WO2014163208A1 - バルブ装置 - Google Patents

バルブ装置 Download PDF

Info

Publication number
WO2014163208A1
WO2014163208A1 PCT/JP2014/060078 JP2014060078W WO2014163208A1 WO 2014163208 A1 WO2014163208 A1 WO 2014163208A1 JP 2014060078 W JP2014060078 W JP 2014060078W WO 2014163208 A1 WO2014163208 A1 WO 2014163208A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
rotor
partition member
rotation
valve device
Prior art date
Application number
PCT/JP2014/060078
Other languages
English (en)
French (fr)
Inventor
昭夫 石水
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to JP2015510166A priority Critical patent/JP6307493B2/ja
Publication of WO2014163208A1 publication Critical patent/WO2014163208A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/08Guiding yokes for spindles; Means for closing housings; Dust caps, e.g. for tyre valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • the present invention relates to a valve device that divides a sealed case into a rotor accommodating chamber and a valve chamber and adjusts the flow of fluid in the valve chamber based on the rotation of the rotor.
  • Patent Document 1 discloses this type of valve device.
  • an inflow pipe and an outflow pipe for high-pressure fluid such as gas and a valve body for opening and closing an opening of the inflow pipe are arranged in the valve chamber.
  • the rotation of the rotor disposed in the rotor accommodating chamber is converted into a forward / backward movement of the operating member by the screw feeding mechanism.
  • the actuating member penetrates the partition member and protrudes into the valve chamber, and a valve body attached to the tip of the actuating member moves forward and backward to open and close the opening of the inflow pipe.
  • Patent Document 1 one end of the rotor is supported by a bearing portion provided in the first case, and the other end is supported by a partition member.
  • the partition member in order to ensure the axial center accuracy of the rotor, the partition member needs to be assembled with high accuracy.
  • the partition member and the rotor may rotate together and the assembly position may be shifted, and the axial center accuracy of the rotor may not be ensured.
  • an object of the present invention is to secure the positional accuracy of a partition member that partitions the inside of a sealed case into a rotor chamber and a valve chamber.
  • the valve device of the present invention provides: A coaxially arranged rotor and stator; A first case arranged on one end side in the axial direction of the rotor, and a main body case configured by joining a second case arranged on the other end side; A partition member that divides the sealed space in the main body case into a rotor housing chamber provided on one end side in the axial direction and a valve chamber provided on the other end side; A valve body for opening and closing a flow path provided in the valve chamber based on rotation of the rotor,
  • the partition member is A bearing portion rotatably supporting one end of the rotor; And a detent portion for restricting relative rotation of the partition member around the axis with respect to the first case or the second case.
  • the partition member that partitions the sealed space in the main body case formed by joining the first and second cases as described above is provided, and one end of the rotor is rotatably supported by the partition member.
  • the partition member includes a rotation preventing portion, and is assembled to the first case or the second case in a state in which the partition member is prevented from rotating about the axis of the rotor.
  • it can control that a partition member rotates with a rotor and position-shifts with respect to a main body case in the rotation direction around the axis line of a rotor. Therefore, the positional accuracy of the partition member in the rotation direction can be ensured, and the axial center accuracy of the rotor can be ensured.
  • the rotation preventing portion is an elastic contact portion that elastically contacts at least one of the first case and the second case. If it does in this way, a partition member can be assembled
  • the partition member need only be aligned in the radial direction of the bearing portion in order to ensure the axial accuracy of the rotor, and aligned in the rotational direction (circumferential direction). There is no need to do. Therefore, it is easy to assemble the partition member.
  • the partition member includes a disk-shaped resin plate portion, and the elastic contact portion is a resin spring portion provided on the plate portion. As described above, when the elastic contact portion and the bearing portion are integrally formed on the plate portion, the partition member can be easily assembled.
  • the resin spring portion is provided on an outer peripheral portion of the plate portion.
  • a frictional force is generated at the outer peripheral portion of the plate portion, a large frictional force can be generated as a whole even if the elastic force of the resin spring portion is small. Therefore, it is possible to strongly prevent rotation while having a configuration that is easy to assemble.
  • the resin spring portion includes a contact portion that contacts at least one of the first case and the second case, and the contact portion is provided on an outer peripheral edge of the plate portion. . If it does in this way, a frictional force will generate
  • the rotor housing chamber is provided in the first case, and the resin spring portion includes a first leaf spring piece that elastically deforms when a compressive force in the axial direction is applied, and the first plate It is desirable that the spring piece abuts against the second case in the axial direction. If it does in this way, before joining the 1st and 2nd case, a partition member can be accurately positioned to the 1st case. In this state, the positional relationship between the rotor and the valve body is adjusted, and then the first and second cases can be joined. Therefore, the valve body can be attached with high accuracy.
  • the resin spring portion includes a second leaf spring piece that is in contact with the first case in the axial direction. If it does in this way, since a partition member closely_contact
  • the partition member includes a disk-shaped resin plate portion, the elastic contact portion is a resin protrusion protruding from the plate portion, and the portion of the plate portion on which the resin protrusion is formed is
  • the structure may be sandwiched between the opposing portions of the first case and the second case. If it does in this way, a resin projection part will be pinched and crushed by the 1st case and the 2nd case, and will be in elastic contact with the 1st case or the 2nd case. Therefore, the partition member can be assembled in a state in which the partition member is prevented from being rotated by friction while having a simple configuration.
  • the anti-rotation portion engages with a case-side anti-rotation portion provided in at least one of the first case and the second case. If it does in this way, rotation of a partition member and positioning in a rotation direction can be performed by engagement with a case and a partition member. Therefore, it is easy to assemble the partition member.
  • the case-side anti-rotation part is a cylindrical part extending in the axial direction
  • the anti-rotation part is a plate part arranged on the inner peripheral side of the cylindrical part
  • the cylinder The shape part and the plate part are preferably non-circular when viewed in the axial direction. If it does in this way, a plate part will engage with the inner peripheral side of a cylindrical part, and the rotation around the axis line of a plate part will be controlled. Therefore, the partition member can be assembled in a state in which the partition member is prevented from rotating with respect to the main body case.
  • the main body case includes a joint portion where the first case and the second case are joined by welding or welding, and the rotation preventing portion is separated from the joint portion. If it does in this way, it can prevent that a rotation stop part changes by heat at the time of welding or welding the 1st and 2nd case.
  • the partition member is provided with either one of a cylindrical portion formed coaxially with the rotor and a contact portion disposed on the inner peripheral side or the outer peripheral side of the cylindrical portion, One case or the second case is provided with the other of the cylindrical portion and the contact portion, and the contact portion is in contact with the cylindrical portion in the radial direction at three or more circumferential positions. It is desirable that As described above, when one of the positioning portions is cylindrical, a positioning state can be formed only by radial alignment, and alignment in the rotational direction (circumferential direction) is not necessary. Therefore, it is easy to assemble the partition member.
  • the rotor housing chamber is provided in the first case, and the rotor magnet disposed on the outer peripheral portion of the rotor and the stator disposed on the outer side of the first case sandwich the first case.
  • the first case is provided with a case-side bearing portion that rotatably supports the other end of the rotor, and one of the cylindrical portion and the abutting portion. Is desirable.
  • the positional accuracy of the rotor with respect to the first case is high. Therefore, the clearance between the rotor magnet and the first case can be reduced. Therefore, the efficiency of the motor can be improved.
  • the valve element is disposed on the central axis of the cylindrical portion and moves forward and backward in the axial direction based on the rotation of the rotor. If it does in this way, even if the position of the rotation direction (circumferential direction) of a partition member changes, the radial direction position (position of a direction orthogonal to the axial direction of a rotor) will not change, but a valve body and a valve seat ( The positional relationship of the valve seat provided at the opening of the fluid passage that is opened and closed by the valve body does not collapse. Therefore, the valve body can be opened and closed with high accuracy.
  • the first case includes a first concave portion that is recessed toward one end in the axial direction, and an annular first flange portion that extends in the radial direction of the rotor from an opening edge of the first concave portion.
  • the case includes a second recess that is recessed toward the other end side in the axial direction, and an annular second flange that extends in the radial direction of the rotor from an opening edge of the second recess, and the first recess and the second recess. Is formed by pressing a non-magnetic metal material, and the anti-rotation portion may be inserted between the first flange portion and the second flange portion.
  • inner peripheral portions of the first flange portion and the second flange portion are opposed in the axial direction at an interval where the detent portion can be inserted, and the first flange portion and the second flange portion It is desirable that the outer peripheral portion of the portion is in contact with the axial direction. If it does in this way, positioning of the axial direction of the 1st and 2nd case is performed by making both flange parts contact directly on the basis of the perimeter part of the 1st and 2nd flange parts. Therefore, the positional accuracy of the first and second cases is not lowered by the rotation stopper.
  • the valve body is attached to an operating member that moves forward and backward in the axial direction based on rotation of the rotor
  • the partition member includes a rotation restricting portion that restricts a rotatable range of the rotor
  • a support member that supports the operation member to be movable in the axial direction and restricts the rotation of the operation member in the rotation direction of the rotor is attached.
  • the valve body is connected to the operating member via an elastic member that is elastically deformable in the axial direction, and the rotor is at a predetermined rotational position between one end and the other end of the rotatable range.
  • the valve body moves, the valve body moves to a position that contacts a valve seat provided in the opening of the flow path in the valve chamber, and when the rotor moves from the predetermined rotation position to one end of the rotatable range,
  • the valve element can be configured to be pressed against the valve seat by the elastic force of the elastic member elastically deformed in the axial direction. If it does in this way, the opening of a channel can be sealed by pressing a valve element against a valve seat.
  • the rotatable range of the rotor is restricted by the rotation restricting portion, the rotor and the operating member can be stopped at a position where the pressing force by the valve element does not become excessive.
  • the torque of the motor used as the drive source for rotating the rotor does not act directly on the valve body, preventing the valve body from being pressed with excessive force it can.
  • the support member is detachably attached to the partition member. If it does in this way, in the state which connected the rotation control part and the rotor, a support member can be removed and adjustment of an advancing / retreating position of an operation member and a valve element can be performed. And if a support member is attached after adjustment, the positional relationship of a valve body and a rotor will be fixed. Therefore, the operation of adjusting the positional relationship between the valve body and the rotor is easy.
  • the rotor and the operating member may be provided with a screw feed mechanism for converting the rotation of the rotor into the axial movement of the operating member.
  • the screw feed mechanism can be configured by forming a screw groove in a shaft hole provided in the rotor and forming a screw thread on the outer peripheral surface of the operating member, the number of parts is small and assembly is easy.
  • both the bearing portion of the rotor and the detent of the operation member can be easily formed on the partition member.
  • the partition member that divides the sealed space in the main body case into the rotor accommodating chamber and the valve chamber is prevented from rotating around the axis of the rotor with respect to the first case or the second case constituting the main body case. It is assembled in the state that was done. Thereby, it can control that a partition member rotates with a rotor and a position shift to the rotation direction around the axis of a rotor to a main part case is possible. Therefore, it is possible to ensure the positional accuracy of the partition member in the rotation direction, and it is possible to ensure the axial accuracy of the rotor that is rotatably supported by the partition member.
  • FIG. It is a disassembled perspective view of the principal part of the valve apparatus of Embodiment 1. It is sectional drawing of the principal part of the valve apparatus of Embodiment 1.
  • FIG. It is explanatory drawing of the rotor part of a stepping motor. It is explanatory drawing of a Geneva gear. It is operation
  • FIG. 3 is a cross-sectional view of a partition member according to Embodiment 1.
  • FIG. It is explanatory drawing of the combined state of the partition member of Embodiment 1, and a supporting member.
  • FIG. 1 It is the perspective view which looked at the partition member of Embodiment 1 from the rotor part side. It is explanatory drawing of a valve body. It is explanatory drawing of positioning of an operation member. It is explanatory drawing of the partition member of the modification 1. It is explanatory drawing of the partition member of the modification 2. It is explanatory drawing of the partition member of the modification 2, and a 2nd case. It is sectional drawing of the valve apparatus of Embodiment 2. It is a disassembled perspective view of the principal part of the valve apparatus of Embodiment 2. It is sectional drawing of the principal part of the valve apparatus of Embodiment 2. It is explanatory drawing of the partition member of Embodiment 2. FIG. It is sectional drawing of the partition member of Embodiment 2. FIG.
  • FIG. 1 is a cross-sectional view of the valve device of the first embodiment.
  • the valve device 1 includes a main body case 2 formed from a first case 10 and a second case 20.
  • a space in the main body case 2 is partitioned by a partition member 30.
  • the space in the second case 20 is a valve chamber 5a in which the inflow pipe 3 and the discharge pipe 4 through which a fluid flows are connected, and the space in the first case 10 is a rotor storage chamber 5b that stores the rotor portion 90.
  • the rotor part 90 is supported in the first case 10 so as to be rotatable around the axis X.
  • the rotor unit 90 constitutes the stepping motor 8 together with the stator unit 80 configured on the outer peripheral side of the first case 10.
  • a motor cover 87 is attached to the outside of the first case 10 so as to cover the stator portion 80.
  • a valve body 6 for opening and closing the opening 3a of the inflow pipe 3 is disposed in the valve chamber 5a.
  • the valve body 6 is attached to the tip of the operating member 7 that penetrates the partition member 30.
  • the rotation of the rotor portion 90 of the stepping motor 8 is converted into a forward / backward movement in the direction of the axis X of the operating member 7 by a screw feed mechanism described later.
  • the valve body 6 attached to the tip of the operating member 7 opens and closes the opening 3 a of the inflow pipe 3.
  • a high-pressure fluid such as a gaseous or liquid heat medium (heating medium or cooling medium) is introduced into the valve chamber 5 a through the inflow pipe 3.
  • the second case 20 is formed by deep drawing a stainless steel plate, which is a nonmagnetic metal, by press molding.
  • the second case 20 extends radially outward from a disk-shaped bottom portion 21, a cylindrical peripheral wall portion 22 that surrounds the bottom portion 21 and extends in the axis X direction, and an end portion of the peripheral wall portion 22 opposite to the bottom portion 21.
  • a second flange portion 23 is provided.
  • the bottom portion 21 and the peripheral wall portion 22 constitute a cup-shaped recess that is recessed on one end side (the inflow pipe 3 side) of the valve device 1 in the axis X direction.
  • One end of the concave portion is opened in a circular shape, and a second flange portion 23 is provided at the opening edge of the concave portion, that is, one end of the peripheral wall portion 22.
  • an attachment member 27 of the inflow pipe 3 is provided so as to penetrate the bottom portion 21 in the thickness direction.
  • the attachment member 27 is a cylindrical member having a through hole 28, and a tip end portion 27 a located in the valve chamber 5 a is formed in an annular shape surrounding the opening 3 a of the inflow pipe 3.
  • the tip portion 27a is a contact portion (valve seat) with which the valve body 6 contacts.
  • the tip portion 27 a is formed thicker than the inflow pipe 3. Thereby, the front-end
  • a reduced diameter portion 28 a is provided in the middle of the through hole 28 in the axis X direction.
  • the attachment member 27 has an inner diameter Da at a portion closer to the distal end portion 27 a than the reduced diameter portion 28 a is smaller than the inner diameter of the inflow pipe 3.
  • the peripheral wall portion 22 is provided with an opening 22a that opens in a direction orthogonal to the axis X.
  • a tip 4a of the discharge pipe 4 extending in a direction perpendicular to the axis X is inserted into the opening 22a.
  • the discharge pipe 4 is welded to the peripheral wall portion 22 in a state where the tip 4a is inserted through the opening 22a.
  • the outer peripheral portion 23 a of the second flange portion 23 is an annular portion provided at an end portion on the outer peripheral side of the second flange portion 23.
  • the 2nd flange part 23 is the shape where the inner peripheral part 23b located in the inner peripheral side of the outer peripheral part 23a was dented from the outer peripheral part 23a to the peripheral wall part 22 side.
  • the inner peripheral portion 23b is bent toward the peripheral wall portion 22 from the outer peripheral portion 23a and extends in parallel with the axis X direction, and is bent toward the center of the second flange portion 23 from the side portion 23c to the axis X direction.
  • a bottom portion 23d extending vertically.
  • the outer peripheral portion 23a of the second flange portion 23 contacts the outer peripheral edge of the first case 10 (the outer peripheral portion 13a of the first flange portion 13 described later) over the entire periphery.
  • the outer peripheral parts 13a and 23a which are the contact parts of both the flange parts 13 and 23 are welded over the whole periphery.
  • the first case 10 and the second case 20 are joined together to form the main body case 2.
  • the outer peripheral portions 13a and 23a are joined by TIG welding in which welding is performed while always blowing an inert gas.
  • the bottom surface portion 23d of the inner peripheral portion 23b of the second flange portion 23 is disposed at a position away from the first flange portion 13 in the axis X direction.
  • the inner peripheral portion 13b of the first flange portion 13 and the bottom portion 23d of the second flange portion 23 face each other in the axis X direction, and a gap is formed between them.
  • the outer peripheral edge of the partition member 30 is inserted into this gap.
  • the partition member 30 is attached between the first case 10 and the second case 20 in a state in which the rotation around the axis X is prevented as described later.
  • the first case 10 is formed by deep drawing a stainless steel plate, which is a nonmagnetic metal, by press molding.
  • the first case 10 includes a disk-shaped bottom part 11, a peripheral wall part 12 surrounding the bottom part 11, and a first flange part 13 extending radially outward from an end of the peripheral wall part 12 opposite to the bottom part 11.
  • the bottom portion 11 and the peripheral wall portion 12 constitute a cup-shaped recess that is recessed on the other end side in the axis X direction of the valve device 1 (the side opposite to the inflow pipe 3).
  • One end of the recess is opened in a circular shape, and the first flange portion 13 is provided at the opening edge of the recess, that is, one end of the peripheral wall portion 12.
  • the first flange portion 13 is formed with the same outer diameter as the second flange portion 23 of the second case 20.
  • the 1st flange part 13 is a planar shape without a level
  • a bottomed cylindrical support portion 11a is provided at the center of the bottom portion 11 so as to protrude in a direction away from the rotor portion 90 (upper side in FIG. 1).
  • the support portion 11a is formed to have an outer diameter D3 that is smaller than the outer diameter D1 of the rotor portion 90.
  • a bearing member 24 that rotatably supports a shaft portion 92 on one end side of a rotor portion 90, which will be described later, is positioned and held on the support portion 11a by, for example, press-fitting.
  • the peripheral wall portion 12 includes a small diameter portion 12a and a large diameter portion 12b that both extend in the axis X direction.
  • the small diameter portion 12a is disposed on the bottom 11 side, and the large diameter portion 12b is disposed on the first flange portion 13 side.
  • the small diameter portion 12a and the large diameter portion 12b are connected by an annular portion extending perpendicularly to the axis X direction. A step due to the annular portion is formed between the small diameter portion 12a and the large diameter portion 12b.
  • the inner diameter D2 of the small diameter portion 12a is slightly larger than the outer diameter D1 of the rotor portion 90.
  • the outer diameter D1 of the rotor portion 90 is the outer shape of the portion where the rotor magnet 100 is disposed, and is 15.5 mm in this embodiment.
  • the clearance gap between the internal peripheral surface of the small diameter part 12a and the rotor magnet 100 is 0.4 mm.
  • this invention is not limited to the thing of such a dimension.
  • a stator portion 80 of the stepping motor 8 is provided on the radially outer side of the small diameter portion 12a, and a rotor portion 90 is provided on the radially inner side.
  • the stator portion 80 and the rotor portion 90 are located on the outer side and the inner side with the small diameter portion 12a interposed therebetween.
  • the stator unit 80 includes a stator core 81, a bobbin 82, a drive coil 83, and a motor case 88.
  • the inner peripheral portion 81a of the stator core 81 has a cylindrical shape in which pole teeth (not shown) are arranged at a predetermined interval in the circumferential direction around the axis X.
  • a set of stator cores 81 are provided with the disk portions 81b in contact with each other and the inner peripheral portions 81a facing in opposite directions. In this state, the pole teeth of one stator core 81 and The pole teeth of the other stator core 81 are alternately arranged in the circumferential direction around the axis X.
  • the bobbin 82 around which the drive coil 83 is wound is fitted on the outer periphery of the inner peripheral portion 81a of the stator core 81.
  • Terminals 84 and 84 are provided at the ends of the windings constituting the drive coil 83.
  • the tips of the terminals 84 and 84 are connected to the circuit board 86 to which the connector terminal 85 is connected.
  • the motor cover 87 that accommodates the stator unit 80 is made of a resin material such as PPS (polyphenylene sulfide).
  • the motor cover 87 is attached by engaging the engaging claw 87a with the engaging portion 26a of the attaching member 26 extending from the first flange portion 13 of the first case 10 to the stepping motor 8 side.
  • the rotor unit 90 includes a cylindrical main body 91 whose one end is sealed, and a ring-shaped rotor magnet 100 disposed on the outer periphery of the main body 91.
  • the main body 91 and the rotor magnet 100 are integrally formed by insert molding.
  • a cylindrical shaft portion 92 protrudes toward the bottom 11 of the first case 10 (upper side in FIG. 1).
  • the bottomed cylindrical support portion 11a is provided in the central portion of the bottom portion 11 that faces the shaft portion 92 in the axis X direction.
  • a bottomed cylindrical bearing member 24 is positioned and fixed to the support portion 11a by press-fitting.
  • the bearing member 24 includes a thrust bearing portion 24a that restricts the position in the axis X direction of the rotor portion 90 (shaft portion 92), and a radial bearing portion 24b that restricts the radial position of the rotor portion 90 (shaft portion 92). ing.
  • the shaft portion 92 is rotatably supported by the bearing member 24. Thereby, the shaft center alignment of the one end side of the rotor part 90 rotating around the axis line X is performed by the bearing member 24 fixed to the support part 11a.
  • a ring-shaped projecting portion 91b as viewed in the direction of the axis X is provided over the entire circumference in the approximate center of the outer periphery of the main body 91 in the direction of the axis X and in the vicinity of the shaft 92.
  • One end of the rotor magnet 100 in the axis X direction is in contact with the protruding portion 91b.
  • FIG. 3 (a) is a cross-sectional view of the main part of the valve device 1
  • FIG. 3 (b) is a partially enlarged view of FIG. 3 (a).
  • is there. 4 is an explanatory view of the rotor unit 90
  • (a) is a perspective view of the rotor unit 90
  • (b) is a plan view of the rotor unit 90 as viewed from the partition member 30 side.
  • a small-diameter shaft part 93 having a diameter smaller than that of the projecting part 91b is provided on the side opposite to the shaft part 92.
  • a Geneva pin 93a (see FIGS. 2 and 4) extending along the axis X direction (longitudinal direction of the rotor portion 90) is provided on the outer periphery of the small diameter shaft portion 93.
  • the Geneva pin 93a is formed in a range from the vicinity of the protruding portion 91b to the vicinity of the distal end portion 93e in the small diameter shaft portion 93.
  • a substantially C-shaped bulging portion 93b is provided on the outer periphery on the protruding portion 91b side when viewed from the axis X direction.
  • the bulging portion 93b is formed with the same radial height as the Geneva pin 93a.
  • a tooth gap portion 93d (see FIG. 4B) is provided between the bulging portion 93b and the geneva pin 93a.
  • portions near the tooth groove portion 93d are stopper portions 93c and 93c (contact portions) with which 112d and 112e contact each other of a Geneva gear 110 described later.
  • a Geneva gear 110 is provided on the radially outer side of the small diameter shaft portion 93.
  • the Geneva gear 110 defines the rotation angle around the axis X of the rotor unit 90.
  • the rotation shaft 116 of the Geneva gear 110 is rotatably supported by a bearing hole 38 a of the bearing portion 38 formed in the partition member 30 and a bearing hole 115 a formed in the bracket member 115.
  • the Geneva gear 110 is provided to be rotatable around an axis X ′ parallel to the axis X of the rotor portion 90 of the stepping motor 8. Since the Geneva gear 110 is provided at a position overlapping the rotor magnet 100 in the axis X direction, the diameter of the large diameter portion 12b of the first case 10 can be reduced.
  • FIG. 5 is an explanatory diagram of the Geneva gear 110, (a) is a perspective view of the Geneva gear 110 viewed from the partition member 30 side, and (b) is a plan view of the Geneva gear 110 viewed from the partition member 30 side.
  • the Geneva gear 110 includes a ring-shaped shaft portion 111 through which the rotation shaft 116 is inserted, and a large-diameter portion 112 having a larger diameter than the shaft portion 111.
  • the protrusion 112c is provided.
  • the tooth part 112b and the protrusion part 112c are alternately provided in the circumferential direction of the large diameter part 112.
  • the tooth portion 112b is formed over the entire length in the thickness direction (axis line X ′ direction) of the large diameter portion 112, and the protruding portion 112c prevents the rotor portion 90 from obstructing the rotation of the rotor portion 90. It is formed with a thickness (height hz) that avoids contact with the bulging portion 93b.
  • both side parts 112d and 112e which are the parts facing the tooth groove part 112a, constitute a degree that defines the rotation range (rotation angle) of the rotor part 90. is doing.
  • FIG. 6A and 6B are explanatory views of the operation of the Geneva gear 110.
  • FIG. 6A shows a state in which the rotation of the rotor portion 90 is restricted by one degree 112e of the Geneva gear 110
  • FIG. 6B shows a tooth groove portion 112a of the Geneva gear 110.
  • the geneva pin 93a of the rotor part 90 is inserted into the tooth groove part 112a of the geneva gear 110 and engaged with the tooth part 112b.
  • the Geneva gear 110 is rotated around the axis X 'by a predetermined angle by the Geneva pin 93a.
  • the stepping motor 8 is driven to rotate the rotor portion 90 to move the valve body 6 forward and backward in the direction of the axis X.
  • the rotatable range of the rotor portion 90 is configured by the Geneva gear 110 and the Geneva pin 93 a.
  • the stepping motor 8 is stepped out in a state where the rotation of the rotor portion 90 is blocked by the rotation restricting portion, and then the driving of the stepping motor 8 is stopped.
  • the rotor 90 In the angular position shown in FIG. 6 (a), the rotor 90 is restricted from rotating in the counterclockwise direction and can only rotate in the clockwise direction CW.
  • the state shown in FIG. 6B is obtained at a point where the rotor unit 90 has rotated twice. From this state, the rotation of the rotor portion 90 is prevented when the rotation of the Geneva gear 110 further rotates once in the clockwise direction CW and 112d per degree of the Geneva gear 110 comes into contact with the stopper portion 93c of the bulging portion 93b (FIG. 6 (c)). )reference).
  • the rotor 90 is restricted from rotating in the clockwise direction CW and can only rotate in the counterclockwise direction CCW.
  • the Geneva gear 110 is prevented from further rotation by 112d or 112e per degree when the rotor 90 rotates three times in the same direction. Since the protruding portion 112c of the Geneva gear 110 is formed at a height that avoids interference with the bulging portion 93b of the rotor portion 90, the Geneva gear 110 and the rotor portion 90 rotate relative to each other without interfering with each other.
  • the rotation of the rotor portion 90 of the stepping motor 8 is converted into the forward and backward movement of the operating member 7 in the direction of the axis X by the screw feed mechanism.
  • a shaft member 71 that is inserted into the main body 91 of the rotor 90 is provided at one end of the operating member 7.
  • the screw feeding mechanism includes a female screw 95 provided on the inner periphery of the main body 91 of the rotor unit 90, a male screw 71 a provided on the outer periphery of the shaft member 71, and a support member 120.
  • the support member 120 is non-rotatably attached to the engagement portion 35 of the partition member 30.
  • the support member 120 supports the fitting portion 72 provided at a substantially central portion of the operation member 7 in the axis X direction so as not to rotate around the axis X and to move forward and backward in the axis X direction.
  • the shaft member 71 is screwed and the actuating member 7 moves in the direction of the axis X.
  • the operating member 7 is moved to the inflow pipe 3 side by the screw feed mechanism, and the valve body 6 is moved to the inflow pipe 3. It abuts on the tip 27a (see FIG. 1) of the mounting member 27.
  • the valve body 6 is connected to the operation member 7 via a spring 76 that is an elastic member that is elastically deformed in the direction of the axis X.
  • the spring 76 is kept in a free length state until the valve body 6 abuts on the distal end portion 27 a of the mounting member 27.
  • the valve device 1 regulates the rotation of the rotor unit 90 by the geneva mechanism (rotation regulating unit) configured by the geneva gear 110 and the geneva pin 93a.
  • the geneva mechanism rotation regulating unit
  • the rotor unit 90 moves to a predetermined rotational position between one end and the other end of the rotatable range, that is, a rotational position rotated once in the counterclockwise direction CCW from the angular position shown in FIG.
  • the valve body 6 moves to a position where it comes into contact with the distal end portion 27 a of the mounting member 27 via the operating member 7 and the spring 76. In this position, the spring 76 maintains a free length state.
  • the spring 76 is compressed between the valve body 6 and the actuating member 7. For this reason, the valve body 6 is pressed against the valve seat (the distal end portion 27 a of the mounting member 27) by the elastic force of the spring 76. Therefore, the opening of the inflow pipe 3 is sealed by the valve body 6.
  • the rotor unit 90 cannot further rotate in the counterclockwise direction CCW from the rotational position shown in FIG.
  • the spring 76 is not compressed beyond a preset dimension. Therefore, the rotor part 90 and the operation member 7 can be stopped in the position where the pressing force by the valve body 6 does not become excessive.
  • the valve body 6 is prevented from directly acting on the torque of the stepping motor 8 (such as step-out torque during stoppage). Therefore, it is prevented that the valve body 6 is pressed against the valve seat (the distal end portion 27a of the mounting member 27) with an excessive force.
  • FIG. 7 is an explanatory view of the support member 120, (a) is a plan view of the support member 120 viewed from the partition member 30 side, (b) is a plan view of the support member 120 viewed from the valve body 6 side, ) Is a side view. Further, (d) is a perspective view of the support member 120 cut along the AA section in (a).
  • the support member 120 includes a cylindrical base 121 and a flange 122 extending radially outward from one end of the base 121 on the valve body 6 side. On the inner peripheral surface of the through-hole 123 that penetrates the support member 120 in the longitudinal direction, a protruding portion 121a that protrudes radially inward is provided.
  • the protrusions 121a are provided at two locations at predetermined angular intervals (180 degrees in FIG. 7) in the circumferential direction around the axis X.
  • the through hole 123 is inserted with a fitting portion 72 provided at a substantially central portion in the axis X direction of the operating member 7.
  • a concave groove 72 a is formed on the outer peripheral surface of the fitting portion 72, and the concave groove 72 a is fitted to the protruding portion 121 a formed on the inner peripheral surface of the through hole 123, whereby the support member 120 and the actuating member 7. Relative rotation about the axis X is prevented.
  • the support member 120 is attached to an engaging portion 35 described later provided in the central portion of the partition member 30.
  • An engagement protrusion 124 that protrudes radially outward is provided at a portion on the flange portion 122 side on the outer peripheral surface of the cylindrical base portion 121.
  • a plurality of engagement protrusions 124 are provided at equal intervals in the circumferential direction around the axis X.
  • the engaging protrusion 124 fits into the engaging protrusion 35 a of the engaging portion 35 when the support member 120 is attached to the engaging portion 35 of the partition member 30.
  • the engagement protrusion 35 a is fitted into a recess formed between the adjacent engagement protrusions 124.
  • the support member 120 is attached in a state in which the support member 120 is prevented from rotating with respect to the partition member 30.
  • the mounting position of the support member 120 in the circumferential direction with respect to the partition member 30 can be adjusted by the circumferential arrangement interval of the engagement protrusions 124.
  • twelve engagement protrusions 124 are provided at equal intervals in the circumferential direction, the mounting position of the support member 120 in the circumferential direction with respect to the partition member 30 can be changed by a multiple of 30 degrees.
  • FIG. 8 is an explanatory view of the partition member 30, (a) is a plan view of the partition member 30 viewed from the valve body 6 side, and (b) is a plan view of the partition member 30 viewed from the rotor portion 90 side. Moreover, (c) is a side view of the partition member 30, and (d) is a perspective view of the partition member 30 as viewed from the valve body 6 side. 9 is a cross-sectional view of the partition member 30 (AA cross-sectional view of FIG. 8A), and the first case 10, the second case 20, and the small diameter shaft portion 93 of the rotor portion 90 are indicated by phantom lines. ing. FIG.
  • FIG. 10 is an explanatory view of the coupled state of the support member 120 and the partition member 30, (a) is a perspective view of the partition member 30 viewed from the valve body 6 side, and (b) is a surface in (a). It is sectional drawing cut
  • FIG. FIG. 11 is a perspective view of the partition member 30 as seen from the rotor part 90 side.
  • the partition member 30 is made of a resin material and has a shape that can be molded by a mold that is divided into two in the direction of the axis X as described below, it can be easily molded.
  • the partition member 30 has a disk-shaped plate portion 31.
  • An insertion hole 32 through which the shaft member 71 of the operating member 7 is inserted is provided in the center portion of the plate portion 31 so as to penetrate in the thickness direction.
  • a cylindrical wall 33 surrounding the insertion hole 32 is provided on the surface 31 b on the rotor portion 90 side of the partition member 30.
  • the cylindrical wall 33 is formed to have a predetermined height h4 in the axis X direction.
  • the shaft member 71 inserted through the insertion hole 32 provided in the center of the plate portion 31 is supported by the cylindrical wall 33 so as to be movable in the axis X direction. For this reason, the axial runout when the shaft member 71 moves in the axis X direction is regulated by the cylindrical wall 33.
  • the tip 33 a side of the cylindrical wall 33 is inserted into a fitting hole 91 c (see FIGS. 3 and 9) that opens at the end of the main body 91 of the rotor 90 on the partition member 30 side. That is, the other end side (small diameter shaft portion 93 side) of the rotor portion 90 is rotatably supported by the cylindrical wall 33. That is, in this embodiment, the center alignment of one end side of the rotor portion 90 rotating around the axis X is performed by the radial bearing portion 24b of the bearing member 24 provided in the bottom portion 11 of the first case 10 described above. The centering of the other end side is performed by the cylindrical wall 33 formed integrally with the plate portion 31 of the partition member 30.
  • the main body portion 91 is supported so as to be slidable and rotatable with the cylindrical wall 33 inserted in the fitting hole 91c, and the front end portion 93e side of the main body portion 91 is supported by the fitting hole 91c and the cylindrical wall 33.
  • the radial bearing is configured.
  • annular wall 34 surrounding the cylindrical wall 33 is provided on the surface 31b of the plate part 31 on the rotor part 90 side.
  • the annular wall 34 is formed to have a predetermined height h5 in the axis X direction on the radially outer side of the Geneva gear 110 described above.
  • the outer diameter D4 of the annular wall 34 matches the inner diameter of the large diameter portion 12b in the peripheral wall portion 12 of the first case 10.
  • the partition member 30 is positioned with respect to the first case 10 by press-fitting the annular wall 34 into the large-diameter portion 12b.
  • a plate spring 140 for preventing rattling in the axis X direction of the rotor portion 90 is disposed between the partition member 30 and the tip portion 93 e of the rotor portion 90.
  • the leg portion 141 (see FIG. 11) of the leaf spring 140 is disposed in the groove 31e and is in contact with the partition member 30.
  • the support members 39 are disposed on both sides of the bearing hole 38 a formed in the plate portion 31 of the partition member 30.
  • the support members 39, 39 are provided with a protrusion 39a on the side surface opposite to the side surface facing the bearing hole 38a.
  • the bracket member 115 (see FIG. 2) that supports the Geneva gear 110 described above is attached to the support members 39 and 39 by engaging the opening 115c provided in the arm portion 115b extending in the axis X ′ direction with the protrusion 39a. It is done.
  • the plate portion 31 is provided with a through hole 31 d that penetrates the plate portion 31 in the thickness direction at a position adjacent to the base portions of the support members 39 and 39.
  • the space in the first case 10 and the space in the second case 20 communicate with each other through the through hole 31d.
  • the surface 31a on the valve body 6 side of the plate portion 31 is provided with a cylindrical bearing portion 38 that protrudes toward the valve body 6 at a position on the back side of the bearing hole 38a.
  • the bearing portion 38 supports the rotating shaft 116 of the Geneva gear 110.
  • an engagement portion 35 surrounding the insertion hole 32 is provided on the surface 31 a of the partition member 30 on the valve body 6 side.
  • the inner peripheral surface 36 of the engaging portion 35 is enlarged in two stages as it goes away from the plate portion 31 (leftward in FIG. 9), and the portion of the plate portion 31 has a small diameter portion 36a and a valve body 6.
  • part of the side is the large diameter part 36b.
  • the inner diameter D5 of the small-diameter portion 36a corresponds to the outer diameter of the base 121 (see FIG. 7) of the support member 120.
  • the base 121 of the support member 120 becomes the small-diameter portion. 36a is fitted.
  • the large-diameter portion 36b is provided with a plurality of engagement protrusions 35a protruding radially inward at equal intervals around the axis X.
  • the engagement protrusion 35a extends over the entire length of the axis X of the large diameter portion 36b.
  • the engaging portion 35 is provided with notches 35b at intervals of 120 degrees in the circumferential direction.
  • a through hole 31c that penetrates the plate portion 31 and an arm portion 37 that protrudes in the same direction as the engagement portion 35 on the radially outer side of the through hole 31c are provided.
  • the arm portion 37 extends in the axis X direction, and the height h1 from the plate portion 31 is higher than the height h2 from the plate portion 31 of the engaging portion 35.
  • a claw portion 37 a that protrudes radially inward is provided at the tip of the arm portion 37.
  • the support member 120 is thus held in a state in which the base 121 is fitted to the small diameter portion 36 a and the contact surface 122 b is in contact with the distal end surface of the engagement portion 35.
  • the engagement protrusions 124 of the support member 120 are in contact with the engagement protrusions 35a from both sides in the circumferential direction.
  • the member 120 is attached in a state in which the member 120 is prevented from rotating with respect to the partition member 30.
  • two parallel cutout grooves 41, 41 are formed at four locations including the radially outer position of the bearing portion 38, respectively.
  • the notch grooves 41 and 41 extend to the position of the annular wall 34 (see FIG. 8B).
  • a portion between the cutout grooves 41 and 41 is a first leaf spring piece 42 that extends in the radial direction and has a constant circumferential width.
  • the four first leaf spring pieces 42 are arranged at an equiangular pitch around the axis X.
  • a rib 42a is formed that protrudes to the same side as the bearing portion 38 and the engaging portion 35.
  • the thickness h6 in the direction of the axis X of the portion excluding the rib 42a is the thickness of the second leaf spring piece 43 which is a portion other than the first leaf spring piece 42 on the outer peripheral edge of the plate portion 31. It is formed thinner than the length h7 (see FIG. 8C).
  • the first leaf spring piece 42 and the second leaf spring piece 43 constitute a resin spring portion that is elastically deformed in the axis X direction. This resin spring portion is the rotation preventing portion 40.
  • the rotation preventing portion 40 is inserted between the first flange portion 13 on the first case 10 side and the second flange portion 23 on the second case 20 side, and the first flange portion 13. Between the inner peripheral portion 13b and the bottom surface portion 23d of the second flange portion 23.
  • the distance h8 in the axis X direction between the inner peripheral portion 13b and the bottom surface portion 23d is the thickness h9 in the axis X direction of the rotation preventing portion 40 (see FIG. 8C). Is set smaller than.
  • the anti-rotation portion 40 is bent at the tip of the first leaf spring piece 42, which is a thin spring piece, toward the rotor portion 90, and is compressed and deformed in the direction of the axis X. .
  • the anti-rotation portion 40 presses the second leaf spring piece 43 against the inner peripheral portion 13b of the first flange portion 13 in the axis X direction by the elastic force in the axis X direction, and the first leaf spring piece 42 2 is pressed against the bottom 23d of the flange 23 in the direction of the axis X.
  • the second leaf spring piece 43 can be bent in the direction of the axis X, but the amount of bending (the amount of deformation in the direction of the axis X) is extremely small, and the amount of bending of the first leaf spring piece 42> second leaf spring. This is the deflection amount of the piece 43. Accordingly, the amount of movement of the partition member 30 in the axis X direction due to the deformation of the second leaf spring piece is small, and the displacement of the partition member 30 in the axis X direction can be reduced.
  • the partition member 30 is assembled so that the rotation preventing portion 40 that is a resin spring portion is in elastic contact with the inner peripheral portion 13b and the bottom surface portion 23d.
  • the partition member 30 is interposed between the inner peripheral portion 13b and the anti-rotation portion 40 and between the bottom surface portion 23d and the anti-rotation portion 40.
  • a frictional force is generated. That is, in the first embodiment, the partition member 30 is attached between the first case 10 and the second case 20 in a state in which the rotation around the axis X is prevented by the frictional force.
  • the outer peripheral edge where the anti-rotation portion 40 is provided is separated from the welded portion W of the first case 10 and the second case 20 by a predetermined dimension h3 in the radial direction.
  • the outer peripheral portion 13a of the first flange portion 13 of the first case 10 and the outer peripheral portion 23a of the second flange portion 23 of the second case 20 are joined by TIG welding.
  • the gap S since the gap S is formed between the rotation stopper 40 and the welded portion W, the gap S functions as a heat insulating layer. Other members may be arranged in the gap S. Even in this case, if the welding site W and the partition member 30 are separated from each other, the effect of suppressing the transfer of welding heat can be obtained.
  • the partition member 30 is positioned with respect to the first case 10 by press-fitting the annular wall 34 into the large-diameter portion 12b, but transmission of welding heat to the partition member 30 side is suppressed. Therefore, it is possible to prevent the annular wall 34 from being deformed by welding heat and the positioning of the partition member 30 from being impaired.
  • the 1st case 10 and the 2nd case 20 are formed with the resin material, the 1st case 10 and the 2nd case 20 can be welded and joined, but the same effect is acquired also in this case .
  • the fitting portion 72 into which the support member 120 is fitted, the connecting portion 73 with the valve body 6, and the spring support portion 74 are made of the same resin material (for example, these are made of PPS (polyphenyl sulfide)) and the shaft member 71 made of SUS material is integrally formed by insert molding.
  • PPS polyphenyl sulfide
  • a male screw 71 a that engages with the female screw 95 of the rotor portion 90 is provided on the outer periphery on the tip side of the shaft member 71.
  • the proximal end side of the shaft member 71 extends through the fitting portion 72 to the vicinity of the spring support portion 74.
  • the outer periphery of the cylindrical fitting part 72 is provided with a groove 72a extending along the axial direction over the entire circumference.
  • the concave grooves 72a are provided at positions that are symmetrical with respect to the axis X (positions that are 180 degrees apart in the circumferential direction around the axis X).
  • the spring support portion 74 includes a cylindrical portion 74a having a diameter larger than that of the fitting portion 72 and a flange portion 74b provided at an end portion of the cylindrical portion 74a on the fitting portion 72 side.
  • the outer diameter of the cylindrical portion 74a is substantially the same as the inner diameter of the spring 76, and one end side of the spring 76 is extrapolated and attached.
  • the outer diameter of the flange portion 74 b is slightly larger than the outer diameter of the spring 76, and one end of the spring 76 contacts.
  • the connecting portion 73 adjacent to the spring support portion 74 has a cylindrical shape as a basic shape, and a protrusion 73 a protruding radially outward protrudes in the opposite direction across the axis X on the outer periphery of the tip of the connecting portion 73. Provided. The distal end side where the projection 73a of the connecting portion 73 is provided is inserted into the opening 62a (see FIG. 2) of the valve body 6, and the valve body 6 and the connecting portion 73 are connected.
  • the valve body 6 includes an engaging member 61 made of a resin material (for example, PPS (polyphenyl sulfide)), an abutting member 65 that is externally fitted to the engaging member 61, and Is provided.
  • 12A and 12B are explanatory views of the valve body, in which FIG. 12A is a plan view of the valve body 6 viewed from the side of the actuating member 7, FIG. 12B is a cross-sectional view taken along the line AA in FIG. It is BB sectional drawing in (a).
  • the engaging member 61 includes a disk part 62, a peripheral wall part 63 extending from the outer periphery of the disk part 62 in the direction opposite to the operating member 7, and a flange part 64.
  • the peripheral wall portion 63 includes a small-diameter portion 63a and a large-diameter portion 63b, and is formed in a stepped shape so that the inner diameter increases as the distance from the disc portion 62 increases.
  • the disc portion 62 is provided with an opening 62a penetrating the disc portion 62 in the thickness direction (axis X direction).
  • the opening 62a two parallel width portions 62b and 62b parallel to each other across the axis X are provided. It is formed.
  • the opening 62a is formed in a shape and size that can be inserted through the tip of the connecting portion 73 provided with the protrusion 73a.
  • the maximum diameter D6 of the distal end portion of the connecting portion 73 is set slightly smaller than the inner diameter D7 of the small diameter portion 63a of the peripheral wall portion 63. Therefore, after inserting the distal end portion of the connecting portion 73 into the opening 62a of the valve body 6, the projection 73a is locked to the disc portion 62 by rotating the valve body 6 by 90 degrees (FIG. 12C). )), The drop-off of the valve body 6 from the connecting portion 73 is prevented. In this state, the valve body 6 and the connecting portion 73 of the actuating member 7 are relatively movable in the axis X direction.
  • the outer diameter of the small diameter portion 63a of the peripheral wall portion 63 is substantially the same as the inner diameter of the spring 76, and the other end side of the spring 76 is extrapolated and attached.
  • the outer diameter of the large-diameter portion 63b is slightly larger than the outer diameter of the spring 76, and the other end of the spring 76 contacts.
  • a flange part 64 is provided over the entire periphery.
  • the flange portion 64 extends outward in the radial direction.
  • An abutting member 65 (see FIG. 3) made of a rubber material such as NBR is externally fitted to the flange portion 64.
  • the outer diameter of the contact member 65 is larger than the opening diameter of the inflow pipe 3.
  • the valve body 6, the actuating member 7, the rotor portion 90, and the inflow pipe 3 are arranged coaxially.
  • the opening 3a of the inflow pipe 3 is opened and closed by a valve body 6 that moves forward and backward in a direction (axis X direction) orthogonal to the opening surface.
  • the actuating member 7 and the valve body 6 are stepped in the axial direction by the stepping motor 8. Therefore, the amount of fluid flowing from the inflow pipe 3 into the valve chamber 5a and discharged from the discharge pipe 4 is adjusted according to the positional relationship with the opening 3a of the valve body 6 that changes stepwise.
  • FIG. 13 is an explanatory view of positioning of the operating member 7 (valve body 6) performed when the valve device 1 is assembled.
  • FIG. 13B is a diagram for explaining the rotation restriction of the rotor unit 90 by the Geneva gear 110.
  • the support member 120 and the actuating member 7 are assembled by fitting the protrusion 121a of the support member 120 and the concave groove 72a of the fitting portion 72 of the actuating member 7 (FIG. 10B). )reference). That is, the support member 120 is fitted so as not to rotate relative to the operating member 7. In this state, the support member 120 is movable in the axis X direction along the protruding portion 121a, and is detachable from the axis X direction with respect to the engaging portion 35 of the partition member 30.
  • the support member 120 is slid to the engaging part 35 side in the state which hold
  • the claw portion 37 a of the arm portion 37 is locked to the engagement step portion 122 a of the support member 120.
  • the support member 120 is an engagement portion of the partition member 30 that is a fixed member. 35 is in a state of being fitted to the rotation stop.
  • the support member 120 is removed from the engagement portion 35.
  • the position of the operating member 7 can be adjusted (the state shown in FIG. 13A).
  • the engagement between the claw portion 37a of the flexible arm portion 37 extending from the support member 120 and the engagement step portion 122a of the support member 120 is released, and the support member 120 is simply slid in the axial direction.
  • the support member 120 can be easily removed from the engaging portion 35.
  • the valve device 1 includes the partition member 30 that partitions the sealed space in the main body case 2 formed by joining the first case 10 and the second case 20.
  • the small-diameter shaft portion 93 on one end side of the rotor portion 90 is rotatably supported by a cylindrical wall 33 formed on the partition member 30, and the other end side is rotatably supported on the first case 10.
  • the partition member 30 includes a detent portion 40 that contacts the first case 10 and the second case 20, and is assembled in a state in which the detent about the axis X is made with respect to the first case 10 and the second case 20. It has been.
  • a resin spring portion (elastic contact portion) that elastically contacts the first case 10 and the second case 20 is used as the rotation preventing portion 40.
  • the partition member 30 is made of resin, and includes a plate portion 31 in which a cylindrical wall 33 that functions as a bearing portion is formed.
  • the first plate spring piece 42 and the second plate spring piece 43 functioning as a resin spring portion are integrally formed on the plate portion 31. Since the first plate spring piece 42 and the second plate spring piece 43 (resin spring portion) prevent rotation by friction, the partition member 30 is aligned with a cylindrical wall to ensure the axial accuracy of the rotor portion 90. It is only necessary that the alignment of the radial direction 33 is performed, and it is not necessary to perform the alignment in the rotation direction (circumferential direction). Therefore, assembly of the partition member 30 is easy.
  • the plate portion 31 has a disk shape, and the first plate spring piece 42 and the second plate spring piece 43 are provided on the outer peripheral portion of the plate portion 31. For this reason, a frictional force is generated at the outer peripheral portion of the plate portion 31, and a large frictional force is generated as a whole even if the elastic force of the first leaf spring piece 42 and the second leaf spring piece 43 (resin spring portion) is small. be able to. Therefore, it is possible to strongly prevent rotation while having a configuration that is easy to assemble.
  • the contact portion (rib 42a) of the first leaf spring piece 42 with the first case 10 and the contact portion of the second leaf spring piece 43 with the second case 20 are It is provided on the outer periphery. Therefore, a frictional force can be generated at the outermost periphery of the plate portion 31, and a large frictional force can be generated as a whole.
  • the first leaf spring piece 42 which is a spring leg on the elastically deforming side of the resin spring portion, is brought into contact with the second case 20, so that it is thicker and wider than the first leaf spring piece 42.
  • a second leaf spring piece 43 which is a spring leg that is less elastically deformed than the first leaf spring piece 42, is brought into contact with the first case 10. If it does in this way, before joining the 1st, 2nd cases 10 and 20, partition member 30 can be positioned to the 1st case 10 with sufficient accuracy. In this state, the positional relationship between the rotor 90 and the valve body 6 is adjusted, and then the first and second cases 10 and 20 can be joined. Therefore, the valve body 6 can be attached with high accuracy.
  • the first leaf spring piece 42 and the second leaf spring piece 43 are elastically deformed when a compressive force in the direction of the axis X is applied, and the first leaf spring piece 42 is against the second case 20.
  • the second leaf spring piece 43 comes into contact with the first case 10 from the other side in the axis X direction. Therefore, the partition member 30 is in close contact with the first case 10 and the second case 20 in the axis X direction and is prevented from moving in the axis X direction. Therefore, it is possible to prevent the position of the valve body 6 supported by the partition member 30 from shifting in the axis X direction. Therefore, the positional accuracy of the valve body 6 can be increased.
  • the partition member 30 according to the first embodiment has an outer peripheral portion provided with the rotation preventing portion 40 having a predetermined dimension h3 in the radial direction from the welded portion W of the first case 10 and the second case 20. Can be assembled at a distance. Therefore, transmission of the welding heat to the partition member 30 (particularly, the first plate spring piece 42 and the second plate spring piece 43) can be suppressed, and the first plate spring piece 42 and the second plate spring piece 43 are deformed by the welding heat. Can be prevented.
  • the partition member 30 is provided with an annular wall 34 as a cylindrical portion formed coaxially with the rotor portion 90, and the first case 10 has an outer peripheral side of the cylindrical portion (annular wall 34).
  • a peripheral wall portion 12 (large-diameter portion 12b) is provided as an abutting portion disposed on the surface.
  • the partition member 30 and the 1st case 10 are made to contact
  • one of the annular wall 34 and the large-diameter portion 12b is cylindrical, and the other is in radial contact with the cylindrical member at three or more circumferential positions. What is necessary is just to make it the shape which is.
  • the rotor housing chamber 5 b is provided in the first case 10, and the rotor magnet 100 disposed on the outer peripheral portion of the rotor portion 90 and the stator portion 80 disposed on the outside of the first case 10 are provided.
  • the first case 10 faces the radial direction of the rotor portion 90 with the small diameter portion 12a interposed therebetween, and the first case 10 has a case-side bearing portion that rotatably supports the shaft portion 92 on one end side of the rotor portion 90.
  • the large-diameter portion 12b that is a positioning portion between the bearing member 24 and the partition member 30 is provided.
  • the shaft portion (small diameter shaft portion 93) on the other end side of the rotor portion 90 is rotatably supported by the partition member 30 as described above, in this configuration, the rotor is attached to the first case 10 and the partition member 30.
  • the position accuracy of the rotor 90 with respect to the first case 10 is high. Therefore, the clearance between the rotor magnet 100 and the first case 10 can be reduced.
  • the gap between the inner peripheral surface of the small diameter portion 12a and the rotor magnet 100 in the first case 10 is 0.4 mm. Therefore, the efficiency of the motor can be improved.
  • Embodiment 1 since the valve body 6 is disposed on the central axis of the annular wall 34 of the partition member 30, the diameter of the valve body 6 is changed even if the position of the partition member 30 in the rotation direction (circumferential direction) changes.
  • the direction position (the position in the direction orthogonal to the axis X direction) does not change, and the positional relationship between the valve body 6 and the valve seat (the attachment member 27 attached to the opening of the inflow pipe 3) does not collapse. Therefore, the valve body 6 can be opened and closed with high accuracy.
  • both the cases 10 and 20 are positioned by directly abutting the outer peripheral portions 13a and 13b in the direction of the axis X, the positional accuracy at the time of joining the cases 10 and 20 is reduced by the anti-rotation portion 40. There is no.
  • the Geneva gear 110 serving as a rotation restricting portion that restricts the rotatable range of the rotor portion 90 and the actuating member 7 that moves the valve body 6 in the axis X direction based on the rotation of the rotor portion 90 are provided on the rotor. All of the support members 120 that restrict the rotation of the operation member 7 so as not to rotate together with the portion 90 are attached to the partition member 30. Therefore, even if the partition member 30 moves, the positional relationship between the support member 120 and the rotation restricting portion (Geneva gear 110) does not collapse.
  • the positional relationship between the actuating member 7 that drives the valve body 6 and the rotor portion 90 is not lost. Therefore, the assembly of the valve device 1 is easy.
  • the support member 120 can be attached to and detached from the partition member 30, the advancement / retraction positions of the operation member 7 and the valve body 6 can be adjusted by removing the support member 120 in a state where the Geneva gear 110 is assembled to the Geneva pin 93 a of the rotor portion 90. And the support member 120 can be attached after adjustment, and the positional relationship of the valve body 6 and the rotor part 90 can be fixed. Therefore, the operation of adjusting the positional relationship between the valve body 6 and the rotor portion 90 is easy. Furthermore, since the actuating member 7 moves forward and backward by the screw feed mechanism, the number of parts is small and assembly is easy.
  • a plate spring piece having a shape extending in the radial direction of the plate portion 31 is used as the resin spring portion.
  • the shape of the plate spring piece is not limited to this.
  • plate spring part extended in the circumferential direction is used as a resin spring part.
  • FIG. 14A and 14B are explanatory views of the partition member 30A according to the first modification.
  • FIG. 14A is a plan view of the partition member 30A viewed from the valve body 6 side
  • FIG. 14B is a partial cross-sectional view thereof (A in FIG. 14A).
  • the partition member 30A of Modification 1 includes a disk-shaped plate portion 31A.
  • the configuration of the plate portion 31A is the same as that of the plate portion 31 of the first embodiment except for the resin spring portions (third plate spring piece 45 and fourth plate spring piece 46) described below.
  • bent cutout grooves 44 are formed at four locations.
  • the notch groove 44 is a first groove portion 44a extending from the outer peripheral edge of the plate portion 31A toward the inner peripheral side, and a first groove portion 44a extending from the end portion on the inner peripheral side of the first groove portion 44a and extending in the circumferential direction.
  • Two groove portions 44b are provided.
  • third leaf spring pieces 45 surrounded by the notch grooves 44 are formed at four locations at intervals of 90 degrees in the circumferential direction around the axis X. Further, a portion between the third leaf spring pieces 45, 45 adjacent in the circumferential direction is a fourth leaf spring piece 46.
  • One end of the third leaf spring piece 45 along the first groove 44a is a free end, and a rib 45a is formed along the edge of the free end.
  • the rib 45a protrudes from the plate portion 31A to the same side as the bearing portion 38 and the engaging portion 35.
  • the thickness of the third plate spring piece 45 in the direction of the axis X excluding the rib 45a is the dimension h6 like the first plate spring piece 42 of the above-described form.
  • the thickness h6 is formed to be thinner than the thickness h7 of the fourth leaf spring piece 46 adjacent to the third leaf spring pieces 45, 45 in the circumferential direction.
  • the third leaf spring piece 45 and the fourth leaf spring piece 46 constitute a resin spring portion that is elastically deformed in the axis X direction.
  • the third leaf spring piece 45 and the fourth leaf spring piece 46 function as the rotation preventing portion 40A in the same manner as the first leaf spring piece 42 and the second leaf spring piece 43 of the above-described form.
  • the thickness in the direction of the axis X of the anti-rotation portion 40A is the dimension h9 as in the first embodiment.
  • the third leaf spring piece 45 and the fourth leaf spring piece 46 are inserted between the first flange portion 13 on the first case 10 side and the second flange portion 23 on the second case 20 side. It is sandwiched between the inner peripheral portion 13 b and the bottom surface portion 23 d of the second flange portion 23.
  • the tip (free end) of the third leaf spring piece 45 which is a thin leaf spring piece, bends, and the resin spring portion is compressed and deformed in the direction of the axis X.
  • the fourth leaf spring piece 46 elastically contacts the inner peripheral portion 13b of the first flange portion 13, and the rib 45a of the third leaf spring piece 45 elastically contacts the bottom surface portion 23d of the second flange portion 23. Contact. Therefore, similarly to the first embodiment, it is possible to prevent the partition member 30 ⁇ / b> A from rotating around the axis X with respect to the main body case 2 due to the frictional force along with the rotor portion 90. Therefore, the positional accuracy of the partition member 30A in the rotation direction can be ensured, and the axial center accuracy of the rotor portion 90 can be ensured.
  • FIG. 15A and 15B are explanatory views of the partition member 30B according to the modified example 2.
  • FIG. 15A is a plan view of the partition member 30B viewed from the rotor portion 90 side
  • FIG. 15B is a plan view of the partition member 30B viewed from the valve body 6 side. is there.
  • FIG. 16 is an explanatory diagram of the partition member 30B and the second case 20 of Modification 2.
  • FIG. 16A is a plan view of the second case 20 viewed from the rotor portion 90 side
  • FIG. 16B is a partition member.
  • 30B is a plan view showing a state in which 30B is prevented from rotating with respect to the second case 20.
  • the partition member 30B of Modification 2 includes a disk-shaped plate portion 31B.
  • the plate portion 31B is provided with a resin spring portion 48 (anti-rotation portion 40B) and a resin protrusion 49 (anti-rotation portion 40C) described below in place of the anti-rotation portion 40 of the first embodiment.
  • This is the same as the plate portion 31 of the first embodiment.
  • Grooves 47 extending in the circumferential direction are formed at four locations on the outer periphery of the plate portion 31B. Each groove part 47 is a penetration part which penetrates plate part 31B.
  • a portion on the outer peripheral side of the groove portion 47 is a resin spring portion 48 extending in the circumferential direction.
  • resin spring portions 48 are provided at four locations at intervals of 90 degrees in the circumferential direction around the axis X.
  • the resin spring portion 48 has both ends in the circumferential direction connected to the plate portion 31 ⁇ / b> B, and can be elastically deformed radially inward within the groove width of the groove portion 47.
  • a protrusion 48 a that protrudes radially outward is formed at the center in the circumferential direction of the resin spring portion 48.
  • the second case 20 is the same as that of the first embodiment, and the inner peripheral side of the outer peripheral portion 23a of the second flange portion 23 is recessed on the valve body 6 side.
  • a concave inner peripheral portion 23b including a side surface portion 23c and a bottom surface portion 23d is provided on the inner peripheral side of the outer peripheral portion 23a.
  • the partition member 30 ⁇ / b> B is disposed on the inner peripheral side of the side surface portion 23 c when assembled to the main body case 2.
  • the resin spring portion 48 is bent radially inward, and the protruding portion 48a elastically contacts the side surface portion 23c.
  • resin protrusions 49 are formed on the outer peripheral portion of the plate portion 31B between the groove portions 47 adjacent in the circumferential direction.
  • the resin protrusion 49 protrudes from the plate portion 31 ⁇ / b> B to the same side as the bearing portion 38 and the engaging portion 35.
  • the thickness of the portion where the resin protrusion 49 is formed is the inner peripheral portion 13b of the first flange portion 13 and the bottom surface portion 23d of the second flange portion 23. And a distance h8 (see FIG. 9).
  • the outer peripheral portion of the plate portion 31B is inserted between the first flange portion 13 on the first case 10 side and the second flange portion 23 on the second case 20 side, and the inner peripheral portion 13b of the first flange portion 13 is inserted.
  • the resin protrusion 49 is crushed.
  • the crushed resin protrusion 49 is pressed against the bottom surface portion 23 d of the second flange portion 23, and the inner peripheral portion 13 b of the first flange portion 13 is pressed against the back side portion of the resin protrusion 49.
  • the plate portion 31B includes the inner peripheral portion 13b of the first flange portion 13 and the second flange at four locations in the circumferential direction. A frictional force is generated between the bottom surface portion 23 d of the portion 23. This frictional force prevents the partition member 30B from rotating.
  • the partition member 30 ⁇ / b> B according to Modification 2 is provided with the anti-rotation portion 40 ⁇ / b> B constituted by the resin spring portion 48 and the anti-rotation portion 40 ⁇ / b> C constituted by the resin protrusion 49. These are all anti-rotation by frictional force acting between the main body case 2 and the partition member 30B.
  • the partition member 30B can be assembled to the main body case 2 in a state in which the rotation is stopped by the frictional force. Therefore, similarly to the first embodiment, it is possible to prevent the partition member 30 ⁇ / b> B from rotating with the rotor portion 90 and being displaced in the rotational direction around the axis X with respect to the main body case 2. Therefore, the positional accuracy of the partition member 30B in the rotation direction can be ensured, and the axial center accuracy of the rotor portion 90 can be ensured.
  • the resin spring portion 48 may be connected to the plate portion 31B. Further, either one of the rotation stopper 40B and the rotation stopper 40C can be omitted.
  • the anti-rotation portion 40C by the resin protrusion 49 has a simple configuration, but the partition member 30B can be assembled to the main body case 2 in a state where the anti-rotation portion is prevented by a frictional force.
  • the shape may not be as in the second modification, but may be a shape like a rib. Further, the resin protrusion 49 can prevent the partition member 30B from moving in the axis X direction. Thereby, the positional accuracy of the valve body 6 supported by the partition member 30B can be improved.
  • the rotation preventing portion 40 / 40A / 40B made of a resin spring portion is formed on the outer peripheral portion of the partition member 30 / 30A / 30B, and the partition member 30 / 30A / 30B is formed by the elastic force of the resin spring portion.
  • the outer peripheral portion (the rotation preventing portion 40 / 40A / 40B) is configured to press against at least one of the first and second cases 10 and 20, but the partition member 30 is separated from the partition member 30 by using a separate elastic member. It is good also as a structure pressed against the 1st, 2nd cases 10 and 20.
  • the outer peripheral portion of the partition member 30 may be formed in a plate shape with a uniform thickness, and an elastic member may be sandwiched between the outer peripheral portion and the first flange portion 13 or the second flange portion 23. Even in such a structure, the outer peripheral portion of the partition member 30 can be used as a rotation preventing portion, and a frictional force can be generated between the first flange portion 13 or the second flange portion 23 and the partition member 30.
  • an O-ring or the like can be used as the elastic member.
  • the partition member 30 may not be made of resin.
  • FIG. 17 is a cross-sectional view of the valve device of the second embodiment.
  • the valve device 201 according to the second embodiment includes a main body case 202 formed from a first case 10 and a second case 220.
  • the space in the main body case 202 is partitioned by the partition member 230 into a valve chamber 5a and a rotor storage chamber 5b.
  • the valve device 201 of the second embodiment is different from the first embodiment in the structure for assembling the partition member 230 to the main body case 202, but the other configuration is the same as that of the first embodiment.
  • the bottom part 21 and the peripheral wall part 22 of the second case 220 are the same as those in the first embodiment.
  • the second flange portion 223 of the second case 220 includes the same outer peripheral portion 23a as in the first embodiment.
  • the inner peripheral portion 223b of the second flange portion 223 is different from the first embodiment in that the inner peripheral portion 223b includes a side surface portion 23c and a bottom surface portion 223d, and an engagement recess 241 (case side detent portion) is formed in the bottom surface portion 223d.
  • the engaging recess 241 is recessed from the bottom surface portion 223d to one end side (the inflow pipe 3 side) in the axis X direction.
  • the outer peripheral portion 13a of the first flange portion 13 and the outer peripheral portion 23a of the second flange portion 223 are in contact with each other in the axis X direction over the entire periphery.
  • the outer peripheral portion 13a and the outer peripheral portion 23a are joined over the entire circumference by TIG welding.
  • the first case 10 and the second case 220 are joined together to form the main body case 202.
  • the bottom surface portion 223d of the second flange portion 223 is disposed at a position away from the inner peripheral portion 13b of the first flange portion 13 in the axis X direction.
  • the inner peripheral portion 13b of the first flange portion 13 and the bottom portion 223d of the second flange portion 223 face each other in the axis X direction, and the outer peripheral portion of the partition member 230 is inserted therebetween.
  • FIG. 18 is an exploded perspective view of the main part of the valve device 201.
  • FIG. 19A is a cross-sectional view of the main part of the valve device 1
  • FIG. 19B is a partially enlarged view of FIG.
  • the valve device 201 is different from the first embodiment in the shape of the outer peripheral portion of the partition member 230.
  • 20A and 20B are explanatory views of the partition member 230.
  • FIG. 20A is a plan view of the partition member 230 viewed from the valve body 6 side
  • FIG. 20B is a plan view of the partition member 230 viewed from the rotor portion 90 side.
  • FIG. 21 is a cross-sectional view of the partition member 230 (AA cross-sectional view of FIG. 20A).
  • FIG. 22 is explanatory drawing of the engagement state of the supporting member 120 and the engaging part 35 of the partition member 230, (a) is the perspective view seen from the valve body 6 side, (b) It is sectional drawing cut
  • FIG. 23 is a perspective view of the partition member 230 as viewed from the rotor portion 90 side.
  • the partition member 230 has a disk-shaped plate portion 231.
  • An insertion hole 32 that penetrates the plate portion 231 in the thickness direction is provided in the center portion of the plate portion 231.
  • a cylindrical wall 33 surrounding the insertion hole 32 and an annular wall 34 surrounding the cylindrical wall 33 are provided on the surface 231 b of the plate portion 231 on the rotor portion 90 side.
  • the portion of the partition member 230 on the inner peripheral side with respect to the annular wall 34 has the same configuration as that of the partition member 30 of the first embodiment. That is, on the surface 231b of the plate portion 231 on the rotor portion 90 side, three grooves 31e extending in the radial direction are formed at equal angular intervals in a portion between the cylindrical wall 33 and the annular wall 34. Further, between the cylindrical wall 33 and the annular wall 34, two plate-like support members 39, 39 projecting toward the rotor portion 90, through holes 31d, 31d formed in the root portions thereof, bearing holes 38a is provided.
  • a cylindrical bearing portion 38 that protrudes toward the valve body 6 is provided on the surface 231a of the plate portion 231 on the valve body 6 side at a position on the back side of the bearing hole 38a.
  • an engagement portion 35 surrounding the insertion hole 32 is provided on the surface 31a of the plate portion 231 on the valve body 6 side.
  • the engaging portion 35 is provided with notches 35b at intervals of 120 degrees in the circumferential direction.
  • a through hole 31c that penetrates the plate portion 231 and an arm portion 37 that protrudes in the same direction as the engaging portion 35 on the radially outer side of the through hole 31c are provided.
  • the plate portion 231 of the partition member 230 is not provided with the resin spring portion as in the first embodiment, but a column projecting toward the valve body 6 at the outer peripheral side of the annular wall 34 of the plate portion 231.
  • An engaging protrusion 242 having a shape is provided.
  • the engagement protrusions 242 are provided at two positions 180 degrees apart in the circumferential direction around the axis X, one of which is disposed on the radially outer side of the bearing portion 38.
  • the portion on the outer peripheral side of the annular wall 34 of the plate portion 231 has a uniform thickness in the direction of the axis X except for the portion of the engagement protrusion 242.
  • the engagement protrusion 242 fits with the engagement recess 241 of the second case 220.
  • the engaging recess 241 and the engaging protrusion 242 are fitted, the relative rotation of the partition member 230 around the axis X with respect to the main body case 202 is restricted. That is, the engagement recess 241 and the engagement protrusion 242 constitute a rotation preventing portion 240.
  • the engagement recess 241 (case-side detent portion) is formed in the bottom surface portion 223d of the second flange portion 223 of the second case 220, and the partition member 230 has Forms an engaging projection 242 (partition member side detent) that engages with the engaging recess 241.
  • the partition member 230 is prevented from rotating by the engagement of the engagement recess 241 and the engagement protrusion 242. Therefore, similarly to the first embodiment and the modification thereof, it is possible to prevent the partition member 230 from rotating around the axis X with respect to the main body case 202 due to rotation with the rotor unit 90.
  • the positional accuracy of the partition member 230 in the rotation direction can be secured, and the axial center accuracy of the rotor portion 90 can be secured. Further, when the partition member 230 is assembled to the main body case 202, the partition member 230 can be positioned in the rotational direction by the engagement of the engagement recess 241 and the engagement protrusion 242.
  • an engagement recess may be formed in the partition member 230, and an engagement protrusion may be formed in the bottom surface portion 223d.
  • another member may be attached to form the convex portion.
  • an engagement recess and an engagement protrusion similar to the rotation preventing portion 240 are formed between the inner peripheral portion 13 b of the first flange portion 13 and the partition member 230, thereby preventing rotation with respect to the first case 10. May be.
  • the engaging part (engaging recess 241) and the engaging part (engaging protrusion 242) are formed on the surfaces of the second case 220 and the partition member 230 facing in the axis X direction.
  • protrusions and recesses are formed in the outer peripheral surface of the partition member 230 and the second case 220, and these are fitted to prevent rotation.
  • FIG. 24A and 24B are explanatory views of the partition member 230A according to the modified example 4.
  • FIG. 24A is a plan view of the partition member 230A viewed from the rotor 90 side
  • FIG. 24B is a plan view of the partition member 230A viewed from the valve body 6 side. is there.
  • FIG. 25 is an explanatory diagram of the partition member 230A and the second case 220A according to Modification 4.
  • FIG. 25A is a plan view of the second case 220A viewed from the rotor part 90 side
  • FIG. 25B is the partition member. It is a top view which shows the state by which 230A was prevented from rotating with respect to the 2nd case 220A.
  • the partition member 230A of Modification 4 includes a disk-shaped plate portion 231A.
  • the plate portion 231A is not provided with the engagement protrusion 242 of the second embodiment, and is provided with an engagement recess 243 (anti-rotation portion 240A) and a resin protrusion 245 (anti-rotation portion 240B) described below.
  • the configuration is the same as the plate portion 231 of the second embodiment.
  • An engaging recess 243 that is recessed radially inward is formed on the outer peripheral edge of the plate portion 231A.
  • the engagement recesses 243 are provided at four locations approximately 90 degrees apart in the circumferential direction around the axis X.
  • the second case 220A of the modified example 4 does not have the engagement recess 241 of the second embodiment formed on the bottom surface portion 223g of the inner peripheral portion 223f of the second flange portion 223A.
  • a protrusion 244 is formed. Except for this point, the second case 220A is the same as the second case 220 of the second embodiment.
  • the engagement protrusions 244 are formed at four locations overlapping with the engagement recesses 243 of the partition member 230A in the axis X direction. When the partition member 230A is assembled between the first case 10 and the second case 220A, the engagement protrusion 244 fits into the engagement recess 243 of the second case 220A.
  • the relative rotation of the partition member 230A around the axis X with respect to the first case 10 and the second case 220A is restricted.
  • the engaging recess 243 and the engaging protrusion 244 constitute a rotation preventing portion 240A.
  • resin protrusions 245 are formed on the outer peripheral portion of the plate portion 231A between the engaging concave portions 243 adjacent in the circumferential direction.
  • the resin protrusion 245 protrudes from the plate portion 231 ⁇ / b> A to the same side as the bearing portion 38 and the engaging portion 35.
  • the resin protrusions 245 are provided at four locations approximately 90 degrees apart in the circumferential direction.
  • the configuration of the resin protrusion 245 and the function and effect thereof are the same as those of the resin protrusion 49 (rotation preventing portion 40C) used in the second modification of the first embodiment.
  • the partition member 230A when the partition member 230A is assembled between the first case 10 and the second case 220A, the resin protrusion 245 is crushed and the plate portion 231A is in the direction of the axis X with respect to the first case 10 and the second case 220A. Pressed against. Thereby, the rotation of the partition member 230A by the frictional force is prevented.
  • the partition member 230A is also positioned in the axis X direction.
  • the partition member 230 ⁇ / b> A of Modification 4 is provided with the anti-rotation portion 240 ⁇ / b> A configured by the engagement recess 243 and the engagement projection 244 and the anti-rotation portion 240 ⁇ / b> B configured by the resin projection 245. .
  • the partition member 230A can be assembled between the first case 10 and the second case 220A in a state where the rotation is prevented by the engagement and frictional force between the members. Therefore, similarly to Embodiments 1 and 2, it is possible to prevent the partition member 230A from rotating around the axis X with respect to the main body case 202 due to rotation with the rotor portion 90. Therefore, the positional accuracy of the partition member 230A in the rotation direction can be ensured, and the axial center accuracy of the rotor portion 90 can be ensured.
  • the rotation preventing portion 240B may be omitted.
  • FIG. 26A and 26B are explanatory views of the partition member 230B of Modification Example 5.
  • FIG. 26A is a plan view of the partition member 230B viewed from the rotor portion 90 side
  • FIG. 26B is a plan view of the partition member 230B viewed from the valve body 6 side. is there.
  • FIG. 27 is an explanatory diagram of the partition member 230B and the second case 220B according to Modification 5.
  • FIG. 27A is a plan view of the second case 220B viewed from the rotor portion 90 side
  • FIG. 27B is the partition member. It is a top view which shows the state in which 230B was stopped with respect to the 2nd case 220B.
  • the partition member 230B of Modification 5 includes an elliptical plate portion 231B.
  • the plate portion 231 ⁇ / b> B is not provided with the engagement recesses 241 and the engagement recesses 243 of the above-described form, but the resin protrusions 245 are provided at four places as in the fourth modification.
  • the second case 220B of Modification 5 includes a second flange portion 223B configured by an outer peripheral portion 223h and an inner peripheral portion 223j.
  • the inner peripheral portion 223j includes a side surface portion 223k and a bottom surface portion 223m.
  • the side surface portion 223k has a cylindrical shape extending in the axis X direction, and is formed in an elliptical shape when viewed in the axis X direction. Since the oval concave portion such as the inner peripheral portion 223j does not have a corner portion on the side surface portion -223k, it can be easily molded by pressing.
  • the plate portion 231B of Modification 5 When the partition member 230B of Modification 5 is assembled between the first case 10 and the second case 220B, the plate portion 231B is disposed on the inner peripheral side of the side surface portion 223k. Since both the plate portion 231B and the side surface portion 223k are elliptical, the plate portion 231B is engaged with the side surface portion 223k, and the rotation of the partition member 230B around the axis X is restricted. That is, in the fifth modification, the rotation preventing portion 240C is configured by the plate portion 231B (the partition member side rotation preventing portion) and the side surface portion 223k (the case side rotation preventing portion).
  • the partition protrusion 230B is also prevented from rotating by the friction force by the resin protrusion 245 (the rotation preventing part 240B). Therefore, in the modified example 5, the partition member 230B can be assembled between the first case 10 and the second case 220B in a state where the rotation is prevented by the engagement and frictional force between the members. Therefore, similarly to the above embodiments, it is possible to prevent the partition member 230B from rotating around the axis X with respect to the first case 10 and the second case 220B due to the rotation with the rotor portion 90. Therefore, the positional accuracy of the partition member 230B in the rotation direction can be secured, and the axial center accuracy of the rotor portion 90 can be secured.
  • the rotation of the partition member 230B is regulated by making the plate portion 231B and the side surface portion 223k elliptical.
  • the rotation can be regulated. Therefore, such a shape may be adopted.
  • a circular concave portion like the inner peripheral portion 23b of the first embodiment is formed, and the inner periphery thereof is formed.
  • Another member may be attached to the surface to form an elliptical shape or other noncircular inner peripheral shape.
  • the anti-rotation portion 240B due to the frictional force may be omitted.
  • an anti-rotation portion (adhesive portion) using an adhesive may be provided.
  • the resin spring portion is not provided in the partition member 30 of the first embodiment, and the contact surface that contacts the inner peripheral portion 13b of the first flange portion 13 in the first case 10 on the surface 31b of the plate portion 31 on the rotor portion 90 side.
  • the contact surface is adhered to the inner peripheral portion 13b with an adhesive.
  • the contact surface which contacts the bottom face part 23d of the 2nd flange part 23 in the 2nd case 20 is provided in the surface 31a by the side of the valve body 6 of the plate part 31, and this contact surface is adhere
  • the partition member 230B Even in such a configuration, it is possible to prevent the partition member 230B from rotating around the axis X with respect to the first case 10 and the second case 220B due to rotation with the rotor portion 90.
  • the shapes of the main body case 2 and the partition member 30 can be further simplified.
  • the partition member 30 may not be made of resin.
  • the partition member 230 / 230A / 230B when the resin protrusion 245 is omitted, the partition member 230 / 230A / 230B may not be made of resin.
  • Geneva mechanism was used as a rotation control part which controls the rotatable range of the rotor part 90
  • another mechanism can be used.
  • a contact portion may be formed between the rotor portion 90 and the partition member 30 every time the one end side and the other end side of the rotatable range come into contact with each other.
  • an American winding mechanism can be used.
  • Bearing hole 39 ... support member 39a ... projection 40 ... non-rotating portion 41 ... notched groove 42 ... first plate spring piece 42a ... rib 43 ... second plate spring piece 61 ... engaging member 62 ... disc portion 62a ... opening 62b ... Two-sided width part 63 ... Peripheral wall part 63a ... Small diameter part 63b ... Large diameter part 64 ... Flange part 65 ... Contact member 71 ... Shaft member 71a ... Male screw 72 ... Fitting part 72a ... Groove 73 ... Connecting part 73a ... Projection 74 ... Spring support portion 74a ... Cylinder portion 74b ... Flange portion 76 ... Spring 80 ... Stator portion 81 ...
  • Stator core 81a Inner peripheral portion 81b ... Disk portion 82 ... Bobbin 83 ... Drive coil 84 ... Terminal 85 ... Connector terminal 86 ... Circuit board 87 ... Data cover 87a ... engaging claw 88 ... motor case 90 ... rotor part 91 ... main body part 91a ... sealing end 91b ... projecting part 91c ... fitting hole 92 ... shaft part 93 ... small diameter shaft part 93a ... geneva pin 93b ... bulging part 93c ... stopper portion 93d ... tooth groove portion 93e ... tip portion 95 ... female screw 100 ... rotor magnet 110 ... geneva gear 111 ... shaft portion 112 ... large diameter portion 112a ...
  • tooth groove portion 112b ... tooth portion 112c ... projection portion 112d ... both side portions 115 ... Bracket member 115a ... bearing hole 115b ... arm portion 115c ... opening 116 ... rotating shaft 120 ... support member 121 ... base 121a ... projection 122 ... flange 122a ... engagement step 122b ... contact surface 123 ... through hole 124 ... Engaging projection 140 ... leaf spring 141 ... leg CCW ... counterclockwise direction CW ... clockwise direction D1 ... outer diameter D2 of rotor 90 ...
  • Thickness hz in the axis X direction of the anti-rotation portion 40 ... Height L of the protruding portion 112c ... Straight line S ... Gap W ... Welding part (joining part) X ... axis (reference numeral of modification 1) 30A ... Partition member 31A ... Plate portion 40A ... Non-rotating portion 44 ... Notch groove 44a ... First groove portion 44b ... Second groove portion 45 ... First leaf spring piece 45a ... Rib 46 ... Second leaf spring piece (of the second modification) Sign) 30B ... Partition member 31B ... Plate part 40B ... Anti-rotation part 40C ... Anti-rotation part 47 ... Groove part 48 ...
  • rotation stop portion 240B ... rotation stop portion 243 ... engagement recess portion 244 ... engagement projection 245 ... Resin protrusion (sign of modified example 5) 220B ... 2nd case 223B ... 2nd flange part 223h ... Outer peripheral part 223j ... Inner peripheral part 223k ... Side surface part 223m ... Bottom face part 230B ... Partition member 231B ... Plate part 240C ... Anti-rotation part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Valve Housings (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

