WO2014157153A1 - 筋萎縮防止剤 - Google Patents

筋萎縮防止剤 Download PDF

Info

Publication number
WO2014157153A1
WO2014157153A1 PCT/JP2014/058205 JP2014058205W WO2014157153A1 WO 2014157153 A1 WO2014157153 A1 WO 2014157153A1 JP 2014058205 W JP2014058205 W JP 2014058205W WO 2014157153 A1 WO2014157153 A1 WO 2014157153A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
basic protein
protein fraction
derived basic
muscle atrophy
Prior art date
Application number
PCT/JP2014/058205
Other languages
English (en)
French (fr)
Inventor
祐子 石田
森田 如一
加藤 健
敏也 小林
友葵 水野
愛子 大町
Original Assignee
雪印メグミルク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雪印メグミルク株式会社 filed Critical 雪印メグミルク株式会社
Priority to EP14774469.2A priority Critical patent/EP3037100A4/en
Priority to US14/779,055 priority patent/US20160045563A1/en
Publication of WO2014157153A1 publication Critical patent/WO2014157153A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • A23K10/28Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin from waste dairy products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/012Hydrolysed proteins; Derivatives thereof from animals
    • A61K38/018Hydrolysed proteins; Derivatives thereof from animals from milk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/06Anabolic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to a muscular atrophy preventive agent that prevents muscle atrophy in vivo and is useful for the prevention and treatment of various muscular diseases such as sarcopenia and disuse muscular atrophy.
  • the present invention also relates to a food and drink for preventing muscle atrophy, a nutritional composition for preventing muscle atrophy, and a feed for preventing muscle atrophy, which contain an agent for preventing muscle atrophy.
  • Locomotive syndrome shows the state of need for care and the risk of need for care due to dysfunction of the musculoskeletal system.
  • the organs that play the role of movement are generally included. Representative diseases and dysfunctions seen in these motor organs include osteoporosis, sarcopenia, and osteoarthritis.
  • Sarcopenia is a syndrome characterized by progressive and generalized skeletal muscle mass and decreased skeletal muscle strength.
  • sarcopenia is defined in a narrow sense as occurring in relation to aging, in a broad sense it means a decrease in muscle mass and strength due to any cause.
  • sarcopenia is classified as primary (aging) sarcopenia without any obvious cause other than aging, and secondary sarcopenia with one or more obvious causes other than aging.
  • Secondary sarcopenia can be roughly divided into three types: those caused by decreased activity, those caused by diseases, and those caused by insufficient intake of nutrients.
  • patients with secondary sarcopenia are not limited to elderly people, and for example, disuse muscle atrophy that occurs when a person does not use muscles for a long time due to hospitalization or the like is also considered as one of secondary sarcopenia.
  • the pathogenesis and progression of sarcopenia is associated with skeletal muscle protein metabolism.
  • the amount of skeletal muscle is adjusted by the balance between muscle protein synthesis and muscle protein degradation, but if the balance is lost and the synthesis amount falls below the degradation amount, or the degradation amount exceeds the synthesis amount, muscle atrophy is reduced. It occurs and muscle mass decreases.
  • the amount of growth hormone secreted that promotes protein synthesis and the ability to inhibit degradation decreases, and the blood concentration of adrenal cortex hormone (glucocorticoid) that inhibits protein synthesis increases.
  • the amount of synthesis is less than the amount of decomposition, which causes muscle atrophy.
  • secondary sarcopenia there is no exercise stimulation to skeletal muscle, and as a result, protein synthesis is reduced, the amount of degradation exceeds the amount of synthesis, and muscle atrophy occurs. It has been confirmed that high-intensity resistance training is effective in preventing and improving muscle diseases such as sarcopenia.
  • the whey protein contained in milk has a higher content of branched-chain amino acids (BCAA) involved in muscle synthesis than soy protein, and NPU (Net Protein Utilization). ) Is also known to be expensive and is increasingly used as a supplement for muscle strengthening and recovery during exercise.
  • BCAA branched-chain amino acids
  • NPU Net Protein Utilization
  • the present invention relates to a muscle atrophy prevention food and drink, a muscle atrophy prevention nutrition composition, or a muscle atrophy prevention feed comprising a muscle atrophy prevention agent having an action of suppressing muscle atrophy in vivo and a muscle atrophy prevention agent.
  • the issue is to provide.
  • a muscle atrophy preventing agent comprising a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product as an active ingredient.
  • the milk-derived basic protein fraction adsorbs basic protein by bringing milk or a milk-derived raw material into contact with a cation exchange resin, and the fraction adsorbed on the resin has a salt concentration of 0.1 M to 1.
  • the muscle atrophy prevention agent according to any one of (1) to (3), which is a fraction obtained by elution with a 0 M eluate.
  • a method for using a muscle atrophy preventing agent which applies a muscle atrophy preventing agent comprising a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product as an active ingredient to a patient with a muscular disease.
  • the muscle atrophy preventing agent of the present invention has an effect of suppressing muscle atrophy in a living body, and is useful for the prevention and treatment of various muscle diseases such as sarcopenia and disuse muscle atrophy.
  • the muscle atrophy preventing agent according to the embodiment includes a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product as an active ingredient.
  • the milk-derived basic protein fraction is obtained from milk of mammals such as cow's milk, human milk, goat's milk, sheep milk, and the milk-derived basic protein fraction degradation product is the milk-derived basic protein fraction. Can be obtained by treatment with a proteolytic enzyme.
  • the milk-derived basic protein fraction preferably has the following properties. 1) According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), it consists of several proteins having a molecular weight in the range of 3,000-80,000. 2) 95% by weight or more is protein, and contains a small amount of other fat and ash. 3) Protein mainly consists of lactoferrin and lactoperoxidase. 4) The amino acid composition of the protein contains 15% by weight or more of basic amino acids such as lysine, histidine, and arginine.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the milk-derived basic protein fraction is prepared by, for example, bringing milk material such as skim milk or whey into contact with a cation exchange resin to adsorb basic protein, and the basic protein fraction adsorbed on this resin is 0.1 M. Elute with an eluate with a salt concentration of ⁇ 1.0M, collect this elution fraction, desalinate and concentrate by reverse osmosis (RO) membrane or electrodialysis (ED) method, etc., and dry as necessary Can be obtained.
  • RO reverse osmosis
  • ED electrodialysis
  • a method for obtaining a fraction by elution with an eluent exceeding pH 5 and having an ionic strength of 0.5 Japanese Patent Laid-Open No. 5-202098
  • a method using alginate gel Japanese Patent Laid-Open No. 61-246198
  • a method of obtaining from whey using inorganic porous particles Japanese Patent Laid-Open No. 1-86839
  • a method of obtaining from milk using a sulfated ester compound Japanese Patent Laid-Open No. 63-255300
  • milk or a milk-derived raw material is brought into contact with a cation exchange resin to adsorb basic proteins, and the fraction adsorbed on the resin is eluted with an eluent having a salt concentration of 0.1 M to 1.0 M.
  • the fraction obtained in this manner is preferably used as the milk-derived basic protein fraction.
  • the milk-derived basic protein fraction degradation product has the same amino acid composition as the milk-derived basic protein fraction, and the milk-derived basic protein fraction obtained by the above method is converted into a proteolytic enzyme.
  • proteolytic enzyme commercially available protease A “Amano” SD (trade name), Samoase PC10F (trade name), protin SD-AY10 (trade name) and other proteases for food and industry can be used. Mention may be made of enzymes such as pepsin, trypsin, chymotrypsin, pancreatin, papain and the like. Moreover, you may use combining these proteolytic enzymes suitably.
  • the milk-derived basic protein fraction and / or the milk-derived basic protein fraction degradation product obtained by the above-described method may be used as a muscle atrophy preventing agent as it is. It can also be formulated into powders, granules, tablets, capsules, drinks and the like.
  • a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product When adding a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product to a formulation or a food or drink, there is no particular limitation on the addition method, the blending method, etc.
  • a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product is suspended or dissolved in deionized water, stirred and mixed, and then formulated into a form of food, drink or feed It may be prepared and used.
  • the milk-derived basic protein fraction and / or the milk-derived basic protein fraction degradation product may be mixed uniformly, and stirring and mixing using an ultradisperser, a TK homomixer, or the like. Is also possible.
  • the solution can be used after being concentrated, freeze-dried, or the like with an RO membrane or the like, as necessary, so that it can be easily formulated or used for food or drink or feed.
  • the sterilization process normally used for manufacture of a pharmaceutical, food-drinks, and feed can be performed, and if it is a powder form, dry heat sterilization is also possible.
  • the anti-muscular atrophy agent can be in various forms such as liquid, gel, powder, granule, etc., and after formulation, food and drink such as nutrients, yogurt, milk drinks, and wafers It can also be blended in a nutritional composition.
  • the anti-muscular atrophy agent contains a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product as an active ingredient, and a filler, a bulking agent, a binder, and a disintegrate that are usually used for formulation.
  • Diluents or excipients such as agents, surfactants and lubricants can be used. Excipients include, for example, sucrose, lactose, starch, crystalline cellulose, mannitol, light anhydrous silicic acid, magnesium aluminate, synthetic aluminum silicate, magnesium magnesium aluminosilicate, calcium carbonate, sodium bicarbonate, hydrogen phosphate Calcium, carboxymethyl cellulose calcium and the like can be used alone or in combination of two or more.
  • stabilizers In the muscle atrophy prevention agent, stabilizers, saccharides, lipids, flavors, vitamins, minerals, flavonoids, polyphenols, etc. can be used in combination. Can be used. It can also be used together with other components that improve the muscular function, such as fruit prephenol, lycopene, catechins, branched-chain amino acids (BCAA), soy protein, and the like.
  • BCAA branched-chain amino acids
  • the muscle atrophy prevention agent can prevent muscle atrophy in vivo by ingesting 5 mg or more per kg body weight of mice or rats. Since the intake in laboratory animals corresponds to the intake per adult in the blood drug concentration (Mitsuyoshi Nakajima (1993) “Volume 8: Efficacy Evaluation”, Yodogawa Shoten, pages 2-18), usually one adult By ingesting 5 mg or more of a muscle atrophy inhibitor per day, it is possible to expect the effect of prevention and treatment on muscle atrophy in vivo, particularly sarcopenia and disuse muscle atrophy. Therefore, what is necessary is just to mix
  • milk-derived basic protein fraction and / or milk-derived basic protein fraction degradation product per day for each adult, it depends on the form of medicine, food and drink, and feed.
  • the product may contain 0.05 to 200 mg of milk-derived basic protein fraction and / or milk-derived basic protein fraction degradation product per 100 g.
  • various muscle diseases such as sarcopenia and disuse muscular atrophy can be obtained by using a muscular atrophy preventive agent containing the milk-derived basic protein fraction and / or the milk-derived basic protein fraction degradation product described in the embodiments as an active ingredient.
  • a method for using a muscular atrophy preventive agent applied to a patient of the present invention is provided.
  • the muscle atrophy preventing agent can also be applied to humans and other mammals such as dogs, monkeys, cats, cows, horses, pigs, chickens, sheep and other livestock.
  • a method for using a milk-derived basic protein fraction and / or a milk-derived basic protein fraction degradation product in the production of a muscle atrophy prevention agent is provided.
  • a column (5 cm in diameter ⁇ 30 cm in height) packed with 400 g of a cation exchange resin sulfonated chitopearl (Fujibo Co., Ltd.) was thoroughly washed with deionized water, and then 40 liters of unsterilized skim milk (pH 6. 7) was passed at a flow rate of 25 ml / min. After passing through the column, the column was thoroughly washed with deionized water, and the basic protein fraction adsorbed on the resin was eluted with 0.02 M carbonate buffer (pH 7.0) containing 0.98 M sodium chloride.
  • 0.02 M carbonate buffer pH 7.0
  • Example Product 1 a powdered milk-derived basic protein fraction (Example Product 1). ).
  • the obtained milk-derived basic protein fraction was measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the molecular weight was distributed in the range of 3,000-80,000.
  • the composition was as shown in Table 1. Further, after hydrolysis with 6N hydrochloric acid at 110 ° C. for 24 hours, the amino acid composition was analyzed with an amino acid analyzer (L-8500 type, manufactured by Hitachi, Ltd.). As a result, as shown in Table 2, 15 wt. % Was included. Furthermore, when the protein composition was analyzed by ELISA, 40% or more of lactoferrin and lactoperoxidase were contained as shown in Table 3.
  • ED electrodialysis
  • Example product 3 After dissolving 50 g of the milk-derived basic protein fraction obtained in Example 1 in 10 liters of distilled water, 1% pancreatin (manufactured by Sigma) was added and reacted at 37 ° C. for 2 hours. After the reaction, the enzyme was inactivated by heat treatment at 80 ° C. for 10 minutes, and then freeze-dried to obtain 48.3 g of a milk-derived basic protein fraction degradation product (Example product 3).
  • Example product 4 120 g of the milk-derived basic protein fraction obtained in Example 2 was dissolved in 1.8 liters of purified water, and maintained at 45 ° C., and 20 g of protease A “Amano” SD (manufactured by Amano Enzyme) was added. The reaction was performed for 2 hours. The enzyme was inactivated by heating at 80 ° C. for 10 minutes and then freeze-dried to obtain 95 g of a milk-derived basic protein fraction degradation product (Example product 4).
  • Test Example 1 (Muscle loss prevention test) Using the milk-derived basic protein fraction of Example product 1 and the milk-derived basic protein fraction degradation product of Example product 3, the effect of preventing the decrease in muscle mass was evaluated. A 20-week-old SAM-P female mouse was used as an experimental animal.
  • Example products 1, 3, WPI and catechin mixture were each suspended in physiological saline and administered orally.
  • EDL long finger extensor
  • TA anterior tibial
  • SOL soleus
  • GAS gastrocnemius
  • the relative muscle weight per body weight is 5 mg or 10 mg per kg body weight of the mouse-derived basic protein fraction of Example Product 1 in all of the long extensor, anterior tibial, soleus and gastrocnemius.
  • the group to which the milk-derived basic protein fraction degradation product of Example product 3 was administered at a dose of 5 mg / kg mouse body weight and the group to which the catechin mixture was administered at a dose of 120 mg / kg mouse weight were significantly higher than the control group.
  • the relative muscle weight per body weight of the group administered with 120 mg / kg body weight of WPI was not different from the control group in all of the long finger extensor, anterior tibialis, soleus and gastrocnemius.
  • the SAM-P mouse used in the test is an aging-promoting mouse
  • the muscles were atrophied with aging and the muscle mass was decreased.
  • the group to which Examples 1 and 3 and the catechin mixture were administered Although muscle atrophy due to aging was suppressed and a decrease in muscle mass was suppressed, no effect was observed in the group administered with WPI.
  • the weights of the long finger extensor, anterior tibialis and soleus when 5 mg / kg body weight of Example products 1 and 3 were administered were equivalent to 120 mg / kg mouse body weight administered with the catechin mixture.
  • the relative muscle weight per body weight when Example Product 1 was administered at 10 mg / kg of mouse body weight was 120 mg / kg of mouse weight per mouse body weight in all of the long finger extensor, anterior tibial muscle, soleus and gastrocnemius. It was significantly higher than the case. Therefore, the milk-derived basic protein fraction and the milk-derived basic protein fraction degradation product of the present invention have a superior muscle mass reduction preventing effect than WPI and catechin mixtures, and the effect is 5 mg per kg body weight of the mouse. It was clarified that it was observed when administered as described above.
  • Example 2 (Muscle increase test) Using the milk-derived basic protein fraction of Example product 2 and the milk-derived basic protein fraction degradation product of Example product 4, the effect of increasing muscle mass was evaluated. A 6-week-old Wistar female rat was used as an experimental animal.
  • WPI Group WPI (120 mg / kg) group
  • the normal breeding group continued to be raised in the normal breeding cage, and the remaining six groups were raised for one week with the hind limbs being unloaded by tail suspension.
  • all groups were transferred to normal breeding cages to provide a recovery period, and the above samples were orally administered to each group once a day using a sonde for 1 week.
  • physiological saline was orally administered once a day with a sonde during the period corresponding to the recovery period of the tail-suspended group (1 week).
  • Example products 2, 4, WPI and catechin mixture were each suspended in physiological saline and administered orally.
  • the soleus muscle weight per body weight was significantly lower in the physiological saline group suspended from the tail than in the normal breeding group.
  • the group in which Example Product 2 was administered at a dose of 5 mg / kg or 10 mg / kg per 1 kg body weight of the rat and the group in which 5 mg of the milk-derived basic protein fraction degradation product of Example Product 4 was administered per 1 kg of the rat body weight .
  • the soleus muscle weight significantly increased compared with the saline group, and the degree was the same as that of the normal breeding group.
  • the soleus muscle weight per body weight was not different from the control group.
  • the soleus muscle weight was significantly increased compared to the physiological saline group, but the effect of Example 1 or 4 was 5 mg / kg / kg rat body weight. Or it was lower than the group administered 10 mg / kg. Therefore, the milk-derived basic protein fraction and the milk-derived basic protein fraction degradation product of the present invention have an effect of increasing muscle mass superior to that of WPI and catechins. It became clear that it was accepted in the case of.
  • 5.0 kg of this solution 5.0 kg of casein, 5.0 kg of soy protein, 1.0 kg of fish oil, 3.0 kg of perilla oil, 17.0 kg of dextrin, 6.0 kg of mineral mixture, 1.95 kg of vitamin mixture, 2.0 kg of emulsifier 4.0 kg of stabilizer and 0.05 kg of fragrance are blended and filled into a 200 ml retort pouch, and the retort sterilizer (type 1 pressure vessel, TYPE: RCS-4CRTGN, manufactured by Nisaka Seisakusho) at 121 ° C. for 20 minutes.
  • the liquid nutritional composition for preventing muscle atrophy contained 50 mg of the milk-derived basic protein fraction degradation product of Example Product 3 per 100 g.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Husbandry (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Fodder In General (AREA)

Abstract

 乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分として含有する筋萎縮防止剤。筋萎縮防止剤は、筋肉量の低下を防止する効果や筋肉量を増加させる効果が顕著であるため、サルコペニアや廃用性筋萎縮等の種々の筋疾患の予防や治療に有用である。

Description

筋萎縮防止剤
 本発明は、生体内での筋肉の萎縮を防止し、サルコペニアや廃用性筋萎縮等の種々の筋疾患の予防や治療に有用な筋萎縮防止剤に関する。本発明はまた、筋萎縮防止剤を配合した筋萎縮防止用飲食品、筋萎縮防止用栄養組成物、筋萎縮防止用飼料に関する。
 近年、日本人の平均寿命は80歳に迫り、およそ4人に1人は65歳以上という、超高齢社会を迎えた。これに伴って、運動器の障害の罹患率も増加の一途を辿り、2007年に日本整形外科学会は、運動器の健康維持・増進、介護についての国民ならびに医師の意識改革を推進するために、「ロコモティブシンドローム(運動器症候群)」という新しい言葉を提唱した。ロコモティブシンドロームは、運動器の機能不全により要介護状態および要介護リスクが高まった状態を示し、運動器には骨・関節・靱帯、脊椎・脊髄、筋肉・腱、末梢神経など、体を支え、動かす役割をする器官が総じて含まれる。これら運動器で見られる代表的な疾患および機能障害として、骨粗鬆症やサルコペニア、変形性関節症などが挙げられる。
 サルコペニアは、進行性および全身性の骨格筋量および骨格筋力の低下を特徴とする症候群である。サルコペニアは、狭義には加齢に関連して生じるものとして定義されるが、広義にはあらゆる原因による筋肉量と筋力の低下を意味する。広義のサルコペニアの場合、加齢以外に明らかな原因がないものを一次性(加齢性)サルコペニア、加齢以外の1つ以上の原因が明らかなものを二次性サルコペニアと分類している。二次性サルコペニアは、活動量の低下に起因するもの、疾患によるもの、栄養素の摂取不足によるものの大きく3つに分けられる。つまり、二次性サルコペニアの患者は高齢者に限らず、例えば、入院などによって、長期間筋肉を使わない状態が続いた場合に生じる廃用性筋萎縮も二次性サルコペニアのひとつとされる。
 サルコペニアの発病と進行には、骨格筋タンパク質の代謝が関連している。骨格筋の量は、筋タンパク質合成と筋タンパク質分解のバランスにより調整されているが、そのバランスが崩れて合成量が分解量を下回る、あるいは、分解量が合成量を上回ると、筋肉の萎縮が生じて筋肉量が低下する。高齢者においては、タンパク質の合成促進作用および分解抑制作用を有する成長ホルモンの分泌量が低下することや、タンパク質合成抑制作用を有する副腎皮質ホルモン(グルココルチコイド)の血中濃度が上昇することなどによって、合成量が分解量を下回り、これが筋萎縮の原因となる。一方、二次性サルコペニアでは、骨格筋への運動刺激がないことで、タンパク質合成が低下した結果、分解量が合成量を上回り、筋萎縮が生じる。
 サルコペニアなどの筋疾患の予防や改善には、運動面における高強度のレジスタンストレーニングが有効であることが確認されている。しかし、高齢者や病後の療養生活において、高強度の運動を積極的に実施することは身体的な負担が大きく、また実施の際にも、専門家による適切な指導が必要となる。このため、サルコペニアの予防や改善には、基礎体力や運動機能が低下した人でも手軽に実施できる栄養面からのアプローチが望まれている。
 サルコペニアなどの筋疾患の予防や改善に有効な、筋肉機能を改善させる効果を有する食品成分としては、例えば、果実ポリフェノールによる筋萎縮抑制(特許文献1)、リコピンによるタンパク質分解抑制(特許文献2)、カテキン類による筋肉老化抑制(特許文献3)等が開示されている。また、タンパク質やアミノ酸の摂取による骨格筋萎縮の予防と早期回復に関する検討についても行なわれている。特に、牛乳中に含まれる乳清タンパク質は、大豆タンパク質と比較して筋肉の合成に関わる分岐鎖アミノ酸(branched-chain amino acids;BCAA)含量が高い上、NPU(Net Protein Utilization;正味タンパク質利用率)も高いことが知られており、運動時における筋肉の増強および回復のためのサプリメントとして利用が進んでいる。しかしながら、これら成分は有効摂取量が多いため、日常的な摂取が負担となるほか、飲食品へ応用する場合には、それらの成分特有の風味あるいは呈色が飲食品の官能へ悪影響を及ぼす可能性があるといった問題がある。
特開2001-89387号公報 特開2004-59518号公報 特開2008-63321号公報
 本発明は、生体内での筋肉の萎縮を抑制する作用を有する筋萎縮防止剤及び筋萎縮防止剤を配合した筋萎縮防止用飲食品、筋萎縮防止用栄養組成物又は筋萎縮防止用飼料を提供することを課題とする。
 本発明者らは、上記の課題を解決するため鋭意検討を進めたところ、乳由来の塩基性タンパク質画分やその分解物に筋萎縮防止効果があることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の構成によるものである。
 (1)乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする筋萎縮防止剤。
 (2)乳由来塩基性タンパク質画分分解物が、乳由来塩基性タンパク質画分をタンパク質分解酵素で処理して得られるものである(1)に記載の筋萎縮防止剤。
 (3)タンパク質分解酵素が、ペプシン、トリプシン、キモトリプシン、パンクレアチン、パパインなる群から選択される少なくとも1種以上である(2)に記載の筋萎縮防止剤。
 (4)乳由来塩基性タンパク質画分が、そのアミノ酸組成中に塩基性アミノ酸を15重量%以上含有している(1)から(3)のいずれかに記載の筋萎縮防止剤。
 (5)乳由来塩基性タンパク質画分が、乳または乳由来の原料を陽イオン交換樹脂に接触させて塩基性タンパク質を吸着させ、この樹脂に吸着した画分を塩濃度0.1M~1.0Mの溶出液で溶出して得られる画分である(1)から(3)のいずれかに記載の筋萎縮防止剤。
 (6)(1)から(4)のいずれかに記載の筋萎縮防止剤を含む筋萎縮防止用飲食品、筋萎縮防止用栄養組成物又は筋萎縮防止用飼料。
 (7)乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を1日あたり5mg以上摂取することによる筋萎縮の防止方法。
 (8)乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする筋萎縮防止剤を、筋疾患の患者に適用する筋萎縮防止剤の使用方法。
 (9)筋萎縮防止剤の製造における乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物の使用方法。
 本発明の筋萎縮防止剤は、生体内での筋肉の萎縮を抑制する効果を有し、サルコペニアや廃用性筋萎縮等の種々の筋疾患の予防や治療に有用である。
 実施形態に係る筋萎縮防止剤は、乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする。乳由来塩基性タンパク質画分は、牛乳、人乳、山羊乳、羊乳など哺乳類の乳から得られるものであり、また、乳由来塩基性タンパク質画分分解物は、乳由来塩基性タンパク質画分をタンパク質分解酵素で処理して得ることができる。
 乳由来塩基性タンパク質画分は以下の性質を有していることが好ましい。
 1)ソジウムドデシルサルフェート-ポリアクリルアミドゲル電気泳動(SDS-PAGE)によると分子量3,000~80,000の範囲の数種のタンパク質よりなる。
 2)95重量%以上がタンパク質であり、その他少量の脂肪、灰分を含む。
 3)タンパク質は主としてラクトフェリン及びラクトパーオキシダーゼよりなる。
 4)タンパク質のアミノ酸組成は、リジン、ヒスチジン、アルギニン等の塩基性アミノ酸を15重量%以上含有する。
 乳由来塩基性タンパク質画分は、例えば、脱脂乳や乳清などの乳原料を陽イオン交換樹脂と接触させて塩基性タンパク質を吸着させ、この樹脂に吸着した塩基性タンパク質画分を0.1M~1.0Mの塩濃度の溶出液で溶出し、この溶出画分を回収して、逆浸透(RO)膜や電気透析(ED)法などにより脱塩及び濃縮し、必要に応じて乾燥することにより得ることができる。
 また、乳由来塩基性タンパク質画分を得る方法としては、乳または乳由来の原料を陽イオン交換体に接触させて塩基性タンパク質を吸着させた後、この陽イオン交換体に吸着した塩基性タンパク質画分を、pH5を越え、イオン強度0.5を越える溶出液で溶出して得る方法(特開平5-202098号公報);アルギン酸ゲルを用いて得る方法(特開昭61-246198号公報);無機の多孔性粒子を用いて乳清から得る方法(特開平1-86839号公報);硫酸化エステル化合物を用いて乳から得る方法(特開昭63-255300号公報)などが知られており、このような方法で得られた乳由来塩基性タンパク質画分を用いることができる。具体的には、乳または乳由来の原料を陽イオン交換樹脂に接触させて塩基性タンパク質を吸着させ、この樹脂に吸着した画分を塩濃度0.1M~1.0Mの溶出液で溶出して得られる画分を乳由来塩基性タンパク質画分として用いることが好ましい。さらに、乳由来塩基性タンパク質画分分解物は、乳由来塩基性タンパク質画分と同様のアミノ酸組成を有しており、上記の方法で得られた乳由来塩基性タンパク質画分をタンパク質分解酵素で処理して、ソジウムドデシルサルフェート-ポリアクリルアミドゲル電気泳動(SDS-PAGE)による平均分子量が4,000以下の乳由来塩基性タンパク質画分分解物として得ることができる。なお、タンパク質分解酵素としては、市販されているプロテアーゼA「アマノ」SD(商品名)、サモアーゼPC10F(商品名)、プロチンSD-AY10(商品名)等の食品・工業用プロテアーゼが使用できるほか、ペプシン、トリプシン、キモトリプシン、パンクレアチン、パパイン等の酵素を挙げることができる。また、これらのタンパク質分解酵素を適宜組み合わせて使用してもよい。
 上述の方法によって得られた乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物は、そのまま筋萎縮防止剤として使用してもよいが、必要に応じて、常法に従い、粉末剤、顆粒剤、錠剤、カプセル剤、ドリンク剤等に製剤化することもできる。
 乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を製剤化あるいは飲食品等へ添加する場合、添加方法、配合方法等に特に制限はなく、例えば、溶液中で添加、配合するには、乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を脱イオン水に懸濁あるいは溶解し、撹拌混合した後、製剤化、あるいは飲食品や飼料の形態に調製して使用すればよい。
 撹拌混合の条件としては、乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物が均一に混合されればよく、ウルトラディスパーサーやTKホモミクサー等を使用して撹拌混合することも可能である。また、その溶液は、製剤化、あるいは飲食品や飼料に使用しやすいように、必要に応じて、RO膜等での濃縮や、凍結乾燥して使用することができる。本発明では、医薬品、飲食品や飼料の製造に通常使用される殺菌処理が可能であり、粉末状であっては乾熱殺菌も可能である。
 以上により、筋萎縮防止剤は、液状、ゲル状、粉末状、顆粒状等様々な形態とすることが可能であり、また、製剤化した後に栄養剤やヨーグルト、乳飲料、ウエハース等の飲食品や栄養組成物に配合することも可能である。
 筋萎縮防止剤は、有効成分として乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を含む他、製剤化に際して、通常使用される充填剤、増量剤、結合剤、崩壊剤、界面活性剤、滑沢剤等の希釈剤又は賦形剤を用いることができる。賦形剤としては、例えば、ショ糖、乳糖、デンプン、結晶性セルロース、マンニット、軽質無水珪酸、アルミン酸マグネシウム、合成珪酸アルミニウム、メタ珪酸アルミン酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、リン酸水素カルシウム、カルボキシルメチルセルロースカルシウム等を1種又は2種以上組み合わせて用いることが可能である。
 また、筋萎縮防止剤では、安定剤や糖類、脂質、フレーバー、ビタミン、ミネラル、フラボノイド、ポリフェノール等を併用することも可能であり、飲食品や飼料を調製する際に、適宜これらを配合して使用することができる。また、他の筋肉機能を改善させる効果を示す成分、例えば、果実プリフェノールやリコピン、カテキン類、分岐鎖アミノ酸(branched-chain amino acids;BCAA)、大豆タンパク質等とともに使用することも可能である。
 筋萎縮防止剤は、後述する試験例に示すように、マウスやラットに体重1kgあたり5mg以上経口摂取させることにより、生体内での筋肉の萎縮を防止することが可能である。実験動物における摂取量は、血中薬物濃度において、成人一人あたりの摂取量に該当することから(中島光好(1993)「第8巻 薬効評価」 廣川書店 2-18頁)、通常、成人一人一日あたり、筋萎縮防止剤を5mg以上摂取することにより、生体内での筋肉の萎縮、特にサルコペニアや廃用性筋萎縮等に対する予防や治療の効果が期待できる。したがって、乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を、この必要量を確保できるように製剤化あるいは飲食品等に配合すればよい。例えば、成人一人一日あたり、乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を5mg以上摂取させるためには、医薬、飲食品、飼料の形態にもよるが、最終製品として、100gあたり乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を0.05~200mg含有させればよい。
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、実施形態において説明した乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする筋萎縮防止剤を、サルコペニアや廃用性筋萎縮等の種々の筋疾患の患者に適用する筋萎縮防止剤の使用方法が提供される。また筋萎縮防止剤は、ヒトその他の哺乳類、例えば犬、サル、ネコ、牛、馬、豚、鶏、羊等の家畜にも適用され得る。
 他にも、筋萎縮防止剤の製造における乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物の使用方法が提供される。
 以下に実施例及び試験例を示し、本発明について詳細に説明するが、これらは単に例示するのみであり、本発明はこれらによって何ら限定されるものではない。
 陽イオン交換樹脂のスルホン化キトパール(富士紡績株式会社製)400gを充填したカラム(直径5cm×高さ30cm)を脱イオン水で十分洗浄した後、このカラムに未殺菌脱脂乳40リットル(pH6.7)を流速25ml/minで通液した。通液後、このカラムを脱イオン水で十分洗浄し、0.98M塩化ナトリウムを含む0.02M炭酸緩衝液(pH7.0)で樹脂に吸着した塩基性タンパク質画分を溶出した。この操作を10回繰り返して、溶出液を逆浸透(RO)膜により脱塩して、濃縮した後、凍結乾燥して粉末状の乳由来塩基性タンパク質画分210gを得た(実施例品1)。得られた乳由来塩基性タンパク質画分について、ソジウムドデシルサルフェート-ポリアクリルアミドゲル電気泳動(SDS-PAGE)により測定したところ、分子量は3,000~80,000の範囲に分布しており、成分組成は表1に示すとおりであった。また、6N塩酸で110℃、24時間加水分解した後、アミノ酸分析装置(L-8500型、日立製作所製)でそのアミノ酸組成を分析した結果、表2に示したように塩基性アミノ酸が15重量%以上含まれていた。さらに、ELISA法により、そのタンパク質組成を分析したところ、表3に示すように、40%以上のラクトフェリン及びラクトパーオキシダーゼが含まれていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 陽イオン交換樹脂のSPトーヨーパール(東ソー株式会社製)30kgを充填したカラム(直径100cm×高さ10cm)を脱イオン水で十分洗浄した後、このカラムに121℃で30秒間加熱殺菌したチーズホエー3t(pH6.2)を、流速10リットル/minで通液した。通液後、このカラムを脱イオン水で十分洗浄し、0.9M塩化ナトリウムを含む0.1Mクエン酸緩衝液(pH5.7)で樹脂に吸着した塩基性タンパク質画分を溶出した。そして、この溶出液を電気透析(ED)法により脱塩し、濃縮した後、凍結乾燥して粉末状の乳由来塩基性タンパク質画分183gを得た(実施例品2)。
 実施例1で得られた乳由来塩基性タンパク質画分50gを蒸留水10リットルに溶解した後、1%パンクレアチン(シグマ社製)を添加し、37℃で2時間反応させた。反応後、80℃で10分間加熱処理して酵素を失活させた後、凍結乾燥して乳由来塩基性タンパク質画分分解物48.3gを得た(実施例品3)。
 実施例2で得られた乳由来塩基性タンパク質画分120gを精製水1.8リットルに溶解した後、45℃に保持してプロテアーゼA「アマノ」SD(天野エンザイム社製)を20g添加し、2時間反応させた。80℃で10分間加熱して酵素を失活させた後、凍結乾燥して乳由来塩基性タンパク質画分分解物を95g得た(実施例品4)。
[試験例1]
(筋肉量低下防止試験)
 実施例品1の乳由来塩基性タンパク質画分と実施例品3の乳由来塩基性タンパク質画分分解物を使用して、筋肉量低下防止効果を評価した。
 実験動物として、20週齢のSAM-P系雌マウスを使用した。マウスを体重が等しくなるように6群に分け(各群n=7、29.8±1.9g)、生理食塩水を投与する群(コントロール群)、実施例品1、実施例品3をマウス体重1kgあたり、それぞれ5mg~10mg投与する群(実施例品1(5mg/kg)群、実施例品1(10mg/kg)群、実施例品3(5mg/kg)群)、マウス体重1kgあたり120mgの乳清タンパク質単離物(Whey Protein Isolate;WPI、Fonterra社製)を投与する群(WPI(120mg/kg)群)、マウス体重1kgあたり120mgの緑茶由来のカテキン混合物(長良サイエンス株式会社製)を投与する群(カテキン混合物(120mg/kg)群)を設けた。それぞれの試料を毎日1回ゾンデで経口投与して、45週齢まで飼育した。なお、実施例品1、3、WPIおよびカテキン混合物はそれぞれ生理食塩水に懸濁して、経口投与した。試験終了時に、ペントバルビタールナトリウム(50mg/kg)麻酔下で、マウスの右後足から長指伸筋(EDL)、前脛骨筋(TA)、ヒラメ筋(SOL)、腓腹筋(GAS)を摘出し、それぞれの筋肉の重量を測定し、体重あたりの相対重量(mg/100g体重)として算出した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、体重あたりの相対筋重量は、長指伸筋、前脛骨筋、ヒラメ筋および腓腹筋すべてにおいて、実施例品1の乳由来塩基性タンパク質画分をマウス体重1kgあたり5mgまたは10mg投与した群、実施例品3の乳由来塩基性タンパク質画分分解物をマウス体重1kgあたり5mg投与した群、カテキン混合物をマウス体重1kgあたり120mg投与した群が、コントロール群に比べ有意に高かった。一方、WPIをマウス体重1kgあたり120mg投与した群の体重あたりの相対筋重量は、長指伸筋、前脛骨筋、ヒラメ筋および腓腹筋すべてにおいて、コントロール群と差は認められなかった。
 試験に用いたSAM-P系マウスは老化促進マウスであることから、コントロール群では老化に伴って筋肉が萎縮して筋肉量が低下したが、実施例品1、3およびカテキン混合物を投与した群では、老化による筋肉の萎縮を抑制し、筋肉量の低下が抑制されたものの、WPIを投与した群では効果が認められなかった。
