WO2014162620A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014162620A1
WO2014162620A1 PCT/JP2013/073773 JP2013073773W WO2014162620A1 WO 2014162620 A1 WO2014162620 A1 WO 2014162620A1 JP 2013073773 W JP2013073773 W JP 2013073773W WO 2014162620 A1 WO2014162620 A1 WO 2014162620A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating current
phase
arm
circuit
voltage
Prior art date
Application number
PCT/JP2013/073773
Other languages
English (en)
French (fr)
Inventor
香帆 椋木
藤井 俊行
森 修
伸三 玉井
眞男 船橋
靖彦 細川
東 耕太郎
Original Assignee
三菱電機株式会社
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 東芝三菱電機産業システム株式会社 filed Critical 三菱電機株式会社
Priority to US14/781,421 priority Critical patent/US9564827B2/en
Priority to EP13881407.4A priority patent/EP2983284B1/en
Priority to JP2015509860A priority patent/JP6038289B2/ja
Publication of WO2014162620A1 publication Critical patent/WO2014162620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the present invention relates to a power conversion device that forms an arm by a unit cell composed of a plurality of semiconductor switches and a DC capacitor, and converts power between a plurality of phases of an AC circuit and a DC circuit. This suppresses the variation in the voltage of the DC capacitor between phases.
  • MMC modular multi-level converter
  • the MMC is composed of an arm in which a plurality of unit converters called cells (hereinafter referred to as unit cells) are cascade-connected.
  • the unit cell includes a plurality of semiconductor switches and a DC capacitor, and outputs both-end voltage and zero voltage of the DC capacitor by turning on and off the semiconductor switch.
  • each phase is individually configured with an arm, the output terminals of half the total number of cascaded cells are AC terminals, both ends of each phase arm are connected to each other, and each terminal is a DC terminal. It is said. Since each unit cell output of the MMC is connected to both sides of the AC end and the DC end of the MMC, each unit cell has a feature of outputting both DC and AC. That is, an AC component and a DC component exist in the current flowing through each arm. Therefore, in the MMC, it is necessary to control these plural current components. For example, the control methods are introduced in the following Patent Documents 1 and 2 and Non-Patent Document 1.
  • the AC side of the MMC controls the AC current
  • the DC side is a component related to the AC output from each arm current. It is disclosed that it can be controlled by controlling the current excluding.
  • a current obtained by removing the component related to the AC output from each arm current is controlled, but this current includes a DC current component flowing through the DC power source and a phase cell cell between each phase of the arm. And a circulating current component that directly affects the variation in the phase of the voltage of the DC capacitor.
  • the response of the control of the direct current component is determined mainly by the impedance of the DC circuit including the DC power supply, and the response of the control of the circulating current component is determined mainly by the impedance of the closed circuit between the arms. .
  • the present invention has been made to solve the above-described conventional problems. Even when an additional impedance is inserted in the DC circuit, the variation in the voltage of the DC capacitor voltage of the unit cell is reliably ensured. It aims at obtaining the power converter device which can be suppressed.
  • the power conversion device is connected between a multi-phase AC circuit and a DC circuit, and converts power between the two circuits.
  • Each phase includes a first arm and a second arm connected in series with each other at one end thereof, and the first arm and the second arm respectively include a series body of a plurality of semiconductor switches connected in series with each other.
  • One or more unit cells consisting of a series capacitor and a DC capacitor connected in parallel with the terminal of the semiconductor switch as the output end are connected in series, and the connection point between the first arm and the second arm of each phase Is connected to each phase of the AC circuit, the other end of the first arm of each phase is connected to the positive side of the DC circuit, and the other end of the second arm is connected to the negative side of the DC circuit, Circulation current calculation means for calculating the circulation current component of each phase circulating between the respective phases without passing through the AC circuit and the DC circuit, and circulation for performing control for causing the circulation current component of each phase to follow a predetermined circulation current command value By providing the current control unit, variation in the voltage of the DC capacitor between phases is suppressed.
  • the power conversion device includes the circulating current calculation means and the circulating current control unit as described above, the circulating current component that directly affects the variation between the phases of the DC capacitor voltage of the unit cell, By controlling independently from other current components, this variation can be reliably suppressed.
  • FIG. 2 is a circuit diagram illustrating an internal configuration example of a unit cell 10 in FIG. 1.
  • FIG. 4 is a circuit diagram illustrating an internal configuration example of the unit cell 10 of FIG. 1 different from that of FIG. 3.
  • FIG. 6 is a block diagram illustrating an internal configuration example of a DC voltage command value calculation unit 53 in FIG. 5. It is a block diagram which shows the internal structural example of the circulating current control part 52A of the power converter device by Embodiment 2 of this invention. It is a block diagram which shows the internal structural example of 53 A of DC voltage command value calculating parts of the power converter device by Embodiment 2 of this invention. It is a block diagram which shows the internal structural example of the circulating current control part 52B of the power converter device by Embodiment 3 of this invention.
  • FIG. 1 is a circuit diagram showing an overall configuration of a power conversion apparatus according to Embodiment 1 of the present invention.
  • the power conversion apparatus 1 of the present invention has an AC power supply as an AC circuit in which one of the input / output terminals has a plurality of phases (in FIG. 1, three phases u, v, and w are shown).
  • 14 and the other of the input / output terminals is connected to a DC power source 16 via an impedance 15 as a DC circuit.
  • one of the input / output terminals is directly connected to the AC power supply 14, but it is configured to be connected via an interconnection reactor even if connected via an interconnection transformer. May be.
  • the other of the input / output terminals may be directly connected to the DC power supply 16 or may be connected to a DC load, or the DC power supply 16 may be another power conversion device that performs DC output.
  • the power converter 1 of the present invention configures an arm 17 for each phase, and each arm 17 includes a first arm 18 on the positive electrode side and a second arm 20 on the negative electrode side. Both arms 18 and 20 are connected in series at one end, and the connection point is an AC output end 19 connected to the AC power supply 14.
  • the other end of the first arm 18 is a first DC output end 12 connected to the positive side of the DC power supply 16 via an impedance 15.
  • the other end of the second arm 20 serves as a second DC output terminal 13 connected to the negative electrode side of the DC power supply 16 through an impedance 15.
  • the first arm 18 includes one or a plurality of unit cells 10 to be described later, and further an arm reactor 11 connected in series, and the second arm 20 is the same.
  • the arm reactor 11 is inserted to suppress a circulating current component, which will be described in detail later. If the arm reactor 11 is connected in series with the unit cell 10, the insertion position is the position shown in FIG.
  • the present invention is not limited, and a plurality may be inserted in a distributed manner.
  • the arm reactor 11 may be provided only on the second arm 20, or may be provided only on the first arm 18.
  • the arm reactor 11 is not limited to the insertion position of FIGS. 1 and 2 as long as it is within the arm 17, and the number of reactors is not limited to this.
  • the arm reactor 11 is not an essential element. In particular, when the arm reactor 11 is not provided, the circulating current component is determined by the reactance value existing in the wiring structure itself.
  • FIG. 3 is a circuit diagram showing an example of the internal configuration of the unit cell 10 of FIG. 1, and adopts a so-called half-bridge configuration.
  • a unit cell 10 includes a self-extinguishing switching element 30 such as a GCT (Gate Commutated Turn-off thyristor) or an IGBT (Insulated Gate Bipolar Transistor), and a diode 31 connected to the switching element 30 in antiparallel.
  • GCT Gate Commutated Turn-off thyristor
  • IGBT Insulated Gate Bipolar Transistor
  • the unit cell 10 has both terminals of one semiconductor switch 32 as output terminals, and the switching element 30 is turned on / off, whereby the voltage across the DC capacitor 34 and Outputs zero voltage.
  • FIG. 4 is a circuit diagram showing an internal configuration example of the unit cell 10 adopting a so-called full bridge configuration.
  • the unit cell 10 further includes a series body 43 in which a plurality of (in this case, two) semiconductor switches 42 including a switching element 40 and a diode 41 connected in antiparallel to the switching element 40 are connected in series. Two capacitors connected in parallel and a DC capacitor 44 connected in parallel to the series body 43 are constituted.
  • the unit cell 10 uses the terminal of the semiconductor switch 42 that is an internal intermediate connection point of each series body 43 as an output end, and turns on and off the switching element 40 to thereby turn this output end. To output a positive voltage, a negative voltage, and a zero voltage across the DC capacitor 44.
  • the unit cell 10 is composed of a series body constituted by semiconductor switches and a DC capacitor connected in parallel to the series body, and a DC capacitor voltage is applied to the output terminal by the operation of the series body semiconductor switches.
  • the configuration is not limited to that shown in FIGS. 3 and 4 as long as it is configured to selectively output.
  • the power converter 1 of the present invention is circulated between the phases of the first arm 18 and the second arm 20 without passing through the AC power source 14 and the DC power source 16, which are the main parts of the present invention.
  • the control of the circulating current component that directly affects the variation in the voltage of the DC capacitor 34 (44) of the unit cell 10 will be described.
  • FIG. 5 is a block diagram showing a control configuration example of the power conversion device according to Embodiment 1 of the present invention.
  • each current element flowing through the power conversion device will be described based on FIG. 6.
  • FIG. 6 for example, when attention is focused on the u phase, each current element is as follows.
  • ipu current flowing through the first arm 18.
  • inu current flowing through the second arm 20.
  • iu A current passing through the AC power supply 14, and half of the current iu is shunted to the first arm 18 and the second arm 20, as shown in the figure.
  • idc A current passing through the DC power supply 16, which corresponds to three phases, and 1/3 of the current flows in the u phase.
  • izu Current component obtained by subtracting the current iu / 2 flowing through the AC power supply 14 from the currents ipu and inu flowing through the arms 18 and 20, and the following relationship is established.
  • izu ipu + iu / 2 (1)
  • izu inu-iu / 2 (2)
  • izuc A circulating current component that circulates between the phases of the arm without passing through the AC power supply 14 and the DC power supply 16.
  • the currents ipu, ipv, ipw flowing through the first arm 18 of each phase and the currents inu, inv, inw flowing through the second arm 20 detected by an AC current detector (not shown) are added to the adder 54.
  • the multiplier 55 multiplies the current components iz, izv, and izw of each phase by subtracting the current flowing through the arms 18 and 20 from the current flowing through the AC power source 14.
  • the direct current calculation unit 50 calculates the direct current izdc passing through the direct current power supply 16 by adding the current components izu, izv, and izw of each phase, and the direct current izdc and the current components izu, izv, From the izw, the circulating current components izuc, izvc, and izwc of each phase are calculated by the equation (4).
  • the AC current detector (not shown), the adder 54, the multiplier 55, and the DC current calculation unit 50 constitute the circulating current calculation means in the claims of the present application.
  • the direct current izdc may be the direct current idc itself detected by a direct current detector (not shown). Although a DC current detector is required, there are advantages in that the amount of calculation processing is reduced and errors are reduced as compared with the case of obtaining by calculation.
  • the DC current control unit 51 subtracts a DC current izdc from a predetermined DC current command value izdc * by a subtractor 56, and calculates an error ⁇ izdc with respect to the command value.
  • the compensator 57 calculates the DC voltage command DC current component vdcout so that the error ⁇ izdc is zero, that is, the DC current izdc follows the DC current command value izdc *.
  • the circulating current control unit 52 is calculated by a direct current calculation unit 50 from a predetermined circulating current command value izuc *, izvc *, and izwc * of each phase by a subtractor 58. Then, the circulating current components izuc, izvc, and izwc of each phase are subtracted to calculate errors ⁇ izuc, ⁇ izvc, and ⁇ izwc with respect to the command values of each phase, so that the calculated errors ⁇ izuc, ⁇ izvc, and ⁇ izwc of each phase become zero.
  • the DC voltage command circulating current components vdccu, vdccv, and vdccw that cause the circulating current components izuc, izvc, and izwc of each phase to follow the circulating current command values izuc *, izvc *, and izwc * of each phase, respectively, are compensators 59. It calculates by.
  • the circulating current command value may be set to zero. However, in reality, it is assumed that there are variations between the phases of these components and the like, and the circulating current components of the phases to be flowed to equalize the voltages of the DC capacitors 34 and 44 of the phases regardless of the presence of these variations. Is the circulating current command value. Further, if the condition of the AC system including the AC power supply 14 is not changed, it may be set as a fixed value. For example, when the three-phase balance of the AC system fluctuates, the DC capacitor voltage varies depending on these fluctuations. It will vary between phases. For this reason, it may be necessary to sequentially obtain the circulating current command value by control based on variations in the voltage of the DC capacitor.
  • the circulating current command value calculation unit 100 calculates the circulating current command values izuc *, izvc *, and izwc * in consideration of the above situation, and an internal configuration example is shown in FIG.
  • the command value may be a fixed value or may be obtained by sequential calculation, so that the command value can be switched by the switch 104. If the switch 104 selects the lower terminal in the figure, the circulating current command value calculation unit 100 assumes variations among the phases of the components and the like constituting the unit cell 10, and the DC of each phase regardless of the presence of these variations.
  • a U-phase, V-phase, and W-phase fixed circulating current command value which is a circulating current component of each phase to be passed in order to equalize the voltages of the capacitors 34 and 44, is output.
  • circulating current command value calculation unit 100 outputs circulating current command values izuc *, izvc *, and izwc * in the following manner.
  • the DC capacitor representative value calculation unit 101 calculates each phase from the detected voltage value of each phase DC capacitor, for example, Vcapup1 ⁇ Vcapupn of the first arm 18 and Vcapun1 ⁇ Vcapunn of the second arm 20 in the U phase.
  • the representative values Vcapu, Vcapv, Vcapw of the DC capacitor voltage are calculated.
  • the representative value may be the maximum voltage or the minimum voltage of the DC capacitor voltage in each phase, or the average voltage in each phase.
  • the subtractor 102 subtracts the DC capacitor voltage representative values Vcapu, Vcapv, Vcapw of each phase from the DC capacitor voltage command value Vcap *, and calculates errors ⁇ Vcapu, ⁇ Vcapv, ⁇ Vcapw with respect to the command values of each phase. Then, a circulation is performed so that the calculated errors ⁇ Vcapu, ⁇ Vcapv, ⁇ Vcapw of each phase become zero, that is, the DC capacitor voltage representative values Vcapu, Vcapv, Vcapw of each phase follow the DC capacitor voltage command value Vcap *, respectively.
  • the current command values izuc *, izvc *, and izwc * are calculated by the compensator 103.
  • the circulating current command value may be set to a fixed value.
  • the circulating current command value is circulated based on the detected value of the DC capacitor voltage.
  • the current command value may be obtained by sequential calculation. In this case, each phase DC capacitor voltage can always be balanced even if fluctuations occur in the AC system.
  • the DC voltage command value calculation unit 53 adds the DC voltage command circulating current components vdccu, vdccv, and vdccw of each phase calculated by the circulating current control unit 52 by the adder 60 as shown in FIG.
  • the DC voltage command DC current component vdcout calculated by the DC current control unit 51 is added to calculate DC voltage command values vdcu *, vdcv *, and vdcw * for each phase.
  • the DC voltage control unit 70 controls the DC voltage output to the DC circuit based on the DC voltage command values vdcu *, vdcv *, and vdcw * of each phase. Specifically, the DC voltage control unit 70 controls the unit cell 10 of each phase arm. The on / off drive of the switching elements 30 and 40 to be configured is controlled.
  • the power conversion device includes the circulating current calculation means including the DC current calculation unit 50 described above, the circulation current control unit 52, and the DC voltage command value calculation unit 53.
  • the circulating current calculation means including the DC current calculation unit 50 described above, the circulation current control unit 52, and the DC voltage command value calculation unit 53.
  • the circulating current control unit 52 is configured independently of the DC current control unit 51 that causes the DC current to follow the command value, the optimal control response is set individually by both the control units 51 and 52. Even if the impedance 15 is inserted in the DC circuit including the DC power source 16, it is possible to appropriately suppress the DC current while suppressing the variation between the phases of the DC capacitors 34 and 44 of the unit cell 10 with certainty. As a result, it contributes to downsizing of the apparatus.
  • this power conversion device is applied to, for example, a high-voltage DC transmission facility (HVDC), and the DC circuit corresponds to a DC transmission system.
  • HVDC high-voltage DC transmission facility
  • this power conversion device is applied to a frequency conversion facility (FC) and the AC circuit corresponds to an AC power system.
  • FC frequency conversion facility
  • FIG. 11 and 12 are block diagrams showing internal configurations of circulating current control unit 52A and DC voltage command value calculation unit 53A of the power conversion device according to Embodiment 2 of the present invention.
  • the other parts are the same as those in the first embodiment, and a description thereof will be omitted.
  • the circulating current control unit 52A first calculates the difference between the phase having the circulating current components izuc, izvc, and izwc of each phase calculated by the direct current calculating unit 50 by the subtractor 61 and the other two phases.
  • izuc-izvc izuvc
  • izvc-izwc izvwc are calculated.
  • the phase difference of the circulating current component is two, ie, the current izuvc obtained by subtracting izvc from izuc and the current izvwc obtained by subtracting izwc from izvc.
  • the current izuvc, or the currents izwuc and izvwc may be used.
  • the DC voltage command value calculation unit 53A includes the DC voltage command circulating current components vdccuv and vdccvw obtained by the circulating current control unit 52A, and the DC voltage command DC current component vdcout obtained by the DC current control unit 51.
  • the DC voltage command values vdcu *, vdcv *, and vdcw * for each phase are calculated using the calculation shown in FIG.
  • the two circulating current component phase differences are matched with the corresponding two circulating current command value phase differences as described above.
  • the power conversion device includes the circulating current calculation means including the above-described DC current calculation unit 50, the circulation current control unit 52A, and the DC voltage command value calculation unit 53A.
  • the circulating current calculation means including the above-described DC current calculation unit 50, the circulation current control unit 52A, and the DC voltage command value calculation unit 53A.
  • FIG. 13 is a block diagram showing an internal configuration of circulating current control unit 52B of the power conversion device according to Embodiment 3 of the present invention.
  • the other parts are the same as those in the first embodiment, and a description thereof will be omitted.
  • the uvw three-phase circulating current component is once converted into the dq2 phase on the rotating coordinates.
  • the main component of the circulating current component is the same frequency component as the fundamental frequency of the AC output component.
  • the component flowing through the first arm 18 and the component flowing through the second arm 20 are components whose phases are reversed.
  • the component flowing through the first arm 18 and the component flowing through the second arm 20 are the same component, that is, the components having the same polarity. Therefore, it becomes a reverse phase component.
  • the first coordinate conversion unit 64 converts the uvw three-phase circulating current components izuc, izvc, and izwc calculated by the DC current calculation unit 50A onto dq two-phase coordinates that rotate at twice the frequency of the AC output component.
  • the converted izd is an effective component
  • izq is an ineffective component, both of which are DC amounts.
  • the compensator 65 outputs DC voltage command biaxial components vzd * and vzq * so that the two-phase circulating current components izd and izq follow the circulating current command biaxial components izd * and izq * converted into two phases. To do.
  • the second coordinate conversion unit 66 converts the DC voltage command biaxial components vzd * and vzq * obtained by the compensator 65 into three-phase DC voltage command circulating current components vdccu, vdccv, and vdccw.
  • the power conversion device includes the circulating current calculation means including the DC current calculation unit 50 described above, the circulation current control unit 52B, and the DC voltage command value calculation unit 53.
  • the circulating current calculation means including the DC current calculation unit 50 described above, the circulation current control unit 52B, and the DC voltage command value calculation unit 53.
  • the power conversion device that performs power conversion between a three-phase AC circuit and a DC circuit has been described.
  • the AC circuit of the present invention is not limited to three phases, and generally includes two or more phases.
  • the present invention can be widely applied to a power conversion device that performs power conversion between a phase AC circuit and a DC circuit, and has an equivalent effect.
