WO2017038713A1 - Method for manufacturing printed wiring board, and method for manufacturing semiconductor device - Google Patents

Method for manufacturing printed wiring board, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2017038713A1
WO2017038713A1 PCT/JP2016/075059 JP2016075059W WO2017038713A1 WO 2017038713 A1 WO2017038713 A1 WO 2017038713A1 JP 2016075059 W JP2016075059 W JP 2016075059W WO 2017038713 A1 WO2017038713 A1 WO 2017038713A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder resist
film
wiring board
printed wiring
resist film
Prior art date
Application number
PCT/JP2016/075059
Other languages
French (fr)
Japanese (ja)
Inventor
宙 早井
猛 八月朔日
元 山戸
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2017537861A priority Critical patent/JPWO2017038713A1/en
Priority to KR1020187001748A priority patent/KR102582537B1/en
Publication of WO2017038713A1 publication Critical patent/WO2017038713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil

Definitions

  • the present invention relates to a method for manufacturing a printed wiring board and a method for manufacturing a semiconductor device.
  • the printed wiring board is composed of a laminated body in which a copper-clad laminated board serving as a core, an interlayer insulating material, and a solder resist are laminated in this order.
  • a wiring pattern is provided on the surface of the printed wiring board. After the solder resist is formed, the solder resist is removed from the portion requiring electrical connection with the outside corresponding to the wiring pattern. A pattern is formed.
  • the following exposure and development method As a method for forming such a predetermined pattern, for example, the following exposure and development method is known.
  • the exposure and development method first, a photomask having a pattern formed on the opening of a solder resist is laminated and exposed by a photographic method. Then, it develops with developing solutions, such as sodium carbonate, sodium hydroxide, and tetramethylammonium hydride (TMAH), and forms an opening part in a soldering resist.
  • developing solutions such as sodium carbonate, sodium hydroxide, and tetramethylammonium hydride (TMAH)
  • thermosetting resin used as a material constituting the solder resist and an opening is formed in the solder resist by a laser (for example, Patent Document 1). reference.).
  • a step of preparing a structure in which a circuit board, a solder resist film, and a metal film are laminated in this order, and the first opening is formed by selectively removing the metal film.
  • a method for manufacturing a semiconductor device is provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a method for manufacturing a printed wiring board according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing a printed wiring board according to the present embodiment.
  • FIG. 3 is a schematic diagram showing an example of the structure of the semiconductor package in the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing an example of a modification of the method for manufacturing a printed wiring board according to the present embodiment.
  • the method for manufacturing a printed wiring board of the present embodiment includes a step of preparing a structure including a metal film and a solder resist film, a step of forming an opening (first opening) in the metal film, and the metal film. And a step of forming an opening (second opening) in the solder resist film using the mask as a mask, and a step of removing the metal film to expose the surface of the solder resist film.
  • a metal film such as a copper foil as a mask
  • laser burning around the laser irradiation portion of the solder resist film, which may occur when a pattern is directly formed by a laser, etc. Can be prevented.
  • a fine and precise opening (pattern) can be formed on the solder resist film rather than directly forming a pattern with a laser.
  • FIGS. 1 and 2 are schematic cross-sectional views illustrating an example of a method for manufacturing a printed wiring board according to the present embodiment.
  • the method for manufacturing the printed wiring board 20 includes a structure in which a circuit board (core board 22), a solder resist film (insulating resin film 10), and a metal film (metal film 12) are laminated in this order.
  • the step of preparing (FIG. 1B), the step of forming the opening (first opening 21) by selectively removing the metal film 12, and the opening 21 (FIG. 1C).
  • FIG. 1 (d) the step of removing the metal film to expose the surface (surface 11, surface 13) of the solder resist film (FIG. 2 (a)), and exposing to the bottom of the opening 28.
  • Forming a metal layer (plating film 246) on the circuit (FIG. 2 ( )), Including.
  • one surface (surface 11, surface 13) of the solder resist film may be disposed opposite to one surface (surface 15) of the metal film 12.
  • the other surface of the solder resist film is arranged to be opposed to the circuit surface on which the circuit (conductor pattern 24) of the circuit substrate (core substrate 22) is formed. be able to.
  • the step of preparing the structure includes the metal film so that one surface (surface 15) of the metal film 12 faces the one surface (surface 11, surface 13) of the solder resist film (insulating resin film 10). 12 is prepared, and the other surface of the solder resist film (opposite surfaces of the surface 11 and the surface 13) and the circuit surface of the circuit board (core substrate 22) are opposed to each other. And a step of preparing the structure by bonding.
  • a core substrate 22 having a conductor pattern 24 provided on at least one outermost surface on the front and back sides is prepared.
  • the core substrate 22 can constitute, for example, a core layer of a printed wiring board.
  • a resin substrate obtained by curing a prepreg impregnated with a fiber base material can be used.
  • a plurality of buildup layers may be formed on the core layer, but the core layer may be formed alone.
  • the metal film 12 is disposed so that one surface (surface 15) of the insulating resin film 10 faces one surface (surface 11, surface 13).
  • An insulating resin film 10 is prepared.
  • This insulating resin film 10 becomes a solder resist film of the structure.
  • a resin film with a metal film in which the metal film 12 is provided on the insulating resin film 10 can be used.
  • a resin film protected with a cover film can be used. That is, a laminate in which a cover film, a resin film (insulating resin film 10), and a metal film 12 are laminated in this order can be used.
  • the cover film include polymer films such as polyethylene and polypropylene.
  • the said resin film with a metal film is obtained by peeling a cover film from a laminated body, for example. Thereby, the insulating resin film 10 with the metal film 12 can be prepared.
  • one surface (surface 15) opposed to one surface (surface 11, surface 13) of the solder resist film (insulating resin film 10) is a smooth surface.
  • a relatively rough surface is formed on the bonding surface of the copper foil for the purpose of improving the peel strength after lamination.
  • the smooth surface of a metal film means that there are few surface irregularities.
  • the surface roughness Rz of the smooth surface is preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 1.8 ⁇ m or less.
  • the surface roughness (Rz) can be calculated by the 10-point average roughness shown in JIS B0601. In the case of the metal film 12 having a rough surface (surface 15) (surface roughness Rz is greater than 3.0 ⁇ m), the surface roughness Rz of the surface (surface 15) is within the above range. A smoothing process may be performed on the one surface 15 of the metal film 12 to make it smooth.
  • the surface of the solder resist film can be made smooth by using a metal film mask having a smooth surface.
  • stability of a manufacturing process of a printed wiring board or a semiconductor device can be improved.
  • the manufactured printed wiring board is ultrasonically inspected, bubbles are hardly formed on the surface of the outermost solder resist film, so that the accuracy of the ultrasonic inspection can be improved.
  • it can suppress that a damage
  • the yield can be improved.
  • the solder flux can be easily cleaned.
  • a printed wiring board and a semiconductor package obtained by such a printed wiring board manufacturing method can have a structure with excellent product reliability.
  • a metal foil having a smooth surface on at least one surface can be used.
  • a peelable metal foil having an extremely thin metal foil having a smooth surface, a release layer, and a carrier foil may be used. That is, the peelable metal foil is thermocompression bonded to the insulating resin film 10, and then the carrier foil is peeled off together with the peeling layer, whereby the insulating resin film 10 with an ultrathin metal foil (metal film 12) is obtained.
  • the ultrathin metal foil (metal film 12) has a smooth surface formed on the adhesive surface with the insulating resin film 10.
  • the insulating resin film 10 can be in a B-stage state.
  • the smooth surface of the metal film 12 is in contact with the surface (surface 11, surface 13) of the insulating resin film 10.
  • the surface shape of the smooth surface of the metal film 12 is also transferred to the surface (surface 11, surface 13) of the insulating resin film 10 to form a smooth surface.
  • non-roughened copper foil for example, a non-roughened copper foil with a primer resin layer (MT18DMT, manufactured by Mitsui Mining & Smelting Co., Ltd.) can be used.
  • a metal which comprises the said metal film 12 for example, ultra-thin metal foil
  • a metal which comprises the said metal film 12 for example, ultra-thin metal foil
  • copper and ⁇ or a copper-type alloy, aluminum and ⁇ or an aluminum-type alloy, iron and ⁇ or an iron-type alloy examples thereof include silver and / or silver-based alloys, gold and gold-based alloys, zinc and zinc-based alloys, nickel and nickel-based alloys, tin and tin-based alloys, and the like.
  • the cost can be reduced compared to other materials.
  • a highly versatile process can be performed.
  • the lower limit value of the thickness of the metal film 12 is not particularly limited, but may be, for example, 1 ⁇ m or more, and may be 10 ⁇ m or more.
  • the upper limit value of the film thickness of the metal film 12 is not particularly limited, but may be, for example, 30 ⁇ m or less, or 25 ⁇ m or less.
  • the thickness of the insulating resin film 10 is not particularly limited, but may be, for example, 10 ⁇ m or more and 50 ⁇ m or less. Thereby, the balance of mechanical strength and opening characteristic can be aimed at.
  • the insulating resin film 10 with the metal film 12 is laminated on the conductor pattern 24 of the core substrate 22 as shown in FIG.
  • the insulating resin film 10 with the metal film 12 can be attached to the surface of the core substrate 22 on which the conductor pattern 24 is provided so that the insulating resin film 10 faces the core substrate 22.
  • the attaching step can be performed, for example, by laminating the insulating resin film 10 with the metal film 12 on the conductor pattern 24 and then vacuum-pressing these laminated bodies.
  • the structure can be prepared.
  • the metal film 12 is selectively removed.
  • the opening 21 can be formed in a predetermined region of the metal film 12 on the conductor pattern 24.
  • a method for forming the opening 21 is not particularly limited, and for example, a method such as exposure and development can be used.
  • an opening 28 is formed in a predetermined region of the insulating resin film 10 using the metal film 12 with the opening formed as a mask.
  • the opening 28 is formed so as to mainly expose the land 244 of the conductor pattern 24.
  • a method for forming the opening 28 is not particularly limited, and for example, a laser processing method, a chemical etching processing method, a blast processing method, or the like can be used.
  • the process can be simplified by using a laser processing method. Since the insulating resin film 10 in the B-stage state can be used, the workability of the insulating resin film 10 can be improved as compared with the case of the cured product.
  • a method of obtaining the insulating resin film 10 in the B stage state for example, a method of heating at a temperature of 100 ° C. or more and 170 ° C. or less can be cited.
  • the lower limit of the heating temperature is preferably 120 ° C. or higher, and the upper limit is preferably 150 ° C. or lower.
  • the insulating resin film 10 can be thermally cured as shown in FIG. Thereby, the solder resist film 14 is formed.
  • the lower limit of the curing temperature is not particularly limited, but is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, and further preferably 220 ° C. or higher. Although it does not specifically limit as an upper limit of hardening temperature, For example, it can be 250 degrees C or less.
  • a desmear process can be performed as needed. In the desmear process, smear generated due to the formation of the opening 28 is removed.
  • the metal film 12 on the surface (surface 11, surface 13) of the solder resist film 14 is removed.
  • the method for removing the metal film 12 is not particularly limited, but for example, flash etching can be used. Thereby, the surface of the solder resist film 14 can be exposed. Further, the surface of the solder resist film 14 after the removal of the metal film 12 can be made smooth. In the present embodiment, it is preferable that at least the surface of the solder resist film 14 positioned at the outermost layer (for example, the surface 11 shown in FIG. 3) is a smooth surface.
  • the plating film 246 can be, for example, a plating film having a two-layer structure in which a gold plating film is laminated on a solder plating film, a tin plating film, or a nickel plating film.
  • the plating film 246 is formed so as to cover the conductive portion of the conductor pattern 24 exposed in the opening 28.
  • the film thickness of the plating film 246 is not particularly limited, but may be, for example, 2 ⁇ m or more and 10 ⁇ m or less.
  • the land 244 portion can be a connection portion suitable for wire bonding or soldering in a mounting process using the printed wiring board 20.
  • the method for the plating treatment is not particularly limited, and a known method can be used.
  • an electrolytic plating method or an electroless plating method can be used.
  • the plating film 246 can be formed as follows.
  • an example of forming the plating film 246 having a two-layer structure of nickel and gold will be described, but the present invention is not limited to this.
  • a nickel plating film is formed.
  • the core substrate 22 in which the conductor pattern 24 and the insulating resin film 10 are laminated is immersed in a plating solution. Thereby, a nickel plating film can be formed on the conductive portion of the conductor pattern 24 exposed in the opening 28.
  • the plating solution a mixed solution containing nickel lead and, for example, hypophosphite as a reducing agent can be used.
  • electroless gold plating is performed on the nickel plating film.
  • the method of electroless gold plating is not particularly limited, for example, it can be performed by substitution gold plating performed by substitution of gold ions and ions of a base metal.
  • the printed wiring board 20 according to the present embodiment shown in FIG. 2B is obtained.
  • FIG. 4 is a schematic cross-sectional view showing an example of a modification of the method for manufacturing a printed wiring board according to the present embodiment.
  • the step of preparing the structure includes a solder resist film (insulating resin film 10) in which the main surface of the carrier base material (carrier base material 8) is disposed on one side.
  • the step of preparing the step of bonding the other surface of the solder resist film (insulating resin film 10) and the circuit surface of the circuit board, and bonding the carrier base material from the solder resist film (insulating resin film 10) Peeling and forming a metal film (metal film 12) on the peeled surface of the solder resist film (insulating resin film 10) to prepare a structure.
  • the insulating resin film 10 with the carrier base material 8 is prepared.
  • the insulating resin film 10 with the carrier substrate 8 may be protected by a cover film.
  • the insulating resin film 10 with the carrier substrate 8 is obtained by peeling the cover film from the laminate composed of the cover film, the resin film (insulating resin film 10), and the carrier substrate 8.
  • the carrier substrate 8 for example, a polymer film such as polyethylene terephthalate can be used.
  • the insulating resin film 10 can be a B-stage resin film.
  • the insulating resin film 10 of the insulating resin film 10 with the carrier base material 8 is bonded onto the conductor pattern 24 of the core substrate 22.
  • the carrier base material 8 is peeled from the insulating resin film 10. Thereby, the surface (surface 11, surface 13) of the insulating resin film 10 is exposed.
  • a metal film 12 is pasted on the surface of the insulating resin film 10. It is preferable that a smooth surface is formed on the attachment surface (surface 15) of the metal film 12.
  • the metal film 12 can be formed using a peelable metal foil. That is, the peelable metal foil is attached to the insulating resin film 10, and then the carrier metal foil and the release layer are peeled from the peelable metal foil, whereby the ultrathin metal foil (metal film 12) is attached to the surface of the insulating resin film 10 ( Surface 11 and surface 13).
  • the structure of the present embodiment can be prepared.
  • the steps shown in FIGS. 1C to 2B can be performed. Thereby, the printed wiring board 20 of this embodiment shown in FIG.2 (b) is obtained.
  • the manufacturing method of the electronic device includes a step of mounting the semiconductor element 60 (electronic element) on the printed wiring board 20 obtained by the above-described printed wiring board manufacturing method. More specifically, a step of preparing the printed wiring board 20, a step of disposing the semiconductor element 60 on the printed wiring board 20, and a step of sealing the semiconductor element 60 are included in this order.
  • the manufacturing method of the semiconductor package 102 includes a step of preparing a substrate (core substrate 22) on which a conductive circuit (conductive pattern 24) is formed on one surface, and a step of disposing a resin film (the insulating resin film) on the substrate.
  • the step of electrically connecting the electronic element to the conductive circuit exposed in the opening and the step of sealing the electronic element (semiconductor element 60) can be included.
  • the resin film is preferably formed using a solder resist resin composition described later.
  • this resin film may be constituted by a coating film of the solder resist resin composition or a resin sheet described later.
  • the resin film is formed on both surfaces of the substrate (core substrate 22), and at least the resin film disposed on the surface opposite to the surface on which the electronic element is mounted is It is preferable to use a resin composition for a solder resist described later.
  • the manufactured printed wiring board 20 is inspected for cracks and peeling by ultrasonic inspection or the like after manufacturing the electronic device (semiconductor package 102).
  • the surface of the solder resist film 14 is a smooth surface, since no bubbles are formed on the surface of the solder resist film 14 during the inspection, cracks and peeling can be found more reliably. That is, a more accurate inspection can be performed.
  • the productivity of the electronic device can be improved.
  • the opening 28 (pattern) formed in the solder resist film 14 is fine, it tends to be difficult to find defects such as cracks, but the surface of the solder resist film 14 is a smooth surface. A highly accurate inspection can be easily performed.
  • the printed wiring board 20 with the insulating resin film 10 (resin film made of a resin composition for solder resist) exposed on the surface is prepared.
  • the semiconductor element 60 is disposed on the insulating resin film 10.
  • the exposed insulating resin film 10 and the semiconductor element 60 are sealed so as to be covered with a sealing resin.
  • the printed wiring board 20 includes a core substrate 22, a conductor pattern 24, and the insulating resin film 10.
  • the conductor pattern 24 is provided on at least one outermost surface of the core substrate 22.
  • the insulating resin film 10 is the outermost layer of the printed wiring board 20 and is provided on the conductor pattern 24.
  • the insulating resin film 10 is provided with a plurality of openings 28. A part of the conductive portion of the conductor pattern 24 is located in the at least one opening 28.
  • the above-described printed wiring board 20 is prepared (step of preparing a printed wiring board), and a semiconductor element 60 is disposed on the printed wiring board 20 (step of disposing a semiconductor element).
  • the semiconductor element 60 is mounted on the printed wiring board 20 via a die attach material 62, for example.
  • the bonding wire 50 that connects the semiconductor element 60 and the printed wiring board 20 is bonded to, for example, the conductor pattern 24 exposed in the opening 28 on the upper surface of the printed wiring board 20.
  • the upper surface of the printed wiring board 20, the semiconductor element 60, and the bonding wire 50 are sealed with the sealing resin layer 40 (step of sealing).
  • an epoxy resin composition can be used as the sealing resin.
  • a transfer molding method As a method of molding with a sealing resin, a transfer molding method, an injection molding method, a transfer method, a coating method, or the like can be used.
  • the sealing resin layer 40 is cured by heating at 150 ° C. or higher and 200 ° C. or lower, for example.
  • solder balls 30 as the external connection terminals are provided on the printed wiring board 20
  • the solder balls 30 are formed on the conductor pattern 24 exposed at the opening 28 on the lower surface side, for example.
  • the semiconductor package 102 is not limited to this, The package connected by wire bonding or TAB may be sufficient.
  • FIG. 2B is a schematic diagram illustrating an example of the structure of the printed wiring board 20 in the embodiment.
  • the printed wiring board of the present embodiment includes a substrate (core substrate 22), a conductive circuit (conductor pattern 24) formed on the substrate, and a solder resist film 14 formed on the outermost layer of the substrate. Can do.
  • the solder resist film 14 is obtained by curing a solder resist resin composition described later.
  • the solder resist film 14 can be composed of a cured product of a resin sheet formed of a resin composition for solder resist described later.
  • a printed wiring board 20 shown in FIG. 2B includes a core substrate 22, a conductor pattern 24, and a solder resist film 14.
  • the conductor pattern 24 is provided on at least one outermost surface of the core substrate 22.
  • the solder resist film 14 constitutes the outermost layer of the printed wiring board 20.
  • the solder resist film 14 is provided around the conductor pattern 24.
  • the solder resist film 14 is provided with a plurality of openings 28. A part of the conductive portion of the conductor pattern 24 is located in the at least one opening 28. Further, the surface (surface 11, surface 13) of the solder resist film 14 is formed with a smooth surface.
  • the core substrate 22 is a substrate including at least one insulating layer.
  • the insulating layer provided in the core substrate 22 is, for example, a resin base material obtained by impregnating a fiber base material with a resin composition.
  • the core substrate 22 can be a substrate made of a thermosetting resin.
  • the core substrate 22 may be a rigid substrate or a flexible substrate.
  • the thickness of the core substrate 22 is not particularly limited, but can be, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the core substrate 22 may be a single-sided plate having only one insulating layer and having a conductor pattern 24 formed on only one side thereof, or having only one insulating layer on both the front and back surfaces.
  • a double-sided board provided with the conductor pattern 24 or a multilayer board having two or more insulating layers may be used.
  • the core substrate 22 is a multilayer board, one or more wiring layers sandwiched between two insulating layers are formed in the core substrate 22.
  • the conductor pattern 24 provided on one surface (outermost surface) of the core substrate 22 is a conductor provided on the opposite surface (outermost surface).
  • the wiring layer provided inside the pattern 24 and the core substrate 22 is electrically connected to each other through a through hole (not shown) penetrating at least a part of the insulating layer.
  • the conductor pattern 24 is provided on at least one surface (outermost surface) of the front surface and the back surface of the core substrate 22.
  • the conductor pattern 24 is, for example, a pattern formed by selectively etching a copper film laminated on the core substrate 22.
  • the conductor pattern 24 includes at least a land 244 and a line 242 as a conductive portion.
  • the land 244 is mainly a connection part that electrically connects an element or component mounted on the printed wiring board 20 and the conductor pattern 24, for example, another part of the conductor pattern 24 or a wiring in the core substrate 22.
  • the line 242 is mainly a linear portion that electrically connects the lands 244 to each other.
  • the solder resist film 14 is laminated on the conductor pattern 24. Since the solder resist film 14 can maintain insulation, a highly reliable printed wiring board can be obtained. Moreover, since the said soldering resist film
  • the solder resist film 14 is provided with an opening mainly corresponding to a region where the land 244 of the core substrate 22 is provided, and the land 244 is not covered with the solder resist film 14. That is, the solder resist film 14 is not provided on the land 244, and the land 244 is exposed.
  • a conductive film such as a nickel and gold plating film or a solder plating film may be laminated on the land 244.
  • a plating film 246 is further provided on the land 244 located in the opening.
  • the solder resist film 14 may be further provided with an opening in a portion other than the land 244, or may have an opening that exposes a part of the line 242. Further, it is not necessary for all of the lands 244 to be located in the openings, and there may be lands 244 covered with the solder resist film 14.
  • the printed wiring board 20 can be used as an interposer or a mother board, for example.
  • the package refers to a package in which various parts are mounted on a printed wiring board and sealed together.
  • the semiconductor package is an example of a package, and the package includes a batch sealed ECU (Electric Control Unit) and the like.
  • FIG. 3 is a schematic cross-sectional view showing an example of the structure of the semiconductor package 102 according to the present embodiment.
  • the electronic device (semiconductor package 102) of this embodiment can include the printed wiring board (printed wiring board 20) and an electronic element (semiconductor element 60) mounted on the printed wiring board. That is, the electronic device can be used as a semiconductor device.
  • the solder resist film constituting the outermost layer of this printed wiring board, the solder resist film (the solder resist film 14 on the lower layer side) disposed on the surface opposite to the surface on which the electronic elements are mounted will be described later. It is obtained by curing a resin composition for solder resist.
  • the semiconductor package 102 shown in FIG. 3 includes a printed wiring board 20, a semiconductor element 60, and a sealing resin layer 40.
  • the semiconductor element 60 is disposed on the printed wiring board 20.
  • the sealing resin layer 40 covers at least one surface of the printed wiring board 20 and the semiconductor element 60.
  • the printed wiring board 20 includes a core substrate 22, a conductor pattern 24, and a solder resist film 14.
  • the conductor pattern 24 is provided on at least one outermost surface of the core substrate 22.
  • the solder resist film 14 is the outermost layer of the printed wiring board 20 and is provided around the conductor pattern 24.
  • the semiconductor package 102 at least one semiconductor element 60 is disposed on the insulating resin film 10 on one surface (hereinafter referred to as “upper surface”) of the printed wiring board 20 described above.
  • the printed wiring board 20 is, for example, an interposer
  • the semiconductor element 60 is, for example, an LSI chip cut out from a semiconductor wafer.
  • an electronic component that functions as a resistor or a capacitor may be further disposed on the upper surface of the printed wiring board 20.
  • the semiconductor element 60 is fixed on the insulating resin film 10 via a die attach material 62.
  • the semiconductor element 60 is provided with an electrical connection pad (not shown) on its surface, and the connection pad is connected to a circuit built in the semiconductor element 60, for example.
  • a land 244 which is a part of the conductor pattern 24 provided on the printed wiring board 20 is provided in the opening 28 of the solder resist film 14.
  • the land 244 and the connection pad of the semiconductor element 60 are connected by a bonding wire 50.
  • the plating film 246 is further provided on the land 244, and the land 244 is connected to the bonding wire 50 through the plating film 246.
  • the present invention is not limited to this. . Further, instead of being connected by the bonding wire 50, it may be connected by a lead wire or solder.
  • the sealing resin layer 40 includes a solder resist film 14 exposed on the upper surface of the printed wiring board 20, the core substrate 22, a plating film 246 (a land 244 if no plating film 246 is provided), and a semiconductor element 60. Of these, the surface other than the surface bonded to the printed wiring board 20 by the die attach material 62 and the bonding wire 50 are covered.
  • the sealing resin layer 40 may cover the entire surface of the printed wiring board 20 on which the semiconductor element 60 is provided, or may cover a part of the surface exposed.
  • the printed wiring board 20 of the semiconductor package 102 is further provided with a plurality of openings 28 and lands 244 inside the openings 28 on the surface opposite to the upper surface (hereinafter referred to as “lower surface”). Each land 244 is covered with a plating film 246, and further solder balls 30 are provided to cover the plating film 246.
  • a flip chip connection package has been described as the semiconductor package 102 according to the present embodiment, but the present invention is not limited to this, and a package that is connected by wire bonding or TAB (Tape Automated Bonding) may be used.
  • a mark is printed on the upper surface of the solder ball 30 or the lower surface of the solder resist film 14 by a laser such as a YAG laser, for example.
  • This mark is made up of, for example, at least one of letters, numbers, or symbols consisting of straight lines or curves.
  • the mark indicates, for example, the product name, product number, lot number, or manufacturer name of the semiconductor package.
  • the mark may be stamped by, for example, a YVO 4 laser, a carbonic acid laser, or the like.
  • the semiconductor device is not particularly limited.
  • QFP Quad Flat Package
  • SOP Small Outline Package
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • QFN Quad Flat Flat
  • lead Package SON (Small Outline Non-leaded Package), LF-BGA (Lead Frame BGA), and the like.
  • examples of the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
  • the resin composition for solder resist used in the method for producing a printed wiring board of this embodiment will be described in detail below.
  • the solder resist resin composition is a varnish-like resin composition.
  • a resin sheet can be obtained by forming the solder resist resin composition into a film.
  • the solder resist film 14 is obtained by curing the resin sheet. Moreover, you may obtain the soldering resist film 14 by hardening the coating film of the resin composition for soldering resists.
  • thermosetting resin composition containing a thermosetting resin can be used as the resin composition for solder resist.
  • the thermosetting resin is not particularly limited.
  • the thermosetting resin may be a liquid resin that is liquid at room temperature (25 ° C.). These can be used alone or in combination of two or more.
  • the thermosetting resin preferably includes an epoxy resin.
  • Epoxy resin (A) includes, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin (4,4 ′-(1,3-phenylenedioxide).
  • Isopropylene) bisphenol type epoxy resin bisphenol P type epoxy resin (4,4 ′-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Z type epoxy resin (4,4′-cyclohexene) Bisphenol type epoxy resins such as sidiene bisphenol type epoxy resins; phenol novolak type epoxy resins, cresol novolak type epoxy resins, tetraphenol group ethane type novolak type epoxy resins, novola having a condensed ring aromatic hydrocarbon structure Novolak type epoxy resins such as epoxy resins; biphenyl type epoxy resins; aralkyl type epoxy resins such as xylylene type epoxy resins and biphenyl aralkyl type epoxy resins; naphthylene ether type epoxy resins, naphthol type epoxy resins, naphthalenediol type epoxy resins Epoxy resins having a naphthalene skeleton such as bifunctional to tetrafunctional epoxy type
  • an epoxy resin having a naphthalene skeleton from the viewpoint of improving the embedding property of the solder resist film and the surface smoothness.
  • the low linear expansion and high elastic modulus of the solder resist film can be achieved.
  • n is an integer of 0 to 10
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • the content of the epoxy resin (A) is, for example, preferably 3% by weight or more and more preferably 5% by weight or more with respect to the total solid content of the thermosetting resin composition.
  • content of an epoxy resin (A) is preferably 40% by weight or less, and more preferably 35% by weight or less, for example, based on the total solid content of the thermosetting resin composition.
  • content of an epoxy resin (A) below the said upper limit, the heat resistance and moisture resistance of a soldering resist film formed using a thermosetting resin composition can be improved.
  • the total solid content of a thermosetting resin composition refers to the whole component except the solvent contained in a thermosetting resin composition. The same applies hereinafter.
  • the thermosetting resin may further include a filler (B).
  • An inorganic filler can be used as the filler (B).
  • the inorganic filler include, but are not limited to, silicates such as talc, calcined clay, unfired clay, mica, and glass; oxides such as titanium oxide, alumina, boehmite, silica, and fused silica; calcium carbonate Carbonates such as magnesium carbonate and hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite; zinc borate and metaborates Borates such as barium oxide, aluminum borate, calcium borate and sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride; titanates such as strontium titanate and barium titanate Can
  • the silica is not particularly limited, but may include, for example, at least one of spherical silica and crushed silica. From the viewpoint of improving the embedding property and surface smoothness of the solder resist film, it is more preferable to include spherical silica.
  • the silica may be, for example, fused spherical silica.
  • the lower limit of the average particle diameter D 50 of the filler (B) is not particularly limited, is preferably at least 0.01 [mu] m, more preferably not less than 0.05 .mu.m.
  • the upper limit of the average particle diameter D 50 of the filler (B) is not particularly limited, is preferably from 5.0 .mu.m, more preferably 2.0 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • an average particle diameter D 50 may be used fine particles of silica is 2nm or 100nm or less.
  • the embedding property and surface smoothness of a solder resist film can be improved more effectively.
  • the particulate silica having an average particle diameter D 50 is 2nm or 100nm or less, that the average particle diameter D 50 comprises a 100nm excess of silica, in both the thermosetting resin composition, filling properties And an example of a preferred embodiment for improving surface smoothness.
  • the average particle diameter D 50 of the filler (B), for example a laser diffraction particle size distribution analyzer (HORIBA Ltd., LA-500) can be measured using a.
  • the filler may include one kind or two or more kinds.
  • thermosetting resin composition it is more preferable to use, for example, a silica raw material having a silica concentration of 10 wt% or more and 90 wt% or less as silica. From the viewpoint of improving the mechanical strength of the printed wiring board, it is particularly preferable to use a silica raw material having a silica concentration of 50% by weight to 90% by weight. Further, from the viewpoint of suppressing the deflection of the printed wiring board and improving the moisture absorption reliability of the semiconductor device, for example, a silica raw material having a silica concentration of 50% by weight to 90% by weight and a silica concentration of 10% by weight to 50%. It is particularly preferable to use a silica raw material of not more than% by weight in combination.
  • the content of the filler (B) is, for example, preferably 30% by weight or more and more preferably 50% by weight or more with respect to the total solid content of the thermosetting resin composition.
  • content of a filler (B) is, for example, preferably 90% by weight or less, and more preferably 85% by weight or less, based on the total solid content of the thermosetting resin composition.
  • thermosetting resin composition may further contain a cyanate resin (C).
  • C Cyclone resin
  • the solder resist film can be reduced in linear expansion and improved in elastic modulus and rigidity. It is also possible to contribute to improvement of heat resistance and moisture resistance of the obtained semiconductor device.
  • the cyanate resin (C) is a resin having a cyanate group (—O—CN) in the molecule, and a resin having two or more cyanate groups in the molecule can be used.
  • a resin having two or more cyanate groups in the molecule can be used.
  • said cyanate resin (C) For example, dicyclopentadiene type cyanate ester resin, phenol novolak type cyanate ester resin, novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethyl Examples thereof include bisphenol type cyanate resins such as bisphenol F type cyanate resins, and naphthol aralkyl type cyanate resins.
  • the said cyanate resin (C) is not specifically limited, For example, it can obtain by making a halogenated cyanide compound, phenols, or naphthol react.
  • a cyanate resin include a cyanate resin obtained by a reaction of a phenol novolac type polyhydric phenol and a cyanogen halide, and a reaction of a cresol novolac type polyhydric phenol and a cyanogen halide.
  • Examples include cyanate resins and cyanate resins obtained by reaction of naphthol aralkyl polyvalent naphthols with cyanogen halides.
  • the cyanate resin (C) may be used alone or in combination of two or more.
  • a phenol novolak type cyanate resin dicyclopentadiene type cyanate ester resin, or naphthol aralkyl type cyanate resin. It is particularly preferable to include a phenol novolac-type cyanate resin.
  • the content of the cyanate resin (C) is, for example, preferably 3% by weight or more and more preferably 5% by weight or more with respect to the total solid content of the thermosetting resin composition.
  • content of cyanate resin (C) is, for example, preferably 40% by weight or less, and more preferably 35% by weight or less, based on the total solid content of the thermosetting resin composition.
  • thermosetting resin composition further contains, for example, a curing accelerator (D).
  • a curing accelerator (D) a curing accelerator
  • the curing accelerator (D) one that accelerates the curing reaction of the epoxy resin (A) can be used, and the type thereof is not particularly limited.
  • a hardening accelerator (D) For example, a zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, zinc octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt Organometallic salts such as (III), tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, tetraphenylphosphonium tetraphenylborate (TPP-K), tetraphenylphosphonium tetrakis (4 Quaternary phosphonium compounds such as 2-methylphenyl) borate (TPP-MK), 2-phenyl-4-methyl
  • the onium salt compound used as the curing accelerator (D) is not particularly limited, for example, a compound represented by the following general formula (2) can be used.
  • R 3 , R 4 , R 5 and R 6 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group. Each of which may be the same as or different from each other, and A ⁇ represents an anion of an n-valent proton donor having at least one proton that can be released to the outside of the molecule in the molecule, or Indicates the complex anion)
  • the content of the curing accelerator (D) is, for example, preferably 0.1% by weight or more, and more preferably 0.3% by weight or more with respect to the total solid content of the thermosetting resin composition. .
  • content of a hardening accelerator (D) is, for example, preferably 10% by weight or less, and more preferably 5% by weight or less, based on the total solid content of the thermosetting resin composition.
  • the thermosetting resin composition can further contain, for example, a colorant (E).
  • the colorant (E) includes, for example, one or more selected from dyes such as green, red, blue, yellow, and black, pigments such as black pigments, and dyes. Among these, from the viewpoint of improving the visibility of the opening and the like, a green colorant can be used, but a green dye may be used.
  • the green colorant may include one or more known colorants such as anthraquinone, phthalocyanine, and perylene.
  • black dye examples include azo-based metal complex black dyes and organic black dyes such as anthraquinone compounds. Although it does not specifically limit as said black dye, For example, Kayase Black AN (made by Nippon Kayaku Co., Ltd.), Kayase Black G (made by Nippon Kayaku Co., Ltd.), etc. are mentioned. In this embodiment, you may use 1 type, or 2 or more types of black pigments.
  • the lower limit of the content of the black dye is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, based on the total solid content of the thermosetting resin composition. It is particularly preferably 0.07% by weight or more.
  • the marking performance of a laser such as a YAG laser for the solder resist film can be improved.
  • the upper limit of the content of the black dye is preferably 1.0% by weight or less, more preferably 0.9% by weight or less, based on the total solid content of the thermosetting resin composition. More preferably, it is 0.8 wt% or less. This makes it possible to realize a solder resist film colored other than black.
  • the content of the colorant (E) is, for example, preferably 0.05% by weight or more, and more preferably 0.1% by weight or more based on the total solid content of the thermosetting resin composition.
  • content of a coloring agent (E) is, for example, preferably 5% by weight or less, and more preferably 3% by weight or less based on the total solid content of the thermosetting resin composition.
  • thermosetting resin composition includes a coupling agent, a leveling agent, a curing agent, a photosensitizer, an antifoaming agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, One or two or more additives selected from ion trapping agents and the like may be added.
  • the coupling agent examples include silane coupling agents such as epoxy silane coupling agents, cationic silane coupling agents, and amino silane coupling agents, titanate coupling agents, and silicone oil type coupling agents.
  • the leveling agent examples include acrylic copolymers.
  • the content of the coupling agent is not particularly limited. For example, it may be 0.05 to 5% by weight, further 0.2 to 3% by weight, based on the total solid content of the thermosetting resin composition. Also good.
  • the curing agent examples include phenol resins such as phenol novolak resin, cresol novolak resin, arylalkylene type novolak resin, and the like.
  • the content of the curing agent is not particularly limited.
  • the content of the curing agent is preferably 0.05 to 10% by weight, and preferably 0.2 to 5% by weight with respect to the total solid content of the thermosetting resin composition. More preferably.
  • the photosensitive agent include photosensitive diazoquinone compounds.
  • the thermosetting resin is a varnish-like resin composition.
  • a resin sheet is obtained by forming a varnish-like thermosetting resin into a film.
  • Such a resin sheet can be obtained, for example, by subjecting a coating film (resin film) obtained by coating a varnish-like thermosetting resin composition to a solvent removal treatment.
  • the resin sheet can be defined as having a solvent content of 5% by weight or less with respect to the entire thermosetting resin composition.
  • the solvent removal treatment can be performed, for example, under conditions of 100 ° C. to 150 ° C. and 1 minute to 5 minutes. This makes it possible to sufficiently remove the solvent while suppressing the curing of the thermosetting resin film.
  • the method for forming the thermosetting resin on the carrier substrate is not particularly limited.
  • the resin varnish is prepared by dissolving and dispersing the thermosetting resin in a solvent or the like, and various coater apparatuses are used. Examples thereof include a method in which a resin varnish is applied to a carrier substrate and then dried, and a method in which the resin varnish is spray-coated on a carrier substrate using a spray device and then dried.
  • the method of drying the resin varnish after applying the resin varnish to the carrier substrate using various coaters such as a comma coater and a die coater is preferable. Thereby, the resin sheet with a carrier base material which has no void and has a uniform resin sheet thickness can be efficiently produced.
  • the varnish-like thermosetting resin composition can contain a solvent, for example.
  • the solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, cyclohexane, heptane, cyclohexane, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, carbitol, anisole, And one or more selected from organic solvents such as N-methylpyrrolidone.
  • the solid content of the thermosetting resin composition is preferably, for example, 30% by weight to 80% by weight, and preferably 40% by weight to 70% by weight. It is more preferable that Thereby, the thermosetting resin composition excellent in workability
  • the varnish-like thermosetting resin composition includes, for example, the above-described components, an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method. It can prepare by melt
  • thermosetting resin composition according to the present embodiment may not include a fiber substrate such as a glass fiber substrate or a paper substrate. Thereby, it is possible to realize a thermosetting resin composition particularly suitable for forming a solder resist film.
  • the resin sheet can include a film obtained from the thermosetting resin composition.
  • the resin sheet may have a sheet shape or a roll shape that can be wound.
  • a solder resist film can be obtained by curing the resin sheet.
  • the storage elastic modulus at 25 ° C. of the cured product of the thermosetting resin composition is 7 GPa.
  • the above is preferable.
  • the storage elastic modulus is more preferably 10 GPa or more.
  • the upper limit value of the storage elastic modulus is not particularly limited, but may be, for example, 50 GPa or less.
  • the glass transition temperature of the cured product of the thermosetting resin composition is 160 ° C. or higher. Preferably there is. Thereby, it becomes possible to improve the heat resistance and reflow resistance of the resin sheet obtained using the thermosetting resin composition.
  • the glass transition temperature is more preferably 200 ° C. or higher.
  • the upper limit value of the glass transition temperature is not particularly limited, but can be, for example, 350 ° C. or lower.
  • the storage elastic modulus and the glass transition temperature are determined based on the dynamic viscosity of the cured product, for example, using a dynamic viscoelasticity measuring device at a frequency of 1 Hz and a heating rate of 5 ° C./min. It can be calculated from a measurement result obtained by performing an elasticity test.
  • a dynamic viscoelasticity measuring apparatus For example, the Seiko Instruments make and DMS6100 can be used.
  • the linear expansion coefficient of the cured product of the thermosetting resin composition below the glass transition temperature is It is preferably 30 ppm / ° C. or less. Thereby, it becomes possible to suppress warpage of a semiconductor package including a resin sheet obtained using the thermosetting resin composition.
  • the linear expansion coefficient is more preferably 28 ppm / ° C. or less.
  • the lower limit value of the linear expansion coefficient is not particularly limited, but can be, for example, 3 ppm / ° C. or more. Thereby, the printed wiring board 20 which can manufacture the package excellent in durability can be implement
  • TMA thermo analyzer
  • thermosetting resin composition for example, by appropriately selecting the type and blending amount of each component contained in the thermosetting resin composition, the preparation method of the thermosetting resin composition, etc., the storage elastic modulus, the above It is possible to control the glass transition temperature and the linear expansion coefficient.
  • a resin sheet with a carrier substrate can be configured. Thereby, the handleability of the resin sheet can be improved.
  • a polymer film or a metal foil can be used as the carrier substrate.
  • the polymer film is not particularly limited.
  • polyolefin such as polyethylene and polypropylene
  • polyester such as polyethylene terephthalate and polybutylene terephthalate
  • release paper such as polycarbonate and silicone sheet
  • heat resistance such as fluorine resin and polyimide resin.
  • a thermoplastic resin sheet having The metal foil is not particularly limited.
  • the thickness of the carrier base material is not particularly limited, but may be, for example, 10 to 100 ⁇ m or 10 to 70 ⁇ m. Thereby, the handleability at the time of manufacturing a resin sheet is favorable and preferable.
  • the above resin sheet may be a single layer or multiple layers, and may contain one or more of the above films.
  • the said resin sheet may be a multilayer, it may be comprised by the same kind and may be comprised by different types.
  • the method of forming the resin sheet having two or more layers is not particularly limited.
  • a two-layer resin sheet is obtained by bonding the layers together and then drying them.
  • a 1st resin sheet is obtained by apply
  • coating a thermosetting resin composition on a 1st resin sheet, and even drying is mentioned.
  • the method of obtaining the resin sheet of 2 layers can also be used by apply
  • thermosetting resin composition 14.5% by mass of a naphthalene-modified cresol novolac type epoxy resin (manufactured by DIC Corporation, HP-5000) as an epoxy resin, and a phenol novolac type cyanate ester resin (manufactured by LONZA) as a cyanate resin PT-30) 14.5% by mass, spherical silica particles (manufactured by Admatechs Co., Ltd., SO-C4, average particle size 1.0 ⁇ m, phenylaminosilane treatment) 70% by mass, tetraphenylphosphonium Tetrakis (4-methylphenyl) borate (TPP-MK) 0.5 mass% and epoxysilane (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 mass% as a coupling agent were dissolved and dispersed in methyl ethyl ketone. Then, it stirred for 1 hour using the high-speed stirring
  • This peelable metal foil was placed on a resin sheet with a carrier substrate so that the copper foil faced the insulating resin film. Thereafter, the metal foil is thermocompression bonded to the resin sheet, the release layer and the carrier foil are peeled off, and the insulating resin with a metal film comprising a copper foil (metal film) and an insulating resin film is formed on the carrier substrate. A membrane was obtained. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 3.0 ⁇ m.
  • the insulating resin film is etched by a laser processing method using the metal film having the opening as a mask, and the land on the core substrate is formed. An opening was formed in the insulating resin film so as to be exposed. Thereafter, the structure was heated with a drying apparatus at 220 ° C. for 60 minutes to cure the B-stage insulating resin film to form a solder resist film. Next, the structure was immersed in a swelling solution at 60 ° C. (Atotech Co., Swelling Dip Securigant P) for 5 minutes, and further added to an aqueous potassium permanganate solution (Atotech Co., Concentrate Compact CP) at 80 ° C. After the minute immersion, the desmear treatment was performed by neutralization.
  • a swelling solution at 60 ° C. (Atotech Co., Swelling Dip Securigant P) for 5 minutes, and further added to an aqueous potassium permanganate solution (Atotech Co., Concentrate Compact CP) at 80 ° C. After the
  • Plating treatment Next, a plating layer was formed on the conductor pattern (land) exposed in the opening of the solder resist film. Specifically, an electroless nickel plating layer of 3 ⁇ m was formed, and an electroless gold plating layer of 0.1 ⁇ m was further formed thereon. Thereby, a printed wiring board was obtained.
  • Example 2 Example 3 was used except that a 3 ⁇ m thick copper foil (Mitsui Metals Co., Ltd., MT18Ex) was used instead of a 3 ⁇ m thick copper foil (Mitsui Metals Co., Ltd., MT18SD-H). A wiring board was obtained. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 2.0 ⁇ m.
  • Example 3 Example except that 3 ⁇ m thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H-T3B) was used instead of 3 ⁇ m thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H) In the same manner as in No. 1, a wiring board was obtained. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.8 ⁇ m.
  • Example 4 Example 1 was used except that a 3 ⁇ m thick copper foil (Furukawa Electric Co., Ltd., F-HP) was used instead of the 3 ⁇ m thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H). A wiring board was obtained in the same manner. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.5 ⁇ m.
  • Example 5 Example 3 was used except that a 3 ⁇ m thick copper foil (Mitsui Metal Mining Co., Ltd., MT18FL) was used instead of a 3 ⁇ m thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H). A wiring board was obtained. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.3 ⁇ m.
  • Example 6 Example 1 except that a 18 ⁇ m thick copper foil (HS-GHY5, manufactured by JX Metals, Inc.) was used instead of a 3 ⁇ m thick copper foil (Mitsui Metals, Ltd., MT18SD-H). Thus, a wiring board was obtained.
  • the surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 0.3 ⁇ m.
  • a resin sheet with a carrier substrate prepared in the same manner as in Example 1 was prepared. Thereafter, a structure was produced in the same manner as [3] in Example 1. Thereafter, the insulating resin film was directly etched by laser irradiation to form openings in the insulating resin film so that the lands on the core substrate were exposed. Thereafter, the structure was heated with a drying apparatus at 220 ° C. for 60 minutes to cure the B-stage insulating resin film to form a solder resist film. Thereafter, in the same manner as in [7] of Example 1, a plating layer was formed on the conductor pattern (land) exposed at the opening of the solder resist film to obtain a printed wiring board.
  • the surface roughness (10-point average roughness Rz) of the solder resist film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). Evaluated according to. The results are shown in Table 1.
  • D The 10-point average roughness Rz is larger than 3.0 ⁇ m.
  • the surface smoothness of the solder resist film was particularly excellent.
  • the printed wiring boards of Examples 2 to 6 were inspected with an ultrasonic microscope, it was found that bubbles were difficult to adhere to the solder resist film of each printed wiring board, so that the accuracy of inspection for peeling and cracking was improved. .
  • a fine and precise opening is formed in a solder resist layer by using a metal film as a mask instead of a resist film formed of a thermosetting resin.
  • a printed wiring board can be provided. By using such a printed wiring board, the productivity of the semiconductor device can be improved. Therefore, the present invention has industrial applicability.

Abstract

This method for manufacturing a printed wiring board includes: a step for readying a structure in which a circuit board equipped with a circuit surface to which a circuit is provided, a solder resist film, and a metal film are laminated in the stated order; a step for selectively removing the metal film to form a first opening in the metal film; a step for removing the solder resist film in the region in which the first opening is formed to form, in the solder resist film, a second opening in which a part of the circuit is exposed; and a step for removing the metal film to expose the surface of the solder resist film.

Description

プリント配線板の製造方法、半導体装置の製造方法Printed wiring board manufacturing method and semiconductor device manufacturing method
 本発明は、プリント配線板の製造方法、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a printed wiring board and a method for manufacturing a semiconductor device.
プリント配線板は、コアとなる銅張積層板、層間絶縁材及びソルダーレジストがこの順番で積層された積層体からなる。プリント配線板の表面には、配線パターンが設けられており、ソルダーレジスト形成後、配線パターンに対応して、外部との電気的接続が必要な箇所のソルダーレジストが除去され、ソルダーレジストに所定のパターンが形成される。 The printed wiring board is composed of a laminated body in which a copper-clad laminated board serving as a core, an interlayer insulating material, and a solder resist are laminated in this order. A wiring pattern is provided on the surface of the printed wiring board. After the solder resist is formed, the solder resist is removed from the portion requiring electrical connection with the outside corresponding to the wiring pattern. A pattern is formed.
 このような所定のパターンを形成する方法としては、例えば、以下のような露光現像法が知られている。露光現像法では、まず、ソルダーレジストの開口部にパターンが形成されたフォトマスクを積層して、写真法により露光する。その後、炭酸ナトリウムや水酸化ナトリウム、テトラメチルアンモニウムハイドライド(TMAH)などの現像液で現像して、ソルダーレジストに開口部を形成する。 As a method for forming such a predetermined pattern, for example, the following exposure and development method is known. In the exposure and development method, first, a photomask having a pattern formed on the opening of a solder resist is laminated and exposed by a photographic method. Then, it develops with developing solutions, such as sodium carbonate, sodium hydroxide, and tetramethylammonium hydride (TMAH), and forms an opening part in a soldering resist.
 ただし、写真法に用いられる感光性樹脂は、熱硬化性樹脂に比べ、多層プリント配線板の薄型・高密度化に伴い要求される、剛性、耐熱性、絶縁信頼性が十分ではない。
 そこで、剛性、耐熱性、絶縁信頼性向上のため、ソルダーレジストを構成する材料として熱硬化性樹脂を用い、レーザーによりソルダーレジストに開口部を形成する方法が用いられている(例えば、特許文献1参照。)。
However, the photosensitive resin used in the photographic method does not have sufficient rigidity, heat resistance, and insulation reliability required as the multilayer printed wiring board becomes thinner and denser than the thermosetting resin.
Therefore, in order to improve rigidity, heat resistance, and insulation reliability, a method is used in which a thermosetting resin is used as a material constituting the solder resist and an opening is formed in the solder resist by a laser (for example, Patent Document 1). reference.).
特開2003-101244号公報JP 2003-101244 A
 しかしながら、近年、半導体装置の軽薄短小化を目的として、半導体素子や多層プリント配線板の高密度化が進んでおり、より一層配線の微細化が必要となっている。レーザーにより、ソルダーレジストに開口部を形成する場合、ソルダーレジストに用いられる樹脂の組成によっては、十分に微細且つ精密な開口部を形成することが困難になってきた。 However, in recent years, semiconductor elements and multilayer printed wiring boards have been increased in density for the purpose of lightening, thinning, and shortening semiconductor devices, and further miniaturization of wiring is required. When an opening is formed in a solder resist with a laser, it has become difficult to form a sufficiently fine and precise opening depending on the composition of the resin used for the solder resist.
 本願発明者が検討したところ、熱硬化性樹脂で形成される通常のレジスト膜の代わりに、金属膜をマスクとして利用することにより、ソルダーレジストに、微細かつ精密な開口部を形成することが可能になることを見出し、本発明を完成するに至った。 As a result of the study by the present inventor, it is possible to form a fine and precise opening in the solder resist by using a metal film as a mask instead of a normal resist film formed of a thermosetting resin. As a result, the present invention has been completed.
 本発明によれば、回路基板、ソルダーレジスト膜、および金属膜がこの順番で積層された構造体を準備する工程と、前記金属膜を選択的に除去することにより、第1の開口部を形成する工程と、前記第1の開口部が形成された領域の前記ソルダーレジスト膜を除去することにより、前記回路の一部を露出させる第2の開口部を前記ソルダーレジスト膜に形成する工程と、前記金属膜を除去して、前記ソルダーレジスト膜の表面を露出させる工程と、を含む、プリント配線板の製造方法が提供される。 According to the present invention, a step of preparing a structure in which a circuit board, a solder resist film, and a metal film are laminated in this order, and the first opening is formed by selectively removing the metal film. Forming a second opening in the solder resist film that exposes a part of the circuit by removing the solder resist film in a region where the first opening is formed; And removing the metal film to expose the surface of the solder resist film.
 本発明によれば、上記プリント配線板の製造方法で得られたプリント配線板を準備する工程と、
 前記プリント配線板上に半導体素子を実装する工程と、を含む、半導体装置の製造方法が提供される。
According to the present invention, a step of preparing a printed wiring board obtained by the method for manufacturing a printed wiring board,
Mounting a semiconductor element on the printed wiring board. A method for manufacturing a semiconductor device is provided.
 本発明によれば、ソルダーレジストに微細かつ精密な開口部を形成することができるとともに、半導体装置の生産性を向上させることができる、プリント配線板の製造方法、およびかかるプリント配線板の製造方法により製造されたプリント配線板を用いた半導体装置の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, while being able to form a fine and precise opening part in a soldering resist, the productivity of a semiconductor device can be improved, and the manufacturing method of this printed wiring board The manufacturing method of the semiconductor device using the printed wiring board manufactured by is provided.
図1は、本実施形態に係るプリント配線板の製造方法の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of a method for manufacturing a printed wiring board according to the present embodiment. 図2は、本実施形態に係るプリント配線板の製造方法の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing a printed wiring board according to the present embodiment. 図3は、本実施形態における半導体パッケージの構造の例を示す模式図である。FIG. 3 is a schematic diagram showing an example of the structure of the semiconductor package in the present embodiment. 図4は、本実施形態に係るプリント配線板の製造方法の変形例の一例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing an example of a modification of the method for manufacturing a printed wiring board according to the present embodiment.
 以下、本発明の好適な実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 まず、本実施形態に係るプリント配線板の製造方法の概要について説明する。 First, an outline of a method for manufacturing a printed wiring board according to the present embodiment will be described.
 本実施形態のプリント配線板の製造方法は、金属膜とソルダーレジスト膜とを含む構造体を準備する工程と、金属膜に開口部(第1の開口部)を形成する工程と、上記金属膜をマスクとしてソルダーレジスト膜に開口部(第2の開口部)を形成する工程と、上記金属膜を除去してソルダーレジスト膜の表面を露出させる工程と、を含むことができる。 The method for manufacturing a printed wiring board of the present embodiment includes a step of preparing a structure including a metal film and a solder resist film, a step of forming an opening (first opening) in the metal film, and the metal film. And a step of forming an opening (second opening) in the solder resist film using the mask as a mask, and a step of removing the metal film to expose the surface of the solder resist film.
 本実施形態の配線基板の製造方法において、銅箔等の金属膜をマスクに利用することにより、レーザーで直接パターンを形成した場合に起こり得る、ソルダーレジスト膜のレーザー照射部周辺のレーザー焼け等を防ぐことができる。これにより、ソルダーレジスト膜に対して、レーザーで直接パターンを形成するよりも、微細かつ精密な開口部(パターン)を形成できる。 In the method of manufacturing a wiring board according to the present embodiment, by using a metal film such as a copper foil as a mask, laser burning around the laser irradiation portion of the solder resist film, which may occur when a pattern is directly formed by a laser, etc. Can be prevented. Thereby, a fine and precise opening (pattern) can be formed on the solder resist film rather than directly forming a pattern with a laser.
[プリント配線板の製造方法]
 以下、本実施形態のプリント配線板の製造方法について図1、2を用いて詳述する。
 図1、2は、本実施形態に係るプリント配線板の製造方法の一例を示す断面模式図である。
[Method of manufacturing printed wiring board]
Hereinafter, the method for manufacturing the printed wiring board of the present embodiment will be described in detail with reference to FIGS.
1 and 2 are schematic cross-sectional views illustrating an example of a method for manufacturing a printed wiring board according to the present embodiment.
 本実施形態のプリント配線板20の製造方法は、回路基板(コア基板22)、ソルダーレジスト膜(絶縁性樹脂膜10)、および金属膜(金属膜12)がこの順番で積層された構造体を準備する工程と(図1(b))、金属膜12を選択的に除去することにより、開口部(第1の開口部21)を形成する工程と(図1(c))、開口部21が形成された領域のソルダーレジスト膜を除去して、開口部(第2の開口部28)を形成することにより、開口部28の底部に回路の一部(導電体パターン24)を露出させる工程と(図1(d))、金属膜を除去して、ソルダーレジスト膜の表面(面11、面13)を露出させる工程と(図2(a))、開口部28の底部に露出している回路上に金属層(めっき膜246)を形成する工程と(図2(b))、を含む。 The method for manufacturing the printed wiring board 20 according to the present embodiment includes a structure in which a circuit board (core board 22), a solder resist film (insulating resin film 10), and a metal film (metal film 12) are laminated in this order. The step of preparing (FIG. 1B), the step of forming the opening (first opening 21) by selectively removing the metal film 12, and the opening 21 (FIG. 1C). A step of exposing a part of the circuit (conductor pattern 24) to the bottom of the opening 28 by removing the solder resist film in the region where the film is formed and forming an opening (second opening 28). (FIG. 1 (d)), the step of removing the metal film to expose the surface (surface 11, surface 13) of the solder resist film (FIG. 2 (a)), and exposing to the bottom of the opening 28. Forming a metal layer (plating film 246) on the circuit (FIG. 2 ( )), Including.
 また、上記構造体としては、ソルダーレジスト膜(絶縁性樹脂膜10)の一面(面11、面13)が金属膜12の一面(面15)に対向配置する構造とすることができる。一方、ソルダーレジスト膜の他面(面11、面13のそれぞれの対向面)は、回路基板(コア基板22)の回路(導電体パターン24)が形成された回路面に対向配置する構造とすることができる。 Further, as the structure, one surface (surface 11, surface 13) of the solder resist film (insulating resin film 10) may be disposed opposite to one surface (surface 15) of the metal film 12. On the other hand, the other surface of the solder resist film (opposite surfaces of the surface 11 and the surface 13) is arranged to be opposed to the circuit surface on which the circuit (conductor pattern 24) of the circuit substrate (core substrate 22) is formed. be able to.
 以下、各工程について説明する。
 まず、上記構造体を準備する。本実施形態において、構造体を準備する工程は、ソルダーレジスト膜(絶縁性樹脂膜10)の一面(面11、面13)に金属膜12の一面(面15)が対向するように、金属膜12が配置されたソルダーレジスト膜を準備する工程と、ソルダーレジスト膜の他面(面11、面13のぞれぞれの対向面)と回路基板(コア基板22)の回路面とを対向させ、貼り合わせることにより構造体を準備する工程と、を含むことができる。
Hereinafter, each step will be described.
First, the structure is prepared. In the present embodiment, the step of preparing the structure includes the metal film so that one surface (surface 15) of the metal film 12 faces the one surface (surface 11, surface 13) of the solder resist film (insulating resin film 10). 12 is prepared, and the other surface of the solder resist film (opposite surfaces of the surface 11 and the surface 13) and the circuit surface of the circuit board (core substrate 22) are opposed to each other. And a step of preparing the structure by bonding.
 具体的には、まず、図1(a)に示すように、表裏の少なくとも一方の最外面に導電体パターン24が設けられたコア基板22を準備する。コア基板22は、例えば、プリント配線板のコア層を構成することができる。コア層としては、例えば、繊維基材を含浸したプリプレグを硬化させた樹脂基板を用いることができる。本実施形態において、コア基板22としては、コア層に複数のビルドアップ層(不図示)が形成されてもよいが、コア層が単独で形成されていてもよい。 Specifically, first, as shown in FIG. 1A, a core substrate 22 having a conductor pattern 24 provided on at least one outermost surface on the front and back sides is prepared. The core substrate 22 can constitute, for example, a core layer of a printed wiring board. As the core layer, for example, a resin substrate obtained by curing a prepreg impregnated with a fiber base material can be used. In the present embodiment, as the core substrate 22, a plurality of buildup layers (not shown) may be formed on the core layer, but the core layer may be formed alone.
 次に、図1(b)に示すように、絶縁性樹脂膜10の一面(面11、面13)に金属膜12の一面(面15)が対向するように、金属膜12が配置された絶縁性樹脂膜10を準備する。この絶縁樹脂膜10が、構造体のソルダーレジスト膜となる。本実施形態では、絶縁樹脂膜10上に金属膜12が設けられた金属膜付き樹脂膜を利用することができる。当該金属膜付き樹脂膜としては、例えば、カバーフィルムで保護された樹脂膜を用いることができる。すなわち、カバーフィルム、樹脂膜(絶縁性樹脂膜10)および金属膜12がこの順番で積層された積層体を用いることができる。カバーフィルムとしては、ポリエチレンやポリプロピレン等の高分子フィルムなどが挙げられる。本実施形態では、例えば、カバーフィルムを積層体から剥離することにより、上記金属膜付き樹脂膜が得られる。これにより、金属膜12付き絶縁性樹脂膜10を準備することができる。 Next, as shown in FIG. 1B, the metal film 12 is disposed so that one surface (surface 15) of the insulating resin film 10 faces one surface (surface 11, surface 13). An insulating resin film 10 is prepared. This insulating resin film 10 becomes a solder resist film of the structure. In the present embodiment, a resin film with a metal film in which the metal film 12 is provided on the insulating resin film 10 can be used. As the resin film with a metal film, for example, a resin film protected with a cover film can be used. That is, a laminate in which a cover film, a resin film (insulating resin film 10), and a metal film 12 are laminated in this order can be used. Examples of the cover film include polymer films such as polyethylene and polypropylene. In this embodiment, the said resin film with a metal film is obtained by peeling a cover film from a laminated body, for example. Thereby, the insulating resin film 10 with the metal film 12 can be prepared.
 なお、上記ソルダーレジスト膜(絶縁性樹脂膜10)の一面(面11、面13)に対向配置される、金属膜の一面(面15)は、平滑面であることが好ましい。
 一般的に、銅箔の貼り合わせ面には、積層後の剥離強度の向上を目的として、比較的粗い表面が形成される。本実施形態において、金属膜(例えば、銅箔等の金属箔)の平滑面とは、表面の凹凸が少ないことを意味する。この場合、例えば、平滑面の表面粗さRzは3.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、0.1μm以上1.8μm以下であることがさらに好ましい。表面粗さ(Rz)は、JIS B0601に示す10点平均粗さによって算出できる。なお、一面(面15)の表面が粗い(表面粗さRzが3.0μmより大きい)金属膜12の場合には、一面(面15)の表面粗さRzが上記範囲内になるように、金属膜12の一面15に平滑化処理を施して平滑面にすればよい。
In addition, it is preferable that one surface (surface 15) opposed to one surface (surface 11, surface 13) of the solder resist film (insulating resin film 10) is a smooth surface.
Generally, a relatively rough surface is formed on the bonding surface of the copper foil for the purpose of improving the peel strength after lamination. In the present embodiment, the smooth surface of a metal film (for example, a metal foil such as a copper foil) means that there are few surface irregularities. In this case, for example, the surface roughness Rz of the smooth surface is preferably 3.0 μm or less, more preferably 2.0 μm or less, and further preferably 0.1 μm or more and 1.8 μm or less. The surface roughness (Rz) can be calculated by the 10-point average roughness shown in JIS B0601. In the case of the metal film 12 having a rough surface (surface 15) (surface roughness Rz is greater than 3.0 μm), the surface roughness Rz of the surface (surface 15) is within the above range. A smoothing process may be performed on the one surface 15 of the metal film 12 to make it smooth.
 本実施形態のプリント配線板の製造方法において、平滑面を有する金属膜マスクを利用することにより、ソルダーレジスト膜の表面を平滑面とすることができる。これにより、プリント配線板や半導体装置などの製造プロセスの安定性を向上させることができる。具体的には、製造されたプリント配線板を超音波検査する際に、最外層のソルダーレジスト膜の表面に気泡が付き難いので、超音波検査の精度を高めることができる。また、製造ライン中に傷ができることを抑制できる。また、製造後のプリント配線板に傷が生じることを抑制できる。これにより歩留まりを向上させることができる。さらに、半田フラックスが洗浄しやすくなる。半田フラックスが残存した場合、耐熱性が低下する恐れがあるが、製造後のプリント配線板の耐熱性が低下するのを確実に防止することができる。また、コントラストが明確になり、アライメントマークを認識しやすくなる。このようなプリント配線板の製造方法で得られたプリント配線板や半導体パッケージは、製品信頼性に優れた構造とすることができる。 In the method for manufacturing a printed wiring board of this embodiment, the surface of the solder resist film can be made smooth by using a metal film mask having a smooth surface. Thereby, stability of a manufacturing process of a printed wiring board or a semiconductor device can be improved. Specifically, when the manufactured printed wiring board is ultrasonically inspected, bubbles are hardly formed on the surface of the outermost solder resist film, so that the accuracy of the ultrasonic inspection can be improved. Moreover, it can suppress that a damage | wound is made during a manufacturing line. Moreover, it can suppress that a printed wiring board after manufacture produces a damage | wound. Thereby, the yield can be improved. Furthermore, the solder flux can be easily cleaned. When the solder flux remains, the heat resistance may be lowered, but it is possible to reliably prevent the heat resistance of the printed wiring board after manufacture from being lowered. Further, the contrast becomes clear and the alignment mark can be easily recognized. A printed wiring board and a semiconductor package obtained by such a printed wiring board manufacturing method can have a structure with excellent product reliability.
 金属膜12としては、少なくとも1面に平滑面を有する金属箔を用いることができる。具体的には、例えば、平滑面を有する極薄金属箔と剥離層とキャリア箔とを有するピーラブル金属箔を使用しても良い。すなわち、ピーラブル金属箔を絶縁性樹脂膜10に熱圧着し、続いて、キャリア箔を剥離層とともに剥離することにより、極薄金属箔(金属膜12)付き絶縁性樹脂膜10が得られる。極薄金属箔(金属膜12)は、絶縁性樹脂膜10との接着面に平滑面が形成されている。一方で、絶縁性樹脂膜10はBステージ状態とすることができる。つまり、金属膜12の平滑面が絶縁性樹脂膜10の表面(面11、面13)に接触している。これにより、絶縁性樹脂膜10の表面(面11、面13)にも、金属膜12の平滑面の表面形状が転写されて、平滑面が形成されることになる。 As the metal film 12, a metal foil having a smooth surface on at least one surface can be used. Specifically, for example, a peelable metal foil having an extremely thin metal foil having a smooth surface, a release layer, and a carrier foil may be used. That is, the peelable metal foil is thermocompression bonded to the insulating resin film 10, and then the carrier foil is peeled off together with the peeling layer, whereby the insulating resin film 10 with an ultrathin metal foil (metal film 12) is obtained. The ultrathin metal foil (metal film 12) has a smooth surface formed on the adhesive surface with the insulating resin film 10. On the other hand, the insulating resin film 10 can be in a B-stage state. That is, the smooth surface of the metal film 12 is in contact with the surface (surface 11, surface 13) of the insulating resin film 10. As a result, the surface shape of the smooth surface of the metal film 12 is also transferred to the surface (surface 11, surface 13) of the insulating resin film 10 to form a smooth surface.
 本実施形態において、平滑面を有する金属箔としては、例えば、無粗化銅箔等を用いることができる。無粗化銅箔としては、例えば、プライマー樹脂層付き無粗化銅箔(MT18DMT、三井金属鉱業株式会社製)等を用いることができる。 In this embodiment, as the metal foil having a smooth surface, for example, non-roughened copper foil or the like can be used. As the non-roughened copper foil, for example, a non-roughened copper foil with a primer resin layer (MT18DMT, manufactured by Mitsui Mining & Smelting Co., Ltd.) can be used.
 上記金属膜12(例えば、極薄金属箔)を構成する金属としては、特に限定されないが、例えば、銅および\または銅系合金、アルミおよび\またはアルミ系合金、鉄および\または鉄系合金、銀および\または銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金などが挙げられる。たとえば、金属膜12として銅箔を用いることにより、他の材料と比較してコストを低く抑えることができる。また、現在のインフラ設備に適用できるので、汎用性が高いプロセスすることができる。 Although it does not specifically limit as a metal which comprises the said metal film 12 (for example, ultra-thin metal foil), For example, copper and \ or a copper-type alloy, aluminum and \ or an aluminum-type alloy, iron and \ or an iron-type alloy, Examples thereof include silver and / or silver-based alloys, gold and gold-based alloys, zinc and zinc-based alloys, nickel and nickel-based alloys, tin and tin-based alloys, and the like. For example, by using a copper foil as the metal film 12, the cost can be reduced compared to other materials. Moreover, since it can be applied to the current infrastructure equipment, a highly versatile process can be performed.
 上記金属膜12の膜厚の下限値は、特に限定されないが、例えば、1μm以上としてもよく、10μm以上とすることができる。金属膜12の膜厚の上限値は、特に限定されないが、例えば、30μm以下としてもよく、25μm以下としてもよい。上記下限値以上とすることにより、カバーフィルムを剥離した後において、ソルダーレジスト膜10への開口部28形成時のマスク機能を保持することが可能になる。また、上限値以下とすることにより、加工性を高めて、プロセス効率を高めることができる。例えば、キャリア銅箔付きのピーラブル銅箔(金属膜12)の場合、1μm以上5μm以下としてもよい。 The lower limit value of the thickness of the metal film 12 is not particularly limited, but may be, for example, 1 μm or more, and may be 10 μm or more. The upper limit value of the film thickness of the metal film 12 is not particularly limited, but may be, for example, 30 μm or less, or 25 μm or less. By setting it to the above lower limit value or more, it is possible to maintain the mask function when the opening 28 is formed in the solder resist film 10 after the cover film is peeled off. Moreover, by setting it as below an upper limit, workability can be improved and process efficiency can be improved. For example, in the case of a peelable copper foil (metal film 12) with a carrier copper foil, the thickness may be 1 μm or more and 5 μm or less.
 上記絶縁性樹脂膜10の膜厚は、特に限定されないが、例えば、10μm以上50μm以下とすることができる。これにより、機械強度と開口特性のバランスを図ることができる。 The thickness of the insulating resin film 10 is not particularly limited, but may be, for example, 10 μm or more and 50 μm or less. Thereby, the balance of mechanical strength and opening characteristic can be aimed at.
 続いて、図1(b)に示すように、金属膜12付き絶縁性樹脂膜10をコア基板22の導電体パターン24上に積層する。例えば、コア基板22の導電体パターン24が設けられた面上に、絶縁性樹脂膜10がコア基板22と対向するように、金属膜12付き絶縁性樹脂膜10を貼り付けることができる。本実施形態において、貼付工程は、たとえば、金属膜12付き絶縁性樹脂膜10を導電体パターン24上に積層した後、これらの積層体を真空加熱加圧成形することにより行うことができる。以上により、上記構造体を準備することができる。 Subsequently, the insulating resin film 10 with the metal film 12 is laminated on the conductor pattern 24 of the core substrate 22 as shown in FIG. For example, the insulating resin film 10 with the metal film 12 can be attached to the surface of the core substrate 22 on which the conductor pattern 24 is provided so that the insulating resin film 10 faces the core substrate 22. In the present embodiment, the attaching step can be performed, for example, by laminating the insulating resin film 10 with the metal film 12 on the conductor pattern 24 and then vacuum-pressing these laminated bodies. As described above, the structure can be prepared.
 次いで、図1(c)に示すように、金属膜12を選択的に除去する。これにより、導電体パターン24上の金属膜12の所定の領域に開口部21を形成することができる。開口部21の形成方法としては、特に限定されないが、例えば、露光現像法、などの方法を用いることができる。 Next, as shown in FIG. 1C, the metal film 12 is selectively removed. Thereby, the opening 21 can be formed in a predetermined region of the metal film 12 on the conductor pattern 24. A method for forming the opening 21 is not particularly limited, and for example, a method such as exposure and development can be used.
 次いで、図1(d)に示すように、開口部が形成された金属膜12をマスクとして、絶縁性樹脂膜10の所定領域に開口部28を形成する。開口部28は主に導電体パターン24のランド244を露出させるように形成する。開口部28の形成方法としては、特に限定されず、例えば、レーザー加工法、ケミカルエッチング加工法やブラスト加工法、などの方法を用いることができる。 Next, as shown in FIG. 1D, an opening 28 is formed in a predetermined region of the insulating resin film 10 using the metal film 12 with the opening formed as a mask. The opening 28 is formed so as to mainly expose the land 244 of the conductor pattern 24. A method for forming the opening 28 is not particularly limited, and for example, a laser processing method, a chemical etching processing method, a blast processing method, or the like can be used.
 特に、本実施形態において、レーザー加工法を用いることにより、プロセスを簡略化することができる。Bステージ状態の絶縁性樹脂膜10を使用することができるので、硬化物の場合と比較して、絶縁性樹脂膜10の加工性を高めることができる。
 尚、Bステージ状態の絶縁性樹脂膜10を得る方法としては、例えば、100℃以上、170℃以下の温度で加熱する方法などが挙げられる。加熱温度の下限値は、120℃以上であることが好ましく、上限値としては150℃以下であることが好ましい。
In particular, in this embodiment, the process can be simplified by using a laser processing method. Since the insulating resin film 10 in the B-stage state can be used, the workability of the insulating resin film 10 can be improved as compared with the case of the cured product.
In addition, as a method of obtaining the insulating resin film 10 in the B stage state, for example, a method of heating at a temperature of 100 ° C. or more and 170 ° C. or less can be cited. The lower limit of the heating temperature is preferably 120 ° C. or higher, and the upper limit is preferably 150 ° C. or lower.
 上記開口部28を形成した後、図2(a)に示すように、絶縁性樹脂膜10を熱硬化させることができる。これにより、ソルダーレジスト膜14を形成する。本実施形態において、硬化温度の下限値は、特に限定されないが、例えば、200℃以上が好ましく、210℃以上がより好ましく、220℃以上がさらに好ましい。硬化温度の上限値としては、特に限定されないが、例えば、250℃以下とすることができる。
 尚、開口部28を形成した後に、必要に応じて、デスミア処理を行うことができる。デスミア処理では、開口部28の形成などで生じたスミアを除去する。
After the opening 28 is formed, the insulating resin film 10 can be thermally cured as shown in FIG. Thereby, the solder resist film 14 is formed. In the present embodiment, the lower limit of the curing temperature is not particularly limited, but is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, and further preferably 220 ° C. or higher. Although it does not specifically limit as an upper limit of hardening temperature, For example, it can be 250 degrees C or less.
In addition, after forming the opening part 28, a desmear process can be performed as needed. In the desmear process, smear generated due to the formation of the opening 28 is removed.
 引き続き、ソルダーレジスト膜14の表面(面11、面13)上の金属膜12を除去する。金属膜12を除去する方法としては、特に限定されないが、例えば、フラッシュエッチングを利用することができる。これにより、ソルダーレジスト膜14の表面を露出することができる。また、金属膜12除去後のソルダーレジスト膜14の表面を平滑面とすることができる。本実施形態において、少なくとも最外層に位置するソルダーレジスト膜14の表面(例えば、図3に示す面11)を平滑面とすることが好ましい。 Subsequently, the metal film 12 on the surface (surface 11, surface 13) of the solder resist film 14 is removed. The method for removing the metal film 12 is not particularly limited, but for example, flash etching can be used. Thereby, the surface of the solder resist film 14 can be exposed. Further, the surface of the solder resist film 14 after the removal of the metal film 12 can be made smooth. In the present embodiment, it is preferable that at least the surface of the solder resist film 14 positioned at the outermost layer (for example, the surface 11 shown in FIG. 3) is a smooth surface.
 続いて、図2(b)に示すように、開口部28に露出した導電体パターン24の上にめっき膜246を形成するめっき処理を行う。ただし、めっき膜246を形成せずにプリント配線板20としても良い。めっき膜246は、たとえば半田めっき膜や、錫めっき膜や、ニッケルめっき膜の上に金めっき膜を積層した2層構造のめっき膜とすることができる。めっき膜246は開口部28に露出した導電体パターン24の導電部を覆うように形成される。また、めっき膜246の膜厚は、とくに限定されないが、たとえば2μm以上10μm以下とすることができる。これにより、ランド244部分を、プリント配線板20を用いた実装工程においてワイヤボンディングや半田付けに適した接続部とすることができる。 Subsequently, as shown in FIG. 2B, a plating process for forming a plating film 246 on the conductor pattern 24 exposed in the opening 28 is performed. However, the printed wiring board 20 may be used without forming the plating film 246. The plating film 246 can be, for example, a plating film having a two-layer structure in which a gold plating film is laminated on a solder plating film, a tin plating film, or a nickel plating film. The plating film 246 is formed so as to cover the conductive portion of the conductor pattern 24 exposed in the opening 28. Moreover, the film thickness of the plating film 246 is not particularly limited, but may be, for example, 2 μm or more and 10 μm or less. Thereby, the land 244 portion can be a connection portion suitable for wire bonding or soldering in a mounting process using the printed wiring board 20.
 めっき処理の方法は、特に限定されず、公知の方法を用いることができる。たとえば、電解めっき法または無電解めっき法を用いることができる。たとえば無電解めっき法を用いる場合、次の様にめっき膜246を形成することが出来る。ここではニッケルと金の2層構造のめっき膜246を形成する例について説明するが、これに限定されない。まず、ニッケルめっき膜を形成する。無電解ニッケルめっきを行う場合、めっき液に導電体パターン24や絶縁性樹脂膜10を積層したコア基板22を浸漬する。これにより、開口部28に露出した導電体パターン24の導電部の上に、ニッケルめっき膜を形成できる。めっき液は、ニッケル鉛、および還元剤としてたとえば次亜リン酸塩を含んだ混合液を用いることができる。続いて、ニッケルめっき膜の上に無電解金めっきを行う。無電解金めっきの方法は特に限定されないが、たとえば金イオンと下地金属のイオンとの置換により行う置換金めっきで行うことができる。
 なお、めっき処理の前に、必要に応じて、露出した導電体パターン24の導電部を洗浄する工程や、粗化する工程を行っても良い。
The method for the plating treatment is not particularly limited, and a known method can be used. For example, an electrolytic plating method or an electroless plating method can be used. For example, when the electroless plating method is used, the plating film 246 can be formed as follows. Here, an example of forming the plating film 246 having a two-layer structure of nickel and gold will be described, but the present invention is not limited to this. First, a nickel plating film is formed. When performing electroless nickel plating, the core substrate 22 in which the conductor pattern 24 and the insulating resin film 10 are laminated is immersed in a plating solution. Thereby, a nickel plating film can be formed on the conductive portion of the conductor pattern 24 exposed in the opening 28. As the plating solution, a mixed solution containing nickel lead and, for example, hypophosphite as a reducing agent can be used. Subsequently, electroless gold plating is performed on the nickel plating film. Although the method of electroless gold plating is not particularly limited, for example, it can be performed by substitution gold plating performed by substitution of gold ions and ions of a base metal.
In addition, you may perform the process of wash | cleaning the conductive part of the exposed conductor pattern 24, and the process of roughening before a plating process as needed.
 以上の様にして図2(b)に示す本実施形態に係るプリント配線板20が得られる。 As described above, the printed wiring board 20 according to the present embodiment shown in FIG. 2B is obtained.
 本実施形態においては、金属膜12付き絶縁性樹脂膜10を用いた一例を説明したが、これに限定されず、キャリア基材付き絶縁性樹脂膜10を用いてもよい。
 以下、絶縁性樹脂膜10の変形例について図4を用いて説明する。図4は、本実施形態のプリント配線板の製造方法の変形例の一例を示す断面模式図である。
In this embodiment, although the example using the insulating resin film 10 with the metal film 12 was demonstrated, it is not limited to this, You may use the insulating resin film 10 with a carrier base material.
Hereinafter, a modification of the insulating resin film 10 will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing an example of a modification of the method for manufacturing a printed wiring board according to the present embodiment.
 図4に示すプリント配線板の製造方法において、上記構造体を準備する工程は、一面にキャリア基材(キャリア基材8)の主面が配置されたソルダーレジスト膜(絶縁性樹脂膜10)を準備する工程と、ソルダーレジスト膜(絶縁性樹脂膜10)の他面と回路基板の回路面とを対向させ、貼り合わせる工程と、上記キャリア基材をソルダーレジスト膜(絶縁性樹脂膜10)から剥離し、ソルダーレジスト膜(絶縁性樹脂膜10)の剥離面上に、金属膜(金属膜12)を形成することにより、構造体を準備する工程と、を含むことができる。 In the method for manufacturing a printed wiring board shown in FIG. 4, the step of preparing the structure includes a solder resist film (insulating resin film 10) in which the main surface of the carrier base material (carrier base material 8) is disposed on one side. The step of preparing, the step of bonding the other surface of the solder resist film (insulating resin film 10) and the circuit surface of the circuit board, and bonding the carrier base material from the solder resist film (insulating resin film 10) Peeling and forming a metal film (metal film 12) on the peeled surface of the solder resist film (insulating resin film 10) to prepare a structure.
 本実施形態の変形例に係るプリント配線板の製造方法の各工程について説明する。
 まず、キャリア基材8付き絶縁性樹脂膜10を準備する。たとえば、キャリア基材8付き絶縁性樹脂膜10は、カバーフィルムで保護されていてもよい。カバーフィルム、樹脂膜(絶縁性樹脂膜10)、およびキャリア基材8で構成された積層体から、当該カバーフィルムを剥離することにより、キャリア基材8付き絶縁性樹脂膜10が得られる。キャリア基材8としては、例えば、ポリエチレンテレフタレート等の高分子フィルムを用いることができる。また、絶縁性樹脂膜10は、Bステージ状態の樹脂膜を用いることができる。
Each process of the manufacturing method of the printed wiring board concerning the modification of this embodiment is explained.
First, the insulating resin film 10 with the carrier base material 8 is prepared. For example, the insulating resin film 10 with the carrier substrate 8 may be protected by a cover film. The insulating resin film 10 with the carrier substrate 8 is obtained by peeling the cover film from the laminate composed of the cover film, the resin film (insulating resin film 10), and the carrier substrate 8. As the carrier substrate 8, for example, a polymer film such as polyethylene terephthalate can be used. The insulating resin film 10 can be a B-stage resin film.
 続いて、図4(a)に示すように、キャリア基材8付き絶縁性樹脂膜10の絶縁樹脂膜10を、コア基板22の導電体パターン24上に貼り付ける。 Subsequently, as shown in FIG. 4A, the insulating resin film 10 of the insulating resin film 10 with the carrier base material 8 is bonded onto the conductor pattern 24 of the core substrate 22.
 続いて、図4(b)に示すように、キャリア基材8を絶縁性樹脂膜10から剥離する。これにより、絶縁性樹脂膜10の表面(面11、面13)を露出させる。 Subsequently, as shown in FIG. 4B, the carrier base material 8 is peeled from the insulating resin film 10. Thereby, the surface (surface 11, surface 13) of the insulating resin film 10 is exposed.
 続いて、図4(c)に示すように、絶縁性樹脂膜10の表面上に金属膜12を張り付ける。金属膜12の張り付け面(面15)は、平滑面が形成されていることが好ましい。本実施形態において、例えば、ピーラブル金属箔を用いて金属膜12を形成することができる。すなわち、ピーラブル金属箔を絶縁性樹脂膜10に張り付け、その後、ピーラブル金属箔からキャリア金属箔および剥離層を剥離することにより、極薄金属箔(金属膜12)を絶縁性樹脂膜10の表面(面11、面13)に残すことができる。以上により、本実施形態の構造体を準備することができる。
 図4(c)以後の工程は、前述の図1(c)から図2(b)の工程を実施することができる。これにより、図2(b)に示す本実施形態のプリント配線板20が得られる。
Subsequently, as shown in FIG. 4C, a metal film 12 is pasted on the surface of the insulating resin film 10. It is preferable that a smooth surface is formed on the attachment surface (surface 15) of the metal film 12. In the present embodiment, for example, the metal film 12 can be formed using a peelable metal foil. That is, the peelable metal foil is attached to the insulating resin film 10, and then the carrier metal foil and the release layer are peeled from the peelable metal foil, whereby the ultrathin metal foil (metal film 12) is attached to the surface of the insulating resin film 10 ( Surface 11 and surface 13). As described above, the structure of the present embodiment can be prepared.
In the steps after FIG. 4C, the steps shown in FIGS. 1C to 2B can be performed. Thereby, the printed wiring board 20 of this embodiment shown in FIG.2 (b) is obtained.
[電子装置の製造方法]
 次に、半導体パッケージ102の製造方法について説明する。
 本実施形態に係る電子装置(半導体パッケージ102)の製造方法は、上述したプリント配線板の製造方法で得られたプリント配線板20上に、半導体素子60(電子素子)を実装する工程を含む。より具体的には、プリント配線板20を準備する工程、半導体素子60をプリント配線板20上に配設する工程、および半導体素子60を封止する工程をこの順に含む。
[Method for Manufacturing Electronic Device]
Next, a method for manufacturing the semiconductor package 102 will be described.
The manufacturing method of the electronic device (semiconductor package 102) according to the present embodiment includes a step of mounting the semiconductor element 60 (electronic element) on the printed wiring board 20 obtained by the above-described printed wiring board manufacturing method. More specifically, a step of preparing the printed wiring board 20, a step of disposing the semiconductor element 60 on the printed wiring board 20, and a step of sealing the semiconductor element 60 are included in this order.
 すなわち、半導体パッケージ102の製造方法は、導電回路(導電パターン24)が一面に形成された基板(コア基板22)を準備する工程と、樹脂膜(上記絶縁樹脂膜)を基板上に配置する工程と、樹脂膜に開口部(第2の開口部28)を形成して、導電回路を露出させる工程と、樹脂膜を加熱処理することによりソルダーレジスト膜(ソルダーレジスト膜14)を形成する工程と、電子素子を、開口部に露出している導電回路と電気的に接続する工程と、電子素子(半導体素子60)を封止する工程と、を含むことができる。上記樹脂膜は、後述するソルダーレジスト用樹脂組成物を用いてなることが好ましい。すなわち、この樹脂膜は、かかるソルダーレジスト用樹脂組成物の塗布膜、または後述する樹脂シートにより構成してもよい。また、本実施形態において、上記樹脂膜は、基板(コア基板22)の両面にそれぞれ形成されており、少なくとも電子素子が実装された面とは反対側の面上に配置された樹脂膜が、後述するソルダーレジスト用樹脂組成物を用いてなることが好ましい。 That is, the manufacturing method of the semiconductor package 102 includes a step of preparing a substrate (core substrate 22) on which a conductive circuit (conductive pattern 24) is formed on one surface, and a step of disposing a resin film (the insulating resin film) on the substrate. A step of forming an opening (second opening 28) in the resin film to expose the conductive circuit, and a step of forming a solder resist film (solder resist film 14) by heat-treating the resin film. The step of electrically connecting the electronic element to the conductive circuit exposed in the opening and the step of sealing the electronic element (semiconductor element 60) can be included. The resin film is preferably formed using a solder resist resin composition described later. That is, this resin film may be constituted by a coating film of the solder resist resin composition or a resin sheet described later. In the present embodiment, the resin film is formed on both surfaces of the substrate (core substrate 22), and at least the resin film disposed on the surface opposite to the surface on which the electronic element is mounted is It is preferable to use a resin composition for a solder resist described later.
 ところで、製造されたプリント配線板20は、電子装置(半導体パッケージ102)製造後に、超音波検査等によりクラックや剥離の有無を検査される。ここで、ソルダーレジスト膜14の表面が平滑面であると、検査の際に、ソルダーレジスト膜14表面に気泡がつかいないため、クラックや剥離をより確実に見つけることができる。すなわち、より精度の高い検査が可能となる。プリント配線板20の製品検査の段階で、不良品を排除し易くなる結果、電子装置の生産性を向上させることができる。特に、ソルダーレジスト膜14に形成される開口部28(パターン)が微細な場合には、クラック等の不具合を見つけづらくなる傾向があるが、ソルダーレジスト膜14の表面が平滑面であることにより、精度の高い検査を容易に行うことができる。 By the way, the manufactured printed wiring board 20 is inspected for cracks and peeling by ultrasonic inspection or the like after manufacturing the electronic device (semiconductor package 102). Here, when the surface of the solder resist film 14 is a smooth surface, since no bubbles are formed on the surface of the solder resist film 14 during the inspection, cracks and peeling can be found more reliably. That is, a more accurate inspection can be performed. At the stage of product inspection of the printed wiring board 20, it becomes easy to eliminate defective products. As a result, the productivity of the electronic device can be improved. In particular, when the opening 28 (pattern) formed in the solder resist film 14 is fine, it tends to be difficult to find defects such as cracks, but the surface of the solder resist film 14 is a smooth surface. A highly accurate inspection can be easily performed.
 本実施形態において、プリント配線板20を準備する工程では、表面に絶縁性樹脂膜10(ソルダーレジスト用樹脂組成物からなる樹脂膜)が露出したプリント配線板20を準備する。半導体素子60を配設する工程では、絶縁性樹脂膜10上に半導体素子60を配設する。半導体素子60を封止する工程では、露出した、絶縁性樹脂膜10および半導体素子60を封止樹脂で覆うよう封止する。プリント配線板20は、コア基板22、導電体パターン24、および絶縁性樹脂膜10を備える。導電体パターン24はコア基板22の少なくともひとつの最外面に設けられている。絶縁性樹脂膜10はプリント配線板20の最外層であり、導電体パターン24上に設けられている。絶縁性樹脂膜10には、複数の開口部28が設けられている。少なくとも1つの開口部28内には、導電体パターン24の導電部の一部が位置している。 In this embodiment, in the step of preparing the printed wiring board 20, the printed wiring board 20 with the insulating resin film 10 (resin film made of a resin composition for solder resist) exposed on the surface is prepared. In the step of disposing the semiconductor element 60, the semiconductor element 60 is disposed on the insulating resin film 10. In the step of sealing the semiconductor element 60, the exposed insulating resin film 10 and the semiconductor element 60 are sealed so as to be covered with a sealing resin. The printed wiring board 20 includes a core substrate 22, a conductor pattern 24, and the insulating resin film 10. The conductor pattern 24 is provided on at least one outermost surface of the core substrate 22. The insulating resin film 10 is the outermost layer of the printed wiring board 20 and is provided on the conductor pattern 24. The insulating resin film 10 is provided with a plurality of openings 28. A part of the conductive portion of the conductor pattern 24 is located in the at least one opening 28.
 まず、上述のプリント配線板20を準備し(プリント配線板を準備する工程)、プリント配線板20の上に、半導体素子60を配設する(半導体素子を配設する工程)。このとき半導体素子60は、たとえばダイアタッチ材62を介してプリント配線板20上に搭載する。半導体素子60とプリント配線板20を接続するボンディングワイヤ50は、たとえばプリント配線板20の上面の開口部28に露出した導電体パターン24へボンディングする。次いで、プリント配線板20の上面、半導体素子60、およびボンディングワイヤ50を封止樹脂層40によって封止する(封止する工程)。封止樹脂としてはたとえばエポキシ樹脂組成物を用いることができる。封止樹脂でモールドする方法としては、トランスファー成形法、射出成形法、転写法、塗布法などを用いることができる。封止樹脂層40をたとえば150℃以上200℃以下で加熱することにより硬化させる。 First, the above-described printed wiring board 20 is prepared (step of preparing a printed wiring board), and a semiconductor element 60 is disposed on the printed wiring board 20 (step of disposing a semiconductor element). At this time, the semiconductor element 60 is mounted on the printed wiring board 20 via a die attach material 62, for example. The bonding wire 50 that connects the semiconductor element 60 and the printed wiring board 20 is bonded to, for example, the conductor pattern 24 exposed in the opening 28 on the upper surface of the printed wiring board 20. Next, the upper surface of the printed wiring board 20, the semiconductor element 60, and the bonding wire 50 are sealed with the sealing resin layer 40 (step of sealing). For example, an epoxy resin composition can be used as the sealing resin. As a method of molding with a sealing resin, a transfer molding method, an injection molding method, a transfer method, a coating method, or the like can be used. The sealing resin layer 40 is cured by heating at 150 ° C. or higher and 200 ° C. or lower, for example.
 また、プリント配線板20に外部接続端子である半田ボール30が設けられる例においては、たとえば下面側の開口部28に露出した導電体パターン24上に、半田ボール30を形成する。なお、本実施形態に係る半導体パッケージ102としてフリップチップ接続のパッケージの例について説明したが、半導体パッケージ102はこれに限定されず、ワイヤボンディングやTAB接続されるパッケージでもよい。 In the example in which the solder balls 30 as the external connection terminals are provided on the printed wiring board 20, the solder balls 30 are formed on the conductor pattern 24 exposed at the opening 28 on the lower surface side, for example. In addition, although the example of the package of the flip chip connection was demonstrated as the semiconductor package 102 which concerns on this embodiment, the semiconductor package 102 is not limited to this, The package connected by wire bonding or TAB may be sufficient.
[プリント配線板]
 本実施形態に係るプリント配線板について説明する。
 図2(b)は、実施形態におけるプリント配線板20の構造の例を示す模式図である。
 本実施形態のプリント配線板は、基板(コア基板22)と、基板上に形成された導電回路(導電体パターン24)と、基板の最外層に形成されたソルダーレジスト膜14と、を含むことができる。当該ソルダーレジスト膜14は、後述するソルダーレジスト用樹脂組成物を硬化させることにより得られる。例えば、ソルダーレジスト膜14は、後述するソルダーレジスト用樹脂組成物で形成された樹脂シートの硬化物で構成することができる。
[Printed wiring board]
The printed wiring board according to the present embodiment will be described.
FIG. 2B is a schematic diagram illustrating an example of the structure of the printed wiring board 20 in the embodiment.
The printed wiring board of the present embodiment includes a substrate (core substrate 22), a conductive circuit (conductor pattern 24) formed on the substrate, and a solder resist film 14 formed on the outermost layer of the substrate. Can do. The solder resist film 14 is obtained by curing a solder resist resin composition described later. For example, the solder resist film 14 can be composed of a cured product of a resin sheet formed of a resin composition for solder resist described later.
 図2(b)に示すプリント配線板20は、コア基板22、導電体パターン24、およびソルダーレジスト膜14を備える。導電体パターン24は、コア基板22の少なくともひとつの最外面に設けられている。ソルダーレジスト膜14は、プリント配線板20の最外層を構成する。ソルダーレジスト膜14は、導電体パターン24の周囲に設けられている。ソルダーレジスト膜14には、複数の開口部28が設けられている。少なくとも1つの開口部28内には、導電体パターン24の導電部の一部が位置している。また、ソルダーレジスト膜14の表面(面11、面13)は平滑面が形成されている。 A printed wiring board 20 shown in FIG. 2B includes a core substrate 22, a conductor pattern 24, and a solder resist film 14. The conductor pattern 24 is provided on at least one outermost surface of the core substrate 22. The solder resist film 14 constitutes the outermost layer of the printed wiring board 20. The solder resist film 14 is provided around the conductor pattern 24. The solder resist film 14 is provided with a plurality of openings 28. A part of the conductive portion of the conductor pattern 24 is located in the at least one opening 28. Further, the surface (surface 11, surface 13) of the solder resist film 14 is formed with a smooth surface.
 本実施形態に係るプリント配線板20において、コア基板22は少なくとも1つの絶縁層を含む基板である。コア基板22が備える絶縁層はたとえば繊維基材に樹脂組成物を含浸してなる樹脂基材である。
 上記コア基板22は、熱硬化性樹脂からなる基板を用いることができる。コア基板22はリジッドな基板でも良いし、フレキシブルな基板でも良い。コア基板22の厚さは、とくに限定されないが、たとえば10μm以上300μm以下とすることができる。
In the printed wiring board 20 according to the present embodiment, the core substrate 22 is a substrate including at least one insulating layer. The insulating layer provided in the core substrate 22 is, for example, a resin base material obtained by impregnating a fiber base material with a resin composition.
The core substrate 22 can be a substrate made of a thermosetting resin. The core substrate 22 may be a rigid substrate or a flexible substrate. The thickness of the core substrate 22 is not particularly limited, but can be, for example, 10 μm or more and 300 μm or less.
 また、上記コア基板22は、1つの絶縁層のみを有し、その片面のみに導電体パターン24が形成された片面板でも良いし、1つの絶縁層のみを有し、その表裏面の両方に導電体パターン24が設けられた両面板でも良いし、2層以上の絶縁層を有する多層板でもよい。コア基板22が多層板である場合、コア基板22内には2つの絶縁層に挟まれた配線層が一層以上形成される。
 また、コア基板22が両面板もしくは多層板である場合、コア基板22の1つの表面(最外面)に設けられた導電体パターン24は、反対側の表面(最外面)に設けられた導電体パターン24やコア基板22の内部に設けられた配線層と、少なくとも一部の絶縁層を貫通するスルーホール(不図示)を介して互いに電気的に接続されている。
Further, the core substrate 22 may be a single-sided plate having only one insulating layer and having a conductor pattern 24 formed on only one side thereof, or having only one insulating layer on both the front and back surfaces. A double-sided board provided with the conductor pattern 24 or a multilayer board having two or more insulating layers may be used. When the core substrate 22 is a multilayer board, one or more wiring layers sandwiched between two insulating layers are formed in the core substrate 22.
When the core substrate 22 is a double-sided board or a multilayer board, the conductor pattern 24 provided on one surface (outermost surface) of the core substrate 22 is a conductor provided on the opposite surface (outermost surface). The wiring layer provided inside the pattern 24 and the core substrate 22 is electrically connected to each other through a through hole (not shown) penetrating at least a part of the insulating layer.
 上記導電体パターン24は、コア基板22の表面と裏面の少なくとも一方の表面(最外面)に設けられている。導電体パターン24は、たとえばコア基板22に積層された銅膜を選択エッチングして形成されたパターンである。導電体パターン24は、導電部として少なくともランド244とライン242とを含む。ランド244は主に、プリント配線板20に実装される素子や部品と導電体パターン24とを電気的に接続する接続部であり、たとえば導電体パターン24の他の部分もしくはコア基板22内の配線層に接続された円形や四角形の部分である。なお、ランド244の中心には電子部品の端子等を挿入するホールが設けられていても良い。そして、ライン242は主に、ランド244同士を互いに電気的に接続する線状の部分である。 The conductor pattern 24 is provided on at least one surface (outermost surface) of the front surface and the back surface of the core substrate 22. The conductor pattern 24 is, for example, a pattern formed by selectively etching a copper film laminated on the core substrate 22. The conductor pattern 24 includes at least a land 244 and a line 242 as a conductive portion. The land 244 is mainly a connection part that electrically connects an element or component mounted on the printed wiring board 20 and the conductor pattern 24, for example, another part of the conductor pattern 24 or a wiring in the core substrate 22. A circular or square part connected to a layer. Note that a hole for inserting a terminal of an electronic component or the like may be provided at the center of the land 244. The line 242 is mainly a linear portion that electrically connects the lands 244 to each other.
 上記ソルダーレジスト膜14は、導電体パターン24上に積層されている。ソルダーレジスト膜14が絶縁性を維持することができるので、信頼性の高いプリント配線板を得ることができる。また、上下の最外層に、上記ソルダーレジスト膜14が配置されているため、例えば、黒色に呈することができ、プリント配線板の下面においても美観性を高めることができる。また、上記ソルダーレジスト膜14の下面に、例えば、YAGレーザー等のレーザーによりマークを捺印することもできる。 The solder resist film 14 is laminated on the conductor pattern 24. Since the solder resist film 14 can maintain insulation, a highly reliable printed wiring board can be obtained. Moreover, since the said soldering resist film | membrane 14 is arrange | positioned at the upper and lower outermost layers, it can exhibit, for example in black, and can improve the aesthetics also on the lower surface of a printed wiring board. Further, a mark can be printed on the lower surface of the solder resist film 14 by a laser such as a YAG laser.
 ソルダーレジスト膜14には、主にコア基板22のランド244が設けられた領域に対応して開口部が設けられており、ランド244はソルダーレジスト膜14に被覆されていない。すなわち、ランド244の上にはソルダーレジスト膜14が設けられておらず、ランド244が露出している。なお、ランド244の上には、たとえばニッケルおよび金のめっき膜や半田のめっき膜などの導電膜が積層されていてもよい。本実施形態に係るプリント配線板20では、開口部に位置するランド244の上にめっき膜246がさらに設けられている。ソルダーレジスト膜14にはさらにランド244以外の部分に開口部が設けられていても良いし、ライン242の一部を露出させるような開口部があってもよい。また、ランド244の全てが開口部に位置する必要は無く、ソルダーレジスト膜14に覆われたランド244があってもよい。 The solder resist film 14 is provided with an opening mainly corresponding to a region where the land 244 of the core substrate 22 is provided, and the land 244 is not covered with the solder resist film 14. That is, the solder resist film 14 is not provided on the land 244, and the land 244 is exposed. Note that a conductive film such as a nickel and gold plating film or a solder plating film may be laminated on the land 244. In the printed wiring board 20 according to the present embodiment, a plating film 246 is further provided on the land 244 located in the opening. The solder resist film 14 may be further provided with an opening in a portion other than the land 244, or may have an opening that exposes a part of the line 242. Further, it is not necessary for all of the lands 244 to be located in the openings, and there may be lands 244 covered with the solder resist film 14.
 プリント配線板20はたとえばインターポーザもしくはマザーボードとして用いることができる。なお、パッケージとは、プリント配線板上に種々のパーツが搭載され、一括封止されたものをいう。半導体パッケージはパッケージの一例であり、パッケージには、一括封止されたECU(Electric Control Unit)等も含む。 The printed wiring board 20 can be used as an interposer or a mother board, for example. The package refers to a package in which various parts are mounted on a printed wiring board and sealed together. The semiconductor package is an example of a package, and the package includes a batch sealed ECU (Electric Control Unit) and the like.
[電子装置]
 次に、本実施形態に係る半導体パッケージ102について説明する。
 図3は本実施形態に係る半導体パッケージ102の構造の一例を示す断面模式図である。
 本実施形態の電子装置(半導体パッケージ102)は、上記プリント配線板(プリント配線板20)と、プリント配線板上に実装された電子素子(半導体素子60)と、を含むことができる。すなわち、当該電子装置は半導体装置として利用できる。このプリント配線板の最外層を構成するソルダーレジスト膜のうち、電子素子が実装された面とは反対側の面上に配置されたソルダーレジスト膜(下層側のソルダーレジスト膜14)は、後述するソルダーレジスト用樹脂組成物を硬化して得られる。
[Electronic device]
Next, the semiconductor package 102 according to the present embodiment will be described.
FIG. 3 is a schematic cross-sectional view showing an example of the structure of the semiconductor package 102 according to the present embodiment.
The electronic device (semiconductor package 102) of this embodiment can include the printed wiring board (printed wiring board 20) and an electronic element (semiconductor element 60) mounted on the printed wiring board. That is, the electronic device can be used as a semiconductor device. Of the solder resist film constituting the outermost layer of this printed wiring board, the solder resist film (the solder resist film 14 on the lower layer side) disposed on the surface opposite to the surface on which the electronic elements are mounted will be described later. It is obtained by curing a resin composition for solder resist.
 図3に示す半導体パッケージ102は、プリント配線板20、半導体素子60、および封止樹脂層40を備える。半導体素子60はプリント配線板20上に配設されている。封止樹脂層40は、プリント配線板20の少なくともひとつの面および半導体素子60を覆っている。プリント配線板20は、コア基板22、導電体パターン24、およびソルダーレジスト膜14を備える。導電体パターン24はコア基板22の少なくともひとつの最外面に設けられている。ソルダーレジスト膜14は、プリント配線板20の最外層であり、導電体パターン24の周囲に設けられている。 The semiconductor package 102 shown in FIG. 3 includes a printed wiring board 20, a semiconductor element 60, and a sealing resin layer 40. The semiconductor element 60 is disposed on the printed wiring board 20. The sealing resin layer 40 covers at least one surface of the printed wiring board 20 and the semiconductor element 60. The printed wiring board 20 includes a core substrate 22, a conductor pattern 24, and a solder resist film 14. The conductor pattern 24 is provided on at least one outermost surface of the core substrate 22. The solder resist film 14 is the outermost layer of the printed wiring board 20 and is provided around the conductor pattern 24.
 本実施形態に係る半導体パッケージ102では、上述したプリント配線板20の一方の面(以下では「上面」と呼ぶ)の絶縁性樹脂膜10の上に、少なくとも1つの半導体素子60が配設されている。半導体パッケージ102において、プリント配線板20はたとえばインターポーザであり、半導体素子60はたとえば半導体ウエハから切り出されたLSIチップである。また、プリント配線板20の上面には半導体素子60に加えて、たとえば抵抗や容量として機能する電子部品などがさらに配設されていてもよい。半導体素子60はダイアタッチ材62を介して絶縁性樹脂膜10の上に固定されている。 In the semiconductor package 102 according to the present embodiment, at least one semiconductor element 60 is disposed on the insulating resin film 10 on one surface (hereinafter referred to as “upper surface”) of the printed wiring board 20 described above. Yes. In the semiconductor package 102, the printed wiring board 20 is, for example, an interposer, and the semiconductor element 60 is, for example, an LSI chip cut out from a semiconductor wafer. In addition to the semiconductor element 60, for example, an electronic component that functions as a resistor or a capacitor may be further disposed on the upper surface of the printed wiring board 20. The semiconductor element 60 is fixed on the insulating resin film 10 via a die attach material 62.
 半導体素子60にはその表面に電気的な接続パッド(不図示)が設けられており、接続パッドはたとえば半導体素子60の内部に作り込まれた回路に接続されている。プリント配線板20に設けられた導電体パターン24の一部分であるランド244は、ソルダーレジスト膜14の開口部28に設けられている。そして、ランド244と、半導体素子60の接続パッドとは、ボンディングワイヤ50によって接続されている。なお、本実施形態に係る半導体パッケージ102では、ランド244の上にめっき膜246がさらに設けられており、ランド244はめっき膜246を介してボンディングワイヤ50に接続されているが、これに限定されない。また、ボンディングワイヤ50で接続される代わりにリード線や半田により接続されていても良い。 The semiconductor element 60 is provided with an electrical connection pad (not shown) on its surface, and the connection pad is connected to a circuit built in the semiconductor element 60, for example. A land 244 which is a part of the conductor pattern 24 provided on the printed wiring board 20 is provided in the opening 28 of the solder resist film 14. The land 244 and the connection pad of the semiconductor element 60 are connected by a bonding wire 50. In the semiconductor package 102 according to the present embodiment, the plating film 246 is further provided on the land 244, and the land 244 is connected to the bonding wire 50 through the plating film 246. However, the present invention is not limited to this. . Further, instead of being connected by the bonding wire 50, it may be connected by a lead wire or solder.
 封止樹脂層40は、プリント配線板20の上面の表面に露出したソルダーレジスト膜14と、コア基板22と、めっき膜246(めっき膜246を設けない場合はランド244)と、半導体素子60のうちダイアタッチ材62でプリント配線板20と接合された面以外の面と、ボンディングワイヤ50とを覆っている。なお、封止樹脂層40はプリント配線板20の半導体素子60が設けられた面の全面を覆っていても良いし、当該面の一部を露出させて覆っていても良い。 The sealing resin layer 40 includes a solder resist film 14 exposed on the upper surface of the printed wiring board 20, the core substrate 22, a plating film 246 (a land 244 if no plating film 246 is provided), and a semiconductor element 60. Of these, the surface other than the surface bonded to the printed wiring board 20 by the die attach material 62 and the bonding wire 50 are covered. The sealing resin layer 40 may cover the entire surface of the printed wiring board 20 on which the semiconductor element 60 is provided, or may cover a part of the surface exposed.
 半導体パッケージ102のプリント配線板20には、上面とは反対側の面(以下では「下面」と呼ぶ)にさらに複数の開口部28と、開口部28の内部のランド244が設けられている。そして、それぞれのランド244はめっき膜246に覆われ、さらにめっき膜246を覆う半田ボール30が設けられている。
 ここでは、本実施形態に係る半導体パッケージ102としてフリップチップ接続のパッケージの例について説明したが、これに限定されず、ワイヤボンディングやTAB(Tape Automated Bonding)接続されるパッケージでもよい。
The printed wiring board 20 of the semiconductor package 102 is further provided with a plurality of openings 28 and lands 244 inside the openings 28 on the surface opposite to the upper surface (hereinafter referred to as “lower surface”). Each land 244 is covered with a plating film 246, and further solder balls 30 are provided to cover the plating film 246.
Here, an example of a flip chip connection package has been described as the semiconductor package 102 according to the present embodiment, but the present invention is not limited to this, and a package that is connected by wire bonding or TAB (Tape Automated Bonding) may be used.
 また、半田ボール30の上面またはソルダーレジスト膜14の下面には、例えば、YAGレーザー等のレーザーによりマークが捺印される。このマークは、例えば、直線または曲線からなる文字、数字、または記号の少なくとも1種類以上により構成される。また、上記マークは、例えば、半導体パッケージの製品名、製品番号、ロット番号、またはメーカー名等を示すものである。また、上記マークは、例えば、YVOレーザー、炭酸レーザー等により捺印されてもよい。 Further, a mark is printed on the upper surface of the solder ball 30 or the lower surface of the solder resist film 14 by a laser such as a YAG laser, for example. This mark is made up of, for example, at least one of letters, numbers, or symbols consisting of straight lines or curves. The mark indicates, for example, the product name, product number, lot number, or manufacturer name of the semiconductor package. The mark may be stamped by, for example, a YVO 4 laser, a carbonic acid laser, or the like.
 本実施形態の半導体装置としては、特に限定されないが、例えば、QFP(Quad Flat Package)、SOP(Small Outline Package)、BGA(Ball Grid Array)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、LF-BGA(Lead Flame BGA)等が挙げられる。 The semiconductor device according to the present embodiment is not particularly limited. For example, QFP (Quad Flat Package), SOP (Small Outline Package), BGA (Ball Grid Array), CSP (Chip Size Package), QFN (Quad Flat Flat). lead Package), SON (Small Outline Non-leaded Package), LF-BGA (Lead Frame BGA), and the like.
 また、上記半導体素子としては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられるが、これらに限定されない。 In addition, examples of the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
[ソルダーレジスト用樹脂組成物]
 本実施形態のプリント配線板の製造方法に用いられるソルダーレジスト用樹脂組成物について、以下詳述する。
 ソルダーレジスト用樹脂組成物は、ワニス状の樹脂組成物である。当該ソルダーレジスト用樹脂組成物をフィルム状とすることにより、樹脂シートを得ることができる。かかる樹脂シートを硬化させることにより、上記ソルダーレジスト膜14が得られる。また、ソルダーレジスト用樹脂組成物の塗布膜を硬化させることにより、ソルダーレジスト膜14を得てもよい。
[Resin composition for solder resist]
The resin composition for solder resist used in the method for producing a printed wiring board of this embodiment will be described in detail below.
The solder resist resin composition is a varnish-like resin composition. A resin sheet can be obtained by forming the solder resist resin composition into a film. The solder resist film 14 is obtained by curing the resin sheet. Moreover, you may obtain the soldering resist film 14 by hardening the coating film of the resin composition for soldering resists.
 ソルダーレジスト用樹脂組成物としては、熱硬化性樹脂を含む熱硬化性樹脂組成物を用いることができる。当該熱硬化性樹脂としては、特に限定されないが、例えば、フェノール樹脂、ベンゾオキサジン環を有する樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、シアネート樹脂、メタクリロイル基を有する樹脂等が挙げられる。例えば、熱硬化性樹脂が、室温(25℃)で液状である液状樹脂であってもよい。これらは、1種又は2種以上を組み合わせて用いることができる。本実施形態では、熱硬化性樹脂が、エポキシ樹脂を含むことが好ましい。 As the resin composition for solder resist, a thermosetting resin composition containing a thermosetting resin can be used. The thermosetting resin is not particularly limited. For example, phenol resin, resin having a benzoxazine ring, epoxy resin, acrylic resin, melamine resin, unsaturated polyester resin, maleimide resin, polyurethane resin, diallyl phthalate resin, silicone Examples thereof include resins, cyanate resins, and resins having a methacryloyl group. For example, the thermosetting resin may be a liquid resin that is liquid at room temperature (25 ° C.). These can be used alone or in combination of two or more. In the present embodiment, the thermosetting resin preferably includes an epoxy resin.
(エポキシ樹脂(A))
 エポキシ樹脂(A)は、たとえばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4’-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4’-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4’-シクロヘキシジエンビスフェノール型エポキシ樹脂)などのビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂、ナフタレン変性クレゾールノボラックエポキシ樹脂などのナフタレン骨格を有するエポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂から選択される一種または二種以上を含むことができる。これらの中でも、ソルダーレジスト膜の埋め込み性や、表面平滑性を向上させる観点からは、ナフタレン骨格を有するエポキシ樹脂を含むことがより好ましい。これにより、ソルダーレジスト膜の低線膨張化および高弾性率化を図ることもできる。また、プリント配線板の剛性を向上させて作業性の向上に寄与することや、半導体パッケージにおける耐リフロー性の向上および反りの抑制を実現することも可能である。なお、ソルダーレジスト膜の埋め込み性を向上させる観点からは、3官能以上のナフタレン骨格を有するエポキシ樹脂を含むことがとくに好ましい。
(Epoxy resin (A))
The epoxy resin (A) includes, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin (4,4 ′-(1,3-phenylenedioxide). Isopropylene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4 ′-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Z type epoxy resin (4,4′-cyclohexene) Bisphenol type epoxy resins such as sidiene bisphenol type epoxy resins; phenol novolak type epoxy resins, cresol novolak type epoxy resins, tetraphenol group ethane type novolak type epoxy resins, novola having a condensed ring aromatic hydrocarbon structure Novolak type epoxy resins such as epoxy resins; biphenyl type epoxy resins; aralkyl type epoxy resins such as xylylene type epoxy resins and biphenyl aralkyl type epoxy resins; naphthylene ether type epoxy resins, naphthol type epoxy resins, naphthalenediol type epoxy resins Epoxy resins having a naphthalene skeleton such as bifunctional to tetrafunctional epoxy type naphthalene resins, binaphthyl type epoxy resins, naphthalene aralkyl type epoxy resins, naphthalene modified cresol novolac epoxy resins; anthracene type epoxy resins; phenoxy type epoxy resins; dicyclopentadiene Type epoxy resin; norbornene type epoxy resin; adamantane type epoxy resin; containing one or more selected from fluorene type epoxy resin Can. Among these, it is more preferable to include an epoxy resin having a naphthalene skeleton from the viewpoint of improving the embedding property of the solder resist film and the surface smoothness. Thereby, the low linear expansion and high elastic modulus of the solder resist film can be achieved. It is also possible to improve the workability by improving the rigidity of the printed wiring board, and to improve the reflow resistance and suppress the warpage in the semiconductor package. From the viewpoint of improving the embedding property of the solder resist film, it is particularly preferable to include an epoxy resin having a tri- or higher functional naphthalene skeleton.
 エポキシ樹脂(A)として、以下の一般式(1)に示すエポキシ樹脂を含むことが、好ましい態様の一例として挙げられる。 It is mentioned as an example of a preferable aspect that the epoxy resin shown to the following General formula (1) is included as an epoxy resin (A).
Figure JPOXMLDOC01-appb-C000001
(式(1)中、nは0~10の整数であり、RおよびRは互いに独立して水素原子、炭素数1~6のアルキル基、または炭素数1~6のアルコキシ基である)
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), n is an integer of 0 to 10, and R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. )
 エポキシ樹脂(A)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して3重量%以上であることが好ましく、5重量%以上であることがより好ましい。エポキシ樹脂(A)の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物を用いて形成されるソルダーレジスト膜の埋め込み性や平滑性の向上に寄与することができる。一方で、エポキシ樹脂(A)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して40重量%以下であることが好ましく、35重量%以下であることがより好ましい。エポキシ樹脂(A)の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物を用いて形成されるソルダーレジスト膜の耐熱性や耐湿性の向上を図ることができる。なお、熱硬化性樹脂組成物の全固形分とは、熱硬化性樹脂組成物中に含まれる溶剤を除く成分全体を指す。以下、本明細書において同様である。 The content of the epoxy resin (A) is, for example, preferably 3% by weight or more and more preferably 5% by weight or more with respect to the total solid content of the thermosetting resin composition. By making content of an epoxy resin (A) more than the said lower limit, it can contribute to the improvement of the embedding property and smoothness of the soldering resist film formed using a thermosetting resin composition. On the other hand, the content of the epoxy resin (A) is preferably 40% by weight or less, and more preferably 35% by weight or less, for example, based on the total solid content of the thermosetting resin composition. By making content of an epoxy resin (A) below the said upper limit, the heat resistance and moisture resistance of a soldering resist film formed using a thermosetting resin composition can be improved. In addition, the total solid content of a thermosetting resin composition refers to the whole component except the solvent contained in a thermosetting resin composition. The same applies hereinafter.
(充填材(B))
 熱硬化性樹脂は、充填材(B)をさらに含んでもよい。
 充填材(B)としては、無機充填材を用いることができる。上記無機充填剤としては、特に限定されないが、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物;チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。これらの中でも、タルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウムが好ましい。
(Filler (B))
The thermosetting resin may further include a filler (B).
An inorganic filler can be used as the filler (B). Examples of the inorganic filler include, but are not limited to, silicates such as talc, calcined clay, unfired clay, mica, and glass; oxides such as titanium oxide, alumina, boehmite, silica, and fused silica; calcium carbonate Carbonates such as magnesium carbonate and hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite; zinc borate and metaborates Borates such as barium oxide, aluminum borate, calcium borate and sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride; titanates such as strontium titanate and barium titanate Can be mentioned. Among these, talc, alumina, glass, silica, mica, aluminum hydroxide, and magnesium hydroxide are preferable.
 シリカとしては、特に限定されないが、例えば、球状シリカ、および破砕シリカのうちの少なくとも一方を含んでもよい。ソルダーレジスト膜の埋め込み性や表面平滑性を向上させる観点からは、球状シリカを含むことがより好ましい。また、シリカは、たとえば、溶融球状シリカでもよい。 The silica is not particularly limited, but may include, for example, at least one of spherical silica and crushed silica. From the viewpoint of improving the embedding property and surface smoothness of the solder resist film, it is more preferable to include spherical silica. The silica may be, for example, fused spherical silica.
 上記充填材(B)の平均粒径D50の下限値は、とくに限定されないが、0.01μm以上が好ましく、0.05μm以上がより好ましい。また、上記充填材(B)の平均粒径D50の上限値は、とくに限定されないが、5.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下がさらに好ましい。 The lower limit of the average particle diameter D 50 of the filler (B) is not particularly limited, is preferably at least 0.01 [mu] m, more preferably not less than 0.05 .mu.m. The upper limit of the average particle diameter D 50 of the filler (B) is not particularly limited, is preferably from 5.0 .mu.m, more preferably 2.0μm or less, more preferably 1.0μm or less.
 上記シリカとして、平均粒径D50は特に限定されないが、例えば、平均粒径D50が2nm以上100nm以下である微粒子シリカを用いてもよい。これにより、ソルダーレジスト膜の埋め込み性や表面平滑性をより効果的に向上させることができる。本実施形態においては、平均粒径D50が2nm以上100nm以下である微粒子シリカと、平均粒径D50が100nm超過のシリカと、をともに熱硬化性樹脂組成物中に含むことが、埋め込み性や表面平滑性を向上させるうえで好ましい態様の一例として挙げられる。 As the silica include, but are not limited to an average particle size D 50 in particular, for example, an average particle diameter D 50 may be used fine particles of silica is 2nm or 100nm or less. Thereby, the embedding property and surface smoothness of a solder resist film can be improved more effectively. In the present embodiment, the particulate silica having an average particle diameter D 50 is 2nm or 100nm or less, that the average particle diameter D 50 comprises a 100nm excess of silica, in both the thermosetting resin composition, filling properties And an example of a preferred embodiment for improving surface smoothness.
