WO2014157553A1 - 高発熱量ガスの製造方法 - Google Patents

高発熱量ガスの製造方法 Download PDF

Info

Publication number
WO2014157553A1
WO2014157553A1 PCT/JP2014/058963 JP2014058963W WO2014157553A1 WO 2014157553 A1 WO2014157553 A1 WO 2014157553A1 JP 2014058963 W JP2014058963 W JP 2014058963W WO 2014157553 A1 WO2014157553 A1 WO 2014157553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
glycerin
calorific value
decomposition
iron ore
Prior art date
Application number
PCT/JP2014/058963
Other languages
English (en)
French (fr)
Inventor
等 斉間
賢二 朝見
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112015024606-0A priority Critical patent/BR112015024606B1/pt
Priority to CN201480018882.2A priority patent/CN105073632B/zh
Priority to KR1020157025918A priority patent/KR101634513B1/ko
Priority to JP2015508714A priority patent/JP5754563B2/ja
Priority to EP14772585.7A priority patent/EP2980015B1/en
Publication of WO2014157553A1 publication Critical patent/WO2014157553A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Definitions

  • the present invention relates to a method for producing a high calorific value gas. More specifically, the present invention relates to a method for producing a high calorific value gas utilizing decomposition of glycerin.
  • Glycerin is known to decompose into carbon monoxide and hydrogen by a group VIII metal catalyst.
  • Non-Patent Documents 1 to 4 report decomposition reactions of glycerin using various Group VIII metal catalysts.
  • Ru Rh>Ni>Ir>Co>Pt>Pd> Fe is reported as an activity permutation of the Group VIII metal catalyst, and Ru is the most active, It has been reported that Ni is highly active among relatively inexpensive Group VIII metals.
  • the present inventors examined the catalysts described in Non-Patent Documents 1 to 4 above.
  • the yield of hydrogen produced by steam reforming of glycerin was about 20 to 70%, and carbon monoxide.
  • the selectivity of methane and carbon dioxide was 20-30%, 5-10%, and 60-75%, respectively, and it was clarified that the ratio of carbon dioxide was the highest.
  • the hydrogen yield is defined as 100% when the reaction of the following formula (1) (steam reforming reaction of glycerin) has completely progressed. Calculated.
  • the lower heating values of hydrogen, carbon monoxide and methane are 2580 kcal / m 3 , 3020 kcal / m 3 and 8560 kcal / m 3 , respectively. Therefore, in the above gas composition with a small amount of methane and a large amount of carbon dioxide, the lower calorific value is low and can be estimated to be about 1800 kcal / m 3 .
  • an object of the present invention is to provide a method for producing a high calorific value gas, in which glycerin is decomposed to obtain a high calorific value gas.
  • the present inventors have found that high calorific gas can be obtained by decomposing glycerin using iron ore and completed the present invention. That is, the present invention provides the following (1) to (5).
  • the method for producing a high calorific value gas of the present invention can also be used for the decomposition of glycerin produced as a by-product in the production of biomass diesel fuel (BDF), which has attracted attention in recent years.
  • BDF biomass diesel fuel
  • the origin of glycerin is not particularly limited, but if BDF is a by-product glycerin produced in large quantities, high calorific gas can be obtained without increasing carbon dioxide emission. This is a very useful method.
  • FIG. 1 is a graph showing X-ray diffraction images of iron ore before and after the reaction used for decomposition of glycerol (steam reforming reaction).
  • the method for producing a high calorific value gas of the present invention is a method for producing a high calorific value gas in which glycerin is decomposed using iron ore to obtain a high calorific value gas having a low calorific value of 3,000 kcal / m 3 or more. .
  • the selectivity of methane is remarkably increased and the selection of carbon dioxide is performed as shown in the examples described later. It can be seen that the rate is much lower. As a result, the lower heating value of the gas produced is greater than 3,000 kcal / m 3, it can be seen that increased to approximately 3,900kcal / m 3. From this fact, it can be inferred that methane is directly generated in the decomposition of glycerin using iron ore.
  • the iron ore used in the method for producing a high calorific gas of the present invention is not particularly limited.
  • the iron ore in the decomposition of glycerin, the iron ore may be used alone, or may be used as a mixture of the sintered ore mixed and fired with coal or lime and the iron ore.
  • iron ore examples include lobe river ore (pisolite ore), yandi cousiner ore, carajas ore, and these may be used alone or in combination of two or more. May be.
  • iron ore in which several kinds of iron ores are mixed may be used like a pill para blend ore.
  • the specific surface area of the iron ore by the BET method is preferably 10 m 2 / g or more, and 15 m 2 / g. More preferably, it is 200 m 2 / g or less. If the BET specific surface area of the iron ore is in the above range, the selectivity of methane will be higher, and the mechanical strength of the iron ore itself will be good, so a gas with a higher calorific value should be produced stably. Can do.
  • the iron content (iron concentration) of the iron ore is preferably 50% or more, and more preferably 60% or more. It is preferable for the iron content of the iron ore to be in the above range because the gas yield tends to increase.
  • FIG. 1 shows X-ray diffraction images of iron ore before and after the reaction used for decomposition of glycerin (steam reforming reaction).
  • the iron ore before decomposition of glycerol was mainly composed of hematite (Fe 2 O 3 ), whereas the iron ore after decomposition of glycerol was reduced to magnetite (Fe 3 O 4 ).
  • the iron ore used in the method for producing a high calorific value gas of the present invention is used as an iron-making material after use, thereby using a reducing agent such as coke to reduce iron ore to metallic iron. Can be reduced.
  • disassembly of glycerol in the manufacturing method of the high calorific value gas of this invention is not specifically limited, from the reason which can suppress the selectivity of a carbon dioxide and can manufacture gas with a higher calorific value.
  • the temperature is preferably from 600 to 900 ° C, more preferably from 650 to 800 ° C.
  • the reaction for generating the gas having the above-described composition by the decomposition of glycerin is an endothermic reaction with a slight amount of 60 kcal / mol. Therefore, a heat source for proceeding with the reaction is required.
  • the heat source is not particularly limited. For example, it is preferable to use exhaust heat of a steel mill, specifically, sensible heat of red hot coke or slag.
  • the pressure at the time of decomposition of glycerin is not particularly limited, but it is preferably from atmospheric pressure to 0.5 MPa from the viewpoint of economy and decomposition time.
  • the method for producing a high calorific value gas of the present invention is glycerin produced as a by-product during the production of biomass diesel fuel (BDF) that has been attracting attention in recent years (hereinafter referred to as “by-product glycerin” It can also be used for the decomposition.
  • by-product glycerin is by-produced in the form of an aqueous solution (glycerin aqueous solution) or as a mixture with methanol.
  • the molar ratio of water to glycerin (water / glycerin) in the glycerin aqueous solution is preferably about 2 to 10 from the viewpoint of economy and workability. 3 to 5 is more preferable.
  • BDF may be produced without using water.
  • by-product glycerin is a mixture of glycerin and methanol. Methanol is more easily decomposed than glycerin by the following formula (3).
  • CH 3 OH ⁇ CO + 2H 2 (3) Since the lower calorific value of the gas generated by the equation (3) is 2,730 kcal / m 3 , the calorific value of the generated gas tends to decrease when the amount of methanol is large. However, if the content of glycerin in the by-product glycerin is 30% or more, the lower calorific value of the generated high calorific gas is 3,000 kcal / m 3 or more.
  • the actual glycerin content in the by-product glycerin is 70% or more, there is no problem even if methanol is substantially contained, and the object of the present invention can be achieved even if water is not added during the production of BDF. it can.
  • the residence time (W / F) represented by the mass (W) of the iron ore with respect to the gas flow rate (F) is 2 to 20 g ⁇ hr / mol. It is preferably 5 to 10 g ⁇ hr / mol.
  • Example 1 The glycerin aqueous solution was decomposed using lobe river ore (iron content: 57%, BET specific surface area: 16 m 2 / g) as iron ore.
  • the molar ratio of water to glycerin in water is 3.4
  • the residence time (W / F) is 18 g ⁇ hr / mol
  • the decomposition temperature is 800 ° C.
  • the pressure was atmospheric pressure.
  • the gas yield was 96.3%
  • the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane was 31.4%, 48.8%, 0.7%, respectively. % And 19.0%
  • the lower heating value of the product gas was 3,910 kcal / m 3 .
  • Example 2 Glycerol was decomposed by the same method as in Example 1 except that the residence time (W / F) was 6.0 g ⁇ hr / mol. As a result of analyzing the gas generated by the decomposition, the gas yield was 69.6%, and the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane was 31.4%, 50.2%, 0.6, respectively. % And 17.9%, and the lower heating value of the product gas was 3,860 kcal / m 3 .
  • Example 3 Glycerol was decomposed by the same method as in Example 1 except that the residence time (W / F) was changed to 3.0 g ⁇ hr / mol.
  • the gas yield was 39.9%
  • the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane was 31.3%, 51.3%, 0.5%, respectively.
  • % And 16.9% and the lower heating value of the product gas was 3,800 kcal / m 3 .
  • Example 4 As iron ore, Yanty Cousiner ore (iron content: 58%, BET specific surface area: 20 m 2 / g) was used in place of the lobe river ore, and the residence time (W / F) was 12.0 g ⁇ hr / mol. Except that, glycerol was decomposed by the same method as in Example 1. As a result of analyzing the gas generated by the decomposition, the gas yield is 70%, and the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane is 31.5%, 50.0%, 0.5% and It was 18.0%, and the lower heating value of the product gas was 3,860 kcal / m 3 .
  • Example 5 Glycerol was decomposed by the same method as in Example 1 except that the decomposition temperature was 900 ° C. and the residence time (W / F) was 12.0 g ⁇ hr / mol. As a result of analyzing the gas generated by the decomposition, the gas yield is 80%, and the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane is 39%, 23%, 21% and 17%, respectively. The lower heating value of the gas was 3,160 kcal / m 3 .
  • Example 6 As iron ore, pill para blend ore (iron content: 62%, BET specific surface area: 6 m 2 / g) was used instead of lobe river ore, and the residence time (W / F) was 12.0 g ⁇ hr / mol. Except that, glycerin was decomposed by the same method as in Example 1. As a result of analyzing the gas produced by the decomposition, the gas yield was 76%, and the selectivity of hydrogen, carbon monoxide and methane was 49.7%, 35.0% and 15.3%, respectively. Carbon was not detected. The lower heating value of the product gas was 3,650 kcal / m 3 .
  • Example 7 Instead of lobe river ore, Calajas ore (iron content: 67%, BET specific surface area: 2 m 2 / g) was used as the iron ore, and the residence time (W / F) was 12.0 g ⁇ hr / mol.
  • glycerol was decomposed.
  • the gas yield was 81%, and the selectivity of hydrogen, carbon monoxide, carbon dioxide and methane was 46.2%, 34.3%, 3.5% and It was 16.0%, and the lower heating value of the product gas was 3,600 kcal / m 3 .
  • Example 1 A method similar to that of Example 1 was used except that the precipitated iron catalyst (iron content: 70%, BET specific surface area: 4.1 m 2 / g) was used instead of the robbrib ore, and the following decomposition conditions were used. Glycerol was decomposed. As decomposition conditions, the residence time (W / F) represented by the mass (W) of the iron catalyst with respect to the gas flow rate (F) was 18 g ⁇ hr / mol, the decomposition temperature was 800 ° C., and the decomposition pressure was atmospheric pressure. .
  • the residence time (W / F) represented by the mass (W) of the iron catalyst with respect to the gas flow rate (F) was 18 g ⁇ hr / mol
  • the decomposition temperature was 800 ° C.
  • the decomposition pressure was atmospheric pressure. .
  • the gas yield is 51.3%, and the selectivity of hydrogen, carbon monoxide and methane is 67.5%, 23.7% and 8.8%, respectively.
  • the lower heating value of the product gas was 3,210 kcal / m 3 . Carbon dioxide was not detected in the generated gas.
  • Example 2 Glycerol was obtained in the same manner as in Example 1 except that a silica-supported iron catalyst (iron content: 10%, BET specific surface area: 254 m 2 / g) was used instead of the robbrib ore, and the following decomposition conditions were used.
  • the residence time (W / F) represented by the mass (W) of the iron catalyst with respect to the gas flow rate (F) was 18 g ⁇ hr / mol
  • the decomposition temperature was 800 ° C.
  • the decomposition pressure was atmospheric pressure. .
  • the gas yield was 50%, and the selectivity of hydrogen, carbon monoxide and methane was 29.4%, 52.5% and 18.1%, respectively.
  • the lower heating value of the gas was 3,890 kcal / m 3 . Carbon dioxide was not detected in the generated gas.
  • Example 6 to 7 have a lower calorific value of the product gas than Example 4, but the iron content is 60% or more. It was found that the yield was high. From these results, in the method for producing a high calorific value gas of the present invention, the reaction rate is 1.8 times higher than the conventional decomposition of glycerin using an iron catalyst, and the yield of methane is increased. Thus, it can be seen that a gas having a higher calorific value can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明の目的は、グリセリンを分解して高発熱量ガスを得る、高発熱量ガスの製造方法を提供することである。本発明の高発熱量ガスの製造方法は、鉄鉱石を用いてグリセリンを分解し、低位発熱量が3,000kcal/m3以上の高発熱量ガスを得る、高発熱量ガスの製造方法である。

Description

高発熱量ガスの製造方法
 本発明は、高発熱量ガスの製造方法に関する。より詳しくは、グリセリンの分解を利用した高発熱量ガスの製造方法に関する。
 グリセリンはVIII族金属触媒によって一酸化炭素と水素に分解することが知られている。
 例えば、非特許文献1~4には、種々のVIII族金属触媒を用いたグリセリンの分解反応が報告されている。
 また、これらの非特許文献には、VIII族金属触媒の活性順列として、Ru=Rh>Ni>Ir>Co>Pt>Pd>Feが報告されており、更に、Ruが最も高活性であり、比較的廉価なVIII族金属の中ではNiが高い活性を持つことが報告されている。
平井寿英、他3名、「グリセリン水蒸気改質反応用触媒の開発」、石油・石油化学討論会講演要旨、第34巻、第248頁(2004年) 平井寿英、他4名、「Ru担持触媒を用いたグリセリンの水蒸気改質による水素製造」、日本エネルギー学会・大会講演要旨集、第14巻、第264-265頁(2005年) 末永卓哉、他4名、「Ni担持触媒を用いたグリセリンの水蒸気改質による水素製造」、石油学会年会講演要旨、第49巻、第93頁(2006年) 北村丞、他5名、「Ni/CaO-ZrO2触媒を用いたグリセリンの水蒸気改質による水素製造」、石油・石油化学討論会講演要旨、第38巻、第229頁(2008年)
 本発明者らは、上記非特許文献1~4に記載された触媒について検討したところ、グリセリンの水蒸気改質により製造される水素の収率は20~70%程度であり、また、一酸化炭素、メタンおよび二酸化炭素の選択率は、それぞれ20~30%、5~10%および60~75%となっており、二酸化炭素の割合が最も多くなっていることを明らかとした。なお、水素の収率とは、上記非特許文献1に記載されている通り、下記式(1)の反応(グリセリンの水蒸気改質反応)が完全に進行した時の水素収率を100%として算出した。
  C383+H2O(水蒸気)→3CO+4H2   (1)
 一方、水素、一酸化炭素およびメタンの低位発熱量は、それぞれ2580kcal/m3、3020kcal/m3および8560kcal/m3である。
 そのため、メタンが少なく、二酸化炭素の多い上記ガス組成では、その低位発熱量は低く、1800kcal/m3程度と推定することができる。
 そこで、本発明は、グリセリンを分解して高発熱量ガスを得る、高発熱量ガスの製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、鉄鉱石を用いてグリセリンを分解することにより、高発熱量ガスが得られることを見出し、本発明を完成させた。すなわち、本発明は、下記(1)~(5)を提供する。
 (1)鉄鉱石を用いてグリセリンを分解し、低位発熱量が3,000kcal/m3以上の高発熱量ガスを得る、高発熱量ガスの製造方法。
 (2)上記グリセリンの分解が、600~900℃の温度で行われる上記(1)に記載の高発熱量ガスの製造方法。
 (3)上記グリセリンが、バイオマス・ディーゼル燃料を生成した際に副生するグリセリンである上記(1)または(2)に記載の高発熱量ガスの製造方法。
 (4)上記鉄鉱石が、BET法による比表面積が10m2/g以上の鉄鉱石である、上記(1)~(3)のいずれかに記載の高発熱量ガスの製造方法。
 (5)上記鉄鉱石が、鉄含有率が50%以上の鉄鉱石である、上記(1)~(4)のいずれかに記載の高発熱量ガスの製造方法。
 以下に示すように、本発明によれば、グリセリンを分解して高発熱量ガスを得る、高発熱量ガスの製造方法を提供することができる。
 また、本発明の高発熱量ガスの製造方法は、近年注目されているバイオマス・ディーゼル燃料(BDF)の製造の際に副生されるグリセリンの分解にも利用することができる。
 ここで、本発明においては、グリセリンの起源は特に限定されないが、大量に生産されているBDFの副生グリセリンであれば、二酸化炭素排出量を増やすことなく高発熱量ガスを得ることができるため、大変有用な方法である。
図1は、グリセリンの分解(水蒸気改質反応)に用いた反応前後の鉄鉱石のX線回折像を示すグラフである。
 本発明の高発熱量ガスの製造方法は、鉄鉱石を用いてグリセリンを分解し、低位発熱量が3,000kcal/m3以上の高発熱量ガスを得る、高発熱量ガスの製造方法である。
 このような鉄鉱石を用いてグリセリンを分解することによって高発熱量ガスが得られる理由は詳細には明らかではないが、以下のように推測することができる。
 まず、グリセリンの800℃での分解反応の反応率は100%であり、化学平衡計算によれば、生成ガスの組成(乾燥ガスベース)は、水素が62.6%、一酸化炭素が24.6%、二酸化炭素が12.8%、メタンが0.05%となる。なお、この組成の低位発熱量は、2,360kcal/m3程度である。
 この化学平衡計算により算出される組成に比べて、鉄鉱石を用いて800℃でグリセリンを分解すると、後述する実施例に示す通り、メタンの選択率が格段に高くなり、かつ、二酸化炭素の選択率が格段に低くなることが分かる。この結果、生成したガスの低位発熱量は、3,000kcal/m3を超え、3,900kcal/m3程度まで増加することが分かる。
 この事実から、鉄鉱石を用いたグリセリンの分解では、直接メタンが生成しているものと推測することができる。
 以下に、本発明の高発熱量ガスの製造方法に用いられる鉄鉱石およびグリセリンの分解条件等について詳述する。
 <鉄鉱石>
 本発明の高発熱量ガスの製造方法に用いられる鉄鉱石は特に限定されない。
 本発明においては、グリセリンの分解において、上記鉄鉱石を単独で用いてもよく、石炭や石灰と混合・焼成した焼結鉱などと上記鉄鉱石との混合物として用いてもよい。
 上記鉄鉱石としては、具体的には、例えば、ローブリバー鉱石(ピソライト鉱石)、ヤンディークージナー鉱石、カラジャス鉱石などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、ピルパラブレンド鉱石のように、数種の鉄鉱石が混合された鉄鉱石でもよい。
 本発明の高発熱量ガスの製造方法においては、上記鉄鉱石のBET法による比表面積(以下、「BET比表面積」と略す。)が10m2/g以上であることが好ましく、15m2/g以上であるのがより好ましく、また、200m2/g以下であるのが好ましい。
 鉄鉱石のBET比表面積が上記範囲であると、メタンの選択率がより高くなり、また、鉄鉱石自体の機械的強度も良好であるため、より高発熱量のガスを安定して製造することができる。
 また、本発明の高発熱量ガスの製造方法においては、上記鉄鉱石の鉄含有率(鉄濃度)が、50%以上であるのが好ましく、60%以上であるのがより好ましい。
 鉄鉱石の鉄含有率が上記範囲であると、ガス収率が高くなる傾向があるため好ましい。
 図1に、グリセリンの分解(水蒸気改質反応)に用いた反応前後の鉄鉱石のX線回折像を示す。
 図1に示すように、グリセリンの分解前の鉄鉱石はヘマタイト(Fe23)が主成分であったのに対し、グリセリンの分解後の鉄鉱石はマグネタイト(Fe34)に還元されていることが分かる。
 そのため、本発明の高発熱量ガスの製造方法で用いた上記鉄鉱石は、使用後においては、製鉄材料として用いることにより、鉄鉱石を金属鉄に還元するためのコークス等の還元剤の使用量を低減することが可能となる。
 <分解条件>
 本発明の高発熱量ガスの製造方法におけるグリセリンの分解時の温度(分解温度)は特に限定されないが、二酸化炭素の選択率を抑制し、より高い発熱量のガスを製造することができる理由から、600~900℃であるのが好ましく、650~800℃であるのがより好ましい。
 ここで、グリセリンの分解により上述した組成のガスを生成する反応は、60kcal/molと僅かながら吸熱反応であるため、反応の進行させる熱源が必要となる。
 本発明においては、上記熱源は特に限定されず、例えば、製鉄所の排熱、具体的には、赤熱コークスの顕熱やスラグの顕熱を利用することが好適に挙げられる。
 また、グリセリンの分解時の圧力(分解圧力)は特に限定されないが、経済性および分解時間等の観点から、大気圧~0.5MPaであるのが好ましい。
 本発明の高発熱量ガスの製造方法は、上述した通り、近年注目されているバイオマス・ディーゼル燃料(BDF)の製造の際に副生されるグリセリン(以下、本段落においては「副生グリセリン」と略す。)の分解にも利用することができる。
 ここで、副生グリセリンは、水溶液の形態(グリセリン水溶液)またはメタノールとの混合物として副生されるものである。
 そして、鉄鉱石を用いたグリセリンの分解においては、上述した通り、二酸化炭素の選択率が低いため、水溶液を用いたとしても、共存する水により進行する下記式(2)の反応(シフト反応)による二酸化炭素の生成が殆ど進行しない。
 そのため、本発明の高発熱量ガスの製造方法は、副生グリセリンの分解に好適に用いることができる。
  CO+H2O→CO2+H2   (2)
 また、本発明の高発熱量ガスの製造方法においては、グリセリン水溶液における水とグリセリンとのモル比(水/グリセリン)は、経済性および作業性の観点から、2~10程度とするのが好ましく、3~5であるのがより好ましい。
 一方、BDFは、水を使わずに製造されることがあるが、この場合、副生グリセリンは、グリセリンとメタノールの混合物となる。メタノールは、下記式(3)によって、グリセリンよりも容易に分解される。
  CH3OH→CO+2H2    (3)
 (3)式によって生成するガスの低位発熱量は、2,730kcal/m3であるため、メタノールが多いと生成するガスの発熱量が低下する傾向にある。しかしながら副生グリセリン中のグリセリンの含有量が30%以上であれば、生成する高熱量ガスの低位発熱量が3,000kcal/m3以上となる。実際の副生グリセリン中のグリセリン含有率は70%以上なので、実質的にメタノールが含有されても問題はなく、BDF製造時に水が添加されていなくても、本発明の目的を達成することができる。
 更に、本発明の高発熱量ガスの製造方法においては、ガス流量(F)に対する上記鉄鉱石の質量(W)で表される滞留時間(W/F)は、2~20g・hr/molであるのが好ましく、5~10g・hr/molであるのがより好ましい。
 以下、実施例を用いて、本発明の高発熱量ガスの製造方法について詳細に説明する。ただし、本発明はこれに限定されるものではない。
 (実施例1)
 鉄鉱石としてローブリバー鉱石(鉄含有率:57%,BET比表面積:16m2/g)を用いて、グリセリン水溶液の分解を行った。
 分解条件として、グリセリン水溶液中の水とグリセリンとのモル比(水/グリセリン比)を3.4とし、滞留時間(W/F)を18g・hr/molとし、分解温度を800℃とし、分解圧力を大気圧とした。
 分解により生成したガスを分析した結果、ガス収率は96.3%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ31.4%、48.8%、0.7%および19.0%であり、生成ガスの低位発熱量は3,910kcal/m3であった。
 (実施例2)
 滞留時間(W/F)を6.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は69.6%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ31.4%、50.2%、0.6%および17.9%であり、生成ガスの低位発熱量は3,860kcal/m3であった。
 (実施例3)
 滞留時間(W/F)を3.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は39.9%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ31.3%、51.3%、0.5%および16.9%であり、生成ガスの低位発熱量は3,800kcal/m3であった。
 (実施例4)
 鉄鉱石として、ローブリバー鉱石に代えてヤンティークージナー鉱石(鉄含有率:58%,BET比表面積:20m2/g)を用い、滞留時間(W/F)を12.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は70%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ31.5%、50.0%、0.5%および18.0%であり、生成ガスの低位発熱量は3,860kcal/m3であった。
 (実施例5)
 分解温度を900℃とし、滞留時間(W/F)を12.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は80%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ39%、23%、21%および17%であり、生成ガスの低位発熱量は3,160kcal/m3であった。
 (実施例6)
 鉄鉱石として、ローブリバー鉱石に代えてピルパラブレンド鉱石(鉄含有率:62%,BET比表面積:6m2/g)を用い、滞留時間(W/F)を12.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は76%であり、水素、一酸化炭素およびメタンの選択率は、それぞれ49.7%、35.0%および15.3%であり、二酸化炭素は検出されなかった。生成ガスの低位発熱量は3,650kcal/m3であった。
 (実施例7)
 鉄鉱石として、ローブリバー鉱石に代えてカラジャス鉱石(鉄含有率:67%,BET比表面積:2m2/g)を用い、滞留時間(W/F)を12.0g・hr/molとした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解により生成したガスを分析した結果、ガス収率は81%であり、水素、一酸化炭素、二酸化炭素およびメタンの選択率は、それぞれ46.2%、34.3%、3.5%および16.0%であり、生成ガスの低位発熱量は3,600kcal/m3であった。
 (比較例1)
 ローブリバー鉱石に代えて、沈殿鉄触媒(鉄含有率:70%,BET比表面積:4.1m2/g)を用い、以下の分解条件とした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解条件として、ガス流量(F)に対する鉄触媒の質量(W)で表される滞留時間(W/F)を18g・hr/molとし、分解温度を800℃とし、分解圧力を大気圧とした。
 分解により生成したガスを分析した結果、ガス収率は51.3%であり、水素、一酸化炭素およびメタンの選択率は、それぞれ67.5%、23.7%および8.8%であり、生成ガスの低位発熱量は3,210kcal/m3であった。なお、生成したガス中に二酸化炭素は検出されなかった。
 (比較例2)
 ローブリバー鉱石に代えて、シリカ担持鉄触媒(鉄含有率:10%,BET比表面積:254m2/g)を用い、以下の分解条件とした以外は、実施例1と同様の方法により、グリセリンの分解を行った。
 分解条件として、ガス流量(F)に対する鉄触媒の質量(W)で表される滞留時間(W/F)を18g・hr/molとし、分解温度を800℃とし、分解圧力を大気圧とした。
 分解により生成したガスを分析した結果、ガス収率は50%であり、水素、一酸化炭素およびメタンの選択率は、それぞれ29.4%、52.5%および18.1%であり、生成ガスの低位発熱量は3,890kcal/m3であった。なお、生成したガス中に二酸化炭素は検出されなかった。
 比較例1の結果から、沈殿鉄触媒を用いてグリセリンを分解すると、メタンの選択率が少なく、グリセリンの分解率(ガス収率)も低くなるため、高発熱量ガスが効率よく製造できないことが分かった。
 また、比較例2の結果から、担持鉄触媒を用いてグリセリンを分解すると、グリセリンの分解率(ガス収率)が低くなるため、高発熱量ガスが効率よく製造できないことが分かった。
 これに対し、実施例1~7の結果から、鉄鉱石を用いてグリセリンを分解することにより、メタンの選択率が10%以上となり、グリセリンの分解率(ガス収率)も高くなるため、低位発熱量が3,000kcal/m3以上となる高発熱量ガスが効率よく製造できることが分かった。
 特に、実施例1~5と実施例6~7との対比から、使用する鉄鉱石のBET比表面積が10m2/g以上であると、メタンの選択率が高くなり、より高発熱量のガスが効率よく製造できる傾向があることが分かった。
 また、実施例4と実施例6~7との対比から、実施例6~7は、実施例4よりも生成ガスの低位発熱量は低いが、鉄含有率が60%以上であるため、ガス収率が高くなることが分かった。
 これらの結果から、本発明の高発熱量ガスの製造方法では、従来の鉄触媒を用いたグリセリンの分解と比較して、1.8倍の反応速度が得られ、メタンの収率が高まることから、より高発熱量のガスが得られることが分かる。

Claims (5)

  1.  鉄鉱石を用いてグリセリンを分解し、低位発熱量が3,000kcal/m3以上の高発熱量ガスを得る、高発熱量ガスの製造方法。
  2.  前記グリセリンの分解が、600~900℃の温度で行われる請求項1に記載の高発熱量ガスの製造方法。
  3.  前記グリセリンが、バイオマス・ディーゼル燃料を生成した際に副生するグリセリンである請求項1または2に記載の高発熱量ガスの製造方法。
  4.  前記鉄鉱石が、BET法による比表面積が10m2/g以上の鉄鉱石である、請求項1~3のいずれかに記載の高発熱量ガスの製造方法。
  5.  前記鉄鉱石が、鉄含有率が50%以上の鉄鉱石である、請求項1~4のいずれかに記載の高発熱量ガスの製造方法。
PCT/JP2014/058963 2013-03-29 2014-03-27 高発熱量ガスの製造方法 WO2014157553A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112015024606-0A BR112015024606B1 (pt) 2013-03-29 2014-03-27 Processo de fabricação de gás de alta caloria
CN201480018882.2A CN105073632B (zh) 2013-03-29 2014-03-27 高热值气体的制造方法
KR1020157025918A KR101634513B1 (ko) 2013-03-29 2014-03-27 고발열량 가스의 제조 방법
JP2015508714A JP5754563B2 (ja) 2013-03-29 2014-03-27 高発熱量ガスの製造方法
EP14772585.7A EP2980015B1 (en) 2013-03-29 2014-03-27 High-calorie gas manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013071883 2013-03-29
JP2013-071883 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157553A1 true WO2014157553A1 (ja) 2014-10-02

Family

ID=51624511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058963 WO2014157553A1 (ja) 2013-03-29 2014-03-27 高発熱量ガスの製造方法

Country Status (6)

Country Link
EP (1) EP2980015B1 (ja)
JP (1) JP5754563B2 (ja)
KR (1) KR101634513B1 (ja)
CN (1) CN105073632B (ja)
BR (1) BR112015024606B1 (ja)
WO (1) WO2014157553A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202694A (ja) * 1987-02-18 1988-08-22 Mitsui Eng & Shipbuild Co Ltd 石炭の水添乾留法
JP2011105523A (ja) * 2009-11-12 2011-06-02 Kao Corp 水性ガスの製造方法
US20110263916A1 (en) * 2010-04-27 2011-10-27 Conocophillips Company Carbohydrates upgrading and hydrotreating to hydrocarbons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2429980A (en) * 1942-11-27 1947-11-04 Lion Oil Co Process of conducting chemical reactions
US5529599A (en) * 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
CN101321690B (zh) * 2006-04-05 2012-03-14 花王株式会社 反应器
BRPI0903986B1 (pt) * 2009-04-20 2019-09-17 Vale S/A Processo de inibição de emissão de particulados durante atrito de pelotas de minério de ferro tratadas termicamente
WO2011127869A1 (en) * 2010-04-15 2011-10-20 G.F. Agro A.S. Method for processing of a mixture of waste substances containing glycerol as a prevailing component
DE102011014824A1 (de) * 2011-03-23 2012-09-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-Fuel Pyrolysesystem sowie Verfahren zur Erzeugung von elektrischer Energie und/oder Wärme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202694A (ja) * 1987-02-18 1988-08-22 Mitsui Eng & Shipbuild Co Ltd 石炭の水添乾留法
JP2011105523A (ja) * 2009-11-12 2011-06-02 Kao Corp 水性ガスの製造方法
US20110263916A1 (en) * 2010-04-27 2011-10-27 Conocophillips Company Carbohydrates upgrading and hydrotreating to hydrocarbons

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980015A4
SUSUMU KITAMURA: "Production of Hydrogen by Steam Reforming of Glycerin over NijCaO-Zr0 Catalyst", PROCEEDINGS OF PETROLEUM-PETROCHEMICAL SYMPOSIUM, vol. 38, 2008, pages 229
TAKUYA SUENAGA: "Production of Hydrogen by Steam Reforming of Glycerin over Nickel Catalyst", PROCEEDINGS OF ANNUAL CONFERENCE OF THE JAPAN PETROLEUM INSTITUTE, vol. 49, 2006, pages 93
TOSHIHIDE HIRAI: "Development of Catalyst for Glycerin Steam Reforming Reaction", PROCEEDINGS OF PETROLEUM-PETROCHEMICAL SYMPOSIUM, vol. 34, 2004, pages 248
TOSHIHIDE HIRAI: "Production of Hydrogen by Steam Reforming of Glycerin over Ruthenium Catalyst", PROCEEDINGS OF CONFERENCE OF THE JAPAN INSTITUTE OF ENERGY, vol. 14, 2005, pages 264 - 265

Also Published As

Publication number Publication date
EP2980015A4 (en) 2016-05-11
BR112015024606B1 (pt) 2022-02-08
EP2980015A1 (en) 2016-02-03
BR112015024606A2 (pt) 2017-07-18
CN105073632A (zh) 2015-11-18
KR20150119429A (ko) 2015-10-23
JP5754563B2 (ja) 2015-07-29
CN105073632B (zh) 2017-03-15
JPWO2014157553A1 (ja) 2017-02-16
KR101634513B1 (ko) 2016-06-28
EP2980015B1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
Norouzi et al. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts
Wang et al. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst
KR101716486B1 (ko) 저탄소 배출 피셔-트롭슈 합성 테일 가스의 포괄적 활용 방법
Oemar et al. Promotional effect of Fe on perovskite LaNixFe1− xO3 catalyst for hydrogen production via steam reforming of toluene
Stonor et al. Biomass conversion to H 2 with substantially suppressed CO 2 formation in the presence of Group I & Group II hydroxides and a Ni/ZrO 2 catalyst
Monterroso et al. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification
JP5680658B2 (ja) 水性ガスシフト反応プロセス
Italiano et al. Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts
JP2013510064A5 (ja)
Xu et al. Dry and steam reforming of biomass pyrolysis gas for rich hydrogen gas
Cha et al. Reaction characteristics of two-step methane reforming over a Cu-ferrite/Ce–ZrO2 medium
JP2012520819A (ja) 水素に富むガス混合物を調製する方法
Herrer et al. Hydrogen from synthetic biogas via SIP using NiAl2O4 catalyst: Reduction stage
KR101420660B1 (ko) 코크스 오븐 가스(cog)의 개질 반응을 이용한 수소 및 일산화탄소가 풍부한 철광석 환원용 가스의 제조방법
De Llobet et al. CH4 and CO2 partial pressures influence and deactivation study on the Catalytic Decomposition of Biogas over a Ni catalyst
KR20190064442A (ko) 고발열량의 합성천연가스 제조방법 및 그 제조장치
Veiga et al. NiLaM (M= Ce and/or Zr) mixed oxide catalysts for synthesis gas production by biogas reforming processes
Zhu et al. Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO2 hydrogenation
Ayoub et al. Effects of operating parameters for dry reforming of methane: A short review
JP5754563B2 (ja) 高発熱量ガスの製造方法
JP2006111477A5 (ja)
US20190330059A1 (en) Boron-containing catalysts for dry reforming of methane to synthesis gas
Hang et al. Methanol Activation Catalyzed by Small Earth-Alkali Mixed Silicon Clusters Si m–n M n with M= Be, Mg, Ca and m= 3–4, n= 0–1
Mirkarimi et al. Review of methane cracking over carbon-based catalyst for energy and fuels
US10800987B2 (en) Composite iron-sodium catalyst for coal gasification

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018882.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157025918

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014772585

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024606

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150924