WO2014157210A1 - 半導体装置の製造方法、基板処理装置及び記録媒体 - Google Patents
半導体装置の製造方法、基板処理装置及び記録媒体 Download PDFInfo
- Publication number
- WO2014157210A1 WO2014157210A1 PCT/JP2014/058300 JP2014058300W WO2014157210A1 WO 2014157210 A1 WO2014157210 A1 WO 2014157210A1 JP 2014058300 W JP2014058300 W JP 2014058300W WO 2014157210 A1 WO2014157210 A1 WO 2014157210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- gas
- supplying
- processing
- microwave
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
- H01L21/02222—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02323—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
- H01L21/02326—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
Definitions
- the present invention relates to a method for manufacturing a semiconductor device for processing a substrate with gas, a substrate processing apparatus, and a recording medium.
- the element separation of LSI is performed by forming a gap such as a groove or a hole between elements to be separated in silicon (Si) as a substrate and depositing an insulator in the gap.
- An oxide film is often used as the insulator, and for example, a silicon oxide film is used.
- the silicon oxide film is formed by oxidation of the Si substrate itself, chemical vapor deposition (CVD), or insulator coating (SOD).
- the embedding method by the CVD method is reaching the technical limit for embedding a fine structure, particularly for embedding oxide in a void structure deep in the vertical direction or narrow in the horizontal direction.
- the embedding method using a fluid oxide that is, the use of SOD is increasing.
- SOD a coating insulating material containing an inorganic or organic component called SOG (Spin-on-glass) is used.
- SOG Spin-on-glass
- This material has been used in LSI manufacturing processes before the advent of CVD oxide films, but the processing technique is not as fine as the processing dimensions of 0.35 ⁇ m to 1 ⁇ m. It was allowed by performing heat treatment at about 400 ° C in an atmosphere.
- the minimum processing dimension represented by DRAM (Dynamic Random Access Memory) and Flash Memory has become smaller than 50 nm width, and the number of device manufacturers using polysilazane as an alternative material to SOG is increasing.
- Polysilazane is a material obtained by, for example, a catalytic reaction of dichlorosilane or trichlorosilane and ammonia, and is used when a thin film is formed by coating on a substrate using a spin coater.
- the film thickness is adjusted by the molecular weight of polysilazane, the viscosity, and the rotation speed of the coater.
- Polysilazane is known to contain nitrogen derived from ammonia as an impurity after formation from the manufacturing process, and in order to remove this and obtain a dense oxide film, addition of moisture and heat treatment are performed after coating. It is necessary to do.
- a method of adding moisture a method of generating moisture by reacting hydrogen and oxygen in a heat treatment furnace body is known, and the generated moisture is taken into the polysilazane film and heat is applied to perform precise oxidation. Get a membrane.
- the heat treatment performed at this time is STI (Shallow Trench Isolation) for element isolation, and the maximum temperature may reach about 1000 ° C. in some cases.
- the reason for reducing the thermal load is to prevent excessive diffusion of impurities such as boron, arsenic, and phosphorus implanted for transistor operation, prevent aggregation of metal silicide for electrodes, and work function metal materials for gates. There are performance fluctuation prevention, memory element writing, and reading repeated life ensuring.
- An object of the present invention is to provide a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium capable of improving the manufacturing quality of a semiconductor device and improving the manufacturing throughput.
- a process in which a substrate on which a film having a silazane bond is formed is accommodated in a processing chamber, and a processing liquid containing hydrogen peroxide is dropped into a vaporization section to generate a processing gas, and the processing gas is supplied to the substrate.
- a method for manufacturing a semiconductor device comprising: a step; and a step of supplying a microwave to a substrate processed with the processing gas.
- a processing chamber in which a substrate on which a film having a silazane bond is formed is accommodated, a vaporizer having a vaporization unit into which a treatment liquid containing hydrogen peroxide is dropped, and a microwave supply unit for supplying microwaves to the substrate
- the vaporizer and the microwave supply unit so that the treatment liquid is dropped onto the vaporizing unit to generate a processing gas, and the processing gas is supplied to the substrate and then the microwave is supplied to the substrate.
- a control unit for controlling the substrate processing apparatus.
- a procedure in which a substrate on which a film having a cisilazan bond is formed is accommodated in a processing chamber, and a processing liquid containing hydrogen peroxide is dropped into a vaporization section to generate a processing gas and supply the processing gas to the substrate.
- a recording medium on which a program for causing a computer to execute a procedure and a procedure for supplying a microwave to a substrate processed with the processing gas is recorded.
- the manufacturing quality of the semiconductor device can be improved and the manufacturing throughput can be improved.
- FIG. 3 is a schematic configuration diagram of a controller of a substrate processing apparatus suitably used in the first to third embodiments. It is a flowchart which shows the substrate processing process which concerns on 1st Embodiment.
- 1 is a pervaporation generating apparatus according to first and second embodiments.
- FIG. 4A is a schematic configuration diagram in the vicinity of a furnace port according to the first to third embodiments.
- B) is a schematic configuration diagram showing another configuration near the furnace port according to the first to third embodiments.
- FIG. 4A is a schematic configuration diagram in the vicinity of a furnace port according to the first to third embodiments.
- FIG. 5 is a schematic diagram illustrating an example of a position of a microwave source according to the first to third embodiments. It is a schematic block diagram of the substrate processing apparatus which concerns on 2nd Embodiment. It is a longitudinal cross-sectional schematic diagram of the processing furnace with which the substrate processing apparatus which concerns on 2nd Embodiment is provided. It is a schematic block diagram of the substrate processing apparatus which concerns on 3rd Embodiment. It is a longitudinal cross-sectional schematic diagram of the processing furnace with which the substrate processing apparatus which concerns on 3rd Embodiment is provided. It is a flowchart which shows the substrate processing process which concerns on 3rd Embodiment.
- FIG. 1 is a schematic configuration diagram of a substrate processing apparatus according to the present embodiment, and shows a processing furnace 202 portion in a longitudinal section.
- FIG. 2 is a schematic longitudinal sectional view of the processing furnace 202 provided in the substrate processing apparatus according to the present embodiment.
- the processing furnace 202 includes a reaction tube 203.
- the reaction tube 203 is made of, for example, a heat-resistant material combining quartz (SiO 2 ) and silicon carbide (SiC), or a heat-resistant material such as SiO 2 or SiC, and is formed in a cylindrical shape having upper and lower ends opened.
- a processing chamber 201 is formed in the hollow cylindrical portion of the reaction tube 203 and is configured to be able to accommodate wafers 200 as substrates in a state where they are aligned in multiple stages in a horizontal posture and in a vertical direction by a boat 217 described later.
- a seal cap 219 serving as a furnace port lid that can hermetically seal (close) the lower end opening (furnace port) of the reaction tube 203 is provided below the reaction tube 203.
- the seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction.
- the seal cap 219 is formed in a disc shape.
- a substrate processing chamber 201 serving as a substrate processing space includes a reaction tube 203 and a seal cap 219.
- a boat 217 as a substrate holding unit is configured to hold a plurality of wafers 200 in multiple stages.
- the boat 217 includes a plurality of support columns 217 a that hold a plurality of wafers 200.
- three support columns 217a are provided.
- Each of the plurality of support columns 217a is installed between the bottom plate 217b and the top plate 217c.
- a plurality of wafers 200 are aligned on the column 217a in a horizontal posture and aligned with each other, and are held in multiple stages in the tube axis direction.
- the top plate 217 c is formed so as to be larger than the maximum outer diameter of the wafer 200 held by the boat 217.
- silicon carbide (SiC), aluminum oxide (AlO), aluminum nitride (AlN), silicon nitride (SiN), zirconium oxide (ZrO) and the like are used as the constituent materials of the columns 217a, the bottom plate 217b, and the top plate 217c.
- Good non-metallic materials are used.
- a nonmetallic material having a thermal conductivity of 10 W / mK or more is preferable. If the thermal conductivity is not a problem, it may be formed of quartz (SiO) or the like. If the contamination of the metal wafer 200 is not a problem, the support 217a and the top plate 217c are made of stainless steel (SUS). ) Or the like.
- a metal is used as a constituent material of the support columns 217a and the top plate 217c, a film such as ceramic or Teflon (registered trademark) may be formed on the metal.
- a heat insulator 218 made of a heat-resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the first heating unit 207 is not easily transmitted to the seal cap 219 side. Yes.
- the heat insulator 218 functions as a heat insulating member and also functions as a holding body that holds the boat 217.
- the heat insulator 218 is not limited to the one in which a plurality of heat insulating plates formed in a disk shape are provided in a horizontal posture as shown in the figure, and may be a quartz cap formed in a cylindrical shape, for example. good.
- the heat insulator 218 may be considered as one of the constituent members of the boat 217.
- a boat elevator is provided as an elevating unit that raises and lowers the boat 217 and conveys the inside and outside of the reaction tube 203.
- the boat elevator is provided with a seal cap 219 that seals the furnace port when the boat 217 is raised by the boat elevator.
- a boat rotation mechanism 267 that rotates the boat 217 is provided on the side of the seal cap 219 opposite to the processing chamber 201.
- a rotation shaft 261 of the boat rotation mechanism 267 is connected to the boat 217 through the seal cap 219, and is configured to rotate the wafer 200 by rotating the boat 217.
- a first heating unit 207 that heats the wafer 200 in the reaction tube 203 is provided outside the reaction tube 203 in a concentric shape surrounding the side wall surface of the reaction tube 203.