 また、実施例品1、3をマウス体重1kgあたり5mg投与した場合の長指伸筋と前脛骨筋、ヒラメ筋の重量は、カテキン混合物をマウス体重1kgあたり120mg投与した場合と同等であったが、実施例品1、3をマウス体重1kgあたり5mg投与した場合の腓腹筋の重量は、カテキン混合物をマウス体重1kgあたり120mg投与した場合に比べ有意に高かった。また、実施例品1をマウス体重1kgあたり10mg投与した場合の体重あたりの相対筋重量は、長指伸筋、前脛骨筋、ヒラメ筋および腓腹筋すべてにおいて、カテキン混合物をマウス体重1kgあたり120mg投与した場合に比べ有意に高かった。
 したがって、本発明の乳由来塩基性タンパク質画分と乳由来塩基性タンパク質画分分解物には、WPIやカテキン混合物よりも優れた筋肉量低下防止効果があり、その効果は、マウス体重1kgあたり5mg以上投与した場合に認められることが明らかとなった。
[試験例2]
(筋肉量増加試験)
 実施例品2の乳由来塩基性タンパク質画分と実施例品4の乳由来塩基性タンパク質画分分解物を使用して、筋肉量増加効果を評価した。
 実験動物として、6週齢のWistar系雌ラットを使用した。ラットを各群の体重が等しくなるように7群に分け(各群n=7、145.4±6.5g)、尾部懸垂を行わず通常通りに飼育する群(通常飼育群)、尾部懸垂後の回復期間に生理食塩水を投与する群(生理食塩水群)、尾部懸垂後の回復期間に実施例品2、4をラット体重1kgあたり、5~10mg投与する群(実施例品2(5mg/kg)群、実施例品2(10mg/kg)群、実施例品4(5mg/kg)群)、尾部懸垂後の回復期間にマウス体重1kgあたり120mgの乳清タンパク質単離物(WPI、Fonterra社製)を投与する群(WPI(120mg/kg)群)、尾部懸垂後の回復期間にラット1kgあたり120mgの緑茶由来のカテキン混合物(長良サイエンス株式会社製)を投与する群(カテキン混合物(120mg/kg)群)を設けた。群分け後、通常飼育群は通常飼育用ケージ内での飼育を継続し、残りの6群は尾部懸垂により後肢が非荷重状態になるようにして1週間飼育した。尾部懸垂終了後、全ての群を通常飼育用のケージに移して回復期間を設け、それぞれの群に前述の試料を、毎日1回、ゾンデにより経口投与して1週間飼育した。なお、通常飼育群には、尾部懸垂した群の回復期間に相当する間(1週間)、毎日1回、ゾンデにより生理食塩水を経口投与した。また、実施例品2、4、WPIおよびカテキン混合物は、それぞれ生理食塩水に懸濁して、経口投与した。試験終了後、ペントバルビタールナトリウム(50mg/kg)麻酔下で、下腿骨格筋(ヒラメ筋:SOL)を摘出し、筋重量を測定し、体重あたりの相対筋重量(mg/100g体重)を算出した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、体重あたりのヒラメ筋重量は、尾部懸垂をした生理食塩水群で、通常飼育群に比べて有意に低下した。しかし、実施例品2をラット体重1kgあたり5mg/kgまたは10mg/kgの投与量で投与した群、ならびに実施例品4の乳由来塩基性タンパク質画分分解物をラット体重1kgあたり5mg投与した群では、生理食塩水群に比較して有意にヒラメ筋重量が増加し、その程度は通常飼育群と同等であった。一方、WPIをマウス体重1kgあたり120mg投与した群では、体重あたりのヒラメ筋重量に、コントロール群と差は認められなかった。また、カテキン混合物をラット体重1kgあたり120mg投与した群では、生理食塩水群に比べ、有意にヒラメ筋重量が増加したが、その効果は、実施例品1または4をラット体重1kgあたり5mg/kgまたは10mg/kg投与した群より低かった。したがって、本発明の乳由来塩基性タンパク質画分と乳由来塩基性タンパク質画分分解物には、WPIやカテキン類より優れた筋肉量増加効果があり、その効果は、ラット体重1kgあたり5mg以上投与した場合に認められることが明らかとなった。
(筋萎縮防止用錠剤の調製)
 表6に示す配合で原材料を混合後、常法により1gに成型、打錠して筋萎縮防止用錠剤を製造した。
Figure JPOXMLDOC01-appb-T000006
(筋萎縮防止用栄養組成物の調製)
 実施例品3の乳由来塩基性タンパク質画分分解物25gを4,975gの脱イオン水に溶解し、50℃まで加熱後、TKホモミクサー(TK ROBO MICS;特殊機化工業社製)にて、6,000rpmで30分間撹拌混合して、実施例品3の乳由来塩基性タンパク質画分分解物を25g/5kgを含有する溶液を得た。この溶液5.0kgに、カゼイン5.0kg、大豆タンパク質5.0kg、魚油1.0kg、シソ油3.0kg、デキストリン17.0kg、ミネラル混合物6.0kg、ビタミン混合物1.95kg、乳化剤2.0kg、安定剤4.0kg、香料0.05kgを配合し、200mlのレトルトパウチに充填し、レトルト殺菌機(第1種圧力容器、TYPE:RCS-4CRTGN、日阪製作所製)で121℃、20分間殺菌して、本発明の筋萎縮防止用液状栄養組成物50kgを製造した。なお、この筋萎縮防止用液状栄養組成物には、100gあたり、実施例品3の乳由来塩基性タンパク質画分分解物が50mg含まれていた。
(筋萎縮防止用飲料の調製)
 脱脂粉乳300gを409.5gの脱イオン水に溶解した後、実施例品2の乳由来塩基性タンパク質画分0.5gを溶解し、50℃まで加熱後、ウルトラディスパーサー(ULTRA-TURRAX T-25;IKAジャパン社製)にて、9,500rpmで30分間撹拌混合した。マルチトール100g、酸味料2g、還元水飴20g、香料2g、脱イオン水166gを添加した後、100mlのガラス瓶に充填し、95℃、15秒間殺菌後、密栓し、本発明の筋萎縮防止用飲料10本(100ml入り)を調製した。なお、この筋萎縮防止用飲料には、100mlあたり実施例品2の乳由来塩基性タンパク質画分が50mg含まれていた。
(イヌ用筋萎縮防止用飼料の調製)
 実施例品4の乳由来塩基性タンパク質画分分解物1kgを99kgの脱イオン水に溶解し、50℃まで加熱後、TKホモミクサー(MARK II 160型;特殊機化工業社製)にて、3,600rpmで40分間撹拌混合して、実施例品4の乳由来塩基性タンパク質画分分解物を1g/100g含有する溶液を得た。この乳由来塩基性タンパク質画分分解物溶液10kgに大豆粕12kg、脱脂粉乳14kg、大豆油4kg、コーン油2kg、パーム油23.2kg、トウモロコシ澱粉14kg、小麦粉9kg、ふすま2kg、ビタミン混合物5kg、セルロース2.8kg、ミネラル混合物2kgを配合し、120℃、4分間殺菌して、本発明のイヌ用筋萎縮防止用飼料100kgを製造した。なお、このイヌ用筋萎縮防止用飼料には、100gあたり、実施例品4の乳由来塩基性タンパク質画分分解物が100mg含まれていた。
                                                                               

Claims (9)

  1.  乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする筋萎縮防止剤。
  2.  前記乳由来塩基性タンパク質画分分解物が、乳由来塩基性タンパク質画分をタンパク質分解酵素で処理して得られるものである請求項1に記載の筋萎縮防止剤。
  3.  前記タンパク質分解酵素が、ペプシン、トリプシン、キモトリプシン、パンクレアチン、パパインからなる群から選択される少なくとも1種以上である請求項2に記載の筋萎縮防止剤。
  4.  前記乳由来塩基性タンパク質画分が、そのアミノ酸組成中に塩基性アミノ酸を15重量%以上含有している請求項1から請求項3のいずれか1項に記載の筋萎縮防止剤。
  5.  前記乳由来塩基性タンパク質画分が、乳または乳由来の原料を陽イオン交換樹脂に接触させて塩基性タンパク質を吸着させ、この樹脂に吸着した画分を塩濃度0.1M~1.0Mの溶出液で溶出して得られる画分である請求項1から請求項3のいずれか1項に記載の筋萎縮防止剤。
  6.  請求項1から請求項4のいずれか1項に記載の筋萎縮防止剤を含む筋萎縮防止用飲食品、筋萎縮防止用栄養組成物又は筋萎縮防止用飼料。
  7.  乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を1日あたり5mg以上摂取することによる筋萎縮の防止方法。
  8.  乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物を有効成分とする筋萎縮防止剤を、筋疾患の患者に適用する筋萎縮防止剤の使用方法。
  9.  筋萎縮防止剤の製造における乳由来塩基性タンパク質画分及び/又は乳由来塩基性タンパク質画分分解物の使用方法。
PCT/JP2014/058205 2013-03-28 2014-03-25 筋萎縮防止剤 WO2014157153A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14774469.2A EP3037100A4 (en) 2013-03-28 2014-03-25 MEANS TO PREVENT MUSCLE ATROPHY
US14/779,055 US20160045563A1 (en) 2013-03-28 2014-03-25 Muscle-atrophy-preventing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070414 2013-03-28
JP2013070414A JP6395350B2 (ja) 2013-03-28 2013-03-28 筋萎縮防止剤

Publications (1)

Publication Number Publication Date
WO2014157153A1 true WO2014157153A1 (ja) 2014-10-02

Family

ID=51624124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058205 WO2014157153A1 (ja) 2013-03-28 2014-03-25 筋萎縮防止剤

Country Status (4)

Country Link
US (1) US20160045563A1 (ja)
EP (1) EP3037100A4 (ja)
JP (1) JP6395350B2 (ja)
WO (1) WO2014157153A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322700A1 (en) * 2019-09-25 2022-10-13 Neo Cremar Co.,Ltd Composition for alleviating, preventing or treating sarcopenia, containing whey protein hydrolysate as active ingredient

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246198A (ja) 1985-02-07 1986-11-01 オレオフイナ・ソシエテ・アノニム 蛋白の精製法
JPS63255300A (ja) 1987-04-10 1988-10-21 Snow Brand Milk Prod Co Ltd 硫酸エステル化物を用いて乳からラクトフエリンを分離、精製する方法
JPS6486839A (en) 1987-06-19 1989-03-31 Entamonto Sa Method for selectively extracting metal protein from whey
JPH05202098A (ja) 1992-01-29 1993-08-10 Snow Brand Milk Prod Co Ltd 乳質原料から生理活性物質の製造法
JPH05508542A (ja) * 1990-07-13 1993-12-02 グロペップ リミテッド 成長促進剤
JP2001089387A (ja) 1999-09-17 2001-04-03 Otsuka Pharmaceut Co Ltd 筋萎縮抑制組成物
JP2002065212A (ja) * 2000-08-29 2002-03-05 Meiji Seika Kaisha Ltd 筋強化用食品組成物及び筋強化剤
JP2004059518A (ja) 2002-07-30 2004-02-26 Enkaku Iryo Kenkyusho:Kk 筋蛋白分解抑制剤および機能性飲食品
JP2008063321A (ja) 2006-08-10 2008-03-21 Kao Corp 筋肉老化抑制剤
WO2008111573A1 (ja) * 2007-03-12 2008-09-18 Snow Brand Milk Products Co., Ltd. 成長ホルモン分泌促進剤
JP2009507044A (ja) * 2005-09-09 2009-02-19 マレー ゴールバーン コーオペラティブ コー リミテッド 乳由来組成物、及び筋肉量または筋力を増強するための使用
JP2010150160A (ja) * 2008-12-24 2010-07-08 Snow Brand Milk Prod Co Ltd 筋肉増強剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112637B2 (ja) * 1994-09-30 2000-11-27 雪印乳業株式会社 骨強化剤
US20030040475A1 (en) * 2001-01-16 2003-02-27 Yasuhiro Toba Agents for improving lipid metabolism and reducing high blood pressure
ATE468755T1 (de) * 2004-05-07 2010-06-15 Wisconsin Alumni Res Found Verfahren und zusammensetzungen mit molkeproteinisolaten
ES2710665T3 (es) * 2006-03-15 2019-04-26 Michael O Thorner Métodos para el tratamiento de la sarcopenia con un secretagogo de hormona de crecimiento
CA2743406A1 (en) * 2008-11-18 2010-05-27 Kyushu University, National University Corporation Fracture repair promoter
JP2011184314A (ja) * 2010-03-04 2011-09-22 Snow Brand Milk Products Co Ltd 筋肉萎縮防止剤

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246198A (ja) 1985-02-07 1986-11-01 オレオフイナ・ソシエテ・アノニム 蛋白の精製法
JPS63255300A (ja) 1987-04-10 1988-10-21 Snow Brand Milk Prod Co Ltd 硫酸エステル化物を用いて乳からラクトフエリンを分離、精製する方法
JPS6486839A (en) 1987-06-19 1989-03-31 Entamonto Sa Method for selectively extracting metal protein from whey
JPH05508542A (ja) * 1990-07-13 1993-12-02 グロペップ リミテッド 成長促進剤
JPH05202098A (ja) 1992-01-29 1993-08-10 Snow Brand Milk Prod Co Ltd 乳質原料から生理活性物質の製造法
JP2001089387A (ja) 1999-09-17 2001-04-03 Otsuka Pharmaceut Co Ltd 筋萎縮抑制組成物
JP2002065212A (ja) * 2000-08-29 2002-03-05 Meiji Seika Kaisha Ltd 筋強化用食品組成物及び筋強化剤
JP2004059518A (ja) 2002-07-30 2004-02-26 Enkaku Iryo Kenkyusho:Kk 筋蛋白分解抑制剤および機能性飲食品
JP2009507044A (ja) * 2005-09-09 2009-02-19 マレー ゴールバーン コーオペラティブ コー リミテッド 乳由来組成物、及び筋肉量または筋力を増強するための使用
JP2008063321A (ja) 2006-08-10 2008-03-21 Kao Corp 筋肉老化抑制剤
WO2008111573A1 (ja) * 2007-03-12 2008-09-18 Snow Brand Milk Products Co., Ltd. 成長ホルモン分泌促進剤
JP2010150160A (ja) * 2008-12-24 2010-07-08 Snow Brand Milk Prod Co Ltd 筋肉増強剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L.J.S. GREENLUND ET AL.: "Sarcopenia-consequences, mechanisms, and potential therapies", MECHANISMS OF AGEING AND DEVELOPMENT, vol. 124, no. 3, 2003, pages 287 - 299, XP055290728 *
MITSUYOSHI NAKASHIMA: "Evaluation of medicinal efficacy (Yakko Hyoka", vol. 8, 1993, HIROKAWA PUBLISHING COMPANY, pages: 2 - 18
See also references of EP3037100A4

Also Published As

Publication number Publication date
JP6395350B2 (ja) 2018-09-26
US20160045563A1 (en) 2016-02-18
EP3037100A4 (en) 2016-11-30
EP3037100A1 (en) 2016-06-29
JP2014193821A (ja) 2014-10-09

Similar Documents

Publication Publication Date Title
JP4536341B2 (ja) 骨形成促進剤
JP6758285B2 (ja) 乳清タンパク質ミセルとペクチンの複合体及び身体筋肉タンパク質合成
NZ512182A (en) Method of producing fractions containing a high concentration of milk basic cystatin and decomposition products thereof
JP6203724B2 (ja) 骨疾患の予防又は治療用タンパク質素材及びその製造方法
JP6009181B2 (ja) 骨強化剤
Joshi et al. Indian cow and A2 beta-casein–A scientific perspective on health benefits
JP6395350B2 (ja) 筋萎縮防止剤
CN105209059B (zh) 治疗肌肉减少症的有效物质
JP5993308B2 (ja) 感覚改善剤
TWI620509B (zh) 飲料之用途及其製造方法
JP2004115509A (ja) 破骨細胞分化抑制因子産生促進剤
TWI607709B (zh) 骨強化劑
JPWO2009057282A1 (ja) 骨吸収抑制用食品素材
JP6279851B2 (ja) 筋萎縮防止及び/又は筋合成促進剤
JP6203723B2 (ja) 骨疾患の予防又は治療用タンパク質素材及びその製造方法
KR20140072893A (ko) 감각 개선제
JP6357266B2 (ja) 骨疾患の予防又は治療用タンパク質素材
JP6357265B2 (ja) 骨疾患の予防又は治療用タンパク質素材
TWI620508B (zh) 飲料及其製造方法
Sharma Dairy Beverages
WO2014020681A1 (ja) 粉乳類及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014774469

Country of ref document: EP