バルブ装置1は、第1、第2ケース10、20を接合した本体ケース2内の密閉空間を区画する仕切り部材30を備える。ロータ部90の一端は第1ケース10に支持され、他端は仕切り部材30に支持される。仕切り部材30の外周部分には回り止め部40が設けられ、第1、第2ケース10、20を接合する際に、同時に回り止め部40を第1、第2ケース10、20の間(内周部分13bと底面部分23dの間)に挟み込んで、摩擦によって第1、第2ケース10、20に対して回り止めされた状態に組み付ける。回り止め部40は、円盤形状のプレート部31の外周部分に設けられた第1板バネ片42および第2板バネ片43によって構成される樹脂バネ部である。

Description

バルブ装置
 本発明は、密閉ケースをロータ収容室およびバルブ室に区画して、ロータの回転に基づいてバルブ室における流体の流れを調節するバルブ装置に関する。
 有底筒状の第1ケースと第2ケースを接合して密閉ケースを形成し、その内部を仕切り部材によって区画して、ロータを収容するロータ収容室および流体が流入するバルブ室を形成したバルブ装置が用いられている。特許文献1には、この種のバルブ装置が開示されている。特許文献1のバルブ装置は、バルブ室内に、ガス等の高圧流体の流入管および流出管と、流入管の開口を開閉する弁体が配置される。ロータ収容室に配置されたロータの回転は、ネジ送り機構によって作動部材の進退運動に変換される。作動部材は、仕切り部材を貫通してバルブ室内に突出しており、その先端に取り付けられた弁体が進退移動して、流入管の開口を開閉する。
特開2011-169438号公報
 特許文献1では、バルブ室とロータ収容室を区画する仕切り部材の外周部分が第1、第2ケースのフランジ部に挟まれており、第1ケースにスポット溶接で固定されている。しかしながら、仕切り部材を溶接で固定する場合、溶接工程を行うための作業負担が大きい。また、仕切り部材が樹脂製の場合、溶接で固定することはできない。
 また、特許文献1では、ロータの一端が第1ケースに設けられた軸受部に支持され、他端が仕切り部材によって支持されている。このような構成では、ロータの軸心精度を確保するためには、仕切り部材を精度良く組み付ける必要がある。しかしながら、仕切り部材を溶接しない場合、仕切り部材とロータが共回りして組み付け位置がずれるおそれがあり、ロータの軸心精度を確保できないおそれがある。
 以上の問題点に鑑みて、本発明の課題は、密閉ケース内をロータ室とバルブ室に仕切る仕切り部材の位置精度を確保することにある。
 上記課題を解決するために、本発明のバルブ装置は、
 同軸に配置されたロータおよびステータと、
 前記ロータの軸線方向の一端側に配置された第1ケース、および、他端側に配置された第2ケースを接合して構成された本体ケースと、
 当該本体ケース内の密閉空間を、前記軸線方向の一端側に設けられたロータ収容室と他端側に設けられたバルブ室に区画する仕切り部材と、
 前記ロータの回転に基づいて前記バルブ室に設けられた流路を開閉する弁体とを有し、
 前記仕切り部材は、
 前記ロータの一端を回転可能に支持する軸受部と、
 前記第1ケースあるいは前記第2ケースに対する、前記仕切り部材の前記軸線回りの相対回転を規制する回り止め部と、を備えることを特徴とする。
 本発明では、このように、第1、第2ケースを接合して形成した本体ケース内の密閉空間を区画する仕切り部材を備えており、ロータの一端が仕切り部材によって回転可能に支持される。仕切り部材は回り止め部を備えており、第1ケースあるいは第2ケースに対して、仕切り部材がロータの軸線回りに回り止めされた状態に組み付けられる。このような構成では、仕切り部材がロータと供回りして、本体ケースに対して、ロータの軸線回りの回転方向に位置ずれすることを規制できる。従って、仕切り部材の回転方向の位置精度を確保でき、ロータの軸心精度を確保できる。
 本発明において、前記回り止め部は、前記第1ケースと前記第2ケースの少なくとも一方に弾性的に接触する弾性接触部であることが望ましい。このようにすると、本体ケースに対して、仕切り部材を摩擦によって回り止めされた状態に組み付けることができる。摩擦によって回り止めを行う場合、仕切り部材の位置合わせは、ロータの軸心精度の確保のために軸受部の径方向の位置合わせが行われていればよく、回転方向(周方向)の位置合わせを行う必要がない。従って、仕切り部材の組み付けが容易である。
 本発明において、前記仕切り部材は、円盤形状の樹脂製のプレート部を備え、前記弾性接触部は、前記プレート部に設けられた樹脂バネ部であることが望ましい。このように、プレート部に弾性接触部と軸受部を一体に形成すると、仕切り部材の組み付けが容易である。
 本発明において、前記樹脂バネ部は、前記プレート部の外周部に設けられることが望ましい。このようにすると、プレート部の外周部で摩擦力が発生するため、樹脂バネ部の弾性力が小さくても、全体として大きな摩擦力を発生させることができる。従って、組み付けが容易な構成でありながら、強力に回り止めを行うことができる。
 本発明において、前記樹脂バネ部は、前記第1ケースおよび前記第2ケースの少なくとも一方に当接する当接部を備え、前記当接部が前記プレート部の外周縁に設けられていることが望ましい。このようにすると、プレート部の最外周で摩擦力が発生する。従って、大きな摩擦力を発生させることができ、強力に回り止めを行うことができる。
 本発明において、前記第1ケース内に前記ロータ収容室が設けられ、前記樹脂バネ部は、前記軸線方向の圧縮力が加わったときに弾性変形する第1板バネ片を備え、当該第1板バネ片が前記第2ケースに対して前記軸線方向に当接することが望ましい。このようにすると、第1、第2ケースを接合する前に、第1ケースに仕切り部材を精度良く位置決めすることができる。そして、この状態でロータと弁体の位置関係を調整して、しかる後に第1、第2ケースを接合できる。従って、弁体を精度良く取り付けることができる。
 本発明において、前記樹脂バネ部は、前記第1ケースに対して前記軸線方向に当接する第2板バネ片を備えることが望ましい。このようにすると、仕切り部材が第1ケースと第2ケースに対して軸線方向に密着するので、仕切り部材の軸線方向への移動が防止される。従って、仕切り部材に支持された弁体の軸線方向の位置がずれることを防止でき、弁体の位置精度を高めることができる。
 本発明において、前記仕切り部材は、円盤形状の樹脂製のプレート部を備え、前記弾性接触部は、前記プレート部から突出する樹脂突起であり、当該樹脂突起が形成された前記プレート部の部位は、前記第1ケースと前記第2ケースにおける対向している部位の間に挟まれる構成であってもよい。このようにすると、樹脂突起部が第1ケースと第2ケースで挟み込んで潰され、第1ケースあるいは第2ケースに弾性接触する。従って、単純な構成でありながら、仕切り部材を摩擦によって回り止めされた状態に組み付けることができる。
 本発明において、前記回り止め部は、前記第1ケースおよび前記第2ケースの少なくとも一方に設けられたケース側回り止め部と係合することが望ましい。このようにすると、ケースと仕切り部材との係合によって、仕切り部材の回り止めおよび回転方向の位置決めを行うことができる。従って、仕切り部材の組み付けが容易である。
 本発明において、前記ケース側回り止め部は、前記軸線方向に延在する筒状部であり、前記回り止め部は、前記筒状部の内周側に配置されるプレート部であり、前記筒状部および前記プレート部は、前記軸線方向に見た場合に非円形であることが望ましい。このようにすると、筒状部の内周側にプレート部が係合して、プレート部の軸線回りの回転が規制される。従って、仕切り部材を本体ケースに対して回り止めされた状態に組み付けることができる。
 本発明において、前記本体ケースは、前記第1ケースと前記第2ケースを溶接または溶着によって接合した接合部位を備え、前記回り止め部は、前記接合部位から離れていることが望ましい。このようにすると、第1、第2ケースを溶接あるいは溶着する際の熱によって回り止め部が変形することを防止できる。
 本発明において、前記仕切り部材には、前記ロータと同軸に形成された円筒部、および、当該円筒部の内周側あるいは外周側に配置された当接部のいずれか一方が設けられ、前記第1ケースもしくは前記第2ケースには、前記円筒部と前記当接部の他方が設けられ、前記当接部は、前記円筒部に対して、3箇所以上の周方向位置において径方向に当接していることが望ましい。このように、位置決め部の一方を円筒形にした場合、径方向の位置合わせのみで位置決め状態を形成でき、回転方向(周方向)の位置合わせは不要である。従って、仕切り部材の組み付けが容易である。
 この場合に、前記第1ケース内に前記ロータ収容室が設けられ、前記ロータの外周部分に配置されたロータマグネットと、前記第1ケースの外側に配置された前記ステータが前記第1ケースを挟んで前記ロータの径方向に対向しており、前記第1ケースには、前記ロータの他端を回転可能に支持するケース側軸受部と、前記円筒部あるいは前記当接部の一方が設けられることが望ましい。このように、第1ケースおよび仕切り部材にロータが支持される構成では、第1ケースに対するロータの位置精度が高い。従って、ロータマグネットと第1ケースのクリアランスを小さくすることができる。よって、モータの効率を向上させることができる。
 ここで、前記弁体は、前記円筒部の中心軸線上に配置され、前記ロータの回転に基づいて前記軸線方向に進退移動することが望ましい。このようにすると、仕切り部材の回転方向(周方向)の位置が変化しても弁体の径方向位置(ロータの軸線方向と直交する方向の位置)は変化せず、弁体と弁座(弁体によって開閉される流体通路の開口に設けられた弁座)の位置関係が崩れない。従って、弁体を精度良く開閉できる。
 本発明において、前記第1ケースは、前記軸線方向の一端側に凹む第1凹部と、当該第1凹部の開口縁から前記ロータの径方向に延びる環状の第1フランジ部を備え、前記第2ケースは、前記軸線方向の他端側に凹む第2凹部と、当該第2凹部の開口縁から前記ロータの径方向に延びる環状の第2フランジ部を備え、前記第1凹部および前記第2凹部は、非磁性金属材をプレス加工して形成されており、前記回り止め部は、前記第1フランジ部と前記第2フランジ部の間に挿入された構成とすることができる。このようにすると、第1、第2ケースの製造が容易である。また、環状の第1、第2フランジ部の間に回り止め部を挟み込んでいるため、両ケースの回転方向(周方向)の位置精度が低くても両ケースを接合できる。
 この場合に、前記第1フランジ部と前記第2フランジ部の内周部分は、前記回り止め部を挿入可能な間隔で前記軸線方向に対向しており、前記第1フランジ部と前記第2フランジ部の外周部分は、前記軸線方向に当接していることが望ましい。このようにすると、第1、第2ケースの軸線方向の位置決めは、第1、第2フランジ部の外周部分を基準として、両フランジ部を直接当接させることによって行われる。従って、第1、第2ケースの位置精度が回り止め部によって低下することがない。
 本発明において、前記弁体は、前記ロータの回転に基づいて前記軸線方向に進退移動する作動部材に取り付けられ、前記仕切り部材には、前記ロータの回転可能範囲を規制する回転規制部、および、前記作動部材を前記軸線方向に移動可能に支持すると共に当該作動部材の前記ロータの回転方向への回転を規制する支持部材が取り付けられることが望ましい。このように、支持部材と回転規制部が共に仕切り部材に取り付けられると、仕切り部材が動いたとしても支持部材と回転規制部の位置関係が崩れることがない。従って、仕切り部材の回転方向(周方向)の位置合わせを行わずに仕切り部材を組み付けたとしても、弁体を駆動する作動部材とロータの位置関係が崩れることがない。よって、バルブ装置の組み立てが容易である。
 この場合に、前記弁体は、前記軸線方向に弾性変形可能な弾性部材を介して前記作動部材に連結され、前記ロータが前記回転可能範囲の一端と他端の間にある所定の回転位置に移動すると、前記バルブ室における前記流路の開口に設けられた弁座に当接する位置に前記弁体が移動し、前記ロータが前記所定の回転位置から前記回転可能範囲の一端まで移動すると、前記軸線方向に弾性変形した前記弾性部材の弾性力により、前記弁体が前記弁座に押し付けられるように構成することができる。このようにすると、弁体を弁座に押し付けて流路の開口を密閉できる。また、ロータの回転可能範囲を回転規制部によって規制しているため、弁体による押圧力が過大にならない位置でロータおよび作動部材を停止させることができる。また、ロータを回転させる駆動源として用いられるモータのトルク(ステッピングモータの場合、停止時の脱調トルク)が弁体に直接作用しない構成であり、弁体が過大な力で押し付けられることを防止できる。
 このとき、前記支持部材は、前記仕切り部材に着脱可能に取り付けられることが望ましい。このようにすると、回転規制部とロータを連結した状態で、支持部材を取り外して作動部材および弁体の進退位置の調整を行うことができる。そして、調整後に支持部材を取り付ければ、弁体とロータの位置関係が固定される。従って、弁体とロータの位置関係を調整する作業が容易である。
 また、このとき、前記ロータおよび前記作動部材に、前記ロータの回転を前記作動部材の前記軸線方向の進退移動に変換するネジ送り機構を設けた構成とすることができる。ネジ送り機構は、ロータに設けられた軸孔にネジ溝を形成し、作動部材の外周面にネジ山を形成することで構成できるため、部品点数が少なくて済み、組み付けも容易である。また、ロータの一端から作動部材が出入りするシンプルな構成であるため、仕切り部材にロータの軸受部および作動部材の回り止めの両方を容易に形成できる。
 本発明によれば、本体ケース内の密閉空間をロータ収容室とバルブ室に区画する仕切り部材が、本体ケース内を構成する第1ケースあるいは第2ケースに対して、ロータの軸線回りに回り止めされた状態に組み付けられる。これにより、仕切り部材がロータと供回りして、本体ケースに対して、ロータの軸線回りの回転方向に位置ずれすることを規制できる。従って、仕切り部材の回転方向の位置精度を確保でき、仕切り部材によって回転可能に支持されているロータの軸心精度を確保できる。
実施形態1のバルブ装置の断面図である。 実施形態1のバルブ装置の要部の分解斜視図である。 実施形態1のバルブ装置の要部の断面図である。 ステッピングモータのロータ部の説明図である。 ゼネバ歯車の説明図である。 ゼネバ歯車の動作説明図である。 支持部材の説明図である。 実施形態1の仕切り部材の説明図である。 実施形態1の仕切り部材の断面図である。 実施形態1の仕切り部材と支持部材の結合状態の説明図である。 実施形態1の仕切り部材をロータ部側から見た斜視図である。 弁体の説明図である。 作動部材の位置決めの説明図である。 変形例1の仕切り部材の説明図である。 変形例2の仕切り部材の説明図である。 変形例2の仕切り部材と第2ケースの説明図である。 実施形態2のバルブ装置の断面図である。 実施形態2のバルブ装置の要部の分解斜視図である。 実施形態2のバルブ装置の要部の断面図である。 実施形態2の仕切り部材の説明図である。 実施形態2の仕切り部材の断面図である。 実施形態2の仕切り部材と支持部材の結合状態の説明図である。 実施形態2の仕切り部材をロータ部側から見た斜視図である。 変形例4の仕切り部材の説明図である。 変形例4の仕切り部材と第2ケースの説明図である。 変形例5の仕切り部材の説明図である。 変形例5の仕切り部材と第2ケースの説明図である。
 以下に、図面を参照して、本発明を適用したバルブ装置の実施の形態を説明する。
[実施形態1]
(全体構成)
 図1は実施形態1のバルブ装置の断面図である。図1に示すように、バルブ装置1は、第1ケース10と第2ケース20から形成される本体ケース2を備える。本体ケース2内の空間は仕切り部材30により区画される。第2ケース20内の空間は、流体が流れる流入管3と排出管4とが接続されたバルブ室5aとなり、第1ケース10内の空間は、ロータ部90を収容するロータ収容室5bとなっている。ロータ部90は、第1ケース10内において軸線X回りに回転可能に支持される。ロータ部90は、第1ケース10の外周側に構成されたステータ部80と共にステッピングモータ8を構成する。第1ケース10の外側には、ステータ部80を覆うようにモータカバー87が取り付けられる。
 バルブ室5a内には、流入管3の開口3aを開閉する弁体6が配置される。弁体6は、仕切り部材30を貫通した作動部材7の先端に取り付けられる。バルブ装置1では、ステッピングモータ8のロータ部90の回転が、後述するネジ送り機構により、作動部材7の軸線X方向の進退移動に変換される。作動部材7の軸線X方向の進退移動に伴って、作動部材7の先端部に取り付けられた弁体6が流入管3の開口3aを開閉する。
 このバルブ装置1では、気体状もしくは液体状の熱媒体(加熱用媒体あるいは冷却用媒体)などの高圧流体が流入管3を介して、バルブ室5a内に導かれる。
(本体ケース)
 以下、バルブ装置1の各部の構成を説明する。第2ケース20は、非磁性金属であるステンレス板をプレス成型によって深絞り加工して形成される。第2ケース20は、円板形状の底部21と、底部21を囲み軸線X方向に延びる筒状の周壁部22と、周壁部22の底部21とは反対側の端部から径方向外側に延びる第2フランジ部23を備える。底部21および周壁部22は、バルブ装置1の軸線X方向の一端側(流入管3側)に凹むカップ状の凹部を構成する。この凹部の一端は円形に開口しており、凹部の開口縁すなわち周壁部22の一端に第2フランジ部23が設けられる。
 底部21の中央には、流入管3の取付部材27が、底部21を厚み方向に貫通して設けられる。取付部材27は、貫通穴28を有する筒状の部材であり、バルブ室5a内に位置する先端部27aは、流入管3の開口3aを取り囲む環状に形成される。先端部27aは、弁体6が当接する当接部(弁座)となっている。先端部27aは流入管3よりも厚肉に形成されている。これにより、先端部27aは弁体6から作用する押圧力で容易に変形せず、弁体6による開口3aの閉鎖を確実に行うことができる。また、貫通穴28の軸線X方向の途中には、縮径部28aが設けられる。取付部材27は、縮径部28aよりも先端部27a側の部位の内径Daが、流入管3の内径よりも小さい。
 周壁部22には、軸線Xと直交する方向に開口する開口22aが設けられる。この開口22aには、軸線Xと直交する方向に延びる排出管4の先端4aが挿入される。排出管4は、その先端4aを開口22aに挿通させた状態で、周壁部22に溶接される。
 第2フランジ部23の外周部分23aは、第2フランジ部23の外周側の端部に設けられた環状部分である。第2フランジ部23は、外周部分23aの内周側に位置する内周部分23bが、外周部分23aから周壁部22側に凹んだ形状である。内周部分23bは、外周部分23aから周壁部22側に屈曲して軸線X方向と平行に延びる側面部分23cと、側面部分23cから第2フランジ部23の中央に向けて屈曲して軸線X方向と垂直に延びる底面部分23dを備える。
 第2フランジ部23の外周部分23aは、第1ケース10の外周縁(後述する第1フランジ部13の外周部分13a)に全周にわたって当接する。両フランジ部13、23の当接部分である外周部分13a、23aは、全周に亘って溶接される。これにより、第1ケース10と第2ケース20とが互いに接合されて、本体ケース2を構成する。本形態では、第1ケース10と第2ケース20がステンレスで形成されるため、外周部分13a、23aは、不活性ガスを常時吹き付けながら溶接するTIG溶接により接合される。
 両フランジ部13、23の外周縁同士を当接させた状態において、第2フランジ部23の内周部分23bの底面部分23dは、第1フランジ部13から軸線X方向に離れた位置に配置される。すなわち、第1フランジ部13の内周部分13bと、第2フランジ部23の底面部分23dとが軸線X方向に対向し、その間には隙間が形成される。この隙間には、仕切り部材30の外周縁が挿入される。仕切り部材30は、第1ケース10と第2ケース20の間において、後述するように軸線X回りの回り止めがなされた状態に取り付けられる。
 第1ケース10は、非磁性金属であるステンレス板をプレス成型によって深絞り加工して形成される。第1ケース10は、円板形状の底部11と、底部11を囲む周壁部12と、周壁部12における底部11とは反対側の端部から径方向外側に延びる第1フランジ部13を備える。底部11および周壁部12は、バルブ装置1の軸線X方向の他端側(流入管3とは反対側)に凹むカップ状の凹部を構成する。この凹部の一端は円形に開口し、凹部の開口縁すなわち周壁部12の一端に第1フランジ部13が設けられる。第1フランジ部13は、第2ケース20の第2フランジ部23と同じ外径で形成される。第1フランジ部13は、第2フランジ部23とは異なり、段差のない平面形状である。
 底部11の中央部には、有底円筒形状の支持部11aが、ロータ部90から離れる方向(図1の上側)に突出して設けられる。この支持部11aは、ロータ部90の外径D1よりも小さい外径D3に形成される。支持部11aには、後述するロータ部90の一端側の軸部92を回転可能に支持する軸受部材24が、例えば圧入により位置決めされて保持される。
 周壁部12は、ともに軸線X方向に延びる小径部12aおよび大径部12bを備える。小径部12aは底部11側に配置され、大径部12bは第1フランジ部13側に配置される。小径部12aと大径部12bは、軸線X方向と垂直に延びる環状部によって連結される。小径部12aと大径部12bの間には、環状部による段差が構成される。
 小径部12aの内径D2は、ロータ部90の外径D1よりも僅かに大きい。ロータ部90の外径D1は、ロータマグネット100が配置された部位の外形であり、本形態では、15.5mmである。また、小径部12aの内周面とロータマグネット100との隙間は0.4mmである。なお、本発明は、このような寸法のものに限定されるものではない。小径部12aの径方向外側にはステッピングモータ8のステータ部80が設けられ、径方向内側にはロータ部90が設けられる。ステータ部80とロータ部90は、小径部12aを挟んで外側と内側に位置する。
