WO2014155484A1 - 点火制御装置および点火制御方法 - Google Patents

点火制御装置および点火制御方法 Download PDF

Info

Publication number
WO2014155484A1
WO2014155484A1 PCT/JP2013/058560 JP2013058560W WO2014155484A1 WO 2014155484 A1 WO2014155484 A1 WO 2014155484A1 JP 2013058560 W JP2013058560 W JP 2013058560W WO 2014155484 A1 WO2014155484 A1 WO 2014155484A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
timing
pulse
ignition coil
energization
Prior art date
Application number
PCT/JP2013/058560
Other languages
English (en)
French (fr)
Inventor
真嗣 白石
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2015507712A priority Critical patent/JP5908164B2/ja
Priority to PCT/JP2013/058560 priority patent/WO2014155484A1/ja
Priority to US14/763,959 priority patent/US10359020B2/en
Priority to CN201380073553.3A priority patent/CN105008712B/zh
Priority to EP13880232.7A priority patent/EP2982858A4/en
Publication of WO2014155484A1 publication Critical patent/WO2014155484A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/151Digital data processing using one central computing unit with means for compensating the variation of the characteristics of the engine or of a sensor, e.g. by ageing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit

Definitions

  • the present invention relates to an ignition control device and an ignition control method for an internal combustion engine.
  • a so-called transistor-magnet type ignition control device is known as a kind of induction discharge type ignition control device for a single internal combustion engine (Patent Document 1).
  • This type of ignition control device operates using electric power generated by an ignition coil as the internal combustion engine rotates as a power source, and starts and stops energization of the ignition coil based on a pulse signal generated by the ignition coil. ) To control. Then, the fuel mixture introduced into the cylinder of the internal combustion engine is ignited by applying a high voltage generated when the ignition coil is stopped to the ignition plug to generate a discharge.
  • This type of ignition control device includes circuit elements such as a capacitor, a Zener diode, and a transistor, and each circuit constant is set in advance so as to obtain a desired ignition timing.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an ignition control device and an ignition control method capable of stabilizing an ignition operation even when the rotational speed of an internal combustion engine changes. .
  • the ignition control for generating the voltage supplied to the ignition plug provided in the internal combustion engine in the ignition coil based on the pulse signal induced in the ignition coil as the internal combustion engine rotates.
  • a switching element for energizing and opening the ignition coil, a timing for opening the ignition coil in response to the first pulse of the pulse signal, and a second pulse following the first pulse.
  • a controller for controlling the switch element to open the ignition coil based on the opening timing acquired in response to the first pulse and energizing the ignition coil in response to the ignition.
  • the control unit determines whether or not the timing of energization of the ignition coil and the timing of opening are reversed, and when the result of the determination is negative, Based on the opening timing acquired in response to the first pulse, the ignition coil is opened, and when the result of the determination is affirmative, the ignition coil is opened based on a predetermined timing.
  • the switch element is controlled.
  • the opening timing of the ignition coil when the opening timing of the ignition coil is later than the energization timing, the opening timing of the ignition coil and the energization timing are not reversed.
  • the ignition coil opening timing is earlier than the energization timing, it is determined that the ignition coil opening timing and the energization timing are reversed.
  • the control unit releases the ignition coil. It is determined that the timing conflicts with the energization timing.
  • the control unit determines that the opening timing of the ignition coil competes with the energization timing
  • the timing after the trailing edge of the second pulse is set to the predetermined timing.
  • the switch element is controlled so as to open the ignition coil.
  • the ignition control for generating the voltage supplied to the ignition plug provided in the internal combustion engine in the ignition coil based on the pulse signal induced in the ignition coil as the internal combustion engine rotates.
  • a power generation unit for generating a power supply voltage required for the operation of the ignition control device from a pulse signal induced in the ignition coil, and a first polarity from the pulse signal induced in the ignition coil
  • a first polarity pulse signal detection unit for detecting a first pulse of the first pulse, and a second polarity pulse signal detection unit for detecting a second pulse of the second polarity following the first pulse from the pulse signal induced in the ignition coil
  • a switch element for energizing and opening the ignition coil, and the internal combustion engine in response to the first pulse
  • the control unit acquires a rotation speed of the internal combustion engine based on the first pulse generated by the first polarity pulse signal detection unit;
  • the rotational speed determination unit that determines whether or not the rotational speed of the internal combustion engine acquired by the rotational speed acquisition unit is equal to or greater than the predetermined value, and the determination result of the rotational speed determination unit is affirmative
  • An ignition timing acquisition unit that acquires and outputs the opening timing of the ignition coil based on the first pulse, and the energization timing and the opening timing of the ignition coil are reversed in response to the second pulse.
  • An ignition control signal generation unit that generates the ignition control signal so as to stop energization of the ignition coil based on the determined timing, and the ignition timing acquisition unit has a negative determination result of the state determination unit
  • the release timing acquired based on the first pulse is maintained and output, and the determination result of the state determination unit is affirmative, the release timing acquired based on the first pulse is output.
  • a predetermined timing is acquired and output, and the ignition control signal generator generates the ignition coil at the opening timing when the opening timing arrives before the determination by the state determination unit.
  • the ignition control signal is generated so as to start energization.
  • control unit energizes the ignition coil in response to the second pulse and opens the ignition coil. Control the switch element.
  • the ignition control for generating the voltage supplied to the ignition plug provided in the internal combustion engine in the ignition coil based on the pulse signal induced in the ignition coil as the internal combustion engine rotates.
  • An ignition control method is proposed that includes at least a control step of opening the ignition coil based on the opening timing acquired in response to a pulse.
  • the ignition operation of the ignition coil can be stabilized.
  • FIG. 1 is a block diagram schematically showing an example of the configuration of an ignition control device 100 according to an embodiment of the present invention.
  • the ignition control device 100 causes the ignition coil 200 to generate a voltage to be supplied to the ignition plug 300 of the internal combustion engine based on a pulse signal obtained from a voltage induced in the ignition coil 200 as the internal combustion engine (not shown) rotates.
  • the power generation unit 110, the positive pulse signal detection unit (first polarity pulse signal detection unit) 120, the negative pulse signal detection unit (second polarity pulse signal detection unit) 130, the control unit 140, the drive unit 150, A switch element 160 is provided.
  • the primary side coil L1 of the ignition coil 200 is connected to the output part of the ignition control device 100, and the ignition plug 300 is connected to the secondary side coil L2. Further, the primary coil L1 of the ignition coil 200 is disposed adjacent to the outer peripheral portion of the flywheel of the internal combustion engine (not shown). A magnetic plate (not shown) for inducing a pulse signal in the primary coil L1 of the ignition coil 200 is attached to the outer periphery of the flywheel. When the internal combustion engine rotates and the flywheel rotates, a pulse signal P (described later) including a pulse train of “positive pulse-negative pulse-positive pulse” in the primary coil L1 of the ignition coil 200 in each rotation period. FIG. 8) is induced.
  • Polar pulse is referred to as a first pulse P1
  • a negative pulse (second polarity pulse) following the first pulse P1 is referred to as a second pulse P2
  • a positive pulse following the second pulse P2 is referred to as a third pulse P3.
  • the pulse signal P includes a pulse train of “positive pulse-negative pulse-positive pulse”, but the polarity (positive / negative) and the number of pulses constituting this pulse train are not limited to this, and are arbitrary. It is.
  • the power generator 110 generates a pulse of the first pulse P1 and the third pulse P3 that are positive pulses from among the pulses included in the pulse signal P induced in the primary coil L1 of the ignition coil 200.
  • the power supply voltage VDD required for the operation of each unit is generated.
  • the power generation unit 110 may be configured integrally with the control unit 140.
  • the positive pulse signal detector 120 detects the first pulse P1 and the third pulse P3 from the pulse signal P induced in the primary coil L1 of the ignition coil 200 and outputs the positive pulse signal PP.
  • the positive pulse signal PP includes a first pulse P1 'and a third pulse P3' corresponding to the first pulse P1 and the third pulse P3 included in the pulse signal P, respectively (FIGS. 5 to 8).
  • the negative pulse signal detector 130 detects the second pulse P2 following the first pulse P1 from the pulse signal P induced in the primary coil L1 of the ignition coil 200, and outputs a negative pulse signal PN. .
  • the negative pulse signal PN includes a second pulse P2 'corresponding to the second pulse P2 included in the pulse signal P (FIGS. 5 to 8).
  • the pulse signal P induced in the ignition coil 200 is mainly used as a trigger for processing related to ignition control, and as long as the first pulse P1 ′, the second pulse P2 ′, and the third pulse P3 ′ are Are equivalent to the first pulse P1, the second pulse P2, and the third pulse P3, respectively, included in the pulse signal P. Therefore, hereinafter, unless otherwise specified, the first pulse P1 and the first pulse P1 ′ are referred to as “first pulse P1”, and the second pulse P2 and the second pulse P2 ′ are referred to as “second pulse P2”.
  • the third pulse P3 and the third pulse P3 ′ are referred to as “third pulse P3” and are not distinguished from each other.
  • the first pulse P1 and the third pulse P3 mean positive pulses included in the pulse signal P induced in the ignition coil 200.
  • the control unit 140 generates an ignition control signal F for controlling the switch element 160 in accordance with the rotational speed of the internal combustion engine.
  • the control unit 140 is realized by, for example, a microcomputer (abbreviation of a microcomputer), and the function of the control unit 140 is realized by software of the microcomputer, but is not limited to this example. It may be realized by hardware, and the realization method is arbitrary.
  • the control unit 140 acquires the rotational speed of the internal combustion engine in response to the first pulse P1, and determines whether or not the rotational speed of the internal combustion engine is equal to or higher than a predetermined value, thereby igniting according to the rotational speed. Implement control.
  • the predetermined value means a lower limit value of the rotation speed during high-speed rotation.
  • This lower limit value can be arbitrarily set according to the characteristics of the internal combustion engine.
  • the predetermined value is not limited to the lower limit value of the rotation speed at the time of high speed rotation, and can be arbitrarily set up to stabilize the ignition operation at the time of high speed rotation.
  • Ignition control for controlling the switch element 160 to energize the ignition coil 200 in response to the pulse P2 and to open the ignition coil 200 based on the opening timing acquired in response to the first pulse P1.
  • the signal F is output.
  • the ignition control signal F is output to the drive unit 150. Note that, for example, the positive pulse signal detection unit 120 and the negative pulse signal detection unit 130 described above may be configured integrally with the control unit 140.
  • the drive unit 150 is a buffer for driving the switch element 160 based on the ignition control signal F input from the control unit 140, and for turning on / off the switch element 160 according to the signal level of the ignition control signal F.
  • the drive signal D is output to the control terminal of the switch element 160.
  • the driving unit 150 may be configured integrally with the control unit 140.
  • the switch element 160 is driven by the drive unit 150 to energize and open the ignition coil 200.
  • energization of the ignition coil 200 means that a current is passed through the primary coil L1 based on the voltage induced in the primary coil L1, and the opening of the ignition coil 200 is the primary coil. This means that the current flowing through L1 is cut off.
  • the switch element 160 is an npn transistor, the emitter of this npn transistor is connected to the positive terminal of the primary coil L1 of the ignition coil 200, and the collector thereof is the primary coil of the ignition coil 200. It is connected to the negative terminal of L1.
  • the base of the npn transistor that forms the control terminal of the switch element 160 is connected to the output unit of the drive unit 150, and the drive signal D is applied from the drive unit 150.
  • the switch element 160 is turned on based on the drive signal D, the primary coil L1 of the ignition coil 200 is energized.
  • the switch element 160 is turned off, the primary coil L1 of the ignition coil 200 is opened and the energization is stopped. . That is, energization and release of the ignition coil 200 are controlled in accordance with on / off of the switch element 160.
  • an arbitrary device can be used as the switch element 160 without being limited to the npn transistor.
  • FIG. 2 is a block diagram schematically showing an example of the configuration of the control unit 140.
  • the control unit 140 includes a rotation speed acquisition unit 141, a rotation speed determination unit 142, an ignition timing acquisition unit 143, a state determination unit 144, and an ignition control signal generation unit 145.
  • the rotational speed acquisition unit 141 acquires the rotational speed RV of the internal combustion engine from the positive pulse signal PP including the first pulse P1 detected by the positive pulse signal detection unit 120.
  • the rotation speed determination unit 142 determines whether or not the rotation speed RV of the internal combustion engine acquired by the rotation speed acquisition unit 141 is equal to or higher than the predetermined value, and outputs the speed determination result RVJ.
  • the ignition timing acquisition unit 143 determines the first pulse P1 included in the positive pulse signal PP. Based on this, the opening timing of the ignition coil 200 is acquired, and ignition timing data FA indicating this timing is output.
  • the state determination unit 144 When the speed determination result RVJ of the rotation speed determination unit 142 is positive, that is, when the rotation speed RV is a predetermined value or more and the rotation of the internal combustion engine is a high speed rotation, the state determination unit 144 outputs the second pulse P2. In response to this, a time-series state between the energization timing and the release timing of the ignition coil 200 is determined, and the state determination result ST is output. Specifically, the state determination unit 144 determines whether or not the timing of energizing the ignition coil 200 and the timing of opening are reversed, or whether these timings are in conflict. Determine whether.
  • the state where the timing of energization of the ignition coil 200 and the timing of opening are reversed means that the timing of opening is before the timing of energization.
  • the state in which the timing of energization of the ignition coil 200 and the timing of opening are competing means a state in which the relationship between the timing of energization and the timing of opening cannot be determined.
  • the state in which the energization timing and the release timing are in conflict means that the release timing has arrived during the process for energization and the process for energization is performed. If not, it indicates a state in which the control unit 140 cannot perform the process for determining the prior relationship between the energization timing and the release timing.
  • the state in which the energization timing and the release timing are competing there are a state in which the energization timing and the release timing are coincident with each other, or a state in which they are close to each other.
  • the present invention is not limited to this example, and any state may be used as long as the relationship between the energization timing and the opening timing cannot be determined.
  • the state determination unit 144 performs the state determination at the above-described timing using a microcomputer flag (ignition control flag, compare interrupt factor flag). Details thereof will be described later.
  • the ignition timing acquisition unit 143 acquires based on the first pulse P1. The above opening timing is maintained and output.
  • the state determination result ST of the state determination unit 144 is affirmative, that is, when the energization timing and the release timing are reversed or competing, the ignition timing acquisition unit 143 generates the first pulse P1. Instead of the opening timing acquired based on the above, a predetermined timing after the positive determination is newly acquired, and ignition timing data FB indicating the predetermined timing is output.
  • the ignition timing acquisition unit 143 of the control unit 140 determines that the timing of opening the ignition coil 200 and the timing of energization are reversed or competing, after the trailing edge of the second pulse P2.
  • the timing is acquired as the predetermined timing.
  • the present invention is not limited to this example, and the predetermined timing may be any time after it is determined that the opening timing of the ignition coil 200 and the timing of energization are reversed or competing. It can be arbitrarily set according to the above.
  • the ignition control signal generation unit 145 generates an ignition control signal F for controlling energization and opening of the ignition coil 200 via the switch element 160.
  • the ignition control signal generation unit 145 basically starts energization of the ignition coil 200 in response to the second pulse P2 (P2 ′) included in the negative pulse signal PN, and generates an ignition timing acquisition unit. Based on the timing indicated by the ignition timing data FA or the ignition timing data FB input from 143, the ignition control signal F is generated so as to stop the energization of the ignition coil 200.
  • the above-described release timing comes before the determination by the state determination unit 144, or the release timing and the energization timing conflict.
  • the ignition control signal generation unit 146 generates the ignition control signal F so as to start energization of the ignition coil 200 at the above opening timing. Accordingly, when the energization timing and the release timing are reversed, the energization of the ignition coil 200 is performed before the second pulse P2 is generated, and when the release timing and the energization timing conflict, This is performed immediately after the generation of the two pulses P2. Further, the signal level of the ignition control signal F becomes a low level at the timing of starting energization of the ignition coil 200, and the timing of stopping energization of the ignition coil 200 based on the ignition timing data output from the ignition timing reacquisition unit 145. It is generated to become high level.
  • the ignition coil 200 is energized while the ignition control signal F is at a low level.
  • the signal level of the ignition control signal F is an example for explanation, and can be arbitrarily set in accordance with the electrical characteristics of the drive unit 150 and the switch element 160 in the subsequent stage.
  • the control unit 140 determines the positive pulse signal PP.
  • the ignition control signal F is generated and output so that the ignition coil 200 is energized and opened in response to the second pulse P2 included in the. That is, in this case, both energization and release of the ignition coil 200 are controlled in response to the second pulse P2.
  • the present invention is not limited to this example, and either or both of energization and release can be controlled according to the first pulse P1.
  • first pulse P1 positive pulse
  • second pulse P2 negative pulse
  • third pulse P3 A pulse signal P including a pulse train of “positive pulse” is induced in the primary coil L 1 of the ignition coil 200.
  • the power generation unit 110 generates the power supply voltage VDD using the voltages of the first pulse P1 and the third pulse P3, which are positive pulses, among the pulses included in the pulse signal P induced in the ignition coil 200, and generates a positive pulse.
  • the signal detection unit 120, the negative pulse signal detection unit 130, the control unit 140, and the drive unit 150 are supplied.
  • the power supply voltage VDD is a voltage generated using the first pulse P1 and the third pulse P3, if the first pulse P1 and the third pulse P3 disappear, as shown in FIGS. Although the voltage gradually decreases with the elapse of time, the voltage is sufficient for the control unit 140 and the like to operate in each rotation cycle.
  • the positive pulse signal detection unit 120 and the negative pulse signal detection unit 130 operate with the power supply voltage VDD supplied from the power generation unit 110, and generate a positive pulse signal PP and a negative pulse signal PN from the pulse signal P, respectively. That is, the positive pulse signal detector 120 detects the first pulse P1 and the third pulse P3, which are positive pulses, from the pulse signal P, and the first pulse P1 ′ and the first pulse P1 ′ corresponding to the first pulse P1 and the third pulse P3. A positive pulse signal PP including the third pulse P3 ′ is generated and output to the control unit 140.
  • the negative pulse signal detector 130 detects a second pulse P2 that is a negative pulse from the pulse signal P, and generates and controls a negative pulse signal PN including a second pulse P2 ′ corresponding to the second pulse P2. Output to the unit 140.
  • the control unit 140 operates with the power supply voltage VDD supplied from the power generation unit 110. In general, the control unit 140 determines the opening timing of the ignition coil 200 in response to the first pulse P1 ′ included in the positive pulse signal PP. Obtaining and obtaining the energization timing of the ignition coil 200 in response to the second pulse P2 ′, and controlling energization and release of the ignition coil 200 according to these timings. In this control, the control unit 140 performs a first process for obtaining the opening timing of the ignition coil 200 in response to the first pulse P1 ′ of the positive pulse signal PP corresponding to the first pulse P1 of the pulse signal P. carry out.
  • control unit 140 energizes the primary coil of the ignition coil 200 in response to the second pulse P2 ′ of the negative pulse signal PN corresponding to the second pulse P2 following the first pulse P1. Then, a second process for opening the ignition coil 200 is performed based on the opening timing acquired in response to the first pulse P1 ′.
  • the 1st process which the control part 140 implements is demonstrated along the flowchart of FIG. FIG. 3 is a flowchart showing the flow of the first process performed by the control unit 140.
  • the rotation speed acquisition unit 141 constituting the control unit 140 acquires the rotation speed RV of the internal combustion engine.
  • the rotational speed acquisition unit 141 uses the time interval T2 of the first pulse P1 ′ (P1) shown in FIGS. 5 to 8 as the rotational speed RV, that is, the first pulse in the previous rotational cycle of the internal combustion engine.
  • the time (cycle) from the rise of P1 ′ (P1) to the rise of the first pulse P1 ′ (P1) in the current rotation cycle is acquired.
  • the rotational speed of the internal combustion engine is represented by the number of revolutions per minute, but has a correspondence relationship with the time interval T2 of the first pulse P1 ′ (P1). 141 acquires the time interval T2 of the first pulse P1 ′ (P1) as the rotational speed RV of the internal combustion engine.
  • rotation speed RV represented by the time interval T2 is referred to as “rotation speed RV (T2)”.
  • step S12 the rotation speed determination unit 142 of the control unit 140 determines whether or not the rotation of the internal combustion engine is a high speed rotation from the rotation speed RV (T2) acquired by the rotation speed acquisition unit 141. . Specifically, the rotational speed determination unit 142 compares the predetermined value indicating the lower limit value of the rotational speed during high-speed rotation with the rotational speed RV (T2), and the rotational speed RV (T2) is the predetermined value. If it is above, it will determine with rotation of an internal combustion engine being high speed rotation (step S12: YES).
  • step S13 the ignition timing acquisition unit 143 constituting the control unit 140 responds to the first pulse P1 ′ included in the positive pulse signal PP.
  • the ignition timing data FA is acquired based on the rotational speed RV (T2), and this is output to the ignition control signal generator 145.
  • the ignition timing data FA is data representing the opening timing of the ignition coil 200 with reference to the first pulse P1 ′ (P1), that is, the desired ignition timing.
  • P1 ′ P1
  • the time from the time t2 to the ignition time t5 is schematically represented by the waveform height FAH representing the ignition timing data FA, but the ignition timing data FA is from the time t2 to the ignition time t5. Data representing the time until.
  • the ignition timing data FA is appropriately set according to the rotational speed RV (T2).
  • the ignition timing data FA is made into a table corresponding to the rotational speed RV (T2), and the ignition timing acquisition unit 143 refers to the table based on the rotational speed RV (T2) to thereby determine the ignition timing data.
  • Get FA the time from the time t2 to the ignition time t5
  • the ignition timing data FA is set so that the time from the rising time t2 of the first pulse P1 ′ (P1) shown in FIG. 5 to the ignition time t5 becomes shorter as the rotational speed RV (T2) is faster.
  • the lower the rotational speed RV (T2) the longer the time from the rising time t2 of the first pulse P1 ′ (P1) shown in FIG. 5 to the ignition time t5 is set.
  • Such a correspondence relationship between the ignition timing data FA and the rotational speed RV (T2) can be arbitrarily set, and the ignition timing can be appropriately set with respect to the rotational speed RV (T2) of the internal combustion engine. Therefore, it is possible to stabilize the ignition operation as compared with the case where the ignition timing is set by the circuit constant as in the conventional technique described above.
  • the ignition timing data FA when the ignition timing data FA is acquired, “1” is set as the value of the ignition control flag of the microcomputer constituting the control unit 140, and the ignition timer of the microcomputer for specifying the ignition timing is ignited. A value indicated by the timing data FA is set. The value of the ignition control flag described above is reset to “0” when the timer value of the ignition timer reaches the value indicated by the ignition timing data FA. Therefore, it can be determined from the value of the ignition control flag whether or not ignition has been performed. Specifically, if the value of the ignition control flag is “0”, it is understood that the opening timing has already arrived and ignition has been performed.
  • step S12 If it is determined in step S12 that the rotation of the internal combustion engine is not a high speed rotation (step S12: NO), that is, if it is a low speed rotation, the process in step S13 described above is not performed and the first process ends. .
  • the value of the ignition control flag of the microcomputer constituting the control unit 140 is “0”.
  • FIG. 4 is a flowchart showing the flow of the second process performed by the control unit 140.
  • the second process includes processes related to the following four types of controls A to D in accordance with the rotational speed RV (T2) of the internal combustion engine and the ignition timing data FA acquired in the first process.
  • Control A Control when the rotation of the internal combustion engine is at high speed and the order of energization timing and ignition timing is normal (S12: YES to S21: NO to S22: NO to S23).
  • Control B Control when the internal combustion engine rotates at high speed and the order of energization timing and ignition timing is reversed (S12: YES to S21: YES to S25).
  • Control C Control when the rotation of the internal combustion engine is at high speed and the order of energization timing and ignition timing is competing (S12: YES to S21: NO to S22: YES to S24).
  • Control D Control when the internal combustion engine rotates at a low speed (step S12: NO to S26 to S27 to S28).
  • Control A The operation of the control unit 140 related to the control A will be described with reference to the timing chart of FIG.
  • FIG. 5 is a timing chart for explaining the operation of the ignition control device 100.
  • step S12 of the first process described above in response to the first pulse P1 ′ (P1) included in the positive pulse signal PP at time t2, the rotational speed determination unit 142 It determines with rotation of an internal combustion engine being high speed rotation (step S12: YES).
  • step S13 of the first process described above the ignition timing acquisition unit 143 acquires the ignition timing data FA, and outputs the ignition timing data FA to the ignition control signal generation unit 145.
  • step S21 the state determination unit 144 configuring the control unit 140 responds to the second pulse P2 ′ (P2) included in the positive pulse signal PP at time t3, and whether ignition has ended before energization. Determine whether or not. That is, the control unit 140 performs the ignition coil 200 in response to the second pulse P2 ′ (P2) and the ignition coil 200 indicated by the ignition timing data FA acquired in the first process. It is determined whether or not the timing of opening is reversed. When the opening timing of the ignition coil 200 indicated by the ignition timing data FA is later than the energization timing of the ignition coil 200, the control unit 140 indicates that the ignition coil opening timing and the energization timing are not reversed. If the timing of opening the ignition coil 200 is earlier than the timing of energization, it is determined that the timing of opening the ignition coil 200 and the timing of energization are reversed.
  • the state determination unit 144 can determine whether or not ignition has ended before energization from the value of the microcomputer ignition control flag set when the ignition timing data FA was acquired in the first process described above.
  • the value of the ignition control flag is maintained at the value “1” set in the first process at time t3. From this value, it is understood that ignition has not ended before energization. Accordingly, in step S21, the state determination unit 144 determines that ignition has not ended before energization if the value of the ignition control flag of the microcomputer is maintained at “1” at time t3 (step S21: NO). ).
  • step S22 the state determination unit 144 determines the release timing indicated by the ignition timing data FA acquired by the ignition timing acquisition unit 143 and the second pulse P2 ′ (P2) included in the negative pulse signal PN. It is determined whether or not the timing of energization performed in response conflicts. Regarding this determination method, as will be described below, it is determined whether or not timing conflict has occurred using the value of the compare interrupt factor flag (interrupt processing flag) of the microcomputer constituting the control unit 140. be able to.
  • the value of this compare interrupt factor flag is set to “1” when an ignition process request is generated at the opening timing indicated by the value of the ignition timing data FA (height FAH in FIG. 5), and thereafter, for a certain period of time. It is reset to “0” when elapses. At this time, the value of the ignition control flag is also reset to “0” together with the compare interrupt factor flag.
  • the state determination unit 144 is a compare interrupt for controlling the opening of the ignition coil 200 in the processing period for the control unit 140 to control the start of energization of the ignition coil 200 in response to the second pulse P2 ′ (P2).
  • the value of the factor flag is “1”
  • it is determined that the opening timing of the ignition coil 200 conflicts with the energization timing step S22: YES.
  • the state determination unit 144 determines whether the ignition coil 200 is energized. It is determined that there is a conflict between the opening timing and the opening timing, and the timing ahead of these timings cannot be determined.
  • the state determination unit 144 performs the timing in response to the second pulse P2 ′ (P2).
  • the value of the compare interrupt factor flag is “0”, and the value of the ignition control flag is “1”.
  • the state determination unit 144 makes a negative determination that there is no competition between the energization timing and the release timing (step S22: NO), and notifies the ignition timing acquisition unit 143 of the state determination result ST to that effect. Output.
  • the ignition timing acquisition unit 143 maintains and outputs the ignition timing data FA output to the ignition control signal generation unit 145 in the first process described above.
  • step S23 the ignition control signal generator 145 starts energization of the ignition coil 200 at time t4 in response to the second pulse P2 ′ (P2) included in the negative pulse signal PN at time t3.
  • the ignition control signal F is generated.
  • the drive unit 150 of FIG. As a result, the primary coil L1 of the ignition coil 200 is energized.
  • the ignition control signal generation unit 145 corresponds to the opening timing indicated by the ignition timing data FA input from the ignition timing acquisition unit 143.
  • the ignition control signal F is generated so that the ignition coil 200 is opened to stop energization.
  • the drive unit 15 of FIG. In response to this ignition control signal F, the drive unit 15 of FIG. As a result, the primary coil L1 of the ignition coil 200 is opened, the energization is stopped, and ignition is performed. As described above, when both the determination results of step S21 and step S22 are negative, that is, when ignition is not finished before energization and timing of energization and release is not competing, the first pulse P1 is set. Based on the ignition timing data FA acquired in response, the ignition coil 200 is opened to stop energization, and ignition is performed by stopping the energization. As described above, according to the control A, energization is started in response to the second pulse P2, and stop (ignition) of energization is controlled according to the ignition timing acquired in response to the first pulse P1.
  • FIG. 6 is a timing chart for explaining the operation of the ignition control device 100.
  • the control unit 140 in the case where the rotation of the internal combustion engine is at a high speed and the order of the energization timing and the release timing is reversed. It is a timing chart for explaining control operation. Such a reversal of timing may occur, for example, due to a rapid decrease in the rotational speed of the internal combustion engine.
  • the operation in the control B is indicated by the ignition timing data FA before the time t3, that is, the operation in the case where it is determined in step S21 of the control A that the energization timing and the release timing are completely reversed. This corresponds to the operation when the opening timing is reached.
  • the ignition control signal generator 145 when the order of energization timing and release timing is reversed and ignition ends before energization, that is, when the opening timing arrives before energization, the ignition acquired in the first process described above.
  • the ignition control signal generator 145 generates and outputs the ignition control signal F so that energization is started at the opening timing indicated by the value of the timing data FA (height FAH in FIG. 6).
  • the energization is started at the time t5A before the time t3. At this time, the value of the ignition control flag of the microcomputer Is reset to “0”.
  • step S21 the state determination unit 144 constituting the control unit 140 ends ignition before energization at time t4 in response to the second pulse P2 ′ (P2) included in the negative pulse signal PN at time t3. Determine whether or not.
  • the state determination unit 144 determines whether ignition has ended before energization from the value of the ignition control flag of the microcomputer set in the first process described above at time t4. Specifically, in step S21, when the value of the ignition control flag is “0” at time t4, the state determination unit 144 determines that ignition has ended before energization (step S21: YES). State determination result ST is output. In this case, the value of the compare interrupt factor flag does not matter.
  • step S25 the ignition timing acquisition unit 143 newly replaces the ignition timing data FA output in the first process with a predetermined value after the trailing edge of the second pulse P2, which is a negative pulse, for example. And the ignition timing data FB indicating the predetermined timing is output.
  • the ignition timing data FB is data representing the opening timing of the ignition coil 200 based on the time t4 for determining whether or not the ignition has ended before energization from the value of the ignition control flag.
  • 6 is data representing the time from time t4 to ignition time t7 corresponding to a predetermined timing.
  • the time from the time t4 to the ignition time t7 is schematically represented by the height FBH of the waveform representing the ignition timing data FB.
  • the predetermined timing may be after the determination that the opening timing of the ignition coil 200 and the timing of energization are reversed or competing, depending on the characteristics of the internal combustion engine and the like. It can be set arbitrarily.
  • the ignition control signal generation unit 145 opens the ignition coil 200 at a time t7 corresponding to a predetermined timing indicated by the value of the ignition timing data FB (height FBH in FIG. 6) input from the ignition timing acquisition unit 143.
  • An ignition control signal F is generated so as to stop energization.
  • the drive unit 150 in FIG. 1 outputs a low level as the drive signal D, and the switch element 160 is turned off. As a result, the primary coil L1 of the ignition coil 200 is opened and energization is stopped.
  • the control B when ignition ends before energization, energization is started at the end timing of this ignition. Then, regardless of the rotational speed RV, the energization of the primary coil L1 of the ignition coil 200 is stopped at a predetermined timing, and ignition is forcibly performed.
  • the predetermined timing is set after the trailing edge of the second pulse P2
  • the energy of the primary coil L1 of the ignition coil 200 is released in a state where energy is released from the ignition coil 200. Energization is stopped. For this reason, even if energization of the primary side coil L1 is stopped, the discharge required for ignition does not occur, and an unstable ignition operation due to the residual energy of the ignition coil 200 can be prevented.
  • the control B when the opening timing acquired in response to the first pulse P1 in the first process is reversed from the energization timing, the predetermined timing newly acquired in response to the second pulse P2 Thus, the ignition coil 200 is opened and the energization is stopped.
  • FIG. 7 is a timing chart for explaining the operation of the ignition control device 100, and the control operation when the rotation of the internal combustion engine is at a high speed and the order of the energization timing and the release timing conflicts. It is a timing chart for doing. Such timing competition can occur, for example, due to a gradual decrease in the rotational speed of the internal combustion engine.
  • the operation in the control C is the operation in the case where it is determined in step S22 of the control A described above that the energization timing and the opening timing are in conflict, that is, the opening timing specified by the ignition timing data FA.
  • the ignition time t5B specified by the ignition timing data FA is after the time t3 at the leading edge of the second pulse P2 that triggers the second process and before the time t4 when energization starts. It is located within the energization processing period.
  • step S22 the state determination unit 144 constituting the control unit 140 determines whether or not the energization timing and the release timing compete at time t4 in response to the second pulse P2 ′ (P2). judge. For example, it is possible to determine whether or not the ignition timing and the energization timing compete from the values of the ignition control flag and the compare interrupt factor flag of the microcomputer constituting the control unