WO2015147561A1 - Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride - Google Patents

Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride Download PDF

Info

Publication number
WO2015147561A1
WO2015147561A1 PCT/KR2015/002951 KR2015002951W WO2015147561A1 WO 2015147561 A1 WO2015147561 A1 WO 2015147561A1 KR 2015002951 W KR2015002951 W KR 2015002951W WO 2015147561 A1 WO2015147561 A1 WO 2015147561A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
composite material
fiber
conductor pattern
urea
Prior art date
Application number
PCT/KR2015/002951
Other languages
French (fr)
Korean (ko)
Inventor
유명재
임호선
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140035536A external-priority patent/KR101595295B1/en
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2015147561A1 publication Critical patent/WO2015147561A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0625Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a composite material that can implement a conductor pattern on a three-dimensional part using electromagnetic waves, in particular, a laser.
  • a composite material capable of forming a three-dimensional conductor pattern by a laser and a composite material It is about a method.
  • the method of forming a conductor pattern using the double injection method is not only difficult to manufacture a mold in producing a complicated part, but also has a great variation between the manufactured parts.
  • the thickness of the manufactured part should be 1 mm or more, which is slim.
  • the production of one type of part is difficult.
  • a laser direct structuring (LSD) method of forming a conductor pattern by applying a laser treatment and plating process to a material is used, but it is included in a material to form a pattern by laser.
  • the seed forming agent to be deteriorated in the formability of the finally produced part.
  • the composite material and the composite material that is easy to generate a conductor pattern by coating an inorganic material that is activated during laser irradiation to form a metal layer in the plating process on a fiber type material It aims at providing the manufacturing method.
  • a composite material having an easy conductor pattern and a method of manufacturing the composite material may be heated by heating a mixture including a fiber-type material and a liquid-form Cu 3 N composition, except for the fiber-type material. Dissolving the same, cooling and degassing the mixture, heat treating the degassed mixture, and washing and drying the heat treated mixture.
  • a composite material and a method of manufacturing the composite material which are easily formed with a conductor pattern, may be formed by injection molding the washed and dried mixture, and patterning the laser on the surface of the injection molded mixture. Plating the patterned mixture further.
  • seed produced in a composite material capable of forming a three-dimensional conductor pattern by laser produced by dissolving copper acetate in urea and 1-nonanol It provides a copper nitride material.
  • copper acetate By obtaining the copper acetate by reacting copper hydroxide (Copper Hydroxide) or copper carbonate (Copper Carbonate) with acetic acid, it is possible to provide copper acetate at a lower cost.
  • copper hydroxide Copper Hydroxide
  • copper carbonate Copper Carbonate
  • the ratio of the copper acetate and the urea may be 1: 1 to 1: 100.
  • dissolving copper acetate in urea and 1-octanol (1-Octanol); And when the copper acetate is dissolved provides a method for synthesizing the copper nitride of the seed material in a composite material capable of forming a three-dimensional conductor pattern by a laser comprising a step of degassing and heat treatment in a nitrogen atmosphere.
  • the step of heating dodecanol (Dodecanol); Mixing copper acetate and urea with the heated dodecanol; Performing nitrogen gas bubbling while stirring the mixed solution; And it provides a method for synthesizing a copper nitride as a seed material in a composite material capable of forming a three-dimensional conductor pattern by a laser including a step of performing a heat treatment stepwise at a temperature within 250 degrees and maintaining a predetermined time.
  • an inorganic material particularly Cu 3 N (copper nitride) is coated on a fiber-type material, thereby providing a composite material which is easy to form a conductor pattern through a laser treatment and a plating process.
  • the composite material according to the present invention provides the advantage that the conductor pattern can be formed even in a slim or three-dimensional complex form parts.
  • the process pattern is reduced by the first injection process, thereby forming the conductor pattern, thereby reducing the manufacturing cost of the part.
  • FIG. 1 is a flowchart illustrating a process of a method of manufacturing a composite material having easy conductor pattern formation according to an embodiment of the present invention.
  • 3 and 4 is a view showing a method for forming a conductor pattern on the composite material according to an embodiment of the present invention and the components manufactured according to the method.
  • the present invention includes a fiber type material and a material coated on the fiber type material, specifically, glass fiber, carbon fiber, cellulose fiber, kenaf On a composite material including a fiber type material such as fiber, graphite fiber and carbon nanotube, and a Cu 3 N material coated on the fiber type material and activated during laser irradiation to form a metal layer in a plating process. It is about.
  • the fiber-type material may be used after being treated with a surface treatment agent such as a focusing agent, a coupling agent, and a smoothing agent, and in particular, when the fiber material surface-treated with the coupling agent is used, an interface between the fiber-type material and the Cu3N material It is possible to coat more uniform and dense Cu3N material on the fiber type material by increasing the bonding force.
  • a surface treatment agent such as a focusing agent, a coupling agent, and a smoothing agent
  • Coupling agents include silane coupling agents (e.g., shinet su, momentive, dow corning), polymer couplings (e.g. polycarboxylic, polyacrylic acid), polymerizable coupling agents (e.g. triazinethiosulfate) and alkoxythio Sulfuric acid (alkoxythiosulfate) coupling agents and the like may be used.
  • silane coupling agents e.g., shinet su, momentive, dow corning
  • polymer couplings e.g. polycarboxylic, polyacrylic acid
  • polymerizable coupling agents e.g. triazinethiosulfate
  • alkoxythio Sulfuric acid alkoxythiosulfate
  • fiber-type materials surface-treated in various ways provides the advantages of minimizing damage to the fiber-type material itself, as well as improving adhesion, mechanical properties, and chemical properties.
  • the conductor pattern can be formed on the composite material in a simple process as compared with the conventional method of forming the conductor pattern.
  • the dissolved mixture may be cooled using liquid nitrogen to form a solid state, and then gaseous nitrogen may be used to remove unnecessary residual gas.
  • the degassing process may be repeated one or more times to increase the removal rate of residual gas.
  • the temperature of the mixture is gradually heat-treated to the second temperature range (S130).
  • Cu 3 N is a glass fiber surface in the form of a cube of about 25nm in size It can be seen that it is coated.
  • FIG. 3 is a flowchart illustrating a method of forming a conductor pattern on a composite material according to an embodiment of the present invention
  • FIG. 4 is a view illustrating a part manufactured according to the method of forming a conductor pattern on a composite material according to an embodiment of the present invention. to be.
  • the method of forming a conductor pattern on the composite material first, to produce a composite material by coating Cu 3 N on the fiber-type material in the manner described above (S310) .
  • Injection molding into a shape to manufacture the manufactured composite material S320.
  • Patterning by irradiating a laser in the form of a pattern to be formed on the injection-molded composite material S330.
  • the patterned composite is first plated by an electroless plating method (S340).
  • a more uniform metal layer may be formed, but in order to implement a more uniform metal layer, it is preferable to perform a second electroplating process after the electroless process (S350).
  • the composite material is manufactured by coating a Cu 3 N in the material of fiber type Cu 3 N is activated, when the laser irradiation by the laser absorbent role to form a pattern.
  • Figure 4a shows an example of forming a rectangular pattern using a laser on the surface of the part produced by injection molding.
  • Such a composite material is a thermoplastic resin
  • various resins capable of injection molding can be used.
  • PE, ABS, PBT, PET, LCP, PPA, PA6 or composite resins thereof may be used.
  • the activated pattern can be metallized via electrolytic plating or electroless plating or both.
  • 4B illustrates an example in which a metal layer is formed by electroless plating the component of FIG. 4A.
  • the composite material according to the embodiment of the present invention enables the conductor pattern to be easily formed by a simple process compared to the conventional conductor pattern forming method by coating Cu 3 N on a fiber type material.
  • the present invention provides a technique for inexpensively synthesizing nitride, in particular Cu 3 N material, the Cu 3 N inorganic filler is a cubic structure of space group Pm3m.
  • the present invention provides a method for synthesizing copper nitride using a cheap material unlike the above and in the composite material capable of forming a three-dimensional conductor pattern by a laser according to an embodiment of the present invention in FIG. Indicate the process.
  • copper acetate (Copper (2) acetate monohydrate) is dissolved in urea (Urea) and 1-nonanol (1-Nonaol) (S410), and degassing in a nitrogen atmosphere (S420), Heat treatment is performed in a temperature range within 250 degrees (S430) to synthesize a copper nitride (Cu 3 N) powder (S440).
  • copper acetate (Copper (2) hydroxide) or copper carbonate (Copper (2) carbonate) in acetic acid (Acetic acid) )
  • Copper acetate (Copper (2) hydroxide) or copper carbonate (Copper (2) carbonate) in acetic acid (Acetic acid)
  • acetic acid (Acetic acid)
  • it may be synthesized using an electrolysis process in water containing calcium acetate from a Cu electrode to provide a higher purity copper (2) acetate.
  • the copper acetate (Copper (2) acetate) thus provided is cheaper and more pure than conventional copper compounds.
  • dodecanol molecular weight 186.33
  • 1-octanol 1-Octanol, molecular weight 130.23
  • 1-nonanol as a solvent in which copper acetate is dissolved to provide a cheaper synthesis method
  • -Hexadecanol 1-Hexadecanol, molecular weight 242.44
  • the process of synthesizing copper nitride using dodecanol as a solvent heats the dodecanol and mixes copper acetate and urea with the heated dodecanol. Nitrogen gas bubbling is carried out while stirring the mixed solution, and heat treatment is performed stepwise at a temperature within 250 degrees and maintained for a certain time. The product can then be washed in an organic solvent and dried to obtain a copper nitride powder.
  • the present invention can provide even more inexpensive synthesis technology by utilizing urea as providing nitrogen which facilitates the synthesis into copper nitride in synthesis.
  • the ratio of copper acetate (Copper (2) acetate) and urea (Urea) synthesized in the present invention can be limited to 1 to 1 to 100.
  • the following shows an example of synthesizing a copper nitride material according to the present invention.
  • the present invention by inexpensively synthesizing copper nitride, which is a seed material, in a composite material capable of forming a three-dimensional conductor pattern by a laser, the overall price of the composite material can be lowered, thereby enabling the formation of a three-dimensional conductor pattern by a laser. It is possible to provide a material that can replace the conventional composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides a composite material with which a conductor pattern can easily be formed and a method for manufacturing the composite material. A composite material according to the present invention comprises a fibre material that can be fabricated as three-dimensional components and a Cu3N material that is coated onto the fibre material, and is activated when irradiated by a laser and forms a metal layer in a plating process. When the composite material according to the present invention is used, a conductor pattern can be more easily formed using a simpler process compared to existing conductor pattern formation methods.

