CN112636348B - 一种模块化三相电流型并网逆变器控制方法 - Google Patents

一种模块化三相电流型并网逆变器控制方法 Download PDF

Info

Publication number
CN112636348B
CN112636348B CN202011454418.1A CN202011454418A CN112636348B CN 112636348 B CN112636348 B CN 112636348B CN 202011454418 A CN202011454418 A CN 202011454418A CN 112636348 B CN112636348 B CN 112636348B
Authority
CN
China
Prior art keywords
phase
abc
grid
abc1
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011454418.1A
Other languages
English (en)
Other versions
CN112636348A (zh
Inventor
耿乙文
王会彬
李贺龙
马立亚
杨尚鑫
陈翔
洪冬颖
韩鹏
陈方诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou New Power Hi Tech Electric Co ltd
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202011454418.1A priority Critical patent/CN112636348B/zh
Publication of CN112636348A publication Critical patent/CN112636348A/zh
Application granted granted Critical
Publication of CN112636348B publication Critical patent/CN112636348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

本发明提供一种模块化三相电流型并网逆变器控制方法,属于逆变器控制领域。对该并网逆变器三相电网电压、输出三相电压、三相并网电流以及直流侧电流进行clark坐标变换;经锁相环处理得到并网电压相位
Figure DEST_PATH_IMAGE002
;由MPPT模块生成直流侧电流指令值,与实际值做差经PI控制器得到两相旋转坐标系的d轴并网电流指令值,再经过内环PI控制器,得到调制信号;将逆变器输出电压经过阻尼比例系数得到有源阻尼反馈量;将三相电网电压先通过199阶重复预测器,再经过FIR低通滤波器得到电网电压前馈分量;将调制信号、有源阻尼反馈量、电网电压前馈分量叠加,得到最终的调制信号;最后经过LC滤波器滤除高次谐波实现并网控制。本方法步骤简单,使用方便,使用效果好。

Description

一种模块化三相电流型并网逆变器控制方法
技术领域
本发明涉及一种并网逆变器控制方法,尤其适用于太阳能、风能设备连接电网使用的一种模块化三相电流型并网逆变器控制方法,属于逆变器控制领域。
背景技术
近年来,环境恶化和能源短缺问题日益严峻,太阳能、风能等各种可再生能源得到极大发展。作为连接新能源和电网的枢纽,并网逆变器在能量转化方面扮演着越来越重要的角色。以直流侧储能方式的不同,并网逆变器可分为电流型逆变器CSI(current sourceinverter)和电压型逆变器VSI(voltage source inverter)。与后者相比,前者具有自升压和短路保护特性,使其更加广泛应用于新能源发电并网、电机控制等重要领域。由于新能源的发展,分布式发电系统发展越来越迅速,因此大量的逆变器应用其中,不可避免的是在公共耦合点PCC(Point of Common Coupling)接有大量非线性设备(弧焊机、饱和变压器等),有他们产生的谐波电流会经过回路的阻抗,使得PCC点处电网电压出现背景谐波,这样会使得并网电流存在幅值和相位的误差。
发明内容
本针对上述技术的不足之处,提供一种控制简单,动态性能好,能够有效抑制并网电流中的多次谐波分量的模块化三相电流型并网逆变器控制方法。
为实现上述技术问题,本发明的模块化三相电流型并网逆变器控制方法,其步骤如下:
a获取模块化电流型并网逆变器的三相电网电压eabc、逆变器输出三相电压vabc、三相并网电流iabc以及直流侧电流信息idc
b利用clark坐标变化的方式将三相电网电压eabc、逆变器输出三相电压vabc和三相并网电流iabc转化为两相静止坐标系αβ轴三相电网电压分量eαβ_abc(eα_abc、eβ_abc)、逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)和三相并网电流分量iαβ_abc(iα_abc、iβ_abc);
c对三相电网电压eabc进行锁相环处理得到并网相位θ;
d利用最大功率点跟踪模块生成直流侧电流指令值idc *,将直流侧电流信息idc与直流侧电流指令值idc *的差值信号送入直流侧比例积分控制器获得作为交流侧两相旋转坐标系d轴并网电流指令值id *,设交流侧两相旋转坐标系q轴并网电流指令值设置为0,然后利用反Park坐标变换将交流侧两相旋转坐标系的d轴和q轴并网电流指令值,变换为两相静止坐标系下αβ轴分量iαβ *(iα *、iβ *);
e将逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)先经过有源阻尼比例系数,再经过高通滤波器得到逆变器输出三相电压有源滤波反馈量vfαβ_abc(vfα_abc、vfβ_abc);
f将三相并网电流分量iαβ_abc(iα_abc、iβ_abc)与两相静止坐标系下αβ轴分量iαβ *(iα *、iβ *)相加,得到叠加信号iα_abc+iα *、iβ_abc+iβ *,然后将叠加信号经过比例谐振控制器得到调制信号iαβ_abc1(iα_abc1、iβ_abc1);
g将三相电网电压分量eαβ_abc(eα_abc、eβ_abc)先通过199阶重复预测器得到预测信号,然后再经过FIR低通滤波器滤波得到三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1));
h将调制信号iαβ_abc1(iα_abc1、iβ_abc1)、三相电压有源滤波反馈量vfαβ_abc(vfα_abc、vfβ_abc)、三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1)分别叠加,得到最终的调制信号iαβ_abcs
I对最终的调制信号iαβ_abcs进行空间矢量脉宽调制获得12个功率管的驱动信号,利用12个功率管的驱动信号分别驱动发电并网逆变器的12路功率管,最后将逆变器输出的三相电压经过LC滤波器以滤除高次谐波,从而实现三相电流型并网逆变器并网控制。
三相电压有源滤波反馈量vfαβ_abc(vfα_abc、vfβ_abc)利用下式计算得到:
Figure GDA0003791096270000021
式中,vfαβ_abc为逆变器输出三相电压有源滤波反馈量,Hs为有源阻尼比例系数,ωr为高通滤波器截止频率,z表示离散域里的参变量,
Figure GDA0003791096270000024
表示有连续域到离散域的转化函数,其中Ts为开关周期,此处设为10000。
调制信号iαβ_abc1(iα_abc1、iβ_abc1)的计算方法为:利用公式:
Figure GDA0003791096270000022
式中,kp为PR控制器比例系数,kr为PR控制器谐振系数,ωb为PR控制器带宽,s表示复频域里的复参变量。
三相电网电压全前馈前馈分量eαβ_abc1(eα_abc1、eβ_abc1)利用下式计算获得:
Figure GDA0003791096270000023
式中,C为滤除杂波信号使用的LC滤波器的电容容值,
Figure GDA0003791096270000031
为基于后向欧拉的一阶相位补偿离散公式,z-199为199阶重复预测函数,T(z)为三相电流源型并网逆变器的开环传递函数,Hp为前馈比例项。
最终的调制信号iαβ_abcs的计算方法为:利用公式:
iαβ_abcs=iαβ_abc1+vfαβ_abc+eαβ_abc1
iα_abcs=iα_abc1+vfα_abc+eα_abc1
iβ_abcs=iβ_abc1+vfβ_abc+eβ_abc1
有益效果:
本方法控制简单,通过采用重复预测器和基于后向欧拉的一阶相位补偿微分器实现电网电压全前馈中前馈函数的一拍超前环节和微分环节,并未改变逆变器环路增益,保持了系统良好的动态性能,并且经过推导得出的电网电压全前馈函数,能够消除电网电压对并网电流的影响,从而消除由于电网电压影响而带来的并网电流中的多次谐波分量;
本方法控制简单,不改变并网逆变器电流环路增益,能够保持系统良好的动态性能,且能够有效抑制并网电流中的多次谐波分量。
附图说明
图1为本发明模块化三相电流型并网逆变器拓扑结构图;
图2为本发明模块化三相电流型并网逆变器的控制方法框图;
图3为本发明一个实施例的采用忽略超前环节全前馈A相电网电压电流仿真波形和FFT分析以及比例前馈时的FFT分析;图3(a)表示A相并网电压电流示意图,图3(b)表示仅有比例前馈时的FFT分析示意图,图3(c)表示A相并网电压电流的FFT分析示意图;
图4为本发明一个实施例的加入超前环节时全前馈A相电网电压电流仿真波形及其FFT分析示意图;图4(a)表示A相并网电压电流仿真波形,图4(b)表示A相并网电流FFT分析;
图5是本发明一个实施例的采用全前馈控制策略直流侧阶跃时并网电压电流和直流侧电流仿真波形示意图;
图6是本发明一个实施例的采用全前馈控制策略电网电压跌落时并网电压电流和直流侧电流仿真波形示意图。
附图解释
下面结合附图对本申请的实施例作进一步说明:
如图1所示,本发明模块化三相电流型并网逆变器控制方法涉及的三相电流型并网逆变器并网包括:两个并联设置的三相逆变桥单元,其中CSI输出侧LC滤波器滤波电容电压瞬时值为vk(k=a,b,c),三相电网电压瞬时值为ek(k=a,b,c),逆变器输出侧并网电流瞬时值为ik(k=a,b,c),逆变器输出侧直流电流瞬时值为ikdc,逆变器输入侧直流电源电压值为E。
如图2所示,本发明的三相电流型并网逆变器并网的主电路拓扑图。首先采样得到滤波电容电压、电网电压、并网电流和直流侧电流;然后对采样值经过clark坐标变化转化为eαβ_abc、vαβ_abc和iαβ_abc;对所述的eabc经锁相环处理得到并网相位θ;由最大功率点跟踪模块MPPT模块生成直流侧电流指令值idc *;将所述的idc *与idc做差然后经过PI调节器输出作为d轴并网电流指令值id *,d轴并网电流指令值为0;将所述的vαβ_abc经过有源滤波比例和高通滤波器后的逆变器输出三相电压有源滤波反馈量vfαβ_abc;将所述的iαβ_abc与iαβ *相加,然后将叠加信号经过PR控制器得到调制信号iαβ_abc1;将所述的eαβ_abc经过199阶重复预测器以及FIR低通滤波器得到三相电网电压前馈分量eαβ_abc1;将所述的iαβ_abc1、vfαβ_abc、eαβ_abc1相加,得到最终的调制信号,然后再经过SVPWM调制生成12个功率管驱动信号,最终实现三相电流型并网逆变器并网控制。
具体步骤如下:
a获取模块化电流型并网逆变器的三相电网电压eabc、逆变器输出三相电压vabc、三相并网电流iabc以及直流侧电流信息idc
b利用clark坐标变化的方式将三相电网电压eabc、逆变器输出三相电压vabc和三相并网电流iabc转化为两相静止坐标系αβ轴三相电网电压分量eαβ_abc(eα_abc、eβ_abc)、逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)和三相并网电流分量iαβ_abc(iαβ_abc、iβ_abc);
c对三相电网电压eabc进行锁相环处理得到并网相位θ;
d利用最大功率点跟踪模块生成直流侧电流指令值idc *,将直流侧电流信息idc与直流侧电流指令值idc *的差值信号送入直流侧比例积分控制器获得作为交流侧两相旋转坐标系d轴并网电流指令值id *,设交流侧两相旋转坐标系q轴并网电流指令值设置为0,然后利用反Park坐标变换将交流侧两相旋转坐标系的d轴和q轴并网电流指令值,变换为两相静止坐标系下αβ轴分量iαβ *(iα *、iβ *);
e将逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)先经过有源阻尼比例系数,再经过高通滤波器后的逆变器输出三相电压有源滤波反馈量vfαβ_abc(vfα_abc、vfβ_abc),具体利用下式计算得到:
Figure GDA0003791096270000051
式中,vfαβ_abc为逆变器输出三相电压有源滤波反馈量,Hs为有源阻尼比例系数,ωr为高通滤波器截止频率,z表示离散域里的参变量,
Figure GDA0003791096270000055
表示有连续域到离散域的转化函数,其中Ts为开关周期,此处设为10000;
f将三相并网电流分量iαβ_abc(iα_abc、iβ_abc)与两相静止坐标系下αβ轴分量iαβ *(iα *、iβ *)相加,得到叠加信号iα_abc+iα *、iβ_abc+iβ *,然后将叠加信号经过比例谐振控制器得到调制信号iαβ_abc1(iα_abc1、iβ_abc1),具体利用下式获得:
Figure GDA0003791096270000052
式中,kp为PR控制器比例系数,kr为PR控制器谐振系数,ωb为PR控制器带宽,s表示复频域里的复参变量;
g将三相电网电压分量eαβ_abc(eα_abc、eβ_abc)先通过199阶重复预测器得到预测信号,然后再经过FIR低通滤波器滤波得到三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1)),具体利用下式计算获得:
Figure GDA0003791096270000053
式中,C为滤除杂波信号使用的LC滤波器的电容容值,
Figure GDA0003791096270000054
为基于后向欧拉的一阶相位补偿离散公式,z-199为199阶重复预测函数,T(z)为三相电流源型并网逆变器的开环传递函数,Hp为前馈比例项;
h将调制信号iαβ_abc1(iα_abc1、iβ_abc1)、三相电压有源滤波反馈量vfαβ_abc(vfα_abc、vfβ_abc)、三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1)分别叠加,得到最终的调制信号iαβ_abcs,具体计算方法为:
iαβ_abcs=iαβ_abc1+vfαβ_abc+eαβ_abc1
iα_abcs=iα_abc1+vfα_abc+eα_abc1
iβ_abcs=iβ_abc1+vfβ_abc+eβ_abc1
I对最终的调制信号iαβ_abcs进行空间矢量脉宽调制获得12个功率管的驱动信号,利用12个功率管的驱动信号分别驱动发电并网逆变器的12路功率管,最后将逆变器输出的三相电压经过LC滤波器以滤除高次谐波,从而实现三相电流型并网逆变器并网控制。
图3为采用本发明忽略超前环节时的仿真波形。图3(a)表示A相并网电压电流,图3(b)表示仅有比例前馈时的FFT分析,图3(c)表示A相并网电压电流的FFT分析。由图3可以看出,0.3s以前仅有比例前馈作用时,并网电流FFT分析如图3(b)所示,5次谐波占有率2%左右,13次谐波2.3%左右,总谐波畸变率(Total harmonic distortion rate,THD)为3.20%;在0.3s后加入微分前馈,并网电流FFT分析如图3(c)所示,5次谐波占有率0.6%左右,13次谐波1.5%左右,总谐波畸变率为1.65%。由分析结果可知,在加入微分前馈之后,对5次谐波的抑制作用比较明显,而对于13次谐波的抑制并不明显。
图4为本实施例所用方法中加入超前环节时的仿真波形。图4(a)表示A相并网电压电流仿真波形,图4(b)表示A相并网电流FFT分析。由图4可以看出,0.3s以前仅有比例前馈,在0.3s后加入含有超前环节的微分前馈,并网电流FFT分析如图4(b)所示,5次谐波占有率0.2%左右,13次谐波0.48%左右,总谐波畸变率为0.62%。由此可知,加入带超前环节的微分前馈后,不仅13次谐波得以抑制,5次谐波也得到了了很大程度的抑制,同时降低了THD的值。
图5为采用全前馈控制策略直流侧阶跃时并网电压电流和直流侧电流仿真波形。由图5可以看出,在达到稳态的情况下,可以实现并网电流和并网电压同频率,也就是说,此时系统处在单位功率因数的状态。即电流型并网逆变器向电网只传输有功功率。在0.5s时,直流侧的给定的指令电流由6A突然上升到7A,可以看出,经过一个基波周期的调整系统达到稳定,直流侧的电流和交流侧的并网电流基本看不出波动,这说明采用该发明的控制方法系统拥有比较好的动态性能。
图6是采用本发明全前馈控制策略电网电压跌落时并网电压电流和直流侧电流仿真动态波形。由图6可以看出,在0.4s的时候,电网电压由正常跌落到之前的60%,可以看出,并网电流逐渐增大,直流侧电流在跌落之后也开始逐渐增大,经过几个基波周期后,系统并网电流和直流侧电流再次进入稳定状态,说明采用本发明之后遇到扰动时系统有很好的鲁棒性。

Claims (5)

1.一种模块化三相电流型并网逆变器控制方法,其特征在于步骤如下:
a获取模块化电流型并网逆变器的三相电网电压eabc、逆变器输出三相电压vabc、三相并网电流iabc以及直流侧电流信息idc
b利用clark坐标变化的方式将三相电网电压eabc、逆变器输出三相电压vabc和三相并网电流iabc转化为两相静止坐标系αβ轴三相电网电压分量eαβ_abc(eα_abc、eβ_abc)、逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)和三相并网电流分量iαβ_abc(iα_abc、iβ_abc);
c对三相电网电压eabc进行锁相环处理得到并网相位θ;
d利用最大功率点跟踪模块生成直流侧电流指令值idc *,将直流侧电流信息idc与直流侧电流指令值idc *的差值信号送入直流侧比例积分控制器获得作为交流侧两相旋转坐标系d轴并网电流指令值id *,设交流侧两相旋转坐标系q轴并网电流指令值设置为0,然后利用反Park坐标变换将交流侧两相旋转坐标系的d轴和q轴并网电流指令值,变换为两相静止坐标系下αβ轴分量iαβ *(iα *、iβ *);
e将逆变器输出三相电压分量vαβ_abc(vα_abc、vβ_abc)先经过有源阻尼比例系数,再经过高通滤波器后的逆变器输出三相电压有源阻尼反馈量vfαβ_abc(vfα_abc、vfβ_abc);
f两相旋转坐标系的d轴和q轴并网电流指令值,变换为两相静止坐标系下αβ轴分量,得到叠加信号iα_abc+iα *、iβ_abc+iβ *,然后将叠加信号经过比例谐振控制器得到调制信号iαβ_abc1(iα_abc1、iβ_abc1);
g将三相电网电压分量eαβ_abc(eα_abc、eβ_abc)先通过199阶重复预测器得到预测信号,然后再经过FIR低通滤波器滤波得到三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1);
h将调制信号iαβ_abc1(iα_abc1、iβ_abc1)、三相电压有源阻尼反馈量vfαβ_abc(vfα_abc、vfβ_abc)、三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1)分别叠加,得到最终的调制信号iαβ_abcs
I对最终的调制信号iαβ_abcs进行空间矢量脉宽调制获得12个功率管的驱动信号,利用12个功率管的驱动信号分别驱动发电并网逆变器的12路功率管,最后将逆变器输出的三相电压经过LC滤波器以滤除高次谐波,从而实现三相电流型并网逆变器并网控制。
2.根据权利要求1所述的模块化三相电流型并网逆变器控制方法,其特征在于三相电压有源阻尼反馈量vfαβ_abc(vfα_abc、vfβ_abc)利用下式计算得到:
Figure FDA0003754696480000021
式中,vfαβ_abc为逆变器输出三相电压有源阻尼反馈量,Hs为有源阻尼比例系数,ωr为高通滤波器截止频率,z表示离散域里的参变量,
Figure FDA0003754696480000025
表示有连续域到离散域的转化函数,其中Ts为开关周期,此处设为10000。
3.根据权利要求1所述的模块化三相电流型并网逆变器控制方法,其特征在于调制信号iαβ_abc1(iα_abc1、iβ_abc1)利用下式计算得到:
Figure FDA0003754696480000022
式中,kp为PR控制器比例系数,kr为PR控制器谐振系数,ωb为PR控制器带宽,s表示复频域里的复参变量。
4.根据权利要求1所述的模块化三相电流型并网逆变器控制方法,其特征在于三相电网电压前馈分量eαβ_abc1(eα_abc1、eβ_abc1)利用下式计算获得:
Figure FDA0003754696480000023
式中,C为滤除杂波信号使用的LC滤波器的电容容值,
Figure FDA0003754696480000024
为基于后向欧拉的一阶相位补偿离散公式,z-199为199阶重复预测函数,T(z)为三相电流源型并网逆变器的开环传递函数,Hp为前馈比例项。
5.根据权利要求1所述的模块化三相电流型并网逆变器控制方法,其特征在于最终的调制信号iαβ_abcs的利用下式计算获得:
iαβ_abcs=iαβ_abc1+vfαβ_abc+eαβ_abc1
iα_abcs=iα_abc1+vfα_abc+eα_abc1
iβ_abcs=iβ_abc1+vfβ_abc+eβ_abc1
CN202011454418.1A 2020-12-10 2020-12-10 一种模块化三相电流型并网逆变器控制方法 Active CN112636348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011454418.1A CN112636348B (zh) 2020-12-10 2020-12-10 一种模块化三相电流型并网逆变器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011454418.1A CN112636348B (zh) 2020-12-10 2020-12-10 一种模块化三相电流型并网逆变器控制方法

Publications (2)

Publication Number Publication Date
CN112636348A CN112636348A (zh) 2021-04-09
CN112636348B true CN112636348B (zh) 2022-09-27

Family

ID=75309888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011454418.1A Active CN112636348B (zh) 2020-12-10 2020-12-10 一种模块化三相电流型并网逆变器控制方法

Country Status (1)

Country Link
CN (1) CN112636348B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362578B (zh) * 2021-12-30 2022-07-29 深圳市首航新能源股份有限公司 一种并网逆变器并网控制方法、控制器以及并网逆变器
CN115800713B (zh) * 2022-12-16 2023-11-14 南方电网科学研究院有限责任公司 一种电流源型变换器均流控制系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482671B (zh) * 2017-07-20 2019-08-13 中国矿业大学 电流型光伏并网逆变器低电压穿越控制系统及方法
CN108667068B (zh) * 2018-04-19 2021-07-27 燕山大学 一种基于pc-qpci的lcl并网逆变器混合阻尼的实现方法
CN108879781B (zh) * 2018-08-01 2021-09-07 重庆大学 一种基于虚拟阻抗校正法的并网电流控制方法

Also Published As

Publication number Publication date
CN112636348A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Cha et al. Design and control of Proportional-Resonant controller based Photovoltaic power conditioning system
Monfared et al. Direct active and reactive power control of single-phase grid-tie converters
Zhang et al. Multirate repetitive control for PWM DC/AC converters
CN108988343B (zh) 一种弱网下多逆变器并网系统的全局高频振荡抑制方法
CN112636348B (zh) 一种模块化三相电流型并网逆变器控制方法
CN113839388B (zh) 一种基于混合负载的有源电力滤波器电流双环控制方法
CN106685250B (zh) 逆变器的信号控制方法及设备
CN112510761B (zh) 级联h桥光伏逆变器功率自适应谐波补偿策略
CN110429603B (zh) 六开关七电平有源电力滤波器及补偿方法
Özer et al. Enhanced control method for voltage regulation of DSTATCOM based SEIG
CN114865932A (zh) 脉冲负载供电系统及控制方法
CN113612398B (zh) 电网畸变工况下高频链矩阵变换器非线性控制方法及系统
KR102160883B1 (ko) 계통 연계 인버터의 고조파 보상을 위한 전류 제어 장치
CN116979535A (zh) 一种用于有源电力滤波器的双重谐波电流检测方法
Liu et al. Proportional-resonant controller of high power 400Hz inverter in stationary frame
CN109962480A (zh) 静止无功发生器无锁相环控制系统、方法及应用
CN112583289B (zh) 用于电流源型整流器并联运行上下母线电流协同控制方法
Pushparani et al. Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads
CN112583047B (zh) 一种级联h桥光伏并网逆变器的功率不平衡控制方法
CN115276445A (zh) 弱网下基于vsg的lcl并网逆变器谐振抑制及稳定性分析方法
CN114512991A (zh) 一种有源谐波和无功发生系统及方法
CN108832651B (zh) 单相级联型光伏并网逆变器系统的控制方法及装置
CN110492527B (zh) 一种级联h桥孤岛运行下的分层功率控制方法
CN114142760B (zh) 一种三相全桥逆变器的离散控制方法及装置
CN113489055A (zh) 一种改进的弱电网下三相电流源型并网逆变器电网电压前馈策略

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240125

Address after: 221100 No. 8 Kunlun Road, Second Industrial Park, Xuzhou High tech Industrial Development Zone, Tongshan District, Xuzhou City, Jiangsu Province

Patentee after: XUZHOU NEW POWER HI-TECH ELECTRIC Co.,Ltd.

Country or region after: China

Address before: 221116 Research Institute of China University of Mining and Technology, 1 University Road, Xuzhou, Jiangsu

Patentee before: CHINA University OF MINING AND TECHNOLOGY

Country or region before: China