- the first heating unit 207 is supported and provided by the heater base 206.
- the first heating unit 207 includes first to fourth heater units 207a to 207d.
- the first to fourth heater units 207a to 207d are provided along the stacking direction of the wafers 200 in the reaction tube 203, respectively.
- first to fourth temperature sensors 263a to 263d such as thermocouples are provided as temperature detectors for detecting the temperature of the wafer 200 or the surroundings. Each is provided between the reaction tube 203 and the boat 217. Note that the first to fourth temperature sensors 263a to 263d respectively indicate the temperature of the wafer 200 positioned at the center of the plurality of wafers 200 heated by the first to fourth heater units 207a to 207d, respectively. It may be provided to detect.
- a controller 121 (to be described later) is electrically connected to the first heating unit 207 and the first to fourth temperature sensors 263a to 263d. Based on the temperature information detected by the first to fourth temperature sensors 263a to 263d so that the temperature of the wafer 200 in the reaction tube 203 becomes a predetermined temperature, the controller 121 first to fourth.
- the power supply to the heater units 207a to 207d is controlled at a predetermined timing, and the temperature setting and temperature adjustment are individually performed for each of the first to fourth heater units 207a to 207d.
- a gas supply pipe 233 serving as a gas supply unit that supplies a vaporized raw material as a processing gas into the reaction pipe 203 is provided outside the reaction pipe 203.
- a vaporizing raw material a raw material having a boiling point of 50 to 200 ° C. is used.
- a liquid containing hydrogen peroxide (H 2 O 2 ) is shown. It should be noted that water vapor (H 2 O) may be used particularly when a reduction in processing efficiency or quality is allowed.
- a supersteam generator 307 is connected to the gas supply pipe 233.
- a hydrogen peroxide solution source 240d, a liquid flow rate controller 241d, and a valve 242d are connected to the pervaporant generator 307 from the upstream side via a superaqueous solution supply pipe 232d.
- the super-water vapor generator 307 can be supplied with the super-aqueous liquid whose flow rate is adjusted by the liquid flow rate controller 241d.
- the gas supply pipe 233 is provided with an inert gas supply pipe 232c, a valve 242c, an MFC 241c, and an inert gas supply source 240c so that an inert gas can be supplied. .
- the gas supply unit includes a gas supply nozzle 501, a gas supply hole 502, a gas supply pipe 233, a super-steam generator 307, a superaqueous liquid supply pipe 232d, a valve 242d, an MFC 241d, an inert gas supply pipe 232c, a valve 242c, and an MFC 241c. Composed. Note that the hydrogen peroxide solution source 240d and the inert gas supply source 240c may be included in the pervaporation supply unit.
- a portion that is exposed to excessive water in the substrate processing apparatus is made of a material that does not easily react with excessive water.
- the material that hardly reacts with excess water include ceramics such as Al 2 O 3 , AlN, and SiC, and quartz.
- a member using aluminum uses alumite (Al 2 O 3 )
- a member using stainless steel uses a chromium oxide film.
- FIG. 5 shows a configuration of a pervaporation generator 307 that generates hydrogen peroxide vapor as a processing gas.
- the pervaporation generator 307 uses a dropping method in which the raw material liquid is vaporized by supplying (dropping) the raw material liquid to a heated member.
- the super-steam generator 307 includes a dropping nozzle 300 as a liquid supply unit that supplies super-aqueous liquid, a vaporization container 302 as a member to be heated, a vaporization space 301 composed of the vaporization container 302, and a vaporization container 302.
- a vaporizer heater 303 as a heating unit for heating, an exhaust port 304 for exhausting the vaporized raw material liquid to the reaction chamber, a thermocouple 305 for measuring the temperature of the vaporization vessel 302, and a temperature measured by the thermocouple 305.
- the temperature controller 400 that controls the temperature of the vaporizer heater 303 and a chemical solution supply pipe 307 that supplies the raw material solution to the dropping nozzle 300.
- the vaporization container 302 is heated by a vaporizer heater 303 so that the dropped raw material liquid reaches the vaporization container and vaporizes at the same time.
- the boiling point of hydrogen peroxide is different from that of water, and when the liquid is gradually heated and vaporized, the water evaporates first, and the hydrogen peroxide evaporates later. Immediately after the start, the concentration in the gas changes.
- a heat insulating material 306 capable of improving the heating efficiency of the vaporization container 302 by the vaporizer heater 303 and capable of heat insulation between the super-steam generator 307 and other units is provided.
- the vaporization vessel 302 is made of quartz, silicon carbide or the like in order to prevent reaction with the raw material liquid. The temperature of the vaporization container 302 is lowered by the temperature of the dropped raw material liquid and the heat of vaporization.
- silicon carbide having a high thermal conductivity in order to prevent a temperature drop.
- the method of dropping is used, but if the heated member is sufficiently heated and the temperature does not change, it may be supplied continuously or the liquid may be sprayed onto the particles. Also good.
- APC Automatic Pressure Controller
- the inside of the substrate processing chamber 201 is evacuated by the negative pressure generated by the vacuum pump 246.
- the APC valve 255 is an on-off valve that can exhaust and stop the exhaust of the substrate processing chamber 201 by opening and closing the valve. Moreover, it is also a pressure control valve which can adjust a pressure by adjusting a valve opening degree.
- a pressure sensor 223 as a pressure detector is provided on the upstream side of the APC valve 255.
- the substrate processing chamber 201 is configured to be evacuated so that the pressure in the substrate processing chamber 201 becomes a predetermined pressure (degree of vacuum).
- a pressure control unit 284 is electrically connected to the substrate processing chamber 201 and the pressure sensor 223 by the APC valve 255, and the pressure control unit 284 is controlled by the APC valve 255 based on the pressure detected by the pressure sensor 223. It is configured to control at a desired timing so that the pressure in the substrate processing chamber 201 becomes a desired pressure.
- the exhaust part is composed of a gas exhaust pipe 231, an APC valve 255, a pressure sensor 223, and the like.
- the vacuum pump 246a may be included in the exhaust part.
- the gas exhaust pipe 231 is provided with an exhaust tube heater 284 as an exhaust heating section for heating the gas exhaust pipe.
- the exhaust tube heater 284 is controlled to a desired temperature so that condensation does not occur inside the gas exhaust pipe 231. For example, the temperature is controlled to 50 ° C. to 300 ° C.
- an inlet tube heater 285 as a supply heating unit is provided between the gas supply pipe 233 and the reaction pipe 203.
- the inlet tube heater 285 is controlled to a desired temperature so that condensation does not occur inside the gas supply pipe 233.
- the temperature is controlled to 50 ° C. to 300 ° C.
- the gas supply pipe 233 and the gas exhaust pipe 231 are provided at positions facing each other, but may be provided on the same side. Since the vacant space in the substrate processing apparatus and the vacant space in the semiconductor device factory where a plurality of substrate processing apparatuses are provided are narrow, the gas supply pipe 233 and the gas exhaust pipe 231 are thus provided on the same side. Maintenance of the supply pipe 233, the gas exhaust pipe 231 and the liquefaction prevention heater 280 can be easily performed.
- the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
- the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
- an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
- the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
- a control program that controls the operation of the substrate processing apparatus, a program recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
- the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing step to be described later, and functions as a program.
- the program recipe, the control program, and the like are collectively referred to simply as a program.
- the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
- the I / O port 121d includes the above-described liquid flow rate controller 294, mass flow controllers 241a, 241b, 241c, 241d, 299b, 299c, 299d, 299e, valves 242a, 242b, 242c, 242d, 209, 240, 295a, 295b, 295c.
- first heating unit 207 (207a, 207b, 207c, 207d), third heating unit 209, blower rotation mechanism 259, first to fourth
- the temperature sensors 263a to 263d, the boat rotation mechanism 267, the liquefaction prevention control device 287, the pressure sensor 223, the temperature control controller 400, and the like are connected.
- the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the flow rate of the liquid material by the liquid flow rate controller 294 and the flow rates of various gases by the MFCs 241a, 241b, 241c, 241d, 299b, 299c, 299d, and 299e so as to follow the contents of the read process recipe.
- the rotation speed adjustment operation of the rotation mechanism 267, the temperature control of the second heating unit 280 by the liquefaction prevention control device 287, the excessive water vapor generation device 307 by the temperature controller 400, and the like are configured to be controlled.
- the controller 121 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer.
- an external storage device storing the above-described program for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card
- the controller 121 according to the present embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123.
- the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
- the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line.
- the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, when the term “recording medium” is used, it may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both.
- the first embodiment includes a coating step S302 for coating an oxide film material formed by a coating method, a pre-baking step S303 for drying a solvent component in the film after coating, and exposure or immersion in hydrogen peroxide water after drying.
- an oxide film material is applied to the wafer 200 carried into the processing chamber by, for example, a spin coating method.
- the oxide film material is polysilazane (PHPS; Perhydro-Polysilazane).
- PHPS polysilazane
- minute irregularities are formed on the wafer 200.
- the minute unevenness is formed by, for example, a trench such as a gate insulating film and a gate electrode, or a minute semiconductor element.
- pre-baking is performed in which the wafer 200 coated with PHPS is heated, the solvent in the coated PHPS is evaporated, and the PHPS is cured.
- the wafer 200 is heated by a heating unit provided in the processing chamber.
- the heating unit has a microwave source (see FIG. 7) described later.
- a plurality of wafers may be heated simultaneously with a plurality of wafers 200 accommodated.