Description

전도체 패턴의 형성이 용이한 복합소재와 그 복합소재를 제조하는 방법 및 상기 복합소재에서 시드 소재인 구리질화물 및 그 구리질화물을 합성하는 방법A method for preparing a composite material and a composite material of which a conductor pattern is easily formed, and a method for synthesizing a copper nitride and a copper nitride thereof as a seed material in the composite material
본 발명은 전자기파 특히 레이저를 활용하여 3차원 형상의 부품에 전도체 패턴을 구현할 수 있는 복합 소재에 관한 것으로서, 구체적으로는, 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재와 그 복합 소재를 합성하는 방법에 관한 것이다.The present invention relates to a composite material that can implement a conductor pattern on a three-dimensional part using electromagnetic waves, in particular, a laser. Specifically, a composite material capable of forming a three-dimensional conductor pattern by a laser and a composite material It is about a method.
종래의 3차원 형태의 부품에 전도체 패턴을 형성하는 방법은 이종 또는 이색의 소재를 금형 내에서 순차적으로 사출성형하여 부품을 얻고 그 위에 전도체 패턴을 형성하는 방법으로서, 구체적으로는, 도금이 안되는 소재를 1차 사출 후 도금이 가능한 소재를 2차로 사출하여 그 위에 전도체 패턴을 형성하는 방법이다.The conventional method of forming a conductor pattern on a three-dimensional part is a method of obtaining a part by sequentially injection molding different or different materials in a mold, and forming a conductor pattern thereon, specifically, a material that is not plated. After the first injection is a method of forming a conductor pattern on the second injection of a material capable of plating.
그러나 이러한 이중사출방법을 이용한 전도체 패턴 형성방법은 복잡한 형태의 부품을 제작함에 있어서 금형의 제작이 어려울 뿐 아니라 제작된 부품 간의 편차가 심하며, 종래 기술에 의하면 제조되는 부품의 두께가 1mm 이상이어야 하므로 슬림한 형태의 부품제작이 어려운 문제점이 있다. 특히, 제작된 부품에 복잡한 형태의 전도체 패턴을 형성하기 어려운 문제점이 있다.However, the method of forming a conductor pattern using the double injection method is not only difficult to manufacture a mold in producing a complicated part, but also has a great variation between the manufactured parts. According to the prior art, the thickness of the manufactured part should be 1 mm or more, which is slim. There is a problem that the production of one type of part is difficult. In particular, there is a problem in that it is difficult to form a conductor pattern of a complicated shape on the manufactured part.
근래에는 이와 같은 문제점을 해결하기 위하여 소재에 레이저 처리 및 도금 처리 과정을 가하여 전도체 패턴을 구성하는 레이저 직접 구조화(LSD, Laser Direct Structuring) 방법을 이용하지만, 레이저에 의해 패턴을 형성시키기 위해 소재에 포함되는 시드형성제가 최종적으로 제작되는 부품의 성형성을 떨어트리는 문제점이 있다.Recently, in order to solve such a problem, a laser direct structuring (LSD) method of forming a conductor pattern by applying a laser treatment and plating process to a material is used, but it is included in a material to form a pattern by laser. There is a problem in that the seed forming agent to be deteriorated in the formability of the finally produced part.
더불어, 레이저 직접 구조화를 이용한 부품 제작 과정에서는 베이스 소재에 레이저를 바로 조사하기 때문에 베이스 소재의 특성에 따라 패턴이 번지거나 도금 공정 후에 전도체 패턴이 박리되는 현상이 발생하는 문제점이 있다.In addition, in the manufacturing process using the laser direct structuring, since the laser is directly irradiated to the base material, there is a problem that the pattern spreads or the conductor pattern is peeled off after the plating process according to the characteristics of the base material.
종래의 3차원 형태의 부품에 전도체 패턴을 구현하는 복합 소재에서 핵심 소재인 시드(Seed) 소재로는 미국 공개특허공보 US 2004/0241422 A1(발명의 명칭: Conductor track structures and method for production thereof)에 개시된 Ferro 사의 spinel PK3095가 있으며 이 제품은 결정 구조가 Spinel 형태의 CuCr2O4 소재이다.Seed material, which is a core material in a composite material that implements a conductor pattern on a conventional three-dimensional part, is disclosed in US 2004/0241422 A1 (Conductor track structures and method for production). The disclosed Ferro spinel PK3095 is a spinel crystal of CuCr 2 O 4 material.
그리고 미국 등록특허공보 US 6696173 B1(발명의 명칭: Conducting path structures situated on a non-conductive support material, especially fine conducting path structures and method for producing same)에서는 Palladium complex 소재를 활용하여 레이저 처리시 활성화되어 전도체 패턴의 구현이 가능한 소재를 개시한다.In the US Patent Publication US 6696173 B1 (Conducting path structures situated on a non-conductive support material, especially fine conducting path structures and method for producing same), it is activated during laser treatment using a Palladium complex material. Disclosed a material that can be implemented.
본 발명은 전술한 문제점을 해결하기 위하여, 레이저 조사시 활성화되어 도금 공정에서 금속층이 형성되는 무기물 소재를 화이버(fiber) 형태의 소재에 코팅하여 전도체 패턴의 생성이 용이한 복합소재 및 그 복합소재를 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the composite material and the composite material that is easy to generate a conductor pattern by coating an inorganic material that is activated during laser irradiation to form a metal layer in the plating process on a fiber type material It aims at providing the manufacturing method.
본 발명의 다른 목적은 구리 질화물(Cu3N) 소재를 활용하여 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재를 개선한 것으로서, 복합 소재에서 활용되는 구리 질화물을 저렴하게 합성하는 방법과 그 방법에 의해 생성되는 레이저에 의해 전도체 패턴 형성이 가능한 복합 소재의 시드 소재인 구리 질화물을 제공하는 것이다.Another object of the present invention is to improve a composite material capable of forming a three-dimensional conductor pattern by laser using a copper nitride (Cu 3 N) material, and a method and a method for synthesizing copper nitride used in the composite material at low cost It is to provide a copper nitride that is a seed material of the composite material capable of forming a conductor pattern by a laser generated by the.
상술한 목적을 달성하기 위한 본 발명의 일면에 따른 전도체 패턴의 형성이 용이한 복합소재와 그 복합소재 제조방법은 3차원 형태의 부품으로 제작 가능한 화이버 형태의 소재 및 상기 화이버 형태의 소재에 코팅되며 레이저 조사시 활성화되어 도금 공정에서 금속층을 형성하는 Cu3N 소재를 포함한다.In order to achieve the above object, a composite material and a method of manufacturing the composite material, which can easily form a conductor pattern according to an aspect of the present invention, are coated on a fiber type material and a fiber type material that can be manufactured in a three-dimensional shape. Cu 3 N material that is activated during laser irradiation to form a metal layer in the plating process.
본 발명의 다른 일면에 따른 전도체 패턴 형성이 용이한 복합소재와 그 복합소재 제조방법은 화이버 형태의 소재 및 액상 형태의 Cu3N 조성물을 포함하는 혼합물을 가열하여 상기 화이버 형태의 소재를 제외한 나머지 혼합물을 용해시키는 단계, 상기 혼합물을 냉각하고 탈기시키는 단계, 상기 탈기된 혼합물을 열처리하는 단계 및 상기 열처리된 혼합물을 세척 및 건조시키는 단계를 포함한다.According to another aspect of the present invention, a composite material having an easy conductor pattern and a method of manufacturing the composite material may be heated by heating a mixture including a fiber-type material and a liquid-form Cu 3 N composition, except for the fiber-type material. Dissolving the same, cooling and degassing the mixture, heat treating the degassed mixture, and washing and drying the heat treated mixture.
본 발명의 다른 일면에 따른 전도체 패턴 형성이 용이한 복합소재와 그 복합소재 제조방법은 상기 세척 및 건조된 혼합물을 사출성형하고, 상기 사출성형된 혼합물의 표면에 레이저를 조사하여 패터닝하는 단계 및 상기 패터닝된 혼합물을 도금하는 단계를 더 포함한다.According to another aspect of the present invention, a composite material and a method of manufacturing the composite material, which are easily formed with a conductor pattern, may be formed by injection molding the washed and dried mixture, and patterning the laser on the surface of the injection molded mixture. Plating the patterned mixture further.
본 발명의 다른 일 면에 따르면, 아세트산구리(Copper Acetate)를 우레아(Urea)와 1-노난올(1-Nonanol)에 용해시켜 생성되는, 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재에서 시드 소재인 구리 질화물을 제공한다.According to another aspect of the present invention, seed produced in a composite material capable of forming a three-dimensional conductor pattern by laser, produced by dissolving copper acetate in urea and 1-nonanol It provides a copper nitride material.
상기 아세트산구리를 수산화구리(Copper Hydroxide) 또는 탄산구리(Copper Carbonate)를 아세트산(Acetic Acid)과 반응시켜 획득함으로써, 아세트산구리를 더욱 저렴하게 제공할 수 있다.By obtaining the copper acetate by reacting copper hydroxide (Copper Hydroxide) or copper carbonate (Copper Carbonate) with acetic acid, it is possible to provide copper acetate at a lower cost.
상기 아세트산구리를 아세트산칼슘(Calcium Acetate)이 포함된 물에서 전기분해 공정을 이용하여 구리전극으로부터 획득함으로써 종래의 구리 질화물보다 저렴하며 순도가 높은 구리 질화물을 제공할 수 있다.The copper acetate may be obtained from a copper electrode using an electrolysis process in water containing calcium acetate, thereby providing copper nitride having lower purity and higher purity than conventional copper nitride.
상기 아세트산구리와 상기 우레아의 비율은 1:1 내지 1:100인 것으로 할 수 있다.The ratio of the copper acetate and the urea may be 1: 1 to 1: 100.
본 발명의 다른 일면에 따르면, 아세트산구리를 우레아와 1-옥타놀(1-Octanol)에 용해시키는 단계; 및 상기 아세트산구리가 용해되면 질소분위기에서 탈기시키고 열처리하는 단계를 포함하는 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재에서 시드 소재인 구리 질화물을 합성하는 방법을 제공한다.According to another aspect of the invention, dissolving copper acetate in urea and 1-octanol (1-Octanol); And when the copper acetate is dissolved provides a method for synthesizing the copper nitride of the seed material in a composite material capable of forming a three-dimensional conductor pattern by a laser comprising a step of degassing and heat treatment in a nitrogen atmosphere.
본 발명의 다른 일면에 따르면, 도데카놀(Dodecanol)을 가열하는 단계; 상기 가열된 도데카놀에 아세트산구리와 우레아를 혼합하는 단계; 상기 혼합된 용액을 교반하면서 질소가스 버블링을 실시하는 단계; 및 250도 이내 온도에서 단계적으로 열처리를 실시하며 일정 시간을 유지하는 단계를 포함하는 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합소재에서 시드 소재인 구리 질화물을 합성하는 방법을 제공한다.According to another aspect of the invention, the step of heating dodecanol (Dodecanol); Mixing copper acetate and urea with the heated dodecanol; Performing nitrogen gas bubbling while stirring the mixed solution; And it provides a method for synthesizing a copper nitride as a seed material in a composite material capable of forming a three-dimensional conductor pattern by a laser including a step of performing a heat treatment stepwise at a temperature within 250 degrees and maintaining a predetermined time.
본 발명에 따르면, 화이버 형태의 소재에 무기물 소재 특히, Cu3N(구리질화물)을 코팅하여 레이저 처리 및 도금 처리 과정을 통해 전도체 패턴의 형성이 용이한 복합소재를 제공한다.According to the present invention, an inorganic material, particularly Cu 3 N (copper nitride) is coated on a fiber-type material, thereby providing a composite material which is easy to form a conductor pattern through a laser treatment and a plating process.
또한, 본 발명에 따른 복합소재는 슬림하거나 3차원의 복잡한 형태의 부품에도 전도체 패턴의 형성이 가능한 이점을 제공한다. 더불어, 복합소재에 전도체 패턴을 형성 시 1차 사출공정으로 공정과정을 감축하여 전도체 패턴의 형성이 가능하므로 부품의 제작비용을 절감하는 효과가 있다.In addition, the composite material according to the present invention provides the advantage that the conductor pattern can be formed even in a slim or three-dimensional complex form parts. In addition, when the conductor pattern is formed on the composite material, the process pattern is reduced by the first injection process, thereby forming the conductor pattern, thereby reducing the manufacturing cost of the part.
또한, 본 발명에 따르면, 상기 복합 소재의 시드 소재인 구리 질화물을 저렴하게 합성하는 기술을 제공함으로써 전체적으로 복합 소재의 가격 경쟁력을 확보할 수 있도록 하는 이점을 제공한다.In addition, according to the present invention, by providing a technology for synthesizing copper nitride, which is the seed material of the composite material at low cost, it provides an advantage to ensure the price competitiveness of the composite material as a whole.
도 1은 본 발명의 일실시예에 따른 전도체 패턴 형성이 용이한 복합소재를 제조하는 방법의 과정을 나타낸 흐름도이다.1 is a flowchart illustrating a process of a method of manufacturing a composite material having easy conductor pattern formation according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따라 글래스 화이버(glass fiber)에 구리질화물이 코팅된 복합소재를 나타낸 도면이다.2 is a view showing a composite material coated with copper nitride on glass fiber according to one embodiment of the present invention.
도 3과 도 4는 본 발명의 일실시예에 따른 복합소재에 전도체 패턴을 형성하는 방법과 그 방법에 따라 제작된 부품을 나타낸 도면이다.3 and 4 is a view showing a method for forming a conductor pattern on the composite material according to an embodiment of the present invention and the components manufactured according to the method.
도 5는 본 발명의 일실시예에 따른 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재에서 시드 소재인 구리 질화물을 합성하는 방법의 과정을 나타낸 흐름도이다.FIG. 5 is a flowchart illustrating a method of synthesizing a copper nitride as a seed material in a composite material capable of forming a three-dimensional conductor pattern by a laser according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이므로 본 발명의 권리범위는 청구항의 기재에 의해 정하여진다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be embodied in various different forms, and the present embodiments only make the disclosure of the present invention complete, and those of ordinary skill in the art The scope of the present invention is defined by the description of the claims as it is provided only to fully inform the person having the scope of the invention.
한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자에 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가함을 배제하지 않는다. 이하, 본 발명의 따른 실시예를 첨부된 도면을 참조하여 상세하게 설명하도록 한다.Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular forms also include the plural unless specifically stated otherwise in the phrases. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements in the mentioned components, steps, operations and / or elements. Or does not exclude the addition. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 화이버 형태의 소재와 상기 화이버 형태의 소재에 코팅되는 소재를 포함하며, 구체적으로는, 글래스(glass) 화이버, 카본(carbon) 화이버, 셀루로우스(cellulose) 화이버, 케나프(kenaf) 화이버, 그라파이트(graphite) 화이버 및 카본 나노튜브(carbon nanotube)와 같은 화이버 형태의 소재와 상기 화이버 형태의 소재에 코팅되며 레이저 조사시 활성화되어 도금 공정에서 금속층을 형성하는 Cu3N 소재를 포함하는 복합소재에 관한 것이다.The present invention includes a fiber type material and a material coated on the fiber type material, specifically, glass fiber, carbon fiber, cellulose fiber, kenaf On a composite material including a fiber type material such as fiber, graphite fiber and carbon nanotube, and a Cu 3 N material coated on the fiber type material and activated during laser irradiation to form a metal layer in a plating process. It is about.