(ステータ部)
 ステータ部80は、ステータコア81と、ボビン82と、駆動コイル83と、モータケース88を備える。ステータコア81の内周部81aは、図示しない極歯が、軸線X回りの周方向に所定間隔で並べられた筒形状である。ステータ部80では、一組のステータコア81が、円板部81bを互いに接触させると共に、内周部81aを互いに反対方向に向けた状態で設けられ、この状態で、一方のステータコア81の極歯と、他方のステータコア81の極歯とが、軸線X回りの周方向において交互に並んでいる。
 ステータコア81の内周部81aの外周には、駆動コイル83が巻き付けられたボビン82が外嵌される。駆動コイル83を構成する巻線の端部には端子84、84が設けられる。端子84、84の先端は、コネクタ端子85が接続された回路基板86に接続される。
 ステータ部80を収容するモータカバー87は、PPS(ポリフェニレンサルファイド)などの樹脂材料から構成される。モータカバー87は、第1ケース10の第1フランジ部13からステッピングモータ8側に延びる取付部材26の係止部26aに係合爪87aを係止させて取り付けられる。
(ロータ部)
 ロータ部90は、一端が封止された筒状の本体部91と、本体部91の外周に配置されたリング状のロータマグネット100を備える。本体部91とロータマグネット100は、インサート成形により一体に形成される。
 本体部91の封止端91aの中央部には、円筒形状の軸部92が、第1ケース10の底部11側(図1の上側)に突出する。上述したように、軸部92に対して軸線X方向で対向する底部11の中央部には、有底円筒形状の支持部11aが設けられる。支持部11aには、有底円筒形状の軸受部材24が圧入により位置決めされて固定される。軸受部材24は、ロータ部90(軸部92)の軸線X方向の位置を規制するスラスト軸受部24aと、ロータ部90(軸部92)の径方向の位置を規制するラジアル軸受部24bを備えている。軸部92は、軸受部材24によって回転可能に支持される。これにより、軸線X回りに回転するロータ部90の一端側の軸心合わせが、支持部11aに固定された軸受部材24によって行われる。
 本体部91の外周における軸線X方向の略中央部と、軸部92の近傍には、軸線X方向に見てリング状の突出部91bが全周に亘って設けられる。ロータマグネット100は、軸線X方向の一端が突出部91bに当接している。
(ゼネバ機構)
 図2はバルブ装置1の要部の分解斜視図であり、図3(a)はバルブ装置1の要部の断面図であり、図3(b)は図3(a)の部分拡大図である。また、図4はロータ部90の説明図であり、(a)はロータ部90の斜視図であり、(b)はロータ部90を仕切り部材30側から見た平面図である。図3に示すように、ロータ部90の本体部91では、軸部92とは反対側に、突出部91bよりも径が小さい小径軸部93が設けられる。小径軸部93の外周には、軸線X方向(ロータ部90の長手方向)に沿って延びるゼネバピン93a(図2、図4参照)が設けられる。ゼネバピン93aは、小径軸部93における突出部91bの近傍から先端部93eの近傍までの範囲に形成される。
 図4に示すように、小径軸部93では、突出部91b側の外周に、軸線X方向から見て略C字形状の膨出部93bが設けられる。膨出部93bは、ゼネバピン93aと同じ径方向高さで形成される。膨出部93bとゼネバピン93aとの間には、歯溝部93d(図4(b)参照)が設けられる。歯溝部93dには、後記するゼネバ歯車110の歯部112b(図6の(b)参照)が係合する。膨出部93bにおける歯溝部93dの近傍部分は、後述するゼネバ歯車110の度当たり112d、112eが当接するストッパ部93c、93c(当接部)となっている。
 図2および図3に示すように、小径軸部93の径方向外側にはゼネバ歯車110が設けられる。ゼネバ歯車110は、ロータ部90の軸線X回りの回転角度を規定する。ゼネバ歯車110の回転軸116は、仕切り部材30に形成された軸受部38の軸受穴38aと、ブラケット部材115に形成された軸受穴115aとによって回転可能に支持される。ゼネバ歯車110は、ステッピングモータ8のロータ部90の軸線Xに平行な軸線X’周りに回転可能に設けられる。ゼネバ歯車110は、ロータマグネット100と軸線X方向で重なる位置に設けられるため、第1ケース10の大径部12bの径を小さくすることができる。
 図5はゼネバ歯車110の説明図であり、(a)は、ゼネバ歯車110を仕切り部材30側から見た斜視図であり、(b)は仕切り部材30側から見た平面図である。図5に示すように、ゼネバ歯車110は、回転軸116が挿通されるリング状の軸部111と、軸部111よりも大径の大径部112とを備える。大径部112では、ゼネバ歯車110の回転中心(軸線X’)を通る直線L(図5(b)参照)を境にして一方側の半円部に、歯溝部112aと、歯部112bと、突出部112cが設けられる。
 歯部112bと突出部112cは、大径部112の周方向で交互に設けられる。歯部112bは、大径部112の厚み方向(軸線X’方向)における全長に亘って形成されており、突出部112cは、ロータ部90の回転を阻害しないようにするために、ロータ部90の膨出部93bとの接触を避ける厚み(高さhz)で形成される。一方、直線Lを境にして反対側の半円部のうち、歯溝部112aに面した部分である両側部112d、112eは、ロータ部90の回転範囲(回転角度)を規定する度当たりを構成している。
 図6はゼネバ歯車110の動作説明図であり、(a)はゼネバ歯車110の一方の度当たり112eによってロータ部90の回転が規制された状態、(b)はゼネバ歯車110の歯溝部112aと、ロータ部90のゼネバピン93aとが係合した状態、(c)はゼネバ歯車110の他方の度当たり112dによってロータ部90の回転が規制された状態を示す。
 本形態では、ロータ部90のゼネバピン93aは、ゼネバ歯車110の歯溝部112aに挿入されて歯部112bと係合する。ロータ部90が軸線X回りに1回転する毎に、ゼネバ歯車110が、ゼネバピン93aにより所定角度ずつ軸線X’周りに回転させられる。バルブ装置1では、ステッピングモータ8を駆動してロータ部90を回転させることによって弁体6を軸線X方向に進退移動させるが、ロータ部90の回転可能範囲はゼネバ歯車110とゼネバピン93aによって構成されるゼネバ機構(回転規制部)によって規制されており、この回転規制部によってロータ部90の回転が阻止された状態でステッピングモータ8を脱調させてからステッピングモータ8の駆動を停止する。
 図6(b)に示す状態で、ロータ部90が反時計回り方向CCWに回転すると、ゼネバ歯車110の度当たり112eが、膨出部93bのストッパ部93cに当接した時点で、ロータ部90の回転が阻止される(図6(a)参照)。
 図6(a)に示す角度位置では、ロータ部90は、反時計回り方向への回転が規制されて、時計回り方向CWにしか回転できない。この状態からロータ部90が時計回り方向CWに回転すると、ロータ部90が2回転した地点で、図6(b)に示す状態となる。この状態からさらに時計回り方向CWに1回転して、ゼネバ歯車110の度当たり112dが、膨出部93bのストッパ部93cに当接すると、ロータ部90の回転が阻止される(図6(c)参照)。
 図6(c)に示す角度位置では、ロータ部90は、時計回り方向CWへの回転が規制されて、反時計回り方向CCWにしか回転できない状態となる。このように、ゼネバ歯車110は、ロータ部90が同じ方向に3回転すると度当たり112dあるいは112eによってそれ以上の回転が阻止される。ゼネバ歯車110の突出部112cは、ロータ部90の膨出部93bとの干渉を避ける高さで形成されているので、ゼネバ歯車110とロータ部90は互いに干渉することなく相対回転する。
 上述したように、バルブ装置1では、ステッピングモータ8のロータ部90の回転が、ネジ送り機構により、作動部材7の軸線X方向の進退移動に変換される。図3に示すように、作動部材7の一端には、ロータ部90の本体部91内に挿入される軸部材71が設けられる。ネジ送り機構は、ロータ部90の本体部91の内周に設けられた雌ネジ95と、軸部材71の外周に設けられた雄ネジ71aと、支持部材120とから構成される。支持部材120は、仕切り部材30の係合部35に回転不能に取り付けられている。支持部材120は、作動部材7の軸線X方向の略中央部分に設けられた嵌合部72を軸線X回りに回転不能かつ軸線X方向に進退移動可能に支持する。ロータ部90が回転すると、軸部材71がネジ送りされて、作動部材7が軸線X方向に移動する。
 ロータ部90が、図6(b)に示す回転位置から反時計回り方向CCWに1回転すると、ネジ送り機構によって作動部材7が流入管3側に移動して、弁体6が、流入管3の取付部材27の先端部27a(図1参照)に当接する。弁体6は、軸線X方向に弾性変形する弾性部材であるスプリング76を介して作動部材7に連結される。スプリング76は、弁体6が取付部材27の先端部27aに当接するまでは、自由長の状態を保っている。弁体6が取付部材27の先端部27aに当接した状態から、ロータ部90がさらに1回転して、図6(a)に示す回転位置に達するまでの間は、弁体6と作動部材7は、スプリング76(図3参照)を圧縮しながら軸線X方向に相対移動する。ロータ部90が図6(a)に示す回転位置に到達すると、スプリング76が予め設定した寸法だけ圧縮された状態となる。
 このように、バルブ装置1は、ゼネバ歯車110とゼネバピン93aによって構成されるゼネバ機構(回転規制部)により、ロータ部90の回転を規制している。ロータ部90が、その回転可能範囲の一端と他端の間にある所定の回転位置、すなわち、図6(b)に示す角度位置から反時計回り方向CCWに1回転した回転位置に移動すると、弁体6は、作動部材7およびスプリング76を介して、取付部材27の先端部27aに当接する位置まで移動する。この位置では、スプリング76は、自由長の状態を保っている。そして、この状態から、ロータ部90がその回転可能範囲の一端である図6(a)に示す回転位置まで更に回転すると、スプリング76が弁体6と作動部材7との間で圧縮される。このため、スプリング76の弾性力によって、弁体6が弁座(取付部材27の先端部27a)に押し付けられる。従って、流入管3の開口が弁体6によって密閉される。
 また、ロータ部90は、図6(a)に示す回転位置から更に反時計回り方向CCWに回転することはできない。本形態では、このように、ゼネバ機構によってロータ部90の回転可能範囲を規制しているため、スプリング76が予め設定した寸法を越えて圧縮されることがない。よって、弁体6による押圧力が過大にならない位置でロータ部90および作動部材7を停止させることができる。また、弁体6にステッピングモータ8のトルク(停止時の脱調トルク等)が直接作用することが防止された構成である。従って、弁体6が過大な力で弁座(取付部材27の先端部27a)に押し付けられることが防止される。
(支持部材)
 図7は支持部材120の説明図であり、(a)は支持部材120を仕切り部材30側から見た平面図であり、(b)は弁体6側から見た平面図であり、(c)は側面図である。また、(d)は、(a)におけるA-A断面で支持部材120を切断した斜視図である。支持部材120は、円筒状の基部121と、この基部121の弁体6側の一端から径方向外側に延びるフランジ部122を備える。支持部材120を長を長手方向に貫通する貫通孔123の内周面には、径方向内側に突出する突出部121aが設けられる。突出部121aは、軸線X回りの周方向で所定の角度間隔(図7では、180度間隔)の2箇所に設けられる。貫通孔123には、作動部材7の軸線X方向の略中央部分に設けられた嵌合部72が挿通される。嵌合部72の外周面には凹溝72aが形成され、この凹溝72aが貫通孔123の内周面に形成された突出部121aと嵌合されることで、支持部材120と作動部材7の軸線X回りの相対回転が阻止される。
 支持部材120は、仕切り部材30の中央部分に設けられた後述する係合部35に取り付けられる。円筒状の基部121の外周面におけるフランジ部122側の部位には、径方向外側に突出する係合突起124が設けられる。係合突起124は、軸線X回りの周方向に等間隔で複数設けられる。係合突起124は、支持部材120を仕切り部材30の係合部35に取り付けた際に、係合部35の係合突起35aに嵌合する。具体的には、隣接する係合突起124と係合突起124の間に構成される凹部に係合突起35aが嵌合する。これにより、支持部材120は、仕切り部材30に対して回り止めされた状態で取り付けられる。仕切り部材30に対する支持部材120の周方向の取付け位置は、係合突起124の周方向の配置間隔で調整可能となる。本形態では、係合突起124が周方向に等間隔で12個設けられるため、仕切り部材30に対する支持部材120の周方向の取付け位置を30度の倍数で変更できる。
(仕切り部材)
 図8は仕切り部材30の説明図であり、(a)は、仕切り部材30を弁体6側から見た平面図であり、(b)は、ロータ部90側から見た平面図である。また、(c)は仕切り部材30の側面図であり、(d)は弁体6側から見た仕切り部材30の斜視図である。また、図9は仕切り部材30の断面図(図8(a)のA-A断面図)であり、第1ケース10、第2ケース20,ロータ部90の小径軸部93を仮想線で示している。そして、図10は支持部材120と仕切り部材30の結合状態の説明図であり、(a)は仕切り部材30を弁体6側から見た斜視図であり、(b)は(a)における面Aで切断した断面図である。また、図11は仕切り部材30をロータ部90側から見た斜視図である。
 仕切り部材30は樹脂材料から構成されており、以下に説明するように、軸線X方向に2分割される金型によって成型可能な形状をしているため、容易に成型できる。仕切り部材30は円盤形状のプレート部31を有する。プレート部31の中央部には、作動部材7の軸部材71を挿通させる挿通穴32が、厚み方向に貫通して設けられている。図9に示すように、仕切り部材30のロータ部90側の面31bには、挿通穴32を囲む円筒壁33が設けられている。円筒壁33は、軸線X方向に所定高さh4となるように形成される。プレート部31の中央に設けられた挿通穴32に挿通された軸部材71は、円筒壁33によって軸線X方向に移動可能に支持される。このため、軸部材71が軸線X方向に移動する際の軸心振れは、円筒壁33によって規制される。
 円筒壁33の先端33a側は、ロータ部90の本体部91における仕切り部材30側の端部に開口する嵌合穴91c(図3、図9参照)に内挿される。すなわち、ロータ部90の他端側(小径軸部93側)は、円筒壁33によって回転可能に支持される。つまり、本形態では、軸線X回りに回転するロータ部90の一端側の軸心合わせが、上述した第1ケース10の底部11内に設けられた軸受部材24のラジアル軸受部24bによって行われると共に、他端側の軸心合わせが、仕切り部材30のプレート部31と一体に形成された円筒壁33により行われる。すなわち、本体部91は、嵌合穴91cに円筒壁33を内挿した状態で、摺動回転可能に支持されており、嵌合穴91cと円筒壁33によって、本体部91の先端部93e側のラジアル軸受が構成される。
 また、プレート部31のロータ部90側の面31bには、円筒壁33を囲む環状壁34が設けられている。環状壁34は、上述したゼネバ歯車110の径方向外側において、軸線X方向に所定高さh5となるように形成される。環状壁34の外径D4は、第1ケース10の周壁部12における大径部12bの内径と整合している。仕切り部材30は、環状壁34が大径部12bに圧入されることにより、第1ケース10に対して位置決めされる。
 図8(b)に示すように、円筒壁33と環状壁34の間の部分には、径方向に延びる3本の溝31eが等角度間隔(120度間隔)で形成される。本形態では、図3に示すように、仕切り部材30とロータ部90の先端部93eとの間に、ロータ部90の軸線X方向のガタツキを防止するための板バネ140が配置される。この板バネ140の脚部141(図11参照)が、溝31e内に配置されて、仕切り部材30に接触している。
 さらに、円筒壁33と環状壁34の間には、ロータ部90側に突出する2本の板状の支持部材39、39が設けられる。支持部材39、39は、仕切り部材30のプレート部31に形成された軸受穴38aの両側に配置される。支持部材39、39には、軸受穴38aを挟んで対向する側面とは反対側の側面に突起39aが設けられる。上述したゼネバ歯車110を支持するブラケット部材115(図2参照)は、軸線X’方向に延びる腕部115bに設けられた開口部115cを突起39aに係合させて、支持部材39、39に取り付けられる。プレート部31には、支持部材39、39の基部に隣接する位置に、プレート部31を厚み方向に貫通する貫通穴31dが設けられる。第1ケース10内の空間と第2ケース20内の空間は、貫通穴31dを介して互いに連通している。
 プレート部31の弁体6側の面31aには、軸受穴38aの裏側の位置に、弁体6側に突出する円筒状の軸受部38が設けられる。軸受部38は、ゼネバ歯車110の回転軸116を支持する。また、仕切り部材30の弁体6側の面31aには、挿通穴32を囲む係合部35が設けられる。この係合部35の内周面36は、プレート部31から離れる方向(図9において左方向)に向かうに従って2段階に拡径しており、プレート部31の部位が小径部36a、弁体6側の部位が大径部36bとなっている。小径部36aの内径D5は支持部材120の基部121(図7参照)の外径に対応しており、支持部材120を仕切り部材30に組み付けた際に、支持部材120の基部121がこの小径部36aに嵌合される。
 図8(a)に示すように、大径部36bには、径方向内側に突出する係合突起35aが、軸線X回りに等間隔で複数設けられる。係合突起35aは、大径部36bの軸線Xの全長に亘って延びている。また、係合部35には、周方向に120度間隔で切欠き35bが設けられる。切欠き35bの位置には、プレート部31を貫通する貫通穴31cと、貫通穴31cの径方向外側において係合部35と同じ方向に突出する腕部37が設けられる。腕部37は、軸線X方向に延びており、プレート部31からの高さh1は、係合部35のプレート部31からの高さh2よりも高い。腕部37の先端には、径方向内側に突出する爪部37aが設けられる。爪部37aは、支持部材120を仕切り部材30に組み付けた際に、支持部材120の係合段部122a(図3参照)に係合して、支持部材120の仕切り部材30からの脱落を阻止している。
 支持部材120は、このように、その基部121が小径部36aに嵌合され、当接面122bを係合部35の先端面に当接させた状態で保持される。この状態で、図10(b)に示すように、支持部材120の係合突起124が、各係合突起35aに周方向の両側から当接した状態となっており、上述したように、支持部材120が仕切り部材30に対して回り止めされた状態で取り付けられる。
(回り止め部)
 プレート部31の外周部分には、軸受部38の径方向外側の位置を含む4箇所に、それぞれ、2本の平行な切欠き溝41、41が形成されている。切欠き溝41、41は環状壁34の位置まで延びている(図8(b)参照)。切欠き溝41、41の間の部位は、径方向に延びており周方向の幅が一定の第1板バネ片42となっている。4つの第1板バネ片42は、軸線X回りに等角度ピッチで配置されている。
 第1板バネ片42の先端には、軸受部38および係合部35と同じ側に突出するリブ42aが形成されている。第1板バネ片42は、リブ42aを除いた部分の軸線X方向の厚さh6が、プレート部31の外周縁における第1板バネ片42以外の部分である第2板バネ片43の厚さh7よりも薄く形成されている(図8(c)参照)。第1板バネ片42および第2板バネ片43は、軸線X方向に弾性変形する樹脂バネ部を構成している。この樹脂バネ部が、回り止め部40である。
 図1、図9に示すように、回り止め部40は、第1ケース10側の第1フランジ部13と第2ケース20側の第2フランジ部23の間に挿入され、第1フランジ部13の内周部分13bと第2フランジ部23の底面部分23dとの間に挟み込まれている。ここで、内周部分13bと底面部分23dの軸線X方向の距離h8(図9参照:隙間の高さ)は、回り止め部40の軸線X方向の厚さh9(図8(c)参照)よりも小さく設定されている。このため、回り止め部40は、薄い側のバネ片である第1板バネ片42の先端がロータ部90側に湾曲させられて撓み状態になっており、軸線X方向に圧縮変形されている。このため、回り止め部40は、軸線X方向の弾性力によって、第2板バネ片43を第1フランジ部13の内周部分13bに軸線X方向に押し付けると共に、第1板バネ片42を第2フランジ部23の底面部分23dに軸線X方向に押し付けている。第2板バネ片43は、軸線X方向に撓むことは可能であるが、その撓み量(軸線X方向の変形量)は極めて小さく、第1板バネ片42の撓み量>第2板バネ片43の撓み量である。従って、第2板バネ片の変形による仕切り部材30の軸線X方向への移動量が小さく、仕切り部材30の軸線X方向への位置ずれを低減できる。
 このように、仕切り部材30は、樹脂バネ部である回り止め部40が、内周部分13bおよび底面部分23dに弾性接触するように組み付けられる。これにより、仕切り部材30は、本体ケース2に対して軸線X回りに相対回転するとき、内周部分13bと回り止め部40との間、および、底面部分23dと回り止め部40との間に摩擦力が生じる。つまり、実施形態1では、第1ケース10と第2ケース20の間に、摩擦力によって軸線X回りの回り止めがなされた状態で仕切り部材30が取り付けられる。
 図9に示すように、仕切り部材30は、回り止め部40が設けられている外周縁が、第1ケース10と第2ケース20の溶接部位Wから径方向に所定寸法h3だけ離れている。上述したように、第1ケース10の第1フランジ部13の外周部分13aと、第2ケース20の第2フランジ部23の外周部分23aとは、TIG溶接によって接合されている。このように、第1ケース10と第2ケース20の接合部位としての溶接部位Wが、仕切り部材30の外周縁から離れていることで、溶接熱の仕切り部材30側への伝達が抑制される。これにより、溶接熱による仕切り部材30の変形が防止される。特に、本形態では、回り止め部40と溶接部位Wとの間に隙間Sが形成されているので、隙間Sが断熱層として機能する。なお、隙間Sに他の部材が配置されていてもよい。この場合でも、溶接部位Wと仕切り部材30とが離れていれば、溶接熱の伝達抑制効果は得られる。
 仕切り部材30は、上述したように、環状壁34が大径部12bに圧入されることで第1ケース10に対して位置決めされるが、溶接熱の仕切り部材30側への伝達が抑制されるため、溶接熱によって環状壁34が変形して仕切り部材30の位置決めが損なわれることを防止できる。なお、第1ケース10と第2ケース20を樹脂素材で形成した場合には、第1ケース10と第2ケース20を溶着して接合することができるが、この場合にも同じ効果が得られる。
(弁体を駆動する機構)
 図2および図3に示すように、作動部材7では、支持部材120が嵌合する嵌合部72と、弁体6との連結部73と、スプリング支持部74とが、同一の樹脂材料(例えば、PPS(ポリフェニルサルファイド))で構成され、これらとSUS材からなる軸部材71とが、インサート成形により一体に形成される。
 軸部材71の先端側の外周には、ロータ部90の雌ネジ95に係合する雄ネジ71aが設けられる。図3に示すように、軸部材71の基端側は、嵌合部72を貫通してスプリング支持部74の近傍まで延びている。図2に示すように、円筒状の嵌合部72の外周には、軸方向に沿って延びる凹溝72aが、周方向の全周に亘って設けられる。この凹溝72aは、軸線Xを挟んで対称となる位置(軸線X回りの周方向で180度間隔の位置)に設けられる。
 スプリング支持部74は、嵌合部72よりも大径の円柱部74aと、円柱部74aの嵌合部72側の端部に設けられたフランジ部74bと、を備える。円柱部74aの外径は、スプリング76の内径と略同じであり、スプリング76の一端側が外挿されて取り付けられる。フランジ部74bの外径は、スプリング76の外径よりも僅かに大きい径を有しており、スプリング76の一端が当接する。
 スプリング支持部74に隣接する連結部73は、基本形状が円柱形状であり、この連結部73の先端の外周に、径方向外側に突出する突起73aが、軸線Xを挟んで反対方向に突出して設けられる。連結部73の突起73aが設けられた先端側は、弁体6の開口62a(図2参照)に挿入されて、弁体6と連結部73とが連結される。
 図3に示すように、弁体6は、樹脂材料(例えば、PPS(ポリフェニルサルファイド))からなる係合部材61と、係合部材61に外嵌して取り付けられた当接部材65と、を備える。図12は弁体の説明図であり、(a)は、弁体6を作動部材7側から見た平面図、(b)は、(a)におけるA-A断面図、(c)は、(a)におけるB-B断面図である。この図に示すように、係合部材61は、円板部62と、円板部62の外周から作動部材7とは反対方向に延びる周壁部63と、フランジ部64とを備える。周壁部63は、小径部63aと大径部63bとを備えており、円板部62から離れるにつれて内径が広がるように階段状に形成される。
 円板部62には、円板部62を厚み方向(軸線X方向)に貫通する開口62aが設けられており、開口62aでは、軸線Xを挟んで互いに平行な二面幅部62b、62bが形成される。この開口62aは、連結部73の突起73aが設けられた先端部を挿通可能な形状および大きさで形成される。
 また、連結部73の先端部の最大径D6は、周壁部63の小径部63aの内径D7よりも僅かに小さく設定される。そのため、弁体6の開口62aに連結部73の先端部を挿入したのち、弁体6を90度回転させることで、突起73aが円板部62に係止された状態となり(図12(c)参照)、弁体6の連結部73からの脱落が防止される。この状態において、弁体6と、作動部材7の連結部73とは、軸線X方向で相対移動可能である。
 周壁部63の小径部63aの外径は、スプリング76の内径と略同じであり、スプリング76の他端側が外挿されて取り付けられる。大径部63bの外径は、スプリング76の外径よりも僅かに大きい径を有しており、スプリング76の他端が当接する。
 周壁部63の円板部62とは反対側の端部の外周には、フランジ部64が全周に亘って設けられる。フランジ部64は、径方向外側に延出する。フランジ部64には、NBRなどのゴム材料からなる当接部材65(図3参照)が外嵌して取り付けられる。図1に示すように、弁体6が流入管3側に移動すると、流入管3の開口3aが当接部材65により閉鎖される。そのため、当接部材65(フランジ部64)の外径は、流入管3の開口径よりも大きい。
 ここで、図1に示すように、バルブ装置1では、弁体6と、作動部材7と、ロータ部90と、流入管3とが、同軸上に配置される。流入管3の開口3aは、開口面に直交する方向(軸線X方向)に進退移動する弁体6によって開閉される。また、本形態では、ステッピングモータ8により作動部材7および弁体6が軸方向にステップ移動する。従って、段階的に変化する弁体6の開口3aとの位置関係に応じて、流入管3からバルブ室5a内に流入して排出管4から排出される流体の量が調整される。
 図13は、バルブ装置1の組み付け時に行う作動部材7(弁体6)の位置決めの説明図であり、(a)は、支持部材120の係合部35への着脱と弁体6の位置調整を説明する図であり、図13(b)は、ゼネバ歯車110によるロータ部90の回転規制を説明する図である。
 本形態では、支持部材120の突出部121aと、作動部材7の嵌合部72の凹溝72aとを嵌合させて、支持部材120と作動部材7とが組み付けられている(図10(b)参照)。つまり、支持部材120は、作動部材7に対して相対回転しないように嵌合している。この状態において支持部材120は、突出部121aに沿って軸線X方向に移動可能であり、仕切り部材30の係合部35に対して、軸線X方向から着脱自在である。そのため、バルブ装置1におけるネジ送り機構の部分の組み付け時には、始めに、ロータ部90を回転させて、ゼネバ歯車110の度当たり112eがストッパ部93cに当接する角度位置にロータ部90を配置する(図13(b)参照)。そして、ロータ部90の回転を阻止した状態で、図中矢印S1で示す軸線X回りに支持部材120を回転させて、作動部材7とロータ部90とを相対回転させる。これにより、作動部材7の雄ネジ71aとロータ部90の雌ネジ95との噛み合い部分(図3参照)の長さが変わり、支持部材120の回転方向に応じて、作動部材7と弁体6とが矢印S2で示す方向に進退移動する。従って、弁体6を所定の初期位置に位置決めできる。
 そして、初期位置に配置したのち、支持部材120(作動部材7)の軸線X回りの角度位置を保持した状態で、支持部材120を係合部35側にスライドさせて、係合部35から延びる腕部37の爪部37aを、支持部材120の係合段部122aに係止させる。この状態では、支持部材120の係合突起124と、係合部35の係合突起35aとが互いに嵌合しているので、支持部材120は、固定側部材である仕切り部材30の係合部35に回り止め嵌合された状態となる。
 また、支持部材120と係合部35とを相対回転不能に嵌合したのちに、弁体6(作動部材7)の位置を再度調整する場合には、支持部材120を係合部35から取り外すことで、作動部材7の位置の調整を行うことができる状態(図13(a)に示す状態)になる。この際、支持部材120から延びる可撓性の腕部37の爪部37aと支持部材120の係合段部122aとの係合を解除して、支持部材120を軸方向にスライドさせるだけで、支持部材120を係合部35から簡単に取り外すことができる。
(作用効果)
 以上のように、実施形態1のバルブ装置1は、第1ケース10と第2ケース20を接合して形成した本体ケース2内の密閉空間を区画する仕切り部材30を備える。ロータ部90の一端側の小径軸部93は、仕切り部材30に形成された円筒壁33によって回転可能に支持され、他端側は第1ケース10に回転可能に支持される。仕切り部材30は、第1ケース10および第2ケース20に接触する回り止め部40を備えており、第1ケース10および第2ケース20に対して軸線X回りの回り止めがなされた状態に組み付けられている。従って、仕切り部材30がロータ部90と供回りして、本体ケース2に対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材30の回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。
 実施形態1では、回り止め部40として、第1ケース10および第2ケース20に弾性的に接触する樹脂バネ部(弾性接触部)を用いる。仕切り部材30は樹脂製であり、軸受部として機能する円筒壁33が形成されたプレート部31を備える。そして、このプレート部31に、樹脂バネ部として機能する第1板バネ片42および第2板バネ片43が一体に形成されている。第1板バネ片42および第2板バネ片43(樹脂バネ部)は、摩擦によって回り止めを行うため、仕切り部材30の位置合わせは、ロータ部90の軸心精度の確保のために円筒壁33の径方向の位置合わせが行われていればよく、回転方向(周方向)の位置合わせを行う必要がない。従って、仕切り部材30の組み付けが容易である。
 また、実施形態1では、プレート部31が円盤形状であり、第1板バネ片42および第2板バネ片43は、プレート部31の外周部に設けられている。このため、プレート部31の外周部で摩擦力が発生し、第1板バネ片42および第2板バネ片43(樹脂バネ部)の弾性力が小さくても、全体として大きな摩擦力を発生させることができる。従って、組み付けが容易な構成でありながら、強力に回り止めを行うことができる。特に、本形態では、第1板バネ片42における第1ケース10との当接部(リブ42a)と、第2板バネ片43における第2ケース20との当接部は、プレート部31の外周縁に設けられている。従って、プレート部31の最外周で摩擦力を発生させることができ、全体として大きな摩擦力を発生させることができる。
 更に、実施形態1では、樹脂バネ部における弾性変形する側のバネ足である第1板バネ片42を第2ケース20に当接させ、第1板バネ片42よりも厚く且つ幅広なために第1板バネ片42よりも弾性変形しにくいバネ足である第2板バネ片43を第1ケース10に当接させている。このようにすると、第1、第2ケース10、20を接合する前に、第1ケース10に仕切り部材30を精度良く位置決めすることができる。そして、この状態でロータ部90と弁体6の位置関係を調整して、しかる後に第1、第2ケース10、20を接合できる。従って、弁体6を精度良く取り付けることができる。
 また、実施形態1では、第1板バネ片42および第2板バネ片43は、軸線X方向の圧縮力が加わったときに弾性変形し、第1板バネ片42が第2ケース20に対して軸線X方向の一方側から当接し、第2板バネ片43が第1ケース10に対して軸線X方向の他方側から当接する。このため、仕切り部材30が第1ケース10と第2ケース20に対して軸線X方向に密着して軸線X方向への移動が防止される。従って、仕切り部材30に支持された弁体6の軸線X方向の位置がずれることを防止できる。よって、弁体6の位置精度を高めることができる。
 また、実施形態1の仕切り部材30は、上述したように、回り止め部40が設けられている外周部が、第1ケース10と第2ケース20の溶接部位Wから径方向に所定寸法h3だけ離れた位置に組み付けられる。従って、溶接熱の仕切り部材30(特に、第1板バネ片42および第2板バネ片43)への伝達を抑制でき、溶接熱によって第1板バネ片42および第2板バネ片43が変形することを防止できる。
 また、実施形態1では、仕切り部材30には、ロータ部90と同軸に形成された円筒部としての環状壁34が設けられ、第1ケース10には、円筒部(環状壁34)の外周側に配置された当接部としての周壁部12(大径部12b)が設けられる。そして、大径部12bの内周側に環状壁34を嵌め込むことにより、仕切り部材30と第1ケース10を全周にわたって径方向に当接させている。このように、仕切り部材30と第1ケース10との位置決め部を円筒形にした場合、径方向の位置合わせのみで位置決め状態を形成でき、回転方向(周方向)の位置合わせは不要である。従って、仕切り部材30の組み付けが容易である。また、このような効果を得るためには、環状壁34と大径部12bの一方を円筒状とし、他方を、円筒状の部材に対して3箇所以上の周方向位置において径方向に当接している形状とすればよい。
 更に、実施形態1では、第1ケース10内にロータ収容室5bが設けられ、ロータ部90の外周部分に配置されたロータマグネット100と、第1ケース10の外側に配置されたステータ部80が第1ケース10の小径部12aを挟んでロータ部90の径方向に対向しており、第1ケース10には、ロータ部90の一端側の軸部92を回転可能に支持するケース側軸受部である軸受部材24と、仕切り部材30との位置決め部である大径部12bが設けられる。ロータ部90の他端側の軸部(小径軸部93)は、上述したように、仕切り部材30によって回転可能に支持されるため、この構成では、第1ケース10および仕切り部材30にロータが支持されており、第1ケース10に対するロータ部90の位置精度が高い。従って、ロータマグネット100と第1ケース10のクリアランスを小さくすることができる。上述したように、第1ケース10における小径部12aの内周面とロータマグネット100との隙間は0.4mmである。従って、モータの効率を向上させることができる。
 また、実施形態1では、弁体6が仕切り部材30の環状壁34の中心軸線上に配置されるため、仕切り部材30の回転方向(周方向)の位置が変化しても弁体6の径方向位置(軸線X方向と直交する方向の位置)が変化せず、弁体6と弁座(流入管3の開口に取り付けられた取付部材27)との位置関係が崩れない。従って、弁体6を精度良く開閉できる。
 そして、実施形態1では、仕切り部材30を回り止めされた状態に挟み込む第1フランジ部13は凹凸のない平面形状であるため、第1ケース10の製造が容易である。また、第1、第2フランジ部13、23の間に回り止め部40を挟み込んでいるため、両ケース10、20の回転方向(周方向)の位置精度が低くても両ケース10、20を接合できる。更に、両ケース10、20は、その外周部分13a、13bを軸線X方向に直接当接させて位置決めされるため、両ケース10、20の接合時の位置精度が回り止め部40によって低下することがない。
 また、実施形態1では、ロータ部90の回転可能範囲を規制する回転規制部としてのゼネバ歯車110と、ロータ部90の回転に基づいて弁体6を軸線X方向に移動させる作動部材7をロータ部90と共回りしないように作動部材7の回転を規制する支持部材120が、いずれも、仕切り部材30に取り付けられる。従って、仕切り部材30が動いたとしても支持部材120と回転規制部(ゼネバ歯車110)の位置関係が崩れることがない。従って、仕切り部材30の回転方向(周方向)の位置合わせを行わずに仕切り部材30を組み付けたとしても、弁体6を駆動する作動部材7とロータ部90の位置関係が崩れることがない。よって、バルブ装置1の組み立てが容易である。また、支持部材120を仕切り部材30に着脱できるため、ゼネバ歯車110をロータ部90のゼネバピン93aに組み付けた状態で、支持部材120を取り外して作動部材7および弁体6の進退位置を調整できる。そして、調整後に支持部材120を取り付けて、弁体6とロータ部90の位置関係を固定できる。従って、弁体6とロータ部90の位置関係を調整する作業が容易である。更に、作動部材7はネジ送り機構によって進退移動するため、部品点数が少なくて済み、組み付けも容易である。
(変形例1)
 実施形態1は、樹脂バネ部として、プレート部31の径方向に延在する形状の板バネ片を用いていたが、板バネ片の形状はこのようなものに限定されない。変形例1では、樹脂バネ部として、周方向に延在する板バネ部を用いる。
 図14は変形例1の仕切り部材30Aの説明図であり、(a)は仕切り部材30Aを弁体6側から見た平面図であり、(b)はその部分断面図(図14a)のA-A断面図)である。変形例1の仕切り部材30Aは円盤形状のプレート部31Aを備える。プレート部31Aは、以下に説明する樹脂バネ部(第3板バネ片45、第4板バネ片46)以外の構成は実施形態1のプレート部31と同一である。プレート部31Aの外周部には、屈曲形状の切欠き溝44が4箇所に形成されている。切欠き溝44は、プレート部31Aの外周縁から内周側に向けて延在する第1溝部44aと、第1溝部44aの内周側の端部から屈曲して周方向に延在する第2溝部44bを備える。プレート部31Aの外周部には、切欠き溝44で囲まれた第3板バネ片45が、軸線X回りの周方向で90度間隔の4箇所に形成されている。また、周方向で隣り合う第3板バネ片45、45の間の部位は、第4板バネ片46となっている。
 第3板バネ片45は、第1溝部44aに沿った一端が自由端であり、この自由端の端縁に沿ってリブ45aが形成されている。リブ45aは、プレート部31Aから軸受部38および係合部35と同じ側に突出する。図14(b)に示すように、第3板バネ片45は、リブ45aを除いた部分の軸線X方向の厚さが、上記形態の第1板バネ片42と同様に寸法h6である。この厚さh6は、第3板バネ片45、45と周方向に隣り合う第4板バネ片46の厚さh7よりも薄く形成されている。第3板バネ片45および第4板バネ片46は、軸線X方向に弾性変形する樹脂バネ部を構成している。
 第3板バネ片45および第4板バネ片46(樹脂バネ部)は、上記形態の第1板バネ片42および第2板バネ片43と同様に回り止め部40Aとして機能する。図14(b)に示すように、回り止め部40Aの軸線X方向の厚さは、実施形態1と同様に寸法h9である。第3板バネ片45および第4板バネ片46は、第1ケース10側の第1フランジ部13と第2ケース20側の第2フランジ部23の間に挿入され、第1フランジ部13の内周部分13bと第2フランジ部23の底面部分23dとの間に挟み込まれる。このとき、薄い側の板バネ片である第3板バネ片45の先端(自由端)が撓み、樹脂バネ部が軸線X方向に圧縮変形される。その結果、第4板バネ片46が第1フランジ部13の内周部分13bに弾性的に接触し、第3板バネ片45のリブ45aが第2フランジ部23の底面部分23dに弾性的に接触する。従って、実施形態1と同様に、摩擦力によって、仕切り部材30Aがロータ部90と供回りして本体ケース2に対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材30Aの回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。
(変形例2)
 上記各形態は、回り止め部40/40Aとして、軸線X方向に弾性変形する樹脂バネ部を用いているが、変形例2では、径方向に弾性変形する樹脂バネ部を用いる。図15は変形例2の仕切り部材30Bの説明図であり、(a)は仕切り部材30Bをロータ部90側から見た平面図であり、(b)は弁体6側から見た平面図である。また、図16は変形例2の仕切り部材30Bと第2ケース20の説明図であり、(a)は第2ケース20をロータ部90側から見た平面図であり、(b)は仕切り部材30Bが第2ケース20に対して回り止めされた状態を示す平面図である。
 図15に示すように、変形例2の仕切り部材30Bは円盤形状のプレート部31Bを備える。プレート部31Bは、実施形態1の回り止め部40に代えて、以下に説明する樹脂バネ部48(回り止め部40B)と樹脂突起49(回り止め部40C)を設けており、他の構成は実施形態1のプレート部31と同一である。プレート部31Bの外周部には、周方向に延在する溝部47が4箇所に形成されている。各溝部47は、プレート部31Bを貫通する貫通部である。プレート部31Bにおいて、溝部47の外周側の部位は、周方向に延在する樹脂バネ部48となっている。プレート部31Bには、樹脂バネ部48が軸線X回りの周方向で90度間隔の4箇所に設けられている。樹脂バネ部48は、周方向の両端がプレート部31Bに接続されており、溝部47の溝幅の範囲内で径方向内側に弾性変形可能である。樹脂バネ部48の周方向の中央には、径方向外側に突出する突出部48aが形成されている。
 第2ケース20は実施形態1と同一であり、第2フランジ部23の外周部分23aの内周側が弁体6側に凹んでいる。図16(a)に示すように、外周部分23aの内周側には、側面部分23cおよび底面部分23dからなる凹形状の内周部分23bが設けられている。図16(b)に示すように、仕切り部材30Bは、本体ケース2に組み付けられるときに側面部分23cの内周側に配置される。このとき、樹脂バネ部48は、径方向内側に撓み、突出部48aが側面部分23cに弾性的に接触する。従って、仕切り部材30Bが第2ケース20に対して軸線X回りで相対回転しようとすると、プレート部31Bには、周方向の4箇所で側面部分23cとの間に摩擦力が生じる。この摩擦力によって、仕切り部材30Bの回り止めがなされる。
 また、図15(b)に示すように、プレート部31Bの外周部には、周方向に隣り合う溝部47の間に、樹脂突起49が形成されている。樹脂突起49は、プレート部31Bから軸受部38および係合部35と同じ側に突出する。プレート部31Bは、樹脂突起49が形成された部位の厚さ(樹脂突起49の突出寸法を含む厚さ)が、第1フランジ部13の内周部分13bと第2フランジ部23の底面部分23dとの距離h8(図9参照)よりも大きい。従って、第1ケース10側の第1フランジ部13と第2ケース20側の第2フランジ部23の間にプレート部31Bの外周部を挿入して、第1フランジ部13の内周部分13bと第2フランジ部23の底面部分23dの間にプレート部31Bの外周部を挟み込んだとき、樹脂突起49が押し潰される。この結果、第2フランジ部23の底面部分23dに押し潰された樹脂突起49が押し付けられ、第1フランジ部13の内周部分13bが樹脂突起49の裏側の部位に押し付けられる。従って、仕切り部材30Bが第2ケース20に対して軸線X回りで相対回転しようとすると、プレート部31Bには、周方向の4箇所で、第1フランジ部13の内周部分13bと第2フランジ部23の底面部分23dとの間に摩擦力が生じる。この摩擦力によって、仕切り部材30Bの回り止めがなされる。
 以上のように、変形例2の仕切り部材30Bには、樹脂バネ部48によって構成される回り止め部40Bと、樹脂突起49によって構成される回り止め部40Cが設けられている。これらは、いずれも、本体ケース2と仕切り部材30Bとの間に作用する摩擦力による回り止めである。このように、変形例2においても、摩擦力によって回り止めがなされた状態で仕切り部材30Bを本体ケース2に組み付けることができる。従って、実施形態1と同様に、仕切り部材30Bがロータ部90と供回りして、本体ケース2に対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材30Bの回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。
 なお、変形例2において、樹脂バネ部48の周方向の一端のみをプレート部31Bに接続した形状にしてもよい。また、回り止め部40Bと回り止め部40Cのいずれか一方を省略することもできる。樹脂突起49による回り止め部40Cは、単純な構成でありながら、摩擦力によって回り止めがなされた状態で仕切り部材30Bを本体ケース2に組み付けることができる。樹脂突起49を設ける場合、その形状は変形例2のようなものでなくても良く、リブのような形状であってもよい。また、樹脂突起49によって、仕切り部材30Bの軸線X方向への移動を防止できる。これにより、仕切り部材30Bに支持された弁体6の位置精度を高めることができる。
(変形例3)
 上記各形態は、仕切り部材30/30A/30Bの外周部に樹脂バネ部からなる回り止め部40/40A/40Bを形成して、この樹脂バネ部の弾性力によって仕切り部材30/30A/30Bの外周部(回り止め部40/40A/40B)を第1、第2ケース10、20の少なくとも一方に押し付ける構成であったが、仕切り部材30と別体の弾性部材を用いて、仕切り部材30を第1、第2ケース10、20に押し付ける構成としてもよい。例えば、仕切り部材30の外周部を均一な厚さの板状に形成しておき、この外周部と第1フランジ部13あるいは第2フランジ部23との間に弾性部材を挟み込む構造としてもよい。このような構造でも、仕切り部材30の外周部を回り止め部として用いることができ、第1フランジ部13あるいは第2フランジ部23と仕切り部材30との間に摩擦力を発生させることができる。弾性部材としては、例えば、Oリング等を用いることができる。また、この場合には、仕切り部材30は樹脂製でなくてもよい。
[実施形態2]
 実施形態2について、実施形態1と同一の構成については同一の符号で示してその説明を省略し、異なる構成には異なる符号を付して説明する。図17は実施形態2のバルブ装置の断面図である。図17に示すように、実施形態2のバルブ装置201は、第1ケース10と第2ケース220から形成される本体ケース202を備える。本体ケース202内の空間は仕切り部材230によってバルブ室5aとロータ収容室5bに区画される。実施形態2のバルブ装置201は、仕切り部材230の本体ケース202への組み付け構造が実施形態1と異なるが、他の構成は実施形態1と同一である。
 第2ケース220の底部21および周壁部22は、実施形態1と同一である。第2ケース220の第2フランジ部223は、実施形態1と同一の外周部分23aを備える。第2フランジ部223の内周部分223bは、側面部分23cおよび底面部分223dを備え、底面部分223dに係合凹部241(ケース側回り止め部)が形成されている点が実施形態1と異なる。係合凹部241は、底面部分223dから軸線X方向の一端側(流入管3側)に凹んでいる。第1ケース10と第2ケース220は、第1フランジ部13の外周部分13aと、第2フランジ部223の外周部分23aとが全周にわたって軸線X方向に当接する。外周部分13aと外周部分23aはTIG溶接により全周にわたって接合される。これにより、第1ケース10と第2ケース220とが互いに接合されて、本体ケース202を構成する。
 両フランジ部13、223の外周縁同士を当接させた状態において、第2フランジ部223の底面部分223dは、第1フランジ部13の内周部分13bと軸線X方向に離れた位置に配置される。すなわち、第1フランジ部13の内周部分13bと、第2フランジ部223の底面部分223dとが軸線X方向に対向し、その間には仕切り部材230の外周部分が挿入される。
(仕切り部材)
 図18はバルブ装置201の要部の分解斜視図である。また、図19(a)はバルブ装置1の要部の断面図であり、図19(b)は図3(a)の部分拡大図である。これらの図に示すように、バルブ装置201は、仕切り部材230の外周部分の形状が実施形態1と異なっている。図20は仕切り部材230の説明図であり、(a)は仕切り部材230を弁体6側から見た平面図であり、(b)はロータ部90側から見た平面図である。また、図21は、仕切り部材230の断面図(図20(a)のA-A断面図)であり、第1ケース10、第2ケース220、ロータ部90の小径軸部93を仮想線で示している。そして、図22は、支持部材120と、仕切り部材230の係合部35との係合状態の説明図であり、(a)は弁体6側から見た斜視図であり、(b)は(a)における面Aで切断した断面図である。また、図23は仕切り部材230をロータ部90側から見た斜視図である。
 図17~図23に示すように、仕切り部材230は、円盤形状のプレート部231を有する。プレート部231の中央部には、プレート部231を厚み方向に貫通する挿通穴32が設けられる。プレート部231のロータ部90側の面231bには、挿通穴32を囲む円筒壁33と、円筒壁33を囲む環状壁34が設けられる。
 仕切り部材230の環状壁34よりも内周側の部位は、実施形態1の仕切り部材30と同一の構成である。すなわち、プレート部231のロータ部90側の面231bには、円筒壁33と環状壁34の間の部分に、径方向に延びる3本の溝31eが等角度間隔で形成されている。さらに、円筒壁33と環状壁34の間には、ロータ部90側に突出する2本の板状の支持部材39、39と、その根元部分に形成された貫通穴31d、31dと、軸受穴38aが設けられる。
 また、プレート部231の弁体6側の面231aには、軸受穴38aの裏側の位置に、弁体6側に突出する円筒状の軸受部38が設けられる。また、プレート部231の弁体6側の面31aには、挿通穴32を囲む係合部35が設けられる。係合部35には、周方向に120度間隔で切欠き35bが設けられる。切欠き35bの位置には、プレート部231を貫通する貫通穴31cと、貫通穴31cの径方向外側において係合部35と同じ方向に突出する腕部37が設けられる。
 仕切り部材230のプレート部231には、実施形態1のような樹脂バネ部は設けられていないが、プレート部231の環状壁34よりも外周側の部位には、弁体6側に突出する円柱形状の係合突起242が設けられている。係合突起242は、軸線X回りの周方向で180度間隔の2箇所にそれぞれ設けられ、その1つは、軸受部38の径方向外側に配置されている。プレート部231の環状壁34よりも外周側の部位は、係合突起242の部位を除き、軸線X方向の厚さが均一である。
 係合突起242は、第1ケース10と第2ケース220との間に仕切り部材230を組み付ける際に、第2ケース220の係合凹部241と嵌合する。係合凹部241と係合突起242が嵌合することで、仕切り部材230が本体ケース202に対して軸線X回りに相対回転することが規制される。すなわち、係合凹部241および係合突起242によって、回り止め部240が構成されている。
(作用効果)
 以上のように、実施形態2のバルブ装置201では、第2ケース220の第2フランジ部223の底面部分223dに係合凹部241(ケース側回り止め部)を形成しており、仕切り部材230には、係合凹部241と係合する係合突起242(仕切り部材側回り止め部)を形成している。そして、係合凹部241と係合突起242の係合によって、仕切り部材230の回り止めがなされる。従って、実施形態1およびその変形例と同様に、仕切り部材230がロータ部90と供回りして、本体ケース202に対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材230の回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。また、仕切り部材230を本体ケース202に組み付けるとき、係合凹部241と係合突起242の係合によって、仕切り部材230の回転方向の位置決めを行うこともできる。
 なお、係合凹部241と係合突起242の凹凸を逆にしてもよい。すなわち、仕切り部材230に係合凹部を形成し、底面部分223dに係合突起を形成してもよい。ケース側の回り止め部を凸形状にする場合は、別部材を取り付けて凸部を形成してもよい。あるいは、第1フランジ部13の内周部分13bと仕切り部材230との間に回り止め部240と同様の係合凹部および係合突起を形成して、第1ケース10に対して回り止めを行ってもよい。
(変形例4)
 実施形態2は、第2ケース220と仕切り部材230の軸線X方向に対向する面に係止部(係合凹部241)と係合部(係合突起242)を形成するものであったが。変形例4は、仕切り部材230の外周面と第2ケース220に突起と凹部を形成し、これらを嵌合させて回り止めを行う形態である。
 図24は変形例4の仕切り部材230Aの説明図であり、(a)は仕切り部材230Aをロータ部90側から見た平面図であり、(b)は弁体6側から見た平面図である。また、図25は変形例4の仕切り部材230Aと第2ケース220Aの説明図であり、(a)は第2ケース220Aをロータ部90側から見た平面図であり、(b)は仕切り部材230Aが第2ケース220Aに対して回り止めされた状態を示す平面図である。
 図24に示すように、変形例4の仕切り部材230Aは円盤形状のプレート部231Aを備える。プレート部231Aは、実施形態2の係合突起242が設けられておらず、以下に説明する係合凹部243(回り止め部240A)および樹脂突起245(回り止め部240B)を設けたこと以外の構成は実施形態2のプレート部231と同一である。プレート部231Aの外周縁には、径方向内側に凹む係合凹部243が形成されている。係合凹部243は、軸線X回りの周方向で略90度間隔の4箇所に設けられている。
 図25に示すように、変形例4の第2ケース220Aは、第2フランジ部223Aの内周部分223fの底面部分223gに、実施形態2の係合凹部241が形成されておらず、係合突起244が形成されている。第2ケース220Aは、この点を除き、実施形態2の第2ケース220と同一である。係合突起244は、仕切り部材230Aの係合凹部243と軸線X方向に重なる4箇所に形成されている。係合突起244は、第1ケース10と第2ケース220Aとの間に仕切り部材230Aを組み付ける際に、第2ケース220Aの係合凹部243と嵌合する。これにより、仕切り部材230Aが第1ケース10および第2ケース220Aに対して軸線X回りに相対回転することが規制される。すなわち、係合凹部243および係合突起244によって、回り止め部240Aが構成されている。
 また、図24(b)に示すように、プレート部231Aの外周部には、周方向に隣り合う係合凹部243の間に、樹脂突起245が形成されている。樹脂突起245は、プレート部231Aから軸受部38および係合部35と同じ側に突出する。樹脂突起245は、周方向で略90度間隔の4箇所に設けられている。樹脂突起245の構成およびその作用効果は、実施形態1の変形例2で用いられた樹脂突起49(回り止め部40C)と同じである。すなわち、第1ケース10と第2ケース220Aとの間に仕切り部材230Aを組み付ける際に、樹脂突起245が押し潰され、プレート部231Aが第1ケース10と第2ケース220Aに対して軸線X方向に押し付けられる。これにより、摩擦力による仕切り部材230Aの回り止めがなされる。また、仕切り部材230Aの軸線X方向の位置決めもなされる。
 以上のように、変形例4の仕切り部材230Aには、係合凹部243および係合突起244によって構成される回り止め部240Aと、樹脂突起245によって構成される回り止め部240Bが設けられている。このため、変形例4においても、部材同士の係合および摩擦力によって回り止めがなされた状態で、仕切り部材230Aを第1ケース10と第2ケース220Aの間に組み付けることができる。従って、実施形態1、2と同様に、仕切り部材230Aがロータ部90と供回りして、本体ケース202に対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材230Aの回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。なお、変形例4において、回り止め部240Bを省略してもよい。
(変形例5)
 図26は変形例5の仕切り部材230Bの説明図であり、(a)は仕切り部材230Bをロータ部90側から見た平面図であり、(b)は弁体6側から見た平面図である。また、図27は変形例5の仕切り部材230Bと第2ケース220Bの説明図であり、(a)は第2ケース220Bをロータ部90側から見た平面図であり、(b)は仕切り部材230Bが第2ケース220Bに対して回り止めされた状態を示す平面図である。
 図26に示すように、変形例5の仕切り部材230Bは楕円形状のプレート部231Bを備える。プレート部231Bには、上記形態の係合凹部241や係合凹部243は設けられていないが、変形例4と同様に樹脂突起245が4箇所に設けられている。一方、図27に示すように、変形例5の第2ケース220Bは、外周部分223hおよび内周部分223jによって構成される第2フランジ部223Bを備える。内周部分223jは、側面部分223kおよび底面部分223mを備える。側面部分223kは軸線X方向に延在する筒状であり、軸線X方向に見たときに楕円形に形成されている。内周部分223jのような楕円形の凹部は、側面部分-223kに角部がないため、プレス加工での成型が容易である。
 変形例5の仕切り部材230Bは、第1ケース10と第2ケース220Bの間に組み付けられるとき、プレート部231Bが側面部分223kの内周側に配置される。プレート部231Bと側面部分223kはいずれも楕円形であるため、プレート部231Bが側面部分223kに係合され、仕切り部材230Bの軸線X回りの回転か規制される。すなわち、変形例5では、プレート部231B(仕切り部材側の回り止め部)と側面部分223k(ケース側回り止め部)によって回り止め部240Cが構成されている。また、変形例5では、変形例4と同様に、樹脂突起245(回り止め部240B)によって、摩擦力による仕切り部材230Bの回り止めもなされる。従って、変形例5では、部材同士の係合および摩擦力によって回り止めがなされた状態で、仕切り部材230Bを第1ケース10と第2ケース220Bの間に組み付けることができる。従って、上記各形態と同様に、仕切り部材230Bがロータ部90と供回りして、第1ケース10および第2ケース220Bに対して軸線X回りの回転方向に位置ずれすることを防止できる。よって、仕切り部材230Bの回転方向の位置精度を確保でき、ロータ部90の軸心精度を確保できる。
 なお、変形例5では、プレート部231Bと側面部分223kを楕円形して仕切り部材230Bの回転を規制しているが、楕円形以外の非円形であっても、回転を規制することは可能であるため、そのような形状を採用してもよい。また、楕円形や他の非円形にする場合に、プレス加工によってそのような形状を一体に成型するのではなく、実施形態1の内周部分23bのような円形凹部を形成し、その内周面に別部材を取り付けて、楕円形や他の非円形の内周形状にしてもよい。また、変形例5においても、変形例4と同様に、摩擦力による回り止め部240Bを省略してもよい。
[他の形態1]
 上記各形態の回り止め部に代えて、接着剤による回り止め部(接着部)を設けても良い。例えば、実施形態1の仕切り部材30に樹脂バネ部を設けず、プレート部31のロータ部90側の面31bに、第1ケース10における第1フランジ部13の内周部分13bに接触する接触面を設け、この接触面を内周部分13bに対して接着剤で接着する。あるいは、プレート部31の弁体6側の面31aに、第2ケース20における第2フランジ部23の底面部分23dに接触する接触面を設け、この接触面を底面部分23dに接着剤で接着する。このような構成でも、仕切り部材230Bがロータ部90と供回りして、第1ケース10および第2ケース220Bに対して軸線X回りの回転方向に位置ずれすることを防止できる。この場合には、本体ケース2および仕切り部材30の形状をより単純にすることができる。なお、この場合には、仕切り部材30は樹脂製でなくても良い。また、実施形態2およびその変形例4、5においても、樹脂突起245を省略する場合には、仕切り部材230/230A/230Bは樹脂製でなくても良い。
[他の形態2]
 上記各形態において、ロータ部90の回転可能範囲を規制する回転規制部としてゼネバ機構を用いていたが、他の機構を用いることができる。例えば、ロータ部90と仕切り部材30との間に回転可能範囲の一端側と他端側で当接する度当り部を形成してもよい。あるいは、アメリカンワインディング機構を用いることもできる。
1…バルブ装置
2…本体ケース
3…流入管
3a…開口
4…排出管
4a…先端
5a…バルブ室
5b…ロータ収容室
6…弁体
7…作動部材
8…ステッピングモータ
10…第1ケース
11…底部
11a…支持部
12…周壁部
12a…小径部
12b…大径部
13…第1フランジ部
13a…外周部分
13b…内周部分
20…第2ケース
21…底部
22…周壁部
22a…開口
23…第2フランジ部
23a…外周部分
23b…内周部分
23c…側面部分
23d…底面部分
24…軸受部材
24a…スラスト軸受部
24b…ラジアル軸受部
26…取付部材
26a…係止部
27…取付部材
27a…先端部
28…貫通穴
28a…縮径部
30…仕切り部材
31…プレート部
31a…弁体側の面
31b…ロータ部側の面
31c…貫通穴
31d…貫通穴
31e…溝
32…挿通穴
33…円筒壁
33a…先端
34…環状壁
35…係合部
35a…係合突起
36…内周面
36a…小径部
36b…大径部
37…腕部
37a…爪部
38…軸受部
38a…軸受穴
39…支持部材
39a…突起
40…回り止め部
41…切欠き溝
42…第1板バネ片
42a…リブ
43…第2板バネ片
61…係合部材
62…円板部
62a…開口
62b…二面幅部
63…周壁部
63a…小径部
63b…大径部
64…フランジ部
65…当接部材
71…軸部材
71a…雄ネジ
72…嵌合部
72a…凹溝
73…連結部
73a…突起
74…スプリング支持部
74a…円柱部
74b…フランジ部
76…スプリング
80…ステータ部
81…ステータコア
81a…内周部
81b…円板部
82…ボビン
83…駆動コイル
84…端子
85…コネクタ端子
86…回路基板
87…モータカバー
87a…係合爪
88…モータケース
90…ロータ部
91…本体部
91a…封止端
91b…突出部
91c…嵌合穴
92…軸部
93…小径軸部
93a…ゼネバピン
93b…膨出部
93c…ストッパ部
93d…歯溝部
93e…先端部
95…雌ネジ
100…ロータマグネット
110…ゼネバ歯車
111…軸部
112…大径部
112a…歯溝部
112b…歯部
112c…突出部
112d…両側部
115…ブラケット部材
115a…軸受穴
115b…腕部
115c…開口部
116…回転軸
120…支持部材
121…基部
121a…突出部
122…フランジ部
122a…係合段部
122b…当接面
123…貫通孔
124…係合突起
140…板バネ
141…脚部
CCW…反時計回り方向
CW…時計回り方向
D1…ロータ部90の外径
D2…小径部12aの内径
D3…支持部11aの外径
D4…環状壁34の外径
D5…小径部36aの内径
D6…連結部73の最大径
D7…小径部63aの内径
Da…先端部27a内径
h1…腕部37の高さ
h2…係合部35高さ
h3…隙間Sの寸法
h4…円筒壁33の高さ
h5…環状壁34の高さ
h6…第1板バネ片42のリブ42aを除く部位の厚さ
h7…第2板バネ片43の厚さ
h8…内周部分13bと底面部分23dとの距離
h9…回り止め部40の軸線X方向の厚さ
hz…突出部112cの高さ
L…直線
S…隙間
W…溶接部位(接合部位)
X…軸線
(変形例1の符号)
30A…仕切り部材
31A…プレート部
40A…回り止め部
44…切欠き溝
44a…第1溝部
44b…第2溝部
45…第1板バネ片
45a…リブ
46…第2板バネ片
(変形例2の符号)
30B…仕切り部材
31B…プレート部
40B…回り止め部
40C…回り止め部
47…溝部
48…樹脂バネ部
48a…突出部
49…樹脂突起
(実施形態2の符号)
201…バルブ装置
202…本体ケース
220…第2ケース
223…第2フランジ部
223b…内周部分
223d…底面部分
230…仕切り部材
231…プレート部
231a…弁体側の面
231b…ロータ部側の面
240…回り止め部
241…係合凹部
242…係合突起
(変形例4の符号)
220A…第2ケース
223A…第2フランジ部
223f…内周部分
223g…底面部分
230A…仕切り部材
231A…プレート部
240A…回り止め部
240B…回り止め部
243…係合凹部
244…係合突起
245…樹脂突起
(変形例5の符号)
220B…第2ケース
223B…第2フランジ部
223h…外周部分
223j…内周部分
223k…側面部分
223m…底面部分
230B…仕切り部材
231B…プレート部
240C…回り止め部

Claims (20)

  1.  同軸に配置されたロータおよびステータと、
     前記ロータの軸線方向の一端側に配置された第1ケース、および、他端側に配置された第2ケースを接合して構成された本体ケースと、
     当該本体ケース内の密閉空間を、前記軸線方向の一端側に設けられたロータ収容室と他端側に設けられたバルブ室に区画する仕切り部材と、
     前記ロータの回転に基づいて前記バルブ室に設けられた流路を開閉する弁体とを有し、
     前記仕切り部材は、
     前記ロータの一端を回転可能に支持する軸受部と、
     前記第1ケースあるいは前記第2ケースに対する、前記仕切り部材の前記軸線回りの相対回転を規制する回り止め部と、を備えることを特徴とするバルブ装置。
  2.  請求項1において、
     前記回り止め部は、前記第1ケースと前記第2ケースの少なくとも一方に弾性的に接触する弾性接触部であることを特徴とするバルブ装置。
  3.  請求項2において、
     前記仕切り部材は、円盤形状の樹脂製のプレート部を備え、
     前記弾性接触部は、前記プレート部と一体に形成された樹脂バネ部であることを特徴とするバルブ装置。
  4.  請求項3において、
     前記樹脂バネ部は、前記プレート部の外周部に設けられることを特徴とするバルブ装置。
  5.  請求項4において、
     前記樹脂バネ部は、前記第1ケースおよび前記第2ケースの少なくとも一方に当接する当接部を備え、
     前記当接部が前記プレート部の外周縁に設けられていることを特徴とするバルブ装置。
  6.  請求項3において、
     前記第1ケース内に前記ロータ収容室が設けられ、
     前記樹脂バネ部は、前記軸線方向の圧縮力が加わったときに弾性変形する第1板バネ片を備え、
     当該第1板バネ片が前記第2ケースに対して前記軸線方向に当接することを特徴とするバルブ装置。
  7.  請求項6において、
     前記樹脂バネ部は、前記第1ケースに対して前記軸線方向に当接する第2板バネ片を備えることを特徴とするバルブ装置。
  8.  請求項2において、
     前記仕切り部材は、円盤形状の樹脂製のプレート部を備え、
     前記弾性接触部は、前記プレート部から突出する樹脂突起であり、
     当該樹脂突起が形成された前記プレート部の部位は、前記第1ケースと前記第2ケースにおける対向している部位の間に挟まれることを特徴とするバルブ装置。
  9.  請求項1において、
     前記回り止め部は、前記第1ケースおよび前記第2ケースの少なくとも一方に設けられたケース側回り止め部と係合することを特徴とするバルブ装置。
  10.  請求項9において、
     前記ケース側回り止め部は、前記軸線方向に延在する筒状部であり、
     前記回り止め部は、前記筒状部の内周側に配置されるプレート部であり、
     前記筒状部および前記プレート部は、前記軸線方向に見た場合に非円形であることを特徴とするバルブ装置。
  11.  請求項1において、
     前記本体ケースは、前記第1ケースと前記第2ケースを溶接または溶着によって接合した接合部位を備え、
     前記回り止め部は、前記接合部位から離れていることを特徴とするバルブ装置。
  12.  請求項1において、
     前記仕切り部材には、前記ロータと同軸に形成された円筒部、および、当該円筒部の内周側あるいは外周側に配置された当接部のいずれか一方が設けられ、
     前記第1ケースもしくは前記第2ケースには、前記円筒部と前記当接部の他方が設けられ、
     前記当接部は、前記円筒部に対して、3箇所以上の周方向位置において径方向に当接していることを特徴とするバルブ装置。
  13.  請求項12において、
     前記第1ケース内に前記ロータ収容室が設けられ、
     前記ロータの外周部分に配置されたロータマグネットと、前記第1ケースの外側に配置された前記ステータが前記第1ケースを挟んで前記ロータの径方向に対向しており、
     前記第1ケースには、
     前記ロータの他端を回転可能に支持するケース側軸受部と、
     前記円筒部あるいは前記当接部の一方が設けられることを特徴とするバルブ装置。
  14.  請求項12において、
     前記弁体は、前記円筒部の中心軸線上に配置され、前記ロータの回転に基づいて前記軸線方向に進退移動することを特徴とするバルブ装置。
  15.  請求項12において、
     前記第1ケースは、前記軸線方向の一端側に凹む第1凹部と、当該第1凹部の開口縁から前記ロータの径方向に延びる環状の第1フランジ部を備え、
     前記第2ケースは、前記軸線方向の他端側に凹む第2凹部と、当該第2凹部の開口縁から前記ロータの径方向に延びる環状の第2フランジ部を備え、
     前記第1凹部および前記第2凹部は、非磁性金属材をプレス加工して形成されており、
     前記回り止め部は、前記第1フランジ部と前記第2フランジ部の間に挿入されることを特徴とするバルブ装置。
  16.  請求項15において、
     前記第1フランジ部と前記第2フランジ部の内周部分は、前記回り止め部を挿入可能な間隔で前記軸線方向に対向しており、
     前記第1フランジ部と前記第2フランジ部の外周部分は、前記軸線方向に当接していることを特徴とするバルブ装置。
  17.  請求項1において、
     前記弁体は、前記ロータの回転に基づいて前記軸線方向に進退移動する作動部材に取り付けられ、
     前記仕切り部材には、
     前記ロータの回転可能範囲を規制する回転規制部、および、前記作動部材を前記軸線方向に移動可能に支持すると共に当該作動部材の前記ロータの回転方向への回転を規制する支持部材が取り付けられることを特徴とするバルブ装置。
  18.  請求項17において、
     前記弁体は、前記軸線方向に弾性変形可能な弾性部材を介して前記作動部材に連結され、
     前記ロータが前記回転可能範囲の一端と他端の間にある所定の回転位置に移動すると、前記バルブ室における前記流路の開口に設けられた弁座に当接する位置に前記弁体が移動し、
     前記ロータが前記所定の回転位置から前記回転可能範囲の一端まで移動すると、前記軸線方向に弾性変形した前記弾性部材の弾性力により、前記弁体が前記弁座に押し付けられることを特徴とするバルブ装置。
  19.  請求項17において、
     前記支持部材は、前記仕切り部材に着脱可能に取り付けられることを特徴とするバルブ装置。
  20.  請求項17において、
     前記ロータおよび前記作動部材には、前記ロータの回転を前記作動部材の前記軸線方向の進退移動に変換するネジ送り機構が設けられることを特徴とするバルブ装置。
PCT/JP2014/060078 2013-04-05 2014-04-07 バルブ装置 WO2014163208A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015510166A JP6307493B2 (ja) 2013-04-05 2014-04-07 バルブ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013079962 2013-04-05
JP2013-079962 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163208A1 true WO2014163208A1 (ja) 2014-10-09

Family

ID=51658493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060078 WO2014163208A1 (ja) 2013-04-05 2014-04-07 バルブ装置

Country Status (2)

Country Link
JP (1) JP6307493B2 (ja)
WO (1) WO2014163208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211018A (ja) * 2018-06-06 2019-12-12 愛三工業株式会社 流体制御弁
CN114391076A (zh) * 2020-08-18 2022-04-22 太平洋工业株式会社 电动阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920075U (ja) * 1982-07-29 1984-02-07 太平洋工業株式会社 比例制御弁
JPH08135827A (ja) * 1994-11-07 1996-05-31 Noritz Corp 給湯装置
JPH1122846A (ja) * 1997-07-03 1999-01-26 Fuji Koki Corp 電動弁
JP2004332855A (ja) * 2003-05-09 2004-11-25 Fuji Koki Corp 電動弁
JP2007211814A (ja) * 2006-02-07 2007-08-23 Saginomiya Seisakusho Inc 電動弁および電磁弁
JP2008232276A (ja) * 2007-03-20 2008-10-02 Fuji Koki Corp 電動弁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070068583A1 (en) * 2005-09-27 2007-03-29 Johnson Dwight N Motor-driven hydraulic valve cartridge
DE102010055026A1 (de) * 2010-12-17 2012-06-21 Pierburg Gmbh Elektromagnetventil
US9127694B2 (en) * 2011-09-09 2015-09-08 Woodward, Inc. High-flow electro-hydraulic actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920075U (ja) * 1982-07-29 1984-02-07 太平洋工業株式会社 比例制御弁
JPH08135827A (ja) * 1994-11-07 1996-05-31 Noritz Corp 給湯装置
JPH1122846A (ja) * 1997-07-03 1999-01-26 Fuji Koki Corp 電動弁
JP2004332855A (ja) * 2003-05-09 2004-11-25 Fuji Koki Corp 電動弁
JP2007211814A (ja) * 2006-02-07 2007-08-23 Saginomiya Seisakusho Inc 電動弁および電磁弁
JP2008232276A (ja) * 2007-03-20 2008-10-02 Fuji Koki Corp 電動弁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211018A (ja) * 2018-06-06 2019-12-12 愛三工業株式会社 流体制御弁
CN114391076A (zh) * 2020-08-18 2022-04-22 太平洋工业株式会社 电动阀
CN114391076B (zh) * 2020-08-18 2024-05-17 太平洋工业株式会社 电动阀

Also Published As

Publication number Publication date
JP6307493B2 (ja) 2018-04-04
JPWO2014163208A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6080498B2 (ja) バルブ装置
JP4303162B2 (ja) アクチュエータ
JP5615993B1 (ja) 冷媒バルブ装置
JP6278684B2 (ja) 弁体駆動装置
US7793913B2 (en) Valve element opening/closing device
US7284571B2 (en) Valve device
US7793915B2 (en) Valve drive device
KR102189050B1 (ko) 모터 및 밸브 구동 장치
JP6307493B2 (ja) バルブ装置
US6405758B1 (en) Valve driving apparatus
JP4582013B2 (ja) 軸受ユニット及びこの軸受ユニットを用いたモータ
CN111743447B (zh) 开闭部件驱动装置
JP4871667B2 (ja) 弁体開閉装置
JP4728108B2 (ja) 直動アクチュエータ
JP2008261432A (ja) 弁体開閉装置
JP3571938B2 (ja) モータおよび流体の流量制御装置
CN116981873A (zh) 阀装置
JP6192330B2 (ja) 弁体駆動装置
JP4796452B2 (ja) 弁体開閉装置
JP5455702B2 (ja) リニアアクチュエータおよびリニアアクチュエータを用いたバルブ装置
JP7244248B2 (ja) アクチュエータの固定構造
JP2024015519A (ja) 電動弁
JP2024030774A (ja) バルブ装置
JPH1089520A (ja) アクチュエータ
JP2002349742A (ja) バルブ開閉駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779558

Country of ref document: EP

Kind code of ref document: A1