- hydrogen peroxide solution treatment oxidation step S304 hydrogen peroxide solution is supplied to the wafer 200 on which the PHPS film is formed.
- the PHPS film is oxidized and a silicon oxide film is formed.
- the supply of hydrogen peroxide to the wafer 200 is performed while rotating the wafer 200.
- the hydrogen peroxide solution supplied to the pervaporation generator 307 is dropped from the dropping nozzle 300 to the bottom of the vaporization vessel 302.
- the vaporization container 302 is heated to a desired temperature (for example, 150 to 170 ° C.) by the vaporizer heater 303, and the dropped hydrogen peroxide droplets are heated and evaporated to become a gas.
- the excess water that has become gas is supplied to the wafer 200 accommodated in the substrate processing chamber 201 through the gas supply pipe 233, the gas supply nozzle 401, and the gas supply hole 402.
- the vaporized gas of hydrogen peroxide water undergoes an oxidation reaction with the surface of the wafer 200, whereby the silicon-containing film formed on the wafer 200 is modified to an SiO film.
- hydrogen peroxide (H 2 O 2 ) water has a simple structure in which hydrogen is bonded to oxygen molecules, the hydrogen peroxide (H 2 O 2 ) water has a feature that it easily penetrates into a low-density medium. Further, the hydrogen peroxide solution generates hydroxy radicals (OH *) when decomposed. This hydroxy radical is a kind of active oxygen and is a neutral radical in which oxygen and hydrogen are bonded. Hydroxy radicals have a strong oxidizing power.
- the silicon-containing film (PHPS film) on the wafer 200 is oxidized by the hydroxy radical generated by the decomposition of the supplied hydrogen peroxide solution, and a silicon oxide film is formed.
- the silazane bond (Si—N bond) and the Si—H bond of the silicon-containing film are broken by the oxidizing power of the hydroxy radical. Then, the cut nitrogen (N) and hydrogen (H) are replaced with oxygen (O) contained in the hydroxy radical, and a Si—O bond is formed in the silicon-containing film. As a result, the silicon-containing film is oxidized and modified into a silicon oxide film. Even when a film having minute unevenness is formed on the wafer 200, hydrogen peroxide can be uniformly permeated from the top to the bottom of the silicon-containing film embedded in the unevenness.
- the vacuum pump 246 b and the liquid recovery tank 247 are exhausted. That is, the APC valve 255 is closed, the valve 240 is opened, and the exhaust gas exhausted from the reaction tube 203 is allowed to pass through the separator 244 from the gas exhaust tube 231 through the second exhaust tube 243. Then, after separating the exhaust gas into a liquid containing hydrogen peroxide and a gas not containing hydrogen peroxide by the separator 244, the gas is exhausted from the vacuum pump 246b, and the liquid is recovered in the liquid recovery tank 247.
- valve 240 and the APC valve 255 may be closed to pressurize the reaction tube 203. Thereby, the hydrogen peroxide water atmosphere in the reaction tube 203 can be made uniform.
- valve 242d is closed and the supply of hydrogen peroxide water into the reaction tube 203 is stopped.
- the present invention is not limited to this, and for example, a liquid containing ozone (O 3 ). Etc. may be used. Water vapor (H 2 O) may be used particularly when processing efficiency and quality deterioration are allowed.
- a chemical bath may be provided in the processing chamber, and hydrogen peroxide solution may be stored in the chemical bath in advance, and the wafer 200 may be immersed in the hydrogen peroxide solution.
- pure water is supplied to the wafer 200 to remove hydrogen peroxide and by-products, and the wafer 200 is dried.
- the pure water is preferably supplied by rotating the wafer 200. Pure water is supplied by a pure water supply nozzle (not shown). Drying is performed by rotating the wafer 200. By rotating the wafer 200, centrifugal force acts on the moisture on the wafer 200 and is removed. Further, the wafer 200 may be dried by supplying alcohol and replacing the moisture and alcohol, and then removing the alcohol. The alcohol is supplied to the wafer 200 in a vapor state. Further, an alcohol liquid may be dropped on the wafer.
- the removal of alcohol may be promoted by providing a heating element (not shown) in the processing chamber and heating the wafer 201 to an appropriate temperature.
- a heating element for example, a lamp heater (not shown), a resistance heater (not shown), or the like is used as the heating element.
- IPA isopropyl alcohol
- the drying step S305 may be performed in a state where a plurality of wafers 200 are accommodated in the processing chamber.
- the baking step S306 for heating the dried wafer 200 will be described.
- the wafer 200 on which the silicon oxide film is formed is subjected to heat treatment. Specifically, after the processing chamber is set to a nitrogen atmosphere, the wafer 200 is heated to 150 ° C. or higher and 500 ° C. or lower. Preferably it heats to 200 to 400 degreeC. For example, it is heated to 200 ° C.
- the wafer is heated by a microwave source (see FIG. 7) described later. Further, heating may be performed while supplying an oxygen-containing gas into the treatment chamber.
- oxygen-containing gas examples include oxygen (O 2 ) gas, water vapor (H 2 O), ozone (O 3 ) gas, nitrous oxide (NO) gas, and nitrogen oxide (NO 2 ) gas. Further, heating may be performed in a state where a plurality of wafers 200 are accommodated in the processing chamber.
- the coating process to the baking process S306 may be performed in the same processing chamber, a coating processing chamber for performing the coating process, a prebaking processing chamber for performing the prebaking process, an oxidation / drying process for performing the oxidation process and the drying process.
- Each process may be performed by providing separate process chambers such as a bake process chamber for performing the bake process.
- FIG. 7 shows an example of a microwave source as an electromagnetic wave supply source of the present invention.
- the microwave source 655 is provided on the side surface of the reaction vessel 203 and is applied for 30 minutes at a frequency in the range of 1 GHz to 100 GHz, for example, to raise the temperature of the wafer 200 to 100 to 450 ° C., for example, 400 ° C. That is, the microwave source 655 supplies microwaves or millimeter waves into the processing chamber 637 via the waveguide 654. Since the microwave supplied into the processing chamber 637 enters the wafer 200 and is efficiently absorbed, the temperature of the wafer 200 is raised extremely effectively.
- the microwave power may be supplied by multiplying the number of wafers by one wafer.
- the microwave frequency may be varied while the microwave is being supplied. By supplying while varying the frequency, the microwave can be diffused throughout the processing chamber, and the processing uniformity to the substrate can be improved. Further, even if the bonding state of hydrogen and oxygen includes various states, it can be uniformly processed by changing the frequency.
- a film having minute irregularities is formed on the wafer 200, hydrogen peroxide and water are uniformly contained from the top to the bottom of the silicon-containing film embedded in the irregularities. The hydrogen peroxide and water can be heated by microwaves, and can be uniformly processed from the top to the bottom of the silicon-containing film embedded in the irregularities.
- batch processing of a plurality of wafers collectively improves the throughput significantly as compared to the case where wafers are processed one by one.
- the single wafer apparatus there is a component that is reflected by the wafer when the microwave is irradiated perpendicularly to the wafer surface.
- the microwave is irradiated perpendicularly to the wafer surface.
- Microwave is a kind of electromagnetic wave, and almost penetrates quartz that is close to pure silicon oxide, but it is several tens of centimeters to several meters for polymers such as silicon and epoxy resin. It is known to penetrate to depth.
- the dipole (dipole) in the object rotates and vibrates, and energy is absorbed. When absorption occurs, structural optimization around the dipole is considered to progress.
- This principle is applied to a microwave oven that vibrates and heats water, which is a dipole in food, at a fixed frequency of 2.45 GHz.
- a coating processing chamber for performing a coating process a prebaking processing chamber for performing a prebaking process, an oxidation / drying processing chamber for performing an oxidation process and a drying process, and the like.
- Different processing chambers may be provided.
- microwave source By supplying microwaves, it is considered that water molecules in H 2 O 2 can be activated, the amount of hydroxy radicals generated can be increased, and the processing efficiency can be improved.
- the silicon oxide film formed on the wafer 200 can be modified by baking the wafer 200 using microwaves in the baking process.
- the denseness of the silicon oxide film can be improved.
- the film formed on the substrate can be selectively heated.
- nitrogen and hydrogen in the polysilazane can be substituted with oxygen by water molecules, thereby forming a Si—O bond.
- a silicon oxide film having a Si—O bond containing no NH— as a main skeleton can be formed from the silicon-containing film. Note that. This silicon oxide film has high heat resistance, which is different from a silicon oxide film formed by a conventional organic SOG.
- carbon (C) and impurities contained in the silicon-containing film can be removed by performing a baking process using a microwave.
- the silicon-containing film is usually formed by application such as spin coating.
- spin coating method a liquid obtained by adding an organic solvent to polysilazane is used, and carbon and other impurities (elements other than Si and O) derived from the organic solvent remain.
- FIG. 8 is a schematic configuration diagram of the substrate processing apparatus according to the present embodiment, and shows a portion of the processing furnace 202 in a longitudinal sectional view.
- FIG. 9 is a schematic longitudinal sectional view of the processing furnace 202 provided in the substrate processing apparatus according to the second embodiment.
- the gas is supplied from the upper part of the substrate processing chamber 201.
- the gas is supplied from the side surface of the substrate in the direction parallel to the substrate by the gas supply nozzle. Has been. Since other structures have a common structure, description thereof is omitted.
- a supersteam generator 307 is connected to the gas supply pipe 233.
- a hydrogen peroxide solution source 240d, a liquid flow rate controller 241d, and a valve 242d are connected to the pervaporant generator 307 from the upstream side via a superaqueous solution supply pipe 232d.
- the super-water vapor generator 307 can be supplied with the super-aqueous liquid whose flow rate is adjusted by the liquid flow rate controller 241d.
- the gas supply pipe 233 is provided with an inert gas supply pipe 232c, a valve 242c, an MFC 241c, and an inert gas supply source 240c so that an inert gas can be supplied. .
- the gas supply unit includes a gas supply nozzle 401, a gas supply hole 402, a gas supply pipe 233, a super-steam generator 307, a superaqueous liquid supply pipe 232d, a valve 242d, an MFC 241d, an inert gas supply pipe 232c, a valve 242c, and an MFC 241c. Composed. Note that the hydrogen peroxide solution source 240d and the inert gas supply source 240c may be included in the pervaporation supply unit.
- the substrate processing step according to the second embodiment is omitted because it is the same as the step of the first embodiment.
- the inventors of the present invention have made further studies and found that the liquefaction of excess water can be prevented by evaporating the excess water in the substrate processing chamber 201. This is described as a third embodiment below.
- FIG. 10 is a schematic configuration diagram of a substrate processing apparatus according to the third embodiment, and shows a processing furnace 202 portion in a longitudinal section.
- FIG. 11 is a schematic longitudinal sectional view of the processing furnace 202 provided in the substrate processing apparatus according to the third embodiment.
- a liquid source supply nozzle 501 is provided between the reaction tube 203 and the first heating unit 207.
- the liquid material supply nozzle 501 is made of, for example, quartz having a low thermal conductivity.
- the liquid material supply nozzle 501 may have a double tube structure.
- the liquid source supply nozzle 501 is disposed along the side portion of the outer wall of the reaction tube 203.
- the upper end (downstream end) of the liquid source supply nozzle 501 is airtightly provided at the top (upper end opening) of the reaction tube 203.
- the liquid source supply nozzle 501 located at the upper end opening of the reaction tube 203 is provided with a plurality of supply holes 502 from the upstream side to the downstream side.
- the supply hole 502 is formed to inject the liquid material supplied into the reaction tube 203 toward the top plate 217 c of the boat 217 accommodated in the reaction tube 203.
- the downstream end of the liquid source supply pipe 289a for supplying the liquid source is connected to the upstream end of the liquid source supply nozzle 501.
- the liquid source supply pipe 289a includes, in order from the upstream direction, a liquid source supply tank 293, a liquid flow rate controller (LMFC) 294 that is a liquid flow rate controller (liquid flow rate control unit), a valve 295a that is an on-off valve, a separator 296, and an open / close state.
- a valve 297 which is a valve is provided.
- a sub heater 291a is provided at least downstream of the valve 297 of the liquid source supply pipe 289a.
- the downstream end of a pressurized gas supply pipe 292b for supplying pressurized gas is connected to the upper part of the liquid raw material supply tank 293.
- the pressure gas supply pipe 292b is provided with a pressure gas supply source 298b, a mass flow controller (MFC) 299b which is a flow rate controller (flow rate control unit), and a valve 295b which is an on-off valve in order from the upstream direction.
- MFC mass flow controller
- a third heating unit 209 is provided on the outer upper portion of the reaction tube 203.
- the third heating unit 209 is configured to heat the top plate 217c of the boat 217.
- a lamp heater unit or the like can be used as the third heating unit 209.
- a controller 121 is electrically connected to the third heating unit 209. The controller 121 is configured to control the power supplied to the third heating unit 209 at a predetermined timing so that the top plate 217c of the boat 217 has a predetermined temperature.
- An inert gas supply pipe 292c is connected between the valve 295a of the liquid source supply pipe 289a and the separator 297.
- the inert gas supply pipe 292c is provided with an inert gas supply source 298c, a mass flow controller (MFC) 299c, which is a flow rate controller (flow rate control unit), and a valve 295c, which is an on-off valve, in order from the upstream direction.
- MFC mass flow controller
- the downstream end of the first gas supply pipe 292d is connected to the downstream side of the valve 297 of the liquid source supply pipe 289a.
- the first gas supply pipe 292d is provided with a source gas supply source 298d, a mass flow controller (MFC) 299d as a flow rate controller (flow rate control unit), and a valve 295d as an on-off valve in order from the upstream direction.
- MFC mass flow controller
- a sub-heater 291d is provided at least on the downstream side of the valve 295d of the first gas supply pipe 292d.
- a downstream end of the second gas supply pipe 292e is connected to the downstream side of the valve 295d of the first gas supply pipe 292d.
- the second gas supply pipe 292e is provided with a source gas supply source 298e, a mass flow controller (MFC) 299e which is a flow rate controller (flow rate control unit), and a valve 295e which is an on-off valve in order from the upstream direction.
- MFC mass flow controller
- a sub-heater 291e is provided at least on the downstream side of the valve 295e of the second gas supply pipe 292e.
- pressurized gas is supplied into the liquid source supply tank 293 from the pressurized gas supply pipe 292b via the mass flow controller 299b and the valve 295b.
- the liquid raw material stored in the liquid raw material supply tank 293 is sent out into the liquid raw material supply pipe 289a.
- the liquid source supplied from the liquid source supply tank 293 into the liquid source supply pipe 289a is supplied into the reaction tube 203 via the liquid flow rate controller 294, the valve 295a, the separator 296, the valve 297, and the liquid source supply nozzle 501.
- the liquid raw material supplied in the reaction tube 203 is vaporized by contacting the top plate 217c heated by the third heating unit 209, and a processing gas (vaporized gas) is generated.
- This processing gas is supplied to the wafer 200 in the reaction tube 203, and a predetermined substrate processing is performed on the wafer 200.
- the liquid material flowing in the liquid material supply pipe 289a may be preheated by the sub heater 291a. Thereby, the liquid raw material can be supplied into the reaction tube 203 in a state in which it is easier to vaporize.
- the liquid source supply pipe 289a, the liquid flow rate controller 294, the valve 295a, the separator 296, the valve 297, and the liquid source supply nozzle 501 constitute a liquid source supply system.
- the liquid source supply tank 293, the pressurized gas supply pipe 292b, the inert gas supply source 298b, the mass flow controller 299b, and the valve 295b may be included in the liquid source supply system.
- a gas supply unit is mainly configured by the liquid source supply system, the third heating unit 209, and the top plate 217c.
- an inert gas supply system is mainly configured by the inert gas supply pipe 292c, the mass flow controller 299c, and the valve 295c.
- the inert gas supply source 298c, the liquid source supply pipe 289a, the separator 296, the valve 297, and the liquid source supply nozzle 501 may be included in the inert gas supply system.
- a first process gas supply system is mainly configured by the first gas supply pipe 292d, the mass flow controller 299d, and the valve 295d.
- the source gas supply source 298d, the liquid source supply pipe 289a, the liquid source supply nozzle 501, the third heating unit 209, and the top plate 217c may be included in the first processing gas supply system.
- a second processing gas supply system is mainly configured by the second gas supply pipe 292e, the mass flow controller 299e, and the valve 295e.
- the source gas supply source 298e, the liquid source supply pipe 292a, the first gas supply pipe 292b, the liquid source supply nozzle 501, the third heating unit 209, and the top plate 217c are included in the second processing gas supply system. You may think. Moreover, although the example which provided the top plate 217c in the boat 217 was shown, you may make it provide in the upper part of the reaction tube 203, without providing in the boat 217.
- Step S310 a substrate processing step performed as one step of the semiconductor device manufacturing process according to the present embodiment will be described with reference to FIG. Steps other than the hydrogen peroxide treatment oxidation step S310 are the same as those in the second embodiment and the first embodiment, and thus description thereof is omitted.
- the hydrogen peroxide solution stored in the liquid source supply tank 293 is controlled by the liquid flow rate controller 294 to control the flow rate of the hydrogen peroxide solution from the liquid source supply tube 289a through the separator 296 and the liquid source supply nozzle 501 to the reaction tube 203.
- Supply in. for example, an inert gas such as nitrogen (N 2 ) gas or a rare gas such as He gas, Ne gas, or Ar gas can be used.
- the hydrogen peroxide solution supplied into the reaction tube 203 is brought into contact with the top plate 217c of the boat 217 heated by the third heating unit 209 and is vaporized to generate a vaporized gas of hydrogen peroxide water as a processing gas.
- the vaporized gas of the hydrogen peroxide solution as the processing gas is preferably generated in the reaction tube 203.
- the third heating unit 209 sets in advance a temperature at which the top plate 217c can be heated to a temperature at which the hydrogen peroxide solution can be vaporized (for example, 150 ° C. to 170 ° C.).
- a vaporized gas of hydrogen peroxide solution is supplied to the wafer 200, and the vaporized gas of hydrogen peroxide solution reacts with the surface of the wafer 200 to modify the silicon-containing film formed on the wafer 200 into a SiO film. .
- the vacuum pump 246 b and the liquid recovery tank 247 are exhausted. That is, the APC valve 242 is closed, the valve 240 is opened, and the exhaust gas exhausted from the reaction tube 203 is passed through the separator 244 from the gas exhaust tube 231 through the second exhaust tube 243. Then, after separating the exhaust gas into a liquid containing hydrogen peroxide and a gas not containing hydrogen peroxide by the separator 244, the gas is exhausted from the vacuum pump 246b, and the liquid is recovered in the liquid recovery tank 247.
- valve 240 and the APC valve 255 may be closed to pressurize the reaction tube 203. Thereby, the hydrogen peroxide water atmosphere in the reaction tube 203 can be made uniform.
- valves 295a, 295b, and 297 are closed, and the supply of hydrogen peroxide water into the reaction tube 203 is stopped.
- a gas containing hydrogen element (H) such as hydrogen (H 2 ) gas (hydrogen-containing gas), and oxygen (O 2 ) gas
- H hydrogen
- O 2 oxygen
- a gas obtained by heating a gas (oxygen-containing gas) containing oxygen element (O) such as water vapor (H 2 O) may be used. That is, the valves 295a, 295b, and 297 are closed, the valves 295d and 295e are opened, and H 2 gas and O 2 gas are respectively supplied from the first gas supply pipe 292d and the second gas supply pipe 292e into the reaction pipe 203.
- the silicon-containing film formed thereon may be modified to a SiO film.
- oxygen-containing gas for example, ozone (O 3 ) gas, water vapor (H 2 O), or the like may be used in addition to O 2 gas.
- the gas supplied onto the wafer 200 includes the state of a single H 2 O 2 molecule or some A cluster state in which molecules are bonded may be included. Further, when generating a gas from a liquid, it may be split to a single H 2 O 2 molecule, or may be split to a cluster state in which several molecules are bonded. Further, a fog (mist) state in which several of the above clusters are gathered may be used.
- H 2 O 2 hydrogen peroxide water
- the manufacturing process of the semiconductor device for processing the wafer 200 and the process of filling the insulator in the fine groove has been described.
- the invention according to the first to third embodiments is not limited to this process. Is also applicable.
- the present invention can be applied to a process for forming an interlayer insulating film of a semiconductor device substrate, a sealing process for a semiconductor device, and the like.
- the manufacturing process of the semiconductor device has been described.
- the inventions according to the first to third embodiments can be applied to processes other than the manufacturing process of the semiconductor device.
- the present invention can be applied to a sealing process of a substrate having liquid crystal in a manufacturing process of a liquid crystal device and a water repellent coating process to a glass substrate or a ceramic substrate used in various devices.
- it can be applied to a water-repellent coating treatment on a mirror.
- the above-described processing gas is obtained by heating and evaporating water vapor (H 2 O) generated from oxygen gas and hydrogen gas, water (H 2 O) or hydrogen peroxide (H 2 O 2 ) water as an oxidant solution.
- H 2 O water vapor
- H 2 O 2 hydrogen peroxide
- the present invention is not limited to these, and a method of atomizing water (H 2 O) or hydrogen peroxide (H 2 O 2 ) by applying ultrasonic waves or an atomizer is used. A method of spraying mist may also be used.
- the method of irradiating a solution directly with a laser or a microwave and evaporating it may be used.
- a vapor phase growth method using any one of hexamethyldisilazane (HMDS), hexamethylcyclotrisilazane (HMCS), polycarbosilazane, polyorganosilazan, trisilylamine (TSA), or a plurality of materials. It may be a silicon film or a silicon oxide film formed by (1).
- HMDS hexamethyldisilazane
- HMCS hexamethylcyclotrisilazane
- TSA trisilylamine
- TSA trisilylamine
- the present invention is not limited thereto, and the substrate subjected to the PHPS coating process S302 to the prebake 303 is accommodated in the processing chamber.
- a hydrogen peroxide treatment oxidation step S304 may be performed, and a baking step S306 may be performed.
- the hydrogen peroxide treatment oxidation step S304 and the baking step S306 may be performed in separate processing chambers.
- Appendix 2 A method of manufacturing a semiconductor device according to appendix 1, preferably, A plurality of minute irregularities are formed on the substrate, and the irregularities are filled with the film having the silazane bond.
- Appendix 3 A method of manufacturing a semiconductor device according to appendix 2, preferably, The recess is formed by one or both of a gate insulating film and a gate electrode.
- Appendix 4 A method of manufacturing a semiconductor device according to appendix 1, preferably, The vaporization unit is provided in the processing chamber, and the processing gas is generated in the processing chamber.
- Appendix 5 A method of manufacturing a semiconductor device according to appendix 1, preferably, Before supplying the processing gas to the substrate, a pre-bake process for curing the film having the silazane bond is performed.
- Appendix 6 A method of manufacturing a semiconductor device according to appendix 2, preferably, The plurality of minute irregularities are trenches constituting a semiconductor device.
- Appendix 7 A method of manufacturing a semiconductor device according to appendix 1, preferably, The film having a silazane bond is a polysilazane film.
- Appendix 8 A method of manufacturing a semiconductor device according to appendix 1, preferably, The step of supplying the processing gas also includes a step of supplying microwaves.
- Appendix 9 A method of manufacturing a semiconductor device according to appendix 1, preferably, The step of supplying the microwave is performed while varying the frequency of the microwave.
- Appendix 10 A method of manufacturing a semiconductor device according to appendix 1, preferably, The step of supplying the processing gas to the substrate and the step of supplying the microwave are performed in the same housing provided with a plurality of processing chambers.
- Appendix 11 A method of manufacturing a semiconductor device according to appendix 1, preferably, After the step of supplying the processing gas to the substrate, a step of supplying the microwave after transporting the substrate to another processing chamber is performed.
- a processing chamber in which a substrate on which a film having a silazane bond is formed is accommodated;
- a vaporizer having a vaporization section to which a treatment liquid containing hydrogen peroxide is supplied;
- a substrate processing apparatus is provided.
- Appendix 13 The substrate processing apparatus of appendix 12, preferably, A plurality of minute irregularities are formed on the substrate, and the irregularities are filled with the film having the silazane bond.
- the substrate processing apparatus of appendix 12 preferably, The controller is The microwave supply unit is controlled to supply the microwave to the substrate while changing the frequency of the microwave.
- the substrate processing apparatus of appendix 12, preferably, The microwave supply unit is configured to be supplied from a horizontal direction with respect to the substrate.
- a procedure for accommodating a substrate on which a film having a silazane bond is formed in a processing chamber A procedure of supplying a processing liquid containing hydrogen peroxide to the vaporization unit to generate a processing gas and supplying the processing gas to the substrate;
- a program for causing a computer to execute a procedure for supplying a microwave to a substrate processed with the processing gas is provided.
- Appendix 19 The program according to appendix 18, preferably, A plurality of minute irregularities are formed on the substrate, and the irregularities are filled with the film having the silazane bond.
- Appendix 20 The program according to appendix 19, preferably, The recess is formed by one or both of a gate insulating film and a gate electrode.
- Appendix 21 The program of Appendix 19, preferably The vaporization unit is provided in the processing chamber, and has a procedure for controlling the vaporizer so as to generate the processing gas in the processing chamber.
- Appendix 22 The program of Appendix 19, preferably A pre-bake procedure for curing the film having a silazane bond before supplying a processing gas to the substrate;
- Appendix 23 The program of Appendix 19, preferably The plurality of minute irregularities are trenches constituting a semiconductor device.
- Appendix 24 The program of Appendix 19, preferably The procedure for supplying hydrogen peroxide also includes a procedure for supplying microwaves.
- the program of Appendix 19, preferably The procedure of supplying the microwave includes a procedure of supplying while changing the frequency of the microwave.
- a procedure for accommodating a substrate on which a film having a silazane bond is formed in a processing chamber A procedure of supplying a processing liquid containing hydrogen peroxide to the vaporization unit to generate a processing gas and supplying the processing gas to the substrate;
- a recording medium on which a program for causing a computer to execute a procedure for supplying a microwave to a substrate processed with the processing gas is recorded.
- the manufacturing quality of the semiconductor device can be improved and the manufacturing throughput can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Formation Of Insulating Films (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
シラザン結合を有する膜が形成された基板を処理室に収容する工程と、過酸化水素を含有する処理液を気化部に滴下して処理ガスを発生させて前記処理ガスを、前記基板に供給する工程と、前記処理ガスで処理された基板にマイクロ波を供給する工程と、を有する半導体装置の製造方法が提供される。
シラザン結合を有する膜が形成された基板が収容される処理室と、過酸化水素を含有する処理液が滴下される気化部を有する気化器と、前記基板にマイクロ波を供給するマイクロ波供給部と、前記処理液を前記気化部に滴下して処理ガスを発生させ、前記処理ガスを前記基板に供給した後に、前記基板にマイクロ波を供給するように、前記気化器と前記マイクロ波供給部を制御する制御部と、を有する基板処理装置が提供される。
シシラザン結合を有する膜が形成された基板を処理室に収容させる手順と、過酸化水素を含有する処理液を気化部に滴下して処理ガスを発生させて前記処理ガスを、前記基板に供給させる手順と、前記処理ガスで処理された基板にマイクロ波を供給させる手順と、をコンピュータに実行させるプログラムが記録された記録媒体される。
以下に、第1実施形態について説明する。
まず、本実施形態に係る基板処理装置の構成について、主に図1及び図2を用いて説明する。図1は、本実施形態に係る基板処理装置の概略構成図であり、処理炉202部分を縦断面で示している。図2は、本実施形態に係る基板処理装置が備える処理炉202の縦断面概略図である。
図1に示すように、処理炉202は反応管203を備えている。反応管203は、例えば石英(SiO2)及び炭化シリコン(SiC)を組み合わせた耐熱材料や、SiO2或いはSiC等の耐熱性材料からなり、上端及び下端が開口した円筒形状に形成されている。反応管203の筒中空部には、処理室201が形成され、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
基板の処理空間となる基板処理室201は、反応管203とシールキャップ219で構成される。
基板保持部としてのボート217は、複数枚のウエハ200を多段に保持できるように構成されている。ボート217は、複数枚のウエハ200を保持する複数本の支柱217aを備えている。支柱217aは例えば3本備えられている。複数本の支柱217aはそれぞれ、底板217bと天板217cとの間に架設されている。複数枚のウエハ200が、支柱217aに水平姿勢でかつ、互いに中心を揃えた状態で整列されて管軸方向に多段に保持されている。天板217cは、ボート217に保持されるウエハ200の最大外径よりも大きくなるように形成されている。
反応容器203の下方には、ボート217を昇降させて反応管203の内外へ搬送する昇降部としてのボートエレベータが設けられている。ボートエレベータには、ボートエレベータによりボート217が上昇された際に炉口を封止するシールキャップ219が設けられている。
反応管203の外側には、反応管203の側壁面を囲う同心円状に、反応管203内のウエハ200を加熱する第1の加熱部207が設けられている。第1の加熱部207は、ヒータベース206により支持されて設けられている。図2に示すように、第1の加熱部207は第1~第4のヒータユニット207a~207dを備えている。第1~第4のヒータユニット207a~207dはそれぞれ、反応管203内でのウエハ200の積層方向に沿って設けられている。
図1に示すように、反応管203内へ処理ガスとしての気化原料を供給するガス供給部としてのガス供給管233が反応管203の外側に設けられている。気化原料は、沸点が50~200℃の原料が用いられる。本実施形態では、過酸化水素(H2O2)を含有する液体を用いた例を示す。尚、特に処理効率や品質の低下が許容される場合は、水蒸気(H2O)を用いても良い。
図1に示すように、ガス供給管233には、過水蒸気発生装置307が接続されている。過水蒸気発生装置307には、上流側から、過酸化水素水源240d、液体流量コントローラ241d、バルブ242dが過水液供給管232dを介して接続されている。過水蒸気発生装置307には、液体流量コントローラ241dで流量が調整された過水液が、供給可能になっている。
図5に、処理ガスとしての過酸化水素蒸気を発生させる過水蒸気発生装置307の構成を示す。
過水蒸気発生装置307は、原料液を加熱された部材に供給(滴下)することで原料液を気化する滴下法を用いている。過水蒸気発生装置307は、過水液を供給する液体供給部としての滴下ノズル300と、加熱される部材としての気化容器302と、気化容器302で構成される気化空間301と、気化容器302を加熱する加熱部としての気化器ヒータ303と、気化された原料液を反応室へ排気する排気口304と、気化容器302の温度を測定する熱電対305と、熱電対305により測定された温度に基づいて、気化器ヒータ303の温度を制御する温度制御コントローラ400と、滴下ノズル300に原料液を供給する薬液供給配管307とで構成されている。気化容器302は、滴下された原料液が気化容器に到達すると同時に気化するように気化器ヒータ303により加熱されている。このように滴下させて気化させることによって、沸点が異なる物質が混ざった液体の濃度と、その気体の濃度を変化させることなく気化させることができる。例えば、過酸化水素水では、過酸化水素と水の沸点が異なり、液体を徐々に加熱して気化させる場合に、水が先に蒸発して、後で過酸化水素が蒸発するために、気化開始直後から、気体中の濃度が変化していく。また、気化器ヒータ303による気化容器302の加熱効率を向上させることや、過水蒸気発生装置307と他のユニットとの断熱可能な断熱材306が設けられている。気化容器302は、原料液との反応を防止するために、石英や炭化シリコンなどで構成されている。気化容器302は、滴下された原料液の温度や、気化熱により温度が低下する。よって、温度低下を防止するために、熱伝導率が高い炭化シリコンを用いることが有効である。なお、ここでは、滴下させる方法を用いたが、加熱された部材を十分に加熱し、温度が変化しないようなら、連続的に供給しても良いし、液体を粒上に噴射させるようにしても良い。
反応管203の下方には、基板処理室201内のガスを排気するガス排気管231の一端が接続されている。ガス排気管231の他端は、真空ポンプ246a(排気装置)にAPC(Auto Pressure Controller)バルブ255を介して接続されている。基板処理室201内は、真空ポンプ246で発生する負圧によって排気される。なお、APCバルブ255は、弁の開閉により基板処理室201の排気および排気停止を行うことができる開閉弁である。また、弁開度の調整により圧力を調整することができる圧力調整弁でもある。
また、圧力検出器としての圧力センサ223がAPCバルブ255の上流側に設けられている。このようにして、基板処理室201内の圧力が所定の圧力(真空度)となるよう、真空排気するように構成されている。APCバルブ255により基板処理室201および圧力センサ223には、圧力制御部284が電気的に接続されており、圧力制御部284は、圧力センサ223により検出された圧力に基づいて、APCバルブ255により基板処理室201内の圧力が所望の圧力となるよう、所望のタイミングで制御するように構成されている。
なお、真空ポンプ246aを排気部に含めて考えても良い。
図6(a)、図6(b)に示すように、ガス排気管231には、ガス排気管を加熱する排気加熱部としての、エキゾーストチューブヒータ284が設けられている。エキゾーストチューブヒータ284は、ガス排気管231の内部に、結露が生じないように、所望の温度に制御されている。例えば、50℃~300℃に制御される。
図6(a)、図6(b)に示すように、ガス供給管233と反応管203の間には、供給加熱部としてのインレットチューブヒータ285が設けられている。インレットチューブヒータ285は、ガス供給管233の内部に、結露が生じないように、所望の温度に制御されている。例えば、50℃~300℃に制御される。
基板処理装置内の空きスペースや、基板処理装置が複数台設けられる半導体装置工場内の空きスペースは狭いため、このように、ガス供給管233とガス排気管231を同じ側に設けることにより、ガス供給管233とガス排気管231と液化防止ヒータ280のメンテナンスを容易に行うことができる。
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
本発明の第一実施形態に係る処理工程を図4に示す。第一実施形態は、塗布法によって形成する酸化膜材料を塗布する塗布工程S302と、塗布した後に膜中の溶媒成分を乾燥させるプリベーク工程S303と、乾燥させた後に過酸化水素水に暴露若しくは浸漬させる酸化工程S304と、過酸化水素水に暴露若しくは浸漬させた後に純水で洗浄して乾燥させる乾燥工程S305を有する。
なお、ウエハ200に微小な凹凸を有する膜が形成されている場合であっても、凹凸内に埋め込まれたシリコン含有膜の上部から底部まで均一に過酸化水素を浸透させることができる。
また、処理室内に複数のウエハ200を収容した状態で乾燥工程S305を行うようにしても良い。
ベーク工程S306では、シリコン酸化膜が形成されたウエハ200に加熱処理が施される。具体的には、処理室内を窒素雰囲気にした後に、ウエハ200を150℃以上500℃以下に加熱する。好ましくは200℃以上400℃以下に加熱する。例えば、200℃に加熱される。ウエハの加熱は、後述するマイクロ波源(図7参照)によって行われる。
また、処理室内に酸素含有ガスを供給しながら加熱を行っても良い。酸素含有ガスは、例えば、酸素(O2)ガス、水蒸気(H2O)、オゾン(O3)ガス、亜酸化窒素(NO)ガス、酸化窒素(NO2)ガスなどである。
また、処理室内にウエハ200を複数枚収容した状態で加熱を行っても良い。
図7に、本発明の電磁波供給源としてのマイクロ波源の一例を示す。マイクロ波源655は、反応容器203の側面に設けられ、例えば周波数1GHz~100GHzの範囲で30分間印加し、ウエハ200を100~450℃であって、例えば400℃に昇温させる。すなわち、マイクロ波源655はマイクロ波またはミリ波を導波管654を経由して処理室637内に供給する。処理室637内に供給されたマイクロ波はウエハ200に入射して効率的に吸収されるために、ウエハ200をきわめて効果的に昇温させる。また、マイクロ波の電力はウエハ1枚の場合に対してウエハ枚数を乗じた電力を供給してもよい。また、マイクロ波を供給している最中に、マイクロ波の周波数を可変するように構成しても良い。周波数を可変しながら供給することによって、マイクロ波を処理室の全体に拡散させることができ、基板への処理均一性を向上させることができる。また、水素と酸素との結合状態が様々な状態の物を含んでいても、周波数を可変することにより、均一に処理することができる。なお、ウエハ200に微小な凹凸を有する膜が形成されている場合、凹凸内に埋め込まれたシリコン含有膜の上部から底部まで、均一に過酸化水素や水が含まれた状態になっているので、この過酸化水素や水をマイクロ波によって加熱することができ、凹凸内に埋め込まれたシリコン含有膜の上部から底部まで均一に処理することができる。
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
PHPSの塗布からPHPSを酸化しシリコン酸化膜の形成までの処理と処理の待ち時間、即ち、リードタイムを短縮することができる。
以下に、第2実施形態について説明する。
まず、第2実施形態に係る基板処理装置の構成について、図8と図9を用いて説明する。図8は、本実施形態に係る基板処理装置の概略構成図であり、処理炉202部分を縦断面図で示している。図9は、第2実施形態に係る基板処理装置が備える処理炉202の縦断面概略図である。
図8に示すように、ガス供給管233には、過水蒸気発生装置307が接続されている。過水蒸気発生装置307には、上流側から、過酸化水素水源240d、液体流量コントローラ241d、バルブ242dが過水液供給管232dを介して接続されている。過水蒸気発生装置307には、液体流量コントローラ241dで流量が調整された過水液が、供給可能になっている。
次に、第2実施形態に係る基板処理工程については、第1実施形態の工程と同じであるため省略する。
第2実施形態によれば、第1実施形態に係る効果と同様の効果を奏する。
以下に、第3実施形態について説明する。
まず、第3実施形態に係る基板処理装置の構成について、図10と図11を用いて説明する。図10は、第3実施形態に係る基板処理装置の概略構成図であり、処理炉202部分を縦断面で示している。図11は、第3実施形態に係る基板処理装置が備える処理炉202の縦断面概略図である。
図10に示すように、反応管203と第1の加熱部207との間には、液体原料供給ノズル501が設けられている。液体原料供給ノズル501は、例えば熱伝導率の低い石英等により形成されている。液体原料供給ノズル501は二重管構造を有していてもよい。液体原料供給ノズル501は、反応管203の外壁の側部に沿って配設されている。液体原料供給ノズル501の上端(下流端)は、反応管203の頂部(上端開口)に気密に設けられている。反応管203の上端開口に位置する液体原料供給ノズル501には、供給孔502が上流側から下流側にわたって複数設けられている。供給孔502は、反応管203内に供給された液体原料を反応管203内に収容されたボート217の天板217cに向かって噴射させるように形成されている。
続いて、本実施形態に係る半導体装置の製造工程の一工程として実施される基板処理工程について、図12を用いて説明する。過酸化水素水処理酸化工程S310以外の工程は、第2実施例や第1実施例と同じなので説明を省略する。
ウエハ200を加熱して所望とする温度に達し、ボート217が所望とする回転速度に到達したら、液体原料供給管289aから液体原料である過酸化水素水の反応管203内への供給を開始する。すなわち、バルブ295c,295d,295eを閉じ、バルブ295bを開け、圧送ガス供給源298bから液体原料供給タンク293内に、圧送ガスをマスフローコントローラ299bにより流量制御しながら供給し、さらにバルブ295a及びバルブ297を開け、液体原料供給タンク293内に貯留されている過酸化水素水を、液体流量コントローラ294により流量制御しながら、液体原料供給管289aからセパレータ296及び液体原料供給ノズル501を介して反応管203内に供給する。圧送ガスとしては、例えば窒素(N2)ガス等の不活性ガスや、Heガス、Neガス、Arガス等の希ガスを用いることができる。
第3実施形態によれば、第1実施形態に係る効果と第2実施形態に係る効果に加えて、以下に示す1つまたは複数の効果を奏する。
以下に、好ましい形態について付記する。
一態様によれば、
シラザン結合を有する膜が形成された基板を処理室に収容する工程と、
過酸化水素を含有する処理液を気化部に供給して処理ガスを発生させて前記処理ガスを、前記基板に供給する工程と、
前記処理ガスで処理された基板にマイクロ波を供給する工程と、を有する半導体装置の製造方法が提供される。
付記1の半導体装置の製造方法であって、好ましくは、
前記基板には、複数の微小な凹凸が形成され、前記凹凸の凹部は前記シラザン結合を有する膜で埋められている。
付記2の半導体装置の製造方法であって、好ましくは、
前記凹部は、ゲート絶縁膜とゲート電極のいずれか若しくは両方で形成されている。
付記1の半導体装置の製造方法であって、好ましくは、
前記気化部は、前記処理室内に設けられ、前記処理ガスは、前記処理室内で生成される。
付記1の半導体装置の製造方法であって、好ましくは、
前記基板に処理ガスを供給する前に、前記シラザン結合を有する膜を硬化させるプリベーク工程が施される。
付記2の半導体装置の製造方法であって、好ましくは、
前記複数の微小な凹凸は、半導体装置を構成するトレンチである。
付記1の半導体装置の製造方法であって、好ましくは、
前記シラザン結合を有する膜は、ポリシラザン膜である。
付記1の半導体装置の製造方法であって、好ましくは、
前記処理ガスを供給する工程でも、マイクロ波を供給する工程を有する。
付記1の半導体装置の製造方法であって、好ましくは、
前記マイクロ波を供給する工程では、前記マイクロ波の周波数を可変させながら行われる。
付記1の半導体装置の製造方法であって、好ましくは、
前記基板に前記処理ガスを供給する工程と、前記マイクロ波を供給する工程は、複数の処理室が設けられた同一筐体内で、行われる。
付記1の半導体装置の製造方法であって、好ましくは、
前記基板に前記処理ガスを供給する工程の後に、別の処理室に前記基板を搬送した後に前記マイクロ波を供給する工程が行われる。
他の態様によれば、
シラザン結合を有する膜が形成された基板が収容される処理室と、
過酸化水素を含有する処理液が供給される気化部を有する気化器と、
前記基板にマイクロ波を供給するマイクロ波供給部と、
前記処理液を前記気化部に供給して処理ガスを発生させ、前記処理ガスを前記基板に供給した後に、前記基板にマイクロ波を供給するように、前記気化器と前記マイクロ波供給部を制御する制御部と、を有する基板処理装置が提供される。
付記12の基板処理装置であって、好ましくは、
前記基板には、複数の微小な凹凸が形成され、前記凹凸の凹部は前記シラザン結合を有する膜で埋められている。
付記13の基板処理装置であって、好ましくは、
前記凹部は、ゲート絶縁膜とゲート電極のいずれか若しくは両方で形成されている。
付記12の基板処理装置であって、好ましくは、
前記気化器は、前記処理室内に設けられ、
前記制御部は、前記処理室内で前記処理ガスを生成する様に前記気化器を制御する。
付記12の基板処理装置であって、好ましくは、
前記制御部は、
前記前記マイクロ波の周波数を可変させながら前記マイクロ波を前記基板に供給するように前記マイクロ波供給部を制御する。
付記12の基板処理装置であって、好ましくは、
前記マイクロ波供給部は前記基板に対して水平方向から供給されるように構成される。
更に他の態様によれば、
シラザン結合を有する膜が形成された基板を処理室に収容させる手順と、
過酸化水素を含有する処理液を気化部に供給して処理ガスを発生させて前記処理ガスを、前記基板に供給させる手順と、
前記処理ガスで処理された基板にマイクロ波を供給させる手順と、をコンピュータに実行させるプログラムが提供される。
付記18に記載のプログラムであって、好ましくは、
前記基板には、複数の微小な凹凸が形成され、前記凹凸の凹部は前記シラザン結合を有する膜で埋められている。
付記19に記載のプログラムであって、好ましくは、
前記凹部は、ゲート絶縁膜とゲート電極のいずれか若しくは両方で形成される。
付記19のプログラムであって、好ましくは、
前記気化部は、前記処理室内に設けられ、前記処理ガスを前記処理室内で生成するように前記気化器を制御させる手順を有する。
付記19のプログラムであって、好ましくは、
前記基板に処理ガスを供給する前に、前記シラザン結合を有する膜を硬化させるプリベーク手順を有する。
付記19のプログラムであって、好ましくは、
前記複数の微小な凹凸は、半導体装置を構成するトレンチである。
付記19のプログラムであって、好ましくは、
前記過酸化水素を供給する手順でも、マイクロ波を供給させる手順を有する。
付記19のプログラムであって、好ましくは、
前記マイクロ波を供給する手順では、前記マイクロ波の周波数を可変させながら供給する手順を有する。
更に他の態様によれば、
シラザン結合を有する膜が形成された基板を処理室に収容させる手順と、
過酸化水素を含有する処理液を気化部に供給して処理ガスを発生させて前記処理ガスを、前記基板に供給させる手順と、
前記処理ガスで処理された基板にマイクロ波を供給させる手順と、をコンピュータに実行させるプログラムが記録された記録媒体が提供される。
Claims (17)
- シラザン結合を有する膜が形成された基板を処理室に収容する工程と、
過酸化水素を含有する処理液を気化部に供給して処理ガスを発生させて、前記処理ガスを前記基板に供給する工程と、
前記処理ガスで処理された基板にマイクロ波を供給する工程と、を有する半導体装置の製造方法。 - 請求項1に記載の半導体装置の製造方法であって、
前記気化部は、前記処理室内に設けられ、前記処理ガスは、前記処理室内で生成される。 - 請求項1に記載の半導体装置の製造方法であって、
前記処理ガスを発生させる際、前記処理液を前記気化部に滴下させる。 - 請求項2に記載の半導体装置の製造方法であって、
前記気化部に前記処理液が滴下される。 - 請求項1に記載の半導体装置の製造方法であって、前記基板に処理ガスを供給する前に、前記シラザン結合を有する膜を硬化させるプリベーク工程が施される。
- 請求項1に記載の半導体装置の製造方法であって、
前記処理ガスを供給する工程でも、マイクロ波を供給する工程を有する。 - 請求項1に記載の半導体装置の製造方法であって、
前記マイクロ波を供給する工程では、前記マイクロ波の周波数を変化させながら行われる。 - シラザン結合を有する膜が形成された基板が収容される処理室と、
過酸化水素を含有する処理液が供給される気化部を有する気化器と、
前記基板にマイクロ波を供給するマイクロ波供給部と、
前記処理液を前記気化部に滴下して処理ガスを発生させ、前記処理ガスを前記基板に供給した後に、前記基板にマイクロ波を供給するように、前記気化器と前記マイクロ波供給部を制御する制御部と、を有する基板処理装置。 - 請求項8に記載の基板処理装置であって、
前記気化器は、前記処理室内に設けられ、
前記制御部は、前記処理室内で前記処理ガスを生成する様に前記気化器を制御する。 - 請求項8に記載の基板処理装置であって、
前記処理液は前記気化部に滴下されるように前記気化器が構成される。 - 請求項8に記載の基板処理装置であって、
前記制御部は、
前記前記マイクロ波の周波数を変化させながら前記マイクロ波を前記基板に供給するように前記マイクロ波供給部を制御する。 - 請求項8に記載の基板処理装置であって、
前記マイクロ波供給部は前記基板に対して水平方向から供給されるように構成される。 - シラザン結合を有する膜が形成された基板を処理室に収容させる手順と、
過酸化水素を含有する処理液を気化部に供給して処理ガスを発生させて、前記処理ガスを前記基板に供給させる手順と、
前記処理ガスで処理された基板にマイクロ波を供給させる手順と、をコンピュータに実行させるプログラムが記録された記録媒体。 - 請求項13に記載の記録媒体であって、
前記気化部は、前記処理室内に設けられ、前記処理ガスを前記処理室内で生成するように前記気化器を制御させる手順を有する。 - 請求項13に記載の記録媒体であって、
前記基板に処理ガスを供給する前に、前記シラザン結合を有する膜を硬化させるプリベーク手順を有する。 - 請求項13に記載の記録媒体であって、
前記処理ガスを供給する手順でも、マイクロ波を供給させる手順を実行する。 - 請求項13に記載の記録媒体であって、
前記マイクロ波を供給する手順では、前記マイクロ波の周波数を変化させながら供給する手順を有する。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015508547A JPWO2014157210A1 (ja) | 2013-03-26 | 2014-03-25 | 半導体装置の製造方法、基板処理装置及び記録媒体 |
KR1020157025167A KR20150119293A (ko) | 2013-03-26 | 2014-03-25 | 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 |
US14/862,980 US20160013053A1 (en) | 2013-03-26 | 2015-09-23 | Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-Transitory Computer-Readable Recording Medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-064147 | 2013-03-26 | ||
JP2013064147 | 2013-03-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/862,980 Continuation US20160013053A1 (en) | 2013-03-26 | 2015-09-23 | Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-Transitory Computer-Readable Recording Medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157210A1 true WO2014157210A1 (ja) | 2014-10-02 |
Family
ID=51624179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058300 WO2014157210A1 (ja) | 2013-03-26 | 2014-03-25 | 半導体装置の製造方法、基板処理装置及び記録媒体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160013053A1 (ja) |
JP (1) | JPWO2014157210A1 (ja) |
KR (1) | KR20150119293A (ja) |
TW (1) | TWI527129B (ja) |
WO (1) | WO2014157210A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017056148A1 (ja) * | 2015-09-28 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
US10712328B2 (en) * | 2016-09-23 | 2020-07-14 | Toshiba Memory Corporation | Analysis device |
KR20200095565A (ko) | 2018-03-14 | 2020-08-10 | 가부시키가이샤 코쿠사이 엘렉트릭 | 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5792390B2 (ja) * | 2012-07-30 | 2015-10-14 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及びプログラム |
WO2016151684A1 (ja) * | 2015-03-20 | 2016-09-29 | 株式会社日立国際電気 | 半導体装置の製造方法、記録媒体及び基板処理装置 |
US10954594B2 (en) | 2015-09-30 | 2021-03-23 | Applied Materials, Inc. | High temperature vapor delivery system and method |
CN109314046A (zh) * | 2016-09-23 | 2019-02-05 | 株式会社国际电气 | 基板处理装置、半导体装置的制造方法以及记录介质 |
WO2019003151A1 (en) * | 2017-06-28 | 2019-01-03 | Icdat Ltd. | SYSTEM AND METHOD FOR CHEMICAL VAPOR DEPOSITION OF SYNTHETIC DIAMONDS |
US10998205B2 (en) * | 2018-09-14 | 2021-05-04 | Kokusai Electric Corporation | Substrate processing apparatus and manufacturing method of semiconductor device |
TWI738002B (zh) * | 2018-12-05 | 2021-09-01 | 洪義明 | 高溫烘箱的溫度調整設備 |
KR102288985B1 (ko) * | 2019-06-27 | 2021-08-13 | 세메스 주식회사 | 액공급유닛, 기판 처리 장치 및 기판 처리 방법 |
CN114269966A (zh) * | 2019-09-19 | 2022-04-01 | 株式会社富士金 | 气化供给装置 |
JP7203070B2 (ja) * | 2020-09-23 | 2023-01-12 | 株式会社Kokusai Electric | 基板処理装置、基板処理方法及び半導体装置の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345302A (ja) * | 2000-03-28 | 2001-12-14 | Seiko Epson Corp | 表面処理方法及び表面処理装置 |
JP2002367980A (ja) * | 2001-06-07 | 2002-12-20 | Samsung Electronics Co Ltd | 半導体装置のシリコン酸化膜形成方法およびこれを用いた素子分離方法 |
JP2008088031A (ja) * | 2006-10-04 | 2008-04-17 | Toshio Teranaka | シリカ膜の製造方法 |
JP2010137372A (ja) * | 2008-12-09 | 2010-06-24 | Contamination Control Service:Kk | 複合膜、およびその形成方法 |
JP2010278190A (ja) * | 2009-05-28 | 2010-12-09 | Konica Minolta Holdings Inc | 薄膜トランジスタの製造方法、金属酸化物半導体薄膜及び薄膜トランジスタ |
JP2012060000A (ja) * | 2010-09-10 | 2012-03-22 | Toshiba Corp | シリコン酸化膜の製造装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5912047A (en) * | 1993-03-25 | 1999-06-15 | Dow Corning Corporation | Borosilicate electronic coatings |
JP3068372B2 (ja) * | 1993-06-02 | 2000-07-24 | 日立電子エンジニアリング株式会社 | 薄膜形成方法 |
US6514801B1 (en) * | 1999-03-30 | 2003-02-04 | Seiko Epson Corporation | Method for manufacturing thin-film transistor |
US8329587B2 (en) * | 2009-10-05 | 2012-12-11 | Applied Materials, Inc. | Post-planarization densification |
JP2012104703A (ja) * | 2010-11-11 | 2012-05-31 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法および基板処理装置 |
-
2014
- 2014-03-25 WO PCT/JP2014/058300 patent/WO2014157210A1/ja active Application Filing
- 2014-03-25 JP JP2015508547A patent/JPWO2014157210A1/ja active Pending
- 2014-03-25 TW TW103111030A patent/TWI527129B/zh active
- 2014-03-25 KR KR1020157025167A patent/KR20150119293A/ko not_active IP Right Cessation
-
2015
- 2015-09-23 US US14/862,980 patent/US20160013053A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345302A (ja) * | 2000-03-28 | 2001-12-14 | Seiko Epson Corp | 表面処理方法及び表面処理装置 |
JP2002367980A (ja) * | 2001-06-07 | 2002-12-20 | Samsung Electronics Co Ltd | 半導体装置のシリコン酸化膜形成方法およびこれを用いた素子分離方法 |
JP2008088031A (ja) * | 2006-10-04 | 2008-04-17 | Toshio Teranaka | シリカ膜の製造方法 |
JP2010137372A (ja) * | 2008-12-09 | 2010-06-24 | Contamination Control Service:Kk | 複合膜、およびその形成方法 |
JP2010278190A (ja) * | 2009-05-28 | 2010-12-09 | Konica Minolta Holdings Inc | 薄膜トランジスタの製造方法、金属酸化物半導体薄膜及び薄膜トランジスタ |
JP2012060000A (ja) * | 2010-09-10 | 2012-03-22 | Toshiba Corp | シリコン酸化膜の製造装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017056148A1 (ja) * | 2015-09-28 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
US10712328B2 (en) * | 2016-09-23 | 2020-07-14 | Toshiba Memory Corporation | Analysis device |
KR20200095565A (ko) | 2018-03-14 | 2020-08-10 | 가부시키가이샤 코쿠사이 엘렉트릭 | 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램 |
US11499224B2 (en) | 2018-03-14 | 2022-11-15 | Kokusai Electric Corporation | Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium |
Also Published As
Publication number | Publication date |
---|---|
TWI527129B (zh) | 2016-03-21 |
KR20150119293A (ko) | 2015-10-23 |
US20160013053A1 (en) | 2016-01-14 |
JPWO2014157210A1 (ja) | 2017-02-16 |
TW201511136A (zh) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014157210A1 (ja) | 半導体装置の製造方法、基板処理装置及び記録媒体 | |
JP5778846B2 (ja) | 気化装置、基板処理装置、及び半導体装置の製造方法 | |
KR101615584B1 (ko) | 반도체 장치의 제조 장치, 반도체 장치의 제조 방법 및 기록 매체 | |
KR102104728B1 (ko) | 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체 | |
TWI650827B (zh) | 半導體薄膜製造之變頻微波製程及應用 | |
KR101788429B1 (ko) | 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체 | |
WO2016151684A1 (ja) | 半導体装置の製造方法、記録媒体及び基板処理装置 | |
JP6151789B2 (ja) | 半導体装置の製造方法、基板処理装置及びプログラム | |
US20150368803A1 (en) | Uv curing process to improve mechanical strength and throughput on low-k dielectric films | |
JP2019114628A (ja) | エッチング方法および半導体デバイス製造方法 | |
JPWO2019064434A1 (ja) | 半導体装置の製造方法、基板処理装置及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14775533 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157025167 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015508547 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14775533 Country of ref document: EP Kind code of ref document: A1 |