CN109861574B - 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法 - Google Patents

一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法 Download PDF

Info

Publication number
CN109861574B
CN109861574B CN201910187317.3A CN201910187317A CN109861574B CN 109861574 B CN109861574 B CN 109861574B CN 201910187317 A CN201910187317 A CN 201910187317A CN 109861574 B CN109861574 B CN 109861574B
Authority
CN
China
Prior art keywords
current
ref
formula
adaptive
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910187317.3A
Other languages
English (en)
Other versions
CN109861574A (zh
Inventor
李玲
金国彬
李国庆
王振浩
刘钊
权然
石超
潘狄
于泽平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN201910187317.3A priority Critical patent/CN109861574B/zh
Publication of CN109861574A publication Critical patent/CN109861574A/zh
Application granted granted Critical
Publication of CN109861574B publication Critical patent/CN109861574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

本发明是一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,其特点是,包括电压外环无模型自适应迭代学习控制、电流内环无模型自适应预测控制、自适应环流抑制控制等步骤:由于引入了无模型自适应迭代学习控制用于MMC变流器直流侧,能够实现直流电压的准确跟踪控制;通过引入电流内环无模型自适应预测控制,可改善电流控制精度,从而改善电流波形质量;通过引入自适应环流抑制控制,可改善MMC变流器交直流两侧扰动背景下的环流抑制效果,从而保证MMC变流器的可靠工作。

Description

一种融合自适应环流抑制的无模型自适应迭代学习MMC变流 器控制方法
技术领域
本发明涉及电力电子技术领域,是一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法。
背景技术
MMC变流器,也称:模块化多电平变流器(MMC)广泛应用于直流电网,是实现交直流两端能量传递和调控的重要环节。一方面,由于MMC变流器采用多电平拓扑结构,大量开关器件、储能元件性能参数存在一定的差异,这使得基于平均值稳态模型设计的控制存在控制精度问题;另一方面,MMC变流器接入的交流侧可能存在电网基波频率偏移问题、谐波畸变扰动问题,这使得MMC变流器的桥臂环流问题愈发复杂,常规的环流抑制效果会受到影响。如何更有效的实现MMC变流器交流电流的准确控制、直流电压的稳定控制以及桥臂环流的自适应抑制是本领域技术人员一直渴望解决但至今尚未解决的技术难题。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,可实现MMC变流器交流电流的准确控制、直流电压的稳定控制以及桥臂环流的自适应抑制。
为解决上述技术问题所采用的技术方案是:一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,其特征在于,它包括以下步骤:
1)电压外环无模型自适应迭代学习控制
①在每个采样周期开始的时刻,对MMC变流器直流侧电压udc进行采样;
②将给定电压值
Figure BDA0001993285040000011
与udc送入电压控制环,得到电流指令信号idref,电压外环无模型自适应迭代学习控制方法依据公式(1)-公式(5)进行计算;
Figure BDA0001993285040000012
Figure BDA0001993285040000013
Figure BDA0001993285040000014
Figure BDA0001993285040000021
Figure BDA0001993285040000022
公式(1)-公式(5)中,n∈[1,2,3,…]是采样点数;ε∈[0.00001,0.5]是允许控制误差;μ∈(0,100)和μ′∈(0,100)是响应速度系数;η∈(0,2]、ρ∈(0,1]是步长因子;β∈(0,1)是学习增益系数;||是“或”逻辑符号;| |是绝对值运算符号;φ(1)∈(0,100)是常数,是计算过程中间参数φ(n)、φ(n-1)的初始计算值;下标k是迭代次数;ek(n)是n时刻第k次迭代的跟踪误差;ek-1(n)是n时刻第(k-1)次迭代的跟踪误差;udc.k是第k次迭代得到的MMC变流器直流电压值;
Figure BDA0001993285040000023
Δudc.k
Figure BDA0001993285040000024
是计算过程的中间参数;
2)电流内环无模型自适应预测控制
①在每个采样周期开始的时刻,对变流器网侧三相电流ij、三相电压uj分别进行采样,其中,下标j表示A、B、C三相;
②依据公式(6)中的DQ逆变换矩阵Tdq→abc,将idref、0经DQ逆变换计算得到三相电流指令信号ijref
其中,下标中的j表示电网中电压或电流的A、B、C三相,θ是将MMC变流器网侧三相电压uj经过锁相环得到的相位角;
Figure BDA0001993285040000025
③将ijref与网侧三相电流ij分别送入三相电流控制内环中,得到输出信号ej_ref
其中,下标中的j表示A、B、C三相;
电流内环无模型自适应预测控制依据公式(7)-公式(12)进行计算;
Figure BDA0001993285040000031
Figure BDA0001993285040000032
Figure BDA0001993285040000033
Figure BDA0001993285040000034
ej_ref(n)=ej_ref(n-1)+ET(n)Δej_ref(n) (11)
Figure BDA0001993285040000035
公式(7)-公式(11)中,N∈[1,2,…,10]是预测步长;p∈[2,…,N]是预测阶数;λ∈(0,100)是超调响应系数;M∈(0,20)是自回归系数限制阈值;Nu∈[1,2,…,N]是控制时域常数;()-1是矩阵求逆运算符号;|| ||2是2范数运算符号;()T是向量或矩阵的转置运算符号;I是Nu×Nu维单位矩阵;E是N×1维单位向量;θ1(1),…θp(1)是介于0和1之间的p个常数;Δej_ref、τ、和θl,l∈[1,2,…p]是计算过程中的中间参数;Θ、Φ、A、Δej_ref、ijref是计算过程中的向量或矩阵;公式(7)、公式(9)中的sign[]函数依据公式(12)进行定义;公式(12)中x是sign[]函数中的变量;
3)自适应环流抑制控制
①在每个采样周期开始的时刻,对MMC变流器三相上桥臂电流ijp、下桥臂电流ijn进行采样,再对MMC变流器网侧AB相间的线电压进行采样,得到uab,接着,依据公式(13)进行计算,得到三相环流ij_cir
ij_cir=0.5×(ijp+ijn) (13)
其中,下标中的j表示A、B、C三相;
②依据公式(13)中的变换矩阵Tabc→αβ0对三相桥臂环流ij_cir作αβ0变换,得到静止坐标系下αβ0三个坐标值iα、iβ、i0
Figure BDA0001993285040000041
③依据公式(15)进行计算,得到静止坐标系下环流抑制指令信号i′α、i′β、i′0
Figure BDA0001993285040000042
④基于自适应窗长算法得到网侧线电压信号频域分析窗长,再基于离散傅立叶变换对网侧线电压信号作频域分析,得到网侧电压信号的基波频率ω0
⑤依据自适应环流抑制控制的传递函数,即公式(16)对i′α、i′β、i′0分别作自适应环流抑制控制,得到对应的静止坐标系下的环流抑制电压指令信号eα、eβ、e0,再经过αβ0反变换得到环流抑制补偿电压ejk_ref
其中,下标中的j表示A、B、C三相;
Figure BDA0001993285040000043
公式(16)中,KP是比例增益系数,KR是谐振增益系数,ωc是谐振带宽截止角频率,nmax∈[1,50]是环流中主要的谐波中最高谐波次数,s是频域分析的复参数,
Figure BDA0001993285040000044
是求和运算符号,表示对中括号[]中的量进行从k=1到k=nmax的求和运算;
依据公式(17)、公式(18),得到三相上桥臂参考电压ujp_ref和下桥臂参考电压ujn_ref,将ujp_ref、ujn_ref进行载波移相调制,并应用子模块电压均衡算法,得到MMC变流器控制脉冲信号;
ujp_ref=0.5udc-ejk_ref-ej_ref (17)
ujn_ref=0.5udc-ejk_ref+ej_ref (18)
其中,下标中的j表示A、B、C三相。
本发明的一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,由于引入了无模型自适应预测控制用于电流控制环节,从而在不针对MMC变流器交直流两端各种扰动进行准确建模基础上实现网侧电流的高精度控制;由于引入无模型自适应迭代学习控制环节,从而不需要针对MMC变流器多电平结构、多元件差异性进行准确建模,并且实现外部重复性扰动的主动迭代学习,进而实现直流电压的稳定跟踪控制;由于引入自适应环流抑制控制,借助自适应窗长傅立叶算法高精度跟踪网侧基波频率,进而实现桥臂环流的自适应准比例谐振控制,从而实现MMC变流器的稳定工作。本发明中的电压外环无模型自适应预测控制、电流内环无模型自适应迭代学习控制、自适应环流抑制控制可有效提升交流电流的控制精度、直流电压的稳定性以及环流抑制效果。
附图说明
图1为实施例涉及的MMC变流器单相电路示意图;
图2为实施例的一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法示意图;
图3为图1中MMC变流器PID控制输出的直流电压波形示意图;
图4为图1中MMC变流器PID控制网侧A相电流波形示意图;
图5为图4中A相电流波形总谐波畸变率示意图;
图6为图1中MMC变流器引入发明的方法控制下直流电压波形示意图;
图7为图1中MMC变流器引入发明的方法控制下网侧A相电流波形示意图;
图8为图7中A相电流波形总谐波畸变率示意图;
图9为图1中MMC变流器未引入本发明的方法控制下桥臂环流波形示意图;
图10为图1中MMC变流器引入本发明的方法控制下桥臂环流波形示意图。
具体实施方式
参照图1,本发明的实施例涉及的MMC变流器单相电路示意图,其中,网侧三相交流电压uj的总谐波畸变率是3.26%;基波频率正向偏移0.5Hz。
参照图2,本发明的一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,包括的步骤有:
1)电压外环无模型自适应迭代学习控制
①在每个采样周期开始的时刻,对MMC变流器直流侧电压udc进行采样;
②将给定电压值
Figure BDA0001993285040000061
与udc送入电压控制环,得到电流指令信号idref,电压外环无模型自适应迭代学习控制方法依据公式(1)-公式(5)进行计算;
Figure BDA0001993285040000062
Figure BDA0001993285040000063
Figure BDA0001993285040000064
Figure BDA0001993285040000065
Figure BDA0001993285040000066
公式(1)-公式(5)中,n∈[1,2,3,…]是采样点数;ε∈[0.00001,0.5]是允许控制误差;μ∈(0,100)和μ′∈(0,100)是响应速度系数;η∈(0,2]、ρ∈(0,1]是步长因子;β∈(0,1)是学习增益系数;||是“或”逻辑符号;||是绝对值运算符号;φ(1)∈(0,100)是常数,是计算过程中间参数φ(n)、φ(n-1)的初始计算值;下标k是迭代次数;ek(n)是n时刻第k次迭代的跟踪误差;ek-1(n)是n时刻第(k-1)次迭代的跟踪误差;udc.k是第k次迭代得到的MMC直流电压值;
Figure BDA0001993285040000067
Δudc.k
Figure BDA0001993285040000068
是计算过程的中间参数;
2)电流内环无模型自适应预测控制
①在每个采样周期开始的时刻,对变流器网侧三相电流ij、三相电压uj分别进行采样,其中,下标j表示A、B、C三相;
②依据公式(6)中的DQ逆变换矩阵Tdq→abc,将idref、0经DQ逆变换计算得到三相电流指令信号ijref,其中,下标中的j表示电网中电压或电流的A、B、C三相,公式(6)中,θ是将MMC变流器网侧三相电压uj经过锁相环得到的相位角;
Figure BDA0001993285040000071
③将ijref与网侧三相电流ij分别送入三相电流控制内环中,得到输出信号ej_ref,其中,下标中的j表示A、B、C三相;电流内环无模型自适应预测控制依据公式(7)-(12)进行计算;
Figure BDA0001993285040000072
Figure BDA0001993285040000073
Figure BDA0001993285040000074
Figure BDA0001993285040000075
ej_ref(n)=ej_ref(n-1)+ET(n)Δej_ref(n) (11)
Figure BDA0001993285040000081
公式(7)-公式(11)中,N∈[1,2,…,10]是预测步长;p∈[2,…,N]是预测阶数;λ∈(0,100)是超调响应系数;M∈(0,20)是自回归系数限制阈值;Nu∈[1,2,…,N]是控制时域常数;()-1是矩阵求逆运算符号;||||2是2范数运算符号;()T是向量或矩阵的转置运算符号;I是Nu×Nu维单位矩阵;E是N×1维单位向量;θ1(1),…θp(1)是介于0和1之间的p个常数;Δej_ref、τ、和θl,l∈[1,2,…p]是计算过程中的中间参数;Θ、Φ、A、Δej_ref、ijref是计算过程中的向量或矩阵;公式(7)、公式(9)中的sign[]函数依据公式(12)进行定义;公式(12)中x是sign[]函数中的变量;
3)自适应环流抑制控制
①在每个采样周期开始的时刻,对MMC变流器三相上桥臂电流ijp、下桥臂电流ijn进行采样,其中,下标中的j表示A、B、C三相,对MMC变流器网侧AB相间的线电压进行采样,得到uab,接着,依据公式(13)进行计算,得到三相环流ij_cir,其中,下标中的j表示A、B、C三相;
ij_cir=0.5×(ijp+ijn) (13)
②依据公式(13)中的变换矩阵Tabc→αβ0对三相桥臂环流ij_cir作αβ0变换,得到静止坐标系下αβ0三个坐标值iα、iβ、i0
Figure BDA0001993285040000082
③依据公式(15)进行计算,得到静止坐标系下环流抑制指令信号i′α、i′β、i′0
Figure BDA0001993285040000083
④基于自适应窗长算法得到网侧线电压信号频域分析窗长,再基于离散傅立叶变换对网侧线电压信号作频域分析,得到网侧电压信号的基波频率ω0
⑤依据自适应环流抑制控制的传递函数,即公式(16)对i′α、i′β、i′0分别作自适应环流抑制控制,得到对应的静止坐标系下的环流抑制电压指令信号eα、eβ、e0,再经过αβ0反变换得到环流抑制补偿电压ejk_ref,其中,下标中的j表示A、B、C三相;
Figure BDA0001993285040000091
公式(16)中,KP是比例增益系数,KR是谐振增益系数,ωc是谐振带宽截止角频率,nmax∈[1,50]是环流中主要的谐波中最高谐波次数,s是频域分析的复参数,
Figure BDA0001993285040000092
是求和运算符号,表示对中括号[]中的量进行从k=1到k=nmax的求和运算。
依据公式(17)、公式(18),得到三相上桥臂参考电压ujp_ref和下桥臂参考电压ujn_ref,将ujp_ref、ujn_ref进行载波移相调制,并应用子模块电压均衡算法,得到MMC变流器控制脉冲信号;
ujp_ref=0.5udc-ejk_ref-ej_ref (17)
ujn_ref=0.5udc-ejk_ref+ej_ref (18)
其中,下标中的j表示A、B、C三相。
参照图3,常规PID控制下MMC变流器直流电压纹波是5.01%。
参照图4,常规PID控制下MMC变流器网侧的A相电流波形示意。
参照图5,常规PID控制下MMC变流器网侧的A相电流波形总谐波畸变率的平均值是4.95%。
参照图6,发明的控制方法控制下MMC变流器直流电压纹波是4.93%。发明实施例结果表明发明的控制方法可实现MMC变流器直流电压的稳定控制。
参照图7,发明的控制方法控制下MMC变流器网侧的A相电流波形示意图。
参照图8,发明的控制方法控制下MMC变流器网侧的A相电流波形总谐波畸变率的平均值是3.28%。发明实施例结果表明发明的控制方法可实现MMC变流器网侧电流的准确控制,改善波形质量。
参照图9,其中,0.3秒前未引入任何环流抑制措施;0.3秒后引入常规环流抑制方法,环流幅值降低了66.75%。
参照图10,其中,0.3秒前未引入任何环流抑制措施;0.3秒后引入发明的自适应环流抑制方法,环流幅值降低了75.02%。发明实施例结果表明发明的控制方法可实现网侧基波频率偏移及背景谐波扰动下MMC变流器桥臂环流的自适应抑制。
本发明的实施例并非穷举,本领域技术人员不经过创造性劳动的简单复制和改进,仍属于本发明权利保护的范围。

Claims (1)

1.一种融合自适应环流抑制的无模型自适应迭代学习MMC变流器控制方法,其特征在于,它包括以下步骤:
1)电压外环无模型自适应迭代学习控制
①在每个采样周期开始的时刻,对MMC变流器直流侧电压udc进行采样;
②将给定电压值
Figure FDA0002521835650000011
与udc送入电压控制环,得到电流指令信号idref,电压外环无模型自适应迭代学习控制方法依据公式(1)-公式(5)进行计算;
Figure FDA0002521835650000012
Figure FDA0002521835650000013
Figure FDA0002521835650000014
Figure FDA0002521835650000015
Figure FDA0002521835650000016
公式(1)-公式(5)中,n∈[1,2,3,…]是采样点数;ε∈[0.00001,0.5]是允许控制误差;μ∈(0,100)和μ′∈(0,100)是响应速度系数;η∈(0,2]、ρ∈(0,1]是步长因子;β∈(0,1)是学习增益系数;||是“或”逻辑符号;φ(1)∈(0,100)是常数,是计算过程中间参数φ(n)、φ(n-1)的初始计算值;下标k是迭代次数;ek(n)是n时刻第k次迭代的跟踪误差;ek-1(n)是n时刻第(k-1)次迭代的跟踪误差;udc.k是第k次迭代得到的MMC变流器直流电压值;
Figure FDA0002521835650000017
Figure FDA0002521835650000018
Δudc.k
Figure FDA0002521835650000019
是计算过程的中间参数;
2)电流内环无模型自适应预测控制
①在每个采样周期开始的时刻,对变流器网侧三相电流ij、三相电压uj分别进行采样,其中,下标j表示A、B、C三相;
②依据公式(6)中的DQ逆变换矩阵Tdq→abc,将idref、0经DQ逆变换计算得到三相电流指令信号ijref
其中,下标中的j表示电网中电压或电流的A、B、C三相,θ是将MMC变流器网侧三相电压uj经过锁相环得到的相位角;
Figure FDA0002521835650000021
③将ijref与网侧三相电流ij分别送入三相电流控制内环中,得到输出信号ej_ref
其中,下标中的j表示A、B、C三相;
电流内环无模型自适应预测控制依据公式(7)-公式(12)进行计算;
Figure FDA0002521835650000022
Figure FDA0002521835650000023
Figure FDA0002521835650000024
Figure FDA0002521835650000025
ej_ref(n)=ej_ref(n-1)+ET(n)Δej_ref(n) (11)
Figure FDA0002521835650000031
公式(7)-公式(11)中,N∈[1,2,…,10]是预测步长;p∈[2,…,N]是预测阶数;λ∈(0,100)是超调响应系数;M∈(0,20)是自回归系数限制阈值;Nu∈[1,2,…,N]是控制时域常数;()-1是矩阵求逆运算符号;|| ||2是2范数运算符号;()T是向量或矩阵的转置运算符号;I是Nu×Nu维单位矩阵;E是N×1维单位向量;θ1(1),…θp(1)是介于0和1之间的p个常数;Δej_ref、τ、和θl,l∈[1,2,…p]是计算过程中的中间参数;Θ、Φ、A、Δej_ref、ijref是计算过程中的向量或矩阵;公式(7)、公式(9)中的sign[]函数依据公式(12)进行定义;公式(12)中x是sign[]函数中的变量;
3)自适应环流抑制控制
①在每个采样周期开始的时刻,对MMC变流器三相上桥臂电流ijp、下桥臂电流ijn进行采样,再对MMC变流器网侧AB相间的线电压进行采样,得到uab,接着,依据公式(13)进行计算,得到三相环流ij_cir
ij_cir=0.5×(ijp+ijn) (13)
其中,下标中的j表示A、B、C三相;
②依据公式(13)中的变换矩阵Tabc→αβ0对三相桥臂环流ij_cir作αβ0变换,得到静止坐标系下αβ0三个坐标值iα、iβ、i0
Figure FDA0002521835650000032
③依据公式(15)进行计算,得到静止坐标系下环流抑制指令信号i′α、i′β、i′0
Figure FDA0002521835650000033
其中,idc是MMC变流器直流侧电流;
④基于自适应窗长算法得到网侧线电压信号频域分析窗长,再基于离散傅立叶变换对网侧线电压信号作频域分析,得到网侧电压信号的基波频率ω0
⑤依据自适应环流抑制控制的传递函数,即公式(16)对i′α、i′β、i′0分别作自适应环流抑制控制,得到对应的静止坐标系下的环流抑制电压指令信号eα、eβ、e0,再经过αβ0反变换得到环流抑制补偿电压ejk_ref
其中,下标中的j表示A、B、C三相;
Figure FDA0002521835650000041
公式(16)中,KP是比例增益系数,KR是谐振增益系数,ωc是谐振带宽截止角频率,nmax∈[1,50]是环流中主要的谐波中最高谐波次数,s是频域分析的复参数,
Figure FDA0002521835650000042
是求和运算符号,表示对中括号[]中的量进行从k=1到k=nmax的求和运算;
依据公式(17)、公式(18),得到三相上桥臂参考电压ujp_ref和下桥臂参考电压ujn_ref,将ujp_ref、ujn_ref进行载波移相调制,并应用子模块电压均衡算法,得到MMC变流器控制脉冲信号;
ujp_ref=0.5udc-ejk_ref-ej_ref (17)
ujn_ref=0.5udc-ejk_ref+ej_ref (18)
其中,下标中的j表示A、B、C三相。
CN201910187317.3A 2019-03-13 2019-03-13 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法 Active CN109861574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910187317.3A CN109861574B (zh) 2019-03-13 2019-03-13 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910187317.3A CN109861574B (zh) 2019-03-13 2019-03-13 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法

Publications (2)

Publication Number Publication Date
CN109861574A CN109861574A (zh) 2019-06-07
CN109861574B true CN109861574B (zh) 2020-08-11

Family

ID=66900589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910187317.3A Active CN109861574B (zh) 2019-03-13 2019-03-13 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法

Country Status (1)

Country Link
CN (1) CN109861574B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111310325B (zh) * 2020-02-10 2022-01-11 华北电力大学 一种模块化多电平换流器的动态仿真模拟方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038289B2 (ja) * 2013-04-02 2016-12-07 三菱電機株式会社 電力変換装置
CN103227581B (zh) * 2013-05-10 2014-01-22 湖南大学 一种谐波下垂控制的逆变器并联谐波环流抑制方法
JP6180825B2 (ja) * 2013-07-02 2017-08-16 株式会社日立製作所 電力変換装置および電気・機械エネルギ変換システム
CN105490285B (zh) * 2015-12-23 2018-10-12 哈尔滨理工大学 三相不平衡下双h桥mmc结构的无功补偿装置及其控制方法
CN105487385B (zh) * 2016-02-01 2019-02-15 金陵科技学院 基于无模型自适应内模控制方法
CN106357143A (zh) * 2016-09-09 2017-01-25 重庆大学 一种适用于模块化多电平换流器的环流抑制方法
CN106329979B (zh) * 2016-10-08 2019-06-21 东南大学 一种用于高速永磁电机系统的mmc双环流抑制方法

Also Published As

Publication number Publication date
CN109861574A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
US10630163B2 (en) Pulse width modulation method, pulse width modulation system, and controller
Forghani et al. Online wavelet transform-based control strategy for UPQC control system
CN106786647A (zh) 一种三相四线制并联apf双闭环非线性复合控制方法
CN107611971B (zh) 针对网压谐波畸变的网侧逆变器谐振全阶滑模控制方法
CN112104000A (zh) 一种储能并网逆变器的新型双闭环线性自抗扰控制方法
CN112653342B (zh) 一种静止坐标系下的复矢量电流环解耦控制装置及方法
CN114079399B (zh) 基于线性自抗扰控制的并网逆变器电流环控制系统和方法
CN112636348B (zh) 一种模块化三相电流型并网逆变器控制方法
CN110365230B (zh) 一种三相电压型pwm整流器直接功率控制装置
CN106849624B (zh) 一种基于重复控制的三相整流谐波的消除方法及系统
CN109861574B (zh) 一种融合自适应环流抑制的无模型自适应迭代学习mmc变流器控制方法
Nwobu et al. Grid voltage synchronization for unbalanced voltages using the energy operator
Pérez-Estévez et al. A finite-control-set linear current controller with fast transient response and low switching frequency for grid-tied inverters
Liu et al. Model predictive control of permanent magnet synchronous motor based on parameter identification and dead time compensation
CN216959694U (zh) 基于线性自抗扰控制的并网逆变器电流环控制系统
Kahrobaeian et al. Stationary frame current control of single phase grid connected PV inverters
CN112350600B (zh) 基于扰动估计的模块化多电平换流器功率解耦控制方法
CN115955130A (zh) 一种单相九电平pwm整流器的分数阶滑模控制方法
CN111756261B (zh) 一种pwm整流器控制方法和装置
CN115622059A (zh) 一种频率自适应的多逆变器并联宽频域负载谐波抑制方法
CN114512991A (zh) 一种有源谐波和无功发生系统及方法
CN112803465A (zh) 一种lcl型电池储能变流器的模型预测控制方法
Yan et al. Active disturbance rejection control for single-phase PWM rectifier with current decoupling control
CN117543705B (zh) 一种lcl型并网逆变器多变量两步预测控制的方法
CN110190765B (zh) 基于无差拍控制的三相电压型pwm变换器抗扰动新方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant