WO2014155560A1 - 熱交換器およびこれを用いた冷凍サイクル空調装置 - Google Patents

熱交換器およびこれを用いた冷凍サイクル空調装置 Download PDF

Info

Publication number
WO2014155560A1
WO2014155560A1 PCT/JP2013/058995 JP2013058995W WO2014155560A1 WO 2014155560 A1 WO2014155560 A1 WO 2014155560A1 JP 2013058995 W JP2013058995 W JP 2013058995W WO 2014155560 A1 WO2014155560 A1 WO 2014155560A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
type heat
row portion
parallel flow
Prior art date
Application number
PCT/JP2013/058995
Other languages
English (en)
French (fr)
Inventor
石橋 晃
拓也 松田
岡崎 多佳志
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015507767A priority Critical patent/JP6157593B2/ja
Priority to PCT/JP2013/058995 priority patent/WO2014155560A1/ja
Priority to EP13880586.6A priority patent/EP2980516B1/en
Priority to CN201420141694.6U priority patent/CN203798027U/zh
Publication of WO2014155560A1 publication Critical patent/WO2014155560A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0461Combination of different types of heat exchanger, e.g. radiator combined with tube-and-shell heat exchanger; Arrangement of conduits for heat exchange between at least two media and for heat exchange between at least one medium and the large body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle air conditioner using the same.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a heat exchanger capable of suppressing the growth of frost accumulated in the lower part of the heat exchanger.
  • the present invention for achieving the above-described object is a heat exchanger including a parallel flow type heat exchange unit having a plurality of heat exchange pipes extending in the vertical direction, and the parallel flow type heat exchange unit includes at least a front row.
  • a front row portion and a rear row portion each of the front row portion and the rear row portion having a plurality of heat exchange pipes extending in the vertical direction, and in front of the lower portion of the front surface of the parallel flow type heat exchange portion.
  • FIG. 1 It is a front view of the heat exchanger which concerns on Embodiment 1 of this invention. It is a side view of the heat exchanger which concerns on this Embodiment 1. It is a figure of the same aspect as FIG. 1 regarding Embodiment 2 of this invention. It is a figure of the same aspect regarding FIG. It is a figure which shows the outline
  • FIG. 2 shows the up and down direction in FIG. 2, the left and right sides in FIG. 2 are the front side and the rear side, and the front and back direction of the page in FIG.
  • the reference symbol WD in FIG. 2 indicates the airflow direction of ventilation.
  • FIG. 1 and 2 are a front view and a side view of the heat exchanger according to Embodiment 1 of the present invention, respectively.
  • the heat exchanger 1 is an aluminum heat exchanger used for an outdoor unit of a refrigeration cycle air conditioner.
  • the heat exchanger 1 includes a parallel flow type heat exchange unit 3.
  • a plate fin and tube type heat exchanging unit 5 is provided in front of the parallel flow type heat exchanging unit 3 in the heat exchanger 1.
  • the parallel flow type heat exchange unit 3 includes a front row portion 7 and a rear row portion 9 that are separated from each other in the front-rear direction and arranged in the front-rear direction.
  • Each of the front row portion 7 and the rear row portion 9 has a plurality of heat exchange pipes 11 and 13 extending in the vertical direction.
  • the heat exchange pipes 11 and 13 are flat tubes that are crushed from the left-right direction.
  • the plurality of heat exchange pipes 11 in the front row portion 7 are arranged in the left-right direction, and the plurality of heat exchange pipes 13 in the rear row portion 9 are also arranged in the left-right direction.
  • gaps 15 are secured in the front-rear direction, and the heat exchange pipe 11 and the heat exchange pipe 13 It is far away. Further, as an example, the number of heat exchange pipes 11 and the number of heat exchange pipes 13 are the same.
  • a fin 17 is provided between the plurality of heat exchange pipes 11 and 13.
  • the fins 17 are corrugated fins and extend in the vertical direction while meandering left and right between each pair of adjacent fins.
  • the fins 17 are formed in a corrugated shape so as to alternately contact the left heat exchange pipe and the right heat exchange pipe.
  • the heat exchange pipes 11 and 13 are arranged in two rows in the front-rear direction, but the fins 17 are arranged in a row in the front-rear direction. That is, the continuous corrugated fins are located between the corresponding pair of heat exchange pipes 11 in the front row portion 7 and located between the corresponding pair of heat exchange pipes 13 in the rear row portion 9.
  • the fin 17 protrudes in the windward direction from the heat exchange pipe 11 of the front row portion 7, that is, the front edge portion of the fin 17 is positioned in front of the front end of the heat exchange pipe 11 of the front row portion 7.
  • An inlet header 19 that is a lower header on the front row portion 7 side is provided at the lower portion of the front row portion 7, and an outlet header 21 that is a lower header on the rear row portion 9 side is provided at the lower portion of the rear row portion 9. Yes.
  • a row straddling header 23 is provided above the front row portion 7 and the rear row portion 9. The front row portion 7 and the rear row portion 9 share the same row crossing header 23 as their upper headers.
  • each of the inlet header 19, the outlet header 21 and the row-crossing header 23 is configured as one room.
  • the lower headers of the front row portion 7 and the rear row portion 9 are provided separately for each row, and the upper headers of the front row portion 7 and the rear row portion 9 are provided integrally across the rows. .
  • the inlet header 19 and the outlet header 21 arranged at the lower part of the parallel flow type heat exchanging unit 3 have a mechanism for uniform distribution to the heat exchange pipes in the leeward row, on the leeward side.
  • the row has a mechanism for concentrating the gas, and the lower header is divided for each row in the parallel flow type heat exchange unit 3 as a whole.
  • the row-crossing header 23 arranged at the upper part of the parallel flow type heat exchange unit 3 has a mechanism that allows refrigerant to move between the rows. Two rows are provided as a unit.
  • the lower end of the heat exchange pipe 11 in the front row portion 7 is connected to the inlet header 19, and the upper end of the heat exchange pipe 11 in the front row portion 7 is connected to the row crossing header 23. Further, the lower end of the heat exchange pipe 13 in the rear row portion 9 is connected to the outlet header 21, and the upper end of the heat exchange pipe 13 in the rear row portion 9 is connected to the row crossing header 23.
  • the plate fin and tube type heat exchanging unit 5 is disposed in front of the lower part of the front surface of the parallel flow type heat exchanging unit 3, and more specifically, in front of the lower part of the front surface of the front row portion 7 and the inlet header 19. It is arranged above.
  • the lowermost part of the plate fin and tube type heat exchanging unit 5 (the lowermost part of the plate fin 25) is located between the lowermost part of the fins 17 of the parallel flow type heat exchanging unit 3 and the inlet header 19.
  • the plate fin and tube type heat exchanging unit 5 includes a plurality of plate fins 25 and a heat transfer pipe 27 for constituting at least one path.
  • the plurality of plate fins 25 extend in the vertical direction and are arranged substantially parallel to the horizontal direction. Further, the rear portions of the plurality of plate fins 25 are in contact with or approaching the front ends of the lower portions of the fins 17 of the parallel flow heat exchange unit 3.
  • the heat transfer pipe 27 is a single circular pipe that forms one pass, and extends vertically through the plurality of plate fins 25 so as to meander in the left-right direction.
  • the outlet end 27 b is disposed on the upper portion of the plate fin 25.
  • a plurality of circular pipes may be used so as to form a plurality of paths as long as the number is less than the number of paths of the parallel flow heat exchange unit 3.
  • the heat transfer pipe 27 may be one or more flat tubes (plate fin and flat tube type) instead of the one or more circular tubes (plate fin and circular tube type). .
  • the plate fin and tube type heat exchanging unit 5 and the parallel flow type heat exchanging unit 3 are connected by a connecting pipe 29. That is, one end of the connecting pipe 29 is connected to the outlet end 27b of the heat transfer pipe 27 of the plate fin and tube type heat exchanging unit 5, and the inlet end 19a of the inlet header 19 in the parallel flow type heat exchanging unit 3 is The other end of the connecting pipe 29 is connected.
  • FIG.1 and FIG.2 shows typically the flow of the refrigerant
  • the heat exchanger 1 is used as an evaporator (for example, when installed in an outdoor unit and operated for heating)
  • the refrigerant flows from the bottom to the top in one pass through the plate fin and tube heat exchanger 5. Then, after flowing out from the plate fin and tube type heat exchanging section 5 and passing through the connecting pipe 29, it flows into the inlet header 19 of the parallel flow type heat exchanging section 3.
  • the refrigerant in the inlet header 19 flows from the bottom to the top through the plurality of heat exchange pipes 11 in the front row portion 7 on the windward side. That is, the number of paths is the same as the number of heat exchange pipes 11, and the front row portion 7 is lifted, and then flows into the row crossing header 23. Furthermore, after the refrigerant flows into the row-crossing header 23, the refrigerant flows from the top to the bottom through the plurality of heat exchange pipes 13 in the rear row portion 9 on the leeward side. That is, after flowing down the rear row portion 9 with the same number of paths as the number of heat exchange pipes 13, it flows into the outlet header 21 and finally flows out of the heat exchanger 1.
  • the following advantages are obtained.
  • the plate fin and tube type heat exchange unit 5 since the plate fin and tube type heat exchange unit 5 is provided, condensed water is guided from the inlet header 19 and the fins 17 to the plate fins 25 during operation where frost formation may occur. That is, the condensed water mainly collects in the plate fin and tube type heat exchanging unit 5 having good drainage, and thus root ice can be prevented from being stacked on the lower part of the heat exchanger 1.
  • the number of passes of the plate fin and tube type heat exchanging unit 5 is smaller than the number of passes of the parallel flow type heat exchanging unit 3, and the pressure loss in the pipe through which the refrigerant passes is plate fin and tube type heat exchanging.
  • the part 5 is larger than the parallel flow heat exchange part 3. Therefore, the evaporation temperature of the plate fin and tube heat exchange unit 5 is higher than the evaporation temperature of the parallel flow type heat exchange unit 3, the amount of frost formation during operation is reduced, and frost is formed in the lower part of the heat exchanger 1. Concentration can be suppressed.
  • the heat exchanger 1 is used as a condenser, the flow rate of a supercooling part can be raised and the heat transfer rate in a pipe
  • the inlet of the plate fin-and-tube heat exchanger 5 is provided at the lowermost part of the plate fin-and-tube heat exchanger 5, so that the heat exchanger The temperature of the lowest part of 1 can be raised, and the amount of frost formation can also be suppressed by it.
  • the fins 17 used in the parallel flow type heat exchange section 3 are integrally formed with the two heat exchange pipes 11 and 13 in the front and rear rows, the layout of the heat exchange pipes 11 and 13 is parallel to each other.
  • the assemblability can be improved.
  • fever cutoff is provided in the site
  • the fin 17 is protruded and fixed to the heat exchange pipe 11 in the windward direction, the temperature of the front edge of the fin 17 is brought close to the air temperature, and the front edge of the fin 17 during the frosting operation. It is possible to avoid frost concentration.
  • a heat exchange method using the heat exchanger 1 can be mentioned.
  • the heat exchanger 1 functions as an evaporator
  • the refrigerant and the air are roughly Flowing in parallel (flowing in the same direction) (macroscopically, refrigerant and air flow from the front to the rear)
  • the refrigerant has an evaporation temperature that decreases with respect to the flow direction due to pressure loss
  • the air also has a temperature in the flow direction. Since the temperature decreases, the temperature difference between the refrigerant and air decreases.
  • the refrigerant and the air when functioning as a condenser, generally flow in opposite directions (flow in the opposite direction) (air flows from the front to the rear, and the refrigerant flows from the rear to the front as viewed macroscopically).
  • the temperature of the refrigerant is reduced with respect to the flow direction in the superheated, two-phase, and supercooled region, and the temperature of air is increased with respect to the flow direction. This also improves the heat exchanger efficiency.
  • the heat exchanger 1 functions as an evaporator as a refrigerant flow path across the parallel flow type heat exchange unit 3 and the plate fin and tube type heat exchange unit 5
  • the refrigerant and the air have the same direction in the front-rear direction.
  • the refrigerant flow path has a refrigerant flow path in which the refrigerant and the air travel in opposite directions with respect to the front-rear direction.
  • FIG. 3 and FIG. 4 are diagrams of the same mode as FIG. 1 and FIG.
  • the second embodiment is the same as the first embodiment except for the parts described below.
  • the collective connecting pipe and the divided connecting pipe which will be described later, are illustrated with priority given to explaining the connection mode of the divided areas. Unlike the actual situation, the pipe diameter and the pipe length are illustrated. In FIG. 3 and FIG. 4, the divided connecting pipes are shown so as not to overlap each other.
  • the heat exchanger 101 of the second embodiment has an inlet header 119 that is divided into a plurality of rooms (particularly three as an example) by partition walls as a lower header of the windward row, and further distributes.
  • the distributor 131 is disposed on the downstream side of the plate fin and tube type heat exchange unit 5 and on the upstream side of the parallel flow type heat exchange unit 3 when the heat exchanger 101 functions as an evaporator. More specifically, the inlet header 119 has an inlet end 119a for each of a plurality of rooms, and the outlet end 27b of the heat transfer pipe 27 of the plate fin-and-tube heat exchanger 5 and the distributor 131 are: Each of a plurality of (three) inlet ends 119a of the inlet header 119 and the distributor 131 correspond to each of a plurality (three) of divided connecting pipes 129b. They are connected by a split connecting pipe 129b. The divided connecting pipe 129b functions as a capillary tube.
  • the row-crossing header 123 is also divided into a plurality (three) of at least the front row side corresponding to the entrance header 119.
  • the refrigerant flows out of the plate fin and tube type heat exchanging unit 5 and then is branched into three by the distributor 131, which is a parallel flow type. It flows into the three rooms of the inlet header 119 at the bottom of the windward side row of the heat exchange unit 3. Thereafter, the heat exchange pipe 11 is moved up, moved between the rows by the row-crossing header 123, flows down the heat exchange pipe 13, and then flows out from the outlet header 21 of the row on the leeward side.
  • the following advantages can be obtained. Since the interior of the header attached to the lower part of the windward row of the parallel flow type heat exchange section 3 is divided into three, the size of each room in the header is reduced, and refrigerant distribution adjustment in the header is easy can do. Further, by adjusting the length of each of a plurality of capillary tubes (divided connecting pipes) connecting between the distributor and the header, the refrigerant distribution can be made uniform. In addition, the distributor and capillary tube have a large pressure loss inside the tube, so when functioning as an evaporator, the evaporation temperature of the plate fin and tube heat exchanger can be raised, and frost growth under the heat exchanger is suppressed. can do.
  • FIG. 5 is a diagram showing an outline of the refrigeration cycle air conditioner according to the third embodiment
  • FIG. 6 is a plan view schematically showing an outdoor unit of the refrigeration cycle air conditioner according to the third embodiment. .
  • the refrigeration cycle air conditioner 251 includes a refrigeration cycle circuit including at least a compressor 253, an outdoor heat exchanger 255, a throttle device (expansion valve) 257, and an indoor heat exchanger 259.
  • the arrow of FIG. 5 has shown the flow direction of the refrigerant
  • the refrigeration cycle air conditioner 251 is provided with a fan 261 that blows air to each of the outdoor heat exchanger 255 and the indoor heat exchanger 259, and a drive motor 263 that rotates the fan 261.
  • the outdoor unit 351 in the refrigeration cycle air conditioner 251 is divided into a machine room 367 and a blower room 369 by a partition plate 365 inside the housing.
  • a compressor 253 is accommodated in the machine room 367, and an outdoor heat exchanger 255 and a fan 261 are accommodated in the blower room 369.
  • the heat exchanger 1 of Embodiment 1 or the heat exchanger 101 of Embodiment 2 described above is used for one or both of the outdoor heat exchanger 255 and the indoor heat exchanger 259. It has been. Thereby, an energy efficient refrigeration cycle air conditioner can be realized.
  • the effect can be achieved in refrigerants such as R410A, R32, and HFO1234yf.
  • coolant was shown as a working fluid, even if it uses other gas, a liquid, and a gas-liquid mixed fluid, there exists the same effect.
  • heat exchangers 1 and 101 described in the first and second embodiments can exhibit the same effects even when used in an indoor unit.
  • 1,101 heat exchanger 1,101 heat exchanger, 3 parallel flow type heat exchange part, 5 plate fin and tube type heat exchange part, 7 front row part, 9 back row part, 11, 13 heat exchange pipe, 17 fin, 19, 119 inlet header (lower part Header), 21 outlet header (lower header), 23 cross-over header (upper header), 25 plate fins, 27 heat transfer pipe, 129a collective connection pipe, 129b split connection pipe, 131 distributor, 251 refrigeration cycle air conditioner, 253 Compressor, 255 outdoor heat exchanger, 257 throttle device, 259 indoor heat exchanger, 261 fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 熱交換器1は、上下方向に延びる複数の熱交換パイプ11,13を有するパラレルフロー型熱交換部3を備えており、パラレルフロー型熱交換部は、少なくとも前列部分7と後列部分9とを含んでおり、前列部分及び後列部分はそれぞれ、上下方向に延びる複数の熱交換パイプを有しており、パラレルフロー型熱交換部における前面の下部の前方には、それぞれが上下方向に延びる複数のプレートフィン25を有するプレートフィンアンドチューブ型熱交換部5が配置されており、プレートフィンアンドチューブ型熱交換部の出口端と、パラレルフロー型熱交換部の入口端とが、配管によって接続されている。

Description

熱交換器およびこれを用いた冷凍サイクル空調装置
 本発明は、熱交換器およびこれを用いた冷凍サイクル空調装置に関するものである。
 熱交換器においては、着霜に起因した熱交換能力の低下がしばしば問題となる。このような問題に関連した発明としては、例えば、特許文献1に開示された熱交換器がある。この熱交換器では、熱交換部を前後に分離し且つ前後方向に重ねて配置し、それら一対の熱交換部の間と、熱交換部の上下それぞれにある一対のヘッダ部の間とのそれぞれに、隙間を確保する。
 このような熱交換器によれば、前後何れか一方の熱交換部が着霜によって通気性を失っても、隙間を通る空気の流れを介して他方の熱交換部では、最小限の熱交換機能が得られるように企図されている。
特開平8-226727号公報(第1図)
 しかしながら、上述した従来の熱交換器では、蒸発器として用いられた場合に着霜そのものの成長を抑制することは考慮されてなく、そして、熱交換器下部においていったん生じた着霜を除霜することは困難であるという問題があった。
 本発明は、上記に鑑みてなされたものであり、熱交換器下部に堆積する霜の成長を抑制することが可能な熱交換器を提供することを目的とする。
 上述した目的を達成するための本発明は、上下方向に延びる複数の熱交換パイプを有するパラレルフロー型熱交換部を備えた熱交換器であって、前記パラレルフロー型熱交換部は、少なくとも前列部分と後列部分とを含んでおり、前記前列部分及び前記後列部分はそれぞれ、前記上下方向に延びる複数の熱交換パイプを有しており、前記パラレルフロー型熱交換部における前面の下部の前方には、それぞれが上下方向に延びる複数のプレートフィンを有するプレートフィンアンドチューブ型熱交換部が配置されており、前記プレートフィンアンドチューブ型熱交換部の出口端と、前記パラレルフロー型熱交換部の入口端とが、配管によって接続されている。
 本発明によれば、熱交換器下部に堆積する霜の成長を抑制することができる。
本発明の実施の形態1に係る熱交換器の正面図である。 本実施の形態1に係る熱交換器の側面図である。 本発明の実施の形態2に関する、図1と同態様の図である。 本実施の形態2に関する、図2と同態様の図である。 本発明の実施の形態3に係る冷凍サイクル空調装置の概要を示す図である。 本実施の形態3に係る冷凍サイクル空調装置の室外機を模式的に示す平面図である。
 以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。また、説明における方向は、意図する通気の上流側を「前」、下流側を「後」、重力の作用する向きを「下」、その逆向きを「上」、さらに、それら前後方向及び上下方向(重力方向)の双方に直交する方向を「左右」として行う。図2を例に示すと、図2の紙面上下が、説明における上下方向、図2の紙面左側及び右側がそれぞれ、前側及び後側、図2の紙面の表裏方向が左右方向となる。なお、図2中における参照符号WDは、通気の風向き示している。
 実施の形態1.
 図1及び図2はそれぞれ、本発明の実施の形態1に係る熱交換器の正面図及び側面図である。熱交換器1は、冷凍サイクル空調装置の室外機に使用されるアルミ製熱交換器である。
 熱交換器1は、パラレルフロー型熱交換部3を備える。熱交換器1におけるパラレルフロー型熱交換部3の前方には、プレートフィンアンドチューブ型熱交換部5が設けられている。
 まず、パラレルフロー型熱交換部3は、前後方向に相互に分離し且つ前後方向に並ぶ前列部分7と後列部分9とを含んでいる。前列部分7及び後列部分9はそれぞれ、上下方向に延びる複数の熱交換パイプ11,13を有している。熱交換パイプ11,13は、左右方向から潰されたような扁平管である。前列部分7の複数の熱交換パイプ11は、左右方向に並んでおり、また、後列部分9の複数の熱交換パイプ13もまた、左右方向に並んでいる。それら前列部分7の複数の熱交換パイプ11と、後列部分9の複数の熱交換パイプ13との間には、前後方向に隙間15を確保されており、熱交換パイプ11と熱交換パイプ13と前後に離れている。また、一例であるが、熱交換パイプ11の本数と、熱交換パイプ13の本数とは同じである。
 複数の熱交換パイプ11,13の間には、フィン17が設けられている。具体的には、フィン17は、コルゲートフィンであり、隣り合う一対のフィンの間のそれぞれにおいて、左右に蛇行しながら上下方向に延びている。換言すると、フィン17は、その左側の熱交換パイプと、その右側の熱交換パイプとに対して、交互に接触するように波形に形成されている。
 また、熱交換パイプ11,13は前後二列を配列されているが、フィン17は前後方向に関し一列である。つまり、ひと続きのコルゲートフィンは、前列部分7における対応する一対の熱交換パイプ11の間に位置していると共に、後列部分9における対応する一対の熱交換パイプ13の間に位置している。フィン17は前列部分7の熱交換パイプ11よりも風上方向に突出しており、すなわち、フィン17の前縁部は、前列部分7の熱交換パイプ11の前端よりも前方に位置している。
 前列部分7の下部には、前列部分7側の下部ヘッダである入口ヘッダ19が設けられており、後列部分9の下部には、後列部分9側の下部ヘッダである出口ヘッダ21が設けられている。前列部分7及び後列部分9の上部には、列跨ぎヘッダ23が設けられている。前列部分7及び後列部分9は、それぞれの上部ヘッダとして、同じ列跨ぎヘッダ23を共有している。なお、入口ヘッダ19、出口ヘッダ21及び列跨ぎヘッダ23はそれぞれ、一室で構成されている。このように、前列部分7及び後列部分9の下部ヘッダは、列毎に分割して設けられており、前列部分7及び後列部分9の上部ヘッダは、列を跨いで一体的に設けられている。
 また、機能的にみると、パラレルフロー型熱交換部3の下部に配置される入口ヘッダ19及び出口ヘッダ21は、風上側の列では熱交換パイプへの分配を均一にする機構、風下側の列では、ガスを集結させる機構を持っており、パラレルフロー型熱交換部3全体でみると、下部ヘッダが列毎に分割されている。一方、パラレルフロー型熱交換部3の上部に配置される列跨ぎヘッダ23は、冷媒が列間を移動できる機構を有しており、パラレルフロー型熱交換部3全体でみると、上部ヘッダが2列分一体で設けられている。
 前列部分7の熱交換パイプ11の下端は、入口ヘッダ19に接続されており、前列部分7の熱交換パイプ11の上端は、列跨ぎヘッダ23に接続されている。また、後列部分9の熱交換パイプ13の下端は、出口ヘッダ21に接続されており、後列部分9の熱交換パイプ13の上端は、列跨ぎヘッダ23に接続されている。
 プレートフィンアンドチューブ型熱交換部5は、パラレルフロー型熱交換部3における前面の下部の前方に配置されており、より詳細には、前列部分7の前面の下部の前方であって入口ヘッダ19の上方に配置されている。プレートフィンアンドチューブ型熱交換部5の最下部(プレートフィン25の最下部)は、パラレルフロー型熱交換部3のフィン17の最下部と入口ヘッダ19との間に位置している。
 プレートフィンアンドチューブ型熱交換部5は、複数のプレートフィン25と、少なくとも1パスを構成するための伝熱パイプ27とを有している。
 複数のプレートフィン25は、それぞれが上下方向に延び、左右方向にほぼ平行に並べられている。また、複数のプレートフィン25の後部は、パラレルフロー型熱交換部3のフィン17の下部の前端に当接また接近している。
 伝熱パイプ27は、図示例では1パスをなす1本の円管であり、左右方向に蛇行するように複数のプレートフィン25を貫通して上下方向に延びている。蒸発器として機能する場合の冷媒入口となる、伝熱パイプ27の入口端27aは、プレートフィン25の下部に配置されており、蒸発器として機能する場合の冷媒出口となる、伝熱パイプ27の出口端27bは、プレートフィン25の上部に配置されている。なお、伝熱パイプ27としては、パラレルフロー型熱交換部3のパス数よりも少なければ、複数のパスをなすべく複数本の円管が用いられていても良い。また、伝熱パイプ27は、上記1本または複数本の円管(プレートフィンアンド円チューブ型)に代えて、1本または複数本の扁平管(プレートフィンアンド偏平チューブ型)であってもよい。
 プレートフィンアンドチューブ型熱交換部5と、パラレルフロー型熱交換部3とは、繋ぎ配管29によって接続されている。すなわち、プレートフィンアンドチューブ型熱交換部5の伝熱パイプ27の出口端27bには、繋ぎ配管29の一端が接続され、パラレルフロー型熱交換部3における入口ヘッダ19の入口端19aには、繋ぎ配管29の他端が接続されている。
 次に、冷媒の流れについて説明する。なお、図1及び図2に示された矢印は、熱交換器1が蒸発器として機能する場合の冷媒の流れを模式的に示すものである。したがって、熱交換器1が凝縮器として機能する場合は、冷媒は、当該矢印と反対向きに流れることとなる。熱交換器1が蒸発器として使用された場合(例えば室外機に設けられ暖房運転されている場合)、冷媒は、プレートフィンアンドチューブ型熱交換部5を1パスで下から上へと流れて、プレートフィンアンドチューブ型熱交換部5から流出し、繋ぎ配管29を通った後、パラレルフロー型熱交換部3の入口ヘッダ19に流入する。入口ヘッダ19内の冷媒は、風上側である前列部分7の複数の熱交換パイプ11を下から上へと流れる。すなわち、熱交換パイプ11の本数と同じ数であるパス数に分離して前列部分7を上昇した後、列跨ぎヘッダ23に流入する。さらに、冷媒は、列跨ぎヘッダ23に流入した後、風下側である後列部分9の複数の熱交換パイプ13を上から下へと流れる。すなわち、熱交換パイプ13の本数と同じ数であるパス数で後列部分9を流下した後、出口ヘッダ21に流入し、最終的に熱交換器1から流出する。
 以上のように構成された本実施の形態1においては、次のような利点が得られる。熱交換器1では、プレートフィンアンドチューブ型熱交換部5が設けられているため、着霜が生じる得る運転時に、入口ヘッダ19とフィン17とから凝縮水がプレートフィン25へと誘導される。つまり、凝縮水は、排水性の良いプレートフィンアンドチューブ型熱交換部5に主に集まるため、熱交換器1の下部に根氷が積層することを防ぐことができる。
 また、プレートフィンアンドチューブ型熱交換部5のパス数は、パラレルフロー型熱交換部3のパス数よりも少なくなっており、冷媒が通るパイプ内の圧力損失は、プレートフィンアンドチューブ型熱交換部5の方がパラレルフロー型熱交換部3よりも大きい。よって、パラレルフロー型熱交換部3の蒸発温度よりも、プレートフィンアンドチューブ型熱交換部5の蒸発温度は高くなり、運転時の着霜量は低下し、熱交換器1の下部に霜が集中することを抑制することができる。また、熱交換器1が凝縮器として用いられた場合に、過冷却部の流速を上げ、管内熱伝達率を向上させることができ、熱交換器効率が向上する。
 さらに、熱交換器1が蒸発器として用いられた場合、プレートフィンアンドチューブ型熱交換部5の入口は、プレートフィンアンドチューブ型熱交換部5の最下部に設けられているため、熱交換器1の最下部の温度を上昇させることができ、それによっても、着霜量を抑えることができる。
 また、パラレルフロー型熱交換部3に用いられるフィン17は、前後2列の熱交換パイプ11,13に対して一体で成形されているので、熱交換パイプ11,13のレイアウトを各列が平行となる態様で前後2列設ける際、その組み立て性を向上させることができる。
また、フィン17における前後の列間となる部位には、熱遮断用の切り込みが設けられており、それにより、熱交換パイプ11,13間の温度差による熱移動を抑制でき、熱交換器効率を向上させることができる。
 また、フィン17は、熱交換パイプ11に対し風上方向に突き出されて固定されているので、フィン17の前縁部の温度を、空気温度に近づけ、着霜運転時にフィン17の前縁部に霜が集中することを避けることができる。
 また、本実施の形態1として、熱交換器1を用いた熱交換方法を挙げることができ、本熱交換方法において、熱交換器1が蒸発器として機能する場合、冷媒と空気とは、概ね並行して流動(同じ向きに流動)し(巨視的にみて冷媒も空気も前から後に向かって流れ)、冷媒は圧力損失により流れ方向に対し蒸発温度が低下し、空気も流れ方向に温度が低下するので、冷媒と空気との温度差が小さくなる。一方、凝縮器として機能する場合、冷媒と空気とは概ね対向して流動(逆向きに流動)し(空気は前から後に向かって流れ、冷媒は巨視的にみて後から前に向かって流れ)、冷媒は過熱、2相、過冷却域で流れ方向に対し温度が低下し、空気は流れ方向に対し温度は上昇するので、冷媒と空気との温度差は小さくなる。これによっても、熱交換器効率は向上する。換言すれば、熱交換器1は、パラレルフロー型熱交換部3及びプレートフィンアンドチューブ型熱交換部5にわたる冷媒流路として、蒸発器として機能する場合に冷媒と空気とが前後方向に関し同じ向きに進行し且つ凝縮器として機能する場合に冷媒と空気とが前後方向に関し逆向きに進行する冷媒流路を有する。
 実施の形態2.
 次に、図3及び図4をもとに本発明の実施の形態2に係る熱交換器について説明する。図3および図4はそれぞれ、本実施の形態2に関する、図1及び図2と同態様の図である。なお、本実施の形態2は、以下に説明する部分を除いては、上記実施の形態1と同様であるものとする。また、後述する集合繋ぎ配管及び分割繋ぎ配管は、分割されたエリアの接続態様を説明することを優先して図示するものであり、実際の様子とは異なり、管径の図示や管の長さの正確性は省略すると共に、あえて図3及び図4の何れにおいても分割繋ぎ配管同士が重ならないように図示している。
 本実施の形態2の熱交換器101は、風上側の列の下部ヘッダとして、内部を隔壁により複数(具体的一例としては3つ)の部屋に分割された入口ヘッダ119を有し、さらに分配器131を有する。
 分配器131は、熱交換器101が蒸発器として機能するときでいう、プレートフィンアンドチューブ型熱交換部5の下流側であってパラレルフロー型熱交換部3の上流側に配置されている。より詳細には、入口ヘッダ119は、複数の部屋ごとに入口端119aを有しており、プレートフィンアンドチューブ型熱交換部5の伝熱パイプ27の出口端27bと、分配器131とは、1本の集合繋ぎ配管129aで接続され、入口ヘッダ119の複数(3つ)の入口端119aのそれぞれと、分配器131とは、複数(3つ)の分割繋ぎ配管129bのうちのそれぞれ対応する分割繋ぎ配管129bによって接続されている。分割繋ぎ配管129bはキャピラリーチューブとして機能する。なお、列跨ぎヘッダ123もまた、少なくとも前列側は、入口ヘッダ119に対応して複数(3つ)に区画されている。
 このような本実施の形態2では、熱交換器101が蒸発器として機能する場合、冷媒は、プレートフィンアンドチューブ型熱交換部5を流出した後、分配器131により3分岐され、パラレルフロー型熱交換部3の風上側の列の下部にある入口ヘッダ119の3つの部屋に流入する。その後、熱交換パイプ11内を上昇し、列跨ぎヘッダ123にて列間を移動し、熱交換パイプ13内を流下後、風下側の列の出口ヘッダ21から流出する。
 このような本実施の形態2においては、実施の形態1の上述した利点に加え、次のような利点が得られる。パラレルフロー型熱交換部3の風上側の列の下部に付設されるヘッダの内部が3分割されているため、ヘッダ内の各部屋の大きさが小さくなり、ヘッダ内の冷媒分配調整を容易にすることができる。また、分配器とヘッダとの間を結ぶ複数のキャピラリーチューブ(分割繋ぎ配管)それぞれの長さを調整することで、冷媒分配を均一化することも可能となる。また、分配器及びキャピラリーチューブでは管内圧力損失が大きいため、蒸発器として機能する場合、プレートフィンアンドチューブ型熱交換部の蒸発温度を上昇させることができ、熱交換器下部の霜の成長を抑制することができる。
 実施の形態3.
 次に、図5及び図6をもとに本発明の実施の形態3に係る冷凍サイクル空調装置について説明する。図5は、本実施の形態3に係る冷凍サイクル空調装置の概要を示す図であり、図6は、本実施の形態3に係る冷凍サイクル空調装置の室外機を模式的に示す平面図である。
 冷凍サイクル空調装置251は、図5に示されるように、少なくとも圧縮機253、室外熱交換器255、絞り装置(膨張弁)257、室内熱交換器259を含む冷凍サイクル回路を備えている。なお、図5の矢印は、冷房運転を行う場合の冷媒の流れ方向を示している。また、冷凍サイクル空調装置251には、室外熱交換器255及び室内熱交換器259のそれぞれに対して送風を行うファン261と、それらファン261を回転させる駆動モータ263とが設けられている。
 冷凍サイクル空調装置251における室外機351は、筐体の内部が仕切板365によって、機械室367と、送風室369とに分けられる。機械室367には、圧縮機253が収容されており、送風室369には、室外熱交換器255やファン261が収容されている。
 本実施の形態3では、それら室外熱交換器255及び室内熱交換器259の一方、又は、双方に、上述した実施の形態1の熱交換器1又は実施の形態2の熱交換器101が用いられている。これにより、エネルギ効率の高い冷凍サイクル空調装置を実現することができる。なお、エネルギ効率は、次式で構成されるものである。
   暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
   冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
 また、コルゲートフィンが用いられたパラレルフロー型熱交換部の場合は、左右方向の両端に配管が少なく、室外機におけるファンの風上側の筐体面のほぼ全体に、熱交換器(パラレルフロー型熱交換部)を配置することができるため、熱交換器を折り曲げずに十分な実装面積を確保することができ、それによっても、熱交換効率を大きくすることができる利点がある。なお、熱交換器1,101を室内機に適用した場合も、室内機におけるファンの風上側の筐体面のほぼ全体に、熱交換器(パラレルフロー型熱交換部)を配置することができ、同様な利点が得られる。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 まず、上述した実施の形態1及び2で述べた熱交換器1,101およびそれを用いた冷凍サイクル空調装置251については、R410A、R32、HFO1234yf等の冷媒においてその効果を達成することができる。
 また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。
 また、上述した実施の形態1及び2で述べた熱交換器1,101は、室内機で用いた場合においても、同様な効果を奏することができる。
 また、上述した実施の形態1及び2で述べた熱交換器1,101およびそれを用いた冷凍サイクル空調装置251については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒に油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。
 また、本発明の他の活用例としては、製造が容易で、熱交換性能を向上し、省エネルギ性能を向上することが必要なヒートポンプ装置に使用することを挙げることができる。
 1,101 熱交換器、3 パラレルフロー型熱交換部、5 プレートフィンアンドチューブ型熱交換部、7 前列部分、9 後列部分、11,13 熱交換パイプ、17 フィン、19,119 入口ヘッダ(下部ヘッダ)、21 出口ヘッダ(下部ヘッダ)、23 列跨ぎヘッダ(上部ヘッダ)、25 プレートフィン、27 伝熱パイプ、129a 集合繋ぎ配管、129b 分割繋ぎ配管、131 分配器、251 冷凍サイクル空調装置、253 圧縮機、255 室外熱交換器、257 絞り装置、259 室内熱交換器、261 ファン。

Claims (11)

  1.  上下方向に延びる複数の熱交換パイプを有するパラレルフロー型熱交換部を備えた熱交換器であって、
     前記パラレルフロー型熱交換部は、少なくとも前列部分と後列部分とを含んでおり、
     前記前列部分及び前記後列部分はそれぞれ、前記上下方向に延びる複数の熱交換パイプを有しており、
     前記パラレルフロー型熱交換部における前面の下部の前方には、それぞれが上下方向に延びる複数のプレートフィンを有するプレートフィンアンドチューブ型熱交換部が配置されており、
     前記プレートフィンアンドチューブ型熱交換部の出口端と、前記パラレルフロー型熱交換部の入口端とが、配管によって接続されている、
    熱交換器。
  2.  前記プレートフィンアンドチューブ型熱交換部の最下部は、前記パラレルフロー型熱交換部のフィンの最下部と前記前列部分の下部ヘッダとの間に位置している、
    請求項1の熱交換器。
  3.  前記プレートフィンアンドチューブ型熱交換部の伝熱パイプには、円管が用いられている、
    請求項1または2の熱交換器。
  4.  前記プレートフィンアンドチューブ型熱交換部のパス数は、前記パラレルフロー型熱交換部のパス数よりも少ない、
    請求項1~3の何れか一項の熱交換器。
  5.  蒸発器として機能する場合の冷媒入口となる、前記伝熱パイプの入口端は、前記プレートフィンの下部に配置されている、
    請求項1~4の何れか一項の熱交換器。
  6.  前記熱交換器は、蒸発器として機能する場合に冷媒と空気とが前後方向に関し同じ向きに進行し且つ凝縮器として機能する場合に冷媒と空気とが前後方向に関し逆向きに進行する冷媒流路を有する、
    請求項1~5の何れか一項の熱交換器。
  7.  前記パラレルフロー型熱交換部のフィンは前記前列部分の前記熱交換パイプよりも風上方向に突出している、
    請求項1~6の何れか一項の熱交換器。
  8.  前記前列部分及び前記後列部分の下部ヘッダは、列毎に分割して設けられており、前記前列部分及び前記後列部分の上部ヘッダは、列を跨いで一体的に設けられている、
    請求項1~7の何れか一項の熱交換器。
  9.  前記前列部分の前記下部ヘッダの内部は、隔壁により複数の部屋に分割され、該下部ヘッダは、前記複数の部屋ごとに入口端を有しており、
     前記プレートフィンアンドチューブ型熱交換部と前記前列部分の前記下部ヘッダとの間には、分配器が設けられており、
     前記プレートフィンアンドチューブ型熱交換部の出口端と前記分配器とは、集合繋ぎ配管で接続されており、前記下部ヘッダの複数の前記入口端のそれぞれと、前記分配器とは、複数の分割繋ぎ配管のうちのそれぞれ対応する該分割繋ぎ配管によって接続されている、
    請求項8の熱交換器。
  10.  圧縮機、室外熱交換器、膨張弁、室内熱交換器を含む冷凍サイクル回路を備えた冷凍サイクル空調装置であって、
     請求項1~9の何れか一項の熱交換器が、前記室外熱交換器及び前記室内熱交換器の一方、又は、双方に用いられている、
    冷凍サイクル空調装置。
  11.  前記パラレルフロー型熱交換部のフィンは、コルゲートフィンであり、
     前記パラレルフロー型熱交換部は、対応する前記室外熱交換器及び前記室内熱交換器におけるファンの風上側の筐体面の全体に配置されている、
    請求項10の冷凍サイクル空調装置。
PCT/JP2013/058995 2013-03-27 2013-03-27 熱交換器およびこれを用いた冷凍サイクル空調装置 WO2014155560A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015507767A JP6157593B2 (ja) 2013-03-27 2013-03-27 熱交換器およびこれを用いた冷凍サイクル空調装置
PCT/JP2013/058995 WO2014155560A1 (ja) 2013-03-27 2013-03-27 熱交換器およびこれを用いた冷凍サイクル空調装置
EP13880586.6A EP2980516B1 (en) 2013-03-27 2013-03-27 Heat exchanger and refrigeration cycle air conditioner using same
CN201420141694.6U CN203798027U (zh) 2013-03-27 2014-03-27 换热器以及使用该换热器的冷冻循环空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058995 WO2014155560A1 (ja) 2013-03-27 2013-03-27 熱交換器およびこれを用いた冷凍サイクル空調装置

Publications (1)

Publication Number Publication Date
WO2014155560A1 true WO2014155560A1 (ja) 2014-10-02

Family

ID=51380232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058995 WO2014155560A1 (ja) 2013-03-27 2013-03-27 熱交換器およびこれを用いた冷凍サイクル空調装置

Country Status (4)

Country Link
EP (1) EP2980516B1 (ja)
JP (1) JP6157593B2 (ja)
CN (1) CN203798027U (ja)
WO (1) WO2014155560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470074A (zh) * 2018-05-11 2019-11-19 开利公司 换热器、热泵系统和换热方法
US11573056B2 (en) 2018-07-11 2023-02-07 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168630B1 (ko) * 2013-11-05 2020-10-21 엘지전자 주식회사 냉장고의 냉각 사이클
CN104236057B (zh) * 2014-09-17 2022-03-11 珠海格力电器股份有限公司 一种窗机
EP3644002B1 (en) * 2017-06-22 2021-07-28 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle device, and air conditioner
JP6765144B1 (ja) * 2019-07-18 2020-10-07 株式会社 エコファクトリー 換気空調構造

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226727A (ja) 1995-02-22 1996-09-03 Nippondenso Co Ltd ヒートポンプ用熱交換器
JPH11201685A (ja) * 1998-01-08 1999-07-30 Mitsubishi Electric Corp 熱交換器装置
JP2000329486A (ja) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd フィン付き熱交換器
JP2003114065A (ja) * 2001-07-30 2003-04-18 Daikin Ind Ltd 室外熱交換器および空気調和機
JP2010002102A (ja) * 2008-06-19 2010-01-07 Sharp Corp 熱交換器ユニット及びそれを備えた空気調和機
JP2010107103A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
JP2010127510A (ja) * 2008-11-26 2010-06-10 Sharp Corp 熱交換器
WO2012035845A1 (ja) * 2010-09-16 2012-03-22 シャープ株式会社 空気調和機の室内機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296046U (ja) * 1976-01-14 1977-07-18
JPH0642885Y2 (ja) * 1987-07-30 1994-11-09 富士重工業株式会社 冷凍装置の蒸発装置
JP4300502B2 (ja) * 2000-06-30 2009-07-22 株式会社ティラド パラレルフロー型空調用熱交換器
JP4889011B2 (ja) * 2006-07-20 2012-02-29 株式会社B.T.P. 冷暖房空調システム
KR20130093596A (ko) * 2010-07-13 2013-08-22 이너테크 아이피 엘엘씨 전자 장비를 냉각하기 위한 시스템들 및 방법들

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226727A (ja) 1995-02-22 1996-09-03 Nippondenso Co Ltd ヒートポンプ用熱交換器
JPH11201685A (ja) * 1998-01-08 1999-07-30 Mitsubishi Electric Corp 熱交換器装置
JP2000329486A (ja) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd フィン付き熱交換器
JP2003114065A (ja) * 2001-07-30 2003-04-18 Daikin Ind Ltd 室外熱交換器および空気調和機
JP2010002102A (ja) * 2008-06-19 2010-01-07 Sharp Corp 熱交換器ユニット及びそれを備えた空気調和機
JP2010107103A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
JP2010127510A (ja) * 2008-11-26 2010-06-10 Sharp Corp 熱交換器
WO2012035845A1 (ja) * 2010-09-16 2012-03-22 シャープ株式会社 空気調和機の室内機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470074A (zh) * 2018-05-11 2019-11-19 开利公司 换热器、热泵系统和换热方法
US11573056B2 (en) 2018-07-11 2023-02-07 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPWO2014155560A1 (ja) 2017-02-16
CN203798027U (zh) 2014-08-27
EP2980516A4 (en) 2016-12-07
EP2980516B1 (en) 2018-01-31
EP2980516A1 (en) 2016-02-03
JP6157593B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP6641721B2 (ja) 熱交換器および空気調和機
WO2012114719A1 (ja) 空気調和機用熱交換器
JP2012163328A5 (ja)
US20100006276A1 (en) Multichannel Heat Exchanger
WO2007017969A1 (ja) 空気調和機及び空気調和機の製造方法
JP6157593B2 (ja) 熱交換器およびこれを用いた冷凍サイクル空調装置
EP3021064B1 (en) Heat pump device
EP3156752B1 (en) Heat exchanger
JP6223596B2 (ja) 空気調和装置の室内機
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP5608478B2 (ja) 熱交換器及びそれを用いた空気調和機
KR20150119982A (ko) 열교환기
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
JP5404571B2 (ja) 熱交換器及び機器
WO2019130394A1 (ja) 熱交換器および冷凍サイクル装置
JP2015014397A (ja) 熱交換器
JP5664272B2 (ja) 熱交換器及び空気調和機
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
WO2021131038A1 (ja) 熱交換器および冷凍サイクル装置
JP6548824B2 (ja) 熱交換器および冷凍サイクル装置
JP2017048953A (ja) 空気調和機
WO2016092655A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013880586

Country of ref document: EP