WO2014156780A1 - サファイア単結晶の製造方法 - Google Patents

サファイア単結晶の製造方法 Download PDF

Info

Publication number
WO2014156780A1
WO2014156780A1 PCT/JP2014/057174 JP2014057174W WO2014156780A1 WO 2014156780 A1 WO2014156780 A1 WO 2014156780A1 JP 2014057174 W JP2014057174 W JP 2014057174W WO 2014156780 A1 WO2014156780 A1 WO 2014156780A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sapphire single
crystal
diameter
light
Prior art date
Application number
PCT/JP2014/057174
Other languages
English (en)
French (fr)
Inventor
健太郎 松尾
賀文 井上
雄次 岸本
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2015508327A priority Critical patent/JPWO2014156780A1/ja
Publication of WO2014156780A1 publication Critical patent/WO2014156780A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to a method for producing a sapphire single crystal used as an epitaxial growth substrate or an optical material.
  • Sapphire (aluminum oxide) single crystal is widely used as a nitride compound semiconductor, a substrate for epitaxial growth of silicon, a high-strength window material, and the like.
  • demand for LEDs as LED televisions, LED lighting, and the like has been increasing from the viewpoint of energy saving, and thus demand for sapphire substrates for nitride-based compound semiconductor epitaxial growth has been increasing.
  • An LED chip is generally manufactured by forming a nitride compound semiconductor light emitting layer of GaN, InGaN, AlN or the like on a c-plane sapphire substrate using a MOCVD apparatus and then dividing the chip into chips (for example, , See Patent Document 1). Therefore, providing an inexpensive sapphire substrate having a large-area c-plane on the surface is an important issue for achieving high efficiency and low cost of LED chip production.
  • Known methods for producing a sapphire single crystal as a material for a sapphire substrate include the Bernoulli method, the EFG (Edge-defined Film-fed Growth) method, the Czochralski method, the Kiloporous method, and the HEM (Heat Exchange Method) method. ing.
  • the Czochralski method is a type of melt growth method.
  • the pulling speed, crystal rotation speed, and heater output are adjusted while pulling up the seed crystal in contact with the raw material melt at a rate of about 0.5 to 10 mm / hour. In this way, a crystal having a desired diameter is grown on the melt surface.
  • a crucible made of iridium or the like is directly heated by an induction heating method to form a relatively large temperature gradient to grow a crystal.
  • the Czochralski method can easily obtain a sapphire single crystal grown in the c-axis direction having a diameter and an arbitrary length required for the substrate, it is not necessary to cut out the cylindrical body with a core drill or the like. It has the feature that the substrate acquisition efficiency from the grown single crystal is extremely high.
  • the method for calculating the diameter of a single crystal includes a method for calculating the diameter based on weight data obtained from a weight detection device such as a load cell, and a single crystal and a melt from an image of a camera installed outside the furnace.
  • a method of detecting an interface with a surface and calculating a diameter from the detected solid-liquid interface is known.
  • the fusion ring which is the interface between the single crystal and the melt surface, is detected from the camera image, the diameter calculated based on the detected points is taken into the control circuit, the heater output, the crystal
  • the diameter of the single crystal body is controlled with high precision by feeding back the pulling speed and the number of rotations of the pulling shaft and the pushing speed of the crucible (see, for example, Patent Document 2).
  • the pulling rate of the sapphire single crystal is about 0.5-10 mm / hour, which is slower than the production of silicon single crystal.
  • the weight of the single crystal that grows per time is small, so that the error included in the obtained weight data becomes large. In particular, this error is large when growing the neck and shoulder, which is the initial stage of single crystal growth, and therefore, the error included in the diameter value calculated from the weight data is large.
  • control is performed based on diameter data including a large error, defects are likely to occur in the crystal to be grown, especially if the quality of the neck and shoulder formed in the initial stage of single crystal growth is low. Even the quality of the straight body part to be cultivated tends to deteriorate.
  • the inventors have found that a high-contrast image can be obtained by removing the red component of the image from which the interface between the sapphire single crystal and the melt surface is observed, thereby completing the present invention.
  • the method for producing a sapphire single crystal of the present invention is a method for producing a sapphire single crystal by a melt growth method, (I) obtaining image data by observing the interface between the growing sapphire single crystal and the raw material melt by optical means; (Ii) analyzing the image data obtained in step (i) to obtain a calculated value of the crystal diameter of the sapphire single crystal; (Iii) growing the sapphire single crystal while controlling the crystal diameter of the sapphire single crystal based on the calculated value of the crystal diameter of the single crystal obtained in the step (ii), and at least a part of the crystal growth Including in the process, (A) Step (i) has a wavelength of more than 620 nm from the light incident on the optical means so that 80% or more of the light energy of the light subjected to detection by the optical means is in the wavelength range of 380 to 620 nm.
  • Step (ii) generates secondary image data by removing at least part of components contributed by light having a wavelength of more than 620 nm from luminance information of the image data, and analyzes the secondary image data
  • a step of obtaining a calculated value of the crystal diameter of the sapphire single crystal, and the generation of the secondary image data is more than 80% of the light energy of the light subjected to detection by optical means.
  • the wavelength is in a wavelength range of 380 to 620 nm.
  • “80% or more of light energy of light used for detection by optical means exists in the wavelength range of 380 to 620 nm” means that the wavelength of the power spectrum of light used for detection by optical means It means that the ratio of the wavelength integrated value in the wavelength range 380 to 620 nm of the power spectrum in the wavelength integrated value in the range 380 to 830 nm is 80% or more.
  • the light incident on the optical means is detected by the optical means after removing at least a part of the light component having a wavelength exceeding 620 nm. .
  • “80% or more of the light energy of light subjected to detection by optical means is in the wavelength range of light recorded in the secondary image data and having a wavelength of 380 to 620 nm”.
  • the wavelength range in which the wavelength range 380 to 620 nm overlaps with the optical wavelength range to be recorded in the secondary image data This means that the ratio of the wavelength integrated value of the power spectrum to 80% or more is 80% or more.
  • the method for producing a sapphire single crystal of the present invention can take a form in which the optical means includes an image sensor and a filter that removes light having a wavelength of more than 620 nm from light incident on the image sensor.
  • the said form can be preferably employ
  • the optical means is an electronic RGB color camera, and step (ii) is obtained by excluding at least R information from RGB image data obtained from the RGB color camera.
  • a form including a step of calculating the crystal diameter of the sapphire single crystal based on the obtained data can be adopted.
  • the said form can be preferably employ
  • the method for producing the sapphire single crystal of the present invention is as follows: (X) growing the sapphire single crystal while controlling the crystal diameter of the sapphire single crystal based on optical observation of the interface between the growing sapphire single crystal and the raw material melt; (Y) the step of growing a single crystal while controlling the crystal diameter of the single crystal based on the weight data of the growing sapphire single crystal in the above order, Step (X) includes the steps (i) to (iii) and satisfies the requirement (A) or (B).
  • Step (Y) (Yi) obtaining weight data of the growing sapphire single crystal by weight detection means; (Y-ii) analyzing the weight data obtained in step (Yi) to obtain a calculated value of the crystal diameter of the sapphire single crystal; (Y-iii) a step of growing a sapphire single crystal while controlling the crystal diameter of the sapphire single crystal based on the calculated value of the crystal diameter of the sapphire single crystal obtained in step (Y-ii). Can be taken. According to the said form, it becomes easy to control the crystal diameter of a sapphire single crystal more correctly over the whole region during the growth.
  • the step (X) and (Y) for example, at least while the crystal diameter of the growing sapphire single crystal is less than 60 mm, the step (X And at least while the crystal diameter of the growing sapphire single crystal is 100 mm or more, an embodiment in which the step (Y) is performed can be preferably employed.
  • the single crystal may grow with a crystal diameter of less than 60 mm (for example, when tailing is performed). Even if it is a case, it is not necessary to perform the said process (X) until after a process (Y).
  • the crystal diameter of the growing single crystal can be accurately grasped by analyzing the image.
  • the diameter of the sapphire single crystal can be accurately controlled.
  • FIG. 2 is a diagram schematically illustrating an example of the structure and diameter control method of a conventional Czochralski method single crystal pulling furnace. Using a crystal growth apparatus as shown in FIG. 2, for example, an ingot having a straight body diameter of 50 to 160 mm and a length of about 50 to 500 mm is pulled up from the raw material melt.
  • the single crystal pulling apparatus shown in FIG. 2 includes a chamber 1 that constitutes a crystal growth furnace, and a single unit that can be moved up and down and rotated by a driving mechanism (not shown) through an opening on the upper wall of the chamber.
  • a crystal pulling rod 2 is suspended.
  • a seed crystal body 4 is attached to the tip of the single crystal pulling rod 2 via a holder 3, and the seed crystal body 4 is disposed on the central axis of the crucible 5.
  • a load cell 6 for measuring the crystal weight is provided at the upper end of the single crystal pulling apparatus.
  • the chamber 1 is provided with a window 11 for observing the seed crystal 4 and a single crystal (not shown) with an imaging device 20 such as a camera, and the inside of the furnace can be observed through the window 11 by optical means.
  • the material of the window material constituting the window 11 may be any material that transmits light in the visible light region, such as quartz, calcium fluoride, or the like that has low absorption in the infrared region so that it is difficult to be heated by radiation from the high temperature part.
  • the imaging device 20 for obtaining data by optical means an electronic camera using an electronic photosensitive element such as a CCD or CMOS is preferably used.
  • the crucible 5 may be a crucible having a known shape as a crucible used in the Czochralski method. Generally, the opening viewed from the top is circular, has a cylindrical body, and the bottom has a flat shape, a bowl shape, or an inverted conical shape. Further, as the material of the crucible 5, a material which can withstand the melting point of aluminum oxide which is a raw material melt and has low reactivity with aluminum oxide is suitable, and iridium, molybdenum, tungsten, rhenium or alloys thereof are generally used. Used for. In particular, iridium excellent in heat resistance and oxidation resistance is preferable.
  • a heat insulating wall 7 a is installed around the crucible 5 so as to surround the bottom and outer periphery of the crucible 5. Further, a heat insulating wall 7b is installed so as to surround the side periphery of the single crystal pulling area above the crucible 5.
  • the heat insulating walls 7a and 7b can adopt a known heat insulating material or a structure for heat insulation without particular limitation, but include zirconia and hafnia based materials including those stabilized by adding yttria, calcia, magnesia and the like.
  • a reflective material in which a metal plate such as tungsten material, alumina material, carbon material, tungsten, or molybdenum is laminated can be suitably used.
  • these heat insulating walls are used in an environment where the temperature difference between the inner surface and the outer surface is very large, the material is likely to be significantly deformed or cracked by repeated heating and cooling.
  • the temperature gradient in the crystal growth region changes every moment due to such deformation and cracking of the heat insulating wall, stable crystal production becomes difficult. Therefore, in order to reduce the cracking of the heat insulation wall due to deformation and stress as described above and the change in temperature environment associated therewith, these heat insulation walls are not composed entirely of a single material, but are divided into several parts. It is preferable that the heat insulating member is combined.
  • the opening at the upper end of the heat insulating wall 7b surrounding the single crystal pulling area is a through hole for inserting the single crystal pulling rod 2 and a through hole for imaging the sapphire single crystal and the melt by the imaging device 20.
  • the hole is closed by a ceiling plate 8 provided with at least holes.
  • the ceiling plate 8 may be formed of a known heat insulating material or a structure for heat insulation.
  • the ceiling board 8 does not necessarily need to be a flat plate shape, and may have any shape as long as the upper end opening of the surrounding body of the heat insulating wall 7b is blocked except for the through hole portion.
  • the ceiling plate 8 may have shapes such as a truncated cone shape, an inverted truncated cone shape, a shade shape, an inverted shade shape, a dome shape, and an inverted dome shape, for example.
  • the high frequency coil 9 is installed on the outer periphery of the heat insulating wall 7a so as to surround the position of the height of the crucible.
  • a high frequency power supply 13 is connected to the high frequency coil 9.
  • the high frequency power supply 13 is connected to a control device 24 constituted by a general computer, and the output is adjusted as appropriate.
  • the control device 24 analyzes the change in the weight detected by the load cell 6 and calculates the diameter, and compares the target diameter set in the setting device 25 with the calculated diameter, It has a function to adjust the output.
  • the load cell 6 can be used for diameter control after the diameter of the single crystal becomes 100 mm or more, preferably 60 mm or more, which causes a large error in diameter control in the diameter calculation method by image analysis described later.
  • a raw material for producing a sapphire single crystal core for a sapphire substrate for semiconductors aluminum oxide (alumina) having a purity of 4N (99.99%) or higher is usually used. Since impurities are mixed into or between the lattices of the sapphire single crystal and become the starting point of crystal defects, when raw materials with low purity are used, subgrains tend to occur and the crystals tend to be colored.
  • the cause of coloration of the crystal is a color center (color center) caused by crystal defects formed by impurities, which indirectly indicates the number of crystal defects.
  • chromium as an impurity significantly affects the coloring, it is preferable to use a raw material having a chromium content of less than 100 ppm.
  • the raw material preferably has a bulk density of 1.0 g / mL or more, and 2.0 g / mL or more from the viewpoint of filling a large amount of raw material in the crucible and suppressing the scattering of the raw material in the furnace. It is more preferable that As a raw material having such properties, aluminum oxide powder granulated with a roller press or the like, or crushed sapphire (crackle, crush sapphire, etc.) can be used.
  • the raw material is charged into a crucible 5 installed in a crystal growth furnace, and heated to obtain a raw material melt.
  • the rate of temperature rise until the raw material reaches a molten state is not particularly limited, but is preferably 50 to 200 ° C./hour.
  • the single crystal is grown by bringing the seed crystal 4 held by the seed crystal holder 3 at the tip of the crystal pulling rod 2 into contact with the surface of the raw material melt and then gradually pulling it up.
  • the temperature of the raw material melt at the portion where the seed crystal contacts when the single crystal pulling is performed is inevitably a temperature slightly lower than the melting point in order for the crystal to grow stably without causing abnormal growth ( Supercooling temperature).
  • the pulling of the sapphire single crystal is preferably carried out so that the temperature becomes 2000 to 2050 ° C.
  • the seed crystal 4 used for pulling is a sapphire single crystal, and is formed and held so that any desired crystal orientation is in the vertical direction of the tip in contact with the raw material melt surface.
  • the shape of the tip in contact with the raw material melt is not particularly limited, and may be a flat surface or an unspecified surface.
  • the shape of the side surface of the seed crystal 4 can select arbitrary shapes without a restriction
  • the length from the lower end of the holder 3 to the lower end of the seed crystal 4 is 90 mm or more in order to avoid melting the seed crystal 4 due to the influence of radiation from the holder 3 when the seed crystal 4 is brought into contact with the melt surface. It is preferable to use seed crystal 4.
  • the upper end portion of the seed crystal 4 is usually provided with an enlarged portion, a constricted portion, and / or a through hole for holding with the holder 3.
  • the shoulder portion (expanded portion) is formed while controlling the rotation speed, pulling speed, output of the high-frequency coil 9 and the like of the seed crystal 4 and / or the crucible 5.
  • the crystal diameter is expanded to the desired crystal diameter, the crystal diameter is raised so as to maintain the desired crystal diameter.
  • the sapphire single crystal is grown in a temperature range around 2050 ° C., which is the melting point of sapphire.
  • Light energy is emitted from a hot object according to Planck's radiation law.
  • FIG. 3 is a graph showing the radiant energy at each temperature obtained from Planck's radiation law only in the visible light region. As shown in FIG. 3, the emitted light energy increases as the temperature of the substance increases. Further, as the temperature rises, the light energy emitted on the longer wavelength side, particularly in the wavelength region of 600 nm or more, increases.
  • FIG. 4 is a graph showing sensitivity characteristics of each photosensitive element (Red, Green, Blue) of a general RGB electronic color camera at each wavelength. It can be read that the entire visible light region has sensitivity.
  • light having a wavelength distribution of radiant energy indicated as “2400 K” in FIG. 3 is emitted from the surface of the single crystal body or the melt that is the observation object, and the camera uses the light energy.
  • Light is received by the photosensitive element and converted into image data. Since the emitted light has high energy in the long wavelength region, particularly in the red region of 600 nm or more, the contrast of the obtained image is lowered when the photosensitive element of the camera is exposed to light on the long wavelength side. .
  • image data in which the light energy of light having a wavelength of 380 to 620 nm is 80% or more is obtained by removing light on the long wavelength side, and based on this image data.
  • Removing light on the long wavelength side does not necessarily mean removal by physical means such as an optical filter, but may be removal by data processing.
  • an optical filter for removing light having a wavelength exceeding 620 nm is arranged between the observation object and the camera, or (b) a color camera.
  • Examples include a form in which the captured image data is RGB-separated and only the R component is removed, and a form in which the R component and the B component are removed.
  • (A) A mode in which a filter that removes light having a wavelength of 620 nm or more is arranged between an observation object and a camera to obtain a high-contrast image and perform diameter control will be described with reference to FIG.
  • the imaging device 20 such as a camera captures an image of an observation target (here, a seed crystal, a single crystal, a melt surface, or the like) through the window 11.
  • the filter 12 for removing light with a wavelength exceeding 620 nm is disposed between the window 11 and the camera 20, so that the photosensitive element of the camera 20 receives light with light having a wavelength exceeding 620 nm cut or attenuated.
  • An image photographed by the camera 20 is captured as electronic data by an image input device 21 into a computing device such as a computer.
  • the camera may be a color camera or a monochrome camera as long as it has sensitivity in the wavelength range of 380 to 620 nm.
  • a filter for removing light having a wavelength of more than 620 nm As a filter for removing light having a wavelength of more than 620 nm, a commercially available optical filter having such optical characteristics can be used without particular limitation. Since the light energy in the wavelength region of 380 to 620 nm in the light after passing through the filter only needs to be 80% or more, the wavelength end of the light to be removed does not need to be strictly 620 nm. Examples of such optical filters include “Long-wavelength cut filter VIS 610 nm” manufactured by Asahi Spectroscopic Co., Ltd., “TS OD2 Short Pass Filter 600NM” manufactured by Edmund Optics, and the like. Further, if the light energy on the short wavelength side is sufficiently high, a part of light having a wavelength shorter than 620 nm may be removed.
  • light having a wavelength less than 450 nm is excluded. May be.
  • the light energy may be reduced at all wavelengths.
  • a neutral density filter to a camera, light energy can be reduced over all wavelengths.
  • Many neutral density filters having various attenuation ratios are commercially available, and they can be used without particular limitation.
  • the seed crystal when the seed crystal is brought into contact with the melt at a temperature suitable for crystal growth, a single crystal grows at the tip of the seed crystal.
  • Images of the seed crystal, single crystal, and melt surface that are objects to be observed by the camera 20 are captured as electronic data into a computing device such as a computer as described above.
  • the light energy of light having a wavelength of 380 to 620 nm is 80% or more of the whole. That is, at least part of the light having a wavelength of more than 620 nm is removed from the light incident on the camera 20 so that 80% or more of the light energy of the light used for detection by the camera 20 exists in the wavelength range of 380 to 620 nm. Yes.
  • the contrast of the captured image is adjusted by the image processing device 22.
  • FIG. 5 is a schematic diagram of an image of an observation target (seed crystal body 30, single crystal body 31, and melt surface 32) after contrast adjustment.
  • seed crystal body 30, single crystal body 31, and melt surface 32 is arranged in the lower part of FIG. 5 .
  • the image data after contrast adjustment is sent to the diameter calculation circuit 23 for analysis.
  • the data is binarized with an appropriate threshold value (TV line in FIG. 5).
  • the interface 33 between the single crystal body 31 and the melt surface 32 is detected by the threshold value, and the distance of the portion having a lower luminance than the threshold value is calculated as the diameter D of the single crystal body.
  • the calculated diameter data is sent to the control device 24.
  • the control device 24 adjusts the output of the high-frequency power source 13 based on the difference between the calculated diameter data and the target diameter set in the setting device 25, and controls the diameter of the single crystal body.
  • FIG. 1 An embodiment in which R information is excluded from the RGB image information obtained from the camera and an image with high contrast is obtained to perform diameter control will be described with reference to FIG.
  • the imaging device 20 such as a camera images the observation object through the window 11.
  • the filter 12 in FIG. 1 is not arranged.
  • An image photographed by the camera 20 is captured as electronic data by an image input device 21 into a computing device such as a computer.
  • the single crystal 31 grows at the tip of the seed crystal 4.
  • the image of the object to be observed by the camera 20 (the seed crystal body 4, the single crystal body 31, and the molten liquid surface 32) is taken in as electronic data into an arithmetic device such as a computer as described above.
  • the image processing device 22 performs image processing on the captured image.
  • the image processing device 22 performs RGB decomposition on the captured image and further removes only the R (Red) component.
  • the light energy of light having a wavelength from 380 nm to 620 nm is 80% or more of the whole.
  • the image processing device 22 generates secondary image data by removing at least part of the component contributed by light having a wavelength of more than 620 nm from the luminance information of the captured image data, and the secondary image data The generation is performed so that 80% or more of the light energy of the light subjected to detection by the camera 20 is recorded in the secondary image data and exists in the wavelength range of light having a wavelength of 380 to 620 nm. Thereafter, the image processing device 22 performs contrast adjustment on the secondary image data.
  • the captured image is subjected to RGB decomposition to remove only the R component.
  • a B (Blue) component may be removed.
  • light of all wavelengths incident on the camera may be reduced using a neutral density filter.
  • the method for calculating the diameter D of the single crystal body 31 from the image data after contrast adjustment is the same as in the above-described form (a).
  • the final diameter value reached by the diameter expansion is determined by the size of the single crystal to be manufactured.
  • the larger the crystal diameter the more likely to generate subgrains and minute bubbles. Therefore, for example, from the viewpoint of mass-producing a 6-inch substrate, it is preferable to increase the diameter to 150 to 170 mm.
  • the diameter D of the single crystal body 31 is calculated using an image from a camera.
  • the melt surface 32 is lowered, so An error occurs in the distance to the interface 33 between the single crystal and the melt surface. Therefore, after the crystal diameter of the sapphire single crystal is expanded to a certain extent, it is based on the calculated value of the diameter obtained by analyzing the weight data from the load cell 6 instead of the calculated value of the diameter obtained by image analysis. It is preferable to grow the sapphire single crystal while controlling the diameter. Specifically, when the diameter of the single crystal body 31 is 100 mm or more, the above error increases and the calculated diameter error also increases. Therefore, when the diameter of the single crystal is 100 mm or more, preferably 60 mm or more, it is desirable to control the diameter based on the weight data from the load cell 6.
  • Single crystal pulling can usually be performed at a speed of 0.1 to 20 mm / hour. However, if the pulling speed is too low, the amount of crystal growth per unit time is reduced, the productivity is lowered, and the pulling speed is increased. If it is too large, fluctuations in the growth environment become large, so subgrains and minute bubbles are likely to be generated. Considering both productivity and crystal quality, the pulling rate is preferably 0.5 to 10 mm / hour, more preferably 1 to 5 mm / hour.
  • the seed crystal 4 is preferably rotated about the pulling rod 2 at a speed of 0.1 to 30 rotations / minute. Further, simultaneously with the rotation of the seed crystal 4, the crucible 5 may be rotated in the opposite direction or the same direction as the rotation direction of the seed crystal 4, and the rotation speed may be, for example, 0.1 to 30 rotations / minute. it can.
  • the furnace pressure during pulling up of the single crystal may be any of under pressure, normal pressure, and reduced pressure, but it is easy to carry out under normal pressure.
  • the atmosphere in the furnace is preferably an inert gas such as nitrogen or argon, or an atmosphere containing 0 to 10% by volume of oxygen in the inert gas.
  • the length of the straight body of the single crystal is arbitrary, it is preferably 200 mm or more, and more preferably 250 mm or more so that it can be efficiently processed with a multi-wire saw for substrate production.
  • the length of the straight body is less than 200 mm, in order to cut efficiently with a multi-wire saw, multiple cores are joined together with precisely aligned crystal orientations, and the total length is 200 mm or more before being cut with a multi-wire saw. Since a process is required, manufacturing efficiency is reduced and manufacturing cost is increased.
  • the length of the straight body part exceeds 500 mm, the temperature environment change in the hot zone in the furnace being grown becomes too large, and stable growth tends to be difficult.
  • the single crystal is separated from the raw material melt.
  • the method of separating the single crystal from the raw material melt is not particularly limited, such as a method of separating by increasing the heater output (increasing the temperature of the raw material melt), a method of separating by increasing the crystal pulling speed, a method of separating by lowering the crucible, etc. Any method may be adopted.
  • the crystal diameter is gradually decreased by gradually increasing the heater output or gradually increasing the crystal pulling speed. It is effective to perform tail processing.
  • the single crystal separated from the raw material melt is cooled to a temperature that can be taken out of the furnace.
  • a faster cooling rate can increase the productivity of the growth process, but if it is too fast, the stress strain remaining inside the single crystal will increase, resulting in crushing and cracking during cooling and subsequent processing. There is a risk that abnormal warpage may occur in the finally obtained substrate.
  • the cooling rate is preferably 10 to 200 ° C./hour.
  • Example 1 A Czochralski method crystal pulling furnace, an electronic RGB color camera (Sony XC-505), a filter that cuts off light with a wavelength of over 620 nm ("TS OD2 short pass filter 600NM” manufactured by Edmund Optics), and a neutral density filter (HOYA HMC filter) was installed in such a manner that light from the furnace enters the camera through the filter as shown in FIG. 1 (however, the neutral density filter is not shown). 50 kg of high-purity alumina (AKX-5 manufactured by Sumitomo Chemical Co., Ltd.) having a purity of 4N (99.99%) was charged as a starting material into an iridium crucible.
  • AKX-5 manufactured by Sumitomo Chemical Co., Ltd.
  • a cylindrical seed crystal having a diameter of 10 mm and having a c-plane at the tip was used.
  • the crucible containing the raw material was placed in a high-frequency induction heating type Czochralski crystal pulling furnace, and the inside of the furnace was evacuated to 100 Pa or less, and then nitrogen gas containing 1.0 vol% oxygen was introduced to atmospheric pressure. After reaching the atmospheric pressure, the gas having the same composition as described above was introduced into the furnace at 2.0 L / min, and evacuation was performed so that the furnace pressure was maintained at the atmospheric pressure.
  • the image input device, the image processing device, and the diameter calculation circuit were also operated in preparation for input from the camera.
  • the image input device, the image processing device, the diameter calculation circuit, and the control device are configured by a single electronic computer.
  • the heating of the crucible was started and gradually heated over 9 hours until reaching the temperature at which the aluminum oxide raw material in the crucible melted.
  • the seed crystal of the sapphire single crystal is gradually lowered while rotating at a speed of 1 revolution / minute, and the tip of the seed crystal Was brought into contact with the raw material melt.
  • the heater output was further finely adjusted so that the seed crystal did not melt and the crystal did not grow on the surface of the raw material melt.
  • the seed crystal, single crystal, and melt surface images taken by the camera were taken into a computer by an image input device, and the contrast was adjusted by the image processing device.
  • the contrast-adjusted image is displayed on the monitor, and the threshold brightness (see the TV line in FIG. 5) is set so that the interface between the single crystal and the melt matches the diameter calculated by the diameter calculation circuit. Set. Thereby, the diameter calculation circuit calculated the diameter of the single crystal. Pulling of the seed crystal was started at a pulling rate of 2 mm / hour.
  • the controller After starting the pulling, the controller is caused to execute the growth program shown in Table 1 input from the setting device, and the controller is controlled so that the crystal diameter and the crystal pulling rod rising speed become the target values shown in the growth program. Crystal growth was carried out while controlling the operation.
  • Fig. 6 shows the value of the diameter after the start of pulling calculated by the diameter calculation circuit.
  • the diameter data of the single crystal was obtained very stably. Based on this data, the high-frequency output was adjusted by the control circuit, and the neck and shoulders of step numbers 1 to 5 of the single crystal were grown. From Step No. 6, the diameter calculation was changed to a method of calculating based on the weight data from the load cell, and the shoulder portion, the straight body portion, and the tail portion were grown according to the program. After the completion of the growth program, the single crystal was separated from the raw material melt at a pulling shaft raising speed of 10 mm / min. The separated single crystal was cooled to room temperature over 20 hours.
  • a sapphire single crystal having a c-axis in the vertical direction (longitudinal direction of the single crystal) and a diameter of 160 mm and a length of the straight body portion of 150 mm was obtained.
  • the actual measured value of the diameter of the obtained crystal is shown in FIG. A crystal having a small difference from the target diameter was obtained even in the neck having a small diameter.
  • Example 2 The same camera as that used in Example 1 was installed in the Czochralski method crystal pulling furnace. However, unlike Example 1, only a neutral density filter was provided between the camera and the window, and no filter for removing light having a wavelength of more than 620 nm was installed.
  • the image of the seed crystal, single crystal, and melt surface photographed by the camera is taken into a computer by an image input device, and RGB separation is performed by the image processing device to obtain an image from which only the R component is removed, and then the contrast. Adjustments were made. Except for these points, crystal growth was performed in the same manner as in Example 1.
  • the diameter value after the start of the pulling calculated by the diameter calculation circuit is shown in FIG.
  • Single crystal diameter data could be obtained very stably.
  • the measured value of the diameter of the obtained crystal is shown in FIG. A crystal having a small difference from the target diameter was obtained even in the neck having a small diameter.
  • ⁇ Comparative Example 1> Based on an image in which a filter for removing light with a wavelength of more than 620 nm is not disposed between the camera and the window, and only the contrast adjustment of the captured image is performed without performing RGB decomposition and R component removal in the image processing apparatus. Then, crystal growth was performed in the same manner as in Examples 1 and 2, except that the diameter calculation device calculated the diameter of the single crystal.
  • the diameter value after the start of the pulling calculated by the diameter calculation circuit is shown in FIG.
  • the brightness of the spoke pattern part is often the same as that of the single crystal, and there are frequent events in which the interface between the single crystal and the melt surface cannot be detected correctly using the brightness threshold. Occurred. Therefore, the variation in the calculated diameter value was very large. Because the output adjustment of the high frequency power supply was performed by the control circuit based on the calculated diameter data, the output adjustment was poor, and the single crystal separated from the melt surface during the neck growth of Step No. 3 I was unable to continue training.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 (i)成長中のサファイア単結晶と原料溶融液との界面を光学的手段によって観察することにより画像データを得る工程と;(ii)該画像データを解析することにより、単結晶径の計算値を得る工程と;(iii)該計算値に基づいて単結晶径を制御しながら、サファイア単結晶を成長させる工程とを含み、(A)工程(i)が、光学的手段に入射する光から波長620nm超の光の少なくとも一部を除去する工程を含むか、又は、(B)工程(ii)が、画像データの輝度情報から波長620nm超の光が寄与する成分の少なくとも一部を取り除くことにより二次画像データを生成する工程と、該二次画像データを解析することにより単結晶径の計算値を得る工程とを含む、融液成長法によるサファイア単結晶の製造方法。

Description

サファイア単結晶の製造方法
 本発明は、エピタキシャル成長用基板や光学材料として使用されるサファイア単結晶の製造方法に関する。
 サファイア(酸化アルミニウム)単結晶体は、窒化物系化合物半導体やシリコンのエピタキシャル成長用基板、高強度の窓材等として広く利用されている。近年、省エネルギーの観点からLEDテレビやLED照明などとしてLEDの需要が拡大傾向にあることから、特に窒化物系化合物半導体エピタキシャル成長用のサファイア基板の需要が拡大している。LEDチップは、c面サファイア基板上にMOCVD装置を用いてGaN、InGaN、AlN等の窒化物系化合物半導体発光体層を形成した後、チップに分割して作製する方法が一般的である(例えば、特許文献1参照)。よって、大面積のc面を表面に有する安価なサファイア基板を提供することは、LEDチップの生産の高効率化、低コスト化を達成するために重要な課題である。
 サファイア基板の材料となるサファイア単結晶体の作製方法にはベルヌーイ法、EFG(Edge-defined Film-fed Growth)法、チョクラルスキー法、キロポーラス法、HEM(Heat Exchange Method)法などが知られている。
 チョクラルスキー法は融液成長法の一種で、原料溶融液面に接触させた種結晶体を0.5~10mm/時間程度の速度で引上げつつ、引き上げ速度、結晶回転数やヒーター出力を調整することで所望の直径の結晶体を融液面上に成長させる方法である。チョクラルスキー法では、一般にイリジウム製などの坩堝を誘導加熱方式で直接加熱することにより、比較的大きな温度勾配を形成して結晶育成を行う。
 このように比較的大きな温度勾配下で結晶育成を行うことにより、育成方位による成長速度差が生じにくくなるためにc軸方向に結晶を育成させることが可能になる。チョクラルスキー法は、基板に要する直径と任意の長さを有する、c軸方向に成長させたサファイア単結晶体を容易に得ることができるため、コアドリルなどで円柱体を切り抜く必要もなく、したがって育成した単結晶体からの基板取得効率が極めて高いという特徴を有する。
 チョクラルスキー法において、単結晶体の直径を正確に制御することは、単結晶体の品質や製品収率を向上させる点において非常に重要である。単結晶体の直径を算出する方法には、ロードセル等の重量検出装置から得られる重量データを元に直径を算出する方法と、炉外に設置されたカメラ等の映像から単結晶体と溶融液面との界面を検出し、検出された固液界面から直径を算出する方法とが知られている。
 シリコン単結晶の製造においては、単結晶体と融液面との界面であるヒュージョンリングをカメラの映像から検出し、検出点に基づいて算出された直径を制御回路に取り込み、ヒーターの出力、結晶引上げ軸の引上げ速度や回転数、及び、ルツボの押し上げ速度にフィードバックすることにより、精度の高い単結晶体の直径制御を行っている(例えば、特許文献2参照)。
 一方、サファイア単結晶の製造においては、ロードセル等の重量検出装置から得られる重量データを元に直径を算出する方法が一般的に用いられている(例えば、特許文献3参照)。
特開2000-82676号公報 特開2010-100453号公報 特開2011-6314号公報
 成長中のサファイア単結晶体の直径を重量データに基づいて算出する場合、サフイア単結晶体の引上げ速度は0.5~10mm/時間程度と、シリコン単結晶の製造と比較して遅いため、単位時間当たりに成長する単結晶体の重量が小さく、そのため得られる重量データが含む誤差が大きくなる。特に単結晶育成の初期段階である、首部、および肩部の育成時にはこの誤差が大きく、そのため重量データから算出される直径値に含まれる誤差が大きい。大きな誤差を含む直径データに基づいて制御が行われる場合には育成される結晶に欠陥が生じやすく、特に単結晶育成の初期段階に形成される首部および肩部の品質が低いと、その下に育成される直胴部の品質までもが低下する傾向にある。
 サファイア単結晶体の直径を、カメラ等による画像からサファイア単結晶体と融液面との界面を検出して算出する場合、被写体の温度がサファイアの融点(2000℃以上)を超える画像を用いる必要がある。しかしながらその場合、非常に高温の被写体から放射される輻射光により、得られる画像のコントラストが低下するという問題がある。
 従来、観察対象物とカメラ等の撮像装置との間に減光フィルターを配置することにより輻射光を除去することが試みられているが、目視可能な画像は得られるものの、コントラストの高い映像を得ることはできない。コントラストが低い(すなわち不明瞭な)画像を用いて単結晶体と融液面との界面を検出しようとした場合、界面ではない点を界面として検出する誤検出が頻繁に発生するため、そのような画像データを用いてサファイア単結晶体の直径制御を行うことは困難である。
 発明者らは、サファイア単結晶体と融液面との界面を観察する画像において、その画像の赤色成分を除去することによってコントラストの高い画像が得られることを見出し、本発明を完成した。
 本発明のサファイア単結晶の製造方法は、融液成長法によるサファイア単結晶の製造方法であって、
 (i)成長中のサファイア単結晶と原料溶融液との界面を光学的手段によって観察することにより画像データを得る工程と、
 (ii)工程(i)で得られた画像データを解析することにより、サファイア単結晶の結晶径の計算値を得る工程と、
 (iii)工程(ii)で得られた単結晶の結晶径の計算値に基づいてサファイア単結晶の結晶径を制御しながら、サファイア単結晶を成長させる工程と
を、結晶成長の少なくとも一部の過程において含み、
 (A)工程(i)が、光学的手段による検出に供される光の光エネルギーのうち80%以上が波長範囲380~620nmに存するように、光学的手段に入射する光から波長620nm超の光の少なくとも一部を除去する工程を含むか、又は、
 (B)工程(ii)が、画像データの輝度情報から波長620nm超の光が寄与する成分の少なくとも一部を取り除くことにより二次画像データを生成する工程と、該二次画像データを解析することによりサファイア単結晶の結晶径の計算値を得る工程とを含み、二次画像データの生成が、光学的手段による検出に供された光の光エネルギーのうち80%以上が、二次画像データに記録され且つ波長が380~620nmである光の波長範囲に存するように行われることを特徴とする。
 本発明において、「光学的手段による検出に供される光の光エネルギーのうち80%以上が波長範囲380~620nmに存する」とは、光学的手段による検出に供される光のパワースペクトルの波長範囲380~830nmにおける波長積分値のうち、該パワースペクトルの波長範囲380~620nmにおける波長積分値の占める割合が80%以上であることを意味する。
 本発明において、上記(A)の要件が満たされる場合、光学的手段に入射する光は、波長620nm超の光成分の少なくとも一部を除去された後に、光学的手段により検出されることになる。
 また本発明において、「光学的手段による検出に供された光の光エネルギーのうち80%以上が、二次画像データに記録され且つ波長が380~620nmである光の波長範囲に存する」とは、光学的手段による検出に供された光のパワースペクトルの波長範囲380~830nmにおける波長積分値のうち、二次画像データに記録が残る光波長範囲と波長範囲380~620nmとが重複する波長範囲における該パワースペクトルの波長積分値の占める割合が80%以上であることを意味する。
 本発明のサファイア単結晶の製造方法は、光学的手段が、撮像素子と、該撮像素子に入射する光から波長620nm超の光を除去するフィルタとを有する形態を採りうる。当該形態は、上記(A)の要件が満たされる場合に好ましく採用できる。
 本発明のサファイア単結晶の製造方法は、光学的手段が電子的RGBカラーカメラであり、工程(ii)が、該RGBカラーカメラから得られたRGB画像データから少なくともR情報を除外することによって得られるデータに基づいてサファイア単結晶の結晶径を計算する工程を含む形態を採りうる。当該形態は、上記(B)の要件が満たされる場合に好ましく採用できる。
 本発明のサファイア単結晶の製造方法は、
 (X)成長中のサファイア単結晶と原料溶融液との界面の光学的観察に基づいてサファイア単結晶の結晶径を制御しながら、サファイア単結晶を成長させる工程と、
 (Y)成長中のサファイア単結晶の重量データに基づいて単結晶の結晶径を制御しながら、単結晶を成長させる工程と
を上記順に有し、
 工程(X)が、上記工程(i)乃至(iii)を含み、且つ、上記要件(A)又は(B)を満たし、
 工程(Y)が、
 (Y-i)重量検出手段により、成長中のサファイア単結晶の重量データを得る工程と、
 (Y-ii)工程(Y-i)で得られた重量データを解析することにより、サファイア単結晶の結晶径の計算値を得る工程と、
 (Y-iii)工程(Y-ii)で得られたサファイア単結晶の結晶径の計算値に基づいてサファイア単結晶の結晶径を制御しながら、サファイア単結晶を成長させる工程と
を含む形態を採りうる。当該形態によれば、サファイア単結晶の結晶径をその成長中全域にわたってより正確に制御することが容易になる。
 上記工程(X)及び工程(Y)を有する形態の本発明のサファイア単結晶の製造方法においては、例えば、少なくとも成長中のサファイア単結晶の結晶径が60mm未満である間には前記工程(X)を行い、少なくとも成長中のサファイア単結晶の結晶径が100mm以上である間には前記工程(Y)を行う態様を好ましく採用できる。なお当該態様において、成長中のサファイア単結晶の結晶径が60mm以上100mm未満である間には、上記工程(X)及び工程(Y)のいずれを行ってもよい。また上記工程(Y)の後、単結晶を原料溶融液から分離するプロセス中に、結晶径60mm未満で単結晶が成長する場合がある(例えばテーリング処理を行う場合等。)が、そのような場合であっても、工程(Y)の後にまで上記工程(X)を行う必要はない。
 本発明によれば、サファイア単結晶体と融液面との界面を観察する画像においてコントラストの高い画像を取得できるので、該画像の解析によって成長中の単結晶の結晶径を精度よく把握できる。該把握した値に基づいて結晶径を制御しながらサファイア単結晶を成長させることにより、サファイア単結晶体の直径を精度よく制御することが可能となる。
チョクラルスキー法単結晶引上げ炉の構造及び直径制御方法の一例を模式的に説明する図である。 従来のチョクラルスキー法単結晶引上げ炉の構造及び直径制御方法の一例を模式的に説明する図である。 プランクの放射則に基づく放射エネルギーの波長分布を示すグラフである。 一般的な電子式RGBカラーカメラの感光素子の各波長における感度特性を示すグラフである。 コントラスト調整後の観察対象物の画像を模式的に説明する図である。 実施例1において算出された結晶直径データを示すグラフである。 実施例1における単結晶体直径の実測データを示すグラフである。 実施例2において算出された結晶直径データを示すグラフである。 実施例2における単結晶体直径の実測データを示すグラフである。 比較例1において算出された結晶直径データを示すグラフである。 比較例2における単結晶体直径の実測データを示すグラフである。
 本発明におけるチョクラルスキー法でサファイアインゴットを製造する方法は、後述する直径制御の元とするデータ取得・解析を別にすれば公知の方法がそのまま適用できるが、その概略を説明すると以下の通りである。
 チョクラルスキー法でのサファイアインゴット製造はバッチ方式である。図2は、従来のチョクラルスキー法単結晶引上げ炉の構造及び直径制御方法の一例を模式的に説明する図である。図2に示すような結晶育成装置を用いて、例えば、直胴部直径50~160mm、長さ50~500mm程度のインゴットが原料融液から引き上げられる。
 図2に示す単結晶引上げ装置は、結晶成長炉を構成するチャンバー1を備えており、このチャンバー上壁には、開口部を介して、駆動機構(不図示)によって上下動および回転可能な単結晶引上げ棒2が吊設されている。この単結晶引上げ棒2の先端には、保持具3を介して種結晶体4が取り付けられ、種結晶体4は坩堝5の中心軸上に位置するように配置される。また、この単結晶引上げ装置の上端には、結晶重量を測定するロードセル6が設けられている。
 チャンバー1には、カメラ等の撮像装置20で種結晶体4や、単結晶体(不図示)を観察するための窓11が設けられており、窓11を通して光学的手段により炉内の観察が行われる。窓11を構成する窓材の材質は可視光領域の光を透過する材質であればよく、高温部からの輻射によって加熱されにくいよう、赤外域での吸収の少ない石英、フッ化カルシウム等の材質が好適に用いられる。光学的手段によりデータを得るための撮像装置20としては、CCDやCMOSといった電子的な感光素子を用いた電子カメラを用いることが好ましい。
 坩堝5は、チョクラルスキー法に用いられる坩堝として公知の形状の坩堝を使用することができる。一般には、上部から見た開口部が円形状であり、円柱状の胴部を持ち、底面の形状が平面状、碗状、又は逆円錐状のものが用いられる。また、坩堝5の材質としては、原料溶融液である酸化アルミニウムの融点に耐え、また酸化アルミニウムとの反応性が低いものが適しており、イリジウム、モリブデン、タングステン、レニウムまたはこれらの合金が一般的に用いられる。とりわけ、耐熱性・耐酸化性に優れたイリジウムが好ましい。
 坩堝5の周囲には、坩堝5の底部及び外周を取り囲むように、断熱壁7aが設置されている。また、坩堝5上方の単結晶引上げ域の側周部を環囲するように断熱壁7bが設置されている。該断熱壁7a,7bは、公知の断熱性の素材、または断熱のための構造を特に制限なく採用できるが、イットリア、カルシア、マグネシア等を添加して安定化したものを含むジルコニア系およびハフニア系の素材、アルミナ系の素材、カーボン系の素材、タングステン、モリブデンなどの金属板を積層させた反射材等を特に好適に採用できる。
 これらの断熱壁は、内面と外面の温度差が非常に大きい環境下で使用されるため、加熱と冷却の繰り返しによって素材の著しい変形や割れを生じやすい。このような断熱壁の変形や割れによって結晶成長域の温度勾配が刻々と変化すると、安定的な結晶製造が困難になる。そこで、これらの断熱壁は、上記のような変形や応力による断熱壁の割れやそれに伴う温度環境の変化を低減するため、その全体を一体の素材で構成するのではなく、いくつかに分割された断熱部材の組み合わせで構成することが好ましい。
 単結晶引上げ域を環囲する断熱壁7bの上端の開口部は、単結晶引上げ棒2を挿入するための貫通孔と、撮像装置20によってサファイア単結晶体及び溶融液等を撮像するための貫通孔とが少なくとも設けられた天井板8により閉塞されている。これにより、単結晶引上げ域は、断熱壁7a、7bと天井板8とにより形成される単結晶引上げ室内に収まるため、その保熱性が大きく向上する。天井板8は断熱壁7a、7bと同様、公知の断熱性の素材、または断熱のための構造で形成されていればよい。また、天井板8は、必ずしも平板状である必要はなく、断熱壁7bの環囲体の上端開口部を上記の貫通孔部分を除いて閉塞するものであれば如何なる形状であっても良い。平板状以外の形状として、例えば、円錐台状、逆円錐台状、笠状、逆笠状、ドーム状、逆ドーム状等の形状を天井板8が有していてもよい。
 断熱壁7aの外周には、おおよそ坩堝の高さの位置を環囲するように、高周波コイル9が設置されている。高周波コイル9には、高周波電源13が接続されている。高周波電源13は、一般的なコンピュータによって構成された制御装置24に接続され、出力を適宜調節される。
 制御装置24は、ロードセル6によって検出される重量の変化を解析して直径を算出する演算を行い、設定器25に設定された目標直径と算出された直径とを比較しながら、高周波電源13の出力を調整する機能を有する。ロードセル6は、後述する画像解析による直径算出方法では直径制御の誤差が大きくなってしまう、単結晶体の直径が100mm以上、好ましくは60mm以上となった以降の直径制御に用いることができる。
 なお、高周波電源13の出力のほかに、結晶引上げ軸2や坩堝5の回転数、引上げ速度、ガスの流入出のためのバルブ操作なども併せて制御することが一般的である。
 半導体向けサファイア基板用のサファイア単結晶コアを製造するための原料としては、通常、純度4N(99.99%)以上の純度を有する酸化アルミニウム(アルミナ)が用いられる。不純物はサファイア単結晶の格子間又は格子内に混入して結晶欠陥の起点となることから、純度の低い原料を用いるとサブグレインが発生しやすく、また結晶が着色する傾向がある。結晶の着色の原因は不純物によって形成された結晶欠陥に起因する色中心(カラーセンター)であり、結晶欠陥の多さを間接的に示している。特に不純物としてのクロムは着色に顕著な影響を及ぼすことから、クロムの含有量が100ppm未満の原料を使用することが好ましい。
 また原料は、坩堝により多くの原料を充填する観点、および、炉内での原料の飛散を抑制する観点から、嵩密度が1.0g/mL以上であることが好ましく、2.0g/mL以上であることがより好ましい。このような性状の原料としては、酸化アルミニウム粉末をローラープレス等で造粒したものや、破砕サファイア(クラックル、クラッシュサファイア等)を用いることができる。
 原料を結晶成長炉内に設置された坩堝5内に装入し、加熱により原料溶融液とする。原料が溶融状態に到達するまでの昇温速度は特に限定されないが、50~200℃/時間であることが好ましい。
 結晶引上げ棒2先端の種結晶保持具3に保持された種結晶4を該原料溶融液面に接触させ、ついで徐々に引上げることにより、単結晶体を成長させる。単結晶引上げを実施する際の、種結晶が接触する部分の原料溶融液の温度は、結晶が異常成長を起こさず安定的に成長するためには、必然的に融点よりも僅かに低い温度(過冷却温度)となる。サファイア単結晶の引き上げは、当該温度が2000~2050℃の温度となるように実施することが好ましい。
 引き上げに用いる種結晶4は、サファイア単結晶であり、任意の所望の結晶方位が原料溶融液面と接する先端の鉛直方向となるように形成および保持される。原料溶融液に接触する先端の形状は特に限定されず、平面であってもよく、不特定面で構成されていてもよい。また、種結晶4の側面の形状は任意の形状を特に制限なく選択できるが、円柱状、あるいは四角柱状が好ましい。種結晶4を溶融液面と接触させる際に保持具3からの輻射の影響により種結晶4が溶融することを避けるため、保持具3下端から種結晶4下端までの長さが90mm以上である種結晶4を用いることが好ましい。
 また、種結晶4の上端部には、通常、保持具3で保持するための拡大部、くびれ部、及び/又は貫通孔が設けられる。
 種結晶4を原料溶融液に接触させた後、種結晶4および/又は坩堝5の回転数、引上げ速度、高周波コイル9の出力等を制御しながら肩部(拡径部)を形成する。結晶径が所望の結晶径まで拡径した後、当該所望の結晶径を維持するように引き上げを行う。
 本発明における単結晶体直径の制御について図面に基づいて説明する。サファイア単結晶の育成は、サファイアの融点である2050℃付近の温度域で行われる。高温の物体からはプランクの放射則に従い光エネルギーが放射される。図3は、プランクの放射則から求められる各温度の放射エネルギーを可視光領域のみ示したグラフである。図3に示すように、物質の温度が上がるに従い、放射される光エネルギーも大きくなる。また、温度が上がるに従い、長波長側、特に600nm以上の波長領域で放射される光エネルギーが増大する。
 図4は、一般的なRGB電子カラーカメラの各感光素子(Red、Green、Blue)の各波長における感度特性を示すグラフである。可視光領域全体に感度を有することが読み取れる。
 サファイアの単結晶育成において、観察対象物である単結晶体や溶融液表面からは、図3中に「2400K」として示した放射エネルギーの波長分布を有する光が放射され、カメラはその光エネルギーを感光素子で受光して画像データに変換する。放射される光は長波長領域、特には600nm以上の赤色領域において高いエネルギーを有するため、カメラの感光素子が長波長側の光によって感光することにより、得られる画像のコントラストが低下することになる。
 本発明のサファイア単結晶の製造方法においては、長波長側の光を除去することにより、380~620nmの波長の光の光エネルギーが80%以上となる画像データを得て、この画像データに基づいて単結晶の直径の解析を行う。なお「長波長側の光を除去する」ことは、必ずしも光学フィルター等の物理的な手段による除去を意味するものではなく、データ処理による除去であってもよい。
 長波長側の光を除去する方法の具体的な形態としては、(a)波長620nm超の光を除去する光学フィルターを観察対象物とカメラの間に配置する形態や、(b)カラーカメラに取り込まれた画像データをRGB分解し、R成分のみを除去する形態やR成分とB成分を除去する形態を例示できる。
 (a)波長620nm以上の光を除去するフィルターを観察対象物とカメラの間に配置し、コントラストの高い画像を得て直径制御を行う形態について、図1を参照しつつ説明する。上記のようにカメラ等の撮像装置20は、窓11を介して観察対象物(ここでは種結晶体、単結晶体や溶融液表面など)の像を撮像している。波長620nm超の光を除去するフィルター12は窓11とカメラ20の間に配置されることによって、カメラ20の感光素子は波長620nm超の光がカットないし減衰された光を受光する。カメラ20よって撮影された画像は画像入力装置21によってコンピュータ等の演算装置に電子データとして取り込まれる。この場合、380~620nmの波長範囲に感度があればカメラはカラーカメラでもモノクロカメラでもよい。
 波長620nm超の光を除去するフィルターとしては、そのような光学特性を有する商業的に入手可能な光学フィルターを特に制限なく採用可能である。なお、フィルター透過後の光における380~620nmの波長域の光エネルギーが80%以上であればよいため、除去する光の波長端が厳密に620nmである必要はない。そのような光学フィルターの例としては、朝日分光株式会社製「長波長カットフィルター VIS 610nm」、Edmund Optics社製「TS OD2 ショートパスフィルター 600NM」等を挙げることができる。また短波長側の光エネルギーが十分高ければ、620nmよりも短波長の光を一部除去してもよく、例えば、620nmを超える波長を有する光に加えて、450nm未満の波長を有する光を除いてもよい。
 さらには、例えば結晶及び溶融液から発せられる光がカメラ感度に対して明るすぎる場合などには、全波長において光エネルギーを減少させてもよい。具体的には、例えばカメラに減光フィルターを取り付けることにより、全波長にわたって光エネルギーを減少させることができる。減光フィルターは種々の減光率のものが多数商業的に入手可能であり、それらを特に制限なく用いることができる。
 上記のように結晶育成に適切な温度で種結晶体を溶融液に接触させると、種結晶体の先端には単結晶体が成長する。カメラ20による観察対象物である種結晶体、単結晶体、及び溶融液面の画像は上記のようにコンピュータ等の演算装置に電子データとして取り込まれる。取り込まれた画像は、380~620nmの波長の光の光エネルギーが全体の80%以上となっている。すなわち、カメラ20による検出に供される光の光エネルギーのうち80%以上が波長範囲380~620nmに存するように、カメラ20に入射する光から波長620nm超の光の少なくとも一部が除去されている。取り込まれた画像のコントラストは、画像処理装置22によって調整される。
 図5は、コントラスト調整後の観察対象物(種結晶体30、単結晶体31及び溶融液面32)の画像の模式図である。また、図5下部には、取り込まれた画像の仮想線L上の輝度分布を模式的に説明する図を配している。
 コントラスト調整後の画像データは直径演算回路23に送られて解析される。直径演算回路23において、該データは、適切な閾値(図5においてはTV線)をもって二値化される。閾値によって単結晶体31と溶融液面32との界面33が検出され、閾値よりも輝度の低い部分の距離が単結晶体の直径Dとして算出される。
 算出された直径データは制御装置24に送られる。制御装置24は、当該算出された直径データと設定器25に設定された目標直径との差異から高周波電源13の出力を調整し、単結晶体の直径を制御する。
 (b)カメラから得られたRGB画像情報のうちR情報を除外して、コントラストの高い画像を得て直径制御を行う形態について、図1を参照しつつ説明する。前記のようにカメラ等の撮像装置20は、窓11を介して観察対象物を撮像している。なお、本実施形態のおいては図1中のフィルター12は配置しない。カメラ20によって撮影された画像は、画像入力装置21によってコンピュータ等の演算装置に電子データとして取り込まれる。
 上記のように結晶育成に適切な温度で種結晶体4を原料溶融液に接触させると、種結晶体4の先端には単結晶体31が成長する。カメラ20による観察対象物(種結晶体4、単結晶体31、溶融液面32)の画像は、上記のようにコンピュータ等の演算装置に電子データとして取り込まれる。画像処理装置22は取り込まれた画像に対して画像処理を行う。画像処理装置22は、取り込まれた画像をRGB分解し、さらにR(Red)成分のみを除去する。画像処理後の画像データは、380nmから620nmまでの波長の光の光エネルギーが全体の80%以上となっている。すなわち、画像処理装置22は、取り込まれた画像データの輝度情報から波長620nm超の光が寄与する成分の少なくとも一部を取り除くことにより二次画像データを生成し、且つ、該二次画像データの生成は、カメラ20による検出に供された光の光エネルギーのうち80%以上が、該二次画像データに記録され且つ波長が380~620nmである光の波長範囲に存するように行われる。その後、画像処理装置22は、該二次画像データに対してコントラストの調整を施す。
 なお上記においては取り込まれた画像をRGB分解してR成分のみを除去する形態を例示したが、R成分に加えて例えばB(Blue)成分を除去する形態とすることも可能である。
 また、本形態(b)においても、上記形態(a)と同様に、減光フィルターを用いて、カメラに入射する全ての波長の光を減少させてもよい。
 コントラスト調整後の画像データからの単結晶体31の直径Dの算出方法は、上記(a)の形態と同様である。
 種結晶体30を原料溶融液に接触させた後、拡径によって到達する最終的な直径の値は、製造する単結晶体の大きさによって決定される。ただし一般にチョクラルスキー法の育成においては結晶径が大きいほどサブグレインや微小な気泡が発生しやすい傾向がある。よって、例えば6インチ級の基板を量産するという観点からは、直径150~170mmまで拡径することが好ましい。
 単結晶体31の直径Dの算出はカメラからの画像を用いて行うが、拡径により単結晶体31の直径が或る程度大きくなると、溶融液面32が下降することにより、回転中心34から単結晶体と溶融液面との界面33までの距離に誤差が生じる。よってサファイア単結晶の結晶径を或る程度まで拡径した後は、画像解析によって得られる直径の計算値に代えて、ロードセル6からの重量データを解析することにより得られる直径の計算値に基づいて直径制御を行いながらサファイア単結晶を成長させることが好ましい。具体的には単結晶体31の直径が100mm以上となると、上記の誤差が大きくなり、算出される直径の誤差も大きくなる。したがって単結晶体の直径が100mm以上、好ましくは60mm以上のときには、ロードセル6からの重量データに基づいて直径制御を行うことが望ましい。
 単結晶の引上げは、通常、0.1~20mm/時間の速度で行うことができるが、引上げ速度が小さすぎると単位時間あたりの結晶成長量が減少して生産性が低下し、引上げ速度が大きすぎると育成環境の変動が大きくなるためにサブグレインや微小な気泡が発生しやすくなる。生産性と結晶品質の両方を考慮すると、引上げ速度は好ましくは0.5~10mm/時間、さらに好ましくは1~5mm/時間である。
 単結晶の育成中、種結晶4は引上げ棒2を中心として0.1~30回転/分の速度で回転させることが好ましい。また、種結晶4の回転と同時に、坩堝5を種結晶4の回転方向と逆方向又は同方向に回転させても良く、その回転速度は例えば0.1~30回転/分等とすることができる。
 単結晶体引上げ中の炉内圧力は、加圧下、常圧下、減圧下のいずれでもよいが、常圧下で行うことが簡便である。炉内の雰囲気としては、窒素、アルゴン等の不活性ガス、または不活性ガスに0~10体積%の任意の量の酸素を含む雰囲気が好ましい。
 単結晶の直胴部の長さは任意であるが、基板製造用としてはマルチワイヤソーで効率よく加工できるよう、好ましくは200mm以上、さらに好ましくは250mm以上である。直胴部の長さが200mm未満である場合、マルチワイヤソーで効率よく切断する為には複数のコアを精密に結晶方位を揃えて繋ぎ合わせ、全長を200mm以上としてからマルチワイヤソーで切断するといった追加工程を要することになるので、製造効率を低下させ、製造コストの上昇に繋がる。一方、直胴部の長さが500mmを超える場合には、育成中の炉内のホットゾーンの温度環境変化が大きくなりすぎるため、安定した育成が困難となる傾向がある。
 このようにして所望の直胴部径と長さを有するサファイア単結晶体を引上げた後、該単結晶体を原料溶融液から切り離す。単結晶体を原料溶融液から切り離す方法は特に限定されず、ヒーター出力の増大(原料溶融液の温度の上昇)により切り離す方法、結晶引上げ速度の増加により切り離す方法、坩堝の降下により切り離す方法など、いずれの方法を採用しても良い。なお、単結晶体が原料溶融液から切り離れる瞬間の温度変動(ヒートショック)を小さくするために、ヒーター出力を徐々に上げる、もしくは結晶引上げ速度を徐々に速くすることによって結晶径を徐々に減少させるテール処理を行うことは効果的である。
 原料溶融液から切り離された単結晶体は、炉内から取り出せる程度の温度まで冷却される。冷却速度は速いほうが育成工程の生産性を上げることができるが、速すぎると単結晶体の内部に残留する応力歪みが大きくなり、その結果、冷却時や後の加工時に破砕やひび割れが発生するおそれや、最終的に得られる基板に異常な反りが発生するおそれがある。逆に、冷却速度が遅すぎると結晶育成炉を占有する時間が長くなり、育成工程の生産性が低下する。これらの点を考慮すると、冷却速度としては、10~200℃/時間が好ましい。
 以下、具体的な実験例を挙げて本発明の実施態様をより詳しく説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 チョクラルスキー法結晶引上げ炉に、電子式RGBカラーカメラ(ソニー製XC-505)、波長620nm超の光をカットするフィルター(Edmund Optics社製「TS OD2 ショートパスフィルター 600NM」)及び、減光フィルター(HOYA製HMCフィルター)を、図1に示すように炉内からの光が該フィルターを介してカメラに入光する配置で設置した(但し、減光フィルターは図示していない)。イリジウム製の坩堝に、出発原料として純度が4N(99.99%)の高純度アルミナ(AKX-5 住友化学製)を50kg投入した。先端がc面である直径10mmの円柱状の種結晶を用いた。原料を投入した坩堝を高周波誘導加熱方式のチョクラルスキー型結晶引上げ炉内に設置し、炉内を100Pa以下まで真空排気した後に酸素を1.0体積%含む窒素ガスを大気圧まで導入した。大気圧到達後は、上記と同組成のガスを2.0L/分で炉内に導入しながら、炉内圧力が大気圧を維持するよう排気を行った。
 画像入力装置、画像処理装置、直径演算回路もカメラからの入力に備えて稼動させた。画像入力装置、画像処理装置、直径演算回路、及び制御装置は、単一の電子計算機によって構成されている。坩堝の加熱を開始し、坩堝内の酸化アルミニウム原料が溶融する温度に到達するまで9時間かけて徐々に加熱した。原料溶融液表面の対流の様子(スポークパターン)を参考にヒーター出力を適宜調整した後、サファイア単結晶の種結晶を、1回転/分の速度で回転させながら徐々に降下させ、種結晶の先端を原料溶融液に接触させた。種結晶が溶けず、かつ原料溶融液表面に結晶が成長しないようヒーター出力をさらに微調整した。
 カメラによって撮影した種結晶体、単結晶体及び、溶融液面の画像を画像入力装置によりコンピュータに取り込み、画像処理装置によって、コントラスト調整を行った。コントラスト調整を行った画像をモニターに表示し、単結晶体と溶融液の界面が直径演算回路によって算出される直径と一致するように、閾値となる輝度(図5中のTV線を参照)を設定した。これにより直径演算回路は単結晶体の直径を算出した。引上げ速度2mm/時間の速度で種結晶の引上げを開始した。
 引き上げを開始した後は、設定器から入力された表1に示す育成プログラムを制御装置に実行させ、結晶直径及び結晶引き上げ棒上昇速度が当該育成プログラムに示した目標値となるよう制御装置に炉の運転を制御させながら結晶育成を行った。
Figure JPOXMLDOC01-appb-T000001
 直径演算回路によって算出された引上げ開始後の直径の値を図6に示す。単結晶体の直径データを非常に安定して取得することができた。このデータを基に制御回路にて高周波出力を調整、単結晶体のステップ番号1乃至5の首部及び、肩部を育成した。ステップ番号6番より、直径算出をロードセルからの重量データを基に算出する方法に変更し、肩部、直胴部及び、テール部を前記プログラムに従い育成した。当該育成プログラム終了後、引き上げ軸上昇速度10mm/minで単結晶を原料溶融液から切り離した。切り離した単結晶は20時間かけて室温まで冷却した。その結果、鉛直方向(単結晶体の長手方向)にc軸を有する、直径160mm、直胴部の長さが150mmのサファイア単結晶体を得た。得られた結晶の直径の実測値を図7に示す。直径の細い首部においても目標直径との差異が少ない結晶が得られた。
 <実施例2>
 チョクラルスキー法結晶引上げ炉に実施例1で用いたカメラと同一のカメラを設置した。ただし実施例1とは異なり、カメラと窓との間には減光フィルターのみを設け、波長620nm超の光を除去するフィルターは設置しなかった。カメラによって撮影した種結晶体、単結晶体及び、溶融液面の画像を画像入力装置によりコンピュータに取り込み、画像処理装置によって、RGB分解を行い、R成分のみを除去した画像を取得した後、コントラスト調整を行った。これらの点以外は実施例1と同様に結晶育成を行った。
 直径演算回路によって算出された引上げ開始後の直径の値を図8に示す。単結晶体の直径データが非常に安定して取得できた。得られた結晶の直径の実測値を図9に示す。直径の細い首部においても目標直径との差異が少ない結晶が得られた。
 <比較例1>
 カメラと窓との間に波長620nm超の光を除去するフィルターを配置しないこと、及び、画像処理装置においてRGB分解及びR成分の除去を行わず撮影した画像のコントラスト調整のみを行った画像に基づいて直径演算装置に単結晶の直径を演算させたこと以外は実施例1及び2と同様に結晶育成を行った。
 直径演算回路によって算出された引上げ開始後の直径の値を図10に示す。コントラスト調整後の画像において、スポークパターン部の輝度が単結晶体の輝度と同等となることが多く、輝度の閾値による検出が、単結晶体と溶融液面との界面を正しく検出できない事象が頻繁に発生した。そのため、算出された直径の値のばらつきは非常に大きかった。該算出された直径データを基に制御回路にて高周波電源の出力調整を行ったため、出力の調整が不良となり、ステップ番号3の首部育成中に単結晶体が溶融液面から離れる「界面切れ」を起こし、育成を継続できなかった。
 <比較例2>
 ロードセルの重量を基に直径を算出し、直径制御を行ったこと以外は実施例1と同様に結晶育成を行った。得られた結晶の直径の実測値を図11に示す。直径の細い首部において目標直径との差異が大きく、くびれのある結晶であった。
1:チャンバー
2:単結晶引上げ棒
3:種結晶体保持具
4:種結晶体
5:坩堝
6:ロードセル
7a,7b:断熱壁
8:天井板
9:高周波コイル
11:窓
12:バンドパスフィルター
13:高周波電源
20:カメラ
21:画像入力装置
22:画像処理装置
23:直径演算回路
24:制御装置
30:種結晶体
31:単結晶体
32:溶融液面
33:単結晶体と溶融液面の界面
34:回転中心

Claims (6)

  1.  融液成長法によるサファイア単結晶の製造方法であって、
     (i)成長中のサファイア単結晶と原料溶融液との界面を光学的手段によって観察することにより画像データを得る工程と、
     (ii)前記工程(i)で得られた画像データを解析することにより、前記サファイア単結晶の結晶径の計算値を得る工程と、
     (iii)前記工程(ii)で得られた単結晶の結晶径の計算値に基づいて前記サファイア単結晶の結晶径を制御しながら、前記サファイア単結晶を成長させる工程と
    を、結晶成長の少なくとも一部の過程において含み、
     (A)前記工程(i)が、前記光学的手段による検出に供される光の光エネルギーのうち80%以上が波長範囲380~620nmに存するように、前記光学的手段に入射する光から波長620nm超の光の少なくとも一部を除去する工程を含むか、又は、
     (B)前記工程(ii)が、前記画像データの輝度情報から波長620nm超の光が寄与する成分の少なくとも一部を取り除くことにより二次画像データを生成する工程と、該二次画像データを解析することにより前記サファイア単結晶の結晶径の計算値を得る工程とを含み、前記二次画像データの生成が、前記光学的手段による検出に供された光の光エネルギーのうち80%以上が、前記二次画像データに記録され且つ波長が380~620nmである光の波長範囲に存するように行われる、
    サファイア単結晶の製造方法。
  2.  前記光学的手段が、
     撮像素子と、
     該撮像素子に入射する光から波長620nm超の光を除去するフィルタと
    を有する、請求項1に記載のサファイア単結晶の製造方法。
  3.  前記光学的手段が電子的RGBカラーカメラであり、
     前記工程(ii)が、前記RGBカラーカメラから得られたRGB画像データから少なくともR情報を除外することによって得られるデータに基づいて前記サファイア単結晶の結晶径を計算する工程を含む、請求項1に記載のサファイア単結晶の製造方法。
  4.  融液成長法によるサファイア単結晶の製造方法であって、
     (X)成長中のサファイア単結晶と原料溶融液との界面の光学的観察に基づいて前記サファイア単結晶の結晶径を制御しながら、前記サファイア単結晶を成長させる工程と、
     (Y)成長中のサファイア単結晶の重量データに基づいて前記単結晶の結晶径を制御しながら、前記単結晶を成長させる工程と
    を上記順に有し、
     前記工程(X)が、前記工程(i)乃至(iii)を含み、且つ、前記要件(A)又は(B)を満たし、
     前記工程(Y)が、
     (Y-i)重量検出手段により、成長中のサファイア単結晶の重量データを得る工程と、
     (Y-ii)前記工程(Y-i)で得られた重量データを解析することにより、前記サファイア単結晶の結晶径の計算値を得る工程と、
     (Y-iii)前記工程(Y-ii)で得られたサファイア単結晶の結晶径の計算値に基づいて前記サファイア単結晶の結晶径を制御しながら、前記サファイア単結晶を成長させる工程と
    を含む、
    請求項1~3のいずれかに記載のサファイア単結晶の製造方法。
  5.  少なくとも成長中のサファイア単結晶の結晶径が60mm未満である間には前記工程(X)が行われ、
     少なくとも成長中のサファイア単結晶の結晶径が100mm以上である間には前記工程(Y)が行われる、
    請求項4に記載のサファイア単結晶の製造方法。
  6.  前記融液成長法がチョクラルスキー法である、請求項1~5のいずれかに記載のサファイア単結晶の製造方法。
PCT/JP2014/057174 2013-03-29 2014-03-17 サファイア単結晶の製造方法 WO2014156780A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508327A JPWO2014156780A1 (ja) 2013-03-29 2014-03-17 サファイア単結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073682 2013-03-29
JP2013073682 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156780A1 true WO2014156780A1 (ja) 2014-10-02

Family

ID=51623761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057174 WO2014156780A1 (ja) 2013-03-29 2014-03-17 サファイア単結晶の製造方法

Country Status (3)

Country Link
JP (1) JPWO2014156780A1 (ja)
TW (1) TW201447058A (ja)
WO (1) WO2014156780A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204191A (ja) * 2015-04-20 2016-12-08 住友金属鉱山株式会社 シーディングを実施するタイミングの検知方法及び単結晶の製造方法
CN113280906A (zh) * 2021-06-18 2021-08-20 太原理工大学 基于计算机视觉的泡生法籽晶最佳接种时机振动感知方法
CN115125609A (zh) * 2022-07-19 2022-09-30 山东新升光电科技有限责任公司 一种基于图像处理算法的蓝宝石引晶控制工艺和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562893A (en) * 1978-11-06 1980-05-12 Toshiba Corp Single crystal growth observing device
JPS63270386A (ja) * 1987-04-25 1988-11-08 Fujikura Ltd 単結晶フアイバ製造装置
JPS63284506A (ja) * 1987-05-15 1988-11-21 Fujikura Ltd 単結晶ファイバの製造装置
JPH09110582A (ja) * 1995-10-11 1997-04-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 結晶製造装置
JP2008531444A (ja) * 2004-02-27 2008-08-14 ソーライクス・インコーポレイテッド 単結晶シリコンにおける連続的成長用システム
JP2013006758A (ja) * 2011-05-20 2013-01-10 Showa Denko Kk 単結晶製造装置、単結晶製造方法および単結晶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562893A (en) * 1978-11-06 1980-05-12 Toshiba Corp Single crystal growth observing device
JPS63270386A (ja) * 1987-04-25 1988-11-08 Fujikura Ltd 単結晶フアイバ製造装置
JPS63284506A (ja) * 1987-05-15 1988-11-21 Fujikura Ltd 単結晶ファイバの製造装置
JPH09110582A (ja) * 1995-10-11 1997-04-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 結晶製造装置
JP2008531444A (ja) * 2004-02-27 2008-08-14 ソーライクス・インコーポレイテッド 単結晶シリコンにおける連続的成長用システム
JP2013006758A (ja) * 2011-05-20 2013-01-10 Showa Denko Kk 単結晶製造装置、単結晶製造方法および単結晶

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204191A (ja) * 2015-04-20 2016-12-08 住友金属鉱山株式会社 シーディングを実施するタイミングの検知方法及び単結晶の製造方法
CN113280906A (zh) * 2021-06-18 2021-08-20 太原理工大学 基于计算机视觉的泡生法籽晶最佳接种时机振动感知方法
CN115125609A (zh) * 2022-07-19 2022-09-30 山东新升光电科技有限责任公司 一种基于图像处理算法的蓝宝石引晶控制工艺和系统
CN115125609B (zh) * 2022-07-19 2023-11-03 山东新升光电科技有限责任公司 一种基于图像处理算法的蓝宝石引晶控制工艺和系统

Also Published As

Publication number Publication date
JPWO2014156780A1 (ja) 2017-02-16
TW201447058A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
KR102157388B1 (ko) 실리콘 단결정 제조 방법 및 장치
US7476274B2 (en) Method and apparatus for making a highly uniform low-stress single crystal by drawing from a melt and uses of said crystal
CN105189834B (zh) 冷却速率控制装置及包括其的铸锭生长装置
US8885915B2 (en) Method for measuring and controlling distance between lower end surface of heat shielding member and surface of raw material melt and method for manufacturing silicon single crystal
US8936679B2 (en) Single crystal pulling-up apparatus of pulling-up silicon single crystal and single crystal pulling-up method of pulling-up silicon single crystal
WO2014156780A1 (ja) サファイア単結晶の製造方法
WO2014129414A1 (ja) サファイア単結晶コアおよびその製造方法
CN112080793A (zh) 用于半导体单晶生长中的温度控制的系统和方法
JP2016033102A (ja) サファイア単結晶およびその製造方法
JP4844429B2 (ja) サファイア単結晶の製造方法
CN102212871A (zh) 蓝宝石晶体的生长方法及蓝宝石晶体生长用的长晶炉结构
JP6444568B2 (ja) 青色を呈する酸化アルミニウム単結晶およびその酸化アルミニウム単結晶の製造方法
JP7373763B2 (ja) ScAlMgO4単結晶基板およびその製造方法
CN202099407U (zh) 蓝宝石晶体生长用的长晶炉结构
JP2011157221A (ja) シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2014181146A (ja) サファイア単結晶の製造方法
CN110284183A (zh) ScAlMgO4单晶基板及其制造方法
JP2014189413A (ja) サファイアインゴットの製造方法
CN110230095B (zh) 一种棒状彩色宝石生长用装置及方法
KR20140080222A (ko) 사파이어 단결정 성장장치
JP2013049608A (ja) 大口径サファイア単結晶基板
JP5729569B2 (ja) 金属化合物結晶の製造方法および装飾品の製造方法
JP2013049607A (ja) サファイア単結晶の製造方法
JP2015027921A (ja) サファイア単結晶コア
JP2015051884A (ja) サファイア単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772895

Country of ref document: EP

Kind code of ref document: A1