여기서, 화이버 형태의 소재는 사전에 집속제, 커플링제, 평활제와 같은 표면처리제로 처리되어 사용가능하며, 특히 커플링제로 표면처리된 화이버 소재를 이용하면 화이버 형태의 소재와 Cu3N 소재와의 계면결합력을 높여 화이버 형태의 소재 위에 보다 균일하고 조밀한 형태의 Cu3N 소재를 코팅가능하다.In this case, the fiber-type material may be used after being treated with a surface treatment agent such as a focusing agent, a coupling agent, and a smoothing agent, and in particular, when the fiber material surface-treated with the coupling agent is used, an interface between the fiber-type material and the Cu3N material It is possible to coat more uniform and dense Cu3N material on the fiber type material by increasing the bonding force.
커플링제로는 실란 커플링제(예컨대, shinet su사의 제품, momentive사의 제품, dow corning사의 제품), 폴리머 커플링제(예컨대, polycarboxylic, polyacrylic acid), 중합성 커플링제(예컨대, triazinethiosulfate계) 및 알콕시티오황산(alkoxythiosulfate)계 커플링제 등이 이용될 수 있다.Coupling agents include silane coupling agents (e.g., shinet su, momentive, dow corning), polymer couplings (e.g. polycarboxylic, polyacrylic acid), polymerizable coupling agents (e.g. triazinethiosulfate) and alkoxythio Sulfuric acid (alkoxythiosulfate) coupling agents and the like may be used.
이 외에도 여러 가지 방법으로 표면처리된 화이버 형태의 소재를 이용하면 화이버 형태의 소재 자체의 손상을 최소화하는 이점 외에도 밀착성, 기계적 특성, 화학적 특성이 향상되는 이점을 제공한다.In addition, the use of fiber-type materials surface-treated in various ways provides the advantages of minimizing damage to the fiber-type material itself, as well as improving adhesion, mechanical properties, and chemical properties.
화이버 형태의 소재에 코팅되는 Cu3N 소재는 대표적인 코팅법인 액상법으로 전술한 화이버 형태의 소재에 코팅될 수 있다.The Cu 3 N material coated on the fiber type material may be coated on the aforementioned fiber type material by a liquid phase method, which is a typical coating method.
화이버 형태의 소재에 액상형태로 코팅되기 위해 제공되는 Cu3N 조성물은 질산 구리 3수화물(copper nitrate trihydrate), 옥타데신(octadecene) 및 옥타데실아민(octadecylamine) 등을 포함하는 것으로서, 옥타데신 및 옥타데실아민이 Cu3N의 입자를 나노(nano)화시켜 화이버 형태의 소재와의 계면결합력을 높이는 효과를 제공한다.The Cu 3 N composition provided to be coated in a liquid form on a fiber-type material includes copper nitrate trihydrate, octadecene, octadecylamine, and the like. Octadecin and octa The decylamine nanoparticles Cu 3 N particles to provide the effect of increasing the interfacial bonding force with the fiber type material.
전술한 화이버 형태의 소재에 Cu3N 소재를 코팅하여 코팅된 표면 위에 레이저를 조사하여 패터닝하면 패터닝된 부분이 레이저에 의해 활성화되어, 형성된 패턴과 이후 도금되는 금속의 고착이 용이해져 레이저에 의해 패터닝된 형태로 금속층을 형성하게 된다.By coating the fiber type material with Cu 3 N material and patterning by irradiating a laser on the coated surface, the patterned part is activated by a laser, and the patterned part is easily adhered to the metal to be plated later. To form a metal layer.
따라서, 본 발명에 따르면 종래의 전도체 패턴 형성 방법에 비하여 단순한 공정으로 복합소재 위에 전도체 패턴을 형성할 수 있다.Therefore, according to the present invention, the conductor pattern can be formed on the composite material in a simple process as compared with the conventional method of forming the conductor pattern.
이하, 도 1 내지 도 4를 참조하여, 전술한 형태의 복합소재를 제조하는 방법에 관하여 구체적으로 설명한다.Hereinafter, a method of manufacturing the composite material of the above-described form will be described in detail with reference to FIGS. 1 to 4.
도 1은 본 발명의 일실시예에 따른 전도체 패턴 형성이 용이한 복합소재를 제조하는 방법에 관한 것으로서, 이하의 방법은 화이버 형태의 소재에 액상법으로 Cu3N 소재를 코팅하는 실시예로서 본 발명의 기술적 사상이 아래의 실시예에 국한되는 것이 아님은 물론이다.1 is a method for manufacturing a composite material easy to form a conductor pattern according to an embodiment of the present invention, the following method is an embodiment of coating a Cu 3 N material by a liquid phase method on a fiber-type material Of course, the technical spirit of the present invention is not limited to the following examples.
도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 복합소재 제조방법은 먼저, 화이버 형태의 소재 및 액상형태의 Cu3N 조성물을 포함하는 혼합물을 60까지 승온시키며 가열하여 화이버 형태의 소재를 제외한 나머지 혼합물을 용해시킨다(S110).As shown in Figure 1, the composite material manufacturing method according to an embodiment of the present invention, first, the temperature of the mixture comprising a fiber-type material and a liquid form of Cu 3 N composition to 60 to heat up the material of the fiber type Dissolve the remaining mixture except for (S110).
화이버 형태의 소재를 제외한 나머지 혼합물이 용해되면 용해된 혼합물을 냉각시켜 고체상태의 혼합물을 생성하고, 생성된 고체상태의 혼합물을 탈기시킨다(S120).When the remaining mixture except the fiber-type material is dissolved, the dissolved mixture is cooled to produce a solid mixture, and the resulting solid mixture is degassed (S120).
예컨대, 액체질소를 이용하여 용해된 혼합물을 냉각시켜서 고체상태로 만든 후, 기체질소를 이용하여 불필요한 잔류기체를 제거시키는 과정을 거칠 수 있다. 또한, 탈기 과정은 1회 이상 반복되어 잔류기체의 제거율을 높일 수 있다.For example, the dissolved mixture may be cooled using liquid nitrogen to form a solid state, and then gaseous nitrogen may be used to remove unnecessary residual gas. In addition, the degassing process may be repeated one or more times to increase the removal rate of residual gas.
탈기된 혼합물을 제 1 온도 범위에서 기설정된 시간 이상 가열한 후, 제 2 온도 범위까지 단계적으로 혼합물의 온도를 상승시키며 열처리한다(S130).After the degassed mixture is heated in the first temperature range for a predetermined time or more, the temperature of the mixture is gradually heat-treated to the second temperature range (S130).
예컨대, 탈기된 혼합물을 약 150에서 3시간 이상 온도를 유지한 후, 270까지 단계적으로 온도를 상승시켜주며 열처리할 수 있다. 혼합물을 적절히 열처리함으로써 최종 제작되는 부품의 기계적 성질 또는 화학적 성질을 목적에 맞게 조정할 수 있다.For example, the degassed mixture may be heat treated at a temperature of about 150 to 3 hours or more, followed by stepwise raising the temperature to 270. By appropriately heat treating the mixture, the mechanical or chemical properties of the final part to be produced can be adjusted to suit the purpose.
이후 열처리된 혼합물은 에탄올 및 클로로포름(chloroform)과 같은 세척제를 이용하여 세척하는 공정 또는 건조와 같은 후처리 공정을 거친다(S140).After the heat-treated mixture is subjected to a post-treatment process such as washing with a washing agent such as ethanol and chloroform (chloroform) or drying (S140).
본 발명의 일실시예에서는 화이버 형태의 소재에 Cu3N을 액상으로 용해시켜 코팅하는 액상법을 이용하지만, 본 발명의 다른 실시예에 따르면 화이버 형태의 소재에 Cu3N을 페이스트 스크린 코팅, 롤코팅, 스퍼터링법, 증발법 등으로 코팅하는 방법을 이용할 수도 있음은 물론이다.In an embodiment of the present invention, a liquid phase method of dissolving and coating Cu 3 N in a liquid phase in a fiber type material is used. According to another embodiment of the present invention, Cu 3 N is paste screen coated and roll coated in a fiber type material. Of course, the coating by the sputtering method, the evaporation method or the like can also be used.
이하, 도 2를 참조하여 커플링제로 표면처리한 화이버 소재를 이용하여 Cu3N을 코팅하는 방법을 구체적으로 후술하기로 한다.Hereinafter, a method of coating Cu 3 N using a fiber material surface-treated with a coupling agent will be described in detail with reference to FIG. 2.
도 2는 본 발명의 일실시예에 따른 복합소재 제조방법에 따라 Cu3N이 코팅된 글래스 화이버(glass fiber)를 나타낸 도면이다.Figure 2 is a view showing a glass fiber (glass fiber) coated with Cu 3 N according to the composite material manufacturing method according to an embodiment of the present invention.
도 2a는 Cu3N이 코팅된 글래스 화이버의 표면을 나타낸 것으로서, 화이버 형태의 소재 중 글래스 화이버의 표면에 Cu3N을 코팅할 경우, Cu3N이 약 25nm 크기의 큐브 형태로 글래스 화이버 표면에 코팅됨을 알 수 있다.As Figure 2a showing the surface of the coated glass fiber Cu 3 N, when to coat the Cu 3 N on the surface of the glass fibers of the material of fiber type, Cu 3 N is a glass fiber surface in the form of a cube of about 25nm in size It can be seen that it is coated.
한편, Cu3N이 화이버 형태의 소재에 보다 조밀하게 코팅되도록 하기 위하여 사전에 화이버 형태의 소재에 커플링제로 표면처리할 수 있는데, 구체적으로는 글래스 화이버 형태의 소재를 산 또는 염기로 세척하고 커플링제로 표면처리하여 전술한 액상 형태의 Cu3N을 코팅하는 과정을 거치면 더욱 조밀한 형태로 Cu3N을 코팅할 수 있다.On the other hand, in order to coat Cu 3 N more densely on the fiber type material, the fiber type material may be surface treated with a coupling agent in advance. Specifically, the glass fiber type material may be washed with an acid or a base, and then By surface treatment with a ring agent to coat the above-described liquid form of Cu 3 N can be coated with a more dense form Cu 3 N.
도 2b는 표면처리되어 Cu3N이 코팅된 글래스 화이버의 표면을 나타낸 것으로서, 글래스 화이버의 표면에 아미노계 실란 커플링제를 습식법으로 코팅하여 글래스 화이버와 Cu3N의 본딩층을 형성한 후 Cu3N을 코팅할 경우, 도 2a에 도시된 글래스 화이버 형태의 소재의 표면보다 보다 균일하고 조밀하게 나노(nano) 크기의 Cu3N이 코팅되었음을 알 수 있다. 이와 같이, 화이버 형태의 소재에 Cu3N이 더욱 조밀하게 코팅됨으로써, 전도체 패턴을 형성하기 위한 레이저 처리시 보다 균일한 전도체 촉매층이 형성된다.Figure 2b is a surface treatment and then Cu 3 N is as shown the surface of the coated glass fiber, is coated by the wet method the amino-based silane coupling agent on the surface of the glass fiber to form a bonding layer of glass fiber and Cu 3 N Cu 3 When coating N, it can be seen that the nano-sized Cu 3 N is coated more uniformly and densely than the surface of the glass fiber type material shown in FIG. 2A. As such, the Cu 3 N is more densely coated on the fiber-type material, thereby forming a more uniform conductor catalyst layer during laser treatment for forming a conductor pattern.
여기서, 커플링제는 실란 커플링제, 폴리머 커플링제, 중합성 커플링제, 알콕시티오황산(alkoxythiosulfate)계 커플링제 등이 사용될 수 있으며, 사용되는 커플링제는 화이버 형태의 소재의 종류 및 특성에 따라 선택될 수 있다. 또한, 커플링제의 처리 방법은 습식법 이외에도 다양한 방식의 처리방법으로 행하여질 수 있음은 물론이다.Herein, the coupling agent may be a silane coupling agent, a polymer coupling agent, a polymerizable coupling agent, an alkoxythiosulfate coupling agent, or the like, and the coupling agent used may be selected according to the type and properties of the fiber type material. Can be. In addition, the processing method of a coupling agent can be performed by the processing method of various systems other than a wet method.
이하, 도 3 및 도 4를 참조하여 전술한 방식으로 Cu3N을 코팅한 복합소재에 전도체 패턴을 형성하는 방법을 구체적으로 설명한다.Hereinafter, a method of forming a conductor pattern on a composite material coated with Cu 3 N in the manner described above with reference to FIGS. 3 and 4 will be described in detail.
도 3은 본 발명의 일실시예에 따른 복합소재에 전도체 패턴을 형성방법을 나타낸 흐름도 및 도 4는 본 발명의 일실시예에 따른 복합소재에 전도체 패턴을 형성방법에 따라 제작된 부품을 나타낸 도면이다.3 is a flowchart illustrating a method of forming a conductor pattern on a composite material according to an embodiment of the present invention, and FIG. 4 is a view illustrating a part manufactured according to the method of forming a conductor pattern on a composite material according to an embodiment of the present invention. to be.
도 3에 도시된 바와 같이, 본 발명의 일실시예에 따른 복합소재에 전도체 패턴을 형성방법은 먼저, 전술한 방식으로 화이버 형태의 소재에 Cu3N을 코팅하여 복합소재를 제조한다(S310). 제조된 복합소재를 제작하고자 하는 형태로 사출성형한다(S320). 사출성형된 복합소재에 형성하고자 하는 패턴의 형태로 레이저를 조사하여 패터닝한다(S330). 패터닝된 복합소재를 무전해 도금 방법으로 1차 도금한다(S340). 이상의 과정으로도 종래보다 균일한 금속층을 형성할 수 있으나 더 균일한 금속층을 구현하기 위해서는 무전해 공정 이후 2차로 전해 도금 공정을 실시하는 것이 좋다(S350).As shown in Figure 3, the method of forming a conductor pattern on the composite material according to an embodiment of the present invention, first, to produce a composite material by coating Cu 3 N on the fiber-type material in the manner described above (S310) . Injection molding into a shape to manufacture the manufactured composite material (S320). Patterning by irradiating a laser in the form of a pattern to be formed on the injection-molded composite material (S330). The patterned composite is first plated by an electroless plating method (S340). In the above process, a more uniform metal layer may be formed, but in order to implement a more uniform metal layer, it is preferable to perform a second electroplating process after the electroless process (S350).
구체적으로, 화이버 형태의 소재에 Cu3N을 코팅하여 제조된 복합소재는 Cu3N이 레이저 흡수제 역할을 함으로써, 레이저 조사시, 활성화되어 패턴을 형성한다. 도 4a가 사출성형으로 제작된 부품의 표면에 레이저를 활용하여 직사각형 패턴을 형성한 예를 나타낸 것이다.Specifically, the composite material is manufactured by coating a Cu 3 N in the material of fiber type Cu 3 N is activated, when the laser irradiation by the laser absorbent role to form a pattern. Figure 4a shows an example of forming a rectangular pattern using a laser on the surface of the part produced by injection molding.
이러한 복합소재는 열가소성수지로서, 사출성형이 가능한 여러 수지가 사용될 수 있다. 예컨대, PE, ABS, PBT, PET, LCP, PPA, PA6 또는 이들의 복합수지가 사용될 수 있다.Such a composite material is a thermoplastic resin, various resins capable of injection molding can be used. For example, PE, ABS, PBT, PET, LCP, PPA, PA6 or composite resins thereof may be used.
또한, 레이저는 형성된 Cu3N 코팅층의 표면에서 기설정된 패턴 경로를 따라 움직이며, 패턴의 형상 및 굵기에 따라 일정 구간을 반복하여 이동하거나 일정 경로를 따라 움직일 수 있다. 레이저로는 특히 한정되는 것은 없으며 레이저 파장에 따라 파워나 처리 속도 등을 변화할 수 있다. 예컨대, 파장이 1064nm의 레이저를 활용할 경우 파워는 2~6watt 및 주파수는 40Hz로 조사할 수 있다.In addition, the laser moves along a predetermined pattern path on the surface of the formed Cu 3 N coating layer, and may repeatedly move a predetermined section or move along a predetermined path according to the shape and thickness of the pattern. It does not specifically limit as a laser, According to a laser wavelength, a power, a processing speed, etc. can change. For example, if a laser with a wavelength of 1064 nm is used, the power can be irradiated with 2 to 6 watts and a frequency of 40 Hz.
레이저 패터닝 후, 활성화된 패턴은 전해 도금 또는 무전해 도금 또는 이들을 모두 거쳐 금속화할 수 있다. 도 4b가 도 4a의 부품을 무전해 도금시켜 금속층을 형성한 예를 나타낸 것이다.After laser patterning, the activated pattern can be metallized via electrolytic plating or electroless plating or both. 4B illustrates an example in which a metal layer is formed by electroless plating the component of FIG. 4A.
전술한 바와 같이 본 발명의 일실시예에 따른 복합소재는 화이버 형태의 소재에 Cu3N을 코팅함으로써 종래의 전도체 패턴 형성 방법에 비하여 단순한 공정으로 용이하게 전도체 패턴을 형성할 수 있도록 한다.As described above, the composite material according to the embodiment of the present invention enables the conductor pattern to be easily formed by a simple process compared to the conventional conductor pattern forming method by coating Cu 3 N on a fiber type material.
한편, 본 발명은 3차원 형태의 부품에 적정한 기계적 특성도 제공하면서 용이하게 전도체 패턴을 형성할 수 있는 복합 소재에서 고가인 시드(Seed) 소재를 저렴하게 제공할 수 있는 방법과 그 시드 소재를 제공하는 것을 목적으로 한다.On the other hand, the present invention provides a method and a seed material that can provide an expensive seed material at a low cost in the composite material that can easily form a conductor pattern while also providing the appropriate mechanical properties to the three-dimensional component parts It aims to do it.
본 발명에서는 질화물 특히 Cu3N 소재를 저렴하게 합성하는 기술을 제공하며, Cu3N 무기물 필러는 Cubic 구조로 space group Pm3m이다.The present invention provides a technique for inexpensively synthesizing nitride, in particular Cu 3 N material, the Cu 3 N inorganic filler is a cubic structure of space group Pm3m.
종래의 구리질화물계 소재를 합성하는 방안으로는 크게 기상법과 액상법이 알려져 있으며 대표적인 예는 아래와 같다.As a method of synthesizing a conventional copper nitride-based material, a gas phase method and a liquid phase method are largely known, and representative examples thereof are as follows.
1. Copper nitrate trihydrate를 1-octadecene과 octadecylamine을 사용하여 용해한 후에 질소 분위기로 degassing하고 300도 이내의 온도 범위에서 열처리하고 원심분리를 실시한다.1. Dissolve copper nitrate trihydrate using 1-octadecene and octadecylamine, degassing with nitrogen atmosphere, heat-treat within 300 ° C and centrifuge.
2. Copper chloride를 sodium azide와 톨루엔 또는 THF(Tetrahydrofuran)를 이용하여 용해한 후에 질소 분위기의 반응기 내에서 300도 이내 온도 범위에서 열처리하여 분말을 합성한다.2. Dissolve copper chloride using sodium azide and toluene or THF (Tetrahydrofuran), and heat-treat at 300 ° C in a nitrogen atmosphere to synthesize powder.
3. Copper(2) hexafluoroacetylacetonate를 메탄올에 용해하고 암모니아 가스 분위기에서 300도 이내 온도 범위와 압력을 인가하여 열처리하여 분말을 합성한다.3. Dissolve copper (2) hexafluoroacetylacetonate in methanol and heat-treat to apply a temperature range and pressure within 300 ° C in ammonia gas to synthesize powder.
본 발명에서는 위와 달리 저렴한 원료를 활용하여 구리 질화물 합성법을 제공하며 도 5에서 본 발명의 일실시예에 따른 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재에서 시드 소재인 구리 질화물을 합성하는 방법의 과정을 나타낸다.The present invention provides a method for synthesizing copper nitride using a cheap material unlike the above and in the composite material capable of forming a three-dimensional conductor pattern by a laser according to an embodiment of the present invention in FIG. Indicate the process.
본 발명은 앞서 제시된 방안에서와 달리 아세트산구리(Copper(2) acetate monohydrate)를 우레아(Urea)와 1-노난올(1-Nonaol)에 용해하고(S410), 질소 분위기로 degassing하며(S420), 250도 이내의 온도 범위에서 열처리를 실시하여(S430) 구리 질화물(Cu3N) 분말을 합성한다(S440).In the present invention, unlike in the above-described method, copper acetate (Copper (2) acetate monohydrate) is dissolved in urea (Urea) and 1-nonanol (1-Nonaol) (S410), and degassing in a nitrogen atmosphere (S420), Heat treatment is performed in a temperature range within 250 degrees (S430) to synthesize a copper nitride (Cu 3 N) powder (S440).
이때 본 발명의 다른 실시예에 따르면, 아세트산구리(Copper(2) acetate)를 더 저렴하게 제공하기 위하여 수산화구리(Copper(2) hydroxide)나 탄산구리(Copper(2) carbonate)를 아세트산(Acetic acid)과 반응하여 얻은 것을 활용할 수 있다.At this time, according to another embodiment of the present invention, copper acetate (Copper (2) hydroxide) or copper carbonate (Copper (2) carbonate) in acetic acid (Acetic acid) ) Can be used to react to
또 다른 실시예에 따르면, 더 순도가 높은 아세트산구리(Copper(2) acetate)를 제공하기 위하여 Cu 전극으로부터 아세트산칼슘(Calcium acetate)이 포함된 물에서 전기 분해 공정을 이용하여 합성할 수 있다. 이렇게 제공되는 아세트산구리(Copper(2) acetate)는 기존의 구리 화합물보다 저렴하며 순도가 높다.According to another embodiment, it may be synthesized using an electrolysis process in water containing calcium acetate from a Cu electrode to provide a higher purity copper (2) acetate. The copper acetate (Copper (2) acetate) thus provided is cheaper and more pure than conventional copper compounds.
또 다른 실시예에 따르면, 더 저렴한 합성 방법을 제공하기 위하여 아세트산구리가 용해되는 용매로 1-노난올 대신 도데카놀(Dodecanol, 분자량 186.33), 1-옥타놀(1-Octanol, 분자량 130.23) 또는 1-헥사데카놀(1-Hexadecanol, 분자량 242.44)을 활용할 수도 있다.According to another embodiment, dodecanol (molecular weight 186.33), 1-octanol (1-Octanol, molecular weight 130.23) or 1 instead of 1-nonanol as a solvent in which copper acetate is dissolved to provide a cheaper synthesis method -Hexadecanol (1-Hexadecanol, molecular weight 242.44) can also be used.
도데카놀을 용매로 이용하여 구리 질화물을 합성하는 과정은 도데카놀을 가열하고 가열된 도데카놀에 아세트산구리와 우레아를 혼합한다. 혼합된 용액을 교반하면서 질소가스 버블링을 실시하고 250도 이내 온도에서 단계적으로 열처리를 실시하며 일정 시간을 유지한다. 그리고 생성물을 유기 용매에서 세척하고 건조시켜 구리 질화물 분말을 획득할 수 있다.The process of synthesizing copper nitride using dodecanol as a solvent heats the dodecanol and mixes copper acetate and urea with the heated dodecanol. Nitrogen gas bubbling is carried out while stirring the mixed solution, and heat treatment is performed stepwise at a temperature within 250 degrees and maintained for a certain time. The product can then be washed in an organic solvent and dried to obtain a copper nitride powder.
본 발명은 합성에 있어서 구리 질화물로의 합성이 용이하게 하는 질소를 제공하는 것으로서 우레아(Urea)를 활용함으로써 더욱 더 저렴한 합성 기술을 제공할 수 있다.The present invention can provide even more inexpensive synthesis technology by utilizing urea as providing nitrogen which facilitates the synthesis into copper nitride in synthesis.
그리고 본 발명에서 합성되는 아세트산구리(Copper(2) acetate)와 우레아(Urea)의 비율은 1대1부터 1대100으로 한정할 수 있다.And the ratio of copper acetate (Copper (2) acetate) and urea (Urea) synthesized in the present invention can be limited to 1 to 1 to 100.
아래는 본 발명에 따른 구리 질화물 소재를 합성하는 예시를 나타낸 것이다.The following shows an example of synthesizing a copper nitride material according to the present invention.
Figure PCTKR2015002951-appb-I000001
Figure PCTKR2015002951-appb-I000001
여기서,
Figure PCTKR2015002951-appb-I000002
Figure PCTKR2015002951-appb-I000003
를 의미한다.
here,
Figure PCTKR2015002951-appb-I000002
Is
Figure PCTKR2015002951-appb-I000003
Means.
따라서 본 발명에 따르면, 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합 소재에서 시드 소재인 구리 질화물을 저렴하게 합성함으로써, 복합 소재의 전체적인 가격을 낮출 수 있도록 하여 레이저에 의해 3차원 전도체 패턴 형성이 가능한 종래의 복합 소재를 대체할 수 있는 소재를 제공할 수 있도록 한다.Therefore, according to the present invention, by inexpensively synthesizing copper nitride, which is a seed material, in a composite material capable of forming a three-dimensional conductor pattern by a laser, the overall price of the composite material can be lowered, thereby enabling the formation of a three-dimensional conductor pattern by a laser. It is possible to provide a material that can replace the conventional composite material.
이상의 설명은 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 본질적 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능하다. 따라서 본 발명에 표현된 실시 예들은 본 발명의 기술적 사상을 한정하는 것이 아니라, 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 특허청구범위에 의하여 해석되어야 하고, 그와 동등하거나, 균등한 범위 내에 있는 모든 기술적 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments represented in the present invention are not intended to limit the technical spirit of the present invention, but to describe, and the scope of the present invention is not limited to these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas that are equivalent to or equivalent to the equivalent scope should be construed as being included in the scope of the present invention.

Claims (17)

  1. 3차원 형태의 부품으로 제작 가능한 화이버 형태의 소재; 및Fiber-type material which can be manufactured from three-dimensional parts; And
    상기 화이버 형태의 소재에 코팅되며 레이저 조사시 활성화되어 도금 공정에서 금속층을 형성하는 Cu3N 소재를 포함하는 전도체 패턴 형성이 용이한 복합소재.The composite material is easy to form a conductor pattern comprising a Cu 3 N material coated on the fiber-type material and is activated during laser irradiation to form a metal layer in the plating process.
  2. 제1항에 있어서,The method of claim 1,
    상기 화이버 형태의 소재는 글래스 화이버, 카본 화이버, 셀루로우스 화이버, 케나프 화이버, 그라파이트 화이버 및 카본 나노튜브 중 어느 하나인 것인 전도체 패턴 형성이 용이한 복합소재.The fiber-type material is any one of glass fiber, carbon fiber, cellulose fiber, kenaf fiber, graphite fiber and carbon nanotube composite material easy to form a conductor.
  3. 제1항에 있어서,The method of claim 1,
    상기 Cu3N 소재는 상기 화이버 형태의 소재에 액상 형태로 흡착되어 코팅되는 것인 전도체 패턴 형성이 용이한 복합소재.The Cu 3 N material is a composite material that is easy to form a conductor pattern that is adsorbed in a liquid form to the fiber-type material.
  4. 제1항에 있어서,The method of claim 1,
    상기 화이버 형태의 소재는 산 또는 염기로 세척되어 커플링제로 표면처리된 것인 전도체 패턴 형성이 용이한 복합소재.The fiber-type material is easy to form a conductor pattern that is surface-treated with a coupling agent washed with acid or base.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 커플링제는 실란 커플링제, 폴리머 커플링제, 중합성 커플링제 및 알콕시티오황산계 커플링제 중 어느 하나이며, 상기 화이버 형태의 소재 종류에 따라 선택되는 것인 전도체 패턴 형성이 용이한 복합소재.The coupling agent is any one of a silane coupling agent, a polymer coupling agent, a polymerizable coupling agent, and an alkoxythiosulfuric acid coupling agent, and the composite material is easy to form a conductor pattern is selected according to the type of the fiber type.
  6. 화이버 형태의 소재 및 액상 형태의 Cu3N 조성물을 포함하는 혼합물을 가열하여 상기 화이버 형태의 소재를 제외한 나머지 혼합물을 용해시키는 단계;Heating the mixture comprising a fiber type material and a liquid type Cu 3 N composition to dissolve the remaining mixture except the fiber type material;
    상기 혼합물을 냉각하고 탈기시키는 단계;Cooling and degassing the mixture;
    상기 탈기된 혼합물을 열처리하는 단계; 및Heat treating the degassed mixture; And
    상기 열처리된 혼합물을 세척 및 건조시키는 단계Washing and drying the heat-treated mixture
    를 포함하는 전도체 패턴 형성이 용이한 복합소재 제조방법.Easily formed composite pattern comprising a conductive material.
  7. 제6항에 있어서,The method of claim 6,
    상기 세척 및 건조된 혼합물을 사출성형하고, 상기 사출성형된 혼합물의 표면에 레이저를 조사하여 패터닝하는 단계; 및Injection molding the washed and dried mixture, and patterning the surface of the injection molded mixture by irradiating a laser; And
    상기 패터닝된 혼합물을 도금하는 단계Plating the patterned mixture
    를 더 포함하는 전도체 패턴 형성이 용이한 복합소재 제조방법.The composite material manufacturing method easy to form a conductor pattern further comprising.
  8. 제7항에 있어서, 상기 패터닝된 혼합물을 도금하는 단계는,The method of claim 7, wherein the plating of the patterned mixture,
    상기 패터닝된 혼합물을 무전해 도금 방법으로 도금한 후, 전해 도금 방법으로 도금하는 것인 전도체 패턴 형성이 용이한 복합소재 제조방법.After the patterned mixture is plated by the electroless plating method, the plating method by the electroplating method is easy composite material manufacturing method.
  9. 아세트산구리(Copper Acetate)를 우레아(Urea)와 1-노난올(1-Nonanol)에 용해시켜 생성되는, 복합소재에서 시드소재인 구리질화물.Copper nitride, a seed material in a composite material, produced by dissolving copper acetate in urea and 1-nonanol.
  10. 제9항에 있어서, 상기 아세트산구리는The method of claim 9, wherein the copper acetate
    수산화구리(Copper Hydroxide) 또는 탄산구리(Copper Carbonate)를 아세트산(Acetic Acid)과 반응시켜 획득하는 것인 복합소재에서 시드소재인 구리질화물.Copper nitride as a seed material in a composite material obtained by reacting copper hydroxide (Copper Hydroxide) or copper carbonate (Copper Carbonate) with acetic acid.
  11. 제9항에 있어서, 상기 아세트산구리는The method of claim 9, wherein the copper acetate
    아세트산칼슘(Calcium Acetate)이 포함된 물에서 전기분해 공정을 이용하여 구리전극으로부터 획득하는 것인 복합소재에서 시드소재인 구리질화물.Copper nitride as a seed material in a composite material that is obtained from a copper electrode using an electrolysis process in water containing calcium acetate (Calcium Acetate).
  12. 제9항에 있어서,The method of claim 9,
    상기 아세트산구리와 상기 우레아의 비율은 1:1 내지 1:100인 것을 특징으로 하는 것인 레이저에 의해 3차원 전도체 패턴 형성이 가능한 복합소재에서 시드소재인 구리질화물.The copper nitride is a seed material in the composite material capable of forming a three-dimensional conductor pattern by a laser, characterized in that the ratio of the copper acetate and the urea is 1: 1 to 1: 100.
  13. 아세트산구리를 우레아와 1-옥타놀(1-Octanol)에 용해시키는 단계; 및Dissolving copper acetate in urea and 1-octanol; And
    상기 아세트산구리가 용해되면 질소분위기에서 탈기시키고 열처리하는 단계Degassing and heat treatment in a nitrogen atmosphere when the copper acetate is dissolved
    를 포함하는 복합소재에서 시드소재인 구리질화물을 합성하는 방법.Method of synthesizing copper nitride which is a seed material in a composite material comprising a.
  14. 제13항에 있어서, 상기 아세트산구리를 우레아와 1-옥타놀에 용해시키는 단계는The method of claim 13, wherein dissolving the copper acetate in urea and 1-octanol
    수산화구리 또는 탄산구리를 아세트산과 반응시켜 획득한 아세트산구리를 상기 우레아와 상기 1-옥타놀에 용해시키는 것인 복합소재에서 시드소재인 구리질화물을 합성하는 방법.A method for synthesizing copper nitride, which is a seed material, in a composite material in which copper acetate or copper carbonate obtained by reacting copper hydroxide or copper carbonate with acetic acid is dissolved in the urea and 1-octanol.
  15. 제13항에 있어서, 상기 아세트산구리를 우레아와 1-옥타놀에 용해시키는 단계는The method of claim 13, wherein dissolving the copper acetate in urea and 1-octanol
    아세트산칼슘이 포함된 물에서 전기분해 공정을 이용하여 구리전극으로부터 획득한 아세트산구리를 상기 우레아와 상기 1-옥타놀에 용해시키는 것인 복합소재에서 시드소재인 구리질화물을 합성하는 방법.A method of synthesizing a copper nitride, which is a seed material, in a composite material in which copper acetate obtained from a copper electrode is dissolved in the urea and the 1-octanol using an electrolysis process in water containing calcium acetate.
  16. 제13항에 있어서, 상기 아세트산구리를 우레아와 1-옥타놀에 용해시키는 단계는The method of claim 13, wherein dissolving the copper acetate in urea and 1-octanol
    상기 아세트산구리와 상기 우레아를 1:1 내지 1:100의 비율로 용해시키는 것인 복합소재에서 시드소재인 구리질화물을 합성하는 방법.The copper nitride and the urea is dissolved in a ratio of 1: 1 to 1: 100 in a composite material method for synthesizing a copper nitride seed material.
  17. 도데카놀(Dodecanol)을 가열하는 단계;Heating Dodecanol;
    상기 가열된 도데카놀에 아세트산구리와 우레아를 혼합하는 단계;Mixing copper acetate and urea with the heated dodecanol;
    상기 혼합된 용액을 교반하면서 질소가스 버블링을 실시하는 단계; 및Performing nitrogen gas bubbling while stirring the mixed solution; And
    250도 이내 온도에서 단계적으로 열처리를 실시하며 일정 시간을 유지하는 단계Heat treatment step by step at a temperature within 250 degrees to maintain a certain time
    를 포함하는 복합소재에서 시드소재인 구리질화물을 합성하는 방법.Method of synthesizing copper nitride which is a seed material in a composite material comprising a.
PCT/KR2015/002951 2014-03-26 2015-03-26 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride WO2015147561A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0035536 2014-03-26
KR1020140035536A KR101595295B1 (en) 2014-03-26 2014-03-26 Composite material forming a conductor pattern easily, and method for manufacturing the composite material
KR10-2014-0175060 2014-12-08
KR20140175060 2014-12-08

Publications (1)

Publication Number Publication Date
WO2015147561A1 true WO2015147561A1 (en) 2015-10-01

Family

ID=54195988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002951 WO2015147561A1 (en) 2014-03-26 2015-03-26 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride

Country Status (1)

Country Link
WO (1) WO2015147561A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268328A (en) * 1990-03-16 1991-11-29 Sumitomo Electric Ind Ltd Wiring formation
JP2008140972A (en) * 2006-12-01 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk Molded goods having conductive circuit, and manufacturing method thereof
KR101088886B1 (en) * 2009-12-29 2011-12-07 한국기계연구원 A method for forming circuits using a laser, a method for interconnecting circuits using a laser and circuits formed by the method
JP2013144767A (en) * 2011-03-18 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto
KR101339640B1 (en) * 2013-04-02 2013-12-09 김한주 Method of laser direct structuring
KR101434423B1 (en) * 2013-04-02 2014-08-26 전자부품연구원 Curved surface polymer material and method of conductive pattern using the same
JP2014166939A (en) * 2013-01-31 2014-09-11 National Institute Of Advanced Industrial & Technology Copper nitride fine particle and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268328A (en) * 1990-03-16 1991-11-29 Sumitomo Electric Ind Ltd Wiring formation
JP2008140972A (en) * 2006-12-01 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk Molded goods having conductive circuit, and manufacturing method thereof
KR101088886B1 (en) * 2009-12-29 2011-12-07 한국기계연구원 A method for forming circuits using a laser, a method for interconnecting circuits using a laser and circuits formed by the method
JP2013144767A (en) * 2011-03-18 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto
JP2014166939A (en) * 2013-01-31 2014-09-11 National Institute Of Advanced Industrial & Technology Copper nitride fine particle and production method thereof
KR101339640B1 (en) * 2013-04-02 2013-12-09 김한주 Method of laser direct structuring
KR101434423B1 (en) * 2013-04-02 2014-08-26 전자부품연구원 Curved surface polymer material and method of conductive pattern using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
T. NAKAMURA ET AL.: "Preparation of Copper Nitride (Cu3N) Nanoparticles in Long-Chain Alcohols at 130-200°C and Nitridation Mechanism", INORG. CHEM., vol. 53, 26 December 2013 (2013-12-26), pages 710 - 715, XP055227567 *
T. NAKAMURA ET AL.: "Preparation of copper nitride nanoparticles using urea as a nitrogen source in a long-chain alcohol", J. NANOPART. RES., vol. 16, 15 October 2014 (2014-10-15), pages 2699-1 - 2699-6, XP035382680 *
WIKIPEDIA, 18 May 2013 (2013-05-18), XP055227562, Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Copper(II)_acetate> *

Similar Documents

Publication Publication Date Title
Zhan et al. Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding
CN104285260B (en) Transparent conductive electrode, their structure design and manufacturing method with surface functionalization metal nanometer line
WO2010090480A2 (en) Method for preparing carbon particles / copper composite materials
CN109852146A (en) A kind of core-shell structure Ag@Cu nanoparticle conductive ink and its preparation method and application
WO2011099761A2 (en) Graphene fiber, method for manufacturing same and use thereof
CN109575364B (en) Transparent printing type flexible electronic substrate material with strong ink adhesion, and preparation and application thereof
Chang et al. Selective adsorption of catalyst and copper plating for additive fabrication of conductive patterns and through-holes
US20170267532A1 (en) Multi-functionalized carbon nanotubes
CN102666096A (en) Laminated body comprising porous layer and functional laminate using same
WO2013165101A1 (en) Hybrid electrode using silver nanowires and graphene, and preparation method thereof
CN105014091B (en) A kind of overlength corronil nano wire and preparation method thereof
TWI825140B (en) Uv-sinterable molecular ink and processing thereof using broad spectrum uv light
WO2018084637A1 (en) Oxidation-resistant hybrid structure comprising metal thin film layer coated on exterior of conductive polymer structure, and preparation method therefor
JP2016199779A (en) Modified metal nanoparticle, manufacturing method therefor, modified metal nano ink and wiring layer formation method
Zhang et al. Fabrication of flexible copper patterns by electroless plating with copper nanoparticles as seeds
CN110265190A (en) A kind of preparation method of three-dimension flexible conductor
CN112746297A (en) Method for directly electroplating metal on surface of insulating base material
WO2016159609A1 (en) Composition for forming copper nanowire network by using light sintering, method for manufacturing copper nanowire network, and transparent electrode comprising same
WO2017188527A1 (en) Three-dimensional graphene structure synthesizing method using spraying
WO2015147561A1 (en) Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride
CN110093596A (en) A kind of preparation method of the extra thin copper foil of Automatic-falling
Wang et al. A laser curable palladium complex ink used for fabrication of copper pattern on polyimide substrate
CN104023478A (en) Preparation method of flexible circuit based on air-flow jet printing
WO2018124365A1 (en) Method for preparing rice ear-shaped copper particles, rice ear-shaped copper particles prepared thereby, and conductive paste using same
CN104829815A (en) Preparation method of ZnO@PEDOT nanowire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769634

Country of ref document: EP

Kind code of ref document: A1