WO2014162665A1 - 処理装置及び処理装置におけるワークの温度計測方法 - Google Patents

処理装置及び処理装置におけるワークの温度計測方法 Download PDF

Info

Publication number
WO2014162665A1
WO2014162665A1 PCT/JP2014/001383 JP2014001383W WO2014162665A1 WO 2014162665 A1 WO2014162665 A1 WO 2014162665A1 JP 2014001383 W JP2014001383 W JP 2014001383W WO 2014162665 A1 WO2014162665 A1 WO 2014162665A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
chamber
measurement piece
measurement
temperature
Prior art date
Application number
PCT/JP2014/001383
Other languages
English (en)
French (fr)
Inventor
藤井 博文
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to BR112015025189A priority Critical patent/BR112015025189A2/pt
Priority to KR1020157031016A priority patent/KR20150135516A/ko
Priority to CN201480019564.8A priority patent/CN105102672B/zh
Priority to MX2015011736A priority patent/MX370694B/es
Priority to US14/769,306 priority patent/US9897489B2/en
Priority to EP14778446.6A priority patent/EP2982776A4/en
Publication of WO2014162665A1 publication Critical patent/WO2014162665A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/50Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Definitions

  • the present invention relates to a processing apparatus and a method for measuring the temperature of a workpiece in the processing apparatus.
  • the processing temperature of the workpiece is finely determined in accordance with the mechanical characteristics and adhesion. In order to manage such a processing temperature, it is necessary to accurately measure the actual temperature of the workpiece being processed.
  • the following means are known as methods for measuring the actual temperature of the workpiece described above.
  • Patent Document 1 and Patent Document 2 a window is provided on the outer wall of the chamber so that the inside of the chamber can be visually recognized from the outside of the chamber, and an infrared radiation thermometer installed outside the chamber is used to pass the inside of the chamber through the window.
  • a measuring method for actually measuring (measuring) the actual temperature of the workpiece is disclosed.
  • Patent Document 3 in a device that forms a film on the surface of a plate-shaped workpiece, a contact-type thermometer is brought into contact with the back side opposite to the front side where film formation is performed, and the temperature is measured. A method for calculating the actual temperature of the workpiece being processed from the measured temperature is disclosed. Even using such a contact-type thermometer, the actual temperature of the workpiece can be measured.
  • Patent Document 4 discloses a method for measuring the ambient temperature as a means for measuring the temperature of a heating section surrounded by a heat insulating material. The method of Patent Document 4 is not for measuring the temperature of the workpiece being processed, but for determining the deterioration of the thermocouple from the ambient temperature, but the ambient temperature can be used in place of the actual temperature of the workpiece. It is shown.
  • Patent Document 5 discloses a method of measuring the temperature of a workpiece made of a silicon wafer substrate in a manufacturing process using vacuum or reduced pressure plasma such as CVD or sputtering. In this method, a thin film of a polymer material whose shape changes depending on temperature is formed on a substrate which is a workpiece, and the temperature of the workpiece being processed is measured based on the shape change of the thin film. Including.
  • Patent Documents 1 to 5 has the following problems.
  • the value of the temperature measured by the radiation thermometer also changes as the emissivity of the surface of the workpiece to be measured changes. Resulting in. That is, the temperature can be measured using the radiation thermometer only when the surface state is stable. Therefore, in the work in which the surface physical properties and the surface state change as the processing progresses as in the film forming method described above, the emissivity of the surface is not stable, so that depending on the radiation thermometer, the accuracy is high. Temperature measurement may not be possible. Further, there are members other than the workpiece in the chamber, and infrared rays are also emitted from these members. There is a high possibility that infrared rays from members other than such a workpiece will give a large error to the measurement result of the actual temperature by the radiation thermometer.
  • the film forming material adheres to the observation window, and the infrared rays passing through the window to which the film forming material is attached are measured by the radiation thermometer.
  • the film forming material adhering to the window changes the intensity (energy amount) of infrared rays to be measured. This hinders accurate measurement of the actual temperature of the workpiece and may cause a large error in the temperature measured by the radiation thermometer.
  • the measurement method using a contact-type thermometer as in Patent Document 3 is intended for a workpiece placed in a chamber in principle.
  • this measurement method uses a contact-type thermometer, the contact-type thermometer cannot be brought into contact with a workpiece that moves while being placed on a rotary table or the like. It becomes difficult to measure the temperature of the workpiece. Therefore, it is not practical to use the measurement method described in Patent Document 3 for film formation by CVD, PVD or the like that generally involves rotation or revolution of a workpiece.
  • a film may be formed by applying a potential difference between the chamber and the workpiece.
  • a means for capturing the output signal while electrically insulating the thermocouple and its output signal from the chamber is required. For this reason, the structure of the processing apparatus becomes very complicated.
  • the method of measuring the ambient temperature as in Patent Document 4 can be used only when the relationship between the workpiece temperature (substance temperature) and the ambient temperature can be accurately grasped during processing.
  • the actual temperature of the workpiece can be accurately calculated from the ambient temperature.
  • the shape of the workpiece to be processed, the processing conditions, etc. are not constant, the actual temperature of the workpiece cannot be accurately determined from the ambient temperature.
  • the thin film is taken out of the chamber after the processing is completed, and the history of temperature change is determined from the shape change of the taken-out thin film. It cannot be measured.
  • the present invention has been made in view of the above-described problems.
  • a workpiece is accommodated in a chamber for processing, the surface physical property or surface state of the workpiece changes, or the inside of the chamber Therefore, it is an object of the present invention to provide a processing apparatus capable of performing processing while accurately measuring the actual temperature of the work, and a method for measuring the temperature of the work in the processing apparatus.
  • the present invention provides a processing apparatus for performing a work reforming process, which is provided in a chamber for storing the work, and is provided inside the chamber, and is affected by the temperature inside the chamber.
  • Subject temperature here refers to the actual temperature of the workpiece itself.
  • the present invention also provides a method for measuring the temperature of a workpiece in a processing apparatus for performing a workpiece reforming process.
  • a measurement piece that thermally expands and contracts due to the temperature inside the chamber is provided inside the chamber that accommodates the workpiece, and the actual temperature of the workpiece is determined by measuring the amount of thermal expansion and contraction of the measurement piece. Identifying.
  • the processing apparatus 1 includes at least a chamber 2 in which a plurality of workpieces W can be accommodated.
  • surface treatment such as film formation, nitriding, or impregnation is performed on the surface of the work W using the PVD method or the CVD method, or the work W is heated in a vacuum or under reduced pressure.
  • the present invention includes these processing apparatuses. This embodiment will be described by taking as an example the processing apparatus 1 which is a PVD processing apparatus that forms a film on the surface of the workpiece W using arc ion plating.
  • the chamber 2 is a bowl-shaped member capable of accommodating the workpiece W therein.
  • the chamber 2 is formed so that the inside thereof is airtight with respect to the outside. That is, the chamber 2 can hold the space inside the chamber 2 in which the workpiece W is accommodated in a vacuum state or a reduced pressure state.
  • the chamber 2 is formed in a bowl shape including a bottom wall 2a, a top wall 2b, and an octagonal side wall 2c.
  • the processing apparatus 1 further includes a rotary table 3.
  • the turntable 3 is provided in the chamber 2 and is located at a substantially central portion of the bottom wall 2a.
  • a plurality of workpieces W that are processed objects are placed on the turntable 3.
  • hard films such as TiN, ZrN, and CrN are formed on the surface of the workpiece W placed on the turntable 3 by physical vapor deposition (PVD method).
  • the shape of the workpiece to be processed by the processing apparatus according to the present invention is not particularly limited.
  • the present invention is a so-called work set, which includes a plurality of small members and has a cylindrical overall shape by a combination thereof, or a workpiece having a shape other than a cylindrical shape (for example, a prismatic shape). Can be applied.
  • the rotary table 3 is formed in a shape having an upper surface on which the work W can be placed, specifically, a flat disk shape.
  • the turntable 3 is installed so as to be rotatable around a rotation axis that is set in the center of the bottom surface of the chamber 2 and faces the up-down direction, and the work W placed on the upper surface is rotated together with the turntable 3 in the rotation. It is possible to rotate around the axis, ie to revolve.
  • the rotary table 3 (revolution table) is connected to the rotary shaft portion 4 positioned below the rotary table 3.
  • the rotating shaft portion 4 has a rod shape whose central axis matches the rotating shaft described above.
  • the rotating shaft portion 4 penetrates the bottom wall 2a of the chamber 2 in the vertical direction.
  • the rotating shaft part 4 has an upper end and a lower end.
  • the upper end of the rotating shaft portion 4 is fixed to the lower surface of the rotary table 3, and the lower end of the rotating shaft portion 4 is connected to a rotation driving device (not shown) including a motor and the like.
  • a sealing mechanism (not shown) is provided between the bottom surface of the chamber 2 and the rotation shaft portion 4 to allow the rotation shaft portion 4 to rotate with respect to the bottom wall 2 a while ensuring airtightness of the chamber 2.
  • a rotary drive device including the motor and the like rotates the rotary shaft portion 4 and the rotary table 3 connected thereto around the rotary shaft.
  • the plurality of workpieces W are placed on the outer peripheral side portion of the upper surface of the turntable 3, and are arranged with a certain interval in the circumferential direction. In this embodiment, eight workpieces W are arranged. These workpieces W move in the chamber 2 along a circular orbit (revolution trajectory) centering on the rotation axis as the rotary table 3 rotates about the rotation axis.
  • Each of the evaporation sources 5 is a member formed from a film forming material that is a raw material of a film to be formed on the surface of the workpiece W.
  • the evaporation source 5 in the illustrated example is formed in a plate shape with a film forming material.
  • the evaporation source 5 is made of a metal such as Ti, Zr, or Cr.
  • Each of the evaporation sources 5 is installed along the inner surface of the side wall 2c so that the thickness direction of the evaporation source 5 matches the thickness direction of the side wall 2c of the chamber 2. Therefore, each evaporation source 5 is located outside the rotary table 3 in the radial direction.
  • Each of the evaporation sources 5 having a plate shape as described above is provided at a plurality of positions (four positions in the illustrated example) so that the normal passing through the central portion thereof is directed to the center of the rotary table 3.
  • the film forming material constituting each evaporation source 5 becomes particles by being evaporated using plasma or the like, and adheres to the surface of the workpiece W to contribute to film formation.
  • the processing apparatus 1 further includes a measurement piece 6 and a measurement unit 8.
  • the measurement piece 6 is provided inside the chamber 2 and expands and contracts under the influence of the temperature inside.
  • the measurement unit 8 is installed outside the chamber 2 and measures the amount of thermal expansion and contraction of the measurement piece 6.
  • the chamber 2 is provided with an observation window 7 that allows the measurement piece 6 in the chamber 2 to be observed from the outside of the chamber 2.
  • the measurement unit 8 includes a laser displacement meter 9 and measures the amount of thermal expansion and contraction of the measurement piece 6 through the observation window 7, thereby specifying the temperature of the workpiece W.
  • the measurement piece 6 thermally expands or contracts at a predetermined rate according to a change in temperature. Therefore, it is possible to measure the temperature by measuring the amount of thermal expansion / contraction (the length of thermal expansion / contraction) of the measurement piece 6.
  • the measurement piece 6 has a specific longitudinal direction by using the same material as the material constituting the workpiece W or a material having a linear expansion coefficient close to that of the workpiece W so as to be in a thermal expansion and contraction state similar to that of the workpiece W. It is preferably formed in a long rod shape extending in the direction.
  • the measurement piece 6 formed of the same material as the workpiece W or a material having a linear expansion coefficient close to that of the workpiece W is formed in the same state as the workpiece W in the film forming apparatus. It is possible to accurately evaluate the temperature.
  • the measurement piece 6 is formed in a long rod shape having substantially the same length in the vertical direction according to the shape of the long workpiece W along the vertical direction. In order to suppress the measurement piece 6 from adversely affecting the film formation state on the workpiece W, the measurement piece 6 has a shape having a circular cross section smaller in diameter than the workpiece W. As the measurement piece 6 shown in FIGS. 1 and 2, a round bar is used in accordance with the cylindrical workpiece W.
  • the measurement piece 6 is provided on the upper surface of the turntable 3 so as to stand up and down.
  • the measurement piece 6 is placed on the upper surface of the rotary table 3 in the same manner as the work W so that the measurement piece 6 is positioned in the vicinity of the specific work W and on the inner peripheral side so that the temperature thereof is the same as the temperature of the work W. Placed.
  • the lower end which is one end in the longitudinal direction of the measurement piece 6 is fixed to the upper surface of the rotary table 3, and the upper end which is the other end in the longitudinal direction faces upward. Accordingly, as the temperature of the measurement piece 6 changes and the measurement piece 6 expands and contracts, the lower end of the measurement piece 6 is fixed to the rotary table 3, whereas the upper end is displaced in the vertical direction. To do.
  • the measurement piece 6 is measured by measuring the position (height) of the upper end of the measurement piece 6 that fluctuates with the vertical expansion and contraction of the measurement piece 6 using a laser displacement meter 9 (laser distance meter) described later. Can be measured.
  • the measurement piece 6 is located on the rotary table 3 adjacent to the inside of the specific workpiece W in the radial direction (the radial direction of the rotary table 3).
  • the reason why the measurement piece 6 is arranged at such a position is to prevent the film formation on the workpiece W from being affected by the installation of the measurement piece 6.
  • arc discharge occurs near the surface of the evaporation source 5, whereby the evaporation source 5 evaporates and the film forming material is released to the workpiece W side.
  • the measurement piece 6 is positioned adjacent to the workpiece W on the rotary table 3 and outside the diameter of the center of the mounted workpiece W (for example, the position of the white circle on the rotary table 3 shown in FIG. 1). If it is provided, the film-forming substance will not be able to reach the workpiece W by being obstructed by the measurement piece 6, and there is a possibility that the film-forming substance will not be uniformly deposited on the workpiece W adjacent to the measurement piece 6. Therefore, what is the evaporation source 5 when viewed from the workpiece W along the radial direction centering on the rotation axis of the rotary table 3 so that the position of the measurement piece 6 is farther from the workpiece W when viewed from the evaporation source 5?
  • the measurement piece 6 is arranged on the opposite side (the side inside the center of the workpiece W and closer to the rotation axis, the position indicated by the black circle in FIG. 1). If the measurement piece 6 is arranged at a position closer to the rotational axis than the workpiece W in this way, the influence of the measurement piece 6 on the film formation on the workpiece W can be suppressed, and the workpiece W can be applied regardless of the presence of the measurement piece 6. It becomes possible to form a film evenly.
  • the measurement piece 6 Since the measurement piece 6 is fixed at a predetermined position on the turntable 3, every time the turntable 3 makes one rotation around the rotation axis, the measurement piece 6 returns to the same position in the rotation circumferential direction. Therefore, if the measurement point of the laser displacement meter 9 is fixed to one point on the orbit (rotation orbit) of the measurement piece 6, the rotary table 3 rotates and the measurement piece 6 comes to the same position in the circumferential direction. In addition, the amount of thermal expansion and contraction of the measurement piece 6 can be measured. As a result, it is possible to repeatedly measure the temperature of the measurement piece 6, in other words, the actual temperature of the workpiece W at regular time intervals.
  • the observation window 7 is a wall that constitutes the chamber 2 and faces the turntable 3 so that the thermal displacement of the upper end of the measurement piece 6 in the chamber 2 can be measured from the outside of the chamber 2. It is formed on the wall. Specifically, the observation window 7 according to this embodiment is provided on the top wall 2b of the chamber 2 and transmits light such as glass so that the laser emitted from the laser displacement meter 9 of the measurement unit 8 can be transmitted. It is made of a sex material.
  • the position of the observation window 7 is set to a position where the measurement piece 6 passes under the observation window 7, in other words, a position above the rotation trajectory of the measurement piece 6 on the rotary table 3. If the observation window 7 is provided at such a position, a laser displacement meter 9 of the measurement unit 8 to be described later can irradiate a laser beam directly from above the upper end of the measurement piece 6. It is possible to measure the thickness reliably and accurately.
  • the measurement unit 8 measures the temperature of the workpiece W by measuring the amount of thermal expansion and contraction of the measurement piece 6.
  • the measuring unit 8 measures the relative displacement (displacement in the vertical direction of the upper end in this embodiment) of the other end with respect to one end (the lower end in this embodiment) of the measurement piece 6 in the longitudinal direction.
  • 9 laser distance meter
  • a calculation unit that calculates the temperature of the workpiece W based on the amount of thermal expansion and contraction of the measurement piece 6 measured by the laser displacement meter 9.
  • the laser displacement meter 9 measures the reflected light of the irradiated laser beam and applies the principle of the triangulation method to displace the upper end of the measurement piece 6 that is the object to be measured. Measure.
  • the laser displacement meter 9 is disposed above the observation window 7 in the top wall 2b of the chamber 2 described above, and irradiates the laser beam toward the measurement piece 6 below through the observation window 7.
  • the displacement thus measured (the amount of thermal expansion / contraction of the measurement piece 6) is sent as a signal to the calculation unit.
  • the laser displacement meter 9 can measure the amount of thermal expansion and contraction of the measurement piece 6 in a non-contact manner, and can measure at a measurement sampling period that can sufficiently follow the maximum speed (for example, about 5 rpm) of the rotary table of the processing apparatus. Is also possible. Further, the temperature measurement in the processing temperature range of about several hundred degrees, which is normally required by the processing apparatus, can be measured with sufficient measurement resolution and has a good measurement accuracy. Therefore, the above-described laser displacement meter 9 can be suitably used for the measurement unit 8.
  • the calculation unit includes the temperature of the measurement piece 6 before measurement or heating, the linear expansion coefficient of the material used for the measurement piece 6, the displacement amount of the upper end of the measurement piece 6 measured by the laser displacement meter 9, Is used to calculate the temperature of the measurement piece 6. Since the temperature of the measurement piece 6 before the measurement or before heating and the linear expansion coefficient of the material used for the measurement piece 6 are known, the temperature of the measurement piece 6 is measured by measuring the amount of displacement with the laser displacement meter 9. That is, the actual temperature of the workpiece W can be uniquely specified.
  • the linear expansion coefficient of a material is not constant with respect to temperature, and the value of the linear expansion coefficient varies depending on which temperature range the actual temperature of the workpiece W is. Therefore, in order to more accurately measure the actual temperature of the workpiece W, for example, a temperature range from 200 to 300 ° C., a temperature range from 300 to 400 ° C., and a temperature range from 400 to 500 ° C. It is preferable to prepare a plurality of linear expansion coefficients used for calculation for each temperature range.
  • the processing apparatus 1 described above is an apparatus that forms a film on the workpiece W using the PVD method or the CVD method.
  • the processing apparatus according to the present invention is also used for ion bombardment processing and heat processing described later. be able to.
  • ion bombardment processing is performed by irradiating the surface of a workpiece with heavy inert gas ions (gas ions) such as argon ions generated in a chamber by plasma discharge before the PVD film or CVD film is formed.
  • gas ions heavy inert gas ions
  • argon ions such as argon ions generated in a chamber by plasma discharge before the PVD film or CVD film is formed.
  • it is a process of cleaning the surface of the base material
  • such an ion bombardment process also requires fine control of the processing temperature of the workpiece W. Therefore, the processing apparatus and workpiece temperature measuring method of the present invention described above are used. It is preferable to adopt.
  • the method for measuring the temperature of the workpiece W includes providing the measurement piece 6 that thermally expands and contracts under the influence of the temperature inside the chamber 2 inside the chamber 2 in which the workpiece W is accommodated, and is formed in the chamber 2. And determining the actual temperature of the workpiece W by measuring the amount of thermal expansion and contraction of the measurement piece 6 through the observation window 7.
  • the actual temperature of the workpiece W is measured as follows.
  • a plurality of workpieces W are placed at predetermined positions on the upper surface of the rotary table 3 described above, and a rotary drive device including a motor or the like rotates the rotary table 3 around a rotary axis.
  • a rotary drive device including a motor or the like rotates the rotary table 3 around a rotary axis.
  • the workpieces W placed on the turntable 3 revolve around the rotation axis in the chamber 2.
  • the evaporation source 5 is electrically connected to the negative pole of the arc power source (not shown).
  • another electrode is provided in the chamber 2 in advance, and the other electrode is electrically connected to the positive electrode of the arc power source.
  • a potential difference is given between the evaporation source 5 that is a cathode (cathode) and another electrode that is an anode (anode), and arc discharge is generated on the surface of the evaporation source 5.
  • This arc discharge evaporates the film forming material from the evaporation source 5 and discharges the particles of the film forming material toward the workpiece W. As a result, a film forming material is deposited on the workpiece W to form a film.
  • the measurement piece 6 provided at a predetermined position on the turntable 3 also returns to the same position in the circumferential direction. Then, at the moment when the upper end of the measurement piece 6 returning to the same position in the circumferential direction passes through the measurement unit 8, the position of the upper end, and thus the thermal expansion / contraction amount of the measurement piece 6 is measured.
  • the actual temperature of the workpiece W is calculated by processing the amount of thermal expansion and contraction of the measurement piece 6 measured by the measurement unit 8 in the following procedure.
  • the linear expansion coefficient of the measurement piece 6 is 18 ⁇ 10 ⁇ 6 (/ ° C.).
  • the elongation of the measurement piece 6 measured by the laser displacement meter 9 after measurement or after heating is 2 mm.
  • the temperature T (° C.) of the measurement piece 6 can be calculated based on the following formula (1), and the temperature T is 390 ° C. That is, the elongation of 2 mm indicates that the actual temperature T of the workpiece W is 390 ° C.
  • the actual temperature of the workpiece W is measured based on the amount of thermal expansion and contraction of the measurement piece 6, so that the temperature measurement accuracy is improved as in the case of using a radiation thermometer.
  • the surface physical properties or surface state of the workpiece W are not affected. Therefore, even when the film forming apparatus 1 performs film formation in which the surface properties or surface state of the workpiece W are likely to change, the processing can be performed while accurately measuring the actual temperature of the workpiece W.
  • the infrared thermometer When the infrared thermometer is measured by a radiation thermometer through the window provided in the chamber 2, the accuracy of temperature measurement is maintained by the influence of the film forming material adhering to the window or the infrared ray radiated from a material other than the workpiece W. Can be difficult. However, in the method of measuring the actual temperature of the workpiece W by the amount of thermal expansion and contraction of the measurement piece 6 using the laser displacement meter 9, even if the window is dirty, it is not easily affected, and high temperature measurement accuracy can be maintained. It becomes possible.
  • film formation using a CVD method or a PVD method is often performed while moving the workpiece W in the chamber 2 using the rotary table 3 or the like in the chamber 2.
  • a contact-type thermometer that measures the temperature by contacting the workpiece W as in the prior art, it is difficult to measure the temperature of the workpiece W that moves in the chamber 2 as described above.
  • the method of measuring the actual temperature of the workpiece W by the amount of thermal expansion and contraction of the measurement piece 6 it is possible to perform processing while accurately measuring the actual temperature regardless of the movement of each workpiece W.
  • the present invention is not limited to the above-described embodiments, and the shape, structure, material, combination, and the like of each member can be appropriately changed without changing the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.
  • the processing apparatus according to the above embodiment is a film forming apparatus, but the processing apparatus of the present invention does not perform film formation but performs a heating furnace (PVD method, CVD method, etc.) that performs pure heating only.
  • a heating device such as a heating furnace is also included. Therefore, the reforming process performed on the workpiece W by the processing apparatus of the present invention includes a heating process performed in the heating furnace described above, that is, a heating process without film formation.
  • the present invention can also be applied to a film forming apparatus that does not have a heating means such as a heater. Even in such a film forming apparatus, particles of the film forming material vaporized along with film formation adhere to the work W and solidify, so that the temperature of the work W is increased as a result.
  • the technique of the present invention can also be employed for such temperature rise measurement.
  • a laser displacement meter 9 is provided inside the chamber 2 to measure the thermal expansion / contraction amount of the measurement piece 6 inside the chamber 2. May be.
  • the laser displacement meter 9 itself is accommodated in a predetermined protective case, and the laser displacement meter 9 is protected around the laser displacement meter 9 so as to prevent the deposition material from adhering to the irradiation surface of the laser displacement meter 9 and the influence of heat. It is preferable to install a landing plate or a heat shielding plate.
  • the processing apparatus which can process while measuring the actual temperature of a workpiece
  • the present invention provides a processing apparatus for performing a work reforming process, which is provided in a chamber for storing the work, and is provided inside the chamber, and is affected by the temperature inside the chamber.
  • the measurement piece is formed of the same material as the workpiece. This makes it possible to more accurately evaluate the temperature of the workpiece using the measurement piece.
  • the chamber is provided with an observation window that allows the measurement piece in the chamber to be observed from outside the chamber, and the measurement unit measures the amount of thermal expansion and contraction of the measurement piece through the observation window.
  • the measurement unit measures the amount of thermal expansion and contraction of the measurement piece through the observation window. To do. This is to measure the amount of thermal expansion / contraction of the measurement piece inside the chamber while avoiding the measurement unit being affected by the internal state of the chamber by providing the measurement unit outside the chamber. Make it possible.
  • the measurement piece is formed in a rod shape extending along a specific longitudinal direction, and the measurement unit measures the substantial temperature of the workpiece based on the amount of thermal expansion and contraction along the longitudinal direction of the measurement piece. . This makes it easier to measure the amount of thermal expansion and contraction of the measurement piece.
  • the measurement unit irradiates the other end of the measurement piece with laser light for measurement in order to measure the relative displacement of the other end with respect to the one end in the longitudinal direction of the measurement piece in the longitudinal direction. It has a laser displacement meter.
  • the processing apparatus further includes a rotary table for revolving the workpiece around a rotation axis in the chamber, and the measurement piece has one end in the longitudinal direction fixed on the rotary table.
  • the observation window is arranged so that the longitudinal direction is parallel to the rotation axis, and enables the measurement unit to measure the displacement of the other end of the measurement piece due to thermal expansion and contraction of the measurement piece. As described above, it is provided at a portion of the wall constituting the chamber and facing the rotary table. This arrangement facilitates measurement of the amount of thermal expansion and contraction of the measurement piece by the measurement unit.
  • the processing apparatus further includes an evaporation source that is provided in the chamber and forms a film on the workpiece, and the measurement piece extends along a radial direction centering on a rotation axis of the rotary table. , Provided opposite to the evaporation source when viewed from the workpiece and adjacent to the workpiece. This arrangement makes it possible to suppress the influence of the measurement piece on the film formation on the workpiece by the evaporation source.
  • the measurement piece is held at the same potential as the workpiece.
  • a bias effect that is, an effect caused by attracting ions to the workpiece, for example, surface activation, modification, and rise by ion irradiation to the workpiece.
  • Temperature measurement including measurement of temperature, etching, etc. becomes possible.
  • the present invention also provides a method for measuring the temperature of a workpiece in a processing apparatus for performing a workpiece reforming process.
  • a measurement piece that thermally expands and contracts due to the temperature inside the chamber is provided inside the chamber that accommodates the workpiece, and the actual temperature of the workpiece is determined by measuring the amount of thermal expansion and contraction of the measurement piece. Identifying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

 チャンバの内部に収容されて加熱されるワークの実体温度を正確に計測することが可能な処理装置(1)と方法が提供される。処理装置(1)は、ワーク(W)を収容するチャンバ(2)と、チャンバ(2)の内部に設けられる測定ピース(6)と、計測部(8)と、を備える。測定ピース(6)は、チャンバ(2)の内部の温度の影響で熱伸縮する。計測部(8)は、測定ピース(6)の熱伸縮量を計測することでワーク(W)の実体温度を計測する。

Description

処理装置及び処理装置におけるワークの温度計測方法
 本発明は、処理装置及び処理装置におけるワークの温度計測方法に関する。
 従来、減圧状態又は真空状態とされたチャンバ内に収容されたワークに対して、成膜、窒化、含浸などの表面処理が、PVD法やCVD法を用いて行われている。このようなPVD法やCVD法を用いて成膜などの改質処理を行う処理装置では、ワークの処理温度は機械的特性や密着性などに応じて細かく設定されることが多い。例えば、成膜した皮膜と下地との密着性を良好とするためには、一般に処理温度は高くした方が好ましいとされている。ところが、機械的特性などを考慮した場合には、ワークの温度を低くした方が有利な場合もある。このような事情から、上述したPVD法やCVD法の処理では、ワークの処理温度は機械的特性や密着性などに対応して細かく決められている。このような処理温度を管理するためには処理中のワークの実体温度を正確に計測する必要がある。
 なお、PVD法やCVD法などによる成膜以外で、処理装置を加熱炉として用いてワークを加熱する際にも、細かな温度管理が必要となる場合がある。このような場合にも、ワークの実体温度の正確な計測が要求されることがある。
 上述したワークの実体温度の計測方法としては、次のような手段が知られている。
 特許文献1、特許文献2には、チャンバの外壁に当該チャンバ内を当該チャンバの外部から視認できるような窓を設け、チャンバ外に設置された赤外線式の放射温度計で前記窓を通じて前記チャンバ内のワークの実体温度を実測(計測)する計測方法が開示されている。
 特許文献3には、板状のワークの表面に対して成膜を行う装置において、成膜が行われる表側面と反対側の裏側面に接触式の温度計を接触させて温度計測を行い、その計測された温度から処理中のワークの実体温度を算出する方法が開示されている。このような接触式の温度計を用いても、ワークの実体温度を実測することが可能となる。
 特許文献4には、断熱材によって囲まれた加熱区画の温度を計測する手段としてその雰囲気温度を計測する方法が開示されている。この特許文献4の方法は、処理中のワークの温度を計測するものではなく、雰囲気温度から熱電対の劣化を判断するためのものであるが、雰囲気温度をワークの実体温度に代えて利用できることが示されている。
 特許文献5には、CVDやスパッタリングなどの真空又は減圧プラズマを使用する製造プロセスにおいて、シリコンウエハの基板からなるワークの温度を計測する方法が開示されている。この方法は、ワークである基板の上に、形状が温度に依存して変化するポリマー材料の薄膜を形成しておくことと、この薄膜の形状変化に基づいて処理中のワークの温度を計測することとを含む。
 しかし、前記特許文献1~5に記載された先行技術には次のような問題点がある。
 特許文献1や特許文献2に記載された方法のように放射温度計を用いると、計測対象であるワークの表面の放射率の変化に伴って当該放射温度計により計測される温度の値も変化してしまう。つまり、放射温度計を用いて温度の計測が可能となるのは表面の状態が安定した場合のみである。従って、上述した成膜方法のように処理が進行するに連れて表面物性や表面状態が変化するようなワークでは、その表面の放射率が安定しないために、前記放射温度計によっては精度の高い温度計測を行うことができない可能性がある。また、チャンバ内にはワーク以外の部材も存在しており、これらの部材からも赤外線は放射される。このようなワーク以外の部材から赤外線も、前記放射温度計による実体温度の計測結果に大きな誤差を与えてしまう可能性が高い。
 加えて、成膜の処理装置では、成膜物質が観測用の窓にも付着し、成膜物質が付着した窓を通過した赤外線が放射温度計により計測される。この場合、前記窓に付着した成膜物質が、計測される赤外線の強度(エネルギー量)を変化させている可能性がある。このことは、ワークの実体温度の正確な計測を阻害し、放射温度計で計測される温度に大きな誤差を与えるおそれがある。
 特許文献3のように接触式の温度計を用いた計測方法は、原則としてチャンバ内に静置されたワークを対象とするものである。つまり、この計測方法は、接触式の温度計を用いるものであるので、回転テーブルなどに載せられた状態で移動するワークに対して当該接触式の温度計を接触させることができないために処理中のワークの温度計測が困難になる。それゆえ、一般にワークの自転や公転を伴うCVDやPVDなどによる成膜に特許文献3に記載される計測方法を用いることは現実的ではない。
 また、アークイオンプレーティングのようなPVD法では、チャンバとワークとの間に電位差を与えて成膜を行う場合がある。このような場合に、接触式の温度計をチャンバの外側から挿し込んでワークに接触させるためには、熱電対及びその出力信号をチャンバから電気的に絶縁しながら当該出力信号を取り込む手段を要し、そのために処理装置の構造が非常に複雑なものとなってしまう。
 特許文献4のように雰囲気温度を計測する方法は、処理中にワークの温度(実体温度)と雰囲気温度との関係が正確に把握できている場合にしか用いることができない。処理されるワークの形状や処理の条件などが絶えず一定である場合は雰囲気温度からワークの実体温度を正確に計算することが可能である。しかし、処理されるワークの形状や処理の条件などが一定でない場合には、雰囲気温度からワークの実体温度を正確に求めることができなくなってしまう。
 特許文献5の方法は、処理が終了した後に薄膜をチャンバ外に取り出し、取り出された薄膜の形状変化から温度変化の履歴を判断するものであるから、処理中のワークの実体温度を連続的に計測することはできない。
特許第2836876号公報 特開平6-58814号公報 特許第3042786号公報 特許第4607287号公報 特開2002-350248号公報
 本発明は、上述の問題に鑑みてなされたものであり、チャンバの内部にワークを収容して処理を行う場合に、ワークの表面物性または表面状態が変化する場合であっても、あるいはチャンバ内でワークが移動する場合であっても、ワークの実体温度を正確に計測しつつ処理を行うことができる処理装置及び処理装置におけるワークの温度計測方法を提供することを目的とする。
 本発明が提供するのは、ワークの改質処理を行うための処理装置であって、前記ワークを収容するチャンバと、前記チャンバの内部に設けられ、当該チャンバの内部の温度に影響を受けて熱伸縮する測定ピースと、前記測定ピースの熱伸縮量を計測することにより前記ワークの実体温度を特定する計測部と、を備える。
 ここでいう「実体温度」とは、ワーク自体の実際の温度をいう。
 また本発明は、ワークの改質処理を行うための処理装置においてワークの温度を計測する方法を提供する。この方法は、前記ワークを収容するチャンバの内部に当該チャンバの内部の温度の影響で熱伸縮する測定ピースを設けることと、前記測定ピースの熱伸縮量を計測することで前記ワークの実体温度を特定することと、を含む。
本発明の実施の形態に係る処理装置の平面図である。 前記処理装置の正面図である。
 図1及び図2は、本発明の実施の形態に係る処理装置1を示す。この処理装置1は、少なくとも、内部に複数のワークWを収容することが可能なチャンバ2を備えている。この処理装置1に類する処理装置には、PVD法やCVD法を用いてワークWの表面に成膜、窒化、または含浸などの表面処理を行ったり、真空中や減圧下でワークWを加熱して表面を改質したりするものがあり、本発明はこれらの処理装置を包含する。本実施形態は、アークイオンプレーティングを用いてワークWの表面に成膜を行うPVD処理装置である処理装置1を例にとって、説明される。
 図1及び図2に示すように、前記チャンバ2は、その内部にワークWを収容することが可能な筺状の部材である。このチャンバ2は、その内部が外部に対して気密となるように形成されている。つまり、チャンバ2は、ワークWが収容される空間であるチャンバ2の内部の空間を真空状態や減圧状態に保持できるようになっている。
 この実施の形態に係るチャンバ2は、底壁2aと天壁2bと断面八角形の側壁2cとを含む筺状に形成されている。
 この実施の形態に係る処理装置1は、さらに、回転テーブル3を備える。この回転テーブル3は、前記チャンバ2内に設けられ、前記底壁2aの略中央部分に位置する。この回転テーブル3には、処理物である複数のワークWが載置される。このように回転テーブル3上に載置されたワークWの表面にそれぞれ、物理的蒸着法(PVD法)によりTiN、ZrN、CrNなどの硬質皮膜が形成される。
 図1及び図2に示されるワークWはそれぞれ円筒状の外周面を有する。しかし、本発明に係る処理装置の対象となるワークの形状は特に限定されない。例えば、本発明は、いわゆるワークセットと呼ばれるもので、複数の小部材を含んでいてこれらの組み合わせにより円筒状の全体形状を有するものや、円筒状以外の形状(例えば角柱状)のワークにも、適用されることが可能である。
 前記回転テーブル3は、その上にワークWが載置可能な上面を有する形状、具体的には平坦な円板状に形成されている。この回転テーブル3は、チャンバ2の底面中央に設定された上下方向を向く回転軸を中心に回転可能となるように設置され、前記上面に載置されたワークWを当該回転テーブル3とともに前記回転軸回りに回転させる、すなわち公転させる、ことが可能である。具体的に、回転テーブル3(公転テーブル)は、その下側に位置する回転軸部4に連結されている。この回転軸部4は、その中心軸が上述した回転軸と合致する棒状をなす。この回転軸部4はチャンバ2の前記底壁2aを上下方向に貫通している。回転軸部4は上端及び下端を有する。回転軸部4の上端は前記回転テーブル3の下面に固定され、回転軸部4の下端はモータなどを含む図示されない回転駆動装置に連結されている。チャンバ2の底面と回転軸部4との間には、チャンバ2の気密性を確保しつつも前記底壁2aに対する回転軸部4の回転を許容するシール機構(図示略)が設けられている。前記モータなどを含む回転駆動装置は、前記回転軸部4及びこれに連結される前記回転テーブル3を前記回転軸回りに回転させる。
 前記複数のワークWは、回転テーブル3の上面の外周側部分に載置され、その周方向に一定の間隔をあけながら並べられている。この実施の形態では、8本のワークWが配置される。これらのワークWは、前記回転テーブル3の前記回転軸回りの回転に伴い、前記回転軸を中心とする円軌道(公転軌道)に沿ってチャンバ2内を移動する。
 前記各蒸発源5は、ワークWの表面に成膜しようとする皮膜の原料となる成膜物質から形成された部材である。図例の蒸発源5は成膜物質で板状に形成されている。例えば、上述したアークイオンプレーティングのPVD装置の場合であれば、蒸発源5にはTi、Zr、Crなどの金属が用いられる。
 前記各蒸発源5は、その板厚方向が前記チャンバ2の側壁2cの板厚方向と合致する姿勢で当該側壁2cの内側面に沿って設置されている。従って、各蒸発源5は前記回転テーブル3の径方向の外側に位置する。前記のように板状をなす各蒸発源5は、その中心部位を通る法線が前記回転テーブル3の中央に向かうように複数の位置(図例では4つの位置)にそれぞれ配備されている。各蒸発源5を構成する成膜物質は、プラズマなどを利用して蒸発させられることにより粒子となり、前記ワークWの表面に付着して成膜に寄与する。
 この実施の形態に係る処理装置1は、さらに、測定ピース6及び計測部8を備える。測定ピース6は、チャンバ2の内部に設けられ、その内部の温度の影響を受けて熱伸縮する。前記計測部8は、前記チャンバ2の外部に設置され、前記測定ピース6の熱伸縮量を計測する。具体的に、前記チャンバ2には、このチャンバ2内の測定ピース6をチャンバ2の外側から観測することを可能にする観測窓7が設けられる。前記計測部8は、レーザ変位計9を有し、前記観測窓7を通じて前記測定ピース6の熱伸縮量を計測し、これにより前記ワークWの温度を特定する。
 次に、前記測定ピース6、観測窓7、及び計測部8について詳細に説明する。
 前記測定ピース6は、温度の変化に応じて所定の割合で熱膨張または熱伸縮する。従って、この測定ピース6の熱伸縮量(熱伸縮した長さ)の計測により温度を測定することが可能である。測定ピース6は、ワークWと同じような熱伸縮状態となるように、ワークWを構成する材料と同じ材料により、あるいは、ワークWを構成する材料と線膨張係数が近い材料により、特定の長手方向に延びる長尺の棒状に形成されているのが好ましい。このようにワークWと同じ材料または線膨張係数が近い材料で形成された測定ピース6は、成膜装置においてはワークWと同じ状態で成膜されるので、当該測定ピース6を用いてワークWの温度を正確に評価することが可能である。
 前記測定ピース6は、上下方向に沿って長尺なワークWの形状に合わせて、上下方向にほぼ同じ長さを有する長尺な棒状に形成されている。測定ピース6には、この測定ピース6がワークWに対する成膜の状態に悪影響を与えることを抑えるため、ワークWよりも小径な円形の断面を有する形状が与えられている。図1及び図2に示される測定ピース6には、円筒状のワークWに準じて丸棒状のものが用いられている。
 測定ピース6は、回転テーブル3の上面上で上下方向に沿って起立するように設けられている。測定ピース6は、その温度がワークWの温度と同じになるように、特定のワークWの近傍であってその内周側に位置するように、当該ワークWと同じく前記回転テーブル3の上面に置かれる。
 具体的には、測定ピース6の長手方向の一端である下端が、回転テーブル3の上面に固定されており、長手方向の他方端である上端は上方を向いている。従って、測定ピース6の温度が変化して当該測定ピース6が熱伸縮するのに伴い、当該測定ピース6の下端が前記回転テーブル3に固定されているのに対して、上端が上下方向に変位する。このように測定ピース6の上下方向の伸縮に伴って変動する測定ピース6の上端の位置(高さ)を後述するレーザ変位計9(レーザ距離計)を用いて計測することで、測定ピース6の熱伸縮量を計測することができる。
 前述のように、前記測定ピース6は、前記回転テーブル3上で特定のワークWに対してその径方向(回転テーブル3の径方向)の内側に隣接した位置にある。このような位置に測定ピース6を配備するのは、ワークWへの成膜に測定ピース6の設置による影響が与えられるのを防ぐためである。例えば、上述したアークイオンプレーティングの場合であれば、蒸発源5の表面近傍にアーク放電が発生し、これにより蒸発源5が蒸発して成膜物質がワークW側に放出される。このとき、回転テーブル3におけるワークWに隣接した位置であって、載置されたワークWの中心よりも径外側(例えば図1に示される回転テーブル3上の白丸の位置)に測定ピース6が配備されていると、測定ピース6に邪魔されて成膜物質がワークWに到達し難くなり、測定ピース6に隣接するワークWに成膜物質が均等に成膜されなくなる可能性がある。そこで、蒸発源5から見てワークWよりも測定ピース6の位置が遠くなるように、回転テーブル3の回転軸心を中心とする径方向に沿って、ワークWから見て蒸発源5とは反対側(ワークWの中心よりも径内側であって回転軸心に近い側、図1中に黒丸で示す位置)に測定ピース6が配置される。このようにワークWよりも回転軸心に近い位置に測定ピース6を配備すれば、ワークWへの成膜に対する測定ピース6の影響が抑えられ、当該測定ピース6の存在にかかわらずワークWに均等に成膜を行うことが可能となる。
 前記測定ピース6は、回転テーブル3上の所定位置に固定されているので、回転テーブル3が回転軸回りを1回転する度に、その回転周方向の同じ位置に帰還する。従って、レーザ変位計9の測定点を測定ピース6の周回軌道(回転軌道)上の1点に固定しておけば、回転テーブル3が回転して測定ピース6が周方向の同じ位置に来る度に、測定ピース6の熱伸縮量を計測することができる。その結果、測定ピース6の温度、言い換えればワークWの実体温度を一定の時間間隔で繰り返し計測することが可能となる。
 前記観測窓7は、前記チャンバ2の外部から当該チャンバ2内の測定ピース6の上端の熱変位を計測することを可能にすべく、チャンバ2を構成する壁であって回転テーブル3に対面する壁に形成されている。具体的に、この実施の形態に係る観測窓7は、前記チャンバ2の天壁2bに設けられ、前記計測部8のレーザ変位計9から照射されたレーザを透過できるようにガラスなどの光透過性の材料から形成されている。観測窓7の位置は、当該観測窓7の下方を前記測定ピース6が通過する位置、言い換えれば回転テーブル3上での測定ピース6の回転軌道の上方の位置に設定されている。このような位置に観測窓7を設ければ、後述する計測部8のレーザ変位計9は測定ピース6の上端に対してレーザを真上から照射することができ、これにより測定ピース6の長さを確実に且つ精度良く計測することが可能となる。
 前記計測部8は、測定ピース6の熱伸縮量を計測することでワークWの温度を計測する。この計測部8は、前記測定ピース6の長手方向の一方端(この実施の形態では下端)に対する他端の相対変位(この実施の形態では上端の上下方向の変位)を計測する前記レーザ変位計9(レーザ距離計)と、このレーザ変位計9で計測された測定ピース6の熱伸縮量に基づいてワークWの温度を算出する演算部と、を有している。
 図2に示すように、レーザ変位計9は、照射したレーザ光の反射光を計測し、三角測量法の原理を適用することで、計測しようとする対象物である測定ピース6の上端の変位を計測する。レーザ変位計9は、上述したチャンバ2の天壁2bにおける前記観測窓7の上方に配置され、この観測窓7を通じて下方の前記測定ピース6に向かってレーザ光を照射する。このようにして計測された変位(測定ピース6の熱伸縮量)は前記演算部に信号として送られる。
 前記レーザ変位計9は、前記測定ピース6の熱伸縮量を非接触で計測することができ、処理装置の回転テーブルの最大速度(例えば5rpm程度)に十分追随可能な測定サンプリング周期で計測することも可能となっている。また、処理装置で通常必要とされる数百度程度の処理温度域の温度測定については、十分な測定分解能で計測することができ、良好な測定精度を有している。それゆえ、上述したレーザ変位計9を計測部8に好適に用いることができる。
 前記演算部は、測定前あるいは加熱前の測定ピース6の温度と、測定ピース6に用いられた材料の線膨張係数と、レーザ変位計9で計測された測定ピース6の上端の変位量と、を用いて測定ピース6の温度を算出する。測定前あるいは加熱前の測定ピース6の温度や測定ピース6に用いられた材料の線膨張係数は既知であるため、レーザ変位計9で前記変位量を計測することにより、測定ピース6の温度、つまりワークWの実体温度を一義的に特定することができる。
 一般に、材料の線膨張係数は温度に対して一定ではなく、ワークWの実体温度がどの温度範囲にあるかによって前記線膨張係数の数値が変動する。それゆえ、ワークWの実体温度をさらに正確に計測しようとすれば、例えば200~300℃までの温度範囲、300~400℃までの温度範囲、400~500℃までの温度範囲というように、複数の温度範囲毎に演算に使用する複数の線膨張係数が用意されるのが良い。
 上述した処理装置1は、PVD法やCVD法を利用してワークWに対して成膜を行う装置であったが、本発明に係る処理装置は後述するイオンボンバードメント処理や加熱処理にも用いることができる。例えば、イオンボンバードメント処理は、PVD皮膜やCVD皮膜の成膜前に、プラズマ放電によってチャンバ内で発生したアルゴンイオンのような重い不活性気体イオン(ガスイオン)をワークの表面に照射することによって基材の表面をクリーニングする処理であるが、このようなイオンボンバードメント処理も、ワークWの処理温度の細密な制御を必要とするから、上述した本発明の処理装置やワークの温度計測方法を採用するのが好ましい。
 次に、上述した処理装置1を用いてワークWの実体温度を計測する方法、言い換えれば本発明に係るワークの温度計測方法の例について、説明する。
 前記ワークWの温度計測方法は、前記ワークWが収容されるチャンバ2の内部に当該チャンバ2の内部の温度の影響で熱伸縮する前記測定ピース6を設けることと、前記チャンバ2に形成された観測窓7を通じて前記測定ピース6の熱伸縮量を計測することでワークWの実体温度を特定することと、を含む。
 具体的には、ワークWの実体温度は次のようにして計測される。
 まず、上述した回転テーブル3の上面の所定位置に複数のワークWが載置され、モータなどを含む回転駆動装置が前記回転テーブル3を回転軸回りに回転させる。これにより、当該回転テーブル3上に載置された前記各ワークWが前記チャンバ2内を回転軸回りに公転する。
 このようにワークWが公転した状態において、蒸発源5が図示されていないアーク電源のマイナス極に電気的に接続される。一方、チャンバ2内に予め他の電極が設けられていて当該他の電極が前記アーク電源のプラス極に電気的に接続される。そうすると、陰極(カソード)である蒸発源5と、陽極(アノード)である他の電極との間に電位差が与えられ、蒸発源5の表面にアーク放電が発生する。このアーク放電は、前記蒸発源5から成膜物質を蒸発させて当該成膜物質の粒子をワークWに向けて放出させる。これにより、ワークW上に成膜物質が堆積して成膜が行われる。
 この成膜中、回転テーブル3が回転軸の回りを1回転する度に、回転テーブル3上の所定位置に設けられた測定ピース6も周方向の同じ位置に帰還する。そして、この周方向の同じ位置に帰還する測定ピース6の上端が計測部8を通過する瞬間に当該上端の位置ひいては測定ピース6の熱伸縮量が計測される。
 このようにして計測部8で計測された測定ピース6の熱伸縮量が次のような手順で処理されることにより、ワークWの実体温度が算出される。
 例えば、測定ピース6に用いられた材料がSUS304であるときは、測定ピース6の線膨張係数は18×10-6(/℃)となる。例えば、測定前あるいは加熱前の温度20℃のときに長さが300mmである測定ピース6を用いた場合において、測定後あるいは加熱後にレーザ変位計9で計測された測定ピース6の伸び量が2mmであったとすると、次式(1)に基づいて測定ピース6の温度T(℃)を算出することが可能であり、その温度Tは390℃となる。つまり、前記の伸び量2mmはワークWの実体温度Tが390℃であることを表す。
 2=300×(18×10-6)×(T-20) ・・・(1)
 上述した処理装置1やワークWの温度計測方法では、測定ピース6の熱伸縮量に基づいてワークWの実体温度が計測されるから、放射温度計を用いた場合のように温度計測の精度にワークWの表面物性または表面状態の影響が及ぶことがない。それゆえ、成膜装置1においてワークWの表面物性または表面状態が変化しやすい成膜が行われる場合でも、ワークWの実体温度を正確に計測しつつ処理を行うことができる。
 前記チャンバ2に設けられた窓を通じて放射温度計により赤外線を計測する場合、当該窓に付着した成膜物質やワークW以外の物質から放射された赤外線などの影響で、温度計測の精度を維持するのが困難になることがある。しかし、レーザ変位計9を用いて測定ピース6の熱伸縮量によりワークWの実体温度を計測する方法では、前記窓が汚れてもその影響を受けにくく、高い温度計測の精度を維持することが可能となる。
 一般に、CVD法やPVD法を用いた成膜は、前記チャンバ2内の回転テーブル3等を用いてワークWをチャンバ2内で移動させながら行われることが多い。ここで、従来のようにワークWに接触することで温度を計測する接触式の温度計を用いる場合、前記のようにチャンバ2内で移動するワークWの温度の計測は困難である。しかし、測定ピース6の熱伸縮量によりワークWの実体温度を計測する前記方法では、前記各ワークWの移動にかかわらずその実体温度を正確に計測しつつ処理を行うことができる。
 本発明は上記各実施形態に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。また、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。 
 例えば、上記実施形態に係る処理装置は成膜装置であるが、本発明の処理装置には成膜を行わずに純粋に加熱だけを行う加熱炉(PVD法やCVD法などの成膜を行わない加熱炉)のような加熱装置も含まれる。それ故、本発明の処理装置でワークWに対して行われる改質処理には、上述した加熱炉で行われる加熱処理、つまり成膜を伴わない加熱処理も含まれている。
 また、本発明はヒータなどの加熱手段を有しない成膜装置にも適用され得る。このような成膜装置であっても、成膜に伴い気化した成膜物質の粒子がワークWに付着して固化することにより当該ワークWの温度を結果的に上昇させる。このような温度上昇の計測にも、本発明の技術を採用することが可能である。
 前記実施形態のような観測窓7を通じての測定ピース6の熱伸縮量の計測に代え、レーザ変位計9をチャンバ2の内側に設けて測定ピース6の熱伸縮量をチャンバ2の内部で計測してもよい。この場合、レーザ変位計9自体を所定の防護ケースに収納すると共に、レーザ変位計9の照射面などへの成膜物質の付着や熱の影響を防止するようにレーザ変位計9の周囲に防着板や熱遮蔽板などを設置するのが好ましい。
 さらに、上述したレーザ変位計9を、測定ピース6にレーザを直接照射できないチャンバ2内の位置に設置せざるを得ない場合には、測定ピース6に照射されるレーザの経路を途中で曲げる鏡などを設けて計測を行うことも可能である。
 以上のように、本発明によれば、チャンバの内部にワークを収容して処理を行う場合に、ワークの表面物性または表面状態が変化する場合であっても、あるいはチャンバ内でワークが移動する場合であっても、ワークの実体温度を正確に計測しつつ処理を行うことができる処理装置及び処理装置におけるワークの温度計測方法が、提供される。
 本発明が提供するのは、ワークの改質処理を行うための処理装置であって、前記ワークを収容するチャンバと、前記チャンバの内部に設けられ、当該チャンバの内部の温度に影響を受けて熱伸縮する測定ピースと、前記測定ピースの熱伸縮量を計測することにより前記ワークの実体温度を特定する計測部と、を備える。
 好ましくは、前記測定ピースは、前記ワークと同じ材料で形成される。このことは、当該測定ピースを用いてワークの温度をより正確に評価することを可能にする。
 好ましくは、前記チャンバには、前記チャンバ内の測定ピースを前記チャンバの外側から観測することを可能にする観測窓が設けられ、前記計測部は、前記観測窓を通じて測定ピースの熱伸縮量を計測する。このことは、前記計測部を前記チャンバの外部に設けることにより当該計測部が前記チャンバの内部の状態に影響を受けることを回避しながら、当該チャンバの内部の測定ピースの熱伸縮量を計測することを可能にする。
 好ましくは、前記測定ピースは、特定の長手方向に沿って延びる棒状に形成されており、前記計測部は、前記測定ピースの長手方向に沿った熱伸縮量に基づいてワークの実体温度を計測する。このことは、当該測定ピースの熱伸縮量の測定をより容易にする。
 好ましくは、前記計測部は、前記測定ピースの長手方向の一方端に対する他方端の当該長手方向についての相対変位を計測すべく、前記測定ピースの他方端に対して測定用のレーザ光を照射するレーザ変位計を有している。
 好ましくは、本発明に係る処理装置は、前記チャンバ内で回転軸回りに前記ワークを公転させる回転テーブルをさらに備え、前記測定ピースは、その長手方向の一方端が前記回転テーブル上に固定されると共に当該長手方向が前記回転軸と平行となるように配備されており、前記観測窓は、前記計測部が前記測定ピースの熱伸縮による当該測定ピースの他方端の変位を計測することを可能にするように、前記チャンバを構成する壁であって前記回転テーブルに対面する部分に設けられている。この配置は、前記計測部による前記測定ピースの熱伸縮量の計測を容易にする。
 好ましくは、前記処理装置は、前記チャンバ内に設けられ、前記ワークに成膜を行うための蒸発源をさらに備え、前記測定ピースは、前記回転テーブルの回転軸を中心とする径方向に沿って、前記ワークから見て前記蒸発源とは反対側であると共にワークに隣接した位置に設けられている。この配置は、前記測定ピースが前記蒸発源による前記ワークへの成膜に与える影響を抑止することを可能にする。
 好ましくは、前記測定ピースは、前記ワークと同じ電位に保持されている。このことは、例えばワークにバイアス電圧を印加して処理するプロセスの場合、バイアス効果(すなわち、イオンをワークに引き付けることにより生じる効果、例えばワークへのイオン照射による表面の活性化、改質、昇温、エッチングなど)の測定を含めた温度測定が可能になる。
 また本発明は、ワークの改質処理を行うための処理装置において当該ワークの温度を計測する方法を提供する。この方法は、前記ワークを収容するチャンバの内部に当該チャンバの内部の温度の影響で熱伸縮する測定ピースを設けることと、前記測定ピースの熱伸縮量を計測することで前記ワークの実体温度を特定することと、を含む。

Claims (9)

  1.  ワークに対して改質処理を行う処理装置であって、
     前記ワークを収容するチャンバと、 
     前記チャンバの内部に設けられ、前記チャンバの内部の温度の影響で熱伸縮する測定ピースと、
     前記測定ピースの熱伸縮量を計測することにより前記ワークの実体温度を計測する計測部と、を備える処理装置。
  2.  前記測定ピースは、前記ワークと同じ材料で形成されている、請求項1に記載の処理装置。
  3.  前記チャンバには、前記チャンバ内の前記測定ピースを前記チャンバの外側から観測することを可能にする観測窓が設けられ、前記計測部は、前記観測窓を通じて前記測定ピースの熱伸縮量を計測する、請求項1に記載の処理装置。
  4.  前記測定ピースは、特定の長手方向に沿って延びる棒状に形成されており、
     前記計測部は、前記測定ピースの前記長手方向に沿った熱伸縮量に基づいて前記ワークの実体温度を計測する、請求項1に記載の処理装置。
  5.  前記計測部は、前記測定ピースの前記長手方向の一方端に対する他方端の相対変位を計測すべく、前記測定ピースの他方端に対して測定用のレーザ光を照射するレーザ変位計を有する、請求項4に記載の処理装置。
  6.  前記チャンバ内で回転軸回りに前記ワークを公転させる回転テーブルをさらに備え、
     前記測定ピースは、その長手方向の一方端が前記回転テーブル上に固定されると共に前記長手方向が前記回転軸と平行となるように、配備されており、
     前記チャンバには、前記計測部が前記チャンバ内の前記測定ピースの他方端の熱伸縮量を前記チャンバの外部から計測することを可能にするように、前記チャンバを構成する壁であって前記回転テーブルに対面する部分に観測窓が設けられている、請求項3に記載の処理装置。
  7.  前記チャンバ内に設けられ、前記ワークに成膜を行うための蒸発源をさらに備え、
     前記測定ピースは、前記回転テーブルの前記回転軸を中心とする径方向に沿って、前記ワークから見て前記蒸発源とは反対側であると共に前記ワークに隣接した位置に設けられている、請求項6に記載の処理装置。
  8.  前記測定ピースは、前記ワークと同じ電位に保持されている請求項1に記載の処理装置。
  9.  ワークに対して改質処理を行うための処理装置において当該ワークの温度を計測するための方法であって、
     前記ワークを収容するチャンバの内部に、前記チャンバの内部の温度の影響で熱伸縮する測定ピースを設けることと、
     前記測定ピースの熱伸縮量を計測することにより前記ワークの実体温度を特定することと、を含む処理装置におけるワークの温度計測方法。
PCT/JP2014/001383 2013-04-02 2014-03-11 処理装置及び処理装置におけるワークの温度計測方法 WO2014162665A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112015025189A BR112015025189A2 (pt) 2013-04-02 2014-03-11 aparelho de processamento e método de medir temperatura de peça de trabalho no aparelho de processamento
KR1020157031016A KR20150135516A (ko) 2013-04-02 2014-03-11 처리 장치 및 처리 장치에 있어서의 워크의 온도 계측 방법
CN201480019564.8A CN105102672B (zh) 2013-04-02 2014-03-11 处理装置以及处理装置中的工件的温度计测方法
MX2015011736A MX370694B (es) 2013-04-02 2014-03-11 Aparato de procesamiento y método de medición de la temperatura de una pieza de trabajo en aparatos de procesamiento.
US14/769,306 US9897489B2 (en) 2013-04-02 2014-03-11 Processing apparatus and method of measuring temperature of workpiece in processing apparatus
EP14778446.6A EP2982776A4 (en) 2013-04-02 2014-03-11 PROCESSING DEVICE AND METHOD FOR MEASURING THE TEMPERATURE OF A MANUFACTURING PART IN A PROCESSING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076947 2013-04-02
JP2013076947A JP6057812B2 (ja) 2013-04-02 2013-04-02 処理装置及びワークの温度計測方法

Publications (1)

Publication Number Publication Date
WO2014162665A1 true WO2014162665A1 (ja) 2014-10-09

Family

ID=51657980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001383 WO2014162665A1 (ja) 2013-04-02 2014-03-11 処理装置及び処理装置におけるワークの温度計測方法

Country Status (9)

Country Link
US (1) US9897489B2 (ja)
EP (1) EP2982776A4 (ja)
JP (1) JP6057812B2 (ja)
KR (1) KR20150135516A (ja)
CN (1) CN105102672B (ja)
BR (1) BR112015025189A2 (ja)
MX (1) MX370694B (ja)
TW (1) TWI526563B (ja)
WO (1) WO2014162665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022022903A (ja) * 2020-07-10 2022-02-07 トヨタ自動車株式会社 電源システムおよびそれを備えた車両

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312120B2 (en) * 2013-03-15 2019-06-04 Applied Materials, Inc. Position and temperature monitoring of ALD platen susceptor
CN104674169A (zh) * 2015-02-12 2015-06-03 烟台首钢磁性材料股份有限公司 一种永磁钕铁硼磁钢表面电镀复合镀层的方法
CN105675161A (zh) * 2016-01-19 2016-06-15 河南理工大学 一种用热电偶测量激光加工工件温度的方法
TWI620914B (zh) * 2016-10-27 2018-04-11 Toshiba Kk Measuring device
CN106906450B (zh) * 2017-02-27 2019-03-01 成都京东方光电科技有限公司 一种监测蒸发源内部温度的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658814A (ja) 1992-08-04 1994-03-04 Kobe Steel Ltd ワーク温度測定装置
JPH0727634A (ja) * 1993-07-15 1995-01-31 Hitachi Ltd 基板温度測定方法及び基板処理装置
JP2836876B2 (ja) 1988-08-25 1998-12-14 ハウザー インダストリーズ ビーブイ 物理的な蒸着の二重被覆を行う装置および方法
JP3042786B2 (ja) 1990-07-03 2000-05-22 株式会社日立製作所 真空内被処理物の温度測定方法並びに温度制御方法及び装置
JP2000206070A (ja) * 1999-01-18 2000-07-28 Seiko Instruments Inc 大径試料の温度を正確に測定できる熱分析装置および方法
JP2002350248A (ja) 2001-05-30 2002-12-04 Kobe Steel Ltd 温度計測装置及びそれを使用する温度計測方法
JP2009212199A (ja) * 2008-03-03 2009-09-17 Canon Anelva Corp 基板表面温度計測方法、及び、これを用いた基板処理装置
JP4607287B2 (ja) 2000-06-05 2011-01-05 株式会社アルバック 真空加熱装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH468001A (de) * 1967-12-21 1969-01-31 Balzers Patent Beteilig Ag Verfahren zur Überwachung von Temperaturänderungen strahlendurchlässiger Unterlagen für bei Unterdruck aufzubringende dünne Schichten
JPS57197432A (en) * 1981-05-29 1982-12-03 Toshiba Corp Light applying temperature sensor
US5350899A (en) * 1992-04-15 1994-09-27 Hiroichi Ishikawa Semiconductor wafer temperature determination by optical measurement of wafer expansion in processing apparatus chamber
DE3607368A1 (de) * 1986-03-06 1987-09-10 Bosch Gmbh Robert Vorrichtung zur beruehrungsfreien temperaturmessung
JPH0334640Y2 (ja) * 1986-11-05 1991-07-23
US5221142A (en) * 1991-05-20 1993-06-22 Peak Systems, Inc. Method and apparatus for temperature measurement using thermal expansion
JP3600873B2 (ja) * 1996-07-08 2004-12-15 独立行政法人理化学研究所 基板温度測定ユニット
JPH11202700A (ja) * 1998-01-16 1999-07-30 Fuji Xerox Co Ltd 画像形成装置
JP2010151743A (ja) * 2008-12-26 2010-07-08 Olympus Corp 接着剤の膜厚測定装置
JP2011021209A (ja) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd 真空蒸着装置
JP2011053077A (ja) * 2009-09-01 2011-03-17 Sii Nanotechnology Inc 熱分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836876B2 (ja) 1988-08-25 1998-12-14 ハウザー インダストリーズ ビーブイ 物理的な蒸着の二重被覆を行う装置および方法
JP3042786B2 (ja) 1990-07-03 2000-05-22 株式会社日立製作所 真空内被処理物の温度測定方法並びに温度制御方法及び装置
JPH0658814A (ja) 1992-08-04 1994-03-04 Kobe Steel Ltd ワーク温度測定装置
JPH0727634A (ja) * 1993-07-15 1995-01-31 Hitachi Ltd 基板温度測定方法及び基板処理装置
JP2000206070A (ja) * 1999-01-18 2000-07-28 Seiko Instruments Inc 大径試料の温度を正確に測定できる熱分析装置および方法
JP4607287B2 (ja) 2000-06-05 2011-01-05 株式会社アルバック 真空加熱装置
JP2002350248A (ja) 2001-05-30 2002-12-04 Kobe Steel Ltd 温度計測装置及びそれを使用する温度計測方法
JP2009212199A (ja) * 2008-03-03 2009-09-17 Canon Anelva Corp 基板表面温度計測方法、及び、これを用いた基板処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982776A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022022903A (ja) * 2020-07-10 2022-02-07 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP7310738B2 (ja) 2020-07-10 2023-07-19 トヨタ自動車株式会社 電源システムおよびそれを備えた車両

Also Published As

Publication number Publication date
US20150377714A1 (en) 2015-12-31
US9897489B2 (en) 2018-02-20
KR20150135516A (ko) 2015-12-02
BR112015025189A2 (pt) 2017-07-18
CN105102672A (zh) 2015-11-25
MX2015011736A (es) 2015-12-01
JP6057812B2 (ja) 2017-01-11
EP2982776A1 (en) 2016-02-10
MX370694B (es) 2019-12-19
TW201447006A (zh) 2014-12-16
CN105102672B (zh) 2018-01-09
EP2982776A4 (en) 2016-11-09
TWI526563B (zh) 2016-03-21
JP2014201769A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
WO2014162665A1 (ja) 処理装置及び処理装置におけるワークの温度計測方法
KR101680862B1 (ko) 용량성 센서들을 사용하여 기판을 포지셔닝하기 위한 장치 및 방법들
TWI625804B (zh) 晶圓邊緣的測量與控制
JP5663593B2 (ja) 基板をコートする装置及び方法
WO2023079770A1 (ja) 成膜制御装置、成膜装置及び成膜方法
TWI547576B (zh) 陰極組件、物理氣相沉積系統與物理氣相沉積的操作方法
KR20130136385A (ko) 증발 재료를 코팅하는 방법
TWI827714B (zh) 用於原位計量和處理控制的頂板、處理腔室及方法
US20140369387A1 (en) Method for the temperature measurement of substrates in a vacuum chamber
KR20120059814A (ko) 온도 측정 방식을 개선한 pvd 코팅 장치
US20070110899A1 (en) Thin-film deposition methods and apparatuses
US20240068099A1 (en) Substrate processing apparatus for temperature measurement of a moving substrate and method of measuring the temperature of a moving substrate
TW201929057A (zh) 基板處理設備以及處理基板及製造經處理工件的方法
TWI793810B (zh) 雙開式遮蔽機構及具有雙開式遮蔽機構的薄膜沉積機台
WO2004025219A1 (en) System and method for monitoring thin film deposition on optical substrates
JP6550317B2 (ja) スパッタリング装置
JP5010370B2 (ja) 加熱プレート温度測定装置
EP4298264A1 (en) Substrate processing apparatus for temperature measurement of a moving substrate and method of measuring the temperature of a moving substrate
KR20060033387A (ko) 회전 각도 측정 장치
JP2006097069A (ja) 真空成膜装置
Timian A Study of Tailored Oriented Thin Silver Films by X-ray Diffraction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019564.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14769306

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014778446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011736

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031016

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201507024

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025189

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015025189

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151001