  • the present invention does not require the DC current control unit 51 that causes the DC current to follow the command value, and further includes, for example, an AC voltage control unit that causes the AC output voltage to follow the command value. Can be applied in the same manner, and has the same effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

電力変換装置は、交流電源(14)および直流電源(16)を経由せず、第一アーム(18)およびまたは第二アーム(20)の相間で循環する各相の循環電流成分(izuc、izvc、izwc)を演算する直流電流演算部(50)、および各相の循環電流成分(izuc、izvc、izwc)を所定の循環電流指令値(izuc*、izvc*、izwc*)に追従させる制御を行う循環電流制御部(52)を備えることにより、たとえ、直流回路に別途インピーダンス(15)が挿入される等の場合にも、単位セル(10)の直流コンデンサの電圧の相間におけるばらつきを確実に抑制することが出来る。 

Description

電力変換装置
 この発明は、複数の半導体スイッチと直流コンデンサとからなる単位セルでアームを構成し、複数相の交流回路と直流回路との間で電力の変換を行う電力変換装置に係り、特に、単位セルにおける直流コンデンサの電圧の相間におけるばらつきを抑制するものである。
 大容量電力変換装置は、変換器出力が高電圧または大電流となるため、複数の変換器を直列または並列に多重化することで構成されていることが多い。変換器を多重化することは、変換器容量を大きくするのみでなく、出力を合成することにより、出力電圧波形に含まれる高調波を低減し、その結果、系統に流出する高調波電流を低減することができることが知られている。
 変換器を多重化する方法は、様々存在し、リアクトル多重や変圧器多重、直接多重などがある。変圧器で多重化すると、交流側は変圧器で絶縁されるため各変換器の直流を共通化できるというメリットがある。しかし、出力電圧が高電圧となると多重変圧器の構成が複雑となる点および変圧器のコストが高くなる点がデメリットである。
 そこで、高圧用途に適した多重変圧器を必要としない電力変換装置として、複数の変換器の出力をカスケード接続したマルチレベル変換器が提案されており、その中の一つにモジュラーマルチレベル変換器(以下、MMCと称す)がある。
 MMCは、セルと呼ばれる複数の単位変換器(以下、単位セルと称す)がカスケード接続されたアームで構成されている。単位セルは、複数の半導体スイッチと直流コンデンサを備えており、半導体スイッチをオン・オフさせることにより、直流コンデンサの両端電圧およびゼロ電圧を出力する。
 三相MMCの場合は、各相個別にアームを構成し、カスケード接続されているセル総数の半分のセルの出力端を交流端子、各相アームの両端は互いに接続され、それぞれの端子を直流端子としている。MMCの各単位セル出力は、MMCの交流端および直流端の両側に接続されているため、各単位セルは、直流および交流の両方を出力するという特徴を持つ。つまり、各アームを流れる電流には交流成分と直流成分とが存在する。よって、MMCでは、これら複数の電流成分を制御する必要があり、例えば、下記の各特許文献1、2、非特許文献1にその制御方法が紹介されている。
 これら各文献によれば、直流側が直流電源、交流側が交流電源に接続されたMMCにおいて、MMCの交流側は交流電流を制御することで、また直流側は各アーム電流から交流出力に関係する成分を除いた電流を制御することで制御可能であることが開示されている。
特開2011-182517号公報 特開2012-44839号公報
電気学会論文誌D(産業応用部門誌)Vol.132,No.6,2012(662頁、図4)
 上掲の各文献では、各アーム電流から交流出力に関係する成分を除いた電流を制御対象とするが、この電流には、直流電源に流れる直流電流成分とアームの各相間に流れ単位セルの直流コンデンサの電圧の相間におけるばらつきに直接影響する循環電流成分とが含まれる。
 ところで、この内、直流電流成分の制御は、主として、直流電源を含む直流回路のインピーダンスによりその応答が決まり、循環電流成分の制御は、主として、アーム間の循環閉回路のインピーダンスによりその応答が決まる。
 従って、この2成分の電流を一括して制御を行うと、特に直流回路が直流電源のみでなく、直流電源に直列にインピーダンスが挿入される場合等は所望の動作を得ることが出来ない。
 即ち、直流回路が直流電源のみの場合、直流電流が流れる回路には循環電流が流れる回路と同等のインピーダンスとなるが、直流回路に別途インピーダンスが挿入される場合は、直流電流が流れる回路のインピーダンスは、直流回路のインピーダンスが直列に接続されて電流が流れ難くなる。よって、両電流成分を一括して制御し、応答を高速化した場合、循環電流成分は安定に制御できるが、直流電流成分は、挿入されたインピーダンスの影響で不安定となってしまう。逆に、直流電流成分を安定化するように応答を遅くすると循環電流制御が充分な応答を得られず、循環電流成分を常に的確な値に追従させることができない。
 この発明は、以上の従来の課題を解決するためになされたもので、たとえ、直流回路に別途インピーダンスが挿入される等の場合にも、単位セルの直流コンデンサの電圧の相間におけるばらつきを確実に抑制することが出来る電力変換装置を得ることを目的とする。
 この発明に係る電力変換装置は、複数相の交流回路と直流回路との間に接続され両回路間で電力の変換を行うものであって、
 相毎にその一端で互いに直列に接続された第一アームと第二アームとを備え、第一アームと第二アームとは、それぞれ、互いに直列に接続された複数の半導体スイッチの直列体とこの直列体と並列に接続された直流コンデンサとからなり半導体スイッチの端子を出力端とする単位セルを1または複数直列に接続したものであり、各相の第一アームと第二アームとの接続点が交流回路の各相に接続され、各相の第一アームの他端が直流回路の正極側に接続され、第二アームの他端が直流回路の負極側に接続された電力変換装置において、
 交流回路および直流回路を経由せず、各相間で循環する各相の循環電流成分を演算する循環電流演算手段、および各相の循環電流成分を所定の循環電流指令値に追従させる制御を行う循環電流制御部を備えることにより、直流コンデンサの電圧の相間におけるばらつきを抑制するようにしたものである。
 この発明に係る電力変換装置は、以上のように、上記した循環電流演算手段および循環電流制御部を備えたので、単位セルの直流コンデンサの電圧の相間におけるばらつきに直接影響する循環電流成分を、他の電流成分と独立して制御することで、このばらつきを確実に抑制することが出来る。
この発明の実施の形態1による電力変換装置の全体構成を示す回路図である。 アームリアクトル11の挿入位置が図1とは異なる電力変換装置の全体構成を示す回路図である。 図1の単位セル10の内部構成例を示す回路図である。 図1の単位セル10の、図3とは異なる内部構成例を示す回路図である。 この発明の実施の形態1による電力変換装置の制御構成例を示すブロック図である。 電力変換装置に流れる各電流要素を説明する図である。 図5の直流電流制御部51の内部構成例を示すブロック図である。 図5の循環電流制御部52の内部構成例を示すブロック図である。 図5の循環電流指令値演算部100の内部構成例を示すブロック図である。 図5の直流電圧指令値演算部53の内部構成例を示すブロック図である。 この発明の実施の形態2による電力変換装置の循環電流制御部52Aの内部構成例を示すブロック図である。 この発明の実施の形態2による電力変換装置の直流電圧指令値演算部53Aの内部構成例を示すブロック図である。 この発明の実施の形態3による電力変換装置の循環電流制御部52Bの内部構成例を示すブロック図である。
実施の形態1.
 図1は、この発明の実施の形態1による電力変換装置の全体構成を示す回路図である。図1において、本発明の電力変換装置1は、入出力端のうちの一方は、複数相(図1では、u、v、wの3相の場合を示す)を有する交流回路としての交流電源14に接続され、入出力端のうちの他方は、直流回路としての、インピーダンス15を介した直流電源16に接続されている。
 なお、図1では、入出力端のうちの一方は、直接交流電源14に接続されているが、連系変圧器を介して接続されても、連系リアクトルを介して接続される構成であってもよい。また、入出力端のうちの他方は、直接直流電源16に接続されても、また直流負荷に接続されてもよいし、直流電源16は、直流出力を行う他の電力変換装置でもよい。
 次に、本発明の電力変換装置1の内部構成について説明する。本発明の電力変換装置1は、各相毎にアーム17を構成し、各アーム17は、正極側の第一アーム18と負極側の第二アーム20とからなる。両アーム18、20は、その一端で互いに直列に接続され、その接続点は、交流電源14に接続される交流出力端19となっている。第一アーム18の他端は、インピーダンス15を介して直流電源16の正極側に接続される第一直流出力端12となっている。第二アーム20の他端は、インピーダンス15を介して直流電源16の負極側に接続される第二直流出力端13となっている。
 第一アーム18は、後述する単位セル10を1または複数、更にアームリアクトル11を直列に接続したもので、第二アーム20も同様である。アームリアクトル11は、後段で詳述する循環電流成分を抑制するために挿入するもので、単位セル10と直列に接続されるものであれば、その挿入位置は、図1に示された位置に限られるものではなく、また、複数個を分散して挿入するものであってもよい。
 例えば、図2に示すように、アームリアクトル11を第二アーム20にのみ設けてもよいし、これとは異なり、第一アーム18にのみ設けてもよい。このように、アームリアクトル11は、アーム17内であれば、図1、2の挿入位置に限定されるものではなく、リアクトルの数もこれに限定されるものではない。
 更に、本願発明としては、アームリアクトル11を必須の要素とするものではない。特にアームリアクトル11を設けない場合は、循環電流成分は、配線構造自体に存在するリアクタンス値で決まることになる。
 図3は、図1の単位セル10の内部構成例を示す回路図で、いわゆるハーフブリッジの構成を採用したものである。図3において、単位セル10は、GCT(Gate Commutated Turn-off thyristor)やIGBT(Insulated Gate Bipolar Transistor)等の自己消弧型のスイッチング素子30とこのスイッチング素子30に逆並列に接続されたダイオード31とからなる半導体スイッチ32を複数(ここでは、2つ)直列に接続した直列体33およびこの直列体33に並列に接続された直流コンデンサ34から構成されている。直流コンデンサ34は、直流電圧を平滑化する。
 そして、単位セル10は、図3に示すように、一方の半導体スイッチ32の両端子を出力端とし、スイッチング素子30をオン・オフさせることにより、この出力端から、直流コンデンサ34の両端電圧およびゼロ電圧を出力する。
 図4は、いわゆるフルブリッジの構成を採用した単位セル10の内部構成例を示す回路図である。図4において、単位セル10は、スイッチング素子40とこのスイッチング素子40に逆並列に接続されたダイオード41とからなる半導体スイッチ42を複数(ここでは、2つ)直列に接続した直列体43を更に2つ並列に接続したもの、およびこの直列体43に並列に接続された直流コンデンサ44から構成されている。
 そして、単位セル10は、図4に示すように、それぞれの直列体43の内部中間接続点となる半導体スイッチ42の端子を出力端とし、スイッチング素子40をオン・オフさせることにより、この出力端から、直流コンデンサ44両端の正電圧、負電圧およびゼロ電圧を出力する。
 なお、単位セル10の構成は、半導体スイッチにより構成される直列体と、この直列体に並列に接続された直流コンデンサとから構成され、直列体の半導体スイッチの動作により出力端に直流コンデンサ電圧を選択的に出力する構成であれば、図3および図4に示すものに限定されるものではない。
 次に、本発明の電力変換装置1の制御、特に、本発明の要部となる、交流電源14および直流電源16を経由せず、第一アーム18およびまたは第二アーム20の相間で循環し、単位セル10の直流コンデンサ34(44)の電圧の相間におけるばらつきに直接影響する循環電流成分の制御について説明する。
 図5は、この発明の実施の形態1による電力変換装置の制御構成例を示すブロック図である。
 ここで、図5の制御構成の説明に入る前に、電力変換装置に流れる各電流要素について図6に基づいて説明する。
 図6において、例えば、u相に着目すると、各電流要素は以下の通りとなる。
 ipu:第一アーム18を流れる電流である。
 inu:第二アーム20を流れる電流である。
 iu:交流電源14を経由する電流で、この電流iuは、図に示すように、第一アーム18および第二アーム20に、その1/2が分流する。
 idc:直流電源16を経由する電流で、3相分であり、u相には、その1/3が流れる。
 izu:各アーム18、20に流れる電流ipu、inuから交流電源14を経由する電流iu/2を除いた電流成分で、以下の関係が成立する。
 izu=ipu+iu/2      ・・・(1)
 izu=inu-iu/2      ・・・(2)
 izuc:交流電源14および直流電源16を経由せず、アームの相間を循環する循環電流成分である。
 (1)(2)式から電流iuを消去すると、電流成分izuは、(3)式で求まる。
 izu=(ipu+inu)/2   ・・・(3)
 従って、循環電流成分izucは、(4)式で求まる。
 izuc=izu-idc/3    ・・・(4)
 図5に戻り、図示しない交流電流検出器により検出された、各相の第一アーム18を流れる電流ipu、ipv、ipwと第二アーム20を流れる電流inu、inv、inwとを、加算器54で加算し、乗算器55で1/2を乗算することで、アーム18、20に流れる電流から交流電源14を経由する電流を除いた各相の電流成分izu、izv、izwを演算する。
 直流電流演算部50は、各相の電流成分izu、izv、izwを加算することにより、直流電源16を経由する直流電流izdcを演算し、この直流電流izdcと各相の電流成分izu、izv、izwとから、(4)式により、各相の循環電流成分izuc、izvc、izwcを演算する。
 この実施の形態1では、図示しない交流電流検出器、加算器54、乗算器55および直流電流演算部50により、本願請求項の循環電流演算手段を構成する。
 なお、直流電流izdcは、別途、図示しない直流電流検出器により検出した直流電流idcそのものを使用してもよい。直流電流検出器が必要となるが、演算で求める場合に比較して、演算処理量が減り、誤差も低減するという利点がある。
 直流電流制御部51は、その内部構成を図7に示すように、減算器56により、所定の直流電流指令値izdc*から直流電流izdcを減算し、指令値に対する誤差Δizdcを演算し、演算された誤差Δizdcがゼロとなるよう、即ち、直流電流izdcを直流電流指令値izdc*に追従させるような直流電圧指令直流電流成分vdcoutを補償器57により演算する。
 循環電流制御部52は、その内部構成を図8に示すように、減算器58により、各相の所定の循環電流指令値izuc*、izvc*、izwc*から、直流電流演算部50により演算された各相の循環電流成分izuc、izvc、izwcを減算し、各相の指令値に対する誤差Δizuc、Δizvc、Δizwcを演算し、演算された各相の誤差Δizuc、Δizvc、Δizwcがゼロとなるよう、即ち、各相の循環電流成分izuc、izvc、izwcをそれぞれ各相の循環電流指令値izuc*、izvc*、izwc*に追従させるような直流電圧指令循環電流成分vdccu、vdccv、vdccwを補償器59により演算する。
 ここで、循環電流指令値の設定要領について以下に説明する。
 各相の単位セル10を構成する部品等が理想的にバランスしておれば、循環電流指令値としては、零に設定しておけばよい。しかし、現実としては、これら部品等の各相間のばらつきを想定し、これらのばらつきの存在に拘わらず各相の直流コンデンサ34、44の電圧を均等にするために流すべき各相の循環電流成分を循環電流指令値とする。
 また、交流電源14を含む交流系統の条件が不変であれば固定値として設定すればよいが、例えば、交流系統の三相平衡程度が変動する場合は、これらの変動により、直流コンデンサ電圧が各相間でばらついてしまう。このため、直流コンデンサの電圧のばらつきに基づいて、逐次循環電流指令値を制御で求めることも必要となる可能性がある。
 循環電流指令値演算部100は、以上の状況を加味して循環電流指令値izuc*、izvc*、izwc*を演算するもので、その内部構成例を図9に示す。
 上記のとおり、指令値は、固定値でもよいし、逐次演算で求める場合もあるため、指令値をスイッチ104で切替可能としている。
 スイッチ104が図の下方端子を選択すれば、循環電流指令値演算部100は、単位セル10を構成する部品等の各相間のばらつきを想定し、これらのばらつきの存在に拘わらず各相の直流コンデンサ34、44の電圧を均等にするために流すべき各相の循環電流成分であるU相、V相、W相固定循環電流指令値を出力する。
 スイッチ104が図の上方端子を選択すれば、循環電流指令値演算部100は、以下の要領で、循環電流指令値izuc*、izvc*、izwc*を出力する。
 先ず、直流コンデンサ代表値演算部101は、各相の直流コンデンサの電圧検出値、例えば、U相では、第一アーム18のVcapup1・・Vcapupn、第二アーム20のVcapun1・・Vcapunnから各相の直流コンデンサ電圧の代表値Vcapu、Vcapv、Vcapwを演算する。代表値としては、各相における直流コンデンサ電圧の最大電圧や最小電圧でもよいし、各相における平均電圧でもよい。
 次に、減算器102は、直流コンデンサ電圧指令値Vcap*から各相の直流コンデンサ電圧代表値Vcapu、Vcapv、Vcapwを減算し、各相の指令値に対する誤差ΔVcapu、ΔVcapv、ΔVcapwを演算する。
 そして、演算された各相の誤差ΔVcapu、ΔVcapv、ΔVcapwがゼロとなるよう、即ち、各相の直流コンデンサ電圧代表値Vcapu、Vcapv、Vcapwをそれぞれ直流コンデンサ電圧指令値Vcap*に追従させるような循環電流指令値izuc*、izvc*、izwc*を補償器103により演算する。
 以上のように、交流電源14を含む交流系統の条件が不変であれば、循環電流指令値は固定値に設定すればよいが、上記に示すように、直流コンデンサ電圧の検出値に基づいて循環電流指令値を逐次演算で求めるようにしてもよい。この場合は、交流系統に変動が生じても、各相直流コンデンサ電圧を常にバランスさせることが出来る。
 直流電圧指令値演算部53は、その内部構成を図10に示すように、加算器60により、循環電流制御部52で演算された各相の直流電圧指令循環電流成分vdccu、vdccv、vdccwに、直流電流制御部51で演算された直流電圧指令直流電流成分vdcoutを加算し、各相の直流電圧指令値vdcu*、vdcv*、vdcw*を演算する。
 直流電圧制御部70は、これら各相の直流電圧指令値vdcu*、vdcv*、vdcw*に基づき、直流回路に出力する直流電圧を制御する、具体的には、各相アームの単位セル10を構成するスイッチング素子30、40のオン・オフ駆動を制御する。
 以上のように、この発明の実施の形態1の電力変換装置においては、上記した直流電流演算部50等からなる循環電流演算手段、循環電流制御部52および直流電圧指令値演算部53を備えることにより、単位セル10の直流コンデンサ34、44の電圧の相間におけるばらつきに直接影響する循環電流成分を、他の電流成分と独立して制御することで、このばらつきを確実に抑制することが出来る。
 更に具体的には、この循環電流制御部52を、直流電流をその指令値に追従させる直流電流制御部51と独立に構成したので、両制御部51、52で個別に最適な制御応答を設定することが可能で、たとえ、直流電源16を含む直流回路にインピーダンス15が挿入されていても、単位セル10の直流コンデンサ34、44の電圧の相間におけるばらつきを確実に抑えつつ、直流電流の適切な制御が実現し、結果として、装置の小型化に寄与する。
 なお、直流回路にインピーダンスが挿入されるケースとしては、例えば、この電力変換装置が、例えば、高圧直流送電設備(HVDC)に適用され、直流回路が直流送電系統に該当する場合が想定される。
 また、交流回路に不平衡成分が存在しやすい場合としては、例えば、この電力変換装置が、周波数変換設備(FC)に適用され、交流回路が、交流電力系統に該当する場合が想定される。
実施の形態2.
 図11および図12は、この発明の実施の形態2による電力変換装置の循環電流制御部52Aおよび直流電圧指令値演算部53Aの内部構成を示すブロック図である。他の部分は、先の実施の形態1の場合と同一であるので、その説明は省略する。
 図11において、循環電流制御部52Aは、先ず、減算器61により、直流電流演算部50で演算された各相の循環電流成分izuc、izvc、izwcのある相と他の2相との差、ここでは、izuc-izvc=izuvcおよびizvc-izwc=izvwcを演算する。次に、減算器62により、各相の循環電流指令値izuc*、izvc*、izwc*のある相と他の2相との差、ここでは、izuc*-izvc*=izuvc*およびizvc*-izwc*=izvwc*からizuvcおよびizvwcを減算し、それぞれの誤差Δizuvc、Δizvwcを演算する。そして、演算された誤差Δizuvc、Δizvwcがゼロとなるような直流電圧指令循環電流成分vdccuv、vdccvwを補償器63により演算する。
 ここでは、循環電流成分の相差分を、izucからizvcを減算した電流izuvcと、izvcからizwcを減算した電流izvwcとの2つとしたが、izwcからizucを減算した電流izwucとizucからizvcを減算した電流izuvc、更には、電流izwucとizvwcとしてもよい。
 図12において、直流電圧指令値演算部53Aは、循環電流制御部52Aで求められた直流電圧指令循環電流成分vdccuv、vdccvwと、直流電流制御部51で求められた直流電圧指令直流電流成分vdcoutとから、図12に示す計算を用いて、各相の直流電圧指令値vdcu*、vdcv*、vdcw*を演算する。
 循環電流成分izuc、izvc、izwcの総和は、所定の値に拘束されることから、上記のように、2つの循環電流成分相差分を、それぞれ対応する2つの循環電流指令値相差分に一致させることで、実質的に、各相の循環電流成分izuc、izvc、izwcをそれぞれ各相の循環電流指令値izuc*、izvc*、izwc*に追従させる制御が可能となる。
 以上のように、この発明の実施の形態2の電力変換装置においては、上記した直流電流演算部50等からなる循環電流演算手段、循環電流制御部52Aおよび直流電圧指令値演算部53Aを備えることにより、単位セル10の直流コンデンサ34、44の電圧の相間におけるばらつきに直接影響する循環電流成分を、他の電流成分と独立して制御することで、このばらつきを確実に抑制することが出来、更に、先の実施の形態1による効果に加えて、循環電流制御部52Aで必要となる補償器63が2つで済み、その分制御の構成が簡便となる。
実施の形態3.
 図13は、この発明の実施の形態3による電力変換装置の循環電流制御部52Bの内部構成を示すブロック図である。他の部分は、先の実施の形態1の場合と同一であるので、その説明は省略する。
 この実施の形態3の図13に示す循環電流制御部52Bでは、uvw3相の循環電流成分を、一旦、回転座標上のdq2相に変換する。
 循環電流成分の主成分は、交流出力成分の基本波周波数と同じ周波数成分である。図6で説明したように、交流側に出力される電流に関しては、第一アーム18を流れている成分と第二アーム20を流れている成分とは、位相が反転した成分となる。しかし、アーム間で循環する循環電流成分に関しては、第一アーム18を流れている成分と、第二アーム20を流れている成分とは、同じ成分、つまり同極性の成分となる。従って、逆相成分となる。
 そこで、第一座標変換部64により、直流電流演算部50Aで演算された、uvw3相の循環電流成分izuc、izvc、izwcを、交流出力成分の2倍の周波数で回転するdq2相座標上に変換する。変換されたizdは有効成分、izqは無効成分で、いずれも直流量となる。
 補償器65は、2相の循環電流成分izd、izqが、2相に換算された循環電流指令二軸成分izd*、izq*に追従するよう直流電圧指令二軸成分vzd*、vzq*を出力する。
 第二座標変換部66は、補償器65で求められた直流電圧指令二軸成分vzd*、vzq*を、3相の直流電圧指令循環電流成分vdccu、vdccv、vdccwに変換する。
 以上のように、この発明の実施の形態3の電力変換装置においては、上記した直流電流演算部50等からなる循環電流演算手段、循環電流制御部52Bおよび直流電圧指令値演算部53を備えることにより、単位セル10の直流コンデンサ34、44の電圧の相間におけるばらつきに直接影響する循環電流成分を、他の電流成分と独立して制御することで、このばらつきを確実に抑制することが出来、更に、先の実施の形態1による効果に加えて、循環電流成分の主成分である逆相成分を検出し、この主成分を直流量で制御を行うため、循環電流制御部の応答が向上する。
 なお、以上では、3相の交流回路と直流回路との間で電力変換を行う電力変換装置について説明したが、この発明の交流回路は、3相に限られるものではなく、2相等、一般に複数相の交流回路と直流回路との間で電力変換を行う電力変換装置に広く適用することが出来、同等の効果を奏するものである。
 また、この発明は、直流電流をその指令値に追従させる直流電流制御部51を必須とするものではなく、更に、例えば、交流出力電圧をその指令値に追従させる交流電圧制御部を備えるものにも同様に適用することが出来、同等の効果を奏するものである。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (9)

  1. 複数相の交流回路と直流回路との間に接続され前記両回路間で電力の変換を行うものであって、
     前記相毎にその一端で互いに直列に接続された第一アームと第二アームとを備え、前記第一アームと前記第二アームとは、それぞれ、互いに直列に接続された複数の半導体スイッチの直列体とこの直列体と並列に接続された直流コンデンサとからなり前記半導体スイッチの端子を出力端とする単位セルを1または複数直列に接続したものであり、前記各相の前記第一アームと前記第二アームとの接続点が前記交流回路の各相に接続され、前記各相の前記第一アームの他端が前記直流回路の正極側に接続され、前記第二アームの他端が前記直流回路の負極側に接続された電力変換装置において、
     前記交流回路および前記直流回路を経由せず、前記各相間で循環する前記各相の循環電流成分を演算する循環電流演算手段、および前記各相の循環電流成分を所定の循環電流指令値に追従させる制御を行う循環電流制御部を備えることにより、前記直流コンデンサの電圧の前記相間におけるばらつきを抑制するようにした電力変換装置。
  2. 前記循環電流演算手段は、第m相の前記第一アームに流れる電流をipm、前記第m相の前記第二アームに流れる電流をinm、前記直流回路に流れる直流電流をidc、相数をMとしたとき、下式により、前記第m相の前記循環電流成分izmcを演算する請求項1記載の電力変換装置。
     izmc=(ipm+inm)/2-idc/M
  3. 前記交流回路がu、v、w3相の場合、
     前記循環電流制御部は、前記循環電流演算手段で演算された前記循環電流成分のある相と他の2相との差を、前記循環電流指令値の前記ある相と他の2相との差に追従させる制御を行うことにより、前記各相の循環電流成分を前記循環電流指令値に追従させるようにした請求項1記載の電力変換装置。
  4. 前記交流回路がu、v、w3相の場合、
     前記循環電流制御部は、前記循環電流演算手段で演算された前記3相分の前記循環電流成分を、前記交流回路の交流周波数の2倍の周波数で回転する座標上に変換した二軸成分を、それぞれ所定の循環電流指令二軸成分に追従させる制御を行うことにより、前記各相の循環電流成分を前記循環電流指令値に追従させるようにした請求項1記載の電力変換装置。
  5. 前記第一アームおよび前記第二アームのいずれか一方または双方に、前記単位セルと直列に、前記循環電流成分を抑制するアームリアクトルを挿入した請求項1記載の電力変換装置。
  6. 前記各相における前記直流コンデンサの電圧の代表値を演算する直流コンデンサ電圧代表値演算部を設け、前記各相における前記直流コンデンサの電圧の代表値が所定の直流コンデンサ電圧指令値に追従するよう前記各相の循環電流指令値を演算する循環電流指令値演算部を備えた請求項1記載の電力変換装置。
  7. 直流電圧指令値に基づき前記直流回路に出力する直流電圧を制御する直流電圧制御部、および前記直流回路に流れる直流電流を、所定の直流電流指令値に追従させるよう直流電圧指令直流電流成分を出力する直流電流制御部を備え、
     前記循環電流制御部は、前記各相の循環電流成分を前記循環電流指令値に追従させるよう直流電圧指令循環電流成分を出力し、前記直流電圧制御部は、前記直流電圧指令直流電流成分と前記直流電圧指令循環電流成分とからなる前記直流電圧指令値に基づき前記直流回路に出力する直流電圧を制御するようにした請求項1記載の電力変換装置。
  8. 前記直流電流制御部と前記循環電流制御部とで、その制御応答を独立に設定可能とした請求項7記載の電力変換装置。
  9. 前記直流回路が直流電力系統である高圧直流送電設備、または、前記交流回路が交流電力系統である周波数変換設備に適用する請求項1ないし請求項8のいずれか1項に記載の電力変換装置。
     
PCT/JP2013/073773 2013-04-02 2013-09-04 電力変換装置 WO2014162620A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,421 US9564827B2 (en) 2013-04-02 2013-09-04 Power conversion device
EP13881407.4A EP2983284B1 (en) 2013-04-02 2013-09-04 Power conversion device
JP2015509860A JP6038289B2 (ja) 2013-04-02 2013-09-04 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076626 2013-04-02
JP2013-076626 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014162620A1 true WO2014162620A1 (ja) 2014-10-09

Family

ID=51657942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073773 WO2014162620A1 (ja) 2013-04-02 2013-09-04 電力変換装置

Country Status (4)

Country Link
US (1) US9564827B2 (ja)
EP (1) EP2983284B1 (ja)
JP (1) JP6038289B2 (ja)
WO (1) WO2014162620A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123159A (ja) * 2014-12-24 2016-07-07 株式会社東芝 電力変換装置
WO2017046908A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
WO2017046909A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
WO2017046910A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
JP2017143616A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置
JP2017143627A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置
US9755542B2 (en) 2014-05-21 2017-09-05 Mitsubishi Electric Corporation Direct-current power transmission power conversion device and direct-current power transmission power conversion method
US9806630B2 (en) 2014-08-01 2017-10-31 Mitsubishi Electric Corporation Power conversion device
US10050551B1 (en) 2015-07-28 2018-08-14 Abb Schweiz Ag Arrangement, method and computer program product for limiting circulating currents
WO2018230327A1 (ja) * 2017-06-13 2018-12-20 三菱電機株式会社 電力変換装置
EP3107198B1 (en) * 2015-06-15 2019-02-27 GE Energy Power Conversion Technology Ltd Power converter submodule with a short-circuit device and power converter having same
JP6779424B1 (ja) * 2020-06-17 2020-11-04 三菱電機株式会社 電力変換装置
JP7249471B1 (ja) * 2022-08-23 2023-03-30 三菱電機株式会社 電力変換装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712084B2 (en) * 2014-01-06 2017-07-18 Mitsubishi Electric Corporation Electric power conversion device
JP6188827B2 (ja) * 2014-01-09 2017-08-30 三菱電機株式会社 電力変換装置
US9960709B2 (en) * 2015-03-17 2018-05-01 Mitsubishi Electric Corporation Power conversion device
KR101904101B1 (ko) * 2016-12-26 2018-10-05 효성중공업 주식회사 Mmc 컨버터 출력단 직류성분 제거방법
EP3591830A4 (en) * 2017-03-03 2020-03-04 Mitsubishi Electric Corporation CURRENT CONVERSION DEVICE AND COMMUNICATION METHOD
SE543547C2 (en) * 2017-07-03 2021-03-23 Abb Schweiz Ag Submodule for a modular multilevel converter
WO2019161907A1 (en) 2018-02-23 2019-08-29 Abb Schweiz Ag Energization of a converter including a mix of half-bridge and full-bridge submodules
CN109861574B (zh) * 2019-03-13 2020-08-11 东北电力大学 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法
WO2021159219A1 (en) * 2020-02-14 2021-08-19 Ecole De Technologie Superieure Three-phase multilevel electric power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165269A (ja) * 2008-01-07 2009-07-23 Mitsubishi Heavy Ind Ltd 双方向電力変換器およびその制御方法
JP2011182517A (ja) 2010-02-26 2011-09-15 Tokyo Institute Of Technology 電力変換器
JP2012044839A (ja) 2010-08-23 2012-03-01 Tokyo Institute Of Technology 電力変換器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435464B2 (ja) * 2009-09-30 2014-03-05 国立大学法人東京工業大学 モータ始動方法
JP5452330B2 (ja) 2010-04-12 2014-03-26 株式会社日立製作所 電力変換装置
JP5537235B2 (ja) * 2010-04-13 2014-07-02 株式会社日立製作所 電力変換装置
CN103026603B (zh) * 2010-06-18 2016-04-13 阿尔斯通技术有限公司 用于hvdc传输和无功功率补偿的转换器
US8860335B2 (en) * 2011-11-14 2014-10-14 Rockwell Automation Technologies, Inc. System for managing DC link switching harmonics
DK2806552T3 (en) * 2012-01-18 2017-01-09 Toshiba Mitsubishi-Electric Ind Systems Corp Energy converter layout
CN103296913B (zh) * 2012-03-02 2016-06-22 台达电子企业管理(上海)有限公司 逆变器及有源电力滤波系统
FR2998736B1 (fr) * 2012-11-27 2016-05-06 Hispano Suiza Sa Procede de conversion de courant alternatif en courant continu et dispositif associe
US9270198B2 (en) * 2013-03-12 2016-02-23 University Of Tennessee Research Foundation Control of parallel-connected current source rectifiers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165269A (ja) * 2008-01-07 2009-07-23 Mitsubishi Heavy Ind Ltd 双方向電力変換器およびその制御方法
JP2011182517A (ja) 2010-02-26 2011-09-15 Tokyo Institute Of Technology 電力変換器
JP2012044839A (ja) 2010-08-23 2012-03-01 Tokyo Institute Of Technology 電力変換器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEJ TRANSACTIONS D (ON INDUSTRY APPLICATIONS, vol. 132, no. 6, 2012, pages 662
See also references of EP2983284A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755542B2 (en) 2014-05-21 2017-09-05 Mitsubishi Electric Corporation Direct-current power transmission power conversion device and direct-current power transmission power conversion method
US9806630B2 (en) 2014-08-01 2017-10-31 Mitsubishi Electric Corporation Power conversion device
JP2016123159A (ja) * 2014-12-24 2016-07-07 株式会社東芝 電力変換装置
EP3107198B1 (en) * 2015-06-15 2019-02-27 GE Energy Power Conversion Technology Ltd Power converter submodule with a short-circuit device and power converter having same
US10050551B1 (en) 2015-07-28 2018-08-14 Abb Schweiz Ag Arrangement, method and computer program product for limiting circulating currents
JPWO2017046910A1 (ja) * 2015-09-17 2018-06-28 三菱電機株式会社 電力変換装置
US10205402B2 (en) 2015-09-17 2019-02-12 Mitsubishi Electric Corporation Power conversion device for converting power between a DC circuit and an AC circuit by performing a non-linear operation
US10637343B2 (en) 2015-09-17 2020-04-28 Mitsubishi Electric Corporation Power conversion device for reliable control of circulating current
JPWO2017046909A1 (ja) * 2015-09-17 2018-06-21 三菱電機株式会社 電力変換装置
JPWO2017046908A1 (ja) * 2015-09-17 2018-06-28 三菱電機株式会社 電力変換装置
WO2017046910A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
WO2017046909A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
US10560036B2 (en) 2015-09-17 2020-02-11 Mitsubishi Electric Corporation Power conversion device for reliable control of circulating current while maintaining voltage of a cell
WO2017046908A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
JP2017143627A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置
JP2017143616A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置
JP6448882B1 (ja) * 2017-06-13 2019-01-09 三菱電機株式会社 電力変換装置
WO2018230327A1 (ja) * 2017-06-13 2018-12-20 三菱電機株式会社 電力変換装置
JP6779424B1 (ja) * 2020-06-17 2020-11-04 三菱電機株式会社 電力変換装置
WO2021255865A1 (ja) * 2020-06-17 2021-12-23 三菱電機株式会社 電力変換装置
JP7249471B1 (ja) * 2022-08-23 2023-03-30 三菱電機株式会社 電力変換装置
WO2024042612A1 (ja) * 2022-08-23 2024-02-29 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
EP2983284A1 (en) 2016-02-10
JPWO2014162620A1 (ja) 2017-02-16
EP2983284B1 (en) 2020-08-12
US9564827B2 (en) 2017-02-07
EP2983284A4 (en) 2016-11-30
JP6038289B2 (ja) 2016-12-07
US20160056727A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP6038289B2 (ja) 電力変換装置
JP5537235B2 (ja) 電力変換装置
EP3148067B1 (en) Direct-current power transmission power conversion device and direct-current power transmission power conversion method
JP6227192B2 (ja) 電力変換装置
JP6545425B1 (ja) 電力変換装置
JP5452330B2 (ja) 電力変換装置
EP3176934B1 (en) Power conversion device
WO2017046910A1 (ja) 電力変換装置
JP2010187431A (ja) 無停電電源装置
JP6730946B2 (ja) 電力変換器の制御装置
WO2015102049A1 (ja) 電力変換装置
JP3856689B2 (ja) 中性点クランプ式電力変換器の制御装置
JP5147624B2 (ja) インバータ装置
JP2013230028A (ja) 無停電電源システム
KR102261327B1 (ko) 인버터 시스템
JP7040077B2 (ja) 電力変換装置
JP5277096B2 (ja) 電力変換装置
JP7374395B1 (ja) 電力変換システム
JP7367261B1 (ja) 電力変換システムおよび制御装置
KR102261330B1 (ko) 인버터 시스템
JP5619212B2 (ja) 電力変換装置
JP5028940B2 (ja) 直列多重型交直変換装置の出力電圧制御装置及び方法
JP2020078210A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509860

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14781421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013881407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE