank equipped with a sealed tank and thermally insulated and a loading / unloading terminal of the tank.
  • FIG. 1 there will be described a vessel wall comprising successively from the outside to the inside a carrier wall, an insulation barrier, a sealing barrier.
  • 1 is designated as a whole, an insulating block of the thermal insulation barrier of the tank wall.
  • This insulating barrier 1 rests on the carrier wall 2.
  • the insulating barrier 1 supports a sealed barrier, which is referred to as the sealed membrane, designated by 4 as a whole.
  • the sealed barrier 4 is connected to the insulating barrier 1 via anchor plates 3.
  • the insulating barrier 1 is a sandwich composed of two sheets of plywood separated by a polyurethane foam type insulation.
  • the anchoring plates 3 are arranged at the edges of the metal sheets 5 and 6, forming the sealed barrier 4, to allow the welding of the edge of a sheet 5, partly covering an anchor plate 3.
  • a sheet 5 has corrugations 7 providing some flexibility to the sealing barrier subjected to stress. Indeed, it is advantageous to have a relatively flexible membrane, either to limit the anchoring forces of this membrane or to absorb exceptional stresses, for example, a shell deformation, such as the elongation of the beam of the ship, or contraction due to the temperature of the stored cold liquid. During the thermal contraction and the elongation of the ship beam, the waves unfold and weaken the hitching zones. This allows among other things not to need a strong anchoring of the membrane on the hull.
  • corrugations 7 extend from one edge to the opposite edge of the sheet 5.
  • the corrugations 7 are interrupted by a terminal element which we will call caps 9.
  • caps 9 the corrugations 7 are hermetically closed to guarantee the tightness of the waterproof membrane 4 in the edge zone of a metal sheet 5 and the corrugations 7.
  • the sheet 6 partially covers the anchor plates 3.
  • the edge 17 of the sheet 6 overlaps the edge of the sheets 5 in the assembly area.
  • the edge of a sheet 6 marries the anchoring plate 3 and the sheet 5 and comprises a recess 15 for compensating the thickness of the sheet 5 in the overlap zone 14.
  • the two sheets 5 and 6 are, assemblies sealed in the contacting parts.
  • the sheet 6 has a stamped strip, which is shifted inwards in the thickness direction relative to the plane of the sheet 6 to cover the edge of an adjacent metal sheet 5.
  • a sheet 6 also comprises straight corrugations 8 along the entire length of the sheet 6.
  • the corrugations 8 are similar to the corrugations 7 of the sheet metal
  • each corrugation 8 is oriented parallel to the corrugations 7 to ensure continuity and homogeneity of the behavior of the membrane over the entire surface of the wall of the tank.
  • each corrugation 8 is arranged between two corrugations 7 to make it possible to avoid aligning the corrugations 8 with the corrugations 7.
  • the corrugations 8 are preferably offset by a half-step with respect to a corrugation 7.
  • the corrugations 8 are closed by means of caps 10, sealing the sealed membrane 4.
  • each cap 9 extends a corrugation 7 beyond the edge 16 of the sheet 5, between two corrugations 8.
  • a cap 9 comprises a peripheral sole 18 which marries and is in contact with the anchoring plate 3 in a space forming a light 13 of the anchoring plate 3 not covered by the plates 5 and
  • the peripheral sole 18 additionally overlaps the flat portion 20 of the sheet 5. Furthermore, the cap 9 comprises a corrugation portion 11 which on one side conforms to the corrugation 7 of the sheet 5 and gradually decreases up to the peripheral sole in a direction oriented from the sheet 5 to the sheet 6.
  • This termination of the cap 9 forms a kind of dome. Alternatively, other forms of termination may be adopted, such as that of a flat cutaway.
  • each cap 10 extends a corrugation 8 beyond the edge 17 of the sheet 6, between two corrugations 8.
  • the corrugations 7 and 8 increasing the density of corrugations able to cash the forces on the waterproof membrane in the assembly zone of two adjacent sheets 5 and 6.
  • cap 10 will now be described with reference to FIG. 4. Like the cap 9, the cap 10 comprises a peripheral sole 21 which rests on the plates 5 and 6 on either side of the overlap zone 14.
  • cap 10 comprises a corrugation portion 11 adapted to the corrugation 8 of the sheet 6 and which decreases to the peripheral sole 21 to form a terminal cap 19 also called dome, vault or dome.
  • the shaping of the caps 9 and 10 is obtained by folding or stamping.
  • corrugations 7b, respectively 8b, perpendicular to the corrugations 7, respectively 8 on the plates 5 and 6, are observed.
  • the corrugations 7b and 8b have characteristics that are similar or identical to the 7 and 8 corrugations.
  • These corrugations 7b and 8b conjugate to the corrugations 7, respectively 8, have the function of supporting forces in all directions, especially in the plane constituted by the sealing membrane.
  • the sheet 6 further has on the profile of the edge 17, in addition to the recess in the direction of the thickness of the sheet, notches 12, flanking the caps 9 arranged in line with the corrugations 7 of the sheets 5. These notches 12 are arranged alternately with the corrugations 8.
  • indentations 12 are intended to facilitate the mounting of a sheet 6 placed on the insulating barrier 1 after the mounting of the plates 5 and caps 9.
  • the indentations 12 also have the object of allowing misalignment between the plates 5 and 6.
  • the dimension of the notch cutout 12 is made so as to have a sufficient clearance between the caps 9 and the edge of the cut. This game makes it possible to make the same cut for all the sheets and not to have any problems of alignment during the implementation of the membrane, because of a tolerance too strict.
  • a tank can be carried out according to several procedures.
  • prefabricated blocks comprising from the bearing structure towards the inside of the tank, a bearing structure 2 covered in part by an insulation barrier 1 and a sealed barrier 4 are positioned on the site.
  • a peripheral zone of a prefabricated block is left accessible for the assembly operations of the two bearing structure blocks, the welding and the verification of the tightness.
  • the peripheral zone is filled with an insulator and covered by a waterproof membrane 6.
  • the carrier structure is integrally assembled on the site.
  • the insulation membrane 1 and the waterproof membrane 4 are arranged on the inner face of the carrier structure. The operation can be optimized by intervening with two teams each leaving at one end of the wall of the tank.
  • the indentations 12 are dimensioned to allow a positioning gap tolerance of +/- 2 cm in the longitudinal direction of the anchor plate 3.
  • the metal sheets 5 and 6, the caps 9 and 10 are made of stainless steel sheet or aluminum, shaped by folding or stamping. Other metals or alloys are also possible.
  • the metal sheets 5 and 6 have a thickness of about 1.2 mm. Other thicknesses are also conceivable, knowing that a thickening of the metal sheets 5 and 6 cause an increase in its cost and generally increases the stiffness of the corrugations.
  • the corrugations 7 are preferably finalized during assembly at the factory. To adjust the length of the sealed barrier 4 in the length of the vessel, it is possible to cut the length opposite to the corrugated closures to the appropriate length.
  • the anchoring plate 3 comprises a closure return welded in a sealed manner on the supporting structure. This closure makes it possible to test in the factory the tightness of the pre-assembled part of the block, before assembly on the building site.
  • the carrier structure 2 is composed of two sections forming an angle a. The two sides are covered by an insulating barrier 1 and a sealing barrier 4.
  • the principle is to eliminate the continuity of waves between faces but to maintain the flexibility necessary for the proper functioning of the membrane.
  • the insulating barrier 1 is for example a sandwich composed of polyurethane foam sandwiched between two plywood boards, the wood of which is, for example, birch. On the plywood plate facing the inside of the tank is fixed the anchoring member 3.
  • the sealing barrier 4 is composed of non-coplanar metal sheets 5 forming a dihedron and corrugated junction parts reported.
  • the sheets 5 follow the two sections of the supporting structure 2.
  • the sheets 5 are welded to an anchoring member 3.
  • the anchoring member 3 disposed at the junction joint of the two sections of the supporting structure 2 is composed of a series of metal plates. These plates 30 form a dihedral whose angle between the two planes is the same angle alpha present between the two sides of the dihedral of the supporting structure 2.
  • the plates 30 are aligned in the longitudinal direction of the anchoring member. Two adjacent plates 30 each have a transverse edge constituting an interface between the two plates 30. At this interface, a gap 33 is provided to obtain elasticity on the part of the anchor member in the longitudinal direction. Alternatively, the edges at the interface are in contact or welded.
  • each anchor plate is arranged perpendicularly to the longitudinal direction of the anchoring member, that is to say approximately parallel to the corrugations 7 of the plates 5.
  • the interfaces of the plates are furthermore arranged between two adjacent corrugations 7 of a sheet 5.
  • the junction of a sheet 5 with the anchoring member 3 is made with a side plate 35 whose corrugations are closed by caps 24.
  • the caps 24 are welded to the sheet 35.
  • the caps 24 are straddling the sheet 35 and a plate 30, according to the principle of the embodiment of Figure 1 with the caps 9.
  • the edge profile of the edge plate 35 comprises notches 34, alternating with the waves 7. These notches 34 and the interfaces of the plates 30 are generally aligned. These notches 34 make it possible to maintain the elasticity obtained by means of the gaps 33 at the level of the connection of the sealing barrier 4 with the anchoring member 3.
  • a junction piece 25 corrugated reported is arranged at the interface of two plates and notches 34 of two plates vis-à-vis.
  • the corrugated junction pieces reported have a shape to ensure a certain elasticity of the sealed barrier 4.
  • an end portion of the corrugations 7 is alternated with a portion of the junction pieces 25 in a zone 37.
  • This zone in FIG. 8 is drawn as an indication. Indeed, it should be understood that it covers the entire edge of the connections made between the plates 5 and the anchoring member 3, on either side of this anchoring member 3.
  • the sealed barrier 4 is capable of undergoing stresses in the region of the anchoring member 3.
  • the shape of a piece of corrugated junctions is that of two shells 29 turned upside down, coupled with a bellows 27 of angle a, to allow to collect the forces in the angle of the tank.
  • the two shells can be each made in one piece or with a cap 28 welded to a straight wave portion 26. Next, they are assembled to the bellows 27 adapted for the angle value a.
  • This arrangement allows greater positioning tolerances between faces since there is more waves to connect.
  • FIG. 6 In which two sections of load-bearing structure 2 are indifferently pre-equipped at the factory or equipped on site with an insulating membrane. and a sealing membrane 4, the sheets 5 of which partially cover the insulating blocks.
  • An area peripheral to each block consisting in particular of a section of carrier structure 2 is left free to allow welding operations of the two adjacent sections.
  • a first insulating angle block 31 is placed on the supporting structure 2.
  • This block is equipped with the anchoring member 3.
  • FIG. 7 it can be seen that on both sides of the block insulating angle 31, catch blocks 32 of the clearance necessary for mounting the insulating corner block 31 are installed.
  • the sealing membrane can then be completed, by adding a sheet 5 ensuring the continuity of the membrane 4, to overlap the plates 30 of the anchoring member 3.
  • the assembly welded between the sheet 5 and each plate 30 is made sealingly.
  • junction pieces 25 are welded in the same way, to cover and seal the interface between two plates 30.
  • a junction piece 25 overlaps the two plates 30 and the interface of the two plates 30 and sheets 5 at the level of the notches 34.
  • the edge of the sheet 5 covering the inking member 3 does not have the notches 34.
  • the two sections of the supporting structure 2 are coplanar.
  • the plates 30 constituting the anchoring member 3 are then flat and the junction parts 25 are straight and do not have bellows.
  • a joining piece 25 can then be made in one stamped piece.
  • the walls consist of sheets 5 lining the insulating barrier 1. These sheets 5 comprise corrugations 7 and 7b.
  • the alignment of the corrugations 7 of the sheets 5 disposed on the wall 90 with the corrugations of the sheets 5 disposed on the inclined wall 91 is problematic. Indeed, it would first be necessary that the pitch between the corrugations of the sheets of the wall 90 and that of the corrugations of the sheets of the wall 91 is adapted as a function of the inclination of the wall 91 also called slope, compared to the horizontal. Then, it would be necessary to ensure the precise alignment for the connection of the corrugations.
  • connection zone the force received by the membrane is oriented in the longitudinal direction of the anchoring member. Therefore, on the junction zone, it is necessary to have corrugations of direction perpendicular to the longitudinal direction of the anchoring member for optimum efficiency.
  • the criterion of perpendicular orientation of the undulations with respect to the longitudinal directions of the anchoring member is not respected.
  • the wall 91 forms an angle of 135 ° with the bottom 92 of the tank.
  • the pitch of the undulations on the slope is 480.8mm.
  • the corrugations 7, horizontal are diverted at the same angle of 135 °.
  • a corner return piece 94 is welded by the edge 96, in the extension of sheets 5. It is welded by the edge 98 to the anchoring member 3.
  • the edge 98 is generally parallel to the longitudinal direction of the anchoring member 3.
  • the angle return piece 94 makes it possible to extend the corrugations 7 at an angle 93 by means of the corrugations 99.
  • the corrugations 99 divert the direction of the corrugations 7, in the plane of the wall 90 according to the angle 93, which is 135 °.
  • caps 100 close the corrugations 7b.
  • the return using the wave 99 and the caps 100 ensure independence between two faces. The flexibility is ensured by the overlap of the corrugations.
  • notches 34 are formed on the profile of the assembly edge 98 with the anchoring member 3 . These notches 34 have the same characteristics and functions as in the previous embodiment. These notches 34 arranged in line with the interface between two plates of the anchoring member 3 are covered to ensure sealing by corrugated junction pieces reported.
  • the angle of the bellows 27 is 135 °, corresponding to the angle between the two walls 90 and 91.
  • the angle gear 94, the sheet 5, the inking member 3 are sealed welded.
  • This embodiment therefore also provides mounting with wide tolerances between dissociated faces.
  • the angle 93 is adapted according to the inclination of the slope, with the floor. For example, it makes it possible to carry out an angle reference of value 135 °, 161.6 °, 170.6 ° or 173.7 °.
  • any other grid step for producing the corrugations is applicable, for example a pitch of 340 mm combined with other steps or identical on all the faces of the tank.
  • connection method is also applicable to a wall inclined from the ceiling of the tank to the bottom of the tank. It allows a great freedom in the choice of the geometry of the tank.
  • the set of embodiments makes it possible to manufacture prefabricated subassemblies in factories suitable for assembly on the construction site limiting manual welding in situ. It eliminates the need for precise adjustment problems.
  • closure of the corrugations can be obtained by any other means replacing the caps.
  • connection weld can therefore be made quickly by a welding robot with a raceway of the welding torch adapted.
  • the other welds can be made in prefabrication. All that remains is the connection welds between two coupling membranes, which can be made with a conventional welding robot.
  • the technique described above for producing a waterproofing membrane can be used in various types of tanks, for example to form the primary waterproofing membrane, an LNG tank in a land installation or in a floating structure as a LNG carrier or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 12 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Cuve étanche et thermiquement isolée comportant une paroi de cuve sur une structure porteuse (2), la paroi de cuve, comprenant une barrière isolante (1 ), barrière étanche (4) et un organe d'ancrage (3), la barrière étanche comportant : une première membrane (5) métallique ondulée disposée sur une première portion de la barrière isolante, une deuxième membrane (6) métallique ondulée disposée sur une deuxième portion de la barrière isolante, situées de part et d'autre de l'organe d'ancrage, selon un bord d'assemblage orienté parallèlement à une direction longitudinale de l'organe d'ancrage (3) la première et la deuxième membrane étant ondulée avec une première série d'ondulation sécantes au bord d'assemblage des portions terminales d'ondulation associées à la première série d'ondulations de la première membrane s'étendant dans une direction transversale au bord d'assemblage en direction de la deuxième membrane, au-delà des portions terminales d'ondulations associées à la première série d'ondulations de la deuxième membrane.

Description

DÉCOUPLAGE DES ONDULATIONS D'UNE BARRIÈRE ÉT ANCHE
Domaine technique
La présente invention se rapporte à une cuve étanche et thermiquement isolée. En particulier, la présente invention se rapporte à une cuve destinée au stockage et aux transports de gaz naturel liquéfié (GNL). Plus précisément, l'invention porte sur le découplage des ondes de la membrane étanche de façon à permettre une discontinuité des ondes d'une membrane étanche ondulée primaire ou secondaire. Ce découplage peut être réalisé à la fois dans une zone d'angle ou dans une zone plane.
Arrière-plan technologique
Dans une cuve à membrane pliée, la fermeture de la membrane nécessite d'avoir une certaine souplesse pour accepter les contractions thermiques et les élongations de la poutre du navire. La première sollicitation, la contraction thermique, impose de ne pas avoir un raccordement plat. En effet, vu la position des zones de raccordement, un raccordement plat imposerait dans une direction une faible distance en zone plane mais dans le sens radial une grande longueur sans ondes. Les contractions thermiques seraient donc trop défavorables pour valider une telle solution.
Les techniques à membranes ondulées reposent sur le fait que les ondes peuvent absorber les déformations de membrane sous chargement thermique et d'élongation de poutre navire. Pour avoir une tenue mécanique satisfaisante de la membrane, il est préférable que la raideur de la membrane dans les deux directions de sollicitations soit sensiblement continue.
Le document WO2011/157915 décrit une membrane formée par des plaques étanches ondulées. Les plaques étanches de cette membrane sont disposées de manière à aligner les ondulations de deux plaques étanches jointes. Une fenêtre carrée est réalisée au niveau d'une zone de jonction entre deux plaques étanches. Un pied de support est disposé localement au niveau de cette fenêtre. Deux plaques de fermeture forment une surface carrée autour du pied de support sur laquelle sont ancrées les deux plaques ondulées jointives qui ont été ajourées pour former la fenêtre. Les ondulations des plaques étanches interrompues par la fenêtre carrée sont fermées au niveau de ladite fenêtre carrée par des capuchons.
Résumé
Une idée à la base de l'invention est de réaliser le raccordement étanche de deux membranes ondulées entre elles sans créer une zone à forte concentration de contraintes.
Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolée comportant une paroi de cuve sur une structure porteuse, la paroi de cuve, comprenant depuis l'extérieur vers l'intérieur une barrière isolante retenue sur la structure porteuse, la barrière isolante couvrant une surface intérieure de la structure porteuse et une barrière étanche reposant sur la barrière isolante, un organe d'ancrage métallique étanche, allongé, étant fixé sur une surface s u pé rieu re de la ba rrière isola nte ,
la barrière étanche comportant :
une première membrane métallique ondulée disposée sur une première portion de la barrière isolante située d'un côté de l'organe d'ancrage,
une deuxième membrane métallique ondulée disposée sur une deuxième portion de la barrière isolante située de l'autre côté de l'organe d'ancrage, et une première et une deuxième pluralités de capuchons,
la première membrane présentant un bord d'assemblage orienté parallèlement à une direction longitudinale de l'organe d'ancrage et disposé sur l'organe d'ancrage, le bord d'assemblage de la première membrane étant soudé de manière étanche sur l'organe d'ancrage, la première membrane étant ondulée avec une première série d'ondulations parallèles et une seconde série d'ondulations parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage de la première membrane, chaque ondulation de la première série d'ondulations de la première membrane étant fermée de manière étanche par un capuchon de la première pluralité de capuchons disposé le long du bord d'assemblage, la deuxième membrane étant ondulée avec une première série d'ondulations parallèles et une seconde série d'ondulations parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage de la deuxième membrane, chaque ondulation de la première série d'ondulations de la deuxième membrane étant fermée de manière étanche par un capuchon de la deuxième pluralité de capuchons disposé le long du bord d'assemblage,
le bord d'assemblage de la deuxième membrane étant profilé de manière à comporter le long de l'organe d'ancrage, des portions avancées recouvrant la première membrane et des portions en retrait, situées dans le prolongement de la première série d'ondulations de la première membrane de manière à découvrir des zones étanches de l'organe d'ancrage, le capuchon de la première pluralité étant à chaque fois disposé de manière à chevaucher la première membrane et la zone étanche découverte de l'organe d'ancrage, les portions avancées étant situées dans l'alignement de la première série d'ondulations de la deuxième membrane, le capuchon de la deuxième pluralité étant disposé à chaque fois de manière à chevaucher la portion avancée de la deuxième membrane et la première membrane,
chacun des capuchons comportant une pièce métallique présentant une portion terminale d'ondulation en forme de dôme, destinée à se raccorder à l'ondulation respective que le capuchon ferme et s'abaissant jusqu'à une plaque de base entourant la portion terminale d'ondulation, les portions terminales d'ondulation associées à la première série d'ondulations de la première membrane s'étendant dans une direction transversale au bord d'assemblage en direction de la deuxième membrane, au-delà des portions terminales d'ondulations associées à la première série d'ondulations de la deuxième membrane.
Grâce à ces caractéristiques, il est possible de réaliser indépendamment la première membrane ondulée et la deuxième membrane ondulée et de les raccorder de manière étanche sans avoir besoin d'aligner précisément les ondulations des deux membranes, ce qui facilite grandement leur mise en place. De plus, la membrane étanche conserve de la souplesse dans la zone de raccord tout en conservant la fermeture des ondulations pour l'étanchéité. Selon des modes de réalisation, une telle cuve étanche et thermiquement isolée peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, les ondulations de la première série d'ondulations de la deuxième membrane ne sont pas alignées avec les ondulations de la première série d'ondulations de la première membrane pour former un décalage selon une direction parallèle au bord d'assemblage, dans laquelle le décalage est égal à la moitié de l'intervalle des ondulations de la première série d'ondulations de la première membrane.
Selon un mode de réalisation, la largeur d'une portion avancée de la deuxième membrane est inférieure à la distance entre deux ondulations de la première série d'ondulation de la première membrane.
Grâce à ces caractéristiques, l'assemblage des deux membranes étanches est facilité.
Selon un mode de réalisation, l'invention fournit aussi un cuve étanche et thermiquement isolée comportant une paroi de cuve sur une structure porteuse, la paroi de cuve, comprenant depuis l'extérieur vers l'intérieur une barrière isolante retenue sur la structure porteuse, la barrière isolante couvrant une surface intérieure de la structure porteuse et une barrière étanche reposant sur la barrière isolante, un organe d'ancrage métallique étanche, allongé, étant fixé sur une surface supérieure de la barrière isolante,
la barrière étanche comportant :
une première membrane métallique ondulée disposée sur une première portion de la barrière isolante située d'un côté de l'organe d'ancrage,
une deuxième membrane métallique ondulée disposée sur une deuxième portion de la barrière isolante située de l'autre côté de l'organe d'ancrage et une première et une deuxième pluralités de capuchons,
la première membrane présentant un bord d'assemblage orienté parallèlement à une direction longitudinale de l'organe d'ancrage et disposé sur l'organe d'ancrage, le bord d'assemblage de la première membrane étant soudé de manière étanche sur l'organe d'ancrage,
la première membrane étant ondulée avec une première série d'ondulations parallèles et une seconde série d'ondulations parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage de la première membrane, chaque ondulation de la première série d'ondulations de la première membrane étant fermée de manière étanche par un capuchon de la première pluralité de capuchons disposé le long du bord d'assemblage,
la deuxième membrane présentant un bord d'assemblage orienté parallèlement à la direction longitudinale de l'organe d'ancrage et disposé sur l'organe d'ancrage, le bord d'assemblage de la deuxième membrane étant soudé de manière étanche sur l'organe d'ancrage,
la deuxième membrane étant ondulée avec une première série d'ondulations parallèles et une seconde série d'ondulations parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage de la deuxième membrane, chaque ondulation de la première série d'ondulations de la deuxième membrane étant fermée de manière étanche par un capuchon de la deuxième pluralité de capuchons disposé le long du bord d'assemblage,
l'organe d'ancrage comprenant une série de plaques d'ancrages rectangulaires alignées dans la direction longitudinale de l'organe d'ancrage,
la barrière étanche comportant en outre une série de pièces de jonction ondulées rapportées, chaque pièce de jonction ondulée rapportée de la série comprenant une coque allongée en forme de dôme fermée à ses deux extrémités et s'abaissant jusqu'à une plaque de base entourant complètement la coque allongée,
chaque plaque d'ancrages de la série comprenant deux bords transversaux, le bord d'assemblage de la première membrane étant profilé de manière à comporter une série d'encoches le long de l'organe d'ancrage,
le bord d'assemblage de la deuxième membrane étant profilé de manière à comporter une série d'encoches le long de l'organe d'ancrage,
une encoche de la première membrane et une encoche de la deuxième membrane étant positionnées dans l'alignement d'une interface transversale entre deux plaques d'ancrage voisines, de manière à découvrir ladite interface transversale, chaque pièce de jonction ondulée rapportée de la série étant disposée au droit d'une dite interface transversale de deux plaques d'ancrages, de manière que la coque allongée chevauche l'interface transversale, l'encoche correspondante de la première membrane et l'encoche correspondante de la deuxième membrane, chacun des capuchons comportant une pièce métallique présentant une portion terminale d'ondulation en forme de dôme, destinée à se raccorder à l'ondulation respective que le capuchon ferme et s'abaissant jusqu'à une plaque de base entourant la portion terminale d'ondulation,
les portions d'extrémité de la coque s'étendant dans la direction transversale de l'organe d'ancrage en direction de la première membrane au-delà des portions terminales d'ondulation de la première série d'ondulations de la première membrane et en direction de la deuxième membrane au-delà des portions terminales d'ondulation de la première série d'ondulations de la deuxième membrane.
Grâce à ces caractéristiques, la membrane étanche conserve de la souplesse dans la zone de raccord tout en conservant la fermeture des ondulations pour l'étanchéité.
Selon un mode de réalisation, une coque allongée comprend une ondulation centrale fermée par deux capuchons, les capuchons comportant une pièce métallique présentant une portion terminale d'ondulation en forme de dôme, raccordée à une extrémité de l'ondulation centrale.
Grâce à ces caractéristiques, la pièce de jonction possède les caractéristiques d'une ondulation, notamment la souplesse et elle est simple à fabriquer.
Selon un mode de réalisation, l'ondulation centrale de la coque allongée est recti ligne.
Selon un mode de réalisation, la première membrane et la deuxième membrane définissent deux plans sécants selon un angle a, et dans laquelle l'ondulation centrale de l'onde rapportée comprend des portions d'ondulation rectilignes séparées par un soufflet, le soufflet renvoyant la direction d'une première portion de l'ondulation centrale selon la direction d'une seconde portion de ladite ondulation centrale, selon l'angle a.
Grâce à ces caractéristiques, il est possible de conserver de la souplesse à la jonction de deux pans de membranes formant un dièdre.
Selon un mode de réalisation, les bords transversaux de la plaque d'ancrage sont parallèles à la première série d'ondulations d'une dite membrane. Grâce à ces caractéristiques les efforts perpendiculaires à la direction de l'ondulation sont intégralement repris par l'ondulation de la membrane et la pièce de jonction ondulée rapportée.
Selon un mode de réalisation, une encoche du bord d'assemblage d'une dite membrane est orientée perpendiculairement audit bord d'assemblage.
Grâce à ces caractéristiques les contraintes orientées selon la direction du bord d'assemblage sont repris dans la zone où les ondulations de la membrane et celle de la pièce de jonction ondulée rapportée sont alternées.
Selon un mode de réalisation, une largeur d'une encoche de la série d'encoches du bord d'assemblage d'une dite membrane est supérieure à une largeur de l'interface entre deux plaques d'ancrage voisines, ladite largeur d'une encoche étant inférieure à une largeur d'une pièce de jonction ondulée rapportée.
Grâce à ces caractéristiques, la contraction acceptée par la membrane au niveau d'une encoche est supérieure à celle de l'organe d'ancrage, limité par la largeur de l'interface entre deux plaques.
Selon un mode de réalisation, une encoche du bord d'assemblage d'une dite membrane est parallèle à l'interface entre deux plaques d'ancrage voisines.
Grâce à ces caractéristiques, la membrane accepte le même seuil de compression sur toute la profondeur de l'encoche.
Selon un mode de réalisation, la coque de la pièce de jonction ondulée rapportée, comprend, deux murailles de bordées, présentant un espacement entre les murailles uniformes sur la longueur.
Grâce à ces caractéristiques, la réaction aux efforts de la pièce de jonction ondulée rapporté, dans les zones rectilignes des murailles est uniforme.
Selon un mode de réalisation, la première série d'ondulations desdites membranes est perpendiculaire au bord d'assemblage desdites membranes.
Grâce à ces caractéristiques, la membrane étanche a un comportement optimal lorsqu'elle est sollicitée par des contraintes dans le sens longitudinal de l'organe d'ancrage.
Selon un mode de réalisation, chaque ondulation de la première série d'ondulations de la première membrane comprend une première portion rectiligne, un coude et une seconde portion rectiligne, et dans laquelle le coude a un angle apte à orienter la seconde portion rectiligne perpendiculairement au bord d'assemblage de la première membrane avec l'organe d'ancrage.
Grâce à ces caractéristiques, lors de la jonction de deux parois formant un dièdre non orthogonale, les ondulations arrivent perpendiculairement à la droite d'intersection au deux plans et à l'orientation longitudinale de l'organe d'ancrage.
Selon un mode de réalisation, la direction de la seconde série d'ondulations de la seconde membrane est parallèle à la direction de seconde série d'ondulations de la première membrane.
Selon un mode de réalisation, la première série d'ondulations d'une dite membrane est perpendiculaire au bord d'assemblage de ladite membrane, et la seconde série d'ondulations de ladite membrane est parallèle au bord d'assemblage de ladite membrane.
Grâce à ces caractéristiques, les ondulations de la seconde série ne sont pas sécantes avec le bord d'assemblage et ne nécessitent pas de capuchons terminaux sur ce bord d'assemblage. De plus, les deux séries d'ondulations définissent un quadrillage régulier et uniforme de la membrane permettant de supporter des efforts selon toutes les directions du plan défini par la membrane.
Selon un mode de réalisation, la direction de la première série d'ondulations de la seconde membrane est parallèle à la direction de première série d'ondulations de la première membrane.
Grâce à ces caractéristiques, la réaction aux efforts orthogonaux par la première et la seconde série d'ondulations est identique.
Selon un mode de réalisation, les ondulations de la première série d'ondulations desdites membranes sont espacées avec un intervalle régulier.
Grâce à ces caractéristiques, le comportement de la membrane, notamment aux efforts de contraction thermique est homogène sur l'ensemble de la membrane.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Certains aspects de l'invention partent de l'idée de pouvoir utiliser des éléments standards pour réaliser le raccordement de la membrane.
Certains aspects de l'invention partent de l'idée de réaliser en série des blocs équipés en usine ou sur le chantier à bord, comprenant une structure porteuse, une barrière isolante et une membrane étanche, avec une zone périphérique de la structure porteuse laissée libre pour l'assemblage par soudage avec un bloc adjacent. Certains aspects de l'invention partent de l'idée après l'assemblage de deux blocs de combler l'espace d'assemblage par de l'isolant, puis réaliser la fermeture de la membrane étanche. Certains aspects de l'invention partent de l'idée de réaliser un décalage volontaire dans le plan des membranes, entre les membranes de deux blocs adjacents de façon à permettre, même en cas de jeu complémentaire, de positionner les ondes de la pièce de fermeture entre deux ondes.
Brève description des figures L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
• La figure 1 est une vue de dessus, schématique, représentant une membrane d'étanchéité dans une zone de raccordement plane.
• La figure 2 est une vue en coupe présentant d'une paroi de cuve selon la figure 1.
• La figure 3 est un détail en vue de dessus de la figure 1.
• La figure 4 est un détail du profil d'un capuchon selon la coupe A-A de la figure 3.
• La figure 5 est une vue schématique, en perspective écorchée de la jonction d'angle de deux parois dont l'une est horizontale.
• La figure 6 est une vue schématique, en perspective écorchée de l'étape de mise en place de la barrière isolante de la figure 5.
• La figure 7 est une vue schématique, en perspective écorchée de l'étape de raccordement d'une première membrane étanche de la figure 5.
• La figure 8 est un agrandissement d'une portion de la figure 5.
• La figure 9 est une vue schématique en perspective du raccord d'une paroi verticale avec une paroi inclinée.
• La figure 10 est une vue de face de la paroi verticale de la figure 9.
• La figure 11 est une vue de face d'un détail de la figure 9.
• La figure 12 est une représentation schématique écorchée d'une cuve de navire méthanier équipé d'une cuve étanche et thermiquement isolée et d'un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation
Dans cette description, on appelle au-dessus, supérieure ou sur, ce qui est vers l'intérieur de la cuve, et au-dessous, inférieur ou sous, ce qui est vers l'extérieur de la cuve, indépendamment du champ de gravité. Dans les différentes variantes représentées sur les dessins, les composants qui jouent le même rôle ont été désignés par les mêmes numéros de référence même si leur réalisation a été quelque peu modifiée.
En se référant aux figures 1 à 3, on va décrire une paroi de cuve comportant successivement de l'extérieur vers l'intérieur une paroi porteuse, une barrière d'isolation, une barrière d'étanchéité. En se référant aux dessins, on voit que l'on a désigné par 1 dans son ensemble, un bloc isolant de la barrière d'isolation thermique de la paroi de cuve. Cette barrière isolante 1 repose sur la paroi porteuse 2. La barrière isolante 1 supporte une barrière étanche indifféremment appelé membrane étanche, désigné par 4 dans son ensemble. La barrière étanche 4 est liée à la barrière isolante 1 par l'intermédiaire de plats d'ancrages 3.
En partant de la structure porteuse 2 vers l'intérieur de la cuve, la barrière isolante 1 est un sandwich composé de deux plaques de bois contreplaqué séparé par un isolant du type mousse de polyuréthane. Sur la plaque de contre plaqué supérieur sont fixés les plats d'ancrages 3. Ces plats d'ancrages 3 sont disposés aux droits des bords des tôles 5 et 6 métalliques, composant la barrière étanche 4, pour permettre le soudage du bord d'une tôle 5, recouvrant partiellement un plat d'ancrage 3.
Une tôle 5 comporte des ondulations 7 apportant une certaine souplesse à la barrière d'étanchéité soumise aux contraintes. En effet, il est avantageux d'avoir une membrane relativement souple, que ce soit pour limiter les efforts d'ancrage de cette membrane ou pour absorber des sollicitations exceptionnelles, par exemple, une déformation de coque, comme l'élongation de la poutre du navire, ou encore de contraction due à la température du liquide froid stocké. Lors de la contraction thermique et de l'élongation de poutre navire, les ondes se déplient et sollicitent plus faiblement les zones d'accrochés. Cela permet entre autres de ne pas avoir besoin d'un ancrage fort de la membrane sur la coque.
Ces ondulations 7 s'étendent d'un bord au bord opposé de la tôle 5. Dans la zone du plat d'ancrage les ondulations 7 sont interrompues par un élément terminal que nous nommerons capuchons 9. À l'aide de ces capuchons 9, les ondulations 7 sont fermées hermétiquement pour garantir l'étanchéité de la membrane étanche 4 dans la zone de bord d'une tôle 5 et des ondulations 7. Comme la tôle 5, la tôle 6 recouvre partiellement les plats d'ancrages 3. De plus, le bord 17 de la tôle 6 chevauche le bord des tôles 5 dans la zone d'assemblage. Ainsi, le bord d'une tôle 6 épouse le plat d'ancrage 3 et la tôle 5 et comprend un décrochement 15 permettant de compenser l'épaisseur de la tôle 5 dans la zone de chevauchement 14. Les deux tôles 5 et 6 sont, ensembles, soudées de manière étanche dans les parties en contact. Pour la réalisation, la tôle 6 présente une bande emboutie, qui est décalée, vers l'intérieur dans la direction d'épaisseur par rapport au plan de la tôle 6 afin de venir recouvrir la bordure d'une tôle métallique 5 adjacente.
Une tôle 6 comprend également des ondulations 8 rectilignes sur toute la longueur de la tôle 6. Les ondulations 8 sont similaires aux ondulations 7 de la tôle
5. En effet, elles assurent les mêmes fonctions que celles des ondulations 7. Pour cela, ces ondulations 8 sont orientées parallèlement aux ondulations 7 pour pouvoir assurer une continuité et une homogénéité de comportement de la membrane sur toute la surface de la paroi de la cuve. De plus, chaque ondulation 8 est disposée entre deux ondulations 7 pour permettre de s'affranchir d'aligner les ondulations 8 avec les ondulations 7. En considérant un pas comme la distance entre deux ondulations 7, les ondulations 8 sont de préférence décalées d'un demi pas par rapport à une ondulation 7. Enfin, tout comme les ondulations 7, les ondulations 8 sont fermées à l'aide de capuchons 10, assurant l'étanchéité de la membrane étanche 4.
Pour assurer la continuité de reprise d'efforts, dans la zone de jonction des tôles 5 et 6, chaque capuchon 9, prolonge une ondulation 7 au-delà du bord 16 de la tôle 5, entre deux ondulations 8. Pour cela, un capuchon 9 comprend une semelle périphérique 18 qui épouse et est en contact avec le plat d'ancrage 3 dans un espace formant une lumière 13 du plat d'ancrage 3 non recouvert par les tôles 5 et
6. La semelle périphérique 18 chevauche en plus la partie plane 20 de la tôle 5. Par ailleurs, le capuchon 9 comprend une portion d'ondulation 11 qui d'un côté épouse l'ondulation 7 de la tôle 5 et s'abaissant progressivement jusqu'à la semelle périphérique selon une direction orientée de la tôle 5 vers la tôle 6. Cette terminaison du capuchon 9 forme une sorte de dôme. En variante, d'autres formes de terminaison peuvent être adoptées, comme celle d'un pan coupé plat.
Comme le capuchon 9, chaque capuchon 10 prolonge une ondulation 8 au- delà du bord 17 de la tôle 6, entre deux ondulations 8. Ainsi, selon l'orientation du bord d'assemblage, il y a chevauchement des ondulations 7 et 8 augmentant la densité d'ondulations apte à encaisser les efforts sur la membrane étanche dans la zone d'assemblage de deux tôles adjacente 5 et 6.
On va maintenant décrire un capuchon 10 en référence à la figure 4. Tout comme le capuchon 9, le capuchon 10 comprend une semelle périphérique 21 qui repose sur les tôles 5 et 6 de part et d'autre de la zone de chevauchement 14. Le capuchon 10 comprend une portion d'ondulation 11 adaptée à l'ondulation 8 de la tôle 6 et qui décroît jusqu'à la semelle périphérique 21 pour former une calotte terminale 19 encore appelée dôme, voûte ou coupole.
La mise en forme des capuchons 9 et 10 est obtenue par pliage ou par emboutissage.
En revenant aux figures 1 à 3, on constate par ailleurs, la présence d'ondulations 7b, respectivement 8b, perpendiculaires aux ondulations 7, respectivement 8 sur les tôles 5 et 6. Les ondulations 7b et 8b, ont des caractéristiques similaires ou identiques aux ondulations 7 et 8. Ces ondulations 7b et 8b conjuguées aux ondulations 7, respectivement 8, ont pour fonction de supporter des efforts dans toutes les directions, notamment dans le plan constitué par la membrane d'étanchéité.
La tôle 6 présente en outre sur le profil du bord 17, en plus du décrochement dans le sens de l'épaisseur de la tôle, des échancrures 12, encadrant les capuchons 9 disposés au droit des ondulations 7 des tôles 5. Ces échancrures 12 sont disposées en alternance avec les ondulations 8.
Ces échancrures 12 sont destinées à faciliter le montage d'une tôle 6 placée sur la barrière d'isolation 1 après le montage des tôles 5 et capuchons 9. Les échancrures 12 ont également pour objet d'autoriser des écarts d'alignement entre les tôles 5 et 6. La dimension de la découpe des échancrures 12 est réalisée de façon à disposer un jeu suffisant entre les capuchons 9 et le bord de la découpe. Ce jeu permet de réaliser une même découpe pour l'ensemble des tôles et de ne pas avoir de problèmes d'alignement lors de la mise en œuvre de la membrane, à cause d'une tolérance trop stricte.
En effet, la construction d'une cuve peut être réalisée selon plusieurs procédures. Par exemple, des blocs préfabriqués comprenant depuis la structure porteuse vers l'intérieur de la cuve, une structure porteuse 2 couverte en partie par une barrière d'isolation 1 et une barrière étanche 4 sont positionnés sur le chantier. Une zone périphérique d'un bloc préfabriqué est laissé accessible pour les opérations d'assemblage des deux blocs de structure porteuse, le soudage et la vérification de l'étanchéité. Ensuite la zone périphérique est comblé par un isolant et couverte par une membrane étanche 6. En variante, la structure porteuse est intégralement assemblée sur le chantier. Ensuite, la membrane d'isolation 1 puis la membrane étanche 4 sont disposés sur la face interne de la structure porteuse. L'opération peut être optimisée en intervenant avec deux équipes partant chacune à une extrémité de la paroi de la cuve. Comme le montrent ces deux exemples, il est délicat d'assurer l'alignement précis nécessaire pour raccorder les ondulations de deux tôles de membranes isolantes. Il est courant de rencontrer des écarts transversaux d'alignement allant jusqu'à 2 centimètres dans un sens ou dans l'autre. Ainsi, les échancrures 12 sont dimensionnées pour permettre une tolérance d'écart de positionnement de +/- 2 cm selon la direction longitudinale du plat d'ancrage 3.
Les tôles métalliques 5 et 6, les capuchons 9 et 10 sont réalisées en tôle d'acier inoxydable ou d'aluminium, mise en forme par pliage ou par emboutissage. D'autres métaux ou alliages sont également possibles. A titre d'exemple, Les tôles métalliques 5 et 6 présentent une épaisseur d'environ 1 ,2 mm. D'autres épaisseurs sont également envisageables, sachant qu'un épaississement des tôles métalliques 5 et 6 entraînent une augmentation de son coût et accroît généralement la rigidité des ondulations.
Dans un mode de construction préfabriqué, les ondulations 7 sont de préférence finalisées lors du montage en usine. Pour régler la longueur de barrière étanche 4 dans la longueur de la cuve, il est possible de découper la longueur opposé aux fermetures d'ondulations à la longueur adaptée.
En variante, le plat d'ancrage 3 comprend un retour de fermeture soudé de manière étanche sur la structure porteuse. Cette fermeture permet de tester en usine l'étanchéité de la partie pré monté du bloc, avant l'assemblage sur le chantier. En référence aux figures 5 à 8, on va maintenant décrire par différence un mode de réalisation dans lequel la structure porteuse 2 est composée de deux pans formant un angle a. Les deux pans sont recouverts par une barrière isolante 1 et une barrière d'étanchéité 4.
Le principe est de supprimer la continuité des ondes entre faces mais de conserver la souplesse nécessaire au bon fonctionnement de la membrane. La barrière isolante 1 , est par exemple un sandwich composé de mousse de polyuréthane pris entre deux plaques de bois contreplaqué, dont le bois est par exemple du bouleau. Sur la plaque de contreplaqué orienté vers l'intérieur de la cuve est fixé l'organe d'ancrage 3.
La barrière d'étanchéité 4 est composée de tôles métalliques 5 non coplanaire formant un dièdre et de pièces de jonctions 25 ondulées rapportées. Les tôles 5 suivent les deux pans de la structure porteuse 2. Les tôles 5 sont soudées sur un organe d'ancrage 3.
L'organe d'ancrage 3 disposé au droit du joint de jonction des deux pans de la structure porteuse 2 est composé d'une série de plaques 30 métalliques. Ces plaques 30 forment un dièdre dont l'angle entre les deux plans est le même angle alpha a présent entre les deux pans du dièdre de la structure porteuse 2. Les plaques 30 sont alignées dans la direction longitudinale de l'organe d'ancrage. Deux plaques 30 adjacentes présentent chacune un bord transversal constituant une interface entre les deux plaques 30. À cette interface, un interstice 33 est ménagé pour obtenir de l'élasticité de la part de l'organe d'ancrage dans le sens longitudinale. En variante, les bords à l'interface sont en contact, voire soudés.
Les deux bords transversaux de chaque plaque d'ancrage sont disposés perpendiculairement à la direction longitudinale de l'organe d'ancrage, c'est-à-dire approximativement parallèle aux ondulations 7 des tôles 5. Les interfaces des plaques sont en outre disposées entre deux ondulations 7 adjacentes d'une tôle 5.
La jonction d'une tôle 5 avec l'organe d'ancrage 3 est réalisée avec une tôle de rive 35 dont les ondulations sont fermées par des capuchons 24. Les capuchons 24 sont soudés sur la tôle 35. En variante, les capuchons 24 sont à cheval sur la tôle 35 et une plaque 30, selon le principe du mode de réalisation de la figure 1 avec les capuchons 9. En outre, le profil du bord de la tôle de rive 35 comprend des entailles 34, alternées avec les ondes 7. Ces entailles 34 et les interfaces des plaques 30 sont globalement alignées. Ces entailles 34 permettent de conserver l'élasticité obtenue à l'aide des interstices 33 au niveau du raccordement de la barrière d'étanchéité 4 avec l'organe d'ancrage 3. Enfin, pour finaliser l'étanchéité, une pièce de jonctions 25 ondulées rapportées est disposée au droit de l'interface de deux plaques et des entailles 34 de deux plaques en vis-à-vis.
Les pièces de jonctions 25 ondulées rapportées ont une forme permettant d'assurer une certaine élasticité de la barrière étanche 4. Pour assurer la continuité de souplesse, conserver l'élasticité de la barrière étanche 4, dans la partie de liaison avec l'organe d'ancrage 3, une portion d'extrémité des ondulations 7 est alternée avec une portion des pièces de jonctions 25 dans une zone 37. Cette zone sur la figure 8 est tracée à titre indicatif. En effet, il convient de comprendre qu'elle couvre toute la bordure des liaisons réalisées entre les tôles 5 et l'organe d'ancrage 3, de part et d'autre de cet organe d'ancrage 3. Ainsi, la barrière étanche 4 est apte à subir des efforts dans la région de l'organe d'ancrage 3.
La forme d'une pièce de jonctions 25 ondulées est celle de deux coques retournées 29, raboutées à l'aide d'un soufflet 27 d'angle a, destiné à permettre d'encaisser les efforts dans l'angle de la cuve. Pour la fabrication d'une telle pièce de jonction, tous les moyens de pliage et emboutissage sont applicables. Les deux coques peuvent être réalisées chacune dans une seule pièce ou avec un capuchon 28 soudé à une partie rectiligne d'onde 26. Ensuite, elles sont assemblées au soufflet 27 adapté pour la valeur d'angle a.
Cet arrangement permet des tolérances de positionnements plus importants entre faces puisqu'il il n'y a plus d'ondes à raccorder.
On va maintenant décrire l'assemblage de parois formant un dièdre d'une telle cuve en débutant par la figure 6, dans laquelle deux pans de structure porteuse 2 sont indifféremment pré-équipés en usine ou équipés sur le chantier d'une membrane isolante 1 et d'une membrane d'étanchéité 4 dont les tôles 5 recouvrent en partie les blocs isolant. Une zone périphérique à chaque bloc constitué notamment d'un pan de structure porteuse 2 est laissée libre pour permettre les opérations de soudure des deux pans adjacents. Ensuite, un premier bloc d'angle isolant 31 est placé sur la structure porteuse 2. Ce bloc est équipé de l'organe d'ancrage 3. En passant à la figure 7, on voit que de part et d'autre du bloc d'angle isolant 31 , des blocs de rattrapage 32 du jeu nécessaire au montage du bloc d'angle isolant 31 sont installés. La membrane d'étanchéité peut alors être complétée, par l'ajout d'une tôle 5 assurant la continuité de la membrane 4, jusqu'à chevaucher les plaques 30 de l'organe d'ancrage 3. L'assemblage soudé entre la tôle 5 et chaque plaque 30 est réalisé de manière étanche.
Enfin, des pièces de jonctions 25 sont soudées de la même manière, pour couvrir et assurer l'étanchéité de l'interface entre deux plaques 30. Une pièce de jonction 25 chevauche les deux plaques 30 et l'interface des deux plaques 30 et les tôles 5 au niveau des entailles 34.
En variante, le bord de la tôle 5 recouvrant l'organe d'encrage 3 ne comporte pas les entailles 34.
En variante, les deux pans de la structure porteuse 2 sont coplanaires. Les plaques 30 constituants l'organe d'ancrage 3 sont alors planes et les pièces de jonctions 25 sont rectilignes et ne comportent pas de soufflets. Une pièce de jonction 25 peut alors être réalisée en un seul morceau embouti.
En référence aux figures 9 à 11, on va maintenant décrire la liaison d'une paroi inclinée avec une paroi verticale. Tout comme précédemment, les parois sont constituées de tôles 5 tapissant la barrière isolante 1. Ces tôles 5 comprennent des ondulations 7 et 7b. Comme dans les autres modes de réalisation, l'alignement des ondulations 7 des tôles 5 disposées sur la paroi 90 avec les ondulations des tôles 5 disposées sur la paroi inclinée 91 est problématique. En effet, il faudrait tout d'abord que le pas entre les ondulations des tôles de la paroi 90 et celui des ondulations des tôles de la paroi 91 soit adapté en fonction de l'inclinaison de la paroi 91 encore appelé talus, par rapport à l'horizontale. Ensuite, il faudrait assurer l'alignement précis pour le raccord des ondulations. Enfin dans la zone de raccord, l'effort encaissé par la membrane est orienté dans le sens longitudinal de l'organe d'ancrage. Par conséquent, sur la zone de jonction, il convient d'avoir des ondulations de direction perpendiculaire au sens longitudinal de l'organe d'ancrage pour une efficacité optimale. En adaptant le pas de quadrillage des ondulations entre les tôles des deux parois, le critère d'orientation perpendiculaire des ondulations par rapport aux sens longitudinal de l'organe d'ancrage n'est pas respecté.
Dans la représentation de la figure 9, la paroi 91 forme un angle de 135° avec le fond 92 de la cuve. Le pas des ondulations sur le talus est de 480,8mm. Sur la paroi verticale 90, les ondulations 7, horizontales sont détournées selon le même angle de 135°. Pour cela, une pièce de renvoie d'angle 94 est soudée par le bord 96, dans le prolongement de tôles 5. Elle est soudée par le bord 98 à l'organe d'ancrage 3.
Le bord 98 est globalement parallèle à la direction longitudinale de l'organe d'ancrage 3.
La pièce de renvoie d'angle 94 permet d'étendre les ondulations 7 selon un angle 93 à l'aide des ondulations 99. Les ondulations 99 détournent la direction des ondulations 7, dans le plan de la paroi 90 selon l'angle 93, qui est de 135°.
Pour assurer l'étanchéité de la liaison avec la tôle 5, des capuchons 100 ferment les ondulations 7b. Le renvoi à l'aide de l'onde 99 et les capuchons 100 permettent d'assurer l'indépendance entre deux faces. La souplesse est assurée par le chevauchement des ondulations.
Sur le profil du bord d'assemblage 98 avec l'organe d'ancrage 3 des entailles 34 sont ménagées. Ces entailles 34 ont les mêmes caractéristiques et fonctions que dans le mode de réalisation précédent. Ces entailles 34 disposées au droit de l'interface entre deux plaques de l'organe d'ancrage 3 sont recouvertes pour assurer l'étanchéité par des pièces de jonctions 25 ondulées rapportées. L'angle du soufflet 27 est de 135°, correspondant à l'angle entre les deux parois 90 et 91.
Le renvoi d'angle 94, la tôle 5, l'organe d'encrage 3 sont soudées de manière étanche.
Ce mode de réalisation assure donc également un montage avec des tolérances larges entre des faces dissociées.
En variante, l'angle 93 est adapté en fonction de l'inclinaison du talus, avec le plancher. Par exemple, il permet d'effectuer un renvoi d'angle de valeur 135°, 161.6°, 170.6° ou 173.7°. En variante, tout autre pas de quadrillage pour la réalisation des ondulations est applicable, par exemple un pas de 340mm combiné avec d'autres pas ou identique sur toutes les faces de la cuve.
Ce mode de raccordement est également applicable à une paroi inclinée depuis le plafond de la cuve vers le fond de la cuve. Il permet une grande liberté dans le choix de la géométrie de la cuve.
L'ensemble des modes de réalisations permet la fabrication de sous- ensembles préfabriqués en usines aptes à la réalisation d'assemblage sur le chantier limitant les soudures manuelles in situ. Elle permet de s'affranchir de problèmes d'ajustement précis à réaliser.
En variante, la fermeture des ondulations peut être obtenue par tout autre moyen remplaçant les capuchons.
Pour la mise en œuvre de la membrane et plus particulièrement le soudage de la membrane, l'utilisation d'un robot de soudage automatisé est possible. En effet, les formes adaptées permettent d'avoir un soudage continu sur une surface plane. La soudure de raccord peut donc être faite de façon rapide par un robot de soudage avec un chemin de roulement de la torche de soudage adapté. Les autres soudures peuvent être réalisées en préfabrication. Il ne reste alors que les soudures de raccord entre deux membranes de raccord, qui peuvent être réalisées avec un robot de soudage classique.
La technique décrite ci-dessus pour réaliser une membrane d'étanchéité peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane d'étanchéité primaire, d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 12, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72. De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 12 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaisons 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes. Dans les revendications, tout signe de référence entre parenthèses saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolée comportant une paroi de cuve sur une structure porteuse (2), la paroi de cuve, comprenant depuis l'extérieur vers l'intérieur une barrière isolante (1 ) retenue sur la structure porteuse, la barrière isolante couvrant une surface intérieure de la structure porteuse, une barrière étanche (4) reposant sur la barrière isolante, et un organe d'ancrage (3) métallique étanche étant fixé sur une surface supérieure de la barrière isolante,
la barrière étanche comportant :
une première membrane (5) métallique ondulée disposée sur une première portion de la barrière isolante située d'un côté de l'organe d'ancrage,
une deuxième membrane (6) métallique ondulée disposée sur une deuxième portion de la barrière isolante située de l'autre côté de l'organe d'ancrage, et une première (9) et une deuxième (10) pluralités de capuchons,
la première membrane présentant un bord d'assemblage (16) disposé sur l'organe d'ancrage, le bord d'assemblage de la première membrane étant soudé de manière étanche sur l'organe d 'ancrage ,
la première membrane (5) étant ondulée avec une première série d'ondulations (7) parallèles et une seconde série d'ondulations (7b) parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage (16) de la première membrane,
la deuxième membrane (6) étant ondulée avec une première série d'ondulations (8) parallèles et une seconde série d'ondulations (8b) parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante à un bord d'assemblage (17) de la deuxième membrane,
chacun des capuchons comportant une pièce métallique présentant une portion terminale d'ondulation (19) en forme de dôme, destinée à se raccorder à l'ondulation respective que le capuchon ferme et s'abaissant jusqu'à une plaque de base (21 ) entourant la portion terminale d'ondulation,
caractérisé en ce que l'organe d'ancrage est allongé selon une direction longitudinale,
le bord d'assemblage de la première membrane étant orienté parallèlement à la direction longitudinale de l'organe d'ancrage, chaque ondulation de la première série d'ondulations de la première membrane étant fermée de manière étanche par un capuchon (9) de la première pluralité de capuchons disposé le long du bord d'assemblage,
le bord d'assemblage (17) de la deuxième membrane comportant le long de la direction longitudinale de l'organe d'ancrage, des portions avancées recouvrant la première membrane et des portions en retrait (12) alternées avec les portions avancées et situées dans le prolongement de la première série d'ondulations de la première membrane, les portions en retrait découvrant des zones étanches de l'organe d'ancrage, le capuchon (9) de la première pluralité chevauchant à chaque fois la première membrane (5) et la zone étanche découverte (13) de l'organe d'ancrage, les portions avancées étant situées dans l'alignement de la première série d'ondulations (8) de la deuxième membrane, chaque ondulation de la première série d'ondulations de la deuxième membrane étant fermée de manière étanche par un capuchon (10) de la deuxième pluralité de capuchons disposé le long du bord d'assemblage, le capuchon (10) de la deuxième pluralité chevauchant à chaque fois la portion avancée de la deuxième membrane et la première membrane,
les portions terminales d'ondulation des capuchons de la première pluralité de capuchons associées à la première série d'ondulations de la première membrane s'étendant dans une direction transversale au bord d'assemblage en direction de la deuxième membrane, au-delà des portions terminales d'ondulations des capuchons de la second pluralité de capuchons associées à la première série d'ondulations de la deuxième membrane.
2. Cuve selon la revendication , dans laquelle les ondulations (8) de la première série d'ondulations de la deuxième membrane (6) ne sont pas alignées avec les ondulations (7) de la première série d'ondulations de la première membrane (5) pour former un décalage selon une direction parallèle au bord d'assemblage.
3. Cuve selon la revendication 2, dans laquelle le décalage est égal à la moitié de l'intervalle des ondulations de la première série d'ondulations de la première membrane.
4. Cuve étanche et thermiquement isolée comportant une paroi de cuve sur une structure porteuse (2), la paroi de cuve, comprenant depuis l'extérieur vers l'intérieur une barrière isolante (1 ) retenue sur la structure porteuse, la barrière isolante couvrant une surface intérieure de la structure porteuse et une barrière étanche (4) reposant sur la barrière isolante,
un organe d'ancrage (3) métallique étanche, allongé, étant fixé sur une surface supérieure de la barrière isolante,
la barrière étanche comportant :
une première membrane (5) métallique ondulée disposée sur une première portion de la barrière isolante située d'un côté de l'organe d'ancrage,
une deuxième membrane (6) métallique ondulée disposée sur une deuxième portion de la barrière isolante située de l'autre côté de l'organe d'ancrage et une première (9) et une deuxième (10) pluralités de capuchons,
la première membrane présentant un bord d'assemblage (16) orienté parallèlement à une direction longitudinale de l'organe d'ancrage (3) et disposé sur l'organe d'ancrage, le bord d'assemblage de la première membrane étant soudé de manière étanche sur l'organe d'ancrage,
la première membrane (5) étant ondulée avec une première série d'ondulations (7) parallèles et une seconde série d'ondulations (7b) parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage (16) de la première membrane, chaque ondulation de la première série d'ondulations de la première membrane étant fermée de manière étanche par un capuchon (9) de la première pluralité de capuchons disposé le long du bord d'assemblage,
la deuxième membrane (5) présentant un bord d'assemblage orienté parallèlement à la direction longitudinale de l'organe d'ancrage et disposé sur l'organe d'ancrage, le bord d'assemblage de la deuxième membrane étant soudé de manière étanche sur l'organe d'ancrage,
la deuxième membrane (5) étant ondulée avec une première série d'ondulations (7) parallèles et une seconde série d'ondulations (7b) parallèles, les directions respectives des deux séries d'ondulations étant sécantes, ladite première série d'ondulations s'étendant selon une direction sécante au bord d'assemblage de la deuxième membrane, chaque ondulation de la première série d'ondulations de la deuxième membrane étant fermée de manière étanche par un capuchon de la deuxième pluralité de capuchons disposé le long du bord d'assemblage,
l'organe d'ancrage comprenant une série de plaques d'ancrages rectangulaires alignées dans la direction longitudinale de l'organe d'ancrage,
la barrière étanche comportant en outre une série de pièces de jonction ondulées (25) rapportées, chaque pièce de jonction ondulée rapportée de la série comprenant une coque allongée en forme de dôme fermée (28) à ses deux extrémités et s'abaissant jusqu'à une plaque de base entourant complètement la coque allongée, chaque plaque d'ancrages (30) de la série comprenant deux bords transversaux, le bord d'assemblage de la première membrane étant profilé de manière à comporter une série d'encoches (34) le long de l'organe d'ancrage (3),
le bord d'assemblage de la deuxième membrane étant profilé de manière à comporter une série d'encoches (34) le long de l'organe d'ancrage,
une encoche de la première membrane et une encoche de la deuxième membrane étant positionnées dans l'alignement d'une interface transversale entre deux plaques d'ancrage (30) voisines, de manière à découvrir ladite interface transversale,
chaque pièce de jonction ondulée (25) rapportée de la série étant disposée au droit d'une dite interface transversale de deux plaques d'ancrages, de manière que la coque allongée chevauche l'interface transversale, l'encoche (34) correspondante de la première membrane (5) et l'encoche (34) correspondante de la deuxième membrane (5),
chacun des capuchons comportant une pièce métallique présentant une portion terminale d'ondulation en forme de dôme, destinée à se raccorder à l'ondulation respective que le capuchon ferme et s'abaissant jusqu'à une plaque de base entourant la portion terminale d'ondulation,
les portions d'extrémité de la coque s'étendant dans la direction transversale de l'organe d'ancrage en direction de la première membrane au-delà des portions terminales d'ondulation de la première série d'ondulations de la première membrane et en direction de la deuxième membrane au-delà des portions terminales d'ondulation de la première série d'ondulations de la deuxième membrane.
5. Cuve selon la revendication 4, dans laquelle une coque allongée comprend une ondulation (26) centrale fermée par deux capuchons (28), les capuchons comportant une pièce métallique présentant une portion terminale d'ondulation en forme de dôme, raccordée à une extrémité de l'ondulation centrale.
6. Cuve selon la revendication 4, dans laquelle l'ondulation (26) centrale de la coque allongée est rectiligne.
7. Cuve selon la revendication 5, dans laquelle la première membrane (5) et la deuxième membrane (5) définissent deux plans sécants selon un angle a,
et dans laquelle l'ondulation centrale de l'onde rapportée comprend des portions d'ondulation (26) rectilignes séparées par un soufflet (27), le soufflet renvoyant la direction d'une première portion de l'ondulation centrale selon la direction d'une seconde portion de ladite ondulation centrale, selon l'angle a.
8. Cuve selon l'une des revendications 4 à 7, dans laquelle les bords transversaux de la plaque d'ancrage (30) sont parallèles à la première série d'ondulations d'une dite membrane.
9. Cuve selon l'une des revendications 4 à 8, dans laquelle une encoche (34) du bord d'assemblage d'une dite membrane est orientée perpendiculairement audit bord d'assemblage.
10. Cuve selon l'une des revendications 4 à 9, dans laquelle une largeur d'une encoche (34) de la série d'encoches du bord d'assemblage d'une dite membrane est supérieure à une largeur de l'interface entre deux plaques d'ancrage (30) voisines, ladite largeur d'une encoche étant inférieure à une largeur d'une pièce de jonction ondulée rapportée.
11. Cuve selon l'une des revendications 4 à 10, dans laquelle une encoche (34) du bord d'assemblage d'une dite membrane est parallèle à l'interface entre deux plaques d'ancrage (30) voisines.
12. Cuve selon l'une des revendications 4 à 11 , dans laquelle la coque de la pièce de jonction ondulée rapportée, comprend, deux murailles de bordées, présentant un espacement entre les murailles uniformes sur la longueur.
13. Cuve selon l'une des revendications 1 à 12, dans laquelle la première série d'ondulations (7) desdites membranes (5) est perpendiculaire au bord d'assemblage desdites membranes.
14. Cuve selon l'une des revendications 1 à 13, dans laquelle chaque ondulation de la première série d'ondulations de la première membrane comprend une première portion rectiligne, un coude (97) et une seconde portion rectiligne, et dans laquelle le coude a un angle (93) apte à orienter la seconde portion rectiligne perpendiculairement au bord d'assemblage de la première membrane avec l'organe d'ancrage.
15. Cuve selon l'une des revendications 1 à 14, dans laquelle la direction de la seconde série d'ondulations de la seconde membrane est parallèle à la direction de seconde série d'ondulations de la première membrane.
16. Cuve selon l'une des revendications 1 à 15, dans laquelle la première série d'ondulations d'une dite membrane est perpendiculaire au bord d'assemblage de ladite membrane, et la seconde série d'ondulations de ladite membrane est parallèle au bord d'assemblage de ladite membrane.
17. Cuve selon l'une des revendications 1 à 16, dans laquelle la direction de la première série d'ondulations de la seconde membrane est parallèle à la direction de première série d'ondulations de la première membrane.
18. Cuve selon l'une des revendications 1 à 17, dans laquelle les ondulations de la première série d'ondulations desdites membranes sont espacées avec un intervalle régulier.
19. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon l'une des revendications 1 à 18, disposée dans la double coque.
20. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 19, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
21. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 19, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
PCT/FR2014/050819 2013-04-11 2014-04-04 Découplage des ondulations d'une barrière étanche WO2014167228A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020157031342A KR102226313B1 (ko) 2013-04-11 2014-04-04 불침투성 배리어의 파동 형상부들의 분리
AU2014252973A AU2014252973B2 (en) 2013-04-11 2014-04-04 Uncoupling of the corrugations of an impervious barrier
EP14720660.1A EP2984382B1 (fr) 2013-04-11 2014-04-04 Découplage des ondulations d'une barrière étanche
US14/783,755 US10378694B2 (en) 2013-04-11 2014-04-04 Uncoupling of the corrugations of an impervious barrier
KR1020217006726A KR102306575B1 (ko) 2013-04-11 2014-04-04 불침투성 배리어의 파동 형상부들의 분리
JP2016507033A JP6291566B2 (ja) 2013-04-11 2014-04-04 不浸透性バリアの波形の結合解除
ES14720660T ES2732288T3 (es) 2013-04-11 2014-04-04 Desacoplamiento de las ondulaciones de una barrera estanca
RU2015145298A RU2650243C2 (ru) 2013-04-11 2014-04-04 Способ разграничения волнообразного рельефа герметизирующих мембран
MYPI2015703562A MY188268A (en) 2013-04-11 2014-04-04 Uncoupling of the corrugations of an impervious barrier
CN201480020735.9A CN105283704B (zh) 2013-04-11 2014-04-04 密封且隔热的罐及用于运输冷液体产品的船和传输系统
SG11201508308UA SG11201508308UA (en) 2013-04-11 2014-04-04 Uncoupling of the corrugations of an impervious barrier
US16/507,677 US11073241B2 (en) 2013-04-11 2019-07-10 Uncoupling of the corrugations of an impervious barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353262 2013-04-11
FR1353262A FR3004507B1 (fr) 2013-04-11 2013-04-11 Decouplage des ondulations d'une barriere etanche

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/783,755 A-371-Of-International US10378694B2 (en) 2013-04-11 2014-04-04 Uncoupling of the corrugations of an impervious barrier
US16/507,677 Division US11073241B2 (en) 2013-04-11 2019-07-10 Uncoupling of the corrugations of an impervious barrier

Publications (2)

Publication Number Publication Date
WO2014167228A2 true WO2014167228A2 (fr) 2014-10-16
WO2014167228A3 WO2014167228A3 (fr) 2015-04-16

Family

ID=48656141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050819 WO2014167228A2 (fr) 2013-04-11 2014-04-04 Découplage des ondulations d'une barrière étanche

Country Status (12)

Country Link
US (2) US10378694B2 (fr)
EP (1) EP2984382B1 (fr)
JP (1) JP6291566B2 (fr)
KR (2) KR102226313B1 (fr)
CN (1) CN105283704B (fr)
AU (1) AU2014252973B2 (fr)
ES (1) ES2732288T3 (fr)
FR (1) FR3004507B1 (fr)
MY (1) MY188268A (fr)
RU (1) RU2650243C2 (fr)
SG (1) SG11201508308UA (fr)
WO (1) WO2014167228A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050008A1 (fr) * 2016-04-11 2017-10-13 Gaztransport Et Technigaz Cuve etanche a membranes d'etancheite ondulees
WO2019012237A1 (fr) * 2017-07-13 2019-01-17 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a bande de support incurvee
FR3069903A1 (fr) * 2017-08-07 2019-02-08 Gaztransport Et Technigaz Cuve etanche et themiquement isolante
US10378694B2 (en) 2013-04-11 2019-08-13 Gaztransport Et Technigaz Uncoupling of the corrugations of an impervious barrier
WO2019239053A1 (fr) * 2018-06-13 2019-12-19 Gaztransport Et Technigaz Cuve etanche munie d'un element de jonction ondule
WO2019239048A1 (fr) 2018-06-13 2019-12-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2020115406A1 (fr) * 2018-12-06 2020-06-11 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2021074435A1 (fr) 2019-10-18 2021-04-22 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
US11480297B2 (en) 2017-12-29 2022-10-25 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Membrane bonding structure and liquefied gas storage tank comprising the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004510B1 (fr) * 2013-04-12 2016-12-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
FR3009745B1 (fr) * 2013-08-15 2016-01-29 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une piece d'angle
FR3049678B1 (fr) * 2016-04-01 2018-04-13 Gaztransport Et Technigaz Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve
CN205908999U (zh) * 2016-07-18 2017-01-25 江苏兰宇保温科技有限公司 具有泄漏追踪功能的低温储罐的保温内层结构
FR3054872B1 (fr) 2016-08-02 2018-08-17 Gaztransport Et Technigaz Structure de paroi etanche
FR3054871B1 (fr) 2016-08-02 2018-12-07 Gaztransport Et Technigaz Structure de paroi etanche
EP3733498A1 (fr) 2017-12-28 2020-11-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Feuille de finition de membrane et structure d'isolation de membrane pourvue de ladite feuille
FR3077278B1 (fr) * 2018-02-01 2020-02-07 Gaztransport Et Technigaz Paroi etanche a membrane ondulee renforcee
FR3084645B1 (fr) * 2018-08-06 2021-01-15 Gaztransport Et Technigaz Structure d'angle pour une cuve etanche et thermiquement isolante
DE102019125403A1 (de) * 2019-09-20 2021-03-25 Kautex Textron Gmbh & Co. Kg Kunststoffbehälter für kraftfahrzeuge mit zumindest einer versteifungsstruktur
CN112032550B (zh) * 2020-11-06 2021-03-26 中太海事技术(上海)有限公司 一种用于液化天然气储存的双金属低温薄膜储存舱
CN117818820B (zh) * 2024-03-06 2024-06-11 沪东中华造船(集团)有限公司 一种薄膜型液货围护系统及lng船

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157915A1 (fr) 2010-06-17 2011-12-22 Gaztransport Et Technigaz Cuve etanche et isolante comportant un pied de support

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE639626A (fr) * 1963-05-06
FR2691520B1 (fr) * 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
JP3249283B2 (ja) * 1994-02-18 2002-01-21 三菱重工業株式会社 低温タンクのメンブレン構造
FR2735847B1 (fr) * 1995-06-22 1997-08-14 Korea Gas Corp Membrane pour reservoir de stockage de gaz naturel liquefie
FR2739675B1 (fr) * 1995-10-05 1997-11-07 Gaztransport Et Technigaz Cuve terrestre pour le stockage du liquide a basse temperature
JP2002181288A (ja) * 2000-12-14 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガスメンブレンタンク
FR2861060B1 (fr) * 2003-10-16 2006-01-06 Gaz Transport & Technigaz Structure de paroi etanche et cuve munie d'une telle structure
US20090223974A1 (en) * 2004-07-06 2009-09-10 Tanno Maarten Felius Container for storing liquefied gas
FR2877639B1 (fr) * 2004-11-10 2006-12-15 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee integree a la stucture porteuse d'un navire
EP1819588A4 (fr) 2004-12-08 2016-12-21 Korea Gas Corp Reservoir de stockage de gnl et procede de fabrication correspondant
KR100644217B1 (ko) * 2006-04-20 2006-11-10 한국가스공사 개선된 단열구조를 갖는 액화천연가스 저장탱크 및 그제조방법
FR2903165B1 (fr) * 2006-06-30 2008-09-05 Gaz Transport & Technigaz Panneau prefabrique avec film protecteur
JP4451439B2 (ja) * 2006-09-01 2010-04-14 韓国ガス公社 液化天然ガスの貯蔵タンクを形成するための構造体
FR2909356B1 (fr) * 2006-11-30 2009-01-16 Gaztransp Et Technigaz Soc Par Fixation par collage de blocs isolants pour cuve de transport de gaz liquefies a l'aide de cordons ondules
KR100782737B1 (ko) * 2007-05-29 2007-12-05 현대중공업 주식회사 용접형 2차 방벽을 구비하는 액화천연가스 저장용기용단열시스템과 그 시공방법
FR2931535B1 (fr) * 2008-05-21 2010-08-20 Gaztransp Et Technigaz Fixation par collage de blocs isolants pour cuve de stockage de gaz liquefies a l'aide de cordons ondules
JP5174856B2 (ja) * 2010-06-16 2013-04-03 鹿島建設株式会社 防液堤一体型低温タンクの冷熱抵抗緩和材の設置方法
FR2963818B1 (fr) * 2010-08-11 2014-01-03 Gaztransp Et Technigaz Structure de paroi etanche
FR2973098B1 (fr) * 2011-03-22 2014-05-02 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante
FR3004507B1 (fr) 2013-04-11 2019-04-26 Gaztransport Et Technigaz Decouplage des ondulations d'une barriere etanche
FR3004511B1 (fr) * 2013-04-15 2016-12-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157915A1 (fr) 2010-06-17 2011-12-22 Gaztransport Et Technigaz Cuve etanche et isolante comportant un pied de support

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378694B2 (en) 2013-04-11 2019-08-13 Gaztransport Et Technigaz Uncoupling of the corrugations of an impervious barrier
US11073241B2 (en) 2013-04-11 2021-07-27 Gaztransport Et Technigaz Uncoupling of the corrugations of an impervious barrier
EP3232112A1 (fr) 2016-04-11 2017-10-18 Gaztransport Et Technigaz Cuve etanche a membranes d'etancheite ondulees
JP2017214146A (ja) * 2016-04-11 2017-12-07 ギャズトランスポルト エ テクニギャズ 波状の密閉膜を備えた密閉タンク
FR3050008A1 (fr) * 2016-04-11 2017-10-13 Gaztransport Et Technigaz Cuve etanche a membranes d'etancheite ondulees
US10293892B2 (en) 2016-04-11 2019-05-21 Gaztransport Et Technigaz Sealed tank with corrugated sealing membranes
WO2019012237A1 (fr) * 2017-07-13 2019-01-17 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a bande de support incurvee
FR3069043A1 (fr) * 2017-07-13 2019-01-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a bande de support incurvee
CN111108322A (zh) * 2017-08-07 2020-05-05 气体运输技术公司 密封隔热箱
JP2020530092A (ja) * 2017-08-07 2020-10-15 ギャズトランスポルト エ テクニギャズ 密閉断熱タンク
KR102504563B1 (ko) 2017-08-07 2023-02-28 가즈트랑스포르 에 떼끄니가즈 밀봉되고 단열된 탱크
RU2764605C2 (ru) * 2017-08-07 2022-01-18 Газтранспорт Эт Технигаз Герметизированный и теплоизолирующий резервуар
FR3069903A1 (fr) * 2017-08-07 2019-02-08 Gaztransport Et Technigaz Cuve etanche et themiquement isolante
KR20200037304A (ko) * 2017-08-07 2020-04-08 가즈트랑스포르 에 떼끄니가즈 밀봉되고 단열된 탱크
WO2019030448A1 (fr) * 2017-08-07 2019-02-14 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
US11480297B2 (en) 2017-12-29 2022-10-25 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Membrane bonding structure and liquefied gas storage tank comprising the same
KR20210010933A (ko) * 2018-06-13 2021-01-28 가즈트랑스포르 에 떼끄니가즈 물결 모양의 결합 소자가 제공된 유체 기밀식 용기
WO2019239053A1 (fr) * 2018-06-13 2019-12-19 Gaztransport Et Technigaz Cuve etanche munie d'un element de jonction ondule
KR20210018314A (ko) * 2018-06-13 2021-02-17 가즈트랑스포르 에 떼끄니가즈 밀봉 및 단열된 탱크
FR3082594A1 (fr) * 2018-06-13 2019-12-20 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3082593A1 (fr) * 2018-06-13 2019-12-20 Gaztransport Et Technigaz Cuve etanche munie d'un element de jonction ondule
KR102474089B1 (ko) 2018-06-13 2022-12-07 가즈트랑스포르 에 떼끄니가즈 물결 모양의 결합 소자가 제공된 유체 기밀식 용기
KR102498803B1 (ko) 2018-06-13 2023-02-10 가즈트랑스포르 에 떼끄니가즈 밀봉 및 단열된 탱크
WO2019239048A1 (fr) 2018-06-13 2019-12-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2020115406A1 (fr) * 2018-12-06 2020-06-11 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3089597A1 (fr) * 2018-12-06 2020-06-12 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
WO2021074435A1 (fr) 2019-10-18 2021-04-22 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3102228A1 (fr) 2019-10-18 2021-04-23 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante

Also Published As

Publication number Publication date
AU2014252973A1 (en) 2015-11-05
CN105283704A (zh) 2016-01-27
US20190331297A1 (en) 2019-10-31
FR3004507B1 (fr) 2019-04-26
RU2015145298A (ru) 2017-05-16
KR102306575B1 (ko) 2021-09-29
US20160069514A1 (en) 2016-03-10
FR3004507A1 (fr) 2014-10-17
KR20150141984A (ko) 2015-12-21
SG11201508308UA (en) 2015-11-27
RU2650243C2 (ru) 2018-04-11
KR102226313B1 (ko) 2021-03-10
CN105283704B (zh) 2017-04-26
MY188268A (en) 2021-11-24
JP2016515986A (ja) 2016-06-02
EP2984382B1 (fr) 2019-05-08
ES2732288T3 (es) 2019-11-21
US10378694B2 (en) 2019-08-13
EP2984382A2 (fr) 2016-02-17
AU2014252973B2 (en) 2016-07-21
US11073241B2 (en) 2021-07-27
WO2014167228A3 (fr) 2015-04-16
KR20210028746A (ko) 2021-03-12
JP6291566B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
EP2984382B1 (fr) Découplage des ondulations d'une barrière étanche
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP2984384B1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
EP2984383B1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP3033564B1 (fr) Cuve etanche et thermiquement isolante comportant une piece d'angle
FR3058498A1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
EP3425261B1 (fr) Cuve etanche et thermiquement isolante
FR2987099A1 (fr) Cuve etanche et thermiquement isolante comportant une piece d'angle
FR3004234A1 (fr) Cuve etanche et isolante ayant une barriere d'etancheite susceptible localement d'un glissement par rapport a la barriere isolante
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
EP3425260A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere
WO2018024982A1 (fr) Structure de paroi etanche
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
FR3061260A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP3665414B1 (fr) Cuve etanche et thermiquement isolante
EP3645933B1 (fr) Membrane etanche et procede d'assemblage d'une membrane etanche
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
EP3948055B1 (fr) Installation de stockage pour gaz liquéfié
WO2021074413A1 (fr) Poutre de raccordement pour une cuve etanche et thermiquement isolante de stockage de gaz liquefie

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020735.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14720660

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2014720660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506218

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016507033

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783755

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157031342

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014252973

Country of ref document: AU

Date of ref document: 20140404

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015145298

Country of ref document: RU

Kind code of ref document: A