WO2014156184A1 - 光電変換素子及びそれを用いた撮像素子 - Google Patents

光電変換素子及びそれを用いた撮像素子 Download PDF

Info

Publication number
WO2014156184A1
WO2014156184A1 PCT/JP2014/001825 JP2014001825W WO2014156184A1 WO 2014156184 A1 WO2014156184 A1 WO 2014156184A1 JP 2014001825 W JP2014001825 W JP 2014001825W WO 2014156184 A1 WO2014156184 A1 WO 2014156184A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conversion layer
group
organic semiconductor
Prior art date
Application number
PCT/JP2014/001825
Other languages
English (en)
French (fr)
Inventor
大悟 澤木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157030634A priority Critical patent/KR20150136511A/ko
Publication of WO2014156184A1 publication Critical patent/WO2014156184A1/ja
Priority to US14/865,990 priority patent/US20160013248A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element having a photoelectric conversion layer composed of an organic layer and an image pickup element including the organic photoelectric conversion element.
  • Image sensors such as CCD sensors and CMOS sensors are widely known as image sensors used in digital still cameras, digital video cameras, mobile phone cameras, endoscope cameras, and the like. These elements include a photoelectric conversion element including a light receiving layer including a photoelectric conversion layer.
  • the present applicants provide a mixed layer (bulk hetero layer) of a p-type organic semiconductor and an n-type semiconductor such as fullerene or a fullerene derivative in a part of the light receiving layer.
  • An application has been filed for the organic photoelectric conversion element used (Patent Document 1).
  • Patent Document 2 the present applicants disclosed a photoelectric conversion element in which at least one of the electron blocking layers is a mixed layer containing fullerene in a configuration in which a bulk hetero layer is provided in a part of the light receiving layer. ing.
  • Patent Document 3 discloses a photoelectric conversion element that suppresses generation of dark current and improves photoelectric conversion efficiency by reducing the mixing ratio of fullerenes to a p-type organic semiconductor in a bulk hetero layer to be less than 2: 1. ing. Furthermore, in Patent Document 4, at least a part of the photoelectric conversion layer is a bulk hetero layer, and dark current is suppressed by increasing the volume ratio of fullerenes in the bulk hetero layer on the electron collecting electrode side, resulting in high photoelectric conversion efficiency. It is described that it becomes.
  • a method for forming a bulk hetero layer a method in which a p-type organic semiconductor material and an n-type organic semiconductor material are co-evaporated is often used.
  • co-evaporation for example, two kinds of vapor deposition sources are arranged and the amount and rate of vapor deposition are controlled to form a film having a desired composition.
  • the response speed and sensitivity of the photoelectric conversion element may differ depending on the deposition conditions.
  • Co-evaporation usually controls film formation by opening and closing the shutter, so that the film composition may change depending on how the shutter is opened during opening and closing.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an organic photoelectric conversion element having excellent response speed, carrier transportability (sensitivity), and heat resistance.
  • the organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a light receiving layer including at least a photoelectric conversion layer sandwiched between a hole collection electrode and an electron collection electrode, An electron blocking layer is provided between the hole collection electrode and the photoelectric conversion layer, A first photoelectric conversion layer in which the photoelectric conversion layer is a bulk hetero layer of an n-type organic semiconductor and a p-type organic semiconductor; A second photoelectric conversion layer formed in contact with the surface on the hole collecting electrode side of the first photoelectric conversion layer, The average value of the mixing ratio of the n-type organic semiconductor to the p-type organic semiconductor of the second photoelectric conversion layer is n with respect to the p-type organic semiconductor of the photoelectric conversion layer composed of the first photoelectric conversion layer and the second photoelectric conversion layer. It is higher than the average value of the mixing ratio of the type organic semiconductor.
  • the average value of the mixing ratio of the n-type organic semiconductor to the p-type organic semiconductor is a value obtained as follows.
  • the absorption spectra of the p-type organic semiconductor single film and the n-type organic semiconductor single film are measured by spectral absorption measurement, and the correlation between the absobance of the p-type and n-type absorption peaks and the film thickness is grasped.
  • the spectral absorption measurement of the bulk hetero film is performed, the film thickness is calculated from the absorbance of each absorption peak of the p-type and n-type organic semiconductor, and the ratio of p-type to n-type in the bulk hetero is obtained.
  • the compounds 1, 3 and 4 of the p-type organic semiconductor used in the photoelectric conversion layer have an absorption peak at 560 nm
  • the compound 5 has an absorption peak at 600 nm
  • the n-type organic semiconductor has an absorption peak at 400 nm.
  • spectral absorption measurement is performed using UV3360 manufactured by HITACHI.
  • the thickness of the second photoelectric conversion layer is preferably 0.75% or less of the thickness of the photoelectric conversion layer composed of the first photoelectric conversion layer and the second photoelectric conversion layer.
  • the thickness of each layer means an average value obtained by measuring four arbitrary positions at the end of the film with a stylus film thickness meter DEKTAK after forming each layer.
  • the present invention is suitable when the hole collection electrode is a lower electrode.
  • the n-type organic semiconductor preferably contains fullerene.
  • fullerene means “fullerene and fullerene derivatives”.
  • the p-type organic semiconductor preferably contains a compound represented by the following general formula (1).
  • Z1 is a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
  • the image pickup device of the present invention includes a plurality of the photoelectric conversion devices of the present invention and a circuit board on which a signal read circuit for reading a signal corresponding to the charge generated in the photoelectric conversion layer is formed.
  • the photoelectric conversion element of the present invention includes a photoelectric conversion layer composed of a first photoelectric conversion layer and a second photoelectric conversion layer, and the second photoelectric conversion layer is formed on the surface on the hole collecting electrode side. And a second photoelectric conversion layer having a higher average value of the mixing ratio of the n-type organic semiconductor to the p-type organic semiconductor than the photoelectric conversion layer comprising the first photoelectric conversion layer and the second photoelectric conversion layer. It has a configuration.
  • the organic photoelectric conversion device of the present invention has good response speed, carrier transportability (sensitivity), and heat resistance.
  • Sectional schematic diagram which shows schematic structure of the photoelectric conversion element of one Embodiment of this invention 1 is a schematic cross-sectional view showing a schematic configuration of an image sensor according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion element of this embodiment.
  • the scale of each part is appropriately changed and shown for easy visual recognition.
  • the organic photoelectric conversion element 1 (photoelectric conversion element 1) is formed on a substrate 10, a hole collection electrode 20 formed on the substrate 10, and a hole collection electrode 20.
  • the electron blocking layer 31, the photoelectric conversion layer 32 formed on the electron blocking layer 31, the hole blocking layer 33 formed on the photoelectric conversion layer 32, and the electron trap formed on the hole blocking layer 33 A collector electrode 40, and a sealing layer 50 that covers the surface of the electron collector electrode 40 and the side surface of the laminate that is laminated from the hole collector electrode 20 to the electron collector electrode 40 are provided.
  • the electron collection electrode 40 is a transparent electrode, and when light enters from above the electron collection electrode 40, the light passes through the electron collection electrode 40 and enters the photoelectric conversion layer 32. A charge is generated. Of the generated charges, holes move to the hole collecting electrode 20, and electrons move to the electron collecting electrode 40.
  • the photoelectric conversion layer 32 is composed of a first photoelectric conversion layer 32b on the electron collection electrode 40 side and a second photoelectric conversion layer 32a on the hole collection electrode side.
  • the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32a are bulk hetero layers, but the second photoelectric conversion layer 32a may be a single layer of an n-type organic semiconductor.
  • the photoelectric conversion layer composed of a bulk hetero layer is composed of (1) carrier transport property in the bulk hetero layer and (2) visible light absorptance depending on the mixing ratio of the n-type organic semiconductor and the p-type organic semiconductor in the bulk hetero layer. (3) Carrier transportability with the electron blocking layer and (4) heat resistance can be optimized. By making these characteristics favorable, a photoelectric conversion element having heat resistance and good response speed and sensitivity and low dark current can be obtained.
  • the content of the n-type organic semiconductor in the bulk hetero layer is preferably 40% to 80%.
  • the film thickness of the photoelectric conversion layer is increased.
  • the photoelectric conversion element 1 can be driven by applying an external electric field between a pair of electrodes.
  • the film thickness of the photoelectric conversion layer 32 increases, the voltage required to drive the photoelectric conversion element increases. Therefore, it is preferable that the photoelectric conversion layer 32 is as thin as possible.
  • the film thickness of the photoelectric conversion layer 32 is preferably 1000 nm or less, more preferably 700 nm or less, and particularly preferably 500 nm or less.
  • the photoelectric conversion layer in contact with the electron blocking layer 31 side that is, the hole collecting electrode side, has as few p-type organic semiconductors as possible.
  • the content of the n-type organic semiconductor in the first photoelectric conversion layer 32b is preferably 50% or more.
  • the content of the n-type organic semiconductor in the second photoelectric conversion layer 32a is preferably large from the viewpoint of heat resistance.
  • the n-type organic semiconductor content in the bulk heterolayer is better, but visible. From the viewpoint of light absorption, it is better to reduce the n-type organic semiconductor content and suppress the increase in the thickness of the bulk hetero layer.
  • the present inventor has found that the formation of the trap described in (3) greatly affects the response speed, carrier transportability (sensitivity), and heat resistance (see Examples below).
  • the photoelectric conversion layer (bulk hetero layer) in contact with the electron blocking layer 31 side (hole collecting electrode side) preferably has as little p-type organic semiconductor content as possible.
  • the thickness d of the second photoelectric conversion layer 32a to 0.75% or less of the thickness D of the photoelectric conversion layer 32 including the first photoelectric conversion layer and the second photoelectric conversion layer. Even when the second photoelectric conversion layer is a single layer of an n-type organic semiconductor, the hole collection electrode 20 side (electron blocking layer side) is produced without significantly affecting the carrier transport speed between the layers.
  • the organic photoelectric conversion device having excellent response speed, carrier transportability (sensitivity), and heat resistance was found, and the present invention was completed.
  • the organic photoelectric conversion element 1 includes the light receiving layer 30 including at least the photoelectric conversion layer 32 sandwiched between the hole collection electrode 20 and the electron collection electrode 40, An electron blocking layer 31 is provided between the hole collection electrode 20 and the photoelectric conversion layer 32, A first photoelectric conversion layer 32b in which the photoelectric conversion layer 32 is a bulk hetero layer of an n-type organic semiconductor and a p-type organic semiconductor; The second photoelectric conversion layer 32a formed in contact with the surface of the first photoelectric conversion layer 32b on the hole collecting electrode 20 side, The average value X2 of the mixing ratio of the n-type organic semiconductor to the p-type organic semiconductor of the second photoelectric conversion layer 32a is the average of the photoelectric conversion layers composed of the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32a. The configuration is higher than the value X1. Below, the structure of each layer of the organic photoelectric conversion element 1 is demonstrated.
  • the hole collection electrode 20 is an electrode for collecting holes out of the charges generated in the photoelectric conversion layer 32, and corresponds to a pixel electrode in the configuration of the imaging device described later.
  • the hole collecting electrode 20 is not particularly limited as long as it has good conductivity. However, depending on the application, a material that does not have transparency but reflects light can be used. There are cases.
  • tin oxide doped with antimony or fluorine ATO, FTO
  • tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) and other conductive metal oxides gold, silver, chromium, nickel, titanium, tungsten, aluminum and other metals
  • Conductive compounds such as oxides and nitrides of these metals (titanium nitride (TiN) is given as an example), a mixture or laminate of these metals and conductive metal oxides, copper iodide, copper sulfide, etc.
  • organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO or titanium nitride.
  • the hole collecting electrode 20 is any material of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
  • the electron collection electrode 40 is an electrode that collects electrons out of the charges generated in the photoelectric conversion layer 32, and is a transparent electrode disposed on the light receiving side in the present embodiment.
  • the electron collecting electrode 40 is not particularly limited as long as it is a conductive material that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to make light incident on the photoelectric conversion layer 32.
  • a transparent conductive oxide TCO
  • the electron collection electrode 40 corresponds to a pixel electrode in the configuration of the imaging device described later.
  • ITO indium-doped tin oxide
  • IZO indium-doped tin oxide
  • SnO 2 indium-doped tin oxide
  • ATO antimony-doped tin oxide
  • ZnO zinc oxide
  • AZO Al-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • TiO 2 FTO Any material of (fluorine-doped tin oxide) is mentioned.
  • the light transmittance of the electron collection electrode 40 is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.
  • the method for forming the electrodes (20, 40) is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the electrode material When the electrode material is ITO, it can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method or the like), or a dispersion of indium tin oxide. Furthermore, UV-ozone treatment, plasma treatment, or the like can be performed on a film formed using ITO. When the electrode material is TiN, various methods including a reactive sputtering method are used, and further, annealing treatment, UV-ozone treatment, plasma treatment, and the like can be performed.
  • a transparent conductive film such as TCO When a transparent conductive film such as TCO is used as the electron collecting electrode 40, a DC short circuit or an increase in leakage current may occur.
  • a dense film such as TCO
  • conduction between the lower electrode 20 on the opposite side is increased. Therefore, in the case of an electrode having a relatively poor film quality such as Al, an increase in leakage current is unlikely to occur.
  • the thickness of the electron collection electrode 40 is desirably 1/5 or less, preferably 1/10 or less of the thickness of the photoelectric conversion layer 32.
  • the sheet resistance is preferably 100 to 10,000 ⁇ / ⁇ .
  • the degree of freedom in the range of film thickness that can be made thin is great.
  • the increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 32 and increases the photoelectric conversion ability.
  • the thickness of the electron collection electrode 40 is preferably 5 to 100 nm, and preferably 5 to 20 nm. Is more preferable.
  • the light receiving layer 30 is a layer including at least an electron blocking layer 31 and a photoelectric conversion layer 32.
  • the film formation method of the light receiving layer 30 is not particularly limited, and can be formed by each dry film formation method or wet film formation method. However, it is preferable that all the steps at the time of film formation are performed in a vacuum. Specifically, it is preferable that the compound does not come into direct contact with oxygen or moisture in the outside air.
  • An example of such a film forming method is a vacuum deposition method. In the vacuum deposition method, it is preferable to perform PI or PID control of the deposition rate using a film thickness monitor such as a crystal resonator or an interferometer.
  • a co-evaporation method can be used, and the co-evaporation method is preferably performed using resistance heating vapor deposition, electron beam vapor deposition, flash vapor deposition, or the like.
  • the degree of vacuum at the time of formation is preferably 1 ⁇ 10 ⁇ 3 Pa or less in consideration of preventing deterioration of element characteristics at the time of forming the light receiving layer. ⁇ 4 Pa or less is more preferable, and 1 ⁇ 10 ⁇ 4 Pa or less is particularly preferable.
  • the thickness of the light receiving layer 30 is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and particularly preferably 100 nm or more and 600 nm or less. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency (sensitivity) is obtained.
  • the photoelectric conversion layer 32 is composed of the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32a.
  • the mixing ratio X1 of the n-type organic semiconductor to the p-type organic semiconductor of the first photoelectric conversion layer 32b is an optimized mixing ratio in consideration of carrier transportability, visible light absorption rate, and the like as described above. Is preferred.
  • the first photoelectric conversion layer 32b may be composed of one layer having a substantially uniform mixing ratio, or may be composed of a plurality of layers having different ratios.
  • the second photoelectric conversion layer 32a is a layer having an average value X2 larger than the average value X1 of the mixing ratio of the photoelectric conversion layers 32 composed of the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32b. Any layer may be used as long as it is an n-type organic semiconductor. Since the mixing ratio X2 of the second photoelectric conversion layer 32a is larger than the mixing ratio X1 of the optimized first photoelectric conversion layer 32b, the average film thickness of the second photoelectric conversion layer 32a should be as thin as possible. Even if it is thick, it is preferable that the film thickness is 0.75% or less of the average film thickness of the first photoelectric conversion layer 32b (see Examples described later).
  • the n-type organic semiconductor in the photoelectric conversion layer (bulk hetero layer) 32 is not particularly limited.
  • Fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , fullerene 540 , mixed fullerene, fullerene nanotube and the like can be mentioned.
  • a typical fullerene skeleton is shown below.
  • the fullerene derivative means a compound having a substituent added thereto.
  • the substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring.
  • substituents may further have a substituent, and the substituents may be bonded as much as possible to form a ring.
  • substituents may be bonded as much as possible to form a ring.
  • you may have a some substituent and they may be the same or different.
  • a plurality of substituents may be combined as much as possible to form a ring.
  • the organic p-type semiconductor mixed with the n-type organic semiconductor is not particularly limited, but the peak wavelength of the absorption spectrum may be 450 nm or more and 700 nm or less from the viewpoint of widely absorbing light in the visible region. It is preferably 480 nm to 700 nm, more preferably 510 nm to 680 nm. From the viewpoint of efficiently using light, the higher the molar extinction coefficient, the better.
  • the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.
  • a p-type organic semiconductor is a donor-type organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and has a property of easily donating electrons. More specifically, two organic materials are brought into contact with each other. Is an organic compound having a smaller ionization potential when used. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • Examples of p-type organic semiconductors include triarylamine compounds, pyran compounds, quinacridone compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, Cyanine compounds, merocyanine compounds, oxonol compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, Fluoranthene derivatives), metal complexes having nitrogen-containing heterocyclic compounds as ligands, and triarylamines can be used.
  • Examples of suitable materials for the p-type organic semiconductor include compounds represented by the following general formula (1).
  • Z 1 represents an atomic group necessary for forming a 5- or 6-membered ring.
  • L 1 , L 2 , and L 3 are each independently an unsubstituted methine group or a substituted methine.
  • D 1 represents an atomic group, and n represents an integer of 0 or more.
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Is mentioned.
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
  • (B) pyrazolinone nucleus for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and its derivatives.
  • the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
  • (N) Imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
  • Benzothiophen-3-one nucleus for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
  • Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • the ring represented by Z1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thiobarbitur Acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2, In 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus More preferably 1,3-dicarbonyl nucleus,
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • the substituted methine groups may be bonded to form a ring.
  • a 6-membered ring (for example, benzene ring etc.) is mentioned as a ring.
  • the substituent of the substituted methine group include the substituent W described later, and it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
  • n represents an integer of 0 or more, preferably an integer of 0 or more and 3 or less, more preferably 0.
  • N 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
  • D 1 represents an atomic group.
  • D 1 is preferably a group containing —NRa (Rb).
  • D 1 is an aryl group substituted with —NRa (Rb) (preferably a phenyl group or naphthyl which may have a substituent).
  • Group is preferred.
  • Ra and Rb each independently represent a hydrogen atom or a substituent, and examples of the substituent include a substituent W described later, preferably an aliphatic hydrocarbon group (preferably having a substituent). Or an alkyl group or an alkenyl group), an aryl group, or a heterocyclic group.
  • the arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms.
  • the arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.
  • Examples of the substituent represented by Ra and Rb include a substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably substituted). A good phenyl group), or a heterocyclic group.
  • the aryl groups represented by Ra and Rb are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there.
  • Examples include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.
  • the heterocyclic groups represented by Ra and Rb are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, more preferably a heterocyclic group having 3 to 18 carbon atoms.
  • the heterocyclic group may have a substituent, and preferably has an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms. It is a group.
  • the heterocyclic group represented by Ra and Rb is preferably a condensed ring structure, such as a furan ring, a thiophene ring, a selenophene ring, a silole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an oxazole ring, a thiazole ring, a triazole ring,
  • a condensed ring structure of a combination of rings selected from an oxadiazole ring and a thiadiazole ring (which may be the same) is preferable, and a quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, a thienothiophene ring, a bithienobenzene ring, A thienothiophene ring is preferred.
  • the arylene group and aryl group represented by D 1 , Ra and Rb are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, A phenanthrene ring can be mentioned, a benzene ring, a naphthalene ring or an anthracene ring is more preferable, and a benzene ring or a naphthalene ring is still more preferable.
  • a halogen atom an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alky
  • Ra and Rb represent a substituent (preferably an alkyl group or an alkenyl group)
  • the substituent is a hydrogen atom of an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NRa (Rb), or It may combine with a substituent to form a ring (preferably a 6-membered ring).
  • Ra and Rb may be bonded to each other to form a ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring), and Ra and Rb are each L (L 1 , A ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in L 2 or L 3 .
  • the compound represented by the general formula (1) is a compound described in JP 2000-297068 A, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. .
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in the general formula (1), and preferred examples thereof are also the same.
  • D 21 represents a substituted or unsubstituted arylene group
  • D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • the arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same.
  • the aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by Ra and Rb, and preferred examples thereof are also the same.
  • Z 3 represents any one of the following A-1 to A-12: L 31 represents methylene and n represents 0. D 31 represents any one of B-1 to B-9. D 32 and D 33 represent any one of C-1 to C-16.) Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15 and C-16, and D 31 is B-1 or B- 9 is preferred.
  • Particularly preferred p-type organic materials include dyes or materials not having 5 or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures).
  • the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.
  • More preferred specific examples of the compound represented by the general formula (1) are combinations of the following substituents, linking groups and partial structures in the general formula (3), but the present invention is not limited thereto.
  • A-1 to A-12, B-1 to B-9, and C-1 to C-16 are synonymous with those already shown.
  • the photoelectric conversion layer 32 is a non-light-emitting layer, unlike an organic EL light-emitting layer (a layer that converts an electric signal into light).
  • the non-light-emitting layer means a layer having an emission quantum efficiency of 1% or less, preferably 0.5% or less, more preferably 0.1% or less in the visible light region (wavelength 400 nm to 730 nm). In the photoelectric conversion layer 32, if the emission quantum efficiency exceeds 1%, it is not preferable because it affects sensing performance or imaging performance when applied to a sensor or an imaging device.
  • the electron blocking layer 31 is a layer for suppressing injection of electrons from the hole collection electrode 20 into the photoelectric conversion layer 32. It may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials or inorganic materials.
  • the electron blocking layer 31 may be composed of a plurality of layers. By doing in this way, an interface is formed between each layer which comprises the electron blocking layer 31, and a discontinuity arises in the intermediate level which exists in each layer. As a result, it becomes difficult for the charge to move through the intermediate level and the like, so that the electron blocking effect can be enhanced.
  • the layers constituting the electron blocking layer 31 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.
  • the electron blocking layer 31 is preferably made of a material having a high electron injection barrier from the hole collecting electrode 20 and a high hole transporting property.
  • the electron affinity of the electron blocking layer is preferably 1 eV or less, more preferably 1.3 eV or more, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.
  • the electron blocking layer 31 sufficiently suppresses the contact between the hole collecting electrode 20 and the photoelectric conversion layer 32, and also avoids the influence of defects and dust existing on the surface of the hole collecting electrode 20 at 20 nm or more. It is preferable that it is 40 nm or more.
  • An electron donating organic material can be used for the electron blocking layer 31.
  • TPD N, N′-bis (3
  • Polyphyrin compounds triazole derivatives, oxa Zazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, fluorene derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Even if it is a compound having a sufficient hole transporting property, it is possible to use it, for example, a compound described in JP-A-2008-72090, for example. Can be used.
  • An example of a compound suitable as the electron blocking layer 31 is shown below.
  • An inorganic material can also be used as the electron blocking layer 31.
  • an inorganic material has a dielectric constant larger than that of an organic material, a large voltage is applied to the photoelectric conversion layer 32 when the electron blocking layer 31 is used, and the photoelectric conversion efficiency (sensitivity) is increased.
  • Materials that can be the electron blocking layer 31 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.
  • the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers can be a layer made of an inorganic material. it can.
  • the hole blocking layer 33 is a layer that suppresses injection of holes from the electron collection electrode 40 when an external voltage is applied, and is a layer formed on the layer (in this embodiment, the electron collection electrode 40). When the film is formed, it has a function of protecting the photoelectric conversion layer 32 and suppressing film formation damage.
  • An electron-accepting organic material can be used for the hole blocking layer.
  • the electron-accepting material is not particularly limited, oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7), anthraquinodimethane derivatives, Diphenylquinone derivatives, bathocuproine, bathophenanthroline, and derivatives thereof, triazole compounds, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyrylarylene derivatives, silole compounds, etc. Can be used.
  • a porphyrin compound or a styryl compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran compound can be used.
  • the total film thickness of the hole blocking layer 33 and the electron blocking layer 31 is preferably designed to be 300 nm or less.
  • the total film thickness is more preferably 200 nm or less, and still more preferably 100 nm or less.
  • the sealing layer 50 prevents entry of factors that degrade the photoelectric conversion material such as water molecules and oxygen molecules after the photoelectric conversion element 1 or the imaging element 100 described later, and can be stored and used for a long period of time. It is a layer for preventing deterioration of the photoelectric conversion layer. In addition, the sealing layer 50 protects the photoelectric conversion layer by preventing intrusion of factors that degrade the photoelectric conversion layer included in the solution, plasma, and the like in the manufacturing process of the imaging element 100 after the sealing layer is formed. It is also a layer.
  • the sealing layer 50 is formed to cover the hole collection electrode 20, the electron blocking layer 31, the photoelectric conversion layer 32, the hole blocking layer 33, and the electron collection electrode 40.
  • the photoelectric conversion layer 32 since incident light reaches the photoelectric conversion layer 32 through the sealing layer 50, the photoelectric conversion layer 32 is sensitive to the sealing layer 50 in order to allow light to efficiently enter the photoelectric conversion layer 32. It is necessary to be sufficiently transparent to light having a wavelength.
  • the sealing layer 50 include ceramics such as dense metal oxide, metal nitride, and metal nitride oxide that do not allow water molecules to permeate, diamond-like carbon (DLC), and the like. Conventionally, aluminum oxide, silicon oxide, Silicon nitride, silicon nitride oxide, a laminated film thereof, a laminated film of them and an organic polymer, or the like is used.
  • the sealing layer 50 can be composed of a thin film made of a single material, but by providing a separate function for each layer in a multi-layer structure, the stress relaxation of the entire sealing layer 50 and dust generation during the manufacturing process Such effects as the suppression of defects such as cracks and pinholes caused by the above, and the optimization of material development can be expected.
  • the sealing layer 50 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules.
  • a two-layer structure can be formed. Although it is possible to have three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.
  • the formation method of the sealing layer 50 is not particularly limited, and is preferably formed by a method that does not deteriorate the performance and film quality of the already formed photoelectric conversion layer 32 and the like as much as possible.
  • organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules and oxygen molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide, metal nitride oxide or the like that does not permeate deterioration factors.
  • a dense metal oxide, metal nitride oxide or the like that does not permeate deterioration factors.
  • aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, a laminated structure thereof, a laminated structure of them and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques.
  • the conventional sealing layer is difficult to grow a thin film at a step due to a structure on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc. As a result, the film thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates.
  • the degree of vacuum when forming the sealing layer is preferably 1 ⁇ 10 3 Pa or less, and more preferably 5 ⁇ 10 2 Pa or less.
  • an imaging device having a pixel size of less than 2 ⁇ m, particularly about 1 ⁇ m if the sealing layer 50 is thick, the distance between the color filter and the photoelectric conversion layer increases, and incident light is diffracted / Diversity and color mixing may occur. Therefore, when considering application to an image sensor having a pixel size of about 1 ⁇ m, a sealing layer material / manufacturing method is required that does not deteriorate the device performance even if the thickness of the sealing layer 50 is reduced.
  • the atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein. Is a technique for forming a thin film by alternately repeating decomposition. When the thin film material reaches the substrate surface, it is in the above-mentioned low molecular state, so that the thin film can be grown in a very small space where the low molecule can enter.
  • the step portion which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material.
  • the sealing layer 50 is formed by the atomic layer deposition method, the required sealing layer thickness can be effectively reduced as compared with the prior art.
  • the sealing layer 50 is formed by the atomic layer deposition method, a material corresponding to the ceramics preferable for the sealing layer 50 described above can be selected as appropriate.
  • the photoelectric conversion layer of the present invention uses an organic photoelectric conversion material, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate.
  • a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate.
  • an aluminum oxide thin film can be formed even at about 100 ° C.
  • Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed at less than 200 ° C., similarly to aluminum oxide, by appropriately selecting materials.
  • the sealing layer preferably has a thickness of 10 nm or more in order to sufficiently prevent the entry of factors that degrade the photoelectric conversion material such as water molecules.
  • the film thickness of the sealing layer is preferably 200 nm or less.
  • the thin film formed by the atomic layer deposition method can achieve a high-quality thin film formation at a low temperature that is unmatched in terms of step coverage and denseness.
  • the physical properties of the thin film material may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution.
  • thin films formed by CVD such as atomic layer deposition
  • CVD chemical vapor deposition
  • atomic layer deposition often have tensile stresses with very large internal stress, such as processes that repeat intermittent heating and cooling, such as semiconductor manufacturing processes, Due to storage / use in a high temperature / high humidity atmosphere for a period, deterioration of the thin film itself may occur.
  • the sealing layer 50 formed by the atomic layer deposition method it is preferable to form a sealing auxiliary layer that has excellent chemical resistance and can cancel the internal stress of the sealing layer 50.
  • auxiliary sealing layer examples include any of ceramics such as metal oxide, metal nitride, and metal nitride oxide that are excellent in chemical resistance formed by physical vapor deposition (PVD) such as sputtering. Or a layer containing one of them. Ceramics formed by a PVD method such as sputtering often has a large compressive stress, and can cancel the tensile stress of the sealing layer 50 formed by an atomic layer deposition method.
  • PVD physical vapor deposition
  • the photoelectric conversion element 1 As an external electric field applied between the hole collection electrode 20 and the electron collection electrode 40 in order to obtain excellent characteristics in photoelectric conversion efficiency (sensitivity), dark current, and light response speed. Is preferably 1 V / cm or more and 1 ⁇ 10 7 V / cm or less.
  • the external electric field is a value obtained by dividing the voltage applied from the outside to the pair of electrodes by the distance between the electrodes.
  • the light receiving layer 30 is formed by the electron blocking layer 31, the photoelectric conversion layer 32, and the hole blocking layer 33.
  • the mode including the hole blocking layer 33 is shown.
  • the present invention can be used regardless of the presence or absence of the hole blocking layer 33. An effect can be obtained.
  • the photoelectric conversion element 1 includes the photoelectric conversion layer 32 including the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32a, and the second photoelectric conversion layer 32a is configured to capture holes. It is formed on the surface on the collector electrode 20 side, and the mixing ratio of the n-type organic semiconductor to the p-type organic semiconductor is higher than that of the photoelectric conversion layer 32 including the first photoelectric conversion layer 32b and the second photoelectric conversion layer 32a. The average value is high.
  • the organic photoelectric conversion device of the present invention has good response speed, carrier transportability (sensitivity), and heat resistance.
  • FIG. 2 is a schematic cross-sectional view showing a schematic configuration of an image sensor for explaining an embodiment of the present invention.
  • This imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module such as an electronic endoscope or a mobile phone, or the like.
  • the image pickup device 100 is a circuit board on which a plurality of organic photoelectric conversion elements 1 configured as shown in FIG. 1 and a readout circuit that reads out signals corresponding to charges generated in the photoelectric conversion layer of each organic photoelectric conversion element are formed. And a plurality of organic photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on the same surface above the circuit board.
  • the image sensor 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a light receiving layer 107, a counter electrode 108, a buffer layer 109, a sealing layer.
  • a stop layer 110, a color filter (CF) 111, a partition wall 112, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116 are provided.
  • the pixel electrode 104 has the same function as the hole collection electrode 20 of the organic photoelectric conversion element 1 shown in FIG.
  • the counter electrode 108 has the same function as the electron collection electrode 40 of the organic photoelectric conversion element 1 shown in FIG.
  • the light receiving layer 107 has the same configuration as the light receiving layer 30 provided between the hole collecting electrode 20 and the electron collecting electrode 40 of the organic photoelectric conversion element 1 shown in FIG.
  • the sealing layer 110 has the same function as the sealing layer 50 of the organic photoelectric conversion element 1 shown in FIG.
  • the pixel electrode 104, a part of the counter electrode 108 facing the pixel electrode 104, the light receiving layer 107 sandwiched between the electrodes, and the buffer layer 109 and the part of the sealing layer 110 facing the pixel electrode 104 are subjected to organic photoelectric conversion.
  • the element is configured.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the light receiving layer 107 is a layer common to all the organic photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.
  • the counter electrode 108 is one electrode provided on the light receiving layer 107 and common to all the organic photoelectric conversion elements.
  • the counter electrode 108 is formed up to the connection electrode 103 disposed outside the light receiving layer 107 and is electrically connected to the connection electrode 103.
  • connection part 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply part 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104.
  • the reading circuit 116 is configured by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection unit 105.
  • the buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108.
  • the sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109.
  • the color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110.
  • the partition wall 112 is provided between the color filters 111 and is for improving the light transmission efficiency of the color filter 111.
  • the light shielding layer 113 is formed in a region other than the region where the color filter 111 and the partition 112 are provided on the sealing layer 110, and prevents light from entering the light receiving layer 107 formed outside the effective pixel region.
  • the protective layer 114 is formed on the color filter 111, the partition 112, and the light shielding layer 113, and protects the entire image sensor 100.
  • the imaging device 100 when light is incident, the light is incident on the light receiving layer 107, and charges are generated here. Holes in the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the image sensor 100 by the readout circuit 116.
  • the manufacturing method of the image sensor 100 is as follows. On the circuit substrate on which the common electrode voltage supply unit 115 and the readout circuit 116 are formed, the connection units 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed. The plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in a square lattice pattern, for example.
  • a light receiving layer 107, a counter electrode 108, a buffer layer 109, and a sealing layer 110 are sequentially formed on the plurality of pixel electrodes 104.
  • the formation method of the light receiving layer 107, the counter electrode 108, and the sealing layer 110 is as described in the description of the photoelectric conversion element 1.
  • the buffer layer 109 is formed by, for example, a vacuum resistance heating vapor deposition method.
  • the protective layer 114 is formed, and the imaging element 100 is completed.
  • Example 1 A Si substrate was prepared, a CMOS substrate with a patterned TiN electrode was prepared, the CMOS substrate was placed on a substrate holder in an organic vapor deposition chamber, and the pressure in the vapor deposition chamber was reduced to 1.0 ⁇ 10 ⁇ 4 Pa or less. . Thereafter, while rotating the substrate holder, the compound 2 was deposited on the pixel electrode as an electron blocking layer by resistance heating vapor deposition so as to have a thickness of 1000 mm at a deposition rate of 1.0 to 1.2 mm / sec.
  • Compound 1 and C 60 respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, second to form a photoelectric conversion layer is deposited to a thickness of 10 ⁇ by 5.1 ⁇ 5.3 ⁇ / Sec.
  • Compound 1 and C60 were vapor-deposited at a vapor deposition rate of 1.2 to 1.4 mm / Sec and 3.8 to 4.0 mm / Sec to a thickness of 3990 mm, respectively, to form a first photoelectric conversion layer.
  • the film was transferred to the sputtering chamber, and ITO was sputtered on the first photoelectric conversion layer as a counter electrode to a thickness of 100 mm by RF magnetron sputtering. Thereafter, the film was transferred to an ALD (Atomic Layer Deposition) chamber, and an Al 2 O 3 film was formed as a protective film to a thickness of 2000 mm by an atomic layer deposition method. Thereafter, the film was transferred to a sputtering chamber, and a SiON film as a stress relaxation layer was formed to a thickness of 1000 mm by a planer type sputtering to produce an imaging device.
  • ALD Atomic Layer Deposition
  • Example 2 Compound 1 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 10 ⁇ at 6.4 ⁇ 6.6 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 3 Compound 1 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 10 ⁇ at 7.7 ⁇ 7.9 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 4 Instead of Compound 1 and C 60, except that was deposited to a thickness 10 ⁇ only C 60 at a deposition rate of 2.5 ⁇ 2.8 ⁇ / Sec was prepared imaging element in the same manner as in Example 1.
  • Example 5 Compound 1 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 30 ⁇ at 5.1 ⁇ 5.3 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 6 Compound 1 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 50 ⁇ at 5.1 ⁇ 5.3 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 7 Compound 3 and C 60 each deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 30 ⁇ at 5.1 ⁇ 5.3 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 8 Compound 4 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 30 ⁇ at 5.1 ⁇ 5.3 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 9 Compound 5 and C 60, respectively deposition rate 1.2 ⁇ 1.4 ⁇ / Sec, except that was deposited to a thickness 30 ⁇ at 5.1 ⁇ 5.3 ⁇ / Sec, the imaging device in the same manner as in Example 1 Produced.
  • Example 1 (Evaluation) About the image pick-up element of the said Example and comparative example, the presence or absence of performance degradation was evaluated by the sensitivity measurement by a spectral sensitivity (IPCE) measuring apparatus, the response speed measurement by a pulse generator, and the dark current measurement by 220 degreeC heat processing. The results are shown in Table 1.
  • Table 1 the sensitivity and response speed are shown as relative sensitivity when the photoelectric conversion efficiency of Example 1 is 100.
  • the dark current increase rate indicates the increase rate after annealing with reference to the dark current value before annealing of each element.
  • Table 1 also shows the film thickness (average value) of the first photoelectric conversion layer, the n-type organic semiconductor and the p-type in the first and second photoelectric conversion layers in the imaging devices of the examples and comparative examples.
  • the mixing ratio of the organic semiconductor is shown. The mixing ratio is indicated by the ratio of the n-type organic semiconductor to the p-type organic semiconductor.
  • the sensitivity and response speed were about twice that of Comparative Examples 1 to 3, and the high effect of the present invention was confirmed. It was also confirmed that the dark current value, which is an index of heat resistance, was greatly improved by the present invention.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrane Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

【課題】応答速度、キャリア輸送性(感度)、耐熱性の良好な有機光電変換素子及びそれを備えた撮像素子を提供する 【解決手段】有機光電変換素子(1)は、正孔捕集電極(20)と電子捕集電極(40)とに挟持された少なくとも光電変換層(32)を含む受光層(30)を有し、正孔捕集電極(20)と光電変換層(32)との間に電子ブロッキング層(31)を備え、光電変換層(32)が、n型有機半導体とp型有機半導体とのバルクへテロ層である第1の光電変換層(32b)と、第1の光電変換層(32b)の正孔捕集電極20側の表面に接して形成されてなる第2の光電変換層(32a)とからなり、第2の光電変換層(32a)のp型有機半導体に対するn型有機半導体の混合比率の平均値(X2)が、第1の光電変換層(32b)と第2の光電変換層(32a)とからなる光電変換層の前記平均値(X1)よりも高くなっている。

Description

光電変換素子及びそれを用いた撮像素子
 本発明は有機層からなる光電変換層を有する有機光電変換素子及びそれを備えてなる撮像素子に関するものである。
 デジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、CCDセンサやCMOSセンサなどの撮像素子が広く知られている。これらの素子には、光電変換層を含む受光層を備えた光電変換素子が備えられている。
 有機化合物を用いた光電変換素子及びそれを用いた撮像素子の開発が本出願人らによって進められている。上記センサや撮像素子等の用途で用いられる光電変換素子には、光電流/暗電流のS/N比、及び、応答速度、及び光電変換効率(感度)がその性能において重要である。
 本出願人らは、光電変換効率(感度)の向上を目的として、受光層の一部に、p型有機半導体とフラーレン又はフラーレン誘導体等のn型半導体との混合層(バルクへテロ層)を用いた有機光電変換素子を出願している(特許文献1)。
 また、本出願人らは、特許文献2において、受光層の一部にバルクへテロ層を備えた構成において、電子ブロッキング層の少なくとも一層が、フラーレンを含む混合層である光電変換素子を開示している。
 特許文献3では、バルクヘテロ層において、p型有機半導体に対するフラーレン類の混合比を2:1より小さくすることにより、暗電流の発生を抑制し、光電変換効率を向上させた光電変換素子を開示している。
 更に、特許文献4では、光電変換層の少なくとも1部がバルクヘテロ層であり、電子捕集電極側のバルクヘテロ層のフラーレン類の体積比を多くすることにより暗電流を抑制し、光電変換効率が高くなることが記載されている。
特開2007-123707号公報 特開2012-94660号公報 特開2012-4578号公報 特開2009-99866号公報
 バルクヘテロ層の成膜方法としては、p型有機半導体材料とn型有機半導体材料とを共蒸着する方法が一般によく採用される。共蒸着は、例えば2種類の蒸着源を配してその蒸着量や速度をコントロールしてその所望の組成の膜を形成する。
 バルクヘテロ層を共蒸着により成膜した場合に、蒸着条件によって光電変換素子の応答速度や感度が異なることがある。共蒸着は、通常、成膜の制御をシャッターの開閉により行うため、開閉時には、シャッターの開き具合によって成膜される膜組成が変化することがある。膜組成のずれは、応答速度、キャリア輸送性(感度)、耐熱性等の光電変換素子の性能に悪影響を与えることがあるため、かかる影響を極力受けずに成膜を実施することが好ましい。
 本発明は上記事情に鑑みてなされたものであり、応答速度、キャリア輸送性(感度)、耐熱性の良好な有機光電変換素子を提供することを目的とするものである。
 本発明の有機光電変換素子は、正孔捕集電極と電子捕集電極とに挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子であって、
 正孔捕集電極と光電変換層との間に電子ブロッキング層を備え、
 光電変換層が、n型有機半導体とp型有機半導体とのバルクへテロ層である第1の光電変換層と、
 第1の光電変換層の正孔捕集電極側の表面に接して形成されてなる第2の光電変換層とからなり、
 第2の光電変換層のp型有機半導体に対するn型有機半導体の混合比率の平均値が、第1の光電変換層と第2の光電変換層とからなる光電変換層のp型有機半導体に対するn型有機半導体の混合比率の平均値よりも高いものである。
 p型有機半導体に対するn型有機半導体の混合比率の平均値は、以下のようにして求めた値とする。
 あらかじめ、分光吸収測定によりp型有機半導体単膜、n型有機半導体単膜の吸収スペクトルを測定し、p型、n型の吸収ピークのabsobanceと膜厚の相関関係を把握しておく。その上でバルクへテロ膜の分光吸収測定を行ない、p型、n型有機半導体のそれぞれの吸収ピークのabsorbanceから膜厚を算出し、バルクへテロ中のp型とn型の比を求めることにより算出する。P型、n型の吸収ピークは各材料によって異なっているため、材料毎に吸収ピークを求めておく必要がある。本実施例では光電変換層に用いたp型有機半導体の化合物1,3,4は560nmに、化合物5は600nmに吸収ピークをもち、n型有機半導体は400nmに吸収ピークを持つ。本実施例では、分光吸収測定はHITACHI社製UV3360を用いて測定している。
 第2の光電変換層の厚みは、第1の光電変換層と第2の光電変換層とからなる光電変換層の厚みの0.75%以下であることが好ましい。ここで、各層の厚みとは、各層成膜後に触針膜厚計DEKTAKにて、膜端部の任意の4箇所測定した平均値を意味する。
 本発明は、正孔捕集電極が下部電極である場合に好適である。また、n型有機半導体としてはフラーレンを含むことが好ましい。本明細書において「フラーレン」とは、「フラーレン及びフラーレン誘導体」を意味するものとする。
 p型有機半導体は、下記一般式(1)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (一般式(1)中、Z1は少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
 本発明の撮像素子は、複数の、上記本発明の光電変換素子と、光電変換層で発生した電荷に応じた信号を読み出す信号読出し回路が形成された回路基板とを備えてなる。
 本発明の光電変換素子は、第1の光電変換層と第2の光電変換層とからなる光電変換層を備えており、第2の光電変換層は正孔捕集電極側の表面に形成されてなり、第1の光電変換層と第2の光電変換層とからなる光電変換層よりも、p型有機半導体に対するn型有機半導体の混合比率の平均値が高い第2の光電変換層を備えた構成としている。かかる構成によれば、光電変換層において、正孔捕集電極側の端部にp型有機半導体の単一組成膜やp型有機半導体組成の多い領域が存在することによる移動度の低下、及びその端部付近における再結合を抑制することができる。従って、本発明の有機光電変換素子は、応答速度、キャリア輸送性(感度)、耐熱性の良好なものとなる。
本発明の一実施形態の光電変換素子の概略構成を示す断面模式図 本発明の一実施形態の撮像素子の概略構成を示す断面模式図
「光電変換素子」
 図面を参照して、本発明にかかる一実施形態の光電変換素子について説明する。図1は、本実施形態の光電変換素子の構成を示す概略断面図である。本明細書の図面において、視認しやすくするため、各部の縮尺は適宜変更して示してある。
 図1に示されるように、有機光電変換素子1(光電変換素子1)は、基板10と、基板10上に形成された正孔捕集電極20と、正孔捕集電極20上に形成された電子ブロッキング層31と、電子ブロッキング層31上に形成された光電変換層32と、光電変換層32上に形成された正孔ブロッキング層33と、正孔ブロッキング層33上に形成された電子捕集電極40と、電子捕集電極40の表面及び、正孔捕集電極20から電子捕集電極40まで積層された積層体の側面を被覆してなる封止層50とを備える。
 光電変換素子1において、電子捕集電極40は透明電極であり、電子捕集電極40上方から光が入射すると、この光が電子捕集電極40を透過して光電変換層32に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は正孔捕集電極20に移動し、電子は電子捕集電極40に移動する。
 電子捕集電極40及び正孔捕集電極20間にバイアス電圧(外部電場)を印加することで、光電変換層32で発生した電荷のうち、正孔を正孔捕集電極20に、電子を電子捕集電極40に移動させることができる。
 光電変換層32は、電子捕集電極40側の第1の光電変換層32bと、正孔捕集電極側の第2の光電変換層32aとから構成されている。第1の光電変換層32b及び第2の光電変換層32aは、バルクヘテロ層であるが、第2の光電変換層32aについては、n型有機半導体の単層であることもある。
 バルクへテロ層からなる光電変換層は、バルクへテロ層におけるn型有機半導体とp型有機半導体の混合比率によって、(1)バルクへテロ層中のキャリア輸送性、(2)可視光吸収率、(3)電子ブロッキング層との間のキャリア輸送性、(4)耐熱性について最適化することができる。これらの特性を良好にすることで、耐熱性を有し、且つ、応答速度及び感度が良好な、暗電流の少ない光電変換素子とすることができる。
 (1)バルクヘテロ層中のキャリア輸送性の観点では、
 バルクへテロ層中のn型有機半導体の含有率は、40%~80%が好ましい。
 (2)可視光吸収率の観点では、
可視領域に吸収ピーク波長を有するp型有機半導体の量が少ないと、入射光の吸収量が低下する。従って、充分な入射光吸収量を得るためにはp型有機半導体をバルクへテロ層中に充分混入する必要がある。
 バルクへテロ層中のn型有機半導体の含有率が多い場合、p型有機半導体を充分混入させると、光電変換層の膜厚が厚くなる。光電変換素子1は、一対の電極間に外部電場を印加して駆動することが出来るが、光電変換層32の膜厚が厚くなると、光電変換素子を駆動するために必要な電圧が高くなってしまうことから、光電変換層32の膜厚はできるだけ薄い方が好ましい。光電変換層32の膜厚は、1000nm以下が好ましく、さらに好ましくは700nm以下、特に好ましくは500nm以下である。従って、可視光吸収性を高くするためにp型有機半導体を充分混入させるためには、光電変換層32中のn型有機半導体の含有率はできるだけ低くすることが好ましい。
 (3)電子ブロッキング層へのキャリア輸送性(正孔輸送性)の観点では、
 光電変換層32で発生した光キャリアのうち正孔は、電子ブロッキング層31を経由して正孔捕集電極20で捕集される。
 電子ブロッキング層31と、光電変換層32aの接触界面において、電子ブロッキング層31を構成する有機半導体と、光電変換層中32a中のp型有機半導体とが混合した領域が形成されると、その混合領域にトラップが形成され、感度、光電変換効率、暗電流特性の低下を引き起こすと考えられる。従って、電子ブロッキング層31側、すなわち、正孔捕集電極側と接触している光電変換層は、p型有機半導体ができるだけ少ない方が好ましい。
 (4)耐熱性の観点では、の光センサに用いる場合、デバイス化するために、カラーフィルターの形成や、ワイヤーボンディング工程等を行う必要がある。これらの工程で、撮像デバイスは200℃以上に加熱されるため、撮像デバイスに用いる有機光電変換膜には200℃以上の耐熱性が必要となる。
 バルクへテロ層は、n型有機半導体の含有率が高い程、膜が安定となり、耐熱性が向上する。従って、充分高い耐熱性を実現するためには、第1の光電変換層32bにおいてn型有機半導体の含有率は50%以上であることが好ましい。第2の光電変換層32aのn型有機半導体の含有量は、耐熱性の観点からは多い方が好ましい。
 上記(1)~(4)の観点による検討によれば、応答速度、キャリア輸送性、耐熱性の観点では、バルクへテロ層中のn型有機半導体含有率はより高い方がよいが、可視光吸収性の観点ではn型有機半導体含有率を下げてバルクへテロ層の膜厚増加を抑制する方がよい。本発明者は、鋭意検討の結果、(3)に記載したトラップの形成が、応答速度、キャリア輸送性(感度)、耐熱性に大きく影響を及ぼすことを見出した(後記実施例を参照)。
 (3)の観点では、電子ブロッキング層31側(正孔捕集電極側)と接触している光電変換層(バルクヘテロ層)は、できるだけp型有機半導体の含有量が少ないことが好ましく、理論的には、n型有機半導体のみである(バルクヘテロ層ではない単層)ことが好ましいことになる。
 そこで本発明者は、正孔捕集電極側の第1の光電変換層32aとして、応答速度、キャリア輸送性(感度)、耐熱性への影響を最小限としうる、組成及び膜厚について検討を行った。
 通常、隣接するバルクヘテロ層(光電変換層)同士のn型有機半導体含有率の差は、大きすぎると層間のキャリア輸送速度が低下してしまい、光電変換素子の応答速度低下を引き起こす。本発明者は、第2の光電変換層32aの厚みdを、第1の光電変換層と第2の光電変換層とからなる光電変換層32の厚みDの0.75%以下とすることにより、第2の光電変換層をn型有機半導体の単層とした場合であっても、上記層間のキャリア輸送速度への大きな影響を及ぼすことなく、正孔捕集電極20側(電子ブロッキング層側)のトラップの抑制し、応答速度、キャリア輸送性(感度)、耐熱性の良好な有機光電変換素子となることを見出し、本発明を完成した。
 すなわち、有機光電変換素子1は、正孔捕集電極20と電子捕集電極40とに挟持された少なくとも光電変換層32を含む受光層30を有するものであって、
 正孔捕集電極20と光電変換層32との間に電子ブロッキング層31を備え、
 光電変換層32が、n型有機半導体とp型有機半導体とのバルクへテロ層である第1の光電変換層32bと、
 第1の光電変換層32bの正孔捕集電極20側の表面に接して形成されてなる第2の光電変換層32aとからなり、
 第2の光電変換層32aのp型有機半導体に対するn型有機半導体の混合比率の平均値X2が、第1の光電変換層32bと第2の光電変換層32aとからなる光電変換層の前記平均値X1よりも高い構成としている。
 以下に、有機光電変換素子1の各層の構成について説明する。
<基板及び電極>
 基板10としては特に制限なく、シリコン基板、ガラス基板等を用いることができる。
 正孔捕集電極20は、光電変換層32で発生した電荷のうちの正孔を捕集するための電極であり、後記する撮像素子の構成においては画素電極に相当する。正孔捕集電極20としては、導電性が良好であれば特に制限されないが、用途に応じて、透明性を持たせる場合と、逆に透明を持たせず光を反射させるような材料を用いる場合等がある。
 具体的には、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられ、更に具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミ等の金属及びこれらの金属の酸化物や窒化物などの導電性化合物(一例として窒化チタン(TiN)を挙げる)、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITO又は窒化チタンとの積層物などが挙げられる。正孔捕集電極20として特に好ましいのは、窒化チタン、窒化モリブデン、窒化タンタル、窒化タングステンのいずれかの材料である。
 電子捕集電極40は、光電変換層32で発生した電荷のうちの電子を捕集する電極であり、本実施形態では受光側に配された透明電極である。電子捕集電極40としては、光電変換層32に光を入射させるために、光電変換層32が感度を持つ波長の光に対して十分に透明な導電性材料であれば特に制限されないいが、光電変換層32に入射する光の絶対量が大きく、外部量子効率を高くするために、透明導電性酸化物(TCO)を用いることが好ましい。電子捕集電極40は、後記する撮像素子の構成においては画素電極に相当する。
 電子捕集電極40としては、具体的には、ITO、IZO、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)のいずれかの材料が挙げられる。
 電子捕集電極40の光透過率は、可視光波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。
 電極(20,40)を形成する方法は特に限定されず、電極材料との適正を考慮して適宜選択することができる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成することができる。
 電極の材料がITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾルーゲル法など)、酸化インジウムスズの分散物の塗布などの方法で形成することができる。更に、ITOを用いて作製された膜に、UV-オゾン処理、プラズマ処理などを施すことができる。電極の材料がTiNの場合、反応性スパッタリング法をはじめとする各種の方法が用いられ、更にアニール処理、UV-オゾン処理、プラズマ処理などを施すことができる。
 TCOなどの透明導電膜を電子捕集電極40とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換層32に導入される微細なクラックがTCOなどの緻密な膜によってカバレッジされ、反対側の下部電極20との間の導通が増すためと考えられる。そのため、Alなど膜質が比較的劣る電極の場合、リーク電流の増大は生じにくい。電子捕集電極40の膜厚を、光電変換層32の膜厚(すなわち、クラックの深さ)に対して制御する事により、リーク電流の増大を大きく抑制できる。電子捕集電極40の厚みは、光電変換層32厚みの1/5以下、好ましくは1/10以下であるようにする事が望ましい。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態に係る光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極40は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換層32での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、透過率の増加を考慮すると、電子捕集電極40の膜厚は、5~100nmであることが好ましく、5~20nmである事がより好ましい。
 <受光層>
 受光層30は、少なくとも電子ブロッキング層31と光電変換層32を含む層である。
 受光層30の成膜方法は特に制限されず、それぞれの乾式成膜法又は湿式成膜法により形成することができるが、成膜時のすべての工程は真空中で行われることが好ましく、基本的には化合物が直接、外気の酸素、水分と接触しないようにすることが好ましい。かかる成膜方法としては真空蒸着法が挙げられる。真空蒸着法においては、水晶振動子、干渉計等の膜厚モニタ-を用いて蒸着速度をPIもしくはPID制御することが好ましい。また、2種以上の化合物を同時に蒸着する場合には共蒸着法を用いることができ、共蒸着法は、抵抗加熱蒸着、電子ビーム蒸着、フラッシュ蒸着等を用いて実施することが好ましい。
 受光層30を乾式成膜法により形成する場合、形成時の真空度は、受光層形成時の素子特性の劣化を防止することを考慮すると、1×10-3Pa以下が好ましく、4×10-4Pa以下がさらに好ましく、1×10-4Pa以下が特に好ましい。
 受光層30の厚みは、10nm以上1000nm以下が好ましく、さらに好ましくは50nm以上800nm以下、特に好ましくは100nm以上600nm以下である。10nm以上とすることにより、好適な暗電流抑制効果が得られ、1000nm以下とすることにより、好適な光電変換効率(感度)が得られる。
<<光電変換層>>
 既に述べたように、光電変換層32は、第1の光電変換層32bと第2の光電変換層32aとにより構成されている。
 第1の光電変換層32bのp型有機半導体に対するn型有機半導体の混合比率X1は、上記のように、キャリア輸送性、可視光吸収率等を考慮して最適化された混合比率であることが好ましい。第1の光電変換層32bは、混合比率が略均一な1層からなる構成でもよいし、比率の異なる複数層から構成されていてもよい。
 第2の光電変換層32aは、第1の光電変換層32bと第2の光電変換層32bとからなる光電変換層32の混合比率の平均値X1よりも大きい平均値X2を持っている層であればよく、n型有機半導体のみからなる層であってもよい。
 第2の光電変換層32aの混合比率X2は、好適化された第1の光電変換層32bの混合比率X1より大きいことから、第2の光電変換層32aの平均膜厚は、できるだけ薄いことが好ましく、厚くとも、第1の光電変換層32bの平均膜厚の0.75%以下の膜厚であることが好ましい(後記実施例を参照)。
 光電変換層(バルクへテロ層)32におけるn型有機半導体としては特に制限なく、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブ等が挙げられる。以下に代表的なフラーレンの骨格を示す。
Figure JPOXMLDOC01-appb-C000002
 また、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、又は複素環基である。アルキル基として更に好ましくは、炭素数1~12までのアルキル基であり、アリール基、及び複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、さらに好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらはさらに置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていてもよい。また、複数の置換基は可能な限り結合して環を形成してもよい。
 バルクへテロ層32において、n型有機半導体と混合する有機p型半導体は特に制限されないが、吸収スペクトルのピーク波長は、可視領域の光を幅広く吸収するという観点から450nm以上700nm以下であることが好ましく、480nm以上700nm以下がより好ましく、510nm以上680nm以下であることが更に好ましい。光を効率よく利用する観点から、モル吸光係数は高ければ高いほどよい。吸収スペクトル(クロロホルム溶液)が、波長400nmから700nmまでの可視領域において、モル吸光係数は20000M-1cm-1以上が好ましく、30000M-1cm-1以上がより好ましく、40000M-1cm-1以上が更に好ましい。
 p型有機半導体は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物あり、さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物である。従って、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。
 p型有機半導体としては、例えば、トリアリールアミン化合物、ピラン化合物、キナクリドン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができ、トリアリールアミン化合物、ピラン化合物、キナクリドン化合物、ピロール化合物、フタロシアニン化合物、メロシアニン化合物、縮合芳香族炭素環化合物が好ましい。
 p型有機半導体の好適な材料として例えば、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Zは5又は6員環を形成するのに必要な原子群を表す。L、L、及びLはそれぞれ独立に、無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
 一般式(1)中、Zは、少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。
 (a)1,3-ジカルボニル核:例えば1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
 (b)ピラゾリノン核:例えば1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン等。
 (c)イソオキサゾリノン核:例えば3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
 (d)オキシインドール核:例えば1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
 (e)2,4,6-トリケトヘキサヒドロピリミジン核:例えばバルビツール酸又は2-チオバルビツール酸及びその誘導体等。誘導体としては例えば1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
 (f)2-チオ-2,4-チアゾリジンジオン核:例えばローダニン及びその誘導体等。誘導体としては例えば3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
 (g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
 (h)チアナフテノン核:例えば3(2H)-チアナフテノン-1,1-ジオキサイド等。
 (i)2-チオ-2,5-チアゾリジンジオン核:例えば3-エチル-2-チオ-2,5-チアゾリジンジオン等。
 (j)2,4-チアゾリジンジオン核:例えば2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
 (k)チアゾリン-4-オン核:例えば4-チアゾリノン、2-エチル-4-チアゾリノン等。
 (l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
 (m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
 (n)イミダゾリン-5-オン核:例えば2-プロピルメルカプト-2-イミダゾリン-5-オン等。
 (o)3,5-ピラゾリジンジオン核:例えば1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
 (p)ベンゾチオフェンー3-オン核:例えばベンゾチオフェンー3-オン、オキソベンゾチオフェンー3-オン、ジオキソベンゾチオフェンー3-オン等。
 (q)インダノン核:例えば1-インダノン、3-フェニルー1-インダノン、3-メチルー1-インダノン、3,3-ジフェニルー1-インダノン、3,3-ジメチルー1-インダノン等。
 Z1で表される環として好ましくは、1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2-チオバルビツール酸核)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2-チオバルビツール酸核)、3,5-ピラゾリジンジオン核、ベンゾチオフェンー3-オン核、インダノン核であり、更に好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツール酸核、2-チオバルビツール酸核)であり、特に好ましくは1,3-インダンジオン核、バルビツール酸核、2-チオバルビツール酸核及びそれらの誘導体である。
 一般式(1)において、L、L、及びLはそれぞれ独立に、無置換メチン基、又は置換メチン基を表す。置換メチン基同士が結合して環を形成してもよい。環としては6員環(例えば、ベンゼン環等)が挙げられる。置換メチン基の置換基としては後述の置換基Wが挙げられるが、L、L及びLは全てが無置換メチン基である場合が好ましい。
 一般式(1)において、nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にすることができるが、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。
 一般式(1)において、Dは原子群を表す。Dは-NRa(Rb)を含む基であることが好ましく、更に、前記Dが-NRa(Rb)が置換したアリール基(好ましくは、置換基を有してもよい、フェニル基又はナフチル基)を表す場合が好ましい。Ra、及びRbはそれぞれ独立に、水素原子、又は置換基を表し、該置換基としては後述する置換基Wが挙げられるが、好ましくは、脂肪族炭化水素基(好ましくは置換基を有してもよいアルキル基又はアルケニル基)、アリール基、又はヘテロ環基である。
 Dが表すアリーレン基としては、好ましくは炭素数6~30のアリーレン基であり、より好ましくは炭素数6~18のアリーレン基である。該アリーレン基は、後述の置換基Wを有していてもよく、好ましくは炭素数1~4のアルキル基を有していてもよい炭素数6~18のアリーレン基である。例えば、フェニレン基、ナフチレン基、アントラセニレン基、ピレニレン基、フェナントレニレン基、メチルフェニレン基、ジメチルフェニレン基等が挙げられ、フェニレン基又はナフチレン基が好ましい。
 Ra、Rbで表される置換基としては後述の置換基Wが挙げられ、好ましくは、脂肪族炭化水素基(好ましくは置換されてよいアルキル基、アルケニル基)、アリール基(好ましくは置換されてよいフェニル基)、又はヘテロ環基である。
 Ra、Rbが表すアリール基としては、それぞれ独立に、好ましくは炭素数6~30のアリール基であり、より好ましくは炭素数6~18のアリール基である。該アリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数6~18のアリール基である。例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基又はナフチル基が好ましい。
 Ra、Rbが表すヘテロ環基としては、それぞれ独立に、好ましくは炭素数3~30のヘテロ環基であり、より好ましくは炭素数3~18のヘテロ環基である。該ヘテロ環基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数3~18のヘテロ環基である。また、Ra、Rbが表すヘテロ環基は縮環構造であることが好ましく、フラン環、チオフェン環、セレノフェン環、シロール環、ピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環からから選ばれる環の組み合わせ(同一でも良い)の縮環構造が好ましく、キノリン環、イソキノリン環、ベンゾチオフェン環、ジベンゾチオフェン環、チエノチオフェン環、ビチエノベンゼン環、ビチエノチオフェン環が好ましい。
 D、Ra、及びRbが表すアリーレン基及びアリール基はベンゼン環又は縮環構造であることが好ましく、ベンゼン環を含む縮環構造であることがより好ましく、ナフタレン環、アントラセン環、ピレン環、フェナントレン環を挙げることができ、ベンゼン環、ナフタレン環又はアントラセン環がより好ましくは、ベンゼン環又はナフタレン環が更に好ましい。
 置換基Wとしてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といっても良い)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。
 Ra、Rbが置換基(好ましくはアルキル基、アルケニル基)を表す場合、それらの置換基は、-NRa(Rb)が置換したアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、又は置換基と結合して環(好ましくは6員環)を形成してもよい。
 Ra、Rbは互いに置換基同士が結合して環(好ましくは5員又は6員環、より好ましくは6員環)を形成してもよく、また、Ra、RbはそれぞれがL(L、L、Lのいずれかを表す)中の置換基と結合して環(好ましくは5員又は6員環、より好ましくは6員環)を形成してもよい。
 一般式(1)で表される化合物は、特開2000-297068号公報に記載の化合物であり、前記公報に記載のない化合物も、前記公報に記載の合成方法に準じて製造することができる。
 一般式(1)で表される化合物は下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Z、L21、L22、L23、及びnは一般式(1)におけるZ、L、L、L、及びnと同義であり、その好ましい例も同様である。D21は置換又は無置換のアリーレン基を表す。D22、及びD23はそれぞれ独立に、置換若しくは無置換のアリール基又は置換若しくは無置換のヘテロ環基を表す。)
 D21が表すアリーレン基としては、Dが表すアリーレン環基と同義であり、その好ましい例も同様である。
 D22、及びD23が表すアリール基としては、それぞれ独立に、Ra、及びRbが表すヘテロ環基と同義であり、その好ましい例も同様である。
 以下に一般式(1)で表される化合物の好ましい具体例を、一般式(3)を用いて示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
(式(3)中、Zは下記A-1~A-12のいずれかを表す。L31がメチレンを表し、nが0を表す。D31がB-1~B-9のいずれかであり、D32、及びD33がC-1~C-16のいずれかを表す。)
 Zとしては、A-2が好ましく、D32、及びD33はC-1、C-2、C-15、C-16から選択されることが好ましく、D31はB-1又はB-9であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 特に好ましいp型有機材料としては、染料若しくは5個以上の縮環構造を持たない材料(縮環構造を0~4個、好ましは1~3個有する材料)が挙げられる。有機薄膜太陽電池で一般的に使用されている顔料系p型材料を用いると、pn界面での暗時電流が増大しやすい傾向になること、結晶性の粒界でのトラップにより光応答が遅くなりがちであることから、撮像素子用として用いることが難しい。このため、結晶化しにくい染料系のp型材料、若しくは5個以上の縮環構造を持たない材料が撮像素子用に好ましく用いることができる。
 一般式(1)で表される化合物の更に好ましい具体例は、一般式(3)における以下の置換基、連結基及び部分構造の組み合わせであるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
 ここで、A-1~A-12、B-1~B-9、及びC-1~C-16は既に示したものと同義である。
 以下に一般式(1)で表される化合物の特に好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 光電変換層32は、有機ELの発光層(電気信号を光に変換する層)とは異なり非発光性の層である。非発光性層とは、可視光領域(波長400nm~730nm)において発光量子効率が1%以下、好ましくは0.5%以下、より好ましくは0.1%以下の層であることを意味する。光電変換層32において、発光量子効率が1%を超えると、センサや撮像素子に適用した場合にセンシング性能又は撮像性能に影響を与えるため、好ましくない。
 <<電子ブロッキング層>>
 電子ブロッキング層31は、正孔捕集電極20から光電変換層32に電子が注入されるのを抑制するための層である。有機材料単独膜で構成されてもよいし、複数の異なる有機材料あるいは無機材料の混合膜で構成されていてもよい。
 電子ブロッキング層31は、複数層で構成してあってもよい。このようにすることで、電子ブロッキング層31を構成する各層の間に界面ができ、各層に存在する中間準位に不連続性が生じる。この結果、中間準位等を介した電荷の移動がしにくくなるため電子ブロッキング効果を高めることができる。但し、電子ブロッキング層31を構成する各層が同一材料であると、各層に存在する中間準位が全く同じとなる場合も有り得るため、電子ブロッキング効果を更に高めるために、各層を構成する材料を異なるものにすることが好ましい。
 電子ブロッキング層31は、正孔捕集電極20からの電子注入障壁が高くかつ正孔輸送性が高い材料で構成することが好ましい。電子注入障壁としては、隣接する電極の仕事関数よりも、電子ブロッキング層の電子親和力が1eV以上小さいことが好ましい、より好ましくは1.3eV以上、特に好ましいのは1.5eV以上である。
 電子ブロッキング層31は、正孔捕集電極20と光電変換層32との接触を充分に抑制し、また正孔捕集電極20表面に存在する欠陥やゴミの影響を避けるために、20nm以上であることが好ましく、40nm以上であることがより好ましい。
 電子ブロッキング層31には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、フルオレン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。具体的には、例えば、特開2008-72090号公報に記載された化合物等を好ましく用いることができる。
 電子ブロッキング層31として好適な化合物の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000012
 電子ブロッキング層31としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層31に用いた場合に、光電変換層32に電圧が多くかかるようになり、光電変換効率(感度)を高くすることができる。電子ブロッキング層31となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。
 電子ブロッキング層31が単層の場合にはその層を無機材料からなる層とすることができ、または、複数層の場合には1つ又は2以上の層を無機材料からなる層とすることができる。
<<正孔ブロッキング層>>
 光電変換素子1において、正孔ブロッキング層33は、外部電圧印加時に電子捕集電極40からの正孔注入を抑制する層であり、上に形成する層(本実施形態では電子捕集電極40)の形成時、光電変換層32を保護して成膜ダメージを抑制する機能を有する。
 正孔ブロッキング層には、電子受容性有機材料を用いることができる。電子受容性材料は特に制限されないが、1,3-ビス(4-tert-ブチルフェニル-1,3,4-オキサジアゾリル)フェニレン(OXD-7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などを用いることができる。また、電子受容性有機材料でなくとも、十分な電子輸送性を有する材料ならば使用することは可能である。ポルフィリン系化合物や、DCM(4-ジシアノメチレン-2-メチル-6-(4-(ジメチルアミノスチリル))-4Hピラン)等のスチリル系化合物、4Hピラン系化合物を用いることができる。
 正孔ブロッキング層33及び電子ブロッキング層31より構成される電荷ブロッキング層は、厚くしすぎると、光電変換層に適切な電界強度を印加するために必要な、供給電圧が高くなってしまう問題や、電荷ブロッキング層中のキャリア輸送過程が、光電変換素子の性能に悪影響を与えてしまう問題を生じる可能性がある。従って、正孔ブロッキング層33及び電子ブロッキング層31の合計膜厚は、300nm以下となるように設計されることが好ましい。該合計膜厚は、200nm以下がより好ましく、100nm以下が更に好ましい。
 <封止層>
封止層50は、光電変換素子1、もしくは後記する撮像素子100の作製後に、水分子や酸素分子などの光電変換材料を劣化させる因子の侵入を阻止して、長期間の保存/使用にわたって、光電変換層の劣化を防止するための層である。また、封止層50は、封止層成膜後の撮像素子100の作製工程において溶液、プラズマなどに含まれる光電変換層を劣化させる因子の侵入を阻止して光電変換層を保護するための層でもある。
 封止層50は、正孔捕集電極20、電子ブロッキング層31、光電変換層32、正孔ブロッキング層33及び電子捕集電極40を覆って形成されている。
 光電変換素子1では、入射光は封止層50を通じて光電変換層32に到達するので、光光電変換層32に光を効率よく入射させるために、封止層50は、光電変換層32が感度を持つ波長の光に対して十分に透明である必要がある。かかる封止層50としては、水分子を浸透させない緻密な金属酸化物・金属窒化物・金属窒化酸化物などセラミクスやダイヤモンド状炭素(DLC)などがあげられ、従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層膜、それらと有機高分子の積層膜などが用いられている。
 封止層50は、単一材料からなる薄膜で構成することもできるが、多層構成にして各層に別々の機能を付与することで、封止層50全体の応力緩和、製造工程中の発塵等によるクラック、ピンホールなどの欠陥発生の抑制、材料開発の最適化が容易になることなどの効果が期待できる。例えば、封止層50は、水分子などの劣化因子の浸透を阻止する本来の目的を果たす層の上に、その層で達成することが難しい機能を持たせた「封止補助層」を積層した2層構成を形成することができる。3層以上の構成も可能だが、製造コストを勘案するとなるべく層数は少ない方が好ましい。
 封止層50の形成方法は、特に制限されず、既に成膜された光電変換層32等の性能、膜質をなるべく劣化させない方法で成膜されることが好ましい。
 有機光電変換材料は、水分子、酸素分子などの劣化因子の存在で顕著に性能が劣化してしまう。そのために劣化因子を浸透させない緻密な金属酸化物、金属窒化酸化物などで光電変換層全体を被覆して封止することが必要である。従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層構成、それらと有機高分子の積層構成などを封止層として、各種真空成膜技術で形成されている。
 しかしながら、従来の封止層は、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差において、薄膜の成長が困難なので(段差が影になるので)平坦部と比べて膜厚が顕著に薄くなる。このために段差部分が劣化因子の浸透する経路になってしまう。この段差を封止層で完全に被覆するには、平坦部において1μm以上の膜厚になるように成膜して、封止層全体を厚くする必要がある。封止層形成時の真空度は、1×10Pa以下が好ましく、5×10Pa以下がさらに好ましい。
 画素寸法が2μm未満、特に1μm程度の撮像素子とした場合、封止層50の膜厚が大きいと、カラーフィルタと光電変換層との距離が大きくなり、封止層内で入射光が回折/発散し、混色が発生する恐れがある。従って、画素寸法が1μm程度の撮像素子への適用を考えた場合、封止層50の膜厚を減少させても素子性能が劣化しないような封止層材料/製造方法が必要になる。
 原子層堆積(ALD)法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。基板表面へ薄膜材料が到達する際は上記低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった段差部分を完全に被覆し(段差部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち段差被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差を完全に被覆できるので、そのような段差部分が光電変換材料の劣化因子の浸入経路にならない。封止層50の形成を原子層堆積法で行なった場合は従来技術よりも効果的に必要な封止層膜厚を薄くすることが可能になる。
 原子層堆積法で封止層50を形成する場合は、先述した封止層50に好ましいセラミクスに対応した材料を適宜選択できる。もっとも、本発明の光電変換層は有機光電変換材料を使用するために、有機光電変換材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。アルキルアルミニウムやハロゲン化アルミニウムを材料とした原子層堆積法によると、有機光電変換材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は100℃程度でも酸化アルミニウム薄膜を形成でき好ましい。酸化珪素や酸化チタンも材料を適切に選択することで酸化アルミニウムと同様に200℃未満で緻密な薄膜を形成することができ好ましい。
 封止層は、水分子などの光電変換材料を劣化させる因子の侵入を十分阻止するために、10nm以上の膜厚であることが好ましい。撮像素子において、封止層の膜厚が大きいと、封止層内で入射光が回折または発散してしまい、混色が発生する。封止層の膜厚としては、200nm以下であることが好ましい。
 なお、原子層堆積法により形成した薄膜は、段差被覆性、緻密性という観点からは比類なく良質な薄膜形成を低温で達成できる。もっとも、薄膜材料の物性が、フォトリソグラフィ工程で使用する薬品で劣化してしまうことがある。例えば、原子層堆積法で成膜した酸化アルミニウム薄膜は非晶質なので、現像液や剥離液のようなアルカリ溶液で表面が侵食されてしまう。
 また、原子層堆積法のようなCVD法で形成した薄膜は内部応力が非常に大きな引張応力を持つ例が多く、半導体製造工程のように、断続的な加熱、冷却が繰返される工程や、長期間の高温/高湿度雰囲気下での保存/使用により、薄膜自体に亀裂の入る劣化が発生することがある。
 従って、原子層堆積法により成膜した封止層50を用いる場合は、耐薬品性に優れ、且つ、封止層50の内部応力を相殺可能な封止補助層を形成することが好ましい。
 かかる補助封止層としては、例えば、スパッタ法などの物理的気相成膜(PVD)法で成膜した耐薬品性に優れる金属酸化物、金属窒化物、金属窒化酸化物などのセラミクスのいずれか1つを含む層が挙げられる。スパッタ法などのPVD法で成膜したセラミクスは大きな圧縮応力を持つことが多く、原子層堆積法で形成した封止層50の引張応力を相殺することができる。
 光電変換素子1において、光電変換効率(感度)、暗電流、光応答速度において、優れた特性を得るために、正孔捕集電極20と電子捕集電極40との間に印加する外部電場としては、1V/cm以上1×10V/cm以下が好ましい。外部電場は、一対の電極に外部から印加される電圧を電極間距離で割った値である。
 光電変換素子1は、電子ブロッキング層31と光電変換層32と正孔ブロッキング層33とによって受光層30が形成されている。本実施形態においては正孔ブロッキング層33を備えた態様について示しているが、正孔ブロッキング層33は正孔の流れには寄与しないことから、正孔ブロッキング層33の有無にかかわらず本発明の効果を得ることができる。
 以上述べたように、光電変換素子1は、第1の光電変換層32bと第2の光電変換層32aとからなる光電変換層32を備えており、第2の光電変換層32aは正孔捕集電極20側の表面に形成されてなり、第1の光電変換層32bと第2の光電変換層32aとからなる光電変換層32よりも、p型有機半導体に対するn型有機半導体の混合比率の平均値が高い構成としている。かかる構成によれば、光電変換層において、正孔捕集電極側の端部にp型有機半導体の単一組成膜やp型有機半導体組成の多い領域が存在することによる移動度の低下、及びその端部付近における再結合を抑制することができる。従って、本発明の有機光電変換素子は、応答速度、キャリア輸送性(感度)、耐熱性の良好なものとなる。
 「撮像素子」
次に、光電変換素子1を備えた撮像素子100の構成について、図2を参照して説明する。図2は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラ、デジタルビデオカメラ等の撮像装置、電子内視鏡、携帯電話機等の撮像モジュール等に搭載して用いられる。
 撮像素子100は、図1に示したような構成の複数の有機光電変換素子1と、各有機光電変換素子の光電変換層で発生した電荷に応じた信号を読み出す読み出し回路が形成された回路基板とを有し、該回路基板上方の同一面上に、複数の有機光電変換素子が1次元状又は二次元状に配列された構成となっている。
 撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、受光層107と、対向電極108と、緩衝層109と、封止層110と、カラーフィルタ(CF)111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備える。
 画素電極104は、図1に示した有機光電変換素子1の正孔捕集電極20と同じ機能を有する。対向電極108は、図1に示した有機光電変換素子1の電子捕集電極40と同じ機能を有する。受光層107は、図1に示した有機光電変換素子1の正孔捕集電極20と電子捕集電極40との間に設けられる受光層30と同じ構成である。封止層110は、図1に示した有機光電変換素子1の封止層50と同じ機能を有する。画素電極104と、これに対向する対向電極108の一部と、これら電極で挟まれる受光層107と、画素電極104に対向する緩衝層109及び封止層110の一部とが、有機光電変換素子を構成している。
 基板101は、ガラス基板又はSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と複数の接続電極103が形成されている。
 受光層107は、複数の画素電極104の上にこれらを覆って設けられた全ての有機光電変換素子で共通の層である。
 対向電極108は、受光層107上に設けられた、全ての有機光電変換素子で共通の1つの電極である。対向電極108は、受光層107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグ等である。対向電極電圧供給部115は、基板101に形成され、接続部106及び接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。
 読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。読出し回路116は、例えばCCD、MOS回路、又はTFT回路等で構成されており、絶縁層102内に配置された図示しない遮光層によって遮光されている。読み出し回路116は、それに対応する画素電極104と接続部105を介して電気的に接続されている。
 緩衝層109は、対向電極108上に、対向電極108を覆って形成されている。封止層110は、緩衝層109上に、緩衝層109を覆って形成されている。カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。隔壁112は、カラーフィルタ111同士の間に設けられており、カラーフィルタ111の光透過効率を向上させるためのものである。
 遮光層113は、封止層110上のカラーフィルタ111及び隔壁112を設けた領域以外に形成されており、有効画素領域以外に形成された受光層107に光が入射する事を防止する。保護層114は、カラーフィルタ111、隔壁112、及び遮光層113上に形成されており、撮像素子100全体を保護する。
 このように構成された撮像素子100では、光が入射すると、この光が受光層107に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は、画素電極104で捕集され、その量に応じた電圧信号が読み出し回路116によって撮像素子100外部に出力される。
 撮像素子100の製造方法は、次の通りである。
対向電極電圧供給部115と読み出し回路116が形成された回路基板上に、接続部105,106、複数の接続電極103、複数の画素電極104、及び絶縁層102を形成する。複数の画素電極104は、絶縁層102の表面に例えば正方格子状に配置する。
 次に、複数の画素電極104上に、受光層107、対向電極108、緩衝層109、封止層110を順次形成する。受光層107、対向電極108、封止層110の形成方法は、上記光電変換素子1の説明において記したとおりである。緩衝層109については、例えば真空抵抗加熱蒸着法によって形成する。次に、カラーフィルタ111、隔壁112、遮光層113を形成後、保護層114を形成して、撮像素子100を完成する。
 (実施例1)
 Si基板を用意し、TiN電極をパターン形成したCMOS基板を用意し、CMOS基板を有機蒸着室の基板ホルダーに設置して、蒸着室内を1.0×10-4Pa以下となるように減圧した。その後、基板ホルダーを回転させながら、画素電極上に、抵抗加熱蒸着法により化合物2を電子ブロッキング層として蒸着速度1.0~1.2Å/Secで厚み1000Åとなるように蒸着した。
 次に、化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み10Åとなるように蒸着して第2の光電変換層を形成し、次に化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Secで厚み3990Åとなるように蒸着して第1の光電変換層を形成した。
 次に、スパッタ室に搬送し、第1の光電変換層上に対向電極としてITOをRFマグネトロンスパッタにより厚み100Åとなるようにスパッタした。その後、ALD(Atomic Layer Deposition:原子層堆積)室へ搬送し、保護膜としてAl膜を原子層堆積法により厚み2000Åとなるように成膜した。
 その後、スパッタ室に搬送し、応力緩和層としてSiON膜をplaner型スパッタにより厚み1000Åとなるように成膜し、撮像素子を作製した。
 (実施例2)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、6.4~6.6Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例3)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、7.7~7.9Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例4)
 化合物1とC60の代わりに、C60のみを蒸着速度2.5~2.8Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例5)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み30Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例6)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み50Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例7)
 化合物3とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み30Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例8)
 化合物4とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み30Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例9)
 化合物5とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、5.1~5.3Å/Secで厚み30Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例1)
 化合物1とC60の代わりに、化合物1のみを蒸着速度1.2~1.4Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例2)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、1.2~1.4Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例3)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、2.5~2.8Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例4)
 化合物1とC60をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Secで厚み10Åとなるように蒸着した以外は、実施例1と同様にして撮像素子を作製した。
 (評価)
 上記実施例及び比較例の撮像素子について、分光感度(IPCE)測定装置により感度測定、パルスジェネレーターによる応答速度測定、220℃熱処理による暗電流測定により性能劣化の有無を評価した。その結果を表1に示す。表1において、感度及び応答速度は実施例1の光電変換効率を100とした場合の相対感度にて示してある。暗電流上昇率は、それぞれの素子のアニール前の暗電流値を基準とし、アニール後の上昇率を示してある。表1には、また、各実施例及び比較例の撮像素子における、第1の光電変換層の膜厚(平均値)と、第1及び第2の光電変換層におけるn型有機半導体とp型有機半導体の混合比率を示してある。混合比率はp型有機半導体に対するn型有機半導体の割合で示してある。
 表1に示されるように、実施例では比較例1~3に対して約2倍の感度、応答速度が得られており、本発明の高い効果が確認された。また,耐熱性の指標となる暗電流値についても、本発明により大きく改善されていることが確認された。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  正孔捕集電極と電子捕集電極とに挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子であって、
     前記正孔捕集電極と前記光電変換層との間に電子ブロッキング層を備え、
     前記光電変換層が、n型有機半導体とp型有機半導体とのバルクへテロ層である第1の光電変換層と、
     該第1の光電変換層の前記正孔捕集電極側の表面に接して形成されてなる第2の光電変換層とからなり、
     該第2の光電変換層の前記p型有機半導体に対する前記n型有機半導体の混合比率の平均値が、前記第1の光電変換層と前記第2の光電変換層とからなる光電変換層の該平均値よりも高い光電変換素子。
  2.  前記第2の光電変換層の厚みが、前記第1の光電変換層と前記第2の光電変換層とからなる光電変換層の厚みの0.75%以下である請求項1記載の光電変換素子。
  3.  前記正孔捕集電極が下部電極である請求項1又は2いずれか1項に記載の光電変換素子。
  4. 前記n型有機半導体がフラーレンを含む請求項1~3いずれか1項記載の光電変換素子。
  5.  前記p型有機半導体材料は、下記一般式(1)で表される化合物を含む請求項1~4いずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000013
     (一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
  6.  複数の、請求項1~5のいずれか1項に記載の光電変換素子と、
    前記光電変換素子の前記光電変換層で発生した電荷に応じた信号を読み出す信号読出し回路が形成された回路基板とを備えてなることを特徴とする撮像素子。
PCT/JP2014/001825 2013-03-29 2014-03-28 光電変換素子及びそれを用いた撮像素子 WO2014156184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157030634A KR20150136511A (ko) 2013-03-29 2014-03-28 광전 변환 소자 및 그것을 사용한 촬상 소자
US14/865,990 US20160013248A1 (en) 2013-03-29 2015-09-25 Photoelectric conversion element and imaging device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013073885 2013-03-29
JP2013-073885 2013-03-29
JP2014-011366 2014-01-24
JP2014011366A JP6046649B2 (ja) 2013-03-29 2014-01-24 光電変換素子及びそれを用いた撮像素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/865,990 Continuation US20160013248A1 (en) 2013-03-29 2015-09-25 Photoelectric conversion element and imaging device using the same

Publications (1)

Publication Number Publication Date
WO2014156184A1 true WO2014156184A1 (ja) 2014-10-02

Family

ID=51623195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001825 WO2014156184A1 (ja) 2013-03-29 2014-03-28 光電変換素子及びそれを用いた撮像素子

Country Status (4)

Country Link
US (1) US20160013248A1 (ja)
JP (1) JP6046649B2 (ja)
KR (1) KR20150136511A (ja)
WO (1) WO2014156184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316460A (zh) * 2017-11-20 2020-06-19 索尼公司 光电转换元件和固态摄像器件

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491494B1 (ko) 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
KR102529631B1 (ko) 2015-11-30 2023-05-04 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
US10236461B2 (en) 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (ko) 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102589215B1 (ko) 2016-08-29 2023-10-12 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
US11557741B2 (en) 2018-11-14 2023-01-17 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices
WO2020188959A1 (ja) * 2019-03-20 2020-09-24 株式会社ジャパンディスプレイ 検出装置
EP3739641A1 (en) 2019-05-15 2020-11-18 Samsung Electronics Co., Ltd. N-type semiconductor composition, and thin film, organic photoelectric device, image sensor, and electronic device including the same
KR20200132537A (ko) 2019-05-17 2020-11-25 삼성전자주식회사 광전 변환 소자, 유기 센서 및 전자 장치
EP3739643A1 (en) 2019-05-17 2020-11-18 Samsung Electronics Co., Ltd. Organic photoelectric device, image sensor, and electronic device
KR102649560B1 (ko) 2019-05-24 2024-03-19 삼성전자주식회사 광학 무선 통신 시스템
KR20210109158A (ko) 2020-02-27 2021-09-06 삼성전자주식회사 광전 변환 소자, 유기 센서 및 전자 장치
TWI744872B (zh) * 2020-04-22 2021-11-01 位速科技股份有限公司 有機光伏元件
KR102377621B1 (ko) * 2020-06-05 2022-03-22 한화솔루션 주식회사 수분 안정성과 장기 안정성이 향상된 태양전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038721A1 (ja) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 有機光電変換素子、及びその製造方法
JP2012004299A (ja) * 2010-06-16 2012-01-05 Canon Electronics Inc 有機光電変換デバイス及び有機薄膜太陽電池並びにこれらの製造方法
JP2012023126A (ja) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc 有機光電変換素子
JP2012094660A (ja) * 2010-10-26 2012-05-17 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2012114424A (ja) * 2010-11-02 2012-06-14 Susumu Yoshikawa 太陽電池および太陽電池の製造方法
JP2012209496A (ja) * 2011-03-30 2012-10-25 National Institute Of Advanced Industrial & Technology 光電変換素子及び太陽電池
JP2012234945A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機光電変換素子およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689491B1 (en) * 1999-02-08 2004-02-10 Fuji Photo Film Co., Ltd. Luminescent device material, luminescent device using the same, and amine compound
JP5329849B2 (ja) * 2008-06-19 2013-10-30 富士フイルム株式会社 液晶性有機半導体材料および有機電子デバイス
JP5928469B2 (ja) * 2011-08-09 2016-06-01 コニカミノルタ株式会社 有機光電変換素子、およびそれを用いた有機太陽電池
WO2013151141A1 (ja) * 2012-04-04 2013-10-10 コニカミノルタ株式会社 有機光電変換素子およびこれを用いた太陽電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038721A1 (ja) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 有機光電変換素子、及びその製造方法
JP2012004299A (ja) * 2010-06-16 2012-01-05 Canon Electronics Inc 有機光電変換デバイス及び有機薄膜太陽電池並びにこれらの製造方法
JP2012023126A (ja) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc 有機光電変換素子
JP2012094660A (ja) * 2010-10-26 2012-05-17 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2012114424A (ja) * 2010-11-02 2012-06-14 Susumu Yoshikawa 太陽電池および太陽電池の製造方法
JP2012209496A (ja) * 2011-03-30 2012-10-25 National Institute Of Advanced Industrial & Technology 光電変換素子及び太陽電池
JP2012234945A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機光電変換素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316460A (zh) * 2017-11-20 2020-06-19 索尼公司 光电转换元件和固态摄像器件
CN111316460B (zh) * 2017-11-20 2024-05-17 索尼公司 光电转换元件和固态摄像器件

Also Published As

Publication number Publication date
JP6046649B2 (ja) 2016-12-21
US20160013248A1 (en) 2016-01-14
JP2014209557A (ja) 2014-11-06
KR20150136511A (ko) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6046649B2 (ja) 光電変換素子及びそれを用いた撮像素子
JP6059697B2 (ja) 光電変換素子および撮像素子
JP5323025B2 (ja) 固体撮像素子
JP5270642B2 (ja) 光電変換素子及び撮像素子
JP6010514B2 (ja) 光電変換素子および撮像素子
JP6145872B2 (ja) 光電変換層の成膜方法
WO2011125526A1 (ja) 光電変換素子及び撮像素子
JP6047109B2 (ja) 光電変換素子、光センサおよび撮像素子
JP5814293B2 (ja) 光電変換素子および撮像素子、ならびに、光電変換素子の製造方法および撮像素子の製造方法
WO2011125527A1 (ja) 光電変換素子、その製造方法、光センサ、及び撮像素子
JP5662893B2 (ja) 光電変換素子用蒸着材料及び光電変換素子、センサ、撮像素子
JP5824436B2 (ja) 光電変換素子及びそれを用いた撮像素子
JP2015043362A (ja) 光電変換素子および撮像素子
JP6077426B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
WO2013031471A1 (ja) 光電変換素子の製造方法、および撮像素子の製造方法
JP5651507B2 (ja) 有機光電変換素子の製造方法、有機光電変換素子、撮像素子、撮像装置
JP6231435B2 (ja) 固体撮像素子
JP6059616B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
JP2013055248A (ja) 光電変換素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030634

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14773511

Country of ref document: EP

Kind code of ref document: A1