WO2014156835A1 - 金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法 - Google Patents

金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法 Download PDF

Info

Publication number
WO2014156835A1
WO2014156835A1 PCT/JP2014/057336 JP2014057336W WO2014156835A1 WO 2014156835 A1 WO2014156835 A1 WO 2014156835A1 JP 2014057336 W JP2014057336 W JP 2014057336W WO 2014156835 A1 WO2014156835 A1 WO 2014156835A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
metal
ceramic
ceramic plate
temporary fixing
Prior art date
Application number
PCT/JP2014/057336
Other languages
English (en)
French (fr)
Inventor
宗太郎 大井
敬幸 川崎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201480013541.6A priority Critical patent/CN105189409B/zh
Priority to KR1020157027461A priority patent/KR102163533B1/ko
Priority to US14/780,779 priority patent/US9725367B2/en
Priority to EP14774133.4A priority patent/EP2980048B1/en
Publication of WO2014156835A1 publication Critical patent/WO2014156835A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process

Definitions

  • the present invention relates to an apparatus and method for manufacturing a metal-ceramic plate laminate used for manufacturing a power module substrate for a semiconductor device that controls high current and high voltage, and an apparatus and method for manufacturing a power module substrate.
  • This application claims priority based on Japanese Patent Application No. 2013-72421 for which it applied to Japan on March 29, 2013, and uses the content here.
  • a power module substrate in which a circuit board is bonded to one surface of a ceramic substrate in a laminated state and a heat sink is bonded to the other surface in a stacked state.
  • An electronic component such as a semiconductor chip (power element) is soldered to the heat sink, and a heat sink is joined to the heat radiating plate to provide a power module.
  • Patent Literature 1 and Patent Literature 2 there are techniques described in Patent Literature 1 and Patent Literature 2 as a method of joining a ceramic plate to a metal plate that becomes a circuit board or a heat sink.
  • Patent Document 1 a copper circuit assembly in which a plurality of circuit elements are connected to each other with a thin bridge portion is prepared, while an Ag-Cu-Ti containing an active metal such as Ti on a ceramic substrate, etc. It is disclosed that the bonding material is printed in the shape pattern of the copper circuit assembly, these are laminated and heated to be bonded, and then the bridge portion is removed by an etching process.
  • Patent Document 2 a ceramic base material and a metal plate are laminated and bonded via a brazing material foil, and then the metal plate is etched to form a circuit pattern, and a groove is formed between the circuit patterns of the ceramic base material.
  • a method of manufacturing a plurality of power module substrates by dividing a ceramic base material along a groove is disclosed.
  • Patent Document 3 a brazing material foil is pasted on one side of a metal flat plate via a resin coating layer (containing octanediol as an organic resin), and the metal flat plate and the brazing material foil are superposed.
  • the circuit layer and the ceramic flat plate are laminated and bonded via the brazing material foil by punching and molding the outer shape of the circuit layer and superimposing the brazing material foil attached to the circuit layer on the ceramic flat plate.
  • Patent Document 1 and Patent Document 2 can also produce a plurality of power module substrates and are excellent in mass productivity.
  • the ceramic substrate and the metal plate having a size capable of forming a plurality of power module substrates side by side.
  • the joining material spreads evenly on parts other than the circuit elements.
  • the metal plate is copper, bonding is performed by an active metal method, and since the bonding material contains Ag, it is difficult to remove the wet and spread portion by etching or the like.
  • the present invention has been made in view of such circumstances, and prevents the displacement of the ceramic plate, the bonding material layer, and the metal plate when bonding the metal plate and the ceramic plate through the bonding material layer.
  • a metal-ceramic plate laminate manufacturing apparatus and manufacturing method capable of efficiently manufacturing these laminates, and a power module substrate manufacturing apparatus and manufacturing method in which these are applied to a power module substrate. The purpose is to provide.
  • the bonding material layer is formed on either the ceramic plate or the metal plate, and on either one of the ceramic plate or the metal plate.
  • a metal in which a temporary fixing material is formed, and the ceramic plate and the metal plate are temporarily fixed by the temporary fixing material in a state of being overlapped via the bonding material layer, and the ceramic plate and the metal plate are laminated.
  • Means and a heating means provided in the middle of the conveying path of the one plate by the conveying means and for melting the temporary fixing material of the one plate.
  • the temporary fixing material can be melted by heating the temporary fixing material by the heating means in the middle of conveying one plate. Then, by laminating one plate on the other plate in a state where the temporary fixing material is melted, the metal plate and the ceramic plate can be temporarily fixed via the bonding material layer.
  • the heating means is provided in the middle of the conveying path of one plate, the metal plate and the ceramic plate can be immediately laminated with the temporary fixing material being melted. Can be reliably bonded via the bonding material layer.
  • the ceramic plate, the bonding material layer, and the metal plate are not misaligned during the joining process, and the metal plate is held in a positioned state. The Therefore, the bonding material is prevented from protruding outside the metal plate.
  • the metal-ceramic plate laminate manufacturing apparatus of the present invention preferably includes a temperature measuring means for measuring the temperature of the temporary fixing material or the one plate. Since the molten state of the temporary fixing material can be confirmed by the temperature measuring means, the ceramic plate and the metal plate can be accurately bonded via the bonding material layer without causing a temporary fixing defect or the like.
  • the temperature measuring means may be provided in the conveying means.
  • the conveying means By providing temperature measuring means in the conveying means for conveying one plate, when one plate is heated by one temperature measuring means, one plate and the other plate are stacked when one plate is stacked on the other plate. It becomes possible to confirm the molten state of the temporary fixing material at each timing after the lamination. As a result, the metal plate and the ceramic plate can be laminated with the temporary fixing material completely melted, and after the lamination, the laminate can be handled with the metal plate and the ceramic plate temporarily fixed. The positional deviation between the plate and the metal plate can be reliably prevented.
  • the metal-ceramic plate laminate manufacturing apparatus of the present invention may include a cooling means for cooling the temporary fixing material after the metal plate and the ceramic plate are laminated.
  • the ceramic plate and the metal plate can be brought into an adhesive state through the bonding material layer by solidifying the molten temporary fixing material by natural cooling, but the ceramic plate can be positively cooled by the cooling means. The state in which the metal plate is aligned can be immediately determined.
  • the bonding material layer is formed on either the ceramic plate or the metal plate, and the temporary fixing material is formed on any one of the ceramic plate and the metal plate,
  • An apparatus for manufacturing a power module substrate wherein the ceramic plate and the metal plate are temporarily fixed by a temporary fixing material in a state of being overlapped via the bonding material layer, and the ceramic plate and the metal plate are bonded.
  • One of the ceramic plate and the metal plate is conveyed on the other plate, the conveying means for laminating the ceramic plate and the metal plate, and the laminate is pressed in the laminating direction.
  • This power module substrate manufacturing apparatus can also have the same configuration as the metal-ceramic plate laminate manufacturing apparatus. That is, it is good to provide the temperature measuring means which measures the temperature of the said temporary fix
  • the temperature measuring means may be provided in the conveying means. Furthermore, it is preferable to provide a cooling means for cooling the temporary fixing material after the metal plate and the ceramic plate are laminated.
  • the bonding material layer is formed on either the ceramic plate or the metal plate, and the temporary fixing material is formed on any one of the ceramic plate and the metal plate, Manufacture of a metal-ceramic plate laminate in which the ceramic plate and the metal plate are laminated by temporarily fastening the ceramic plate and the metal plate to each other via the bonding material layer with a temporary fixing material.
  • the temperature of the temporary fixing material or the one plate may be measured during conveyance in the lamination step. Further, the temporary fixing material may be cooled after the metal plate and the ceramic plate are laminated.
  • the method for producing a power module substrate of the present invention comprises: heating the laminate obtained by the above-described method for producing a metal-ceramic plate laminate of the present invention by pressing in the laminating direction and heating the laminate. It is characterized by joining the plate.
  • the displacement of the ceramic plate, the bonding material layer, and the metal plate when the metal plate is bonded to the ceramic plate by the bonding material layer can be prevented, these bonded bodies can be efficiently manufactured.
  • FIG. 2 is a front view of the metal-ceramic plate laminate manufacturing apparatus shown in FIG.
  • FIG. 2 is a left side view of the metal-ceramic plate laminate manufacturing apparatus shown in FIG. 1.
  • It is a partial top view of the tray of a copper circuit board (metal plate).
  • It is a partial top view of the supply stage of a ceramic board.
  • It is a figure explaining the pick-up cylinder for reception which comprises the supply means of a copper circuit board (metal plate)
  • (b) is (a) at the time of taking out a copper circuit board (metal plate) by the pick-up cylinder for reception. ) Is a partial enlarged view.
  • FIG. 12 shows a power module substrate 10 manufactured by the metal-ceramic plate laminate 11 manufactured according to the present invention.
  • the power module substrate 10 includes a ceramic substrate 20, a copper circuit board (metal plate of the present invention) 30 bonded to one surface of the ceramic substrate 20, and a heat dissipation plate bonded to the opposite surface of the ceramic substrate 20. 40.
  • the ceramic substrate 20 and the heat sink 40 are formed in a rectangular flat plate shape, the copper circuit board 30 is formed in a desired circuit pattern.
  • the power module substrate 10 has a heat sink 50 bonded to the surface of the heat radiating plate 40 opposite to the ceramic substrate 20, and an electronic component 60 such as a semiconductor chip is mounted on the copper circuit board 30 by a solder layer 61.
  • the power module is configured by joining and connecting the electronic component 60 and the copper circuit board 30 by a bonding wire (not shown) or the like. Further, the whole is sealed with a mold resin (not shown) as necessary.
  • the solder layer 61 is formed of Sn-Cu, Sn-Ag-Cu, Zn-Al, or Pb-Sn solder.
  • the ceramic substrate 20 is formed in a rectangular shape using, for example, a nitride ceramic such as AlN (aluminum nitride) or Si 3 N 4 (silicon nitride) or an oxide ceramic such as Al 2 O 3 (alumina) as a base material. ing.
  • the thickness of the ceramic substrate 20 is 0.125 mm to 1.0 mm.
  • the copper circuit board 30 is formed of pure copper such as oxygen-free copper or tough pitch copper or a copper alloy (in the present invention, simply referred to as copper), and is formed into a desired circuit pattern by punching a plate material with a press.
  • the thickness of the copper circuit board 30 is set to 0.3 mm to 4 mm.
  • the copper circuit board 30 is bonded to the ceramic substrate by a bonding material made of an active metal brazing material such as Ag-Ti or Ag-Ti-Cu containing an active metal such as Ti.
  • the heat radiating plate 40 is formed of pure aluminum or aluminum alloy (simply referred to as aluminum) having a purity of 99.90% or more, and is formed in a rectangular flat plate shape having a thickness of 0.2 mm to 2 mm, which is usually smaller than the ceramic substrate 20.
  • the heat radiating plate 40 is bonded to the ceramic substrate 20 with a brazing material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn as a bonding material.
  • the metal-ceramic plate laminate manufacturing apparatus 100 shown in FIG. 1 to FIG. 3 has one side of a ceramic plate (the other plate) 21 on which a bonding material layer 71 made of an active metal brazing material is formed, as shown in FIG. Further, the metal-ceramic plate laminate 11 is manufactured by arranging and temporarily fixing a plurality of copper circuit boards (one board) 30 coated with a temporary fixing material 72 mainly composed of polyethylene glycol.
  • the ceramic plate 21 is formed with an area where a plurality of ceramic substrates 20 constituting the power module substrate 10 can be formed side by side.
  • the power module substrate 10 can be manufactured as individual pieces by joining the heat sinks 40 to the opposite surfaces of 21 and then dividing the ceramic plate 21. Moreover, the copper circuit board 30 and the heat sink 40 use the product shape used for the board
  • the metal-ceramic plate laminate manufacturing apparatus 100 of the present embodiment includes a mounting table 1 on which a copper circuit board 30 (see FIG. 4) coated with a temporary fixing material 72 is mounted,
  • the base 2 on which the ceramic plate 21 (see FIG. 5) on which the bonding material layer 71 having the same shape as the outer shape of the copper circuit board 30 is formed, and the copper circuit board 30 are placed on the base 2 from the mounting base 1.
  • Conveying means 3 that aligns with the ceramic plate 21 and laminates the copper circuit board 30 and the ceramic plate 21 via the bonding material layer 71 and the temporary fixing material 72, and the copper circuit board 30 by the conveying means 3
  • heating means 4 for melting the temporary fixing material 72 of the copper circuit board 30.
  • the manufacturing apparatus 100 is provided with a supply means 5 for mounting the copper circuit board 30 on the mounting table 1, and the supply means 5 places the copper circuit board 30 with the attachment surface 31 of the temporary fixing material 72 facing upward.
  • the receiving pickup cylinder 53 for taking out pieces of the copper circuit board 30 from the tray 51 on the supply stage 52, and the receiving pickup cylinder 53
  • Reversing means 54 for reversing the received copper circuit board 30 and supplying it to the mounting table 1 with the adhering surface 31 of the temporary fixing material 72 facing downward is provided.
  • the supply stage 52 is between a position where the operator can place the tray 51 (a position indicated by a two-dot chain line in FIG. 1) and a position where the copper circuit board 30 can be taken out by the receiving pickup cylinder 53.
  • the tray 51 placed on the supply stage 52 can be transported to the operating position of the receiving pickup cylinder 53 by being configured to be movable.
  • the supply stage 52 is provided with positioning means 55 for supporting the supply stage 52 at a position where the copper circuit board 30 can be taken out by the receiving pickup cylinder 53.
  • the receiving pickup cylinder 53 takes out the plurality of copper circuit boards 30 accommodated in the tray 51 one by one and moves them to the turning stage 56 of the reversing means 54, and has the same drive mechanism as the conveying means 3 described later.
  • the reversing means 54 is constituted by a turning stage 56 that is supported by a rotary actuator 57 so as to be capable of turning 180 ° around a support shaft 58.
  • the swivel stage 56 is formed with a recess 56a having a depth smaller than the thickness of the copper circuit board 30. By accommodating the copper circuit board 30 in the recess 56a, the upper surface of the copper circuit board 30 is horizontal. Are arranged flush with each other.
  • the attachment surface 31 of the temporary fixing material 72 is reversed from the upper side to the lower side, and dropped onto the adjacent mounting table 1.
  • the copper circuit board 30 can be mounted on the mounting table 1 with the adhering surface 31 of the temporary fixing material 72 facing downward.
  • the mounting table 1 is provided with guide walls 1a and 1b orthogonal to each other for positioning the copper circuit board 30, and pusher portions 15a and 15b supported so as to be able to advance and retract toward the guide walls 1a and 1b. As shown by a two-dot chain line in FIG. 7 (a), the copper circuit board 30 placed on the placing table 1 is sandwiched between the guide walls 1a and 1b by the pusher portions 15a and 15b. The plate 30 is positioned at a predetermined position on the mounting table 1.
  • the conveying means 3 is constituted by a stacking pickup cylinder 33 provided so as to be movable in the xyz axis direction by the drive mechanism 6.
  • the driving mechanism 6 is provided with a receiving pickup cylinder 53 in addition to the stacking pickup cylinder 33 so as to be movable.
  • the transport means 3 is configured such that the copper circuit board 30 placed on the mounting table 1 with the adhesion surface 31 facing downward is placed on the base 2 on which the ceramic plate 21 is placed with the adhesion surface 31 facing downward.
  • the copper circuit board 30 and the ceramic board 21 are laminated by overlapping the adhesion surface 31 of the copper circuit board 30 on the ceramic board 21 on the base 2. Specifically, as shown in FIG. 10, the copper circuit board 30 is transported by air-adsorbing the upper surface of the copper circuit board 30 opposite to the attachment surface 31 by the pickup cylinder 33 for lamination.
  • the base 2 has a stacking position (a position indicated by a solid line in FIG. 1) where the copper circuit board 30 is stacked from a position where the operator can place the ceramic plate 21 (a position indicated by a two-dot chain line in FIG. 1). Are attached to a supply stage 22 movable between the two.
  • a plurality of guide pins 23 are erected at intervals on the mounting surface of the ceramic plate 21 of the base 2 so as to surround the side surface of the ceramic plate 21, and an area surrounded by the guide pins 23. By placing the ceramic plate 21 on the ceramic plate 21, the ceramic plate 21 is positioned on the base 2.
  • a heating means 4 for melting the temporary fixing material 72 of the copper circuit board 30 is provided in the middle of the conveyance path of the copper circuit board 30 by the conveyance means 3.
  • the heating unit 4 includes a rubber heater 41. By disposing the rubber heater 41 so that the adhesion surface 31 of the copper circuit board 30 faces, the temporary fixing material 72 of the adhesion surface 31 can be heated and melted.
  • the conveying means 3 is provided with a temperature measuring means 34 that can observe the molten state of the temporary fixing material 72 when the copper circuit board 30 is conveyed.
  • the temperature measuring means 34 for example, an infrared radiation thermometer is used, and in this embodiment, the temperature of the copper circuit board 30 held by the stacking pickup cylinder 33 is measured.
  • the manufacturing apparatus 100 is provided with a cooling means 35 for cooling the copper circuit board 30 and the ceramic board 21 after being laminated.
  • the cooling unit 35 is configured by a cooling nozzle that blows air, and is provided in the transport unit 3.
  • a bonding material layer 71 is formed in advance on one surface of the ceramic plate 21 by applying a paste of an active metal brazing material.
  • the active metal brazing material includes a metal powder containing Ag and an active metal (for example, Ti), an organic binder such as ethyl cellulose, methyl cellulose, polymethyl methacrylate, acrylic resin, alkyd resin, toluene, cyclohexanone, diacetone alcohol, methyl.
  • a solvent such as Cellsolve, Ethyl Cellosolve, Terpineol, Texanol, Triethyl Citrate, etc., and a dispersant, plasticizer, reducing agent, etc. are mixed to form a paste, and as a metal powder, Ag-8 .8 mass% Ti, Ag-27.4 mass% Cu-2.0 mass% Ti are preferably used.
  • the active metal brazing material is applied to the bonding position of each copper circuit board 30 on the surface of the ceramic board 21 by screen printing or the like, and dried, so that the same pattern pattern as the outer shape of the copper circuit board 30 is obtained.
  • a bonding material layer 71 is formed on the surface of the ceramic plate 21.
  • the active metal brazing material becomes a porous body by drying. For this reason, the bonding material layer 71 is a porous body having a large number of pores.
  • a temporary fixing material 72 containing polyethylene glycol (PEG) as a main component is applied to one side of the copper circuit board 30.
  • This polyethylene glycol is solid at room temperature (25 ° C.) and undergoes phase transformation to a liquid with a relatively low melting point.
  • Those having an average weight molecular weight of 800 to 20000 are preferably used. When the average weight molecular weight is less than 800, it becomes liquid at room temperature, so the handling property is bad. When it exceeds 20000, the melting point becomes high, so that the workability of application to the copper circuit board 30 is bad.
  • Those having an average weight molecular weight of 800 to 1000 have a melting point of about 40 ° C.
  • the temporary fixing material 72 is applied to the surface of the copper circuit board 30 by heating the temporary fixing material 72 to a molten state and dropping it at a plurality of locations such as corners on the surface of the copper circuit board 30. Then, the temporary fixing material 72 dropped onto the copper circuit board 30 is once cooled to room temperature and solidified to form the copper circuit board 30 to which the temporary fixing material 72 is adhered. Further, the copper circuit board 30 to which the temporary fixing material 72 is attached is disposed in each recess in the tray 51 with the temporary fixing material 72 facing upward, and is carried onto the supply stage 52.
  • the temporary fixing material 72 may be applied to the copper circuit board 30 in such a manner that the temporary fixing material 72 is dropped on the copper circuit board 30 in the state of being placed in the tray 51.
  • the tray 51 is placed on the supply stage 52 and moved to the position where the copper circuit board 30 is taken out by the receiving pickup cylinder 53. Then, the individual pieces of the copper circuit board 30 accommodated in the tray 51 are taken out one by one by the receiving pickup cylinder 53 and moved to the turning stage 56 so that the attachment surface 31 of the temporary fixing material 72 is directed downward from above.
  • the copper circuit board 30 is placed on the mounting table 1.
  • the copper circuit board 30 on the mounting table 1 is transported in a state where the adhesion surface 31 faces downward by the pickup cylinder 33 for lamination. Then, while the copper circuit board 30 is being transported from the mounting table 1 to the base 2, the adhesion surface 31 of the copper circuit board 30 faces the rubber heater 41 and is heated.
  • the temporary fixing material 72 is melted by being heated by the rubber heater 41. At this time, the molten state of the temporary fixing material 72 can be observed by the temperature measuring means 34. Then, in a state where the temporary fixing material 72 is melted, the copper circuit board 30 is transported to the base 2 on which the ceramic board 21 is placed as shown in FIG. Is laminated on the ceramic plate 21. At this time, the temporary fixing material 72 adhering to the copper circuit board 30 is thinly extended by lamination between the copper circuit board 30 and the bonding material layer 71, and the bonding material layer 71, which is a porous body, is emptied. The temporary fixing material 72 flows into the hole and fixes them together.
  • the bonding material layer 71 and the copper circuit board 30 are formed in the same outer shape, they are laminated in an accurate positioning state without shifting. Then, as shown in FIG. 10B, the temporary fixing material 72 is solidified by being immediately cooled to room temperature by the cooling means 35, and the copper circuit board 30 and the ceramic board 21 are held in a positioning state. As shown in FIG. 13, the metal-ceramic plate laminate 11 in which the copper circuit board 30 and the ceramic board 21 are temporarily fixed via the bonding material layer 71 is manufactured.
  • the temporary fixing material 72 applied to the copper circuit board 30 is solidified at the time of carry-in, but the temporary fixing material 72 is heated by the heating means 4 during the transfer of the copper circuit board 30 from the mounting table 1 to the base 2.
  • the temporary fixing material 72 can be melted by heating.
  • the copper circuit board 30 can be laminated
  • the copper circuit board 30 is temporarily fixed to the bonding material layer 71 on the ceramic plate 21 by the temporary fixing material 72, so that the bonding in the subsequent bonding step is performed.
  • the positional displacement between the copper circuit board 30 and the bonding material layer 71 of the ceramic board 21 is prevented, and the copper circuit board 30 can be bonded in a state where the copper circuit board 30 is accurately positioned at a predetermined position of the ceramic board 21.
  • the metal-ceramic plate laminate 11 is bonded in a bonding material layer 71 having the ceramic plate 21 and the copper circuit board 30 interposed between them by heating in a vacuum while being pressurized in the stacking direction. be able to. Since this bonding material contains an active metal, when heated in a vacuum, Ti, which is an active metal, reacts with N or O contained in the ceramic plate 21 on the surface of the ceramic plate 21 to cause nitride or oxidation. In addition to forming an object, Ag forms a molten metal layer by reaction with Cu of the copper circuit board 30, and this cools and solidifies, thereby causing the copper circuit board 30 and the ceramic board 21 to pass through the Ag-Cu eutectic layer. Are joined.
  • the temporary fixing material 72 is decomposed and disappears in the initial stage of the heating.
  • the heat radiating plate 40 is joined to the ceramic plate 21 using a brazing material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn as a joining material.
  • a joining material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn
  • a joining material is interposed between the heat radiating plate 40 and the ceramic plate 21 or laminated, or the joining material is temporarily fixed to an aluminum plate for forming the heat radiating plate 40 by welding or the like.
  • the metal-ceramic plate laminate manufacturing apparatus 100 of the present embodiment can also be used in the stacking operation of the heat sink 40.
  • the heat radiating plate 40 is laminated one by one on the surface of the ceramic plate 21 opposite to the bonding side of the copper circuit board 30 so as to correspond to the bonding position of each copper circuit board 30. And like the above-mentioned joining process of the copper circuit board 30, a plurality of laminated bodies in which the heat radiating plates 40 are laminated are stacked and heated in a vacuum heating furnace in a state of being pressurized in the laminating direction.
  • the heat radiating plate 40 is joined to the ceramic plate 21 by melting a material) and a part of aluminum of the heat radiating plate 40 and cooling and solidifying.
  • a groove is formed between the copper circuit boards 30 of the ceramic board 21 by laser processing or the like, and the ceramic board 21 is divided along the groove, whereby a copper circuit is formed on one surface of the ceramic substrate 20 as shown in FIG.
  • substrate 10 for power modules in which the heat sink 40 was joined to the other surface are formed.
  • the groove of the ceramic plate 21 may be formed before the copper circuit board 30 is bonded.
  • the heating means 4 is provided in the middle of the transport path of the copper circuit board 30, so that the temporary fixing material 72 is in a molten state.
  • the copper circuit board 30 and the ceramic board 21 can be immediately laminated, and the copper circuit board 30 and the ceramic board 21 can be reliably bonded via the bonding material layer 71.
  • the pressurizing jig 110 includes a base plate 111, guide posts 112 vertically attached to the four corners of the upper surface of the base plate 111, a fixed plate 113 fixed to the upper ends of the guide posts 112, and these base plates 111, a pressing plate 114 supported by a guide post 112 so as to be movable up and down between the fixing plate 113, a spring provided between the fixing plate 113 and the pressing plate 114 and biasing the pressing plate 114 downward
  • the metal-ceramic plate laminate 11 is disposed between the base plate 111 and the pressing plate 114.
  • the pressurizing jig 110 and the pressurizing jig 110 are installed in the heating furnace 120, and in a vacuum atmosphere at a temperature of 800 ° C. to 930 ° C.
  • the ceramic plate 21 and the copper circuit board 30 are brazed by heating for 1 to 60 minutes.
  • the joining means of the present invention is constituted by a pressing jig 110 and a heating furnace 120. Also in this joining process, the positions of the ceramic plate 21 and the joining material layer 71 and the copper circuit board 30 are not displaced, and these are held in a positioned state.
  • the bonding material is prevented from protruding to the outside of the copper circuit board 30, and the plurality of power module substrates 10 can be efficiently manufactured.
  • the temporary fixing material 72 mainly composed of polyethylene glycol is quickly decomposed before reaching the joining temperature in the joining step, and thus does not affect the joining surface.
  • the feeding means 5 can transport the temporary fixing material 72 of the copper circuit board 30 with the adhering surface 31 facing downward.
  • the copper circuit board 30 can be quickly placed on the ceramic board 21 after the stopper 72 is melted.
  • the cooling means 35 is provided and it can cool actively after lamination
  • stacking of the copper circuit board 30 and the ceramic board 21 the state which aligned the copper circuit board 30 on the ceramic board 21 is decided immediately. Can be made. Therefore, the efficiency of the manufacturing process of the power module substrate 10 can be improved.
  • the temperature measuring means 34 can confirm the melted state of the temporary fixing material 72, the ceramic plate 21 and the copper circuit board 30 are accurately connected via the bonding material layer 71 without causing temporary fixing failure. Can be glued to. Furthermore, by providing the temperature measuring means 34 in the conveying means 3 for conveying the copper circuit board 30, when the copper circuit board 30 is heated by one temperature measuring means 34, the copper circuit board 30 is laminated on the ceramic board 21. It becomes possible to confirm the molten state of the temporary fixing material 72 at each timing after the lamination of the copper circuit board 30 and the ceramic board 21. Thereby, the ceramic plate 21 can be laminated with the temporary fixing material 72 completely melted, and after the lamination, the metal-ceramic plate laminate 11 is handled with the copper circuit board 30 and the ceramic plate 21 temporarily fixed. Therefore, it is possible to reliably prevent the positional deviation between the ceramic plate 21 and the copper circuit board 30.
  • the temporary fixing material is applied to the copper circuit board, and the copper circuit board is transported and superposed on the ceramic board. Conversely, the temporary fixing material is applied to the bonding material layer of the ceramic board.
  • the ceramic plate may be conveyed and superposed on the copper circuit board.
  • FIG. 14 shows a process in which a temporary fixing material 72 is applied to a ceramic plate (a bonding material layer is omitted) 25 and the ceramic plate 25 is superposed on the copper circuit board 30.
  • the ceramic plate 25 has an area that can form a ceramic substrate of one power module substrate. As shown in FIG.
  • the ceramic plate 25 coated with the temporary fixing material 72 is adsorbed by the pickup cylinder 33 for lamination, and the temporary fixing material 72 is heated by a heating means (not shown) to be in a molten state. Then, it conveys to the base 2 with which the copper circuit board 30 was mounted, and the ceramic board 21 is piled up on this copper circuit board 30.
  • the copper circuit board 30 and the ceramic board 25 are adhere
  • the ceramic plate 25 is one plate of the present invention, and the copper circuit board 30 is the other plate of the present invention.
  • this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.
  • a metal plate for example, aluminum or aluminum alloy
  • the present invention can also be applied to the case where the metal plate and the ceramic plate are bonded to each other on the substrate.
  • the present invention can be applied to the case of manufacturing a joined body of a ceramic plate and a metal plate that is used not only for a power module substrate but also for applications other than the power module.
  • the temporary fixing material mainly composed of polyethylene glycol is used.
  • the present invention is not limited to this, and for example, liquid paraffin or wax can be used.
  • the bonding material layer made of the active metal brazing material is formed on the ceramic plate, but the bonding material layer may be formed on the copper circuit board.
  • the temporary fixing material may be formed not on the surface of the ceramic plate or the copper circuit board but on the bonding material layer. Moreover, you may perform formation of the joining material layer 71 in the said embodiment using the foil of an active metal brazing material.
  • the present invention can prevent displacement of the ceramic plate, the bonding material layer, and the metal plate when bonding the metal plate and the ceramic plate through the bonding material layer, and is preferably used for manufacturing a power module substrate. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 金属板とセラミックス板とを接合材層を介して接合する際のセラミックス板、接合材及び金属板の位置ずれを防止し、これらの積層体を効率的に製造することが可能な金属-セラミックス板積層体の製造装置及び製造方法を提供するとともに、これらをパワーモジュール用基板に応用したパワーモジュール用基板の製造装置及び製造方法を提供する。 接合材層が形成されたセラミックス板上に、仮止め材が形成された金属板を積層する金属板-セラミックス板積層体の製造装置であって、セラミックス板21上に金属板30を搬送し、セラミックス板21と金属板30を積層する搬送手段3と、その搬送手段3による金属板30の搬送経路の途中に設けられ、金属板30の仮止め材を溶融する加熱手段4とを備える。

Description

金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法
 本発明は、大電流、高電圧を制御する半導体装置用のパワーモジュール用基板を製造するために用いられる金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法に関する。
 本願は、平成25年3月29日に日本国に出願された特願2013-72421号に基づき優先権を主張し、その内容をここに援用する。
 従来、パワーモジュール用基板として、セラミックス基板の一方の面に回路板が積層状態に接合されるとともに、他方の面に放熱板が積層状態に接合されたものが知られており、回路板の上に半導体チップ(パワー素子)等の電子部品がはんだ付けされ、放熱板にヒートシンクが接合されることにより、パワーモジュールとして供される。
 このようなパワーモジュール用基板において、セラミックス基板に回路板や放熱板となる金属板を積層状態に接合する方法として、例えば特許文献1や特許文献2記載の技術がある。
 特許文献1には、複数の回路要素を厚さの薄いブリッジ部で相互に接続した状態の銅回路組立体を調整する一方、セラミックス基板にTiなどの活性金属を含有するAg‐Cu‐Ti等の接合材を銅回路組立体の形状パターンで印刷しておき、これらを積層して加熱することにより接合し、その後、エッチング処理によりブリッジ部を除去することが開示されている。
 特許文献2には、セラミックス母材と金属板とをろう材箔を介して積層して接合した後、金属板をエッチングして回路パターンを形成し、セラミックス母材の回路パターン間に溝を形成してセラミックス母材を溝に沿って分割することにより、複数のパワーモジュール用基板を製造する方法が開示されている。
 また、特許文献3では、金属平板の片面に樹脂コーティング層(有機物樹脂としてオクタンジオールを含有)を介してろう材箔を貼り付けておき、これら金属平板とろう材箔とを重ね合わせたものを回路層の外形に打ち抜き成形して、回路層に貼り付けられたろう材箔をセラミックス平板に重ね合わせることにより、ろう材箔を介して回路層とセラミックス平板とを積層して接合することとしている。
特開平6‐216499号公報 特開2010‐50164号公報 特開2010‐10561号公報
 特許文献1及び特許文献2の方法も複数のパワーモジュール用基板を製造することが可能で、量産性に優れるが、これら複数のパワーモジュール用基板を並べて形成し得る大きさのセラミックス基板と金属板との大板どうしを接合すると、接合材が回路要素以外の部分にも濡れ広がる。金属板が銅の場合には活性金属法による接合となり、その接合材にはAgが含まれるため、濡れ広がり部分をエッチング等により除去することは困難である。
 このため、特許文献3に記載されているように、金属板を予め個片化しておき、その個片の形状に合わせた形状パターンのろう材を使用することが考えられるが、これらを積層して、加圧、加熱処理する際の位置ずれ防止の技術が望まれる。
 本発明は、このような事情に鑑みてなされたものであって、金属板とセラミックス板とを接合材層を介して接合する際にセラミックス板、接合材層及び金属板の位置ずれを防止し、これらの積層体を効率的に製造することができる金属-セラミックス板積層体の製造装置及び製造方法を提供するとともに、これらをパワーモジュール用基板に応用したパワーモジュール用基板の製造装置及び製造方法の提供を目的とする。
 本発明の金属-セラミックス板積層体の製造装置は、接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材層を介して重ね合わせた状態に仮止めして、前記セラミックス板と前記金属板とを積層する金属板-セラミックス板積層体の製造装置であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送して、前記セラミックス板と前記金属板を積層する搬送手段と、前記搬送手段による前記一方の板の搬送経路の途中に設けられ、該一方の板の仮止め材を溶融する加熱手段とを備えることを特徴とする。
 一方の板を搬送する途中で加熱手段により仮止め材を加熱することで、仮止め材を溶融させることができる。そして、仮止め材を溶融させた状態で一方の板を他方の板に積層することで、金属板とセラミックス板とを接合材層を介して仮止めすることができる。
 本発明においては、一方の板の搬送経路の途中に加熱手段を設けているので、仮止め材を溶融させた状態で直ちに金属板とセラミックス板とを積層することができ、金属板とセラミックス板とを接合材層を介して確実に接着させることができる。
 また、金属-セラミックス板積層体をその後に加熱して接合する際に、接合工程中にセラミックス板及び接合材層と金属板との位置がずれることがなく、これらが位置決めされた状態に保持される。したがって、接合材が金属板の外側へはみ出すことが防止される。
 本発明の金属-セラミックス板積層体の製造装置は、前記仮止め材又は前記一方の板の温度を測定する測温手段を備えているとよい。
 測温手段により、仮止め材の溶融状態を確認することができるので、仮止め不良等を生じることなく、セラミックス板と金属板とを接合材層を介して正確に接着することができる。
 本発明の金属-セラミックス板積層体の製造装置において、前記測温手段は、前記搬送手段に備えられているとよい。
 一方の板を搬送する搬送手段に測温手段を設けることで、1つの測温手段によって一方の板の加熱時、一方の板を他方の板上に積層する際、一方の板と他方の板の積層後の各タイミングにおける仮止め材の溶融状態を確認することが可能となる。これにより、仮止め材を完全に溶融させた状態で金属板とセラミックス板とを積層でき、積層後は金属板とセラミックス板とが仮止めされた状態で積層体を取扱うことができるので、セラミックス板と金属板との位置ずれを確実に防止することができる。
 本発明の金属-セラミックス板積層体の製造装置において、前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却する冷却手段を備えるとよい。
 溶融状態の仮止め材を自然冷却によって固化させることで、セラミックス板と金属板とを接合材層を介して接着状態とすることができるが、冷却手段により積極的に冷却することで、セラミックス板上に金属板を位置合わせした状態を即時に確定させることができる。
 また、本発明は、接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材層を介して重ね合わせた状態に仮止めして、前記セラミックス板と金属板とを接合するパワーモジュール用基板の製造装置であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送して、前記セラミックス板と前記金属板を積層する搬送手段と、その積層体を積層方向に加圧して加熱することにより、前記セラミックス板と前記一方の板とを接合する接合手段とを有し、前記搬送手段による前記一方の板の搬送経路の途中に設けられ、該一方の板の仮止め材を溶融する加熱手段とを備えることを特徴とする。
 このパワーモジュール用基板の製造装置においても、金属-セラミックス板積層体の製造装置と同様の構成とすることができる。
 すなわち、前記仮止め材又は前記一方の板の温度を測定する測温手段を備えるとよい。
 また、前記測温手段は、前記搬送手段に備えられるとよい。
 さらに、前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却する冷却手段を備えるとよい。
 また、本発明は、接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材層を介して重ね合わせた状態に仮止めして、前記セラミックス板と前記金属板とが積層される金属-セラミックス板積層体の製造方法であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送し、前記セラミックス板と前記金属板を積層する積層工程を有し、
 前記積層工程において、前記セラミックス板と前記金属板とが積層される際に、前記仮止め材が溶融していることを特徴とする。
 この金属-セラミックス板積層体の製造方法においても、前記積層工程において、前記仮止め材又は前記一方の板の温度を搬送中に測定するとよい。
 また、前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却するとよい。
 本発明のパワーモジュール用基板の製造方法は、前述した本発明の金属-セラミックス板積層体の製造方法によって得られる積層体を、積層方向に加圧して加熱することにより、前記セラミックス板と前記金属板とを接合することを特徴とする。
 本発明によれば、金属板を接合材層によりセラミックス板に接合する際のセラミックス板、接合材層及び金属板の位置ずれを防止できるので、これらの接合体を効率的に製造することができる。
本発明の実施形態の金属-セラミックス板積層体の製造装置を示す平面図である。 図1に示す金属-セラミックス板積層体の製造装置の正面図である。 図1に示す金属-セラミックス板積層体の製造装置の左側面図である。 銅回路板(金属板)のトレーの部分平面図である。 セラミックス板の供給ステージの部分平面図である。 銅回路板(金属板)の供給手段を構成する受入れ用ピックアップシリンダを説明する図であり、(a)が受入れ用ピックアップシリンダによる銅回路板(金属板)の取り出し時、(b)が(a)の部分拡大図を示す。 銅回路板(金属板)の供給手段を構成する反転手段を説明する図であり、(a)が平面図、(b)が断面図を示す。 図7(b)に示す反転手段の部分拡大図である。 仮止め材の加熱手段を説明する図である。 セラミックス板と銅回路板(金属板)との積層手段を説明する図であり、(a)が積層前、(b)が積層後の状態を示す。 本発明で用いられる加圧治具の例を示す側面図である。 パワーモジュール用基板の断面図である。 金属-セラミックス板積層体の断面図である。 本発明の金属-セラミックス板積層体の製造装置の他の実施形態の積層手段を説明する図であり、(a)が積層前、(b)が積層後の状態を示す。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 図12は、この発明により製造される金属-セラミックス板積層体11によって製造されるパワーモジュール用基板10を示している。
 このパワーモジュール用基板10は、セラミックス基板20と、このセラミックス基板20の片面に接合された銅回路板(本発明の金属板)30と、セラミックス基板20の反対側の表面に接合された放熱板40とを備えている。この場合、セラミックス基板20及び放熱板40は、矩形平板状に形成されるが、銅回路板30は、所望の回路パターンに形成される。
 そして、パワーモジュール用基板10は、放熱板40のセラミックス基板20とは反対側の表面にヒートシンク50が接合されるとともに、銅回路板30の上に半導体チップ等の電子部品60がはんだ層61により接合され、この電子部品60と銅回路板30との間がボンディングワイヤ(図示略)等によって接続されることにより、パワーモジュールが構成される。
 また、必要に応じてモールド樹脂(図示略)により全体が封止される。はんだ層61は、Sn‐Cu系、Sn‐Ag‐Cu系、Zn‐Al系若しくはPb‐Sn系等のはんだにより形成される。
 セラミックス基板20は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスを母材として矩形状に形成されている。セラミックス基板20の厚さは0.125mm~1.0mmとされる。
 銅回路板30は、無酸素銅やタフピッチ銅等の純銅又は銅合金(本発明では単に銅と称す)により形成され、板材をプレスで打ち抜くことにより、所望の回路パターンに形成されている。銅回路板30の厚さは0.3mm~4mmとされる。この銅回路板30は、後述するように、セラミックス基板にTi等の活性金属を含有するAg‐TiやAg‐Ti‐Cuなどの活性金属ろう材からなる接合材によって接合される。
 放熱板40は、純度99.90%以上の純アルミニウム又はアルミニウム合金(単にアルミニウムと称す)により形成され、厚さ0.2mm~2mmで、通常はセラミックス基板20より小さい矩形の平板状に形成される。この放熱板40は、セラミックス基板20にAl-Si系、Al-Ge系、Al-Cu系、Al-Mg系またはAl-Mn系等のろう材を接合材として接合される。
 次に、このように構成されるパワーモジュール用基板10の製造に用いられる金属-セラミックス板積層体11(図13参照)の製造装置について説明する。
 図1から図3に示す金属-セラミックス板積層体の製造装置100は、図13に示すように、活性金属ろう材からなる接合材層71が形成されたセラミックス板(他方の板)21の片面に、ポリエチレングリコールを主成分とする仮止め材72が塗布された銅回路板(一方の板)30を複数並べて仮止めすることにより、金属-セラミックス板積層体11を製造するものである。
 なお、セラミックス板21は、パワーモジュール用基板10を構成するセラミックス基板20を複数並べて形成し得る面積で形成されており、金属-セラミックス板積層体11を加圧加熱して接合した後、セラミックス板21の反対面に放熱板40をそれぞれ接合し、その後にセラミックス板21を分割することにより、個片化したパワーモジュール用基板10を製造することができる。また、銅回路板30及び放熱板40は、個々のパワーモジュール用基板10に用いられる製品形状のものを用いる。
 本実施形態の金属-セラミックス板積層体の製造装置100は、図1に示すように、仮止め材72が塗布された銅回路板30(図4参照)を載置する載置台1と、その銅回路板30の外形と同形状の接合材層71が形成されたセラミックス板21(図5参照)を載置する基台2と、銅回路板30を載置台1上から基台2上に搬送するとともに、セラミックス板21と位置合わせして接合材層71及び仮止め材72を介して銅回路板30とセラミックス板21とを積層する搬送手段3と、その搬送手段3による銅回路板30の搬送経路の途中に設けられ、銅回路板30の仮止め材72を溶融する加熱手段4とを備える。
 また、製造装置100には、載置台1に銅回路板30を載置する供給手段5が設けられており、供給手段5は、銅回路板30を仮止め材72の付着面31を上向きにした状態で複数収容したトレー51を所定位置まで移動する供給ステージ52と、その供給ステージ52上のトレー51から銅回路板30の個片を取り出す受入れ用ピックアップシリンダ53と、受入れ用ピックアップシリンダ53から受け取った銅回路板30を反転させて仮止め材72の付着面31を下向きにした状態で載置台1に供給する反転手段54とを備える。
 例えば、供給ステージ52は、作業者がトレー51を載置し得る位置(図1に二点鎖線で示す位置)と、受入れ用ピックアップシリンダ53によって銅回路板30が取り出し可能な位置との間で移動可能に構成され、作業者が供給ステージ52上に載置したトレー51を受入れ用ピックアップシリンダ53の稼働位置まで搬送できるようになっている。また、供給ステージ52には、受入れ用ピックアップシリンダ53による銅回路板30の取り出し可能位置において供給ステージ52を支持する位置決め手段55が設けられている。
 また、受入れ用ピックアップシリンダ53は、トレー51内に複数収容された銅回路板30を1個ずつ取り出して反転手段54の旋回ステージ56に移動するものであり、後述する搬送手段3と同じ駆動機構6によってxyz軸方向に移動可能に支持されている。
 反転手段54は、図7及び図8に示すように、ロータリーアクチュエータ57によって支軸58回りに180°旋回可能に支持される旋回ステージ56により構成されている。この旋回ステージ56には、銅回路板30の厚さよりも小さい深さの凹部56aが形成されており、この凹部56a内に銅回路板30を収容することにより、銅回路板30の上面が水平面に沿って面一に配置される。そして、凹部56a内に銅回路板30を収容した状態で旋回ステージ56を旋回することにより、仮止め材72の付着面31を上向きから下向きに反転させるとともに、隣接する載置台1上に落下させ、仮止め材72の付着面31を下向きにした状態で銅回路板30を載置台1上に載置することができるようになっている。
 載置台1には、銅回路板30を位置決めするための互いに直交するガイド壁1a,1bと、ガイド壁1a,1bに向かって進退可能に支持されるプッシャ部15a,15bとが設けられており、図7(a)に二点鎖線で示すように、載置台1上に載置された銅回路板30をプッシャ部15a,15bによってガイド壁1a,1bとの間に挟むことにより、銅回路板30が載置台1上の所定位置に位置決めされる。
 搬送手段3は、駆動機構6によりxyz軸方向に移動可能に設けられた積層用ピックアップシリンダ33により構成される。なお、駆動機構6には、積層用ピックアップシリンダ33の他に受入れ用ピックアップシリンダ53も移動可能に設けられている。
 この搬送手段3は、載置台1上に付着面31が下向きの状態で載置された銅回路板30を、付着面31を下向きにした状態でセラミックス板21が載置された基台2上まで搬送し、銅回路板30の付着面31を基台2上のセラミックス板21に重ねることにより、銅回路板30とセラミックス板21とを積層する。具体的には、図10に示すように、銅回路板30の付着面31とは反対側の上面を積層用ピックアップシリンダ33によってエアー吸着することにより、銅回路板30を搬送する。
 基台2は、作業者がセラミックス板21を載置し得る位置(図1に二点鎖線で示す位置)から、銅回路板30が積層される積層位置(図1に実線で示す位置)との間で移動可能な供給ステージ22に取り付けられている。また、基台2のセラミックス板21の載置面には、セラミックス板21の側面を囲むように複数のガイドピン23が間隔をおいて立設されており、これらガイドピン23で囲まれた領域にセラミックス板21を載置することにより、セラミックス板21が基台2上で位置決めされるようになっている。
 そして、搬送手段3による銅回路板30の搬送経路の途中には、銅回路板30の仮止め材72を溶融する加熱手段4が設けられている。
 加熱手段4は、図9に示すように、ラバーヒータ41により構成されている。このラバーヒータ41に銅回路板30の付着面31を対面させて配置することにより、付着面31の仮止め材72を加熱して溶融させることができる。
 また、搬送手段3には、銅回路板30の搬送時において、仮止め材72の溶融状態を観測可能な測温手段34が備えられている。したがって、加熱手段4による銅回路板30の加熱時、銅回路板30のセラミックス板21上への積層時、銅回路板30とセラミックス板21の積層後の各タイミングにおける仮止め材72の溶融状態を確認することが可能となっている。なお、測温手段34としては、例えば、赤外線放射温度計等が用いられ、本実施形態では、積層用ピックアップシリンダ33に保持された銅回路板30の温度を測定する構成とされる。
 また、製造装置100には、銅回路板30とセラミックス板21との積層後に、これらを冷却する冷却手段35が設けられている。なお、冷却手段35は、図10(b)に示すように、エアーを吹き付ける冷却ノズルにより構成され、搬送手段3に設けられている。
 次に、上述した製造装置100を用いて金属-セラミックス板積層体11を製造する方法について説明する。
 なお、セラミックス板21の片面には、図5に示すように、活性金属ろう材のペーストを塗布することにより、予め接合材層71が形成されている。また、活性金属ろう材は、Ag及び活性金属(例えばTi)を含む金属粉末と、エチルセルロース、メチルセルロース、ポリメチルメタクリレート、アクリル樹脂、アルキッド樹脂等の有機バインダと、トルエン、シクロヘキサノン、ジアセトンアルコール、メチルセルソルブ、エチルセルソルブ、テルピネオール、テキサノ-ル、トリエチルシトレート等の溶剤と、分散剤、可塑剤、還元剤等を混合してペースト状に形成したものであり、金属粉末として、Ag-8.8質量%Ti、Ag-27.4質量%Cu-2.0質量%Tiが好適に用いられる。例えば、この活性金属ろう材をスクリーン印刷法等によりセラミックス板21の表面における各銅回路板30の接合予定位置にそれぞれ塗布して、乾燥することにより、銅回路板30の外形と同じ形状パターンの接合材層71がセラミックス板21の表面に形成されている。活性金属ろう材は乾燥することにより、多孔質体となる。このため、接合材層71は多数の空孔を有する多孔質体である。
 また、銅回路板30の片面には、図4に示すように、ポリエチレングリコール(PEG)を主成分として含有する仮止め材72が塗布されている。このポリエチレングリコールは、常温(25℃)で固体であり、比較的低融点で液体へと相変態する。平均重量分子量が800~20000のものが好適に用いられる。平均重量分子量が800未満では常温で液体となるため取り扱い性が悪く、20000を超えると、融点が高くなるため、銅回路板30への塗布作業性が悪い。平均重量分子量800~1000のものは融点が約40℃、平均重量分子量6000でも融点60℃程度である。この仮止め材72を加温して溶融状態とし、例えば銅回路板30の表面における隅部等の複数箇所に滴下することにより、銅回路板30表面に仮止め材72を塗布する。そして、銅回路板30に滴下した仮止め材72を、一旦常温まで冷却して固化させることにより、仮止め材72が付着した銅回路板30が形成されている。
 また、この仮止め材72を付着した銅回路板30は、トレー51内の各凹部に仮止め材72を上方に向けた状態で配置され、供給ステージ52上に運ばれる。なお、トレー51内に配置した状態の銅回路板30に仮止め材72を滴下するようにして、銅回路板30に仮止め材72を塗布することとしてもよい。
 まず、供給ステージ52上にトレー51を載置し、受入れ用ピックアップシリンダ53による銅回路板30の取出位置まで移動する。そして、トレー51内に収容された銅回路板30の個片を、受入れ用ピックアップシリンダ53により1個ずつ取り出して旋回ステージ56に移動して、仮止め材72の付着面31を上向きから下向きに反転させた状態で、銅回路板30を載置台1上に配置する。
 次いで、載置台1上の銅回路板30を、積層用ピックアップシリンダ33によって付着面31を下向きにした状態で搬送する。そして、載置台1から基台2に銅回路板30を搬送する途中で、銅回路板30の付着面31をラバーヒータ41に対面させて加熱する。仮止め材72はラバーヒータ41で加熱されることにより溶融状態となる。この際、仮止め材72の溶融状態は、測温手段34により観測することができる。
 そして、仮止め材72が溶融した状態で、図10(a)に示すように銅回路板30をセラミックス板21が載置された基台2上まで搬送し、銅回路板30の付着面31をセラミックス板21に積層する。この際、銅回路板30に付着した仮止め材72は積層により銅回路板30と接合材層71との間で薄く延ばされ層状になるとともに、多孔質体である接合材層71の空孔内に仮止め材72が流れ込み、両者を固着する。接合材層71と銅回路板30とは同じ外形に形成されているので、これらがずれることなく正確な位置決め状態に積層される。そして、仮止め材72は、図10(b)に示すように、冷却手段35により即時に常温に冷却されることにより固化し、銅回路板30とセラミックス板21とが位置決め状態に保持され、図13に示すように、銅回路板30とセラミックス板21とが接合材層71を介して仮止めされた金属-セラミックス板積層体11が製造される。
 このように、搬入時には銅回路板30に塗布された仮止め材72は固化しているが、載置台1から基台2に銅回路板30を搬送する途中で加熱手段4により仮止め材72を加熱することで、仮止め材72を溶融させることができる。そして、仮止め材72を溶融させた状態で銅回路板30をセラミックス板21に積層することができる。
 このようにして製造される金属-セラミックス板積層体11は、銅回路板30を仮止め材72によりセラミックス板21上の接合材層71に仮止めしているので、その後の接合工程での接合作業中等において銅回路板30とセラミックス板21の接合材層71との位置ずれが防止され、銅回路板30をセラミックス板21の所定位置に正確に位置決めした状態で接合することができる。
 なお、金属-セラミックス板積層体11は、積層方向に加圧した状態のまま真空中で加熱することにより、セラミックス板21と銅回路板30とをその間に介在させた接合材層71により接合することができる。この接合材には、活性金属が含まれているので、真空中で加熱すると、セラミックス板21の表面に活性金属であるTiがセラミックス板21に含まれるN又はOと反応して窒化物や酸化物等を形成するとともに、Agが銅回路板30のCuとの反応により溶融金属層を形成し、これが冷却凝固することによりAg‐Cu共晶層を介して銅回路板30とセラミックス板21とが接合される。なお、仮止め材72は、この加熱の初期の段階で分解して消失する。
 また、放熱板40は、Al‐Si系、Al‐Ge系、Al‐Cu系、Al‐Mg系またはAl‐Mn系等のろう材を接合材としてセラミックス板21に接合される。接合方法としては、放熱板40とセラミックス板21との間に接合材(ろう材箔)を介在させて積層する、あるいは放熱板40を形成するためのアルミニウム板に接合材を溶接等により仮止めしておき、プレスで打ち抜くことにより、接合材が仮止めされた放熱板40を形成し、その放熱板40の接合材側をセラミックス板21に重ねて積層する、などの方法とすることができる。また、この放熱板40の積層作業においても、本実施形態の金属-セラミックス板積層体の製造装置100を用いることができる。
 放熱板40は、セラミックス板21の銅回路板30の接合側とは反対面に、各銅回路板30の接合位置に対応するように1個ずつ積層する。そして、前述の銅回路板30の接合工程と同様に、放熱板40を積層した積層体を複数組積み重ね、積層方向に加圧した状態で真空加熱炉内で加熱することにより、接合材(ろう材)と放熱板40の一部のアルミニウムを溶融させ、冷却凝固することによりセラミックス板21に放熱板40が接合される。
 なお、セラミックス板21の銅回路板30間にレーザー加工等によって溝を形成し、その溝に沿ってセラミックス板21を分割することにより、図12に示すように、セラミックス基板20の片面に銅回路板30、反対面に放熱板40が接合された個々のパワーモジュール用基板10が形成される。セラミックス板21の溝は、銅回路板30を接合する前に形成しておいてもよい。
 このように、本実施形態の金属-セラミックス板積層体の製造装置100においては、銅回路板30の搬送経路の途中に加熱手段4を設けているので、仮止め材72を溶融させた状態で直ちに銅回路板30とセラミックス板21とを積層することができ、銅回路板30とセラミックス板21とを接合材層71を介して確実に接着させることができる。
 また、金属-セラミックス板積層体11は、その後に加熱されてセラミックス板21と銅回路板30とが接合材により接合される。この接合工程においては、図11に示す加圧治具110が用いられる。この加圧治具110は、ベース板111と、ベース板111の上面の四隅に垂直に取り付けられたガイドポスト112と、これらガイドポスト112の上端部に固定された固定板113と、これらベース板111と固定板113との間で上下移動自在にガイドポスト112に支持された押圧板114と、固定板113と押圧板114との間に設けられて押圧板114を下方に付勢するばね等の付勢手段115とを備え、ベース板111と押圧板114との間に金属-セラミックス板積層体11が配設される。
 そして、この加圧治具110により金属-セラミックス板積層体11を加圧した状態で、加圧治具110ごと加熱炉120内に設置し、真空雰囲気中で800℃以上930℃以下の温度で1分~60分加熱することによりセラミックス板21と銅回路板30とをろう付けする。本発明の接合手段は、この実施形態では加圧治具110と加熱炉120とにより構成される。
 この接合工程においても、セラミックス板21及び接合材層71と銅回路板30との位置がずれることがなく、これらが位置決めされた状態に保持される。したがって、接合材が銅回路板30の外側へはみ出すことが防止され、複数のパワーモジュール用基板10を効率的に製造することができる。
 さらに、ポリエチレングリコールを主成分とする仮止め材72は、接合工程においては接合温度に達する前に速やかに分解するので、接合面に影響を及ぼすこともない。
 また、本実施形態の金属-セラミックス板積層体の製造装置100においては、供給手段5により、銅回路板30の仮止め材72の付着面31を下向きにした状態で搬送することができ、仮止め材72を溶融させた後で迅速にセラミックス板21上に銅回路板30を載置することができるようになっている。
 また、冷却手段35を備えており、銅回路板30とセラミックス板21との積層後に積極的に冷却することができることから、セラミックス板21上に銅回路板30を位置合わせした状態を即時に確定させることができる。したがって、パワーモジュール用基板10の製造工程の効率化を図ることができる。
 そして、測温手段34により、仮止め材72の溶融状態を確認することができるので、仮止め不良等を生じることなく、セラミックス板21と銅回路板30とを接合材層71を介して正確に接着することができる。
 さらに、銅回路板30を搬送する搬送手段3に測温手段34を設けることで、1つの測温手段34によって銅回路板30の加熱時、銅回路板30のセラミックス板21上への積層時、銅回路板30とセラミックス板21の積層後の各タイミングにおける仮止め材72の溶融状態を確認することが可能となる。これにより、仮止め材72を完全に溶融させた状態でセラミックス板21積層でき、積層後は銅回路板30とセラミックス板21とが仮止めされた状態で金属-セラミックス板積層体11を取扱うことができるので、セラミックス板21と銅回路板30との位置ずれを確実に防止することができる。
 前述の実施形態では、銅回路板に仮止め材を塗布しておき、その銅回路板を搬送してセラミックス板に重ね合わせるようにしたが、逆に、セラミックス板の接合材層に仮止め材を塗布しておき、このセラミックス板を搬送して銅回路板に重ね合わせるようにしてもよい。
 図14は、セラミックス板(接合材層は省略)25に仮止め材72を塗布して、このセラミックス板25を銅回路板30に重ね合わせる工程を示している。この場合、セラミックス板25は、1個のパワーモジュール用基板のセラミックス基板を形成し得る面積のものが図示されている。
 図14(a)に示すように、仮止め材72を塗布したセラミックス板25を積層用ピックアップシリンダ33によって吸着して、加熱手段(図示略)により仮止め材72を加熱して溶融状態とした後、銅回路版30が載置された基台2上まで搬送し、この銅回路板30にセラミックス板21を重ね合わせる。そして、図10(b)に示すように、冷却手段35によって冷却して仮止め材72を固化することにより、銅回路板30とセラミックス板25とを固着する。
 この実施形態では、セラミックス板25が本発明の一方の板で、銅回路板30が本発明の他方の板となる。
 なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、銅回路板とセラミックス板とを接合したパワーモジュール用基板を製造する場合の実施形態を説明したが、銅回路板以外の金属板(例えば、アルミニウムやアルミニウム合金等)を用いたパワーモジュール用基板において、その金属板とセラミックス板とを接合する場合にも本発明を適用することができる。
 また、パワーモジュール用基板に限らず、パワーモジュール以外の用途に用いられるセラミックス板と金属板との接合体を製造する場合に本発明を適用することができ、その場合、これらの積層体(金属-セラミックス板積層体)を加圧と加熱の両方を伴う条件以外の接合条件で接合する場合も含むものとする。
 また、上記の実施形態では、ポリエチレングリコールを主成分とする仮止め材を用いたが、これに限定されることなく、例えば、流動パラフィンやワックス等を用いることができる。
 さらに、実施形態ではセラミックス板に活性金属ろう材からなる接合材層を形成したが、銅回路板に接合材層を形成してもよい。また、仮止め材をセラミックス板又は銅回路板の表面でなく、接合材層の上に形成してもよい。
 また、上記実施形態における接合材層71の形成を活性金属ろう材の箔を用いて行ってもよい。
 本発明は、金属板とセラミックス板とを接合材層を介して接合する際にセラミックス板、接合材層及び金属板の位置ずれを防止することができ、パワーモジュール用基板の製造に好適に用いることができる。
1 載置台
2 基台
3 搬送手段
4 加熱手段
5 供給手段
6 駆動機構
10 パワーモジュール用基板
11 金属-セラミックス板積層体
15a,15b プッシャ部
20 セラミックス基板
21 セラミックス板(他方の板)
22 供給ステージ
23 ガイドピン
25 セラミックス板(一方の板)
30 銅回路板(金属板;一方の板)
31 付着面
33 積層用ピックアップシリンダ
34 測温手段
35 冷却手段
40 放熱板
41 ラバーヒータ
50 ヒートシンク
51 トレー
52 供給ステージ
53 受入れ用ピックアップシリンダ
54 反転手段
55 位置決め手段
56 旋回ステージ
56a 凹部
57 ロータリーアクチュエータ
58 支軸
60 電子部品
61 はんだ層
71 接合材層
72 仮止め材
110 加圧治具(接合手段)
120 加熱炉(接合手段)

Claims (13)

  1.  接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材層を介して重ね合わせた状態に仮止めして、前記セラミックス板と前記金属板とを積層する金属板-セラミックス板積層体の製造装置であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送して、前記セラミックス板と前記金属板を積層する搬送手段と、前記搬送手段による前記一方の板の搬送経路の途中に設けられ、該一方の板の仮止め材を溶融する加熱手段とを備えることを特徴とする金属-セラミックス板積層体の製造装置。
  2.  前記仮止め材又は前記一方の板の温度を測定する測温手段を備えることを特徴とする請求項1記載の金属-セラミックス板積層体の製造装置。
  3.  前記測温手段は、前記搬送手段に備えられることを特徴とする請求項2記載の金属-セラミックス板積層体の製造装置。
  4.  前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却する冷却手段を備えることを特徴とする請求項1から3のいずれか一項に記載の金属-セラミックス板積層体の製造装置。
  5.  接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材を介して重ね合わせた状態に仮止めして、前記セラミックス板と前記金属板とを接合するパワーモジュール用基板の製造装置であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送して、前記セラミックス板と前記金属板を積層する搬送手段と、その積層体を積層方向に加圧して加熱することにより、前記セラミックス板と前記金属板とを接合する接合手段とを有し、前記搬送手段による前記一方の板の搬送経路の途中に設けられ、該一方の板の仮止め材を溶融する加熱手段とを備えることを特徴とするパワーモジュール用基板の製造装置。
  6.  前記仮止め材又は前記一方の板の温度を測定する測温手段を備えることを特徴とする請求項5記載のパワーモジュール用基板の製造装置。
  7.  前記測温手段は、前記搬送手段に備えられることを特徴とする請求項6記載のパワーモジュール用基板の製造装置。
  8.  前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却する冷却手段を備えることを特徴とする請求項5から7のいずれか一項に記載のパワーモジュール用基板の製造装置。
  9.  接合材層がセラミックス板又は金属板のいずれかの上に形成されるとともに、これらセラミックス板と金属板とのいずれか一方の板の上に仮止め材が形成され、前記仮止め材により前記セラミックス板と前記金属板とを前記接合材を介して重ね合わせた状態に仮止めして、前記セラミックス板と前記金属板とが積層される金属-セラミックス板積層体の製造方法であって、前記セラミックス板と前記金属板とのいずれか他方の板の上に前記一方の板を搬送し、前記セラミックス板と前記金属板を積層する積層工程を有し、前記積層工程において、前記セラミックス板と前記金属板とが積層される際に、前記仮止め材が溶融していることを特徴とする金属-セラミックス板積層体の製造方法。
  10.  前記積層工程において、前記仮止め材又は前記一方の板の温度を搬送中に測定することを特徴とする請求項9記載の金属-セラミックス板積層体の製造方法。
  11.  前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却することを特徴とする請求項9に記載の金属-セラミックス板積層体の製造方法。
  12.  前記金属板と前記セラミックス板との積層後に、前記仮止め材を冷却することを特徴とする請求項10に記載の金属-セラミックス板積層体の製造方法。
  13.  請求項9から12のいずれか一項に記載の金属-セラミックス板積層体の製造方法によって得られる金属-セラミックス板積層体を、積層方向に加圧して加熱することにより、前記セラミックス板と前記金属板とを接合することを特徴とするパワーモジュール用基板の製造方法。
PCT/JP2014/057336 2013-03-29 2014-03-18 金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法 WO2014156835A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013541.6A CN105189409B (zh) 2013-03-29 2014-03-18 金属-陶瓷板层压体的制造装置及制造方法、功率模块用基板的制造装置及制造方法
KR1020157027461A KR102163533B1 (ko) 2013-03-29 2014-03-18 금속-세라믹스판 적층체의 제조 장치 및 제조 방법, 파워 모듈용 기판의 제조 장치 및 제조 방법
US14/780,779 US9725367B2 (en) 2013-03-29 2014-03-18 Apparatus and method for producing (metal plate)-(ceramic board) laminated assembly, and apparatus and method for producing power-module substrate
EP14774133.4A EP2980048B1 (en) 2013-03-29 2014-03-18 Apparatus and method for producing (metallic plate)-(ceramic board) laminated assembly, and apparatus and method for producing substrate for power modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072421 2013-03-29
JP2013072421 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156835A1 true WO2014156835A1 (ja) 2014-10-02

Family

ID=51623815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057336 WO2014156835A1 (ja) 2013-03-29 2014-03-18 金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法

Country Status (7)

Country Link
US (1) US9725367B2 (ja)
EP (1) EP2980048B1 (ja)
JP (1) JP6314567B2 (ja)
KR (1) KR102163533B1 (ja)
CN (1) CN105189409B (ja)
TW (2) TWI608577B (ja)
WO (1) WO2014156835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228713A (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696475B (zh) * 2015-11-13 2019-06-18 富泰华工业(深圳)有限公司 打印机及利用打印机打印电路板的方法
EP3340287B1 (en) * 2016-12-23 2020-10-28 Huawei Technologies Co., Ltd. Pattern-based temperature measurement for a bonding device and a bonding system
JP6717245B2 (ja) 2017-03-17 2020-07-01 三菱マテリアル株式会社 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2019009333A (ja) * 2017-06-27 2019-01-17 三菱マテリアル株式会社 セラミックス−金属接合体の製造方法、セラミックス回路基板の製造方法及びセラミックス−金属接合体
JP6939596B2 (ja) * 2018-01-24 2021-09-22 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びセラミックス‐銅接合体
TWI755906B (zh) * 2020-10-23 2022-02-21 尚城科技股份有限公司 雙對稱結構交互式影像自動疊板機
CN112312645B (zh) * 2020-10-28 2023-06-02 江苏贺鸿智能科技有限公司 一种陶瓷散热线路板及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394130A (ja) * 1989-09-06 1991-04-18 Matsushita Electric Ind Co Ltd リフロー装置
JPH0669324A (ja) * 1992-08-21 1994-03-11 Hitachi Electron Eng Co Ltd 薄膜部品の仮固定方法
JPH06216499A (ja) 1993-01-19 1994-08-05 Toshiba Corp 銅回路基板の製造方法
JPH11238961A (ja) * 1998-02-19 1999-08-31 Matsushita Electric Ind Co Ltd 電子部品の半田付け方法
JP2006059859A (ja) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
JP2010010561A (ja) 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
JP2010050164A (ja) 2008-08-19 2010-03-04 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
WO2012002273A1 (ja) * 2010-06-28 2012-01-05 アユミ工業株式会社 接合構造体製造方法および加熱溶融処理方法ならびにこれらのシステム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859399A (en) * 1971-04-19 1975-01-07 Carborundum Co Dense composite ceramic bodies and method for their production
US4353957A (en) * 1973-09-24 1982-10-12 Tam Ceramics Inc. Ceramic matrices for electronic devices and process for forming same
DE3204167A1 (de) * 1982-02-06 1983-08-11 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum direkten verbinden von metallstuecken mit oxidkeramiksubstraten
JPH01282285A (ja) * 1988-05-10 1989-11-14 Tdk Corp 接着剤による部材相互の接合方法
US4943468A (en) * 1988-10-31 1990-07-24 Texas Instruments Incorporated Ceramic based substrate for electronic circuit system modules
JPH0492485A (ja) * 1990-08-08 1992-03-25 Mitsubishi Gas Chem Co Inc 保護箔付きプリント配線材料
JP3185010B2 (ja) * 1995-01-20 2001-07-09 同和鉱業株式会社 金属−セラミックス複合部材の製造装置
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
JPH09153568A (ja) 1995-09-28 1997-06-10 Toshiba Corp 窒化珪素セラミック回路基板および半導体装置
JPH09110562A (ja) * 1995-10-06 1997-04-28 Dowa Mining Co Ltd 金属−セラミックス複合部材の製造装置
JP2000036501A (ja) * 1998-05-12 2000-02-02 Sharp Corp ダイボンド装置
US6743395B2 (en) * 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
US6799712B1 (en) * 2001-02-21 2004-10-05 Electronic Controls Design, Inc. Conveyor oven profiling system
US7326274B2 (en) * 2001-10-18 2008-02-05 Praxis Powder Technology, Inc. Binder compositions and methods for binder assisted forming
US6793120B2 (en) * 2002-01-17 2004-09-21 Donnelly Corporation Apparatus and method for mounting an electrical connector to a glass sheet of a vehicle window
US8001682B2 (en) 2004-08-17 2011-08-23 Mitsubishi Materials Corporation Insulation substrate, power module substrate, manufacturing method thereof, and power module using the same
JP5098165B2 (ja) 2005-12-08 2012-12-12 株式会社ニコン ウェハの接合方法、接合装置及び積層型半導体装置の製造方法
TWI268189B (en) * 2006-02-03 2006-12-11 Quanta Comp Inc Wave solder apparatus
WO2009116439A1 (ja) * 2008-03-17 2009-09-24 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板
US9289142B2 (en) * 2008-03-24 2016-03-22 Neuronexus Technologies, Inc. Implantable electrode lead system with a three dimensional arrangement and method of making the same
US8058150B2 (en) * 2008-07-10 2011-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Particle free wafer separation
CH700774A1 (de) * 2009-03-31 2010-10-15 Alstom Technology Ltd Doppellotelement, Verfahren zu dessen Herstellung und Verwendungen desselben.
US8546238B2 (en) * 2009-04-22 2013-10-01 Commissariat A L'energie Atomique Et Aux Energies Method for transferring at least one micro-technological layer
US8906522B2 (en) * 2009-07-07 2014-12-09 Morgan Advanced Materials And Technology Inc. Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
JP5310634B2 (ja) * 2010-04-09 2013-10-09 千住金属工業株式会社 はんだ付け装置
KR20140017592A (ko) * 2011-03-11 2014-02-11 세람테크 게엠베하 세라믹 코어를 갖는 코일체
JP5821389B2 (ja) 2011-04-20 2015-11-24 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP6011074B2 (ja) * 2012-01-20 2016-10-19 富士通株式会社 電子装置の製造方法及び電子装置の製造装置
DE102012103430B4 (de) * 2012-04-19 2015-10-22 Ev Group E. Thallner Gmbh Verfahren zum Heften von Chips auf ein Substrat
US20160017184A1 (en) * 2013-03-06 2016-01-21 John Moore Adhesive with tunable porosity and methods to support temporary bonding applications
JP5664679B2 (ja) * 2013-03-07 2015-02-04 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP6176320B2 (ja) * 2013-04-25 2017-08-09 富士電機株式会社 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394130A (ja) * 1989-09-06 1991-04-18 Matsushita Electric Ind Co Ltd リフロー装置
JPH0669324A (ja) * 1992-08-21 1994-03-11 Hitachi Electron Eng Co Ltd 薄膜部品の仮固定方法
JPH06216499A (ja) 1993-01-19 1994-08-05 Toshiba Corp 銅回路基板の製造方法
JPH11238961A (ja) * 1998-02-19 1999-08-31 Matsushita Electric Ind Co Ltd 電子部品の半田付け方法
JP2006059859A (ja) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
JP2010010561A (ja) 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
JP2010050164A (ja) 2008-08-19 2010-03-04 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
WO2012002273A1 (ja) * 2010-06-28 2012-01-05 アユミ工業株式会社 接合構造体製造方法および加熱溶融処理方法ならびにこれらのシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228713A (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法

Also Published As

Publication number Publication date
TW201513274A (zh) 2015-04-01
EP2980048A1 (en) 2016-02-03
KR102163533B1 (ko) 2020-10-08
JP2014209591A (ja) 2014-11-06
CN105189409B (zh) 2018-11-09
TWI629754B (zh) 2018-07-11
EP2980048B1 (en) 2018-08-08
EP2980048A4 (en) 2016-11-30
CN105189409A (zh) 2015-12-23
TWI608577B (zh) 2017-12-11
JP6314567B2 (ja) 2018-04-25
TW201742198A (zh) 2017-12-01
US20160052830A1 (en) 2016-02-25
KR20150139850A (ko) 2015-12-14
US9725367B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
JP6314567B2 (ja) 金属−セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法
JP6550971B2 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
US9579739B2 (en) Manufacturing method of power-module substrate
WO2016002804A1 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置
TW202335556A (zh) 使用層壓模組化預製件接合電組件及機械組件之方法
JP6782375B1 (ja) 金属回路パターンおよび金属回路パターンの製造方法
JP2010165720A (ja) パワーモジュール用基板の製造方法
JP2009018555A (ja) セラミックグリーンシートの仮積層装置
JP5708733B2 (ja) パワーモジュール用基板の製造方法
JP5887907B2 (ja) パワーモジュール用基板の製造方法および製造装置
JP2010114166A (ja) パワーモジュール用基板の製造中間体およびパワーモジュール用基板の製造方法
JP2010278236A (ja) 電子部品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013541.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780779

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027461

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014774133

Country of ref document: EP