 上記充填材(B)の平均粒径D50は、たとえばレーザー回折式粒度分布測定装置(HORIBA社製、LA-500)を用いて測定することが可能である。本実施形態において、充填材は1種または2種以上を含んでもよい。 The average particle diameter D 50 of the filler (B), for example a laser diffraction particle size distribution analyzer (HORIBA Ltd., LA-500) can be measured using a. In the present embodiment, the filler may include one kind or two or more kinds.
 また、熱硬化性樹脂組成物の調製に際しては、シリカとして、たとえばシリカ濃度が10重量%以上90重量%以下であるシリカ原料を使用することがより好ましい。プリント配線板の機械的強度を向上させる観点からは、たとえばシリカ濃度が50重量%以上90重量%以下であるシリカ原料を使用することがとくに好ましい。また、プリント配線板のたわみの抑制や、半導体装置の吸湿信頼性を向上させる観点からは、たとえばシリカ濃度が50重量%以上90重量%以下であるシリカ原料と、シリカ濃度が10重量%以上50重量%以下であるシリカ原料と、を併用することがとくに好ましい。 In preparing the thermosetting resin composition, it is more preferable to use, for example, a silica raw material having a silica concentration of 10 wt% or more and 90 wt% or less as silica. From the viewpoint of improving the mechanical strength of the printed wiring board, it is particularly preferable to use a silica raw material having a silica concentration of 50% by weight to 90% by weight. Further, from the viewpoint of suppressing the deflection of the printed wiring board and improving the moisture absorption reliability of the semiconductor device, for example, a silica raw material having a silica concentration of 50% by weight to 90% by weight and a silica concentration of 10% by weight to 50%. It is particularly preferable to use a silica raw material of not more than% by weight in combination.
 上記充填材(B)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して30重量%以上であることが好ましく、50重量%以上であることがより好ましい。充填材(B)の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物を用いて得られるソルダーレジスト膜の耐熱性や耐湿性を効果的に向上させることができる。また、ソルダーレジスト膜を低線膨張化および高弾性率化させ、得られる半導体パッケージの反り低減に寄与することも可能である。一方で、充填材(B)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して90重量%以下であることが好ましく、85重量%以下であることがより好ましい。充填材(B)の含有量を上記上限値以下とすることにより、ソルダーレジスト膜の埋め込み性をより効果的に向上させることが可能となる。 The content of the filler (B) is, for example, preferably 30% by weight or more and more preferably 50% by weight or more with respect to the total solid content of the thermosetting resin composition. By making content of a filler (B) more than the said lower limit, the heat resistance and moisture resistance of the soldering resist film obtained using a thermosetting resin composition can be improved effectively. It is also possible to contribute to the reduction of warpage of the resulting semiconductor package by lowering the linear expansion and increasing the elastic modulus of the solder resist film. On the other hand, the content of the filler (B) is, for example, preferably 90% by weight or less, and more preferably 85% by weight or less, based on the total solid content of the thermosetting resin composition. By setting the content of the filler (B) to the upper limit value or less, it becomes possible to more effectively improve the embedding property of the solder resist film.
(シアネート樹脂(C))
 熱硬化性樹脂組成物は、シアネート樹脂(C)をさらに含んでもよい。これにより、ソルダーレジスト膜について、低線膨張化や、弾性率および剛性の向上を図ることができる。また、得られる半導体装置の耐熱性や耐湿性の向上に寄与することも可能である。
(Cyanate resin (C))
The thermosetting resin composition may further contain a cyanate resin (C). As a result, the solder resist film can be reduced in linear expansion and improved in elastic modulus and rigidity. It is also possible to contribute to improvement of heat resistance and moisture resistance of the obtained semiconductor device.
 シアネート樹脂(C)は、分子内にシアネート基(-O-CN)を有する樹脂であり、シアネート基を分子内に2個以上を有する樹脂を用いることができる。上記シアネート樹脂(C)としては、特に限定されないが、例えば、ジシクロペンタジエン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂、及びナフトールアラルキル型シアネート樹脂などが挙げられる。
 また、上記シアネート樹脂(C)は、特に限定されるものではないが、例えば、ハロゲン化シアン化合物と、フェノール類またはナフトール類と、を反応させて得ることができる。このような前記シアネート樹脂としては、例えば、フェノールノボラック型の多価フェノール類とハロゲン化シアンとの反応で得られるシアネート樹脂、クレゾールノボラック型の多価フェノール類とハロゲン化シアンとの反応で得られるシアネート樹脂、ナフトールアラルキル型の多価ナフトール類とハロゲン化シアンとの反応で得られるシアネート樹脂などが挙げられる。上記シアネート樹脂(C)は、一種または二種以上を組み合わせて用いてもよい。
 これらの中でも、ソルダーレジスト膜の低線膨張化や、弾性率および剛性を向上させる観点からは、フェノールノボラック型シアネート樹脂、ジシクロペンタジエン型シアネートエステル樹脂、またはナフトールアラルキル型シアネート樹脂を含むことがより好ましく、フェノールノボラック型シアネート樹脂を含むことがとくに好ましい。
The cyanate resin (C) is a resin having a cyanate group (—O—CN) in the molecule, and a resin having two or more cyanate groups in the molecule can be used. Although it does not specifically limit as said cyanate resin (C), For example, dicyclopentadiene type cyanate ester resin, phenol novolak type cyanate ester resin, novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethyl Examples thereof include bisphenol type cyanate resins such as bisphenol F type cyanate resins, and naphthol aralkyl type cyanate resins.
Moreover, although the said cyanate resin (C) is not specifically limited, For example, it can obtain by making a halogenated cyanide compound, phenols, or naphthol react. Examples of such a cyanate resin include a cyanate resin obtained by a reaction of a phenol novolac type polyhydric phenol and a cyanogen halide, and a reaction of a cresol novolac type polyhydric phenol and a cyanogen halide. Examples include cyanate resins and cyanate resins obtained by reaction of naphthol aralkyl polyvalent naphthols with cyanogen halides. The cyanate resin (C) may be used alone or in combination of two or more.
Among these, from the viewpoint of lowering the linear expansion of the solder resist film and improving the modulus of elasticity and rigidity, it is more likely to contain a phenol novolak type cyanate resin, dicyclopentadiene type cyanate ester resin, or naphthol aralkyl type cyanate resin. It is particularly preferable to include a phenol novolac-type cyanate resin.
 上記シアネート樹脂(C)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して3重量%以上であることが好ましく、5重量%以上であることがより好ましい。シアネート樹脂(C)の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物を用いて形成されるソルダーレジスト膜のより効果的な低線膨張化、高弾性率化を図ることができる。また、埋め込み性や平滑性の向上に寄与することができる。一方で、シアネート樹脂(C)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して40重量%以下であることが好ましく、35重量%以下であることがより好ましい。シアネート樹脂(C)の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物を用いて形成されるソルダーレジスト膜の耐熱性や耐湿性の向上を図ることができる。 The content of the cyanate resin (C) is, for example, preferably 3% by weight or more and more preferably 5% by weight or more with respect to the total solid content of the thermosetting resin composition. By making content of cyanate resin (C) more than the said lower limit, it aims at more effective low linear expansion and high elastic modulus of the soldering resist film formed using a thermosetting resin composition. Can do. Moreover, it can contribute to the improvement of embedding property and smoothness. On the other hand, the content of the cyanate resin (C) is, for example, preferably 40% by weight or less, and more preferably 35% by weight or less, based on the total solid content of the thermosetting resin composition. By making content of cyanate resin (C) below the said upper limit, the heat resistance and moisture resistance of a soldering resist film formed using a thermosetting resin composition can be improved.
(硬化促進剤(D))
 熱硬化性樹脂組成物は、たとえば硬化促進剤(D)をさらに含んでいることが好ましい。これにより、熱硬化性樹脂組成物の硬化性を向上させることができる。
(Curing accelerator (D))
It is preferable that the thermosetting resin composition further contains, for example, a curing accelerator (D). Thereby, the sclerosis | hardenability of a thermosetting resin composition can be improved.
 硬化促進剤(D)としては、エポキシ樹脂(A)の硬化反応を促進させるものを用いることができ、その種類はとくに限定されない。硬化促進剤(D)としては、特に限定されないが、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、テトラフェニルホスホニウム・テトラフェニルボレート(TPP-K)、テトラフェニルホスホニウム・テトラキス(4-メチルフェニル)ボレート(TPP-MK)のような四級ホスホニウム系化合物、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸、およびオニウム塩化合物から選択される一種または二種以上を含むことができる。これらの中でも、硬化性をより効果的に向上させる観点からは、オニウム塩化合物を含むことがより好ましい。 As the curing accelerator (D), one that accelerates the curing reaction of the epoxy resin (A) can be used, and the type thereof is not particularly limited. Although it does not specifically limit as a hardening accelerator (D), For example, a zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, zinc octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt Organometallic salts such as (III), tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, tetraphenylphosphonium tetraphenylborate (TPP-K), tetraphenylphosphonium tetrakis (4 Quaternary phosphonium compounds such as 2-methylphenyl) borate (TPP-MK), 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-ethylimidazole, 2-phenyl- 4-methyl-5-hy From imidazoles such as loxyimidazole and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfonic acid, and onium salt compounds One or more selected may be included. Among these, it is more preferable to include an onium salt compound from the viewpoint of more effectively improving curability.
 上記硬化促進剤(D)として用いられるオニウム塩化合物は、とくに限定されないが、たとえば下記一般式(2)で表され化合物を用いることができる。 Although the onium salt compound used as the curing accelerator (D) is not particularly limited, for example, a compound represented by the following general formula (2) can be used.
Figure JPOXMLDOC01-appb-C000002
(式(2)中、Pはリン原子、R、R、RおよびRは、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す)
Figure JPOXMLDOC01-appb-C000002
(In formula (2), P is a phosphorus atom, R 3 , R 4 , R 5 and R 6 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group. Each of which may be the same as or different from each other, and A represents an anion of an n-valent proton donor having at least one proton that can be released to the outside of the molecule in the molecule, or Indicates the complex anion)
 上記硬化促進剤(D)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して0.1重量%以上であることが好ましく、0.3重量%以上であることがより好ましい。硬化促進剤(D)の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物の硬化性をより効果的に向上させることができる。一方で、硬化促進剤(D)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましい。硬化促進剤(D)の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の保存性を向上させることができる。 The content of the curing accelerator (D) is, for example, preferably 0.1% by weight or more, and more preferably 0.3% by weight or more with respect to the total solid content of the thermosetting resin composition. . By making content of a hardening accelerator (D) more than the said lower limit, sclerosis | hardenability of a thermosetting resin composition can be improved more effectively. On the other hand, the content of the curing accelerator (D) is, for example, preferably 10% by weight or less, and more preferably 5% by weight or less, based on the total solid content of the thermosetting resin composition. By making content of a hardening accelerator (D) below the said upper limit, the preservability of a thermosetting resin composition can be improved.
(着色剤(E))
 熱硬化性樹脂組成物は、たとえば、着色剤(E)をさらに含むことができる。着色剤(E)は、たとえば緑、赤、青、黄、および黒等の染料、黒色顔料な等の顔料、および色素から選択される一種または二種以上を含む。これらの中でも、開口部の視認性等を向上させる観点から、緑色の着色剤を用いることができるが、緑色染料を用いてもよい。当該緑色の着色剤としては、たとえばアントラキノン系、フタロシアニン系、およびペリレン系等の公知の着色剤を一種または二種以上含むことができる。
(Colorant (E))
The thermosetting resin composition can further contain, for example, a colorant (E). The colorant (E) includes, for example, one or more selected from dyes such as green, red, blue, yellow, and black, pigments such as black pigments, and dyes. Among these, from the viewpoint of improving the visibility of the opening and the like, a green colorant can be used, but a green dye may be used. The green colorant may include one or more known colorants such as anthraquinone, phthalocyanine, and perylene.
 上記黒色染料は、例えば、アゾ系等の金属錯塩黒色染料、または、アントラキノン系化合物等の有機黒色染料などが挙げられる。当該黒色染料としては、特に限定されないが、例えば、Kayaset Black A-N(日本化薬社製)、Kayaset Black G(日本化薬社製)等が挙げられる。本実施形態において、黒色顔料は1種または2種以上用いてもよい。 Examples of the black dye include azo-based metal complex black dyes and organic black dyes such as anthraquinone compounds. Although it does not specifically limit as said black dye, For example, Kayase Black AN (made by Nippon Kayaku Co., Ltd.), Kayase Black G (made by Nippon Kayaku Co., Ltd.), etc. are mentioned. In this embodiment, you may use 1 type, or 2 or more types of black pigments.
 上記黒色染料の含有量の下限値は、熱硬化性樹脂組成物の全固形分に対して、0.01重量%以上であることが好ましく、0.05重量%以上であることがより好ましく、0.07重量%以上であることが特に好ましい。ソルダーレジスト膜のYAGレーザー等のレーザーの捺印性を向上させることができる。上記黒色染料の含有量の上限値は、熱硬化性樹脂組成物の全固形分に対して、1.0重量%以下であることが好ましく、0.9重量%以下であることがより好ましく、0.8重量%以下であることがさらに好ましい。これにより、黒色以外に着色したソルダーレジスト膜を実現させることが可能になる。 The lower limit of the content of the black dye is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, based on the total solid content of the thermosetting resin composition. It is particularly preferably 0.07% by weight or more. The marking performance of a laser such as a YAG laser for the solder resist film can be improved. The upper limit of the content of the black dye is preferably 1.0% by weight or less, more preferably 0.9% by weight or less, based on the total solid content of the thermosetting resin composition. More preferably, it is 0.8 wt% or less. This makes it possible to realize a solder resist film colored other than black.
 上記着色剤(E)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して0.05重量%以上であることが好ましく、0.1重量%以上であることがより好ましい。着色剤(E)の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物を用いて得られるソルダーレジスト膜の開口部の視認性や隠蔽性をより効果的に向上させることができる。一方で、着色剤(E)の含有量は、たとえば熱硬化性樹脂組成物の全固形分に対して5重量%以下であることが好ましく、3重量%以下であることがより好ましい。着色剤(E)の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の硬化性等をより効果的に向上させることが可能となる。 The content of the colorant (E) is, for example, preferably 0.05% by weight or more, and more preferably 0.1% by weight or more based on the total solid content of the thermosetting resin composition. By making content of a coloring agent (E) more than the said lower limit, the visibility and concealment property of the opening part of the soldering resist film obtained using a thermosetting resin composition can be improved more effectively. it can. On the other hand, the content of the colorant (E) is, for example, preferably 5% by weight or less, and more preferably 3% by weight or less based on the total solid content of the thermosetting resin composition. By making content of a coloring agent (E) below the said upper limit, it becomes possible to improve sclerosis | hardenability etc. of a thermosetting resin composition more effectively.
(その他の成分(F))
 熱硬化性樹脂組成物には、上記各成分以外に、必要に応じてカップリング剤、レベリング剤、硬化剤、感光剤、消泡剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、およびイオン捕捉剤等から選択される一種または二種以上の添加物を添加してもよい。
(Other ingredients (F))
In addition to the above components, the thermosetting resin composition includes a coupling agent, a leveling agent, a curing agent, a photosensitizer, an antifoaming agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, One or two or more additives selected from ion trapping agents and the like may be added.
 上記カップリング剤としては、たとえばエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤などのシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤などが挙げられる。レベリング剤としては、アクリル系共重合物等が挙げられる。上記カップリング剤の含有量は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分に対して、0.05~5重量%としてもよく、さらに0.2~3重量%としてもよい。 Examples of the coupling agent include silane coupling agents such as epoxy silane coupling agents, cationic silane coupling agents, and amino silane coupling agents, titanate coupling agents, and silicone oil type coupling agents. Examples of the leveling agent include acrylic copolymers. The content of the coupling agent is not particularly limited. For example, it may be 0.05 to 5% by weight, further 0.2 to 3% by weight, based on the total solid content of the thermosetting resin composition. Also good.
 上記硬化剤としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、アリールアルキレン型ノボラック樹脂等のフェノール樹脂等が挙げられる。上記硬化剤の含有量は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分に対して、0.05~10重量%であることが好ましく、0.2~5重量%であることがより好ましい。上記感光剤としては、たとえば感光性ジアゾキノン化合物が挙げられる。 Examples of the curing agent include phenol resins such as phenol novolak resin, cresol novolak resin, arylalkylene type novolak resin, and the like. The content of the curing agent is not particularly limited. For example, the content of the curing agent is preferably 0.05 to 10% by weight, and preferably 0.2 to 5% by weight with respect to the total solid content of the thermosetting resin composition. More preferably. Examples of the photosensitive agent include photosensitive diazoquinone compounds.
 本実施形態において、上記熱硬化性樹脂は、ワニス状の樹脂組成物である。ワニス状の熱硬化性樹脂をフィルム状とすることにより、樹脂シートが得られる。
 かかる樹脂シートは、たとえばワニス状の熱硬化性樹脂組成物を塗布して得られた塗布膜(樹脂膜)に対して、溶剤除去処理を行うことにより得ることができる。上記樹脂シートは、溶剤含有率が熱硬化性樹脂組成物全体に対して5重量%以下と定義することができる。本実施形態においては、たとえば100℃~150℃、1分~5分の条件で溶剤除去処理を行うことができる。これにより、熱硬化性樹脂膜の硬化が進行することを抑制しつつ、十分に溶剤を除去することが可能となる。
In the present embodiment, the thermosetting resin is a varnish-like resin composition. A resin sheet is obtained by forming a varnish-like thermosetting resin into a film.
Such a resin sheet can be obtained, for example, by subjecting a coating film (resin film) obtained by coating a varnish-like thermosetting resin composition to a solvent removal treatment. The resin sheet can be defined as having a solvent content of 5% by weight or less with respect to the entire thermosetting resin composition. In the present embodiment, the solvent removal treatment can be performed, for example, under conditions of 100 ° C. to 150 ° C. and 1 minute to 5 minutes. This makes it possible to sufficiently remove the solvent while suppressing the curing of the thermosetting resin film.
 本実施形態において、熱硬化性樹脂をキャリア基材に形成する方法としては特に限定されないが、例えば、熱硬化性樹脂を溶剤などに溶解・分散させて樹脂ワニスを調製して、各種コーター装置を用いて樹脂ワニスをキャリア基材に塗工した後、これを乾燥する方法、スプレー装置を用いて樹脂ワニスをキャリア基材に噴霧塗工した後、これを乾燥する方法、などが挙げられる。これらの中でも、コンマコーター、ダイコーターなどの各種コーター装置を用いて、樹脂ワニスをキャリア基材に塗工した後、これを乾燥する方法が好ましい。これにより、ボイドがなく、均一な樹脂シートの厚みを有するキャリア基材付き樹脂シートを効率よく製造することができる。 In this embodiment, the method for forming the thermosetting resin on the carrier substrate is not particularly limited. For example, the resin varnish is prepared by dissolving and dispersing the thermosetting resin in a solvent or the like, and various coater apparatuses are used. Examples thereof include a method in which a resin varnish is applied to a carrier substrate and then dried, and a method in which the resin varnish is spray-coated on a carrier substrate using a spray device and then dried. Among these, the method of drying the resin varnish after applying the resin varnish to the carrier substrate using various coaters such as a comma coater and a die coater is preferable. Thereby, the resin sheet with a carrier base material which has no void and has a uniform resin sheet thickness can be efficiently produced.
 (溶剤)
 本実施形態において、ワニス状の熱硬化性樹脂組成物は、たとえば溶剤を含むことができる。
 上記溶剤としては、たとえばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドン等の有機溶剤から選択される一種または二種以上を含むことができる。
(solvent)
In this embodiment, the varnish-like thermosetting resin composition can contain a solvent, for example.
Examples of the solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, cyclohexane, heptane, cyclohexane, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, carbitol, anisole, And one or more selected from organic solvents such as N-methylpyrrolidone.
 熱硬化性樹脂組成物がワニス状である場合において、熱硬化性樹脂組成物の固形分含有量は、たとえば30重量%以上80重量%以下であることが好ましく、40重量%以上70重量%以下であることがより好ましい。これにより、作業性や成膜性に非常に優れた熱硬化性樹脂組成物が得られる。なお、ワニス状の熱硬化性樹脂組成物は、たとえば上述の各成分を、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶剤中に溶解、混合、撹拌することにより調製することができる。 When the thermosetting resin composition is varnished, the solid content of the thermosetting resin composition is preferably, for example, 30% by weight to 80% by weight, and preferably 40% by weight to 70% by weight. It is more preferable that Thereby, the thermosetting resin composition excellent in workability | operativity and film formability is obtained. In addition, the varnish-like thermosetting resin composition includes, for example, the above-described components, an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method. It can prepare by melt | dissolving, mixing, and stirring in a solvent using various mixers.
 なお、本実施形態に係る熱硬化性樹脂組成物は、たとえばガラス繊維基材等の繊維基材や紙基材を含まないものとすることができる。これにより、ソルダーレジスト膜を形成するためにとくに適した熱硬化性樹脂組成物を実現することができる。 In addition, the thermosetting resin composition according to the present embodiment may not include a fiber substrate such as a glass fiber substrate or a paper substrate. Thereby, it is possible to realize a thermosetting resin composition particularly suitable for forming a solder resist film.
[樹脂シート]
 樹脂シートは、上記熱硬化性樹脂組成物から得られたフィルムを含むことができる。本実施形態において、樹脂シートは、シート形状でもよく、巻き取り可能なロール形状でもよい。かかる樹脂シートを硬化することによりソルダーレジスト膜を得ることができる。また、上記熱硬化性樹脂組成物の塗布膜を硬化させることにより、ソルダーレジスト膜を得てもよい。
[Resin sheet]
The resin sheet can include a film obtained from the thermosetting resin composition. In this embodiment, the resin sheet may have a sheet shape or a roll shape that can be wound. A solder resist film can be obtained by curing the resin sheet. Moreover, you may obtain a soldering resist film by hardening the coating film of the said thermosetting resin composition.
 本実施形態において、上記熱硬化性樹脂組成物を200℃、1時間で熱処理して硬化物を得たときに、上記熱硬化性樹脂組成物の硬化物の25℃における貯蔵弾性率が、7GPa以上であることが好ましい。これにより、熱硬化性樹脂組成物を用いて得られる樹脂シートを備えるプリント配線板のたわみ抑制や強度向上、このプリント配線板を備える半導体パッケージの反り抑制等を図ることが可能となる。上記貯蔵弾性率は、10GPa以上であることがより好ましい。一方で、上記貯蔵弾性率の上限値は、とくに限定されないが、たとえば50GPa以下とすることができる。これにより、耐久性に優れるパッケージを製造可能なプリント配線板20をより確実に実現できる。 In this embodiment, when the thermosetting resin composition is heat-treated at 200 ° C. for 1 hour to obtain a cured product, the storage elastic modulus at 25 ° C. of the cured product of the thermosetting resin composition is 7 GPa. The above is preferable. As a result, it is possible to suppress deflection and improve the strength of a printed wiring board provided with a resin sheet obtained using the thermosetting resin composition, suppress warpage of a semiconductor package provided with this printed wiring board, and the like. The storage elastic modulus is more preferably 10 GPa or more. On the other hand, the upper limit value of the storage elastic modulus is not particularly limited, but may be, for example, 50 GPa or less. Thereby, the printed wiring board 20 which can manufacture the package excellent in durability can be implement | achieved more reliably.
 本実施形態において、上記熱硬化性樹脂組成物を200℃、1時間で熱処理して硬化物を得たときに、上記熱硬化性樹脂組成物の硬化物のガラス転移温度が、160℃以上であることが好ましい。これにより、熱硬化性樹脂組成物を用いて得られる樹脂シートの耐熱性および耐リフロー性の向上等を図ることが可能となる。上記ガラス転移温度は、200℃以上であることがより好ましい。一方で、上記ガラス転移温度の上限値は、とくに限定されないが、たとえば350℃以下とすることができる。 In this embodiment, when the thermosetting resin composition is heat-treated at 200 ° C. for 1 hour to obtain a cured product, the glass transition temperature of the cured product of the thermosetting resin composition is 160 ° C. or higher. Preferably there is. Thereby, it becomes possible to improve the heat resistance and reflow resistance of the resin sheet obtained using the thermosetting resin composition. The glass transition temperature is more preferably 200 ° C. or higher. On the other hand, the upper limit value of the glass transition temperature is not particularly limited, but can be, for example, 350 ° C. or lower.
 本実施形態において、上記貯蔵弾性率および上記ガラス転移温度は、たとえば、上記硬化物に対して、動的粘弾性測定装置を用いて周波数1Hz、昇温速度5℃/分の条件で動的粘弾性試験を行うことにより得られる測定結果から、算出することができる。動的粘弾性測定装置としては、とくに限定されないが、たとえばセイコーインスツルメンツ社製、DMS6100を用いることができる。 In the present embodiment, the storage elastic modulus and the glass transition temperature are determined based on the dynamic viscosity of the cured product, for example, using a dynamic viscoelasticity measuring device at a frequency of 1 Hz and a heating rate of 5 ° C./min. It can be calculated from a measurement result obtained by performing an elasticity test. Although it does not specifically limit as a dynamic viscoelasticity measuring apparatus, For example, the Seiko Instruments make and DMS6100 can be used.
 本実施形態において、上記熱硬化性樹脂を200℃、1時間で熱処理して硬化物を得たときに、上記熱硬化性樹脂組成物の硬化物の、ガラス転移温度未満における線膨張係数が、30ppm/℃以下であることが好ましい。これにより、熱硬化性樹脂組成物を用いて得られる樹脂シートを備える半導体パッケージの反り抑制等を図ることが可能となる。上記線膨張係数は、28ppm/℃以下であることがより好ましい。一方で、上記線膨張係数の下限値は、とくに限定されないが、たとえば3ppm/℃以上とすることができる。これにより、耐久性に優れるパッケージを製造できるプリント配線板20をより確実に実現できる。
 本実施形態においては、たとえば、上記硬化物に対して、TMA(熱分析装置)を用いて昇温速度10℃/分の条件で測定することにより得られる線膨張係数の、25~50℃における平均を算出し、これをガラス転移温度未満における上記線膨張係数とすることができる。
In this embodiment, when the thermosetting resin is heat treated at 200 ° C. for 1 hour to obtain a cured product, the linear expansion coefficient of the cured product of the thermosetting resin composition below the glass transition temperature is It is preferably 30 ppm / ° C. or less. Thereby, it becomes possible to suppress warpage of a semiconductor package including a resin sheet obtained using the thermosetting resin composition. The linear expansion coefficient is more preferably 28 ppm / ° C. or less. On the other hand, the lower limit value of the linear expansion coefficient is not particularly limited, but can be, for example, 3 ppm / ° C. or more. Thereby, the printed wiring board 20 which can manufacture the package excellent in durability can be implement | achieved more reliably.
In the present embodiment, for example, the linear expansion coefficient obtained by measuring the cured product using a TMA (thermal analyzer) at a temperature increase rate of 10 ° C./min at 25 to 50 ° C. An average can be calculated and used as the linear expansion coefficient below the glass transition temperature.
 なお、本実施形態では、たとえば熱硬化性樹脂組成物中に含まれる各成分の種類や配合量、熱硬化性樹脂組成物の調製方法等を適切に選択することにより、上記貯蔵弾性率、上記ガラス転移温度、および上記線膨張係数を制御することが可能である。 In the present embodiment, for example, by appropriately selecting the type and blending amount of each component contained in the thermosetting resin composition, the preparation method of the thermosetting resin composition, etc., the storage elastic modulus, the above It is possible to control the glass transition temperature and the linear expansion coefficient.
 また、本実施形態の樹脂シート(樹脂膜)をキャリア基材上に配置することにより、キャリア基材付樹脂シートを構成することができる。これにより、樹脂シートのハンドリング性を向上させることができる。 Further, by arranging the resin sheet (resin film) of this embodiment on a carrier substrate, a resin sheet with a carrier substrate can be configured. Thereby, the handleability of the resin sheet can be improved.
 本実施形態において、キャリア基材としては、例えば、高分子フィルムや金属箔などを用いることができる。当該高分子フィルムとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリカーボネート、シリコーンシート等の離型紙、フッ素系樹脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂シート等が挙げられる。当該金属箔としては、特に限定されないが、例えば、銅および\または銅系合金、アルミおよび\またはアルミ系合金、鉄および\または鉄系合金、銀および\または銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金などが挙げられる。これらの中でも、ポリエチレンテレフタレートで構成されるシートが安価および剥離強度の調節が簡便なため最も好ましい。これにより、上記樹脂シートから、適度な強度で剥離することが容易となる。
 上記キャリア基材の厚みは、特に限定されないが、例えば、10~100μmとしてもよく、10~70μmとしてもよい。これにより、樹脂シートを製造する際の取り扱い性が良好であり好ましい。
In the present embodiment, for example, a polymer film or a metal foil can be used as the carrier substrate. The polymer film is not particularly limited. For example, polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, release paper such as polycarbonate and silicone sheet, heat resistance such as fluorine resin and polyimide resin. A thermoplastic resin sheet having The metal foil is not particularly limited. For example, copper and / or a copper-based alloy, aluminum and / or an aluminum-based alloy, iron and / or an iron-based alloy, silver and / or a silver-based alloy, gold and a gold-based alloy, for example. Zinc and zinc-based alloys, nickel and nickel-based alloys, tin and tin-based alloys, and the like. Among these, a sheet made of polyethylene terephthalate is most preferable because it is inexpensive and easy to adjust the peel strength. Thereby, it becomes easy to peel from the said resin sheet with moderate intensity | strength.
The thickness of the carrier base material is not particularly limited, but may be, for example, 10 to 100 μm or 10 to 70 μm. Thereby, the handleability at the time of manufacturing a resin sheet is favorable and preferable.
 上記の樹脂シートは、単層でも多層でもよく、1種または2種以上の上記フィルムを含むことができる。当該樹脂シートが多層の場合、同種で構成されてもよく、異種で構成されてもよい。 The above resin sheet may be a single layer or multiple layers, and may contain one or more of the above films. When the said resin sheet is a multilayer, it may be comprised by the same kind and may be comprised by different types.
 本実施形態において、2層以上の樹脂シートを形成する方法は、特に限定されないが、例えば、熱硬化性樹脂組成物をキャリア基材に塗布して得られた、第1樹脂層と第2樹脂層とを貼り合わせ、その後乾燥させることにより、2層の樹脂シートが得られる。そのほかにも、熱硬化性樹脂組成物をキャリア基材に塗布し、乾燥させるとこで、第1樹脂シートを得る。この後、第1樹脂シート上に、熱硬化性樹脂組成物を塗布、乾燥さえることで、第2樹脂シートを第1樹脂シート上に形成する方法が挙げられる。また、2層同時にキャリア基材上に塗布、乾燥させることで、2層の樹脂シートを得る方法も使用できる。 In the present embodiment, the method of forming the resin sheet having two or more layers is not particularly limited. For example, the first resin layer and the second resin obtained by applying a thermosetting resin composition to a carrier substrate. A two-layer resin sheet is obtained by bonding the layers together and then drying them. In addition, a 1st resin sheet is obtained by apply | coating a thermosetting resin composition to a carrier base material, and making it dry. Then, the method of forming a 2nd resin sheet on a 1st resin sheet by apply | coating a thermosetting resin composition on a 1st resin sheet, and even drying is mentioned. Moreover, the method of obtaining the resin sheet of 2 layers can also be used by apply | coating and drying two layers on a carrier base material simultaneously.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 次に、本発明の実施例について説明する。なお、本発明は以下に記載する実施例に限定されない。 Next, examples of the present invention will be described. In addition, this invention is not limited to the Example described below.
(実施例1)
[1]熱硬化性樹脂組成物の調製
 エポキシ樹脂としてナフタレン変性クレゾールノボラック型エポキシ樹脂(DIC株式会社製、HP-5000)14.5質量%、シアネート樹脂としてフェノールノボラック型シアネートエステル樹脂(LONZA社製、PT-30)14.5質量%、フィラーとして球状シリカ粒子(株式会社アドマテックス製、SO-C4、平均粒径1.0μm、フェニルアミノシラン処理)70質量%、硬化促進剤としてテトラフェニルホスホニウム・テトラキス(4-メチルフェニル)ボレート(TPP-MK)0.5質量%、カップリング剤としてエポキシシラン(信越化学工業社製、KBM-403)0.5質量%を、メチルエチルケトンに溶解、分散させた後、高速撹拌装置を用いて1時間撹拌した。これにより、ワニス状の熱硬化性樹脂組成物を得た。
Example 1
[1] Preparation of thermosetting resin composition 14.5% by mass of a naphthalene-modified cresol novolac type epoxy resin (manufactured by DIC Corporation, HP-5000) as an epoxy resin, and a phenol novolac type cyanate ester resin (manufactured by LONZA) as a cyanate resin PT-30) 14.5% by mass, spherical silica particles (manufactured by Admatechs Co., Ltd., SO-C4, average particle size 1.0 μm, phenylaminosilane treatment) 70% by mass, tetraphenylphosphonium Tetrakis (4-methylphenyl) borate (TPP-MK) 0.5 mass% and epoxysilane (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 mass% as a coupling agent were dissolved and dispersed in methyl ethyl ketone. Then, it stirred for 1 hour using the high-speed stirring apparatus. Thereby, a varnish-like thermosetting resin composition was obtained.
[2]金属膜付き絶縁性樹脂膜の作製
 上記[1]で調整した樹脂ワニスを、キャリア基材であるPETフィルム上に塗布した。その後、PETフィルム上の樹脂ワニスを、140℃において2分間乾燥して、溶剤を除去し、樹脂シートの厚さが30μmのキャリア基材付き樹脂シート(絶縁性樹脂膜)を得た。
 次に、厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)と剥離層とキャリア箔とがこの順に積層されたピーラブル金属箔を準備した。このピーラブル金属箔を、銅箔が絶縁性樹脂膜と対向するようにして、キャリア基材付き樹脂シート上に配置した。その後、金属箔を樹脂シートに熱圧着させた後、剥離層およびキャリア箔を剥離して、キャリア基材上に、銅箔(金属膜)と絶縁性樹脂膜とからなる金属膜付き絶縁性樹脂膜を得た。なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは3.0μmであった。
[2] Production of Insulating Resin Film with Metal Film The resin varnish prepared in the above [1] was applied on a PET film as a carrier substrate. Thereafter, the resin varnish on the PET film was dried at 140 ° C. for 2 minutes to remove the solvent, and a resin sheet with a carrier base material (insulating resin film) having a resin sheet thickness of 30 μm was obtained.
Next, a peelable metal foil in which a copper foil having a thickness of 3 μm (manufactured by Mitsui Mining & Smelting Co., Ltd., MT18SD-H), a release layer, and a carrier foil were laminated in this order was prepared. This peelable metal foil was placed on a resin sheet with a carrier substrate so that the copper foil faced the insulating resin film. Thereafter, the metal foil is thermocompression bonded to the resin sheet, the release layer and the carrier foil are peeled off, and the insulating resin with a metal film comprising a copper foil (metal film) and an insulating resin film is formed on the carrier substrate. A membrane was obtained. The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 3.0 μm.
[3]構造体の作製
 コア基板の両面に銅箔が積層された銅張積層板(住友ベークライト株式会社製、LαZ4785GS-B)を準備した。この銅張積層板の一方の表面の銅箔をエッチングによりパターニングして、導電体パターンを形成するとともに、銅張積層板の他方の表面の銅箔をエッチングにより全て除去した。これにより、一方の表面に導電体パターンが設けられたコア基板を作製した。
 次に、上記[2]で作製した金属膜付き絶縁性樹脂膜の絶縁性樹脂膜を、コア基板の導電体パターンが設けられた面に対向させて、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させた後、180℃の乾燥装置で60分間乾燥した。その後、キャリア基材を除去することにより、コア基板、絶縁性樹脂膜、および金属膜がこの順番で積層された構造体を作製した。
[3] Fabrication of structure A copper-clad laminate (manufactured by Sumitomo Bakelite Co., Ltd., LαZ4785GS-B) in which copper foil was laminated on both surfaces of the core substrate was prepared. The copper foil on one surface of the copper clad laminate was patterned by etching to form a conductor pattern, and the copper foil on the other surface of the copper clad laminate was all removed by etching. This produced the core substrate by which the conductor pattern was provided in one surface.
Next, the insulating resin film of the insulating resin film with a metal film produced in the above [2] is opposed to the surface on which the conductor pattern of the core substrate is provided, and a temperature is measured using a vacuum pressure laminator device. After vacuum heating and pressure molding at 100 ° C. and a pressure of 1 MPa, drying was performed for 60 minutes with a drying apparatus at 180 ° C. Thereafter, by removing the carrier base material, a structure in which the core substrate, the insulating resin film, and the metal film were laminated in this order was produced.
[4]金属膜への開口部の形成
 次に、構造体の金属膜に対して、エッチング処理を行い、金属膜の所定の領域(コア基板の導電体パターンのランドに対応する領域)に開口部を形成した。
[4] Formation of Opening in Metal Film Next, etching is performed on the metal film of the structure to open a predetermined area of the metal film (area corresponding to the land of the conductor pattern on the core substrate). Part was formed.
[5]絶縁性樹脂膜への開口部の形成
 次に、開口部が形成された金属膜をマスクとして、絶縁性樹脂膜に対してレーザー加工法によりエッチング処理を行い、コア基板上のランドが露出するように、絶縁性樹脂膜に開口部を形成した。その後、構造体を220℃の乾燥装置で60分間加熱することにより、Bステージ状態の絶縁性樹脂膜を硬化させて、ソルダーレジスト膜を形成した。
 次に、構造体を60℃の膨潤液(アトテック社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテック社製、コンセントレート コンパクト CP)に5分浸漬後、中和することで、デスミア処理を行った。
[5] Formation of opening in insulating resin film Next, the insulating resin film is etched by a laser processing method using the metal film having the opening as a mask, and the land on the core substrate is formed. An opening was formed in the insulating resin film so as to be exposed. Thereafter, the structure was heated with a drying apparatus at 220 ° C. for 60 minutes to cure the B-stage insulating resin film to form a solder resist film.
Next, the structure was immersed in a swelling solution at 60 ° C. (Atotech Co., Swelling Dip Securigant P) for 5 minutes, and further added to an aqueous potassium permanganate solution (Atotech Co., Concentrate Compact CP) at 80 ° C. After the minute immersion, the desmear treatment was performed by neutralization.
[6]金属膜の除去
 次に、構造体の金属膜に対して、フラッシュエッチングを行い、ソルダーレジスト膜の表面上の金属膜を除去した。
[6] Removal of Metal Film Next, flash etching was performed on the metal film of the structure to remove the metal film on the surface of the solder resist film.
[7]めっき処理
 次に、ソルダーレジスト膜の開口部に露出した導電体パターン(ランド)上にめっき層を形成した。具体的には、無電解ニッケルめっき層3μmを形成し、さらにその上に無電解金めっき層0.1μmを形成した。これにより、プリント配線板を得た。
[7] Plating treatment Next, a plating layer was formed on the conductor pattern (land) exposed in the opening of the solder resist film. Specifically, an electroless nickel plating layer of 3 μm was formed, and an electroless gold plating layer of 0.1 μm was further formed thereon. Thereby, a printed wiring board was obtained.
(実施例2)
 厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)の代わりに、厚さ3μmの銅箔(三井金属株式会社製、MT18Ex)を使用した以外は、実施例1と同様にして配線基板を得た。
 なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは2.0μmであった。
(Example 2)
Example 3 was used except that a 3 μm thick copper foil (Mitsui Metals Co., Ltd., MT18Ex) was used instead of a 3 μm thick copper foil (Mitsui Metals Co., Ltd., MT18SD-H). A wiring board was obtained.
The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 2.0 μm.
(実施例3)
 厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)の代わりに、厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H-T3B)を使用した以外は、実施例1と同様にして配線基板を得た。
 なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは1.8μmであった。
(Example 3)
Example except that 3 μm thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H-T3B) was used instead of 3 μm thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H) In the same manner as in No. 1, a wiring board was obtained.
The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.8 μm.
(実施例4)
 厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)の代わりに、厚さ3μmの銅箔(古川電気工業株式会社製、F-HP)を使用した以外は、実施例1と同様にして配線基板を得た。
 なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは1.5μmであった。
Example 4
Example 1 was used except that a 3 μm thick copper foil (Furukawa Electric Co., Ltd., F-HP) was used instead of the 3 μm thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H). A wiring board was obtained in the same manner.
The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.5 μm.
(実施例5)
 厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)の代わりに、厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18FL)を使用した以外は、実施例1と同様にして配線基板を得た。
 なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは1.3μmであった。
(Example 5)
Example 3 was used except that a 3 μm thick copper foil (Mitsui Metal Mining Co., Ltd., MT18FL) was used instead of a 3 μm thick copper foil (Mitsui Metal Mining Co., Ltd., MT18SD-H). A wiring board was obtained.
The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 1.3 μm.
(実施例6)
 厚さ3μmの銅箔(三井金属鉱業株式会社製、MT18SD-H)の代わりに、厚さ18μmの銅箔(JX金属株式会社製、HS-GHY5)を使用した以外は、実施例1と同様にして配線基板を得た。
 なお、上記銅箔の絶縁性樹脂膜と対向する面の表面粗さを、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定した。その結果、10点平均粗さRzは0.3μmであった。
(Example 6)
Example 1 except that a 18 μm thick copper foil (HS-GHY5, manufactured by JX Metals, Inc.) was used instead of a 3 μm thick copper foil (Mitsui Metals, Ltd., MT18SD-H). Thus, a wiring board was obtained.
The surface roughness of the surface of the copper foil facing the insulating resin film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). As a result, the 10-point average roughness Rz was 0.3 μm.
(比較例)
 金属膜付き絶縁性樹脂膜の代わりに、上記実施例1と同様にして作製したキャリア基材付き樹脂シートを準備した。
 その後、実施例1の上記[3]と同様にして、構造体を作製した。その後、絶縁性樹脂膜に対して直接レーザー照射によるエッチングを行い、コア基板上のランドが露出するように、絶縁性樹脂膜に開口部を形成した。その後、構造体を220℃の乾燥装置で60分間加熱することにより、Bステージ状態の絶縁性樹脂膜を硬化させて、ソルダーレジスト膜を形成した。
 その後、実施例1の上記[7]と同様にして、ソルダーレジスト膜の開口部に露出した導電体パターン(ランド)上にめっき層を形成して、プリント配線板を得た。
(Comparative example)
Instead of the insulating resin film with a metal film, a resin sheet with a carrier substrate prepared in the same manner as in Example 1 was prepared.
Thereafter, a structure was produced in the same manner as [3] in Example 1. Thereafter, the insulating resin film was directly etched by laser irradiation to form openings in the insulating resin film so that the lands on the core substrate were exposed. Thereafter, the structure was heated with a drying apparatus at 220 ° C. for 60 minutes to cure the B-stage insulating resin film to form a solder resist film.
Thereafter, in the same manner as in [7] of Example 1, a plating layer was formed on the conductor pattern (land) exposed at the opening of the solder resist film to obtain a printed wiring board.
(ソルダーレジスト膜の表面平滑性評価)
 各実施例および比較例のプリント配線板について、ソルダーレジスト膜の表面粗さ(10点平均粗さRz)を、レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定し、以下の基準に従って評価した。その結果を表1に示す。
A:10点平均粗さRzが、0.2μm以上1.8μm以下。
B:10点平均粗さRzが、1.8μmより大きく、かつ、2.0μm以下。
C:10点平均粗さRzが、2.0μmより大きく、かつ、3.0μm以下。
D:10点平均粗さRzが、3.0μmより大きい。
(Evaluation of surface smoothness of solder resist film)
For the printed wiring boards of the examples and comparative examples, the surface roughness (10-point average roughness Rz) of the solder resist film was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100). Evaluated according to. The results are shown in Table 1.
A: 10-point average roughness Rz is 0.2 μm or more and 1.8 μm or less.
B: The 10-point average roughness Rz is larger than 1.8 μm and 2.0 μm or less.
C: The 10-point average roughness Rz is larger than 2.0 μm and not larger than 3.0 μm.
D: The 10-point average roughness Rz is larger than 3.0 μm.
(ソルダーレジスト膜の開口部周辺の状態観察)
 各実施例および比較例の配線基板について、レーザー照射により形成された開口部周辺をレーザー顕微鏡で観察し、以下の基準に従って評価した。その結果を表1に示す。
A:開口部周辺のソルダーレジスト膜にレーザー焼けが全く観察されなかった。
B:開口部周辺のソルダーレジスト膜にレーザー焼けが観察された。
(State observation around the opening of the solder resist film)
About the wiring board of each Example and a comparative example, the opening part periphery formed by laser irradiation was observed with the laser microscope, and it evaluated according to the following references | standards. The results are shown in Table 1.
A: No laser burn was observed in the solder resist film around the opening.
B: Laser burn was observed in the solder resist film around the opening.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、各実施例のプリント配線板では、開口部周辺のソルダーレジスト膜にレーザー焼けが全くなかった。一方、比較例のプリント配線板では、開口部周辺のソルダーレジスト膜にレーザー焼けが観察された。これらの評価結果から、各実施例のプリント配線板では、直接レーザー照射により開口部を形成する比較例に比べて、微細かつ精密な開口部をソルダーレジスト膜に形成することができることが分かった。 As shown in Table 1, in the printed wiring board of each example, there was no laser burn on the solder resist film around the opening. On the other hand, in the printed wiring board of the comparative example, laser burn was observed in the solder resist film around the opening. From these evaluation results, it was found that the printed wiring board of each example can form a fine and precise opening in the solder resist film as compared with the comparative example in which the opening is formed by direct laser irradiation.
 さらに、実施例2~6では、ソルダーレジスト膜の表面平滑性が特に優れていた。実施例2~6のプリント配線板を超音波顕微鏡によって検査した場合には、各プリント配線板のソルダーレジスト膜に気泡が付着しづらいため、剥離やクラックの検査の精度が向上することが分かった。 Furthermore, in Examples 2 to 6, the surface smoothness of the solder resist film was particularly excellent. When the printed wiring boards of Examples 2 to 6 were inspected with an ultrasonic microscope, it was found that bubbles were difficult to adhere to the solder resist film of each printed wiring board, so that the accuracy of inspection for peeling and cracking was improved. .
 本発明のプリント配線板の製造方法によれば、熱硬化性樹脂で形成されるレジスト膜の代わりに、金属膜をマスクとして利用することにより、ソルダーレジスト層に微細かつ精密な開口部が形成されたプリント配線板を提供することができる。かかるプリント配線板を用いることにより、半導体装置の生産性を向上させることができる。したがって、本発明は、産業上の利用可能性を有する。 According to the method for manufacturing a printed wiring board of the present invention, a fine and precise opening is formed in a solder resist layer by using a metal film as a mask instead of a resist film formed of a thermosetting resin. A printed wiring board can be provided. By using such a printed wiring board, the productivity of the semiconductor device can be improved. Therefore, the present invention has industrial applicability.

Claims (13)

  1.  回路が設けられた回路面を備える回路基板、ソルダーレジスト膜、および金属膜がこの順番で積層された構造体を準備する工程と、
     前記金属膜を選択的に除去することにより、前記金属膜に第1の開口部を形成する工程と、
     前記第1の開口部が形成された領域の前記ソルダーレジスト膜を除去することにより、前記回路の一部を露出させる第2の開口部を前記ソルダーレジスト層に形成する工程と、
     前記金属膜を除去して、前記ソルダーレジスト膜の表面を露出させる工程と、
     を含む、プリント配線板の製造方法。
    Preparing a structure in which a circuit board having a circuit surface provided with a circuit, a solder resist film, and a metal film are laminated in this order;
    Forming a first opening in the metal film by selectively removing the metal film;
    Removing the solder resist film in the region where the first opening is formed to form a second opening in the solder resist layer to expose a part of the circuit;
    Removing the metal film to expose the surface of the solder resist film;
    A method for producing a printed wiring board, comprising:
  2.  前記金属膜は、表面粗さRzが0.1μm以上3.0μm以下の平滑面を有しており、
     前記ソルダーレジスト膜の一面が前記金属膜の前記平滑面に対向配置されており、前記ソルダーレジスト膜の他面が前記回路基板の前記回路面に対向配置されている請求項1に記載の配線基板の製造方法。
    The metal film has a smooth surface with a surface roughness Rz of 0.1 μm to 3.0 μm,
    2. The wiring board according to claim 1, wherein one surface of the solder resist film is disposed to face the smooth surface of the metal film, and the other surface of the solder resist film is disposed to face the circuit surface of the circuit board. Manufacturing method.
  3.  前記構造体を準備する工程は、
     前記ソルダーレジスト膜の前記一面に前記金属膜の前記平滑面が対向するように、前記金属膜が配置された前記ソルダーレジスト膜を準備する工程と、
     前記ソルダーレジスト膜の前記他面と前記回路基板の前記回路面とを対向させ、貼り合わせることにより前記構造体を準備する工程と、を含む、請求項2に記載のプリント配線板の製造方法。
    The step of preparing the structure includes
    Preparing the solder resist film in which the metal film is disposed so that the smooth surface of the metal film faces the one surface of the solder resist film;
    The manufacturing method of the printed wiring board of Claim 2 including the process of preparing the said structure by making the said other surface of the said soldering resist film and the said circuit surface of the said circuit board oppose and bonding together.
  4.  前記構造体を準備する工程は、
     前記ソルダーレジスト膜の前記一面にキャリア基材の主面が対向するように、前記キャリア基材が配置された前記ソルダーレジスト膜を準備する工程と、
     前記ソルダーレジスト膜の前記他面と前記回路基板の前記回路面とを対向させ、貼り合わせる工程と、
     前記キャリア基材を前記ソルダーレジスト膜から剥離し、前記ソルダーレジスト膜の前記一面上に、前記平滑面を有する前記金属膜を形成する工程と、を含む、請求項2に記載のプリント配線板の製造方法。
    The step of preparing the structure includes
    Preparing the solder resist film in which the carrier base material is arranged so that the main surface of the carrier base material faces the one surface of the solder resist film;
    The other surface of the solder resist film and the circuit surface of the circuit board are opposed to each other and bonded together;
    The carrier substrate is peeled from the solder resist film, and the metal film having the smooth surface is formed on the one surface of the solder resist film. Production method.
  5.  前記ソルダーレジスト膜の厚さが、10μm以上50μm以下である、請求項1ないし4のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein a thickness of the solder resist film is 10 µm or more and 50 µm or less.
  6.  前記構造体を準備する工程において、前記ソルダーレジスト膜が、Bステージ状態であり、
     前記第2の開口部を形成した後、前記ソルダーレジスト膜を硬化する工程を含む、請求項1ないし5のいずれか1項に記載のプリント配線板の製造方法。
    In the step of preparing the structure, the solder resist film is in a B stage state,
    The method for manufacturing a printed wiring board according to claim 1, further comprising a step of curing the solder resist film after forming the second opening.
  7.  前記金属膜の厚さが、1μm以上30μm以下である、請求項1ないし6のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 6, wherein a thickness of the metal film is 1 µm or more and 30 µm or less.
  8.  前記金属膜が、無粗化銅箔を含む、請求項2ないし7のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 2 to 7, wherein the metal film includes a non-roughened copper foil.
  9.  前記ソルダーレジスト膜が、シート状である、請求項1ないし8のいずれか1項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 1 to 8, wherein the solder resist film is in a sheet form.
  10.  前記ソルダーレジスト膜が、ソルダーレジスト用樹脂組成物を用いて形成されており、
     前記ソルダーレジスト用樹脂組成物が、熱硬化性樹脂と無機充填材とを含む、請求項1ないし9のいずれか1項に記載のプリント配線板の製造方法。
    The solder resist film is formed using a resin composition for solder resist,
    The method for manufacturing a printed wiring board according to any one of claims 1 to 9, wherein the solder resist resin composition includes a thermosetting resin and an inorganic filler.
  11.  前記熱硬化性樹脂が、ナフタレン骨格を有するエポキシ樹脂を含む、請求項10に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 10, wherein the thermosetting resin includes an epoxy resin having a naphthalene skeleton.
  12.  前記ソルダーレジスト用樹脂組成物が、着色剤を含む、請求項10または11に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 10 or 11, wherein the solder resist resin composition contains a colorant.
  13.  請求項1ないし12のいずれか1項に記載のプリント配線板の製造方法で得られたプリント配線板を準備する工程と、
     前記プリント配線板上に半導体素子を実装する工程と、を含む、半導体装置の製造方法。
    A step of preparing a printed wiring board obtained by the method for manufacturing a printed wiring board according to any one of claims 1 to 12,
    Mounting a semiconductor element on the printed wiring board.
PCT/JP2016/075059 2015-08-31 2016-08-26 Method for manufacturing printed wiring board, and method for manufacturing semiconductor device WO2017038713A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017537861A JPWO2017038713A1 (en) 2015-08-31 2016-08-26 Printed wiring board manufacturing method and semiconductor device manufacturing method
KR1020187001748A KR102582537B1 (en) 2015-08-31 2016-08-26 Manufacturing method of printed wiring board, manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170582 2015-08-31
JP2015170582 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038713A1 true WO2017038713A1 (en) 2017-03-09

Family

ID=58188914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075059 WO2017038713A1 (en) 2015-08-31 2016-08-26 Method for manufacturing printed wiring board, and method for manufacturing semiconductor device

Country Status (4)

Country Link
JP (1) JPWO2017038713A1 (en)
KR (1) KR102582537B1 (en)
TW (1) TW201735751A (en)
WO (1) WO2017038713A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033205A (en) * 2017-08-09 2019-02-28 住友ベークライト株式会社 Wiring board manufacturing method and semiconductor device manufacturing method
JP2019179844A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Resin sheet for forming solder resist, circuit board, and semiconductor package
KR20190120771A (en) 2017-04-06 2019-10-24 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method for resin compositions
KR20210068134A (en) 2018-10-24 2021-06-08 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
KR20210097219A (en) 2019-01-28 2021-08-06 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
CN113787241A (en) * 2021-08-25 2021-12-14 北京无线电测量研究所 Welding tool for microstrip device and welding method based on welding tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742297B (en) * 2018-07-05 2021-10-11 同泰電子科技股份有限公司 Circuit board structure having gap filling layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087960A (en) * 1996-09-20 1998-04-07 Kanegafuchi Chem Ind Co Ltd Resin composition for solder resist
JP2004221135A (en) * 2003-01-09 2004-08-05 Ibiden Co Ltd Multilayer printed circuit board
US20120138337A1 (en) * 2010-12-06 2012-06-07 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101244A (en) 2001-09-27 2003-04-04 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing the same
JP4345554B2 (en) * 2004-04-12 2009-10-14 日立化成工業株式会社 Printed wiring board having an auxiliary adhesion layer between insulating layers and method for manufacturing the same
KR20130090115A (en) * 2012-02-03 2013-08-13 삼성테크윈 주식회사 Method for forming solder resist and print circuit board with the same solder resist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087960A (en) * 1996-09-20 1998-04-07 Kanegafuchi Chem Ind Co Ltd Resin composition for solder resist
JP2004221135A (en) * 2003-01-09 2004-08-05 Ibiden Co Ltd Multilayer printed circuit board
US20120138337A1 (en) * 2010-12-06 2012-06-07 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120771A (en) 2017-04-06 2019-10-24 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method for resin compositions
JP2019033205A (en) * 2017-08-09 2019-02-28 住友ベークライト株式会社 Wiring board manufacturing method and semiconductor device manufacturing method
JP2019179844A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Resin sheet for forming solder resist, circuit board, and semiconductor package
JP7225553B2 (en) 2018-03-30 2023-02-21 住友ベークライト株式会社 Resin sheet for forming solder resist
KR20210068134A (en) 2018-10-24 2021-06-08 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
KR20210097219A (en) 2019-01-28 2021-08-06 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
CN113787241A (en) * 2021-08-25 2021-12-14 北京无线电测量研究所 Welding tool for microstrip device and welding method based on welding tool
CN113787241B (en) * 2021-08-25 2023-06-20 北京无线电测量研究所 Welding tool for microstrip device and welding method based on welding tool

Also Published As

Publication number Publication date
TW201735751A (en) 2017-10-01
KR102582537B1 (en) 2023-09-26
KR20180048576A (en) 2018-05-10
JPWO2017038713A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017038713A1 (en) Method for manufacturing printed wiring board, and method for manufacturing semiconductor device
JP7258453B2 (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
TWI494337B (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminated base material for printed wiring board, printed wiring board and semiconductor device
JP7119290B2 (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
TWI405523B (en) Laminated article, method for making substrate board, substrate board and semiconductor device
JP5206600B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2016066789A (en) Wiring board manufacturing method and semiconductor package manufacturing method
WO2018088345A1 (en) Resin film with metal foil, structured body, method for producing wiring board, and method for producing semiconductor device
JP6610069B2 (en) Resin composition for solder resist, resin film with carrier, wiring board, electronic device, and method of manufacturing electronic device
JP7225553B2 (en) Resin sheet for forming solder resist
JP2020132646A (en) Resin composition, resin film with carrier using the same, prepreg, laminated plate, printed wiring board, and semiconductor device
JP6107992B1 (en) Resin sheet
JP6409390B2 (en) Wiring board, semiconductor package, electronic device, manufacturing method of wiring board, and manufacturing method of semiconductor package
JP2019091737A (en) Thermosetting resin composition, circuit board and circuit board manufacturing method
JP7058467B2 (en) Resin sheet and circuit board
JP7462380B2 (en) Solder resist resin composition, resin sheet, packaging body and circuit board
JP2018174250A (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
JP7240085B2 (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
JP2018172552A (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device
JP2017048392A (en) Resin sheet and electronic device
JP6413437B2 (en) Wiring board manufacturing method and semiconductor package manufacturing method
JP2017212400A (en) Resin sheet and circuit board
JP2021073328A (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device
JP2019033205A (en) Wiring board manufacturing method and semiconductor device manufacturing method
JP2019033206A (en) Wiring board manufacturing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537861

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841745

Country of ref document: EP

Kind code of ref document: A1