WO2014163243A1 - Laser direct structuring method - Google Patents

Laser direct structuring method Download PDF

Info

Publication number
WO2014163243A1
WO2014163243A1 PCT/KR2013/006713 KR2013006713W WO2014163243A1 WO 2014163243 A1 WO2014163243 A1 WO 2014163243A1 KR 2013006713 W KR2013006713 W KR 2013006713W WO 2014163243 A1 WO2014163243 A1 WO 2014163243A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin structure
parts
weight
trench
Prior art date
Application number
PCT/KR2013/006713
Other languages
French (fr)
Korean (ko)
Inventor
김한주
손정철
Original Assignee
Kim Han Joo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Han Joo filed Critical Kim Han Joo
Priority to JP2016506217A priority Critical patent/JP2016516903A/en
Priority to CN201380072920.8A priority patent/CN104995334B/en
Publication of WO2014163243A1 publication Critical patent/WO2014163243A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material

Definitions

  • the present invention relates to a method of forming a metal layer on the surface of a nonconductive resin molded article, and more particularly, to a laser direct structuring method.
  • a laser direct structuring process is a process performed before the plating step, and means a process of modifying the plating target region on the surface of the resin molding to have properties suitable for plating by irradiating a laser to the plating target region on the surface of the resin molding.
  • the resin molded body should contain a "laser direct structuring nucleating agent (hereinafter simply referred to as" nucleating agent ")" capable of forming a metal nucleus by a laser.
  • the nucleating agent contained in the resin molded body generates metal nuclei while decomposing upon receiving a laser.
  • the plating target region to which the laser is irradiated has surface roughness. Due to the presence of such metal nuclei and surface roughness, the region to be laser modified is suitable for plating.
  • the laser direct structuring process may be utilized to manufacture antennas, RFID antennas, and the like of portable electronic devices.
  • the resin composition for a laser direct structuring process refers to a composition for producing a resin molded body whose surface can be modified as described above by a laser direct structuring process.
  • the resin composition for the laser direct structuring process contains a nucleating agent.
  • nucleating agent of the conventional composition for laser direct structuring process examples include metal oxides having a spinel structure (Patent 10-0716486, Published Patent 10-2010-0055474); Heavy metal composite oxide spinel such as copper chromium oxide spinel (Patent 10-2011-0009684); Copper salts such as copper hydroxide phosphate, copper phosphate, copper sulfate, or cuprous thiocyanate (published patent 10-2011-0009684, published patent 10-2011-0018319); and the like are known.
  • the copper chromium oxide of the spinel structure is so dark that it is also used as a black pigment. Therefore, the copper chromium oxide of the spinel structure is applicable only when the color required for the resin molded body is black or gray. When various colors other than black and gray are required for the resin molded body, when the spinel structure copper chromium oxide is applied as a nucleation agent, it is very difficult to obtain a resin molded body of a desired color.
  • Copper phosphate compounds generally have a pale green or blue based color. Therefore, when green or blue-based color is required for the resin molded body, it may be considered to apply a copper phosphate compound as a nucleation agent.
  • a copper phosphate compound (for example, Cu2P2O7 * H2O, 4CuO * P2O5 * H2O, etc.) can discharge
  • the released crystal water may react with other components such as the resin or the additive in the composition, or may remain in the resin molded body even after molding. Accordingly, the physical properties of the resin molded body may be reduced, or the color or surface state of the resin molded body may be reduced. In particular, this problem may occur more seriously if the composition contains moisture sensitive polymers such as, for example, polycarbonate, polyamide, polybutylene terephthalate and the like.
  • the copper hydroxide phosphate compound is a compound in which copper phosphate and copper hydroxide are bonded. Copper hydroxide phosphate contains copper hydroxide instead of crystal water, so that even during the molding process of the resin molded body, water is not released. In addition, copper hydroxide phosphate does not lower the color reproducibility of the colorant contained in the resin molded body, whereby it becomes very easy to obtain a resin molded body of a desired color.
  • colorants such as pigments and dyes contained in the resin molded body in order to impart the desired color to the resin molded body exhibit color by reflecting or absorbing incident light rays.
  • Laser electromagnetic radiation irradiated to the resin molded body in the LDS process is also reflected or absorbed by the colorant. Therefore, in the presence of a colorant, the depth at which laser electromagnetic radiation is transmitted into the resin molded body is reduced, and as a result, the reaction efficiency of the nucleating agent (for example, copper hydroxide phosphate) by the laser electromagnetic radiation is significantly reduced. Can be.
  • the nucleating agent for example, copper hydroxide phosphate
  • One embodiment of the laser direct structuring method according to an aspect of the present invention includes the step of irradiating a laser to the plating target region of the surface of the resin structure to form a trench line of the grid pattern arrangement.
  • a resin structure having a region to be plated in which a trench line having a lattice pattern formed by laser irradiation is formed in the region to be plated.
  • a resin structure having a region to be plated comprising: a resin structure in which a trench line of a lattice pattern formed by laser irradiation is formed in the region to be plated;
  • a resin structure having a conductor portion is provided.
  • the plurality of first trench lines and the plurality of second trench lines formed by laser irradiation intersect each other, so that the first trench lines and the second trench lines cross each other.
  • Trenchs of a lattice pattern are formed in the plating target region of the structure surface.
  • the trench of the lattice pattern formed by laser irradiation promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating. Furthermore, according to the present invention, the trench of the lattice pattern formed by laser irradiation enhances the adhesion between the metal layer and the resin structure attached to the plating target region on the surface of the resin structure by plating.
  • the resin structure does not contain a nucleation agent, it is possible to attach the metal layer to the plating target region on the surface of the resin structure by plating.
  • the metal layer is not attached to the region where the trench in the lattice pattern arrangement by the laser irradiation is not formed.
  • One embodiment of the laser direct structuring method includes irradiating a laser to a region to be plated on the surface of a resin structure to form trench lines having a lattice pattern.
  • the resin structure may include an thermoplastic resin, a thermosetting resin, or a blend thereof.
  • the resin structure may include an acrylonitrile butadiene styrene copolymer (ABS) resin, a polycarbonate resin, a polyamide resin, a polybutylene terephthalate resin, a polyethylene terephthalate resin, a polyvinyl chloride (PVC) resin, and a polyphthalamide (PPA).
  • ABS acrylonitrile butadiene styrene copolymer
  • PVC polyvinyl chloride
  • PPA polyphthalamide
  • Resins, polyphenylene sulfide (PPS) resins, polyester resins, liquid crystal polymer (LCP) resins, or blends thereof or blends thereof.
  • the resin structure may further include glass fibers.
  • the trench of the lattice pattern formed by laser irradiation more effectively promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating.
  • the glass fibers may reinforce the mechanical strength of the resin structure or compensate for structural defects of the resin structure.
  • the content of the glass fibers in the resin structure may be, for example, about 5 parts by weight to about 45 parts by weight based on 100 parts by weight of the resin.
  • the resin structure may further include ceramic filler powder.
  • the trench of the lattice pattern formed by laser irradiation promotes the metal layer on the surface to be plated on the surface of the resin structure by plating more effectively.
  • the content of the ceramic filler in the resin structure may be, for example, about 0.1 part by weight to about 15 parts by weight based on 100 parts by weight of the resin.
  • the ceramic filler can be, for example, alumina, titanium dioxide, or a combination thereof.
  • the resin structure may further include an antioxidant.
  • the trenches in the lattice pattern formed by laser irradiation further promote the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating.
  • the content of the antioxidant in the resin structure may be, for example, about 0.1 part by weight to about 5 parts by weight based on 100 parts by weight of the resin.
  • the resin structure may further include an acrylonitrile styrene acrylate component, or a resin component derived from acrylonitrile styrene acrylate.
  • the metal layer is plated on the surface of the resin structure by plating the trenches of the lattice pattern formed by laser irradiation. More effectively promote attachment to the target area.
  • the content of the acrylonitrile styrene acrylate component or the resin component derived from acrylonitrile styrene acrylate in the resin structure may be, for example, about 5 parts by weight to about 35 parts by weight based on 100 parts by weight of the resin.
  • the resin structure may further include a phosphate ester component.
  • the resin structure further contains a phosphate ester component, the trench of the lattice pattern formed by laser irradiation promotes the metal layer more effectively to adhere to the plating target region on the surface of the resin structure by plating.
  • the content of the phosphate ester component in the resin structure may be, for example, about 0.5 parts by weight to about 15 parts by weight based on 100 parts by weight of the resin.
  • the resin structure may further include a bisphenol A diphosphate component.
  • the resin structure further includes a bisphenol A diphosphate component, the trench of the lattice pattern formed by laser irradiation more effectively promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating.
  • the content of the bisphenol A diphosphate component in the resin structure may be, for example, about 6 parts by weight to about 20 parts by weight based on 100 parts by weight of the resin.
  • the resin structure may further include a colorant.
  • a colorant since it is not necessary to use a nucleating agent, the phenomenon of lowering the color reproducibility of the colorant by the nucleating agent can be prevented at all.
  • the content of the colorant in the resin structure may be, for example, about 0.1 part by weight to about 5 parts by weight based on 100 parts by weight of the resin.
  • the colorant can be, for example, a pigment or a dye.
  • the pigment can be, for example, an inorganic pigment or an organic pigment.
  • Metal oxide or composite metal oxide such as zinc oxide, titanium dioxide, iron oxide, etc .
  • Sulfides such as zinc sulfide and the like
  • Aluminate Sodium sulfosilicates
  • Sulfates Chromate; Carbon black; Zinc ferrite; Ultramarine blue; Pigment brown 24; Pigment red 101; Pigment yellow 119; And the like
  • Zinc ferrite Ultramarine blue
  • Pigment brown 24; Pigment red 101; Pigment yellow 119; And the like can be used.
  • organic pigments examples include azo, diazo, quinacridone, perylene, naphthalene tetracarboxylic acid, flavantron, isoindolinone, tetrachloroisoindoleone, anthraquinone, ananthrone, dioxazine, Phthalocyanine, Azo Lake, Pigment Blue 60, Pigment Red 122, Pigment Red 149, Pigment Red 177, Pigment Red 179, Pigment Red 202, Pigment Violet 29, Pigment Blue 15, Pigment Green 7, Pigment Yellow 147, Pigment Yellow 150, and the like can be used. Alternatively, a mixture containing two or more of these pigments may be used as the pigment.
  • dyes for example, coumarin 460 (blue), coumarin 6 (green), nile red, lanthanide complexes, hydrocarbons and substituted hydrocarbon dyes, polycyclic aromatic hydrocarbons, scintillation dyes (preferably oxazoles and oxadiazoles) ), Aryl- or heteroaryl-substituted poly (2-8 olefins), carbocyanine dyes, phthalocyanine dyes, oxazine dyes, carbostyryl dyes, porphyrin dyes, acridine dyes, anthraquinone dyes, arylmethane dyes , Azo dyes, diazonium dyes, nitro dyes, quinone imine dyes, tetrazolium dyes, thiazole dyes, perylene dyes, perinone dyes, bis-benzoxazolylthiophene (BBOT), xanthene dyes, fluorescent dyes (e.g.,
  • anti-stokes transition dyes that absorb at near infrared wavelengths and emit at visible wavelengths
  • luminescent dyes eg, 5-amino-9-diethyliminobenzophenoxazonium perchlorate
  • 7 - Amino-4-methylcarbostyryl 7-amino-4-methylcoumarin
  • 3- (2'-benzimidazolyl) -7-N N-diethylaminocoumarin
  • 3- (2'-benzothiazolyl ) -7-diethylaminocoumarin 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole
  • the resin structure may be substantially free of a nucleating agent.
  • nucleating agent of the conventional composition for laser direct structuring process include metal oxides having a spinel structure (Patent 10-0716486, Published Patent 10-2010-0055474); Heavy metal composite oxide spinel such as copper chromium oxide spinel (Patent 10-2011-0009684); Copper salts such as copper hydroxide phosphate, copper phosphate, copper sulfate, or cuprous thiocyanate (published patent 10-2011-0009684, published patent 10-2011-0018319); and the like are known.
  • the amount of the nucleating agent used was about 4 parts by weight or more based on 100 parts by weight of the resin.
  • the resin structure is substantially free of a nucleating agent, wherein the content of the nucleating agent in the resin structure is less than about 4 parts by weight, preferably 0.1 parts by weight based on 100 parts by weight of the resin. It means less than wealth. More preferably, in another embodiment of the present invention, the content of the nucleating agent in the resin structure may be about 0 parts by weight to about 0.05 parts by weight based on 100 parts by weight of the resin.
  • Irradiating a laser beam to the plating target region on the surface of the resin structure to form trench lines in a lattice pattern arrangement may be performed by irradiating a laser to the plating target region on the surface of the resin structure.
  • laser electromagnetic radiation for example, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO 4), ytterbium (YB), CO 2 , or the like may be used.
  • the wavelength of the laser electromagnetic radiation for example, 532 nm, 1064 nm, 1090 nm, 9.3 ⁇ m, 10.6 ⁇ m, or the like may be used.
  • an algorithm that recognizes and processes a three-dimensional shape for example, recognizes a three-dimensional shape part with a 3D recognition program and divides it into ten steps for each height to control the processing height of the laser
  • Laser electromagnetic radiation can be used to further process the outer line for uniformity of plating on the processed surface (plated surface) and the unprocessed surface.
  • the output value of the laser electromagnetic radiation may be, for example, about 2 W to about 30 W.
  • the trench lines of the grid pattern arrangement may include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other.
  • the first trench line and the second trench line are formed to cross each other.
  • the heat generated in the resin by the laser may be difficult to implement the desired grid pattern trench line.
  • the heat generated in the resin by the laser may be difficult to implement the desired grid pattern trench line.
  • by dividing the odd number and even number when processing the trench line and jumping at the time of machining it is possible to prevent the uneven portion from being recessed by the processing heat.
  • the plurality of first trench lines formed by laser irradiation do not cross each other.
  • the spacing between adjacent first trench lines may be, for example, about 0.02 mm to about 0.10 mm.
  • the spacing between adjacent first trench lines is less than about 0.02 mm, the lattice structure of the lattice structure is difficult to achieve due to the spot size of the laser (typically about 40 to about 80 ⁇ m), and adhesion during plating This may not come out.
  • the spacing between adjacent first trench lines is greater than about 0.10 mm, even when the trench line spacing is large, the shape of the trench lines of the lattice structure may be difficult and adhesion may not be produced during plating.
  • the plurality of second trench lines formed by the laser irradiation do not cross each other.
  • the spacing between adjacent second trench lines may be, for example, about 0.02 mm to about 0.10 mm. If the spacing between adjacent second trench lines is less than about 0.02 mm, the lattice structure of the lattice structure is difficult to achieve due to the spot size of the laser (typically about 40 to about 80 ⁇ m), and adhesion during plating This may not come out. When the spacing between adjacent second trench lines is greater than about 0.10 mm, even when the trench line spacing is large, the shape of the trench lines of the lattice structure may be difficult and adhesion may not be produced during plating.
  • the plurality of first trench lines and the plurality of second trench lines formed by laser irradiation are formed so as to intersect each other with the first trench line and the second trench lines, so that the lattice pattern is arranged in the plating target region of the surface of the resin structure.
  • the angle at which the first trench line and the second trench line cross each other does not necessarily have to be at right angles.
  • an angle at which the first trench line and the second trench line cross each other may be greater than about 0 ° and less than or equal to about 90 °.
  • the angle at which the first trench line and the second trench line cross each other may be about 60 ° to about 90 °.
  • the cross-sectional shape of the trench lines may be U-shaped or V-shaped, for example.
  • the cross-sectional shape of the trench line may be V-shaped.
  • a pyramidal or square-shaped island may be formed in the plating target region by forming the trench in the lattice pattern.
  • the adhesion between the metal plating layer and the plating target region of the resin structure can be increased even more remarkably.
  • the width of the first trench line and the second trench line may be, for example, about 40 ⁇ m to about 80 ⁇ m. Even if the width of the trench line is too small or too large, it may be difficult to form trench lines having a lattice structure and adhesion may not be produced during plating.
  • the depth of the first trench line and the second trench line may be, for example, about 5 ⁇ m to about 50 ⁇ m.
  • the deeper the trench line the greater the adhesion.
  • it is too deep it may be impossible to use due to problems in appearance and performance when used as an intenna and electronic products.
  • Another embodiment of the laser direct structuring method of the present invention may further include forming a metal layer by plating in a region to be plated on the surface of the resin structure in which the trench lines of the lattice pattern are formed by laser irradiation. have.
  • Plating may be carried out, for example, in an electroless plating manner. In the present invention, there is no significant change in plating conditions according to the type of resin.
  • the metal layer forming step by plating may include, for example, applying a catalyst to a region to be plated on the surface of the resin structure in which the trench lines in the lattice pattern are formed; And striking the metal in an electroless manner to the plating target region to which the catalyst is applied.
  • the catalyst applying step is to promote the formation / attach of the metal layer to the plating target region in the subsequent electroless metal strike step by applying the catalyst particles to the trench lines of the lattice pattern of the plating target region.
  • the catalyst for example, palladium can be used.
  • the palladium source for example, palladium chloride or palladium sulfate can be used.
  • the catalyst imparting step may be, for example, immersing the resin structure in the catalyst solution for about 1 minute to about 5 minutes at a temperature of about 30 ° C to about 40 ° C, and then at about 30 ° C to about 60 ° C It can be carried out by soaking in the catalyst activation solution for 1 to about 3 minutes.
  • the treating solution for catalyzing may be, for example, an aqueous solution containing palladium chloride and hydrochloric acid.
  • the amount of palladium chloride used in the aqueous solution is, for example, about 10 ml to about 450 based on 1 liter of deionized water used. may be ml;
  • the amount of hydrochloric anhydride in the aqueous solution may be, for example, about 150 ml to about 300 ml based on 1 liter of deionized water usage.
  • the catalyst activating solution may be, for example, an aqueous solution containing acidic ammonium fluoride:
  • the content of acidic ammonium fluoride in this aqueous solution may be, for example, from about 70 g / L to about 150 g / L.
  • the metal layer is plated in an electroless manner on the plating target region of the surface of the resin structure to which the catalyst is applied.
  • the metal layer may be copper, nickel, gold, silver, or a combination thereof.
  • the metal layer may be a single layer or a laminated structure. In the laminated structure, each layer may be a different metal or the same metal as each other.
  • an aqueous electroplating solution for electroless copper strikes may contain about 55 ml to about 65 ml of copper bath / supplement, about 55 ml to about 65 ml of alkali supplement, and about 15 ml of complexing agent based on 1 liter of deionized water. About 20 ml, about 0.1 ml to about 0.2 ml of stabilizer, and about 8 ml to about 10 ml of formaldehyde.
  • the bath / supplement agent is, for example, about 6 parts by weight to about 12 parts by weight of copper sulfate, about 1 part by weight to about 1.5 parts by weight of polyethylene glycol, about 0.01 part by weight to about 0.02 parts by weight of stabilizer, and about 78 parts by weight of water. To about 80 parts by weight.
  • the alkaline supplement may, for example, contain about 40 parts by weight to about 50 parts by weight sodium hydroxide, about 0.01 parts by weight to about 0.02 parts by weight stabilizer, and about 50 parts by weight to about 60 parts by weight of water.
  • the complexing agent may contain, for example, about 49 to about 50 parts by weight sodium hydroxide, about 0.01 to about 0.02 parts by weight stabilizer, and about 50 to about 51 parts by weight water.
  • Stabilizers include, for example, about 0.2 parts by weight to about 0.3 parts by weight of potassium selenocyanate, about 5 parts by weight to about 6 parts by weight of potassium cyanide, about 0.3 parts by weight to about 0.4 parts by weight of sodium hydroxide, and about 92 parts by weight of water. It may contain from about 100 parts by weight to about 93 parts by weight.
  • the resin structure to which the catalyst was given was immersed in the plating liquid for electroless copper strikes at the precipitation rate of about 0.5 to about 0.7 micrometer / 10min at about 41 degreeC to about 55 degreeC. Wash with water.
  • the resin structure to which the catalyst is applied is dipped in the plating solution for electroless nickel strike.
  • the aqueous plating solution for electroless nickel strike may contain about 55 ml to about 60 ml of the first nickel plating solution, and about 140 ml to about 150 ml of the second nickel plating solution, based on 1 liter of deionized water.
  • the first nickel plating solution may contain, for example, about 15 parts by weight to about 30 parts by weight of nickel sulfate, about 1 part by weight to about 10 parts by weight of the stabilizer, and about 70 parts by weight to about 80 parts by weight of water.
  • the second nickel plating solution may be, for example, about 1 part by weight to about 10 parts by weight of ammonia, about 10 parts by weight to about 20 parts by weight of hypophosphite, about 10 parts by weight to about 20 parts by weight, and about 70 parts by weight to about 80 parts by weight of water. It may contain parts by weight.
  • Stabilizers include, for example, about 0.2 parts by weight to about 0.3 parts by weight of potassium selenocyanate, about 5 parts by weight to about 6 parts by weight of potassium cyanide, about 0.3 parts by weight to about 0.4 parts by weight of sodium hydroxide, and about 92 parts by weight of water. It may contain from about 100 parts by weight to about 93 parts by weight.
  • the temperature of the aqueous plating solution for electroless nickel strike may be, for example, about 55 ° C to about 70 ° C.
  • the pH of the aqueous plating solution for electroless nickel strikes may be, for example, about 5.5 to about 6.0.
  • the nickel metal concentration in the aqueous plating solution for electroless nickel strikes may be, for example, about 5.0 to about 6.0 g / L.
  • the phosphorus concentration in the aqueous plating solution for electroless nickel strike may be about 3 to about 6 weight percent.
  • the resin structure provided with the catalyst is immersed in a plating solution for electroless nickel strike at a deposition rate of about 5 to about 6 mu m / hr, and then washed with water.
  • a resin structure in which a trench line having a lattice pattern formed by laser irradiation is formed in the region to be plated.
  • the trench lines of the grid pattern include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other, wherein the first trench lines and the first trench lines
  • the two trench lines may be formed to cross each other.
  • the spacing between the first trench lines may be 0.02 mm to 0.10 mm
  • the spacing between the second trench lines may be 0.02 mm to 0.10 mm.
  • a resin structure having a region to be plated comprising: a resin structure in which a trench line of a lattice pattern formed by laser irradiation is formed in the region to be plated;
  • a "resin structure having a conductor portion" is provided.
  • the trench lines of the grid pattern include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other, wherein the first trench lines and the first trench lines
  • the two trench lines may be formed to cross each other.
  • the spacing between the first trench lines may be 0.02 mm to 0.10 mm
  • the spacing between the second trench lines may be 0.02 mm to 0.10 mm.
  • the metal layer may be, for example, Cu, Ni, Au, Ag, an alloy thereof, or a laminate thereof.
  • the thickness of the metal layer may be, for example, about 6 to about 18 ⁇ m.
  • the "resin structure having a conductor part" is, for example, an antenna for a portable electronic device, an antenna for an RFID, automotive electronics, or white household appliances. It can be used as NFC antenna, cable replacement part, semiconductor IC composite part, etc.
  • Example 1 a resin molded body (smartphone antenna base) that was injection molded using a polycarbonate resin for injection molding (LUPOY SC1004A, LG Chemical) was used as the resin structure. In the resin structure used in Example 1, no nucleation agent was used.
  • a laser beam was irradiated to the plating target region (antenna pattern) on the surface of this resin structure to form trench lines in a lattice pattern arrangement.
  • Laser processing conditions were as shown in Table 1 below.
  • Table 1 Item Condition Laser medium YVO4 Laser wavelength 1064 nm Laser power 20 W Laser moving speed 1000 mm / min First and second trench line spacing 0.06 mm Trench line width 0.06 mm Trench line depth 0.04 mm Angle formed by the first and second trench lines 90 °
  • the resin structure was pretreated with ultrasonic waves to remove dust and bubbles from the surface of the resin structure.
  • the sonication process conditions are shown in Table 2 below.
  • the resin structure was immersed in the treating solution for catalyzing, and the catalyzing process was performed.
  • the conditions of the catalyst application process are shown in Table 3 below.
  • the resin structure was then immersed in a catalyst activation solution to activate the catalyst.
  • the conditions of the catalyst activation process are shown in Table 4 below.
  • the resin structure was immersed in the plating liquid for electroless copper strike to form a copper layer.
  • the conditions of the copper layer forming process are shown in Table 5 below.
  • the "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test (X-shaped cutting method: cutting along the lines of a lattice arrangement of 2 mm intervals in the plated layer. Draw the line, stick the adhesive tape on it, and then lift the adhesive tape in the vertical direction, if it sticks to the adhesive tape and the piece of plating layer is not peeled off at all, then pass). Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Example 2 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3104HF, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 2, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Example 3 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3200HF, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 3, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Example 4 has the "conductor portion" in the same manner as in Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (HF-1023IM, Cheil Industries) was used as the resin structure. Resin structure ". In the resin structure used in Example 4, no nucleation agent was used. The "resin structure having a conductor portion” thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • HF-1023IM polycarbonate resin
  • Example 5 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF HF-3201GL, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 5, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Example 6 has the "conductor portion" in the same manner as in Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (EH-1050, Cheil Industries) was used as the resin structure. Resin structure ". In the resin structure used in Example 6, no nucleation agent was used. The "resin structure having a conductor portion” thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Comparative Example 1 a “resin structure having a conductor portion” was manufactured in the same manner as in Example 1, except that the laser processing conditions were applied as shown in Table 6 below.
  • Table 6 Item Condition Laser medium YVO4 Laser wavelength 1064 nm Laser power 8 W Laser moving speed 2000 mm / min Laser irradiation pattern The entire area to be plated was cut to a uniform depth without forming trench lines in a lattice arrangement.
  • Comparative Example 1 As a result of visually observing the plating state in Comparative Example 1, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 1, it was confirmed that the copper layer was not plated effectively on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Comparative Example 2 the same resin composition as Comparative Example 1 was used except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3104HF, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method.
  • the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 2, it was confirmed that the copper layer was not plated effectively on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Comparative Example 3 was the same as Comparative Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3200HF, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method.
  • Comparative Example 3 it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 3, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Comparative Example 4 the same method as in Comparative Example 1 was used except that a resin molded product (smartphone antenna base) injection-molded using polycarbonate resin (HF-1023IM, Cheil Industries) was used as the resin structure. Resin structure ". As a result of visually observing the plating state in Comparative Example 4, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 4, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • HF-1023IM polycarbonate resin
  • Comparative Example 5 was the same as Comparative Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF HF-3201GL, Cheil Industries) was used as the resin structure.
  • a "resin structure having a conductor portion" was produced by the method.
  • the unplated portion of the plating target region was found, it was confirmed that the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 5, it was confirmed that the copper layer was not effectively plated on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • Comparative Example 6 the conductor portion was formed in the same manner as in Comparative Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (EH-1050, Cheil Industries) was used as the resin structure. Resin structure ". As a result of visually observing the plating state in Comparative Example 6, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 6, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
  • the "resin structure having a conductor portion" of the present invention is, for example, an antenna for a portable electronic device, an antenna for RFID, automotive electrical appliances, or white household electrical appliances. It can be used as NFC antenna, cable replacement part, semiconductor IC composite part, etc.

Abstract

The purpose of the present invention is to provide an improved laser direct structuring method capable of reforming an area to be plated on the surface of a resin structure by means of laser radiation, thereby making the area suitable for plating, without using a nucleation agent. An example of implementation of a laser direct structuring method according to an aspect of the present invention comprises a step of forming trench lines of lattice pattern arrangement by radiating lasers to an area to be plated on the surface of a resin structure.

Description

레이저 직접 구조화 방법Laser Direct Structuring Method
본 발명은 비전도성 수지 성형체 표면에 금속층을 형성하는 방법에 관한 것이며, 더욱 상세하게는 레이저 직접 구조화(laser direct structuring) 방법에 관한 것이다.The present invention relates to a method of forming a metal layer on the surface of a nonconductive resin molded article, and more particularly, to a laser direct structuring method.
수지 성형체 표면의 적어도 일부에 금속층을 도금하기 위하여, 레이저 직접 구조화 공정이 사용될 수 있다. 레이저 직접 구조화 공정은, 도금 단계 이전에 수행되는 공정으로서, 수지 성형체 표면의 도금 대상 영역에 레이저를 조사함으로써, 수지 성형체 표면의 도금 대상 영역을 개질하여 도금에 적합한 성질을 갖도록 하는 공정을 의미한다. 이를 위하여, 수지 성형체는, 레이저에 의하여 금속 핵을 형성할 수 있는 "레이저 직접 구조화용 핵 생성제(이하 간단히 '핵 생성제'라 함)"를 함유하여야 한다. 수지 성형체에 함유된 핵 생성제는, 레이저를 받으면, 분해되면서 금속 핵을 생성한다. 또한, 레이저가 조사된 도금 대상 영역은 표면 거칠기를 갖게 된다. 이러한 금속 핵 및 표면 거칠기의 존재로 인하여, 레이저로 개질된 도금 대상 영역은 도금에 적합하게 된다. In order to plate the metal layer on at least part of the surface of the resin molded body, a laser direct structuring process may be used. The laser direct structuring process is a process performed before the plating step, and means a process of modifying the plating target region on the surface of the resin molding to have properties suitable for plating by irradiating a laser to the plating target region on the surface of the resin molding. For this purpose, the resin molded body should contain a "laser direct structuring nucleating agent (hereinafter simply referred to as" nucleating agent ")" capable of forming a metal nucleus by a laser. The nucleating agent contained in the resin molded body generates metal nuclei while decomposing upon receiving a laser. In addition, the plating target region to which the laser is irradiated has surface roughness. Due to the presence of such metal nuclei and surface roughness, the region to be laser modified is suitable for plating.
레이저 직접 구조화 공정을 사용하면, 수지 성형체의 3차원 형상 위에 전기/전자 회로를 빠르고 경제적으로 형성할 수 있다. 구체적인 예를 들면, 레이저 직접 구조화 공정은, 휴대용 전자기기의 안테나, RFID 안테나, 등의 제조에 활용될 수 있다.Using a laser direct structuring process, it is possible to quickly and economically form an electric / electronic circuit on the three-dimensional shape of the resin molded body. For example, the laser direct structuring process may be utilized to manufacture antennas, RFID antennas, and the like of portable electronic devices.
레이저 직접 구조화 공정용 수지 조성물은, 레이저 직접 구조화 공정에 의하여 그 표면이 상기와 같이 개질될 수 있는 수지 성형체를 제조하기 위한 조성물을 지칭한다. 그에 따라, 레이저 직접 구조화 공정용 수지 조성물은 핵 생성제를 함유한다.The resin composition for a laser direct structuring process refers to a composition for producing a resin molded body whose surface can be modified as described above by a laser direct structuring process. Thus, the resin composition for the laser direct structuring process contains a nucleating agent.
종래의 레이저 직접 구조화 공정용 조성물의 핵 생성제로서는, 스피넬 구조를 갖는 금속 산화물(등록특허 10-0716486, 공개특허 10-2010-0055474); 구리 크롬 옥사이드 스피넬과 같은 중금속 복합 산화물 스피넬(공개특허 10-2011-0009684); 구리 하이드록사이드 포스페이트, 인산구리, 황산구리 또는 티오시안산제1구리와 같은 구리 염(공개특허 10-2011-0009684, 공개특허 10-2011-0018319);등이 알려져 있다.Examples of the nucleating agent of the conventional composition for laser direct structuring process include metal oxides having a spinel structure (Patent 10-0716486, Published Patent 10-2010-0055474); Heavy metal composite oxide spinel such as copper chromium oxide spinel (Patent 10-2011-0009684); Copper salts such as copper hydroxide phosphate, copper phosphate, copper sulfate, or cuprous thiocyanate (published patent 10-2011-0009684, published patent 10-2011-0018319); and the like are known.
그러나, 스피넬 구조의 구리 크롬 산화물은 흑색 안료로도 사용될 만큼 그 색상이 매우 검다. 따라서, 스피넬 구조의 구리 크롬 산화물은 수지 성형체에 대하여 요구되는 색상이 검은색 또는 회색일 경우에만 적용이 가능하다. 수지 성형체에 대하여 흑색 및 회색 외의 다양한 색상이 요구되는 경우, 스피넬 구조의 구리 크롬 산화물을 핵 생성제로서 적용하면, 원하는 색상의 수지 성형체를 얻는 것이 매우 어렵다. However, the copper chromium oxide of the spinel structure is so dark that it is also used as a black pigment. Therefore, the copper chromium oxide of the spinel structure is applicable only when the color required for the resin molded body is black or gray. When various colors other than black and gray are required for the resin molded body, when the spinel structure copper chromium oxide is applied as a nucleation agent, it is very difficult to obtain a resin molded body of a desired color.
인산 구리 화합물은 대체적으로 옅은 녹색 또는 청색 계열의 색상을 갖는다. 그에 따라, 수지 성형체에 대하여 녹색 또는 청색 계열의 색상이 요구되는 경우에는, 인산 구리 화합물을 핵 생성제로서 적용하는 것을 고려해볼 수 있다. 그러나, 인산 구리 화합물(예를 들어, Cu2P2O7·H2O, 4CuO·P2O5·H2O, 등)은, 수지 성형체 성형 과정의 온도 및 압력 하에서, 결정수를 방출할 수 있다. 방출된 결정수는, 조성물 중의 수지 또는 첨가제와 같은 다른 성분과 반응하거나, 성형 후에도 수지 성형체 내에 잔류할 수 있다. 그에 따라, 수지 성형체의 물성이 저하되거나, 수지 성형체의 색상 또는 표면 상태가 저하될 수 있다. 특히, 이러한 문제점은, 예를 들어, 폴리카보네이트, 폴리아미드, 폴리부틸렌테레프탈레이트 등과 같은 수분에 민감한 고분자가 조성물에 포함된 경우 더욱 심각하게 발생할 수 있다.Copper phosphate compounds generally have a pale green or blue based color. Therefore, when green or blue-based color is required for the resin molded body, it may be considered to apply a copper phosphate compound as a nucleation agent. However, a copper phosphate compound (for example, Cu2P2O7 * H2O, 4CuO * P2O5 * H2O, etc.) can discharge | release crystal water under the temperature and pressure of a resin molding process. The released crystal water may react with other components such as the resin or the additive in the composition, or may remain in the resin molded body even after molding. Accordingly, the physical properties of the resin molded body may be reduced, or the color or surface state of the resin molded body may be reduced. In particular, this problem may occur more seriously if the composition contains moisture sensitive polymers such as, for example, polycarbonate, polyamide, polybutylene terephthalate and the like.
구리 하이드록사이드 포스페이트 화합물은 인산 구리와 수산화 구리가 결합되어 있는 화합물이다. 구리 하이드록사이드 포스페이트는 결정수 대신에 수산화 구리를 함유하고 있어서, 수지 성형체 성형과정에서도, 수분을 방출하지 않는다. 또한, 구리 하이드록사이드 포스페이트는 수지 성형체에 함유되는 착색제의 색상 재현력을 저하시키지 않으며, 그에 따라, 원하는 색상의 수지 성형체를 얻는 것이 매우 용이해진다.The copper hydroxide phosphate compound is a compound in which copper phosphate and copper hydroxide are bonded. Copper hydroxide phosphate contains copper hydroxide instead of crystal water, so that even during the molding process of the resin molded body, water is not released. In addition, copper hydroxide phosphate does not lower the color reproducibility of the colorant contained in the resin molded body, whereby it becomes very easy to obtain a resin molded body of a desired color.
그러나, 수지 성형체에 원하는 색상을 부여하기 위하여 수지 성형체에 함유되는 안료 및 염료와 같은 착색제는 입사된 광선을 반사하거나 흡수하여 색상을 나타낸다. LDS 공정시 수지 성형체에 조사되는 레이저 전자기파 방사선 역시 착색제에 의해 반사되거나 흡수된다. 그에 따라, 착색제의 존재하에서는, 수지 성형체 내부로 레이저 전자기파 방사선이 전달되는 깊이가 줄어들게 되고, 결국, 레이저 전자기파 방사선에 의한 핵 생성제(예를 들어, 구리 하이드록사이드 포스페이트)의 반응 효율이 현저히 저하될 수 있다.However, colorants such as pigments and dyes contained in the resin molded body in order to impart the desired color to the resin molded body exhibit color by reflecting or absorbing incident light rays. Laser electromagnetic radiation irradiated to the resin molded body in the LDS process is also reflected or absorbed by the colorant. Therefore, in the presence of a colorant, the depth at which laser electromagnetic radiation is transmitted into the resin molded body is reduced, and as a result, the reaction efficiency of the nucleating agent (for example, copper hydroxide phosphate) by the laser electromagnetic radiation is significantly reduced. Can be.
본 발명에서는, 핵 생성제를 사용하지 않고도, 레이저의 조사에 의하여 수지 구조체(resin structure) 표면의 도금 대상 영역을 도금에 적합하도록 개질할 수 있는 개선된 레이저 직접 구조화 방법을 제공하고자 한다.It is an object of the present invention to provide an improved laser direct structuring method capable of modifying a region to be plated on a resin structure surface to be suitable for plating by irradiating a laser without using a nucleating agent.
본 발명의 일 측면에 따른 레이저 직접 구조화 방법의 일 구현예는, 수지 구조체 표면의 도금 대상 영역에 레이저를 조사하여 격자 무늬 배열의 트렌치 라인을 형성하는 단계를 포함한다.One embodiment of the laser direct structuring method according to an aspect of the present invention includes the step of irradiating a laser to the plating target region of the surface of the resin structure to form a trench line of the grid pattern arrangement.
본 발명의 다른 측면에 따라, 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체가 제공된다.According to another aspect of the present invention, in a resin structure having a region to be plated, there is provided a resin structure in which a trench line having a lattice pattern formed by laser irradiation is formed in the region to be plated.
본 발명의 또 다른 측면에 따라, According to another aspect of the invention,
(a) 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체; 및(a) A resin structure having a region to be plated, comprising: a resin structure in which a trench line of a lattice pattern formed by laser irradiation is formed in the region to be plated; And
(b) 상기 수지 구조체의 상기 도금 대상 영역에 부착된 금속층;을 포함하는,(b) a metal layer attached to the plating target region of the resin structure;
도체부를 갖는 수지 구조물이 제공된다.A resin structure having a conductor portion is provided.
본 발명의 레이저 직접 구조화 방법의 구현예에 있어서, 레이저 조사에 의하여 형성되는 복수의 제1 트렌치 라인 및 복수의 제2 트렌치 라인은, 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하므로, 수지 구조체 표면의 도금 대상 영역에 격자 무늬 배열의 트렌치를 형성한다. In an embodiment of the laser direct structuring method of the present invention, the plurality of first trench lines and the plurality of second trench lines formed by laser irradiation intersect each other, so that the first trench lines and the second trench lines cross each other. Trenchs of a lattice pattern are formed in the plating target region of the structure surface.
본 발명에서 밝혀진 바에 의하면, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치는, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 촉진한다. 또한, 본 발명에서 밝혀진 바에 의하면, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치는, 도금에 의하여 수지 구조체 표면의 도금 대상 영역에 부착된 금속층과 수지 구조체와의 접착력을 증진시킨다. According to the present invention, the trench of the lattice pattern formed by laser irradiation promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating. Furthermore, according to the present invention, the trench of the lattice pattern formed by laser irradiation enhances the adhesion between the metal layer and the resin structure attached to the plating target region on the surface of the resin structure by plating.
본 발명의 레이저 직접 구조화 방법의 구현예를 사용함으로써, 수지 구조체가 핵 생성제를 함유하지 않더라도, 도금에 의하여 금속층을 수지 구조체 표면의 도금 대상 영역에 부착하는 것이 가능하게 된다. 반면에, 레이저 조사에 의한 격자 무늬 배열의 트렌치가 형성되지 않은 영역에는 금속층이 부착되지 않는다. By using an embodiment of the laser direct structuring method of the present invention, even if the resin structure does not contain a nucleation agent, it is possible to attach the metal layer to the plating target region on the surface of the resin structure by plating. On the other hand, the metal layer is not attached to the region where the trench in the lattice pattern arrangement by the laser irradiation is not formed.
핵 생성제를 사용할 필요가 없는 본 발명의 레이저 직접 구조화 방법의 구현예를 사용함으로써, 종래의 레이저 직접 구조화 방법에 있어서의 핵 생성제의 사용에 따른 문제점들이 원천적으로 해결될 수 있다.By using an embodiment of the laser direct structuring method of the present invention that does not require the use of a nucleating agent, problems associated with the use of the nucleating agent in the conventional laser direct structuring method can be solved fundamentally.
이하에서는, 본 발명의 일 측면에 따른 레이저 직접 구조화 방법의 일 구현예를 더욱 상세하게 설명한다. 레이저 직접 구조화 방법의 일 구현예는, 수지 구조체 표면의 도금 대상 영역에 레이저를 조사하여 격자 무늬 배열의 트렌치 라인을 형성하는 단계를 포함한다.Hereinafter, an embodiment of the laser direct structuring method according to an aspect of the present invention will be described in more detail. One embodiment of the laser direct structuring method includes irradiating a laser to a region to be plated on the surface of a resin structure to form trench lines having a lattice pattern.
수지 구조체는 얼가소성 수지, 열경화성 수지, 또는 이들의 블렌드를 포함할 수 있다. 구체적인 예를 들면, 수지 구조체는, ABS(acrylonitrile butadiene styrene copolymer) 수지, 폴리카보네이트 수지, 폴리아미드 수지, 폴리부틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트 수지, PVC(poly vinyl chloride) 수지, PPA(polyphthalamide) 수지, PPS(polyphenylene sulfide) 수지, 폴리에스테르 수지, LCP(liquid crystal polymer) 수지, 또는 이들의 블렌드를 포함할 수 있다.The resin structure may include an thermoplastic resin, a thermosetting resin, or a blend thereof. For example, the resin structure may include an acrylonitrile butadiene styrene copolymer (ABS) resin, a polycarbonate resin, a polyamide resin, a polybutylene terephthalate resin, a polyethylene terephthalate resin, a polyvinyl chloride (PVC) resin, and a polyphthalamide (PPA). Resins, polyphenylene sulfide (PPS) resins, polyester resins, liquid crystal polymer (LCP) resins, or blends thereof.
수지 구조체는 유리섬유를 더 포함할 수 있다. 수지 구조체가 유리섬유를 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 또한, 유리섬유는 수지 구조체의 기계적 강도를 보강하거나 수지 구조체의 구조적인 결함을 보완할 수 있다. 수지 구조체 중의 유리섬유의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 5 중량부 내지 약 45 중량부일 수 있다. The resin structure may further include glass fibers. In the case where the resin structure further includes glass fibers, the trench of the lattice pattern formed by laser irradiation more effectively promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating. In addition, the glass fibers may reinforce the mechanical strength of the resin structure or compensate for structural defects of the resin structure. The content of the glass fibers in the resin structure may be, for example, about 5 parts by weight to about 45 parts by weight based on 100 parts by weight of the resin.
수지 구조체는 세라믹 필러 분말을 더 포함할 수 있다. 수지 구조체가 세라믹 필러 분말을 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 수지 구조체 중의 세라믹 필러의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 0.1 중량부 내지 약 15 중량부일 수 있다. 세라믹 필러는, 예를 들면, 알루미나, 티타늄 디옥사이드, 또는 이들의 조합일 수 있다.The resin structure may further include ceramic filler powder. In the case where the resin structure further includes ceramic filler powder, the trench of the lattice pattern formed by laser irradiation promotes the metal layer on the surface to be plated on the surface of the resin structure by plating more effectively. The content of the ceramic filler in the resin structure may be, for example, about 0.1 part by weight to about 15 parts by weight based on 100 parts by weight of the resin. The ceramic filler can be, for example, alumina, titanium dioxide, or a combination thereof.
수지 구조체는 산화 방지제를 더 포함할 수 있다. 수지 구조체가 산화 방지제를 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 수지 구조체 중의 산화 방지제의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 0.1 중량부 내지 약 5 중량부일 수 있다. The resin structure may further include an antioxidant. In the case where the resin structure further includes an antioxidant, the trenches in the lattice pattern formed by laser irradiation further promote the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating. The content of the antioxidant in the resin structure may be, for example, about 0.1 part by weight to about 5 parts by weight based on 100 parts by weight of the resin.
수지 구조체는 아크릴로니트릴 스티렌 아크릴레이트 성분, 또는 아크릴로니트릴 스티렌 아크릴레이트 유래의 수지 성분을 더 포함할 수 있다. 수지 구조체가 아크릴로니트릴 스티렌 아크릴레이트 성분, 또는 아크릴로니트릴 스티렌 아크릴레이트 유래의 수지 성분을 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 수지 구조체 중의 아크릴로니트릴 스티렌 아크릴레이트 성분, 또는 아크릴로니트릴 스티렌 아크릴레이트 유래의 수지 성분의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 5 중량부 내지 약 35 중량부일 수 있다. The resin structure may further include an acrylonitrile styrene acrylate component, or a resin component derived from acrylonitrile styrene acrylate. When the resin structure further comprises an acrylonitrile styrene acrylate component or a resin component derived from acrylonitrile styrene acrylate, the metal layer is plated on the surface of the resin structure by plating the trenches of the lattice pattern formed by laser irradiation. More effectively promote attachment to the target area. The content of the acrylonitrile styrene acrylate component or the resin component derived from acrylonitrile styrene acrylate in the resin structure may be, for example, about 5 parts by weight to about 35 parts by weight based on 100 parts by weight of the resin.
수지 구조체는 인산에스테르 성분을 더 포함할 수 있다. 수지 구조체가 인산에스테르 성분을 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 수지 구조체 중의 인산에스테르 성분의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 0.5 중량부 내지 약 15 중량부일 수 있다. The resin structure may further include a phosphate ester component. When the resin structure further contains a phosphate ester component, the trench of the lattice pattern formed by laser irradiation promotes the metal layer more effectively to adhere to the plating target region on the surface of the resin structure by plating. The content of the phosphate ester component in the resin structure may be, for example, about 0.5 parts by weight to about 15 parts by weight based on 100 parts by weight of the resin.
수지 구조체는 비스페놀 A 디포스페이트 성분을 더 포함할 수 있다. 수지 구조체가 비스페놀 A 디포스페이트 성분을 더 포함하는 경우, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 더욱 효과적으로 촉진한다. 수지 구조체 중의 비스페놀 A 디포스페이트 성분의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 6 중량부 내지 약 20 중량부일 수 있다. The resin structure may further include a bisphenol A diphosphate component. When the resin structure further includes a bisphenol A diphosphate component, the trench of the lattice pattern formed by laser irradiation more effectively promotes the adhesion of the metal layer to the plating target region on the surface of the resin structure by plating. The content of the bisphenol A diphosphate component in the resin structure may be, for example, about 6 parts by weight to about 20 parts by weight based on 100 parts by weight of the resin.
수지 구조체는 착색제를 더 포함할 수 있다. 본 발명에서는 핵 생성제를 사용할 필요가 없으므로, 핵 생성제에 의한 착색제의 색 재현력 저하 현상이 원천적으로 방지될 수 있다. 수지 구조체 중의 착색제의 함량은, 예를 들면, 수지 100 중량부를 기준으로 하여, 약 0.1 중량부 내지 약 5 중량부일 수 있다. 착색제는, 예를 들면, 안료 또는 염료일 수 있다. 안료는, 예를 들면, 무기 안료 또는 유기 안료일 수 있다. 무기 안료로서는, 예를 들면, 산화아연, 이산화티타늄, 산화철 등과 같은 금속 산화물 또는 복합 금속 산화물; 황화아연 등과 같은 술피드; 알루미네이트; 나트륨 술포실리케이트; 술페이트; 크로메이트; 카본 블랙; 아연 페라이트; 울트라마린 블루; 피그먼트 브라운 24; 피그먼트 레드 101; 피그먼트 옐로우 119; 등이 사용될 수 있다. 유기 안료로서는, 예를 들면, 아조, 디아조, 퀴나크리돈, 페릴렌, 나프탈렌 테트라카르복실산, 플라반트론, 이소인돌린온, 테트라클로로이소인돌론, 안트라퀴논, 안탄트론, 디옥사진, 프탈로시아닌, 아조 레이크(lake), 피그먼트 블루 60, 피그먼트 레드 122, 피그먼트 레드 149, 피그먼트 레드 177, 피그먼트 레드 179, 피그먼트 레드 202, 피그먼트 바이올렛 29, 피그먼트 블루 15, 피그먼트 그린 7, 피그먼트 옐로우 147, 피그먼트 옐로우 150, 등이 사용될 수 있다. 또는, 안료로서 이러한 안료 중 2종 이상을 포함하는 혼합물이 사용될 수도 있다. 염료로서는, 예를 들면, 쿠마린 460(청색), 쿠마린 6(녹색), 나일 레드, 란타나이드 복합체, 탄화수소 및 치환된 탄화수소 염료, 폴리시클릭 방향족 탄화수소, 신틸레이션 염료(바람직하게는 옥사졸 및옥사디아졸), 아릴- 또는 헤테로아릴-치환된 폴리(2-8 올레핀), 카르보시아닌 염료, 프탈로시아닌 염료, 옥사진 염료, 카르보스티릴 염료, 포르피린 염료, 아크리딘 염료, 안트라퀴논 염료, 아릴메탄 염료, 아조 염료, 디아조늄 염료, 니트로 염료, 퀴논 이민 염료, 테트라졸륨 염료, 티아졸 염료, 페릴렌 염료, 페린온 염료, 비스-벤즈옥사졸릴티오펜(BBOT), 크산텐 염료, 형광 염료(예를 들어, 근적외선 파장에서 흡수하고 가시선 파장에서 방출하는 반스톡스(anti-stokes) 전이 염료 등), 발광 염료(예를 들어, 5-아미노-9-디에틸이미노벤조 페녹사조늄 퍼클로레이트), 7-아미노-4-메틸카르보스티릴, 7-아미노-4-메틸쿠마린, 3-(2'-벤즈이미다졸릴)-7-N,N-디에틸아미노쿠마린, 3-(2'-벤조티아졸릴)-7-디에틸아미노쿠마린; 2-(4-비페닐릴)-5-(4-t-부틸페닐)-1,3,4-옥사디아졸, 2-(4-비페닐)-6-페닐벤즈옥사졸-1,3; 2,5-비스-(4-비페닐릴)-1,3,4-옥사디아졸; 2,5-비스-(4-비페닐릴)-옥사졸; 4,4'-비스-(2-부틸옥틸옥시)-p-쿼터페닐; p-비스(o-메틸스티릴)-벤젠; 5,9-디아미노벤조(a)페녹사조늄 퍼클로레이트; 4-디시아노메틸렌-2-메틸-6-(p-디메틸아미노스티릴)-4H-피란; 1,1'-디에틸-2,2'-카르보시아나이드 요오다이드; 3,3'-디에틸-4,4',5,5'-디벤조티아트리카르보시아나이드 요오다이드; 7-디에틸아미노-4-메틸쿠마린; 7-디에틸아미노-4-트리플루오로메틸쿠마린; 2,2'-디메틸-p-쿼터페닐; 2,2-디메틸-p-테르페닐; 7-에틸아미노-6-메틸-4-트리플루오로메틸쿠마린; 7-에틸아미노-4-트리플루오로메틸쿠마린; 나일 레드; 로다민 700; 옥사진 750; 로다민 800; IR 125; IR 144; IR 140; IR 132; IR26; IR5; 디페닐헥사트리엔; 디페닐부타디엔; 테트라페닐부타디엔; 나프탈렌; 안트라센; 9,10-디페닐안트라센; 피렌; 크리센; 루브렌; 코로넨; 페난트렌 등이 사용될 수 있다. 또는 염료로서, 이러한 염료 중 2종 이상을 포함하는 혼합물이 사용될 수도 있다.The resin structure may further include a colorant. In the present invention, since it is not necessary to use a nucleating agent, the phenomenon of lowering the color reproducibility of the colorant by the nucleating agent can be prevented at all. The content of the colorant in the resin structure may be, for example, about 0.1 part by weight to about 5 parts by weight based on 100 parts by weight of the resin. The colorant can be, for example, a pigment or a dye. The pigment can be, for example, an inorganic pigment or an organic pigment. As an inorganic pigment, For example, Metal oxide or composite metal oxide, such as zinc oxide, titanium dioxide, iron oxide, etc .; Sulfides such as zinc sulfide and the like; Aluminate; Sodium sulfosilicates; Sulfates; Chromate; Carbon black; Zinc ferrite; Ultramarine blue; Pigment brown 24; Pigment red 101; Pigment yellow 119; And the like can be used. Examples of the organic pigments include azo, diazo, quinacridone, perylene, naphthalene tetracarboxylic acid, flavantron, isoindolinone, tetrachloroisoindoleone, anthraquinone, ananthrone, dioxazine, Phthalocyanine, Azo Lake, Pigment Blue 60, Pigment Red 122, Pigment Red 149, Pigment Red 177, Pigment Red 179, Pigment Red 202, Pigment Violet 29, Pigment Blue 15, Pigment Green 7, Pigment Yellow 147, Pigment Yellow 150, and the like can be used. Alternatively, a mixture containing two or more of these pigments may be used as the pigment. As dyes, for example, coumarin 460 (blue), coumarin 6 (green), nile red, lanthanide complexes, hydrocarbons and substituted hydrocarbon dyes, polycyclic aromatic hydrocarbons, scintillation dyes (preferably oxazoles and oxadiazoles) ), Aryl- or heteroaryl-substituted poly (2-8 olefins), carbocyanine dyes, phthalocyanine dyes, oxazine dyes, carbostyryl dyes, porphyrin dyes, acridine dyes, anthraquinone dyes, arylmethane dyes , Azo dyes, diazonium dyes, nitro dyes, quinone imine dyes, tetrazolium dyes, thiazole dyes, perylene dyes, perinone dyes, bis-benzoxazolylthiophene (BBOT), xanthene dyes, fluorescent dyes (e.g. For example, anti-stokes transition dyes that absorb at near infrared wavelengths and emit at visible wavelengths, luminescent dyes (eg, 5-amino-9-diethyliminobenzophenoxazonium perchlorate), 7 - Amino-4-methylcarbostyryl, 7-amino-4-methylcoumarin, 3- (2'-benzimidazolyl) -7-N, N-diethylaminocoumarin, 3- (2'-benzothiazolyl ) -7-diethylaminocoumarin; 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2- (4-biphenyl) -6-phenylbenzoxazole-1,3 ; 2,5-bis- (4-biphenylyl) -1,3,4-oxadiazole; 2,5-bis- (4-biphenylyl) -oxazole; 4,4'-bis- (2-butyloctyloxy) -p-quaterphenyl; p-bis (o-methylstyryl) -benzene; 5,9-diaminobenzo (a) phenoxazonium perchlorate; 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran; 1,1'-diethyl-2,2'-carbocyanide iodide; 3,3'-diethyl-4,4 ', 5,5'-dibenzothiatricarbocyanide iodide; 7-diethylamino-4-methylcoumarin; 7-diethylamino-4-trifluoromethylcoumarin; 2,2'-dimethyl-p-quaterphenyl; 2,2-dimethyl-p-terphenyl; 7-ethylamino-6-methyl-4-trifluoromethylcoumarin; 7-ethylamino-4-trifluoromethylcoumarin; Nile red; Rhodamine 700; Oxazine 750; Rhodamine 800; IR 125; IR 144; IR 140; IR 132; IR26; IR5; Diphenylhexatriene; Diphenylbutadiene; Tetraphenylbutadiene; naphthalene; anthracene; 9,10-diphenylanthracene; Pyrene; Chrysene; Rubrene; Coronene; Phenanthrene and the like can be used. Or as a dye, a mixture comprising two or more of these dyes may be used.
수지 구조체는 핵 생성제를 실질적으로 함유하지 않을 수 있다. 종래의 레이저 직접 구조화 공정용 조성물의 핵 생성제로서는, 스피넬 구조를 갖는 금속 산화물(등록특허 10-0716486, 공개특허 10-2010-0055474); 구리 크롬 옥사이드 스피넬과 같은 중금속 복합 산화물 스피넬(공개특허 10-2011-0009684); 구리 하이드록사이드 포스페이트, 인산구리, 황산구리 또는 티오시안산제1구리와 같은 구리 염(공개특허 10-2011-0009684, 공개특허 10-2011-0018319);등이 알려져 있다. 본 발명에서는, 레이저 조사에 의하여 형성된 격자 무늬 배열의 트렌치가, 도금에 의하여 금속층이 수지 구조체 표면의 도금 대상 영역에 부착하는 것을 촉진하기 때문에, 수지 구조체가 핵 생성제를 함유하지 않더라도, 도금에 의하여 금속층을 수지 구조체 표면의 도금 대상 영역에 부착하는 것이 가능하다. 종래의 레이저 직접 구조화 공정에 있어서 핵 생성제의 사용량은 수지 100 중량부를 기준으로 하여 약 4 중량부 이상이었다. 본 발명의 구현예에 있어서, 수지 구조체가 핵 생성제를 실질적으로 함유하지 않는다는 것은, 수지 구조체 중의 핵 생성제의 함량이, 수지 100 중량부를 기준으로 하여 약 4 중량부 미만, 바람직하게는 0.1 중량부 미만이라는 것을 의미한다. 더욱 바람직하게는, 본 발명의 다른 구현예에 있어서, 수지 구조체 중의 핵 생성제의 함량이, 수지 100 중량부를 기준으로 하여 약 0 중량부 내지 약 0.05 중량부일 수 있다.The resin structure may be substantially free of a nucleating agent. Examples of the nucleating agent of the conventional composition for laser direct structuring process include metal oxides having a spinel structure (Patent 10-0716486, Published Patent 10-2010-0055474); Heavy metal composite oxide spinel such as copper chromium oxide spinel (Patent 10-2011-0009684); Copper salts such as copper hydroxide phosphate, copper phosphate, copper sulfate, or cuprous thiocyanate (published patent 10-2011-0009684, published patent 10-2011-0018319); and the like are known. In the present invention, since the trench of the lattice pattern formed by laser irradiation promotes adhesion of the metal layer to the plating target region on the surface of the resin structure by plating, even if the resin structure does not contain a nucleating agent, It is possible to attach a metal layer to the plating target area on the surface of the resin structure. In the conventional laser direct structuring process, the amount of the nucleating agent used was about 4 parts by weight or more based on 100 parts by weight of the resin. In an embodiment of the invention, the resin structure is substantially free of a nucleating agent, wherein the content of the nucleating agent in the resin structure is less than about 4 parts by weight, preferably 0.1 parts by weight based on 100 parts by weight of the resin. It means less than wealth. More preferably, in another embodiment of the present invention, the content of the nucleating agent in the resin structure may be about 0 parts by weight to about 0.05 parts by weight based on 100 parts by weight of the resin.
수지 구조체 표면의 도금 대상 영역에 레이저를 조사하여 격자 무늬 배열의 트렌치 라인을 형성하는 단계는, 수지 구조체 표면의 도금 대상 영역에 레이저를 조사함으로써 수행될 수 있다.Irradiating a laser beam to the plating target region on the surface of the resin structure to form trench lines in a lattice pattern arrangement may be performed by irradiating a laser to the plating target region on the surface of the resin structure.
레이저 전자기파 방사선의 매질은, 예를 들면, YAG(yttrium aluminum garnet), YVO4(yttrium orthovanadate), YB(ytterbium), CO2, 등이 사용될 수 있다. 레이저 전자기파 방사선의 파장은, 예를 들면, 532 nm, 1064 nm, 1090 nm, 9.3 ㎛, 10.6 ㎛, 등이 사용될 수 있다. 레이저 전자기파 방사선으로 가공시 3차원 형상을 인식하여 가공하는 알고리즘(예를 들어, 3차원 형상의 부품을 3D 인식 프로그램으로 인식하여 높이별 10 단계로 분리하여 레이저의 가공 높이를 제어하는 방식)이 사용될 수 있다. 레이저 전자기파 방사선으로 가공면(도금면)과 비가공면의 도금 균일성을 위한 외곽 라인 가공을 추가적으로 실시할 수 있다. 레이저 전자기파 방사선의 출력치는, 예를 들면, 약 2 W 내지 약 30 W일 수 있다.As a medium of laser electromagnetic radiation, for example, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO 4), ytterbium (YB), CO 2 , or the like may be used. As the wavelength of the laser electromagnetic radiation, for example, 532 nm, 1064 nm, 1090 nm, 9.3 μm, 10.6 μm, or the like may be used. When processing with laser electromagnetic radiation, an algorithm that recognizes and processes a three-dimensional shape (for example, recognizes a three-dimensional shape part with a 3D recognition program and divides it into ten steps for each height to control the processing height of the laser) Can be. Laser electromagnetic radiation can be used to further process the outer line for uniformity of plating on the processed surface (plated surface) and the unprocessed surface. The output value of the laser electromagnetic radiation may be, for example, about 2 W to about 30 W.
격자 무늬 배열의 트렌치 라인은, 예를 들면, 서로 교차하지 않는 복수의 제1 트렌치 라인(trench line) 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 포함할 수 있다. 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성된다.The trench lines of the grid pattern arrangement may include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other. The first trench line and the second trench line are formed to cross each other.
한편, 트렌치 라인을 가공할 때에 연속적인 트렌치 라인을 가공할 때에는 레이저에 의해서 수지에 열이 발생하여 원하는 격자 무늬 형태의 트렌치 라인을 구현하기가 힘든 경우가 발생할 수도 있다. 이 경우, 트렌치 라인을 가공할 때에 홀수 와 짝수를 구분하여 가공시에 점프를 함으로써, 가공열에 의해 요철부분이 함몰되는것을 방지할 수 있다.On the other hand, when processing the trench line when processing the continuous trench line, the heat generated in the resin by the laser may be difficult to implement the desired grid pattern trench line. In this case, by dividing the odd number and even number when processing the trench line and jumping at the time of machining, it is possible to prevent the uneven portion from being recessed by the processing heat.
레이저 조사에 의하여 형성되는 복수의 제1 트렌치 라인은 서로 교차하지 않는다. 인접한 제1 트렌치 라인들 사이의 간격은, 예를 들면, 약 0.02 mm 내지 약 0.10 mm 일 수 있다. 인접한 제1 트렌치 라인들 사이의 간격이 약 0.02 mm 보다 작은 경우, 레이저의 스팟 사이즈(Spot size)(통상적으로 약 40 ~ 약 80 ㎛)에 의하여 격자 구조의 트렌치 형상의 구현이 어려우며 도금시에도 밀착력이 나오지 않을수 있다. 인접한 제1 트렌치 라인들 사이의 간격이 약 0.10 mm 보다 큰 경우, 트렌치 라인 간격이 큰 경우에도 격자 구조의 트렌치 라인의 형상이 어렵고 도금시에 밀착력이 나오지 않을 수 있다. The plurality of first trench lines formed by laser irradiation do not cross each other. The spacing between adjacent first trench lines may be, for example, about 0.02 mm to about 0.10 mm. When the spacing between adjacent first trench lines is less than about 0.02 mm, the lattice structure of the lattice structure is difficult to achieve due to the spot size of the laser (typically about 40 to about 80 μm), and adhesion during plating This may not come out. When the spacing between adjacent first trench lines is greater than about 0.10 mm, even when the trench line spacing is large, the shape of the trench lines of the lattice structure may be difficult and adhesion may not be produced during plating.
레이저 조사에 의하여 형성되는 복수의 제2 트렌치 라인은 서로 교차하지 않는다. 인접한 제2 트렌치 라인들 사이의 간격은, 예를 들면, 약 0.02 mm 내지 약 0.10 mm 일 수 있다. 인접한 제2 트렌치 라인들 사이의 간격이 약 0.02 mm 보다 작은 경우, 레이저의 스팟 사이즈(Spot size)(통상적으로 약 40 ~ 약 80 ㎛)에 의하여 격자 구조의 트렌치 형상의 구현이 어려우며 도금시에도 밀착력이 나오지 않을수 있다. 인접한 제2 트렌치 라인들 사이의 간격이 약 0.10 mm 보다 큰 경우, 트렌치 라인 간격이 큰 경우에도 격자 구조의 트렌치 라인의 형상이 어렵고 도금시에 밀착력이 나오지 않을 수 있다. The plurality of second trench lines formed by the laser irradiation do not cross each other. The spacing between adjacent second trench lines may be, for example, about 0.02 mm to about 0.10 mm. If the spacing between adjacent second trench lines is less than about 0.02 mm, the lattice structure of the lattice structure is difficult to achieve due to the spot size of the laser (typically about 40 to about 80 μm), and adhesion during plating This may not come out. When the spacing between adjacent second trench lines is greater than about 0.10 mm, even when the trench line spacing is large, the shape of the trench lines of the lattice structure may be difficult and adhesion may not be produced during plating.
레이저 조사에 의하여 형성되는 복수의 제1 트렌치 라인 및 복수의 제2 트렌치 라인은, 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하도록 형성됨에 따라, 수지 구조체 표면의 도금 대상 영역에 격자 무늬 배열의 트렌치를 형성한다. 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하는 각도는 반드시 직각일 필요는 없다. 예를 들어, 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하는 각도는 약 0°초과 내지 약 90°이하일 수 있다. 바람직하게는, 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하는 각도는 약 60°내지 약 90°이하일 수 있다. The plurality of first trench lines and the plurality of second trench lines formed by laser irradiation are formed so as to intersect each other with the first trench line and the second trench lines, so that the lattice pattern is arranged in the plating target region of the surface of the resin structure. To form a trench. The angle at which the first trench line and the second trench line cross each other does not necessarily have to be at right angles. For example, an angle at which the first trench line and the second trench line cross each other may be greater than about 0 ° and less than or equal to about 90 °. Preferably, the angle at which the first trench line and the second trench line cross each other may be about 60 ° to about 90 °.
트렌치 라인의 단면 형상은, 예를 들면, U자형 또는 V자형일 수 있다. 바람직하게는, 트렌치 라인의 단면 형상은 V자형일 수 있다. 트렌치 라인의 단면 형상이 V자형인 경우, 격자 무늬 배열의 트렌치의 형성에 의하여, 도금 대상 영역에는 피라미드 형상 또는 사각추 형상의 섬(island)이 형성될 수 있다. 도금 대상 영역에 피라미드 형상 또는 사각추 형상의 섬이 형성되면, 금속 도금층과 수지 구조체의 도금 대상 영역 사이의 부착력이 더욱 더 현저하게 증가할 수 있다. The cross-sectional shape of the trench lines may be U-shaped or V-shaped, for example. Preferably, the cross-sectional shape of the trench line may be V-shaped. When the cross-sectional shape of the trench line is V-shaped, a pyramidal or square-shaped island may be formed in the plating target region by forming the trench in the lattice pattern. When a pyramidal or square-shaped island is formed in the plating target region, the adhesion between the metal plating layer and the plating target region of the resin structure can be increased even more remarkably.
제1 트렌치 라인과 제2 트렌치 라인의 폭은 예를 들면, 약 40 ㎛ 내지 약 80 ㎛일 수 있다. 트렌치 라인의 폭이 너무 작거나 너무 큰 경우에도 격자 구조의 트렌치 라인의 형성이 어렵고 도금시에 밀착력이 나오지 않을 수 있다.The width of the first trench line and the second trench line may be, for example, about 40 μm to about 80 μm. Even if the width of the trench line is too small or too large, it may be difficult to form trench lines having a lattice structure and adhesion may not be produced during plating.
제1 트렌치 라인과 제2 트렌치 라인의 깊이는 예를 들면, 약 5 ㎛ 내지 약 50 ㎛일 수 있다. 트렌치 라인의 깊이가 깊을수록 밀착성은 증가한다. 반면에, 너무 깊을 경우에는 인테나 및 전자제품으로 사용시 외관 및 성능의 문제로 인하여 사용이 불가할 수 있다.The depth of the first trench line and the second trench line may be, for example, about 5 μm to about 50 μm. The deeper the trench line, the greater the adhesion. On the other hand, if it is too deep, it may be impossible to use due to problems in appearance and performance when used as an intenna and electronic products.
본 발명의 레이저 직접 구조화 방법의 또 다른 구현예는, 레이저 조사에 의하여 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체 표면의 도금 대상 영역에, 도금에 의하여 금속층을 형성하는 단계를 더 포함할 수 있다. 도금은, 예를 들면, 무전해 도금 방식으로 수행될 수 있다. 본 발명에 있어서, 수지의 종류별 이에 따른 도금 조건의 변화가 크게 없는 것이 특징이다.Another embodiment of the laser direct structuring method of the present invention may further include forming a metal layer by plating in a region to be plated on the surface of the resin structure in which the trench lines of the lattice pattern are formed by laser irradiation. have. Plating may be carried out, for example, in an electroless plating manner. In the present invention, there is no significant change in plating conditions according to the type of resin.
도금에 의한 금속층 형성 단계는, 예를 들면, 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체 표면의 도금 대상 영역에 촉매를 부여하는 단계; 및 촉매가 부여된 도금 대상 영역에 무전해 방식으로 금속을 스트라이크(strike)하는 단계;를 포함할 수 있다. The metal layer forming step by plating may include, for example, applying a catalyst to a region to be plated on the surface of the resin structure in which the trench lines in the lattice pattern are formed; And striking the metal in an electroless manner to the plating target region to which the catalyst is applied.
촉매 부여 단계는 도금 대상 영역의 격자 무늬 배열의 트렌치 라인에 촉매 입자를 부여함으로써, 이어지는 무전해 금속 스트라이크 단계에서, 도금 대상 영역에 금속층이 형성/부착되는 것을 촉진하기 위한 것이다. 촉매로서는, 예를 들면, 팔라듐이 사용될 수 있다. 팔라듐 공급원으로서는, 예를 들면, 염화팔라듐 또는 황산팔라듐이 사용될 수 있다. 촉매 부여 단계는, 예를 들면, 수지 구조체를 약 30 ℃ 내지 약 40 ℃의 온도에서 약 1 분 내지 약 5 분 동안 촉매 부여용 처리액에 담근 후, 약 30 ℃ 내지 약 60 ℃의 온도에서 약 1 분 내지 약 3 분 동안 촉매 활성화 용액에 담금으로써 수행될 수 있다. 촉매 부여용 처리액은, 예를 들면, 염화 팔라듐과 염산을 함유하는 수용액일 수 있다: 이 수용액 중의 염화 팔라듐 사용량은, 탈이온수 사용량 1리터를 기준으로, 예를 들면, 약 10 ml 내지 약 450 ml일 수 있다; 이 수용액 중의 무수 염산의 사용량은, 탈이온수 사용량 1리터를 기준으로, 예를 들면, 약 150 ml 내지 약 300 ml 일 수 있다. 촉매 활성화 용액은, 예를 들면, 산성 불화 암모늄을 함유하는 수용액일 수 있다: 이 수용액 중의 산성 불화 암모늄의 함량은, 예를 들면, 약 70 g/L 내지 약 150 g/L 일 수 있다. The catalyst applying step is to promote the formation / attach of the metal layer to the plating target region in the subsequent electroless metal strike step by applying the catalyst particles to the trench lines of the lattice pattern of the plating target region. As the catalyst, for example, palladium can be used. As the palladium source, for example, palladium chloride or palladium sulfate can be used. The catalyst imparting step may be, for example, immersing the resin structure in the catalyst solution for about 1 minute to about 5 minutes at a temperature of about 30 ° C to about 40 ° C, and then at about 30 ° C to about 60 ° C It can be carried out by soaking in the catalyst activation solution for 1 to about 3 minutes. The treating solution for catalyzing may be, for example, an aqueous solution containing palladium chloride and hydrochloric acid. The amount of palladium chloride used in the aqueous solution is, for example, about 10 ml to about 450 based on 1 liter of deionized water used. may be ml; The amount of hydrochloric anhydride in the aqueous solution may be, for example, about 150 ml to about 300 ml based on 1 liter of deionized water usage. The catalyst activating solution may be, for example, an aqueous solution containing acidic ammonium fluoride: The content of acidic ammonium fluoride in this aqueous solution may be, for example, from about 70 g / L to about 150 g / L.
무전해 금속 스트라이크 단계에서는, 촉매가 부여된 수지 구조체 표면의 도금 대상 영역에 금속층을 무전해 방식으로 도금한다. 금속층은, 구리, 니켈, 금, 은, 또는 이들의 조합일 수 있다. 금속층은 단층 또는 적층 구조일 수 있다. 적층 구조에 있어서, 각 층은 서로 다른 금속이거나 서로 같은 금속일 수도 있다. In the electroless metal strike step, the metal layer is plated in an electroless manner on the plating target region of the surface of the resin structure to which the catalyst is applied. The metal layer may be copper, nickel, gold, silver, or a combination thereof. The metal layer may be a single layer or a laminated structure. In the laminated structure, each layer may be a different metal or the same metal as each other.
구체적인 예를 들면, 구리층을 스트라이크 하는 경우, 무전해 동 스트라이크용 도금액에, 촉매가 부여된 수지 구조체를 담근다. 예를 들면, 무전해 동 스트라이크용 수계 도금액은, 탈이온수 1 리터를 기준으로 하여, 동 건욕/보충제 약 55 ml 내지 약 65 ml, 알칼리 보충제 약 55 ml 내지 약 65 ml, 착화제 약 15 ml 내지 약 20 ml, 안정제 약 0.1 ml 내지 약 0.2 ml, 및 포름알데히드 약 8 ml 내지 약 10 ml를 함유할 수 있다. 동 건욕/보충제는, 예를 들면, 황산구리 약 6 중량부 내지 약 12 중량부, 폴리에틸렌글리콜 약 1 중량부 내지 약 1.5 중량부, 안정제 약 0.01 중량부 내지 약 0.02 중량부, 및 물 약 78 중량부 내지 약 80 중량부를 함유할 수 있다. 알칼리 보충제는, 예를 들면, 수산화나트륨 약 40 중량부 내지 약 50 중량부, 안정제 약 0.01 중량부 내지 약 0.02 중량부, 및 물 약 50 중량부 내지 약 60 중량부를 함유할 수 있다. 착화제는, 예를 들면, 수산화나트륨 약 49 내지 약 50 중량부, 안정제 약 0.01 중량부 내지 약 0.02 중량부, 및 물 약 50 내지 약 51 중량부를 함유할 수 있다. 안정제는, 예를 들면, 포타슘셀레노시아네이트 약 0.2 중량부 내지 약 0.3 중량부, 시안화칼륨 약 5 중량부 내지 약 6 중량부, 수산화나트륨 약 0.3 중량부 내지 약 0.4 중량부, 및 물 약 92 중량부 내지 약 93 중량부를 함유할 수 있다. 예를 들어, 구리층을 스트라이크 하기 위하여, 촉매가 부여된 수지 구조체를, 무전해 동 스트라이크용 도금액에, 약 41 ℃ 내지 약 55 ℃에서, 약 0.5 내지 약 0.7 ㎛/10min 의 석출 속도로 침지한 후 수세한다.For example, when striking a copper layer, the resin structure to which the catalyst was provided is immersed in the plating liquid for electroless copper strikes. For example, an aqueous electroplating solution for electroless copper strikes may contain about 55 ml to about 65 ml of copper bath / supplement, about 55 ml to about 65 ml of alkali supplement, and about 15 ml of complexing agent based on 1 liter of deionized water. About 20 ml, about 0.1 ml to about 0.2 ml of stabilizer, and about 8 ml to about 10 ml of formaldehyde. The bath / supplement agent is, for example, about 6 parts by weight to about 12 parts by weight of copper sulfate, about 1 part by weight to about 1.5 parts by weight of polyethylene glycol, about 0.01 part by weight to about 0.02 parts by weight of stabilizer, and about 78 parts by weight of water. To about 80 parts by weight. The alkaline supplement may, for example, contain about 40 parts by weight to about 50 parts by weight sodium hydroxide, about 0.01 parts by weight to about 0.02 parts by weight stabilizer, and about 50 parts by weight to about 60 parts by weight of water. The complexing agent may contain, for example, about 49 to about 50 parts by weight sodium hydroxide, about 0.01 to about 0.02 parts by weight stabilizer, and about 50 to about 51 parts by weight water. Stabilizers include, for example, about 0.2 parts by weight to about 0.3 parts by weight of potassium selenocyanate, about 5 parts by weight to about 6 parts by weight of potassium cyanide, about 0.3 parts by weight to about 0.4 parts by weight of sodium hydroxide, and about 92 parts by weight of water. It may contain from about 100 parts by weight to about 93 parts by weight. For example, in order to strike a copper layer, the resin structure to which the catalyst was given was immersed in the plating liquid for electroless copper strikes at the precipitation rate of about 0.5 to about 0.7 micrometer / 10min at about 41 degreeC to about 55 degreeC. Wash with water.
다른 구체적인 예를 들면, 니켈층을 스트라이크 하는 경우, 무전해 니켈 스트라이크용 도금액에, 촉매가 부여된 수지 구조체를 담근다. 예를 들면, 무전해 니켈 스트라이크용 수계 도금액은, 탈이온수 1 리터를 기준으로 하여, 제1 니켈 도금액 약 55 ml 내지 약 60 ml, 제2 니켈 도금액 약 140 ml 내지 약 150 ml 를 함유할수 있다. 제1 니켈 도금액은, 예를 들면, 황산니켈 약 15 중량부 내지 약 30 중량부, 안정제 약 1 중량부 내지 약 10 중량부, 물 약 70 중량부 내지 약 80 중량부를 함유할 수 있다. 제2 니켈 도금액은, 예를 들면, 암모니아 약 1 중량부 내지 약 10 중량부, 차아인산염 약 10 중량부 내지 약 20 중량부, 안정제 약 10 내지 약 20 중량부, 물 약 70 중량부 내지 약 80 중량부를 함유할 수 있다. 안정제는, 예를 들면, 포타슘셀레노시아네이트 약 0.2 중량부 내지 약 0.3 중량부, 시안화칼륨 약 5 중량부 내지 약 6 중량부, 수산화나트륨 약 0.3 중량부 내지 약 0.4 중량부, 및 물 약 92 중량부 내지 약 93 중량부를 함유할 수 있다. 무전해 니켈 스트라이크용 수계 도금액의 온도는 예를 들면 약 55 ℃ 내지 약 70 ℃일 수 있다. 무전해 니켈 스트라이크용 수계 도금액의 pH는 예를 들면 약 5.5 내지 약 6.0 일 수 있다. 무전해 니켈 스트라이크용 수계 도금액 중의 니켈 금속 농도는 예를 들면 약 5.0 내지 약 6.0 g/L 일 수 있다. 무전해 니켈 스트라이크용 수계 도금액 중의 인 농도는 약 3 내지 약 6 중량%일 수 있다. 예를 들어, 니켈층을 스트라이크 하기 위하여, 촉매가 부여된 수지 구조체를, 무전해 니켈 스트라이크용 도금액에, 약 5 내지 약 6 ㎛/hr 의 석출 속도로 침지한 후 수세한다.In another specific example, when the nickel layer is strike, the resin structure to which the catalyst is applied is dipped in the plating solution for electroless nickel strike. For example, the aqueous plating solution for electroless nickel strike may contain about 55 ml to about 60 ml of the first nickel plating solution, and about 140 ml to about 150 ml of the second nickel plating solution, based on 1 liter of deionized water. The first nickel plating solution may contain, for example, about 15 parts by weight to about 30 parts by weight of nickel sulfate, about 1 part by weight to about 10 parts by weight of the stabilizer, and about 70 parts by weight to about 80 parts by weight of water. The second nickel plating solution may be, for example, about 1 part by weight to about 10 parts by weight of ammonia, about 10 parts by weight to about 20 parts by weight of hypophosphite, about 10 parts by weight to about 20 parts by weight, and about 70 parts by weight to about 80 parts by weight of water. It may contain parts by weight. Stabilizers include, for example, about 0.2 parts by weight to about 0.3 parts by weight of potassium selenocyanate, about 5 parts by weight to about 6 parts by weight of potassium cyanide, about 0.3 parts by weight to about 0.4 parts by weight of sodium hydroxide, and about 92 parts by weight of water. It may contain from about 100 parts by weight to about 93 parts by weight. The temperature of the aqueous plating solution for electroless nickel strike may be, for example, about 55 ° C to about 70 ° C. The pH of the aqueous plating solution for electroless nickel strikes may be, for example, about 5.5 to about 6.0. The nickel metal concentration in the aqueous plating solution for electroless nickel strikes may be, for example, about 5.0 to about 6.0 g / L. The phosphorus concentration in the aqueous plating solution for electroless nickel strike may be about 3 to about 6 weight percent. For example, in order to strike the nickel layer, the resin structure provided with the catalyst is immersed in a plating solution for electroless nickel strike at a deposition rate of about 5 to about 6 mu m / hr, and then washed with water.
다른 예를 들면, 도금 대상 영역에 촉매를 부여하는 단계; 및 촉매가 부여된 도금 대상 영역에 무전해 방식으로 금속을 스트라이크(strike)하는 단계;를 반복함으로써, 적층형 금속층을 형성할 수 있다.As another example, the step of applying a catalyst to the plating target region; And striking the metal in an electroless manner in the plating target region to which the catalyst is applied, thereby forming a stacked metal layer.
본 발명의 다른 측면에 따라, 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체가 제공된다. 상기 격자 무늬 배열의 트렌치 라인은, 예를 들면, 서로 교차하지 않는 복수의 제1 트렌치 라인(trench line) 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 포함하고, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성되어 있을 수 있다. 예를 들면, 상기 제1 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 이고, 상기 제2 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 일 수 있다.According to another aspect of the present invention, in a resin structure having a region to be plated, there is provided a resin structure in which a trench line having a lattice pattern formed by laser irradiation is formed in the region to be plated. The trench lines of the grid pattern include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other, wherein the first trench lines and the first trench lines The two trench lines may be formed to cross each other. For example, the spacing between the first trench lines may be 0.02 mm to 0.10 mm, and the spacing between the second trench lines may be 0.02 mm to 0.10 mm.
본 발명의 또 다른 측면에 따라, According to another aspect of the invention,
(a) 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체; 및(a) A resin structure having a region to be plated, comprising: a resin structure in which a trench line of a lattice pattern formed by laser irradiation is formed in the region to be plated; And
(b) 상기 수지 구조체의 상기 도금 대상 영역에 부착된 금속층;을 포함하는,(b) a metal layer attached to the plating target region of the resin structure;
"도체부를 갖는 수지 구조물"을 제공한다.A "resin structure having a conductor portion" is provided.
상기 격자 무늬 배열의 트렌치 라인은, 예를 들면, 서로 교차하지 않는 복수의 제1 트렌치 라인(trench line) 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 포함하고, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성되어 있을 수 있다. The trench lines of the grid pattern include, for example, a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other, wherein the first trench lines and the first trench lines The two trench lines may be formed to cross each other.
예를 들면, 상기 제1 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 이고, 상기 제2 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 일 수 있다.For example, the spacing between the first trench lines may be 0.02 mm to 0.10 mm, and the spacing between the second trench lines may be 0.02 mm to 0.10 mm.
상기 금속층은, 예를 들면, Cu, Ni, Au, Ag, 이들의 합금, 또는 이들의 적층체일 수 있다. 상기 금속층의 두께는, 예를 들면, 약 6 내지 약 18 ㎛일 수 있다. The metal layer may be, for example, Cu, Ni, Au, Ag, an alloy thereof, or a laminate thereof. The thickness of the metal layer may be, for example, about 6 to about 18 μm.
본 발명의 또 다른 측면에 따른 "도체부를 갖는 수지 구조물"은, 예를 들면, 휴대용 전자기기용 안테나, RFID용 안테나, 자동차용 전장품류, 백색 가전 제품류. NFC안테나, 케이블 대체 부품, 반도체 IC 복합 부품, 등으로 사용될 수 있다.The "resin structure having a conductor part" according to another aspect of the present invention is, for example, an antenna for a portable electronic device, an antenna for an RFID, automotive electronics, or white household appliances. It can be used as NFC antenna, cable replacement part, semiconductor IC composite part, etc.
<실시예><Example>
실시예 1Example 1
실시예 1에서는 수지 구조체로서, 사출성형용 폴리카보네이트 수지(LUPOY SC1004A, LG화학)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용하였다. 실시예 1에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다.In Example 1, a resin molded body (smartphone antenna base) that was injection molded using a polycarbonate resin for injection molding (LUPOY SC1004A, LG Chemical) was used as the resin structure. In the resin structure used in Example 1, no nucleation agent was used.
이러한 수지 구조체의 표면의 도금대상영역(안테나 패턴)에, 레이저를 조사하여 격자 무늬 배열의 트렌치 라인을 형성하였다. 레이저 공정 조건은 하기 표 1와 같았다.A laser beam was irradiated to the plating target region (antenna pattern) on the surface of this resin structure to form trench lines in a lattice pattern arrangement. Laser processing conditions were as shown in Table 1 below.
표 1
항목 조건
레이저 매질 YVO4
레이저 파장 1064 nm
레이저 출력 20 W
레이저 이동 속도 1000 mm/min
제1 및 제2 트렌치 라인 간격 0.06 mm
트렌치 라인 폭 0.06 mm
트렌치 라인 깊이 0.04 mm
제1 및 제2 트렌치 라인이 이루는 각도 90 °
Table 1
Item Condition
Laser medium YVO4
Laser wavelength 1064 nm
Laser power 20 W
Laser moving speed 1000 mm / min
First and second trench line spacing 0.06 mm
Trench line width 0.06 mm
Trench line depth 0.04 mm
Angle formed by the first and second trench lines 90 °
그 다음, 이렇게 처리된 수지 구조체에 대하여 도금 공정을 수행하였다. 먼저, 수지 구조체를 초음파로 전처리하여, 수지 구조체 표면의 먼지 및 기포를 제거하였다. 초음파 처리 공정 조건은 하기 표 2와 같다.Then, a plating process was performed on the resin structure thus treated. First, the resin structure was pretreated with ultrasonic waves to remove dust and bubbles from the surface of the resin structure. The sonication process conditions are shown in Table 2 below.
표 2
항목 조건
초음파 매질 탈이온수 95 중량부 + 트리에탈놀아민 5 중량부
초음파 매질 온도 60 ℃
초음파 처리 시간 1 분
TABLE 2
Item Condition
Ultrasonic medium 95 parts by weight of deionized water + 5 parts by weight of triethanolamine
Ultrasonic medium temperature 60 ℃
Ultrasonic treatment time 1 min
그 다음, 수지 구조체를 촉매 부여용 처리액에 담그어서, 촉매 부여 공정을 수행하였다. 촉매 부여 공정의 조건은 하기 표 3과 같다.Then, the resin structure was immersed in the treating solution for catalyzing, and the catalyzing process was performed. The conditions of the catalyst application process are shown in Table 3 below.
표 3
항목 조건
촉매 부여용 처리액 제조 조성 탈이온수 1 리터
염화팔라듐 380 mg
무수 염산 200 ml
촉매 부여용 처리액 온도 35 ℃
담근 시간 4 분
TABLE 3
Item Condition
Treatment liquid preparation composition for catalysis Deionized water 1 liter
Palladium chloride 380 mg
Hydrochloric anhydride 200 ml
Treatment liquid temperature for catalyst 35 ℃
Dipped time 4 mins
그 다음, 수지 구조체를 촉매 활성화 용액에 담그어서, 촉매를 활성화하였다. 촉매 활성화 공정의 조건은 하기 표 4와 같다.The resin structure was then immersed in a catalyst activation solution to activate the catalyst. The conditions of the catalyst activation process are shown in Table 4 below.
표 4
항목 조건
촉매 활성화 용액 제조 조성 탈이온수 1리터
산성불화암모늄(NH4HF2) 120 g
촉매 활성화 용액 온도 60 ℃
담근 시간 2 분
Table 4
Item Condition
Catalyst Activation Solution Preparation Composition Deionized water 1 liter
Acid Ammonium Fluoride (NH4HF2) 120 g
Catalyst Activation Solution Temperature 60 ℃
Dipped time 2 mins
그 다음, 수지 구조체를 무전해 동 스트라이크용 도금액에 담그어서, 구리층을 형성하였다. 구리층 형성 공정의 조건은 하기 표 5와 같다.Then, the resin structure was immersed in the plating liquid for electroless copper strike to form a copper layer. The conditions of the copper layer forming process are shown in Table 5 below.
표 5
항목 조건
무전해 동 스트라이크용 수계 도금액 제조 조성 탈이온수 1 리터
동 건욕/보충제 100 ml
알칼리 보충제 80 ml
착화제 50 ml
안정제 1 ml
포름알데히드 6 g
동 건욕/보충제 제조 조성 황산구리 8 중량부
폴리에틸렌글리콜(PEG 20000) 1 중량부
안정제 0.02 중량부
탈이온수 80 중량부
알칼리 보충제 제조 조성 수산화나트륨 40 중량부
안정제 0.02 중량부
탈이온수 60 중량부
착화제 수산화나트륨 50 중량부
안정제 0.02 중량부
탈이온수 50 중량부
안정제 포타슘셀레노시아네이트 0.2 중량부
시안화칼륨 6 중량부
수산화나트륨 0.4 중량부
탈이온수 93 중량부
도금액 온도 48 ℃
도금 속도 및 시간 0.5 ㎛/10min, 220 분
Table 5
Item Condition
Aqueous Plating Solution for Electroless Copper Strike Deionized water 1 liter
Copper bath / supplement 100 ml
Alkali supplements 80 ml
Complexing agent 50 ml
stabilizator 1 ml
Formaldehyde 6 g
Copper bath / supplement manufacturing composition Copper sulfate 8 parts by weight
Polyethylene Glycol (PEG 20000) 1 part by weight
stabilizator 0.02 parts by weight
Deionized water 80 parts by weight
Alkali Supplement Manufacturing Composition Sodium hydroxide 40 parts by weight
stabilizator 0.02 parts by weight
Deionized water 60 parts by weight
Complexing agent Sodium hydroxide 50 parts by weight
stabilizator 0.02 parts by weight
Deionized water 50 parts by weight
stabilizator Potassium Selenocyanate 0.2 parts by weight
Potassium Cyanide 6 parts by weight
Sodium hydroxide 0.4 parts by weight
Deionized water 93 parts by weight
Plating solution temperature 48 ℃
Plating speed and time 0.5 μm / 10 min, 220 min
이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다 (X자 커팅 시험법 : 도금층에 2 mm 간격의 격자형 배열의 선들을 따라 커팅선을 긋는다. 그 위에 접착 테이프를 붙인 후, 접착 테이프를 수직 방향으로 들어낸다. 접착 테이프에 달라 붙어서 도금층 조각이 전혀 벗겨져 나오지 않으면 합격이다). 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test (X-shaped cutting method: cutting along the lines of a lattice arrangement of 2 mm intervals in the plated layer. Draw the line, stick the adhesive tape on it, and then lift the adhesive tape in the vertical direction, if it sticks to the adhesive tape and the piece of plating layer is not peeled off at all, then pass). Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
실시예 2Example 2
실시예 2에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF EH-3104HF, 제일모직)을 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 실시예 2에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다. 이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다. 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.Example 2 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3104HF, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 2, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
실시예 3Example 3
실시예 3에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF EH-3200HF, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 실시예 3에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다. 이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다. 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.Example 3 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3200HF, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 3, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
실시예 4Example 4
실시예 4에서는 수지 구조체로서 폴리카보네이트 수지(HF-1023IM, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 실시예 4에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다. 이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다. 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.Example 4 has the "conductor portion" in the same manner as in Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (HF-1023IM, Cheil Industries) was used as the resin structure. Resin structure ". In the resin structure used in Example 4, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
실시예 5Example 5
실시예 5에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF HF-3201GL, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 실시예 5에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다. 이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다. 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.Example 5 was the same as Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF HF-3201GL, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. In the resin structure used in Example 5, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
실시예 6Example 6
실시예 6에서는 수지 구조체로서 폴리카보네이트 수지(EH-1050, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 실시예 6에서 사용한 수지 구조체에 있어서, 핵생성제는 전혀 사용되지 않았다. 이렇게 제조된 "도체부를 갖는 수지 구조물"을 탈이온수로 수세한 후, X자 커팅 시험법으로 도금 상태를 관찰하였다. 또한, 도금 대상 영역 중 도금이 되지 않은 부분을 발견할 수 없었다. 이로부터, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에만 구리층이 견고하게 도금되었음을 확인할 수 있었다.Example 6 has the "conductor portion" in the same manner as in Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (EH-1050, Cheil Industries) was used as the resin structure. Resin structure ". In the resin structure used in Example 6, no nucleation agent was used. The "resin structure having a conductor portion" thus prepared was washed with deionized water, and then the plating state was observed by an X-shaped cutting test. Moreover, the part which is not plated among the plating object areas was not found. From this, it was confirmed that the copper layer was firmly plated only in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 1Comparative Example 1
비교예 1에서는 레이저 공정 조건을 하기 표 6과 같이 적용한 것을 제외하고는, 실시예 1과 동일한 방법으로, "도체부를 갖는 수지 구조물"을 제조하였다.In Comparative Example 1, a “resin structure having a conductor portion” was manufactured in the same manner as in Example 1, except that the laser processing conditions were applied as shown in Table 6 below.
표 6
항목 조건
레이저 매질 YVO4
레이저 파장 1064 nm
레이저 출력 8 W
레이저 이동 속도 2000 mm/min
레이저 조사 패턴 격자 형태 배열의 트렌치 라인을 형성하지 않고, 도금 대상 영역 전체를 균일한 깊이로 깍아 내었음.
Table 6
Item Condition
Laser medium YVO4
Laser wavelength 1064 nm
Laser power 8 W
Laser moving speed 2000 mm / min
Laser irradiation pattern The entire area to be plated was cut to a uniform depth without forming trench lines in a lattice arrangement.
비교예 1에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 1에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.As a result of visually observing the plating state in Comparative Example 1, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 1, it was confirmed that the copper layer was not plated effectively on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 2Comparative Example 2
비교예 2에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF EH-3104HF, 제일모직)을 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 비교예 2에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 2에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.In Comparative Example 2, the same resin composition as Comparative Example 1 was used except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3104HF, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. As a result of visually observing the plating state in Comparative Example 2, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 2, it was confirmed that the copper layer was not plated effectively on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 3Comparative Example 3
비교예 3에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF EH-3200HF, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 비교예 3에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 3에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.Comparative Example 3 was the same as Comparative Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF EH-3200HF, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. As a result of visually observing the plating state in Comparative Example 3, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 3, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 4Comparative Example 4
비교예 4에서는 수지 구조체로서 폴리카보네이트 수지(HF-1023IM, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 비교예 4에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 4에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.In Comparative Example 4, the same method as in Comparative Example 1 was used except that a resin molded product (smartphone antenna base) injection-molded using polycarbonate resin (HF-1023IM, Cheil Industries) was used as the resin structure. Resin structure ". As a result of visually observing the plating state in Comparative Example 4, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 4, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 5Comparative Example 5
비교예 5에서는 수지 구조체로서 폴리카보네이트/유리섬유 수지(PC/GF HF-3201GL, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 비교예 5에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 5에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.Comparative Example 5 was the same as Comparative Example 1 except that a resin molded body (smartphone antenna base) injection molded using polycarbonate / glass fiber resin (PC / GF HF-3201GL, Cheil Industries) was used as the resin structure. A "resin structure having a conductor portion" was produced by the method. As a result of visually observing the plating state in Comparative Example 5, the unplated portion of the plating target region was found, it was confirmed that the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 5, it was confirmed that the copper layer was not effectively plated on the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
비교예 6Comparative Example 6
비교예 6에서는 수지 구조체로서 폴리카보네이트 수지(EH-1050, 제일모직)를 사용하여 사출성형한 수지 성형체(스마트폰 안테나 베이스)를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 "도체부를 갖는 수지 구조물"을 제조하였다. 비교예 6에서의 도금 상태를 육안으로 관찰한 결과, 도금 대상 영역 중 도금이 되지 않은 부분이 발견되었으며, 도금된 부분의 밀착성 역시 현저히 취약하였음을 확인하였다. 이로부터, 비교예 6에서는, 수지 구조체(스마트폰 안테나 베이스) 표면의 도금 대상 영역(안테나 패턴)에 구리층이 효과적으로 도금되지 않았음을 확인할 수 있었다.In Comparative Example 6, "the conductor portion was formed in the same manner as in Comparative Example 1, except that a resin molded body (smartphone antenna base) injection molded using polycarbonate resin (EH-1050, Cheil Industries) was used as the resin structure. Resin structure ". As a result of visually observing the plating state in Comparative Example 6, it was found that the unplated portion of the plating target region was found, and the adhesion of the plated portion was also significantly weak. From this, in Comparative Example 6, it was confirmed that the copper layer was not effectively plated in the plating target region (antenna pattern) on the surface of the resin structure (smartphone antenna base).
본 발명의 "도체부를 갖는 수지 구조물"은, 예를 들면, 휴대용 전자기기용 안테나, RFID용 안테나, 자동차용 전장품류, 백색 가전 제품류. NFC안테나, 케이블 대체 부품, 반도체 IC 복합 부품, 등으로 사용될 수 있다.The "resin structure having a conductor portion" of the present invention is, for example, an antenna for a portable electronic device, an antenna for RFID, automotive electrical appliances, or white household electrical appliances. It can be used as NFC antenna, cable replacement part, semiconductor IC composite part, etc.

Claims (32)

  1. 수지 구조체 표면의 도금 대상 영역에 레이저를 조사하여 격자 무늬 배열의 트렌치 라인을 형성하는 단계를 포함하는 레이저 직접 구조화 방법.Irradiating a laser to the plating target region on the surface of the resin structure to form trench lines in a lattice pattern.
  2. 제 1 항에 있어서, 상기 격자 무늬 배열의 트렌치 라인을 형성하는 단계는, 서로 교차하지 않는 복수의 제1 트렌치 라인 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 형성하는 단계로서, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성되는 단계를 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the forming of the trench lines in the lattice arrangement comprises forming a plurality of first trench lines not crossing each other and a plurality of second trench lines not crossing each other, wherein the first trenches are formed. And the second trench line is formed to intersect with each other.
  3. 제 2 항에 있어서, 상기 제1 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 이고, 상기 제2 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 인 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 2, wherein the spacing between the first trench lines is between 0.02 mm and 0.10 mm, and the spacing between the second trench lines is between 0.02 mm and 0.10 mm.
  4. 제 1 항에 있어서, 상기 수지 구조체는, ABS(acrylonitrile butadiene styrene copolymer) 수지, 폴리카보네이트 수지, 폴리아미드 수지, 폴리부틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트 수지, PVC(poly vinyl chloride) 수지, PPA(polyphthalamide) 수지, PPS(polyphenylene sulfide) 수지, 폴리에스테르 수지, LCP(liquid crystal polymer) 수지, 또는 이들의 블렌드를 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure is ABS (acrylonitrile butadiene styrene copolymer) resin, polycarbonate resin, polyamide resin, polybutylene terephthalate resin, polyethylene terephthalate resin, PVC (poly vinyl chloride) resin, PPA ( A laser direct structuring method comprising a polyphthalamide (PPS) resin, a polyphenylene sulfide (PPS) resin, a polyester resin, a liquid crystal polymer (LCP) resin, or a blend thereof.
  5. 제 1 항에 있어서, 상기 수지 구조체는 유리섬유를 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises a glass fiber.
  6. 제 5 항에 있어서, 상기 수지 구조체 중의 상기 유리섬유의 함량은, 수지 100 중량부를 기준으로 하여, 5 중량부 내지 45 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method according to claim 5, wherein the content of the glass fiber in the resin structure is 5 parts by weight to 45 parts by weight based on 100 parts by weight of the resin.
  7. 제 1 항에 있어서, 상기 수지 구조체는 세라믹 필러 분말을 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises a ceramic filler powder.
  8. 제 7 항에 있어서, 상기 수지 구조체 중의 상기 세라믹 필러의 함량은, 수지 100 중량부를 기준으로 하여, 0.1 중량부 내지 15 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.8. The laser direct structuring method of claim 7, wherein the content of the ceramic filler in the resin structure is 0.1 to 15 parts by weight based on 100 parts by weight of the resin.
  9. 제 7 항에 있어서, 상기 세라믹 필러는, 알루미나, 티타늄 디옥사이드, 또는 이들의 조합인 것을 특징으로 하는 레이저 직접 구조화 방법.8. The method of claim 7, wherein the ceramic filler is alumina, titanium dioxide, or a combination thereof.
  10. 제 1 항에 있어서, 상기 수지 구조체는 산화 방지제를 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises an antioxidant.
  11. 제 10 항에 있어서, 상기 수지 구조체 중의 상기 산화 방지제의 함량은, 수지 100 중량부를 기준으로 하여, 0.1 중량부 내지 5 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method according to claim 10, wherein the content of the antioxidant in the resin structure is 0.1 part by weight to 5 parts by weight based on 100 parts by weight of the resin.
  12. 제 1 항에 있어서, 상기 수지 구조체는 아크릴로니트릴 스티렌 아크릴레이트 성분, 또는 아크릴로니트릴 스티렌 아크릴레이트 유래의 수지 성분을 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method of claim 1, wherein the resin structure further comprises an acrylonitrile styrene acrylate component or a resin component derived from acrylonitrile styrene acrylate.
  13. 제 12 항에 있어서, 상기 수지 구조체 중의 상기 아크릴로니트릴 스티렌 아크릴레이트 성분, 또는 아크릴로니트릴 스티렌 아크릴레이트 유래의 수지 성분의 함량은, 수지 100 중량부를 기준으로 하여, 5 중량부 내지 35 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.The content of the acrylonitrile styrene acrylate component or the resin component derived from acrylonitrile styrene acrylate in the resin structure is 5 parts by weight to 35 parts by weight based on 100 parts by weight of the resin. Laser direct structuring method.
  14. 제 1 항에 있어서, 상기 수지 구조체는 인산에스테르 성분을 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises a phosphate ester component.
  15. 제 14 항에 있어서, 상기 수지 구조체 중의 상기 인산에스테르 성분의 함량은, 수지 100 중량부를 기준으로 하여, 0.5 중량부 내지 15 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.15. The method of claim 14, wherein the content of the phosphate ester component in the resin structure is 0.5 to 15 parts by weight based on 100 parts by weight of the resin.
  16. 제 1 항에 있어서, 상기 수지 구조체는 비스페놀 A 디포스페이트 성분을 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises a bisphenol A diphosphate component.
  17. 제 16 항에 있어서, 상기 수지 구조체 중의 상기 비스페놀 A 디포스페이트 성분의 함량은, 수지 100 중량부를 기준으로 하여, 6 중량부 내지 20 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method according to claim 16, wherein the content of the bisphenol A diphosphate component in the resin structure is 6 parts by weight to 20 parts by weight based on 100 parts by weight of the resin.
  18. 제 1 항에 있어서, 상기 수지 구조체는 착색제를 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the resin structure further comprises a colorant.
  19. 제 19 항에 있어서, 상기 수지 구조체 중의 상기 착색제의 함량은, 수지 100 중량부를 기준으로 하여, 0.1 중량부 내지 5 중량부인 것을 특징으로 하는 레이저 직접 구조화 방법.20. The method of claim 19, wherein the content of the colorant in the resin structure is 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the resin.
  20. 제 1 항에 있어서, 상기 수지 구조체는 핵 생성제를 실질적으로 함유하지 않는 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein said resin structure is substantially free of a nucleating agent.
  21. 제 1 항에 있어서, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인이 서로 교차하는 각도는 60°내지 90°이하인 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method of claim 1, wherein an angle at which the first trench line and the second trench line cross each other is 60 ° to 90 °.
  22. 제 1 항에 있어서, 상기 제1 트렌치 라인과 상기 제2 트렌치 라인의 폭은, 각각 독립적으로, 0.02 ㎛ 내지 0.1 ㎛인 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method of claim 1, wherein the widths of the first trench line and the second trench line are each independently 0.02 μm to 0.1 μm.
  23. 제 1 항에 있어서, 상기 제1 트렌치 라인과 상기 제2 트렌치 라인의 깊이는, 각각 독립적으로, 0.02 mm 내지 0.1 mm 인 것을 특징으로 하는 레이저 직접 구조화 방법.The method of claim 1, wherein the depths of the first trench line and the second trench line are each independently 0.02 mm to 0.1 mm.
  24. 제 1 항에 있어서, 도금에 의하여 상기 수지 구조체 표면의 상기 도금 대상 영역에 금속층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.The laser direct structuring method of claim 1, further comprising forming a metal layer in the plating target region of the surface of the resin structure by plating.
  25. 제 24 항에 있어서, 상기 도금에 의한 금속층 형성 단계는, The method of claim 24, wherein the forming of the metal layer by plating,
    상기 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체 표면의 도금 대상 영역에 촉매를 부여하는 단계; 및 Applying a catalyst to a region to be plated on the surface of the resin structure in which the trench lines of the lattice pattern are formed; And
    상기 촉매가 부여된 도금 대상 영역에 무전해 방식으로 금속을 스트라이크(strike)하는 단계;를 포함하는 것을 특징으로 하는 레이저 직접 구조화 방법.And striking a metal in an electroless manner on the plating target region to which the catalyst is applied.
  26. 제 25 항에 있어서, 상기 촉매는 팔라듐인 것을 특징으로 하는 레이저 직접 구조화 방법.27. The method of claim 25 wherein the catalyst is palladium.
  27. 제 25 항에 있어서, 상기 금속층은 구리, 니켈, 금, 은, 또는 이들의 조합인 것을 특징으로 하는 레이저 직접 구조화 방법.27. The method of claim 25, wherein the metal layer is copper, nickel, gold, silver, or a combination thereof.
  28. 제 25 항에 있어서, 상기 도금 대상 영역에 촉매를 부여하는 단계; 및 상기 촉매가 부여된 도금 대상 영역에 무전해 방식으로 금속을 스트라이크(strike)하는 단계;를 반복함으로써, 적층형 금속층을 형성하는 것을 특징으로 하는 레이저 직접 구조화 방법.26. The method of claim 25, further comprising: applying a catalyst to the region to be plated; And striking the metal in an electroless manner in the plating target region to which the catalyst is applied. By repeating the above method, a layered metal layer is formed.
  29. 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체.The resin structure which has a plating object area | region, WHEREIN: The resin structure in which the trench line of the grid pattern array formed by laser irradiation is formed in the said plating object area | region.
  30. 제 29 항에 있어서, 상기 격자 무늬 배열의 트렌치 라인이 서로 교차하지 않는 복수의 제1 트렌치 라인(trench line) 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 포함하고, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성되어 있으며, 상기 제1 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 이고, 상기 제2 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 인 것을 특징으로 하는 수지 구조체.30. The method of claim 29, wherein the trench lines of the grid pattern include a plurality of first trench lines that do not cross each other and a plurality of second trench lines that do not cross each other, wherein the first trench lines and the The second trench lines are formed to intersect with each other, the spacing between the first trench lines is 0.02 mm to 0.10 mm, and the spacing between the second trench lines is 0.02 mm to 0.10 mm. Structure.
  31. (a) 도금 대상 영역을 갖는 수지 구조체에 있어서, 상기 도금 대상 영역에, 레이저 조사에 의하여 형성되는 격자 무늬 배열의 트렌치 라인이 형성되어 있는 수지 구조체; 및(a) A resin structure having a region to be plated, comprising: a resin structure in which a trench line of a lattice pattern formed by laser irradiation is formed in the region to be plated; And
    (b) 상기 수지 구조체의 상기 도금 대상 영역에 부착된 금속층;을 포함하는,(b) a metal layer attached to the plating target region of the resin structure;
    도체부를 갖는 수지 구조물.Resin structure having a conductor portion.
  32. 제 31 항에 있어서, 상기 격자 무늬 배열의 트렌치 라인이 서로 교차하지 않는 복수의 제1 트렌치 라인(trench line) 및 서로 교차하지 않는 복수의 제2 트렌치 라인을 포함하고, 상기 제1 트렌치 라인 및 상기 제2 트렌치 라인은 서로 교차하도록 형성되어 있으며, 상기 제1 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 이고, 상기 제2 트렌치 라인들 사이의 간격은 0.02 mm 내지 0.10 mm 인 것을 특징으로 하는, 도체부를 갖는 수지 구조물.32. The method of claim 31, wherein the trench lines of the grid pattern include a plurality of first trench lines that do not cross each other and a plurality of second trench lines that do not intersect each other, wherein the first trench lines and the The second trench lines are formed to cross each other, the spacing between the first trench lines is 0.02 mm to 0.10 mm, the spacing between the second trench lines is 0.02 mm to 0.10 mm, Resin structure having a conductor portion.
PCT/KR2013/006713 2013-04-02 2013-07-26 Laser direct structuring method WO2014163243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016506217A JP2016516903A (en) 2013-04-02 2013-07-26 Laser direct structuring method
CN201380072920.8A CN104995334B (en) 2013-04-02 2013-07-26 Laser directly construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0035960 2013-04-02
KR1020130035960A KR101339640B1 (en) 2013-04-02 2013-04-02 Method of laser direct structuring

Publications (1)

Publication Number Publication Date
WO2014163243A1 true WO2014163243A1 (en) 2014-10-09

Family

ID=49987907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006713 WO2014163243A1 (en) 2013-04-02 2013-07-26 Laser direct structuring method

Country Status (4)

Country Link
JP (1) JP2016516903A (en)
KR (1) KR101339640B1 (en)
CN (1) CN104995334B (en)
WO (1) WO2014163243A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823660B1 (en) 2013-08-09 2018-01-30 주식회사 엘지화학 Method for forming conductive pattern by direct radiation of electromagnetic wave, and resin structure having conductive pattern thereon
WO2015110088A1 (en) 2014-01-27 2015-07-30 Byd Company Limited Method for metalizing polymer substrate and polymer article prepared thereof
KR101595295B1 (en) * 2014-03-26 2016-02-18 전자부품연구원 Composite material forming a conductor pattern easily, and method for manufacturing the composite material
WO2015147561A1 (en) * 2014-03-26 2015-10-01 전자부품연구원 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride
KR101570641B1 (en) 2015-05-18 2015-11-20 (주)대영케이티엑스 Manufacturing method of LDP type vehicle antenna for direct-soldering to PCB

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290454A (en) * 2004-03-31 2005-10-20 Advanced Materials Processing Inst Kinki Japan Method for forming thin film circuit
US20060008627A1 (en) * 2004-07-09 2006-01-12 Hewlett-Packard Development Company, L.P. Laser enhanced plating
JP2010229410A (en) * 2009-03-27 2010-10-14 Lanxess Deutschland Gmbh Glow wire resistant polyester
US20110303644A1 (en) * 2010-06-09 2011-12-15 Arlington Plating Company Methods for Plating Plastic Articles
WO2012126831A1 (en) * 2011-03-18 2012-09-27 Mitsubishi Chemical Europe Gmbh Process for producing a circuit carrier
KR20120124167A (en) * 2011-05-03 2012-11-13 주식회사 디지아이 Composition for laser direct structuring and a method for lase direct structuring using the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247375A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Pattern forming method
JP2001102721A (en) * 1999-09-28 2001-04-13 Hitachi Cable Ltd Manufacturing method of composite molded item
JP4266288B2 (en) * 2001-12-25 2009-05-20 大日本印刷株式会社 Electromagnetic wave shielding sheet manufacturing method and electromagnetic wave shielding sheet
JP4095297B2 (en) * 2001-12-25 2008-06-04 大日本印刷株式会社 Electromagnetic wave shielding sheet manufacturing method and electromagnetic wave shielding sheet
DE102004005300A1 (en) * 2004-01-29 2005-09-08 Atotech Deutschland Gmbh Process for treating carrier material for the production of powder carriers and application of the process
JP2006032686A (en) * 2004-07-16 2006-02-02 Hitachi Chem Co Ltd Manufacturing method of conductor layer pattern and electromagnetic wave shielding body
EP1622435A1 (en) * 2004-07-28 2006-02-01 ATOTECH Deutschland GmbH Method of manufacturing an electronic circuit assembly using direct write techniques
JP2006261322A (en) * 2005-03-16 2006-09-28 Jsr Corp Electromagnetic wave shield film and its manufacturing method
JP2006278617A (en) * 2005-03-29 2006-10-12 Jsr Corp Electromagnetic wave shielding film
JP4833762B2 (en) * 2006-08-07 2011-12-07 株式会社オートネットワーク技術研究所 Partial plating method, connector terminal, and connector terminal manufacturing method
JP5199606B2 (en) * 2007-05-17 2013-05-15 株式会社きもと Method for producing molded article subjected to electroless plating
WO2009024496A2 (en) * 2007-08-17 2009-02-26 Dsm Ip Assets B.V. Aromatic polycarbonate composition
JP2010021190A (en) * 2008-07-08 2010-01-28 Kaneka Corp Plating undeposition material for plating, and printed wiring board
CN102318452A (en) * 2009-02-12 2012-01-11 住友电木株式会社 Resin composition for wiring board, resin sheet for wiring board, composite body, method for producing composite body, and semiconductor device
WO2012046326A1 (en) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 Photovoltaic cell
TWI531601B (en) * 2011-03-18 2016-05-01 三菱化學歐洲股份有限公司 A resin molded product, a resin molded product, and a resin molded article having a plating layer
CN102817018A (en) * 2012-09-13 2012-12-12 格林精密部件(惠州)有限公司 Machining method of decoration formed by laser on housing and manufacturing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290454A (en) * 2004-03-31 2005-10-20 Advanced Materials Processing Inst Kinki Japan Method for forming thin film circuit
US20060008627A1 (en) * 2004-07-09 2006-01-12 Hewlett-Packard Development Company, L.P. Laser enhanced plating
JP2010229410A (en) * 2009-03-27 2010-10-14 Lanxess Deutschland Gmbh Glow wire resistant polyester
US20110303644A1 (en) * 2010-06-09 2011-12-15 Arlington Plating Company Methods for Plating Plastic Articles
WO2012126831A1 (en) * 2011-03-18 2012-09-27 Mitsubishi Chemical Europe Gmbh Process for producing a circuit carrier
KR20120124167A (en) * 2011-05-03 2012-11-13 주식회사 디지아이 Composition for laser direct structuring and a method for lase direct structuring using the same

Also Published As

Publication number Publication date
CN104995334B (en) 2017-12-15
CN104995334A (en) 2015-10-21
KR101339640B1 (en) 2013-12-09
JP2016516903A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2014163243A1 (en) Laser direct structuring method
KR20140124918A (en) Composition for laser direct structuring process
DE50105542C5 (en) Printed circuit structures and method for their production
CN102576693B (en) Substrate for mounting semiconductor chip and method for producing same
KR20180009807A (en) Dicing tape-integrated film for semiconductor back surface and method for producing the film, and method for producing semiconductor device
US20130058062A1 (en) Method for manufacturing base material having gold-plated metal fine pattern, base material having gold-plated metal fine pattern, printed wiring board, interposer, and semiconductor device
EP2869309A1 (en) Method for forming metal circuit, liquid trigger material for forming metal circuit and metal circuit structure
KR101672474B1 (en) coatings composition, thermoplastic composition for laser direct structuring and the laser direct structuring method
WO2017038713A1 (en) Method for manufacturing printed wiring board, and method for manufacturing semiconductor device
CN1285765C (en) Acidic treatment liquid and method of treating copper surfaces
CN107112311B (en) Method for electromagnetic shielding and thermal management of active components
CN101035413A (en) Method of manufacturing wiring substrate
CN112533361A (en) Manufacturing method of circuit board with electromagnetic shielding structure
CN102316668A (en) Substrate with fine metal pattern, print circuit board and semiconductor device, and production method of substrate with fine metal pattern, print circuit board and semiconductor device
KR20190099112A (en) Method of forming a metal layer on a photosensitive resin
JP2016078038A (en) Method for forming penetration hole in laminate
WO2018088345A1 (en) Resin film with metal foil, structured body, method for producing wiring board, and method for producing semiconductor device
JP3498937B2 (en) Resin substrate and manufacturing method thereof
KR20140120283A (en) Composition for laser direct structuring process
KR20170048011A (en) Resin structure and preparing method thereof
CN1709949A (en) Resin surface treating agent and resin surface treatment
JPH09228075A (en) Selective nickel peeling liquid and peeling method using the same
CN111698830A (en) High electromagnetic compatibility circuit board and manufacturing method thereof
KR101929956B1 (en) Manufacturing method of printed circuit board of heater for electric vehicle
WO2020242114A1 (en) Thermoplastic resin composition for laser direct structuring process, and molded product comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881131

Country of ref document: EP

Kind code of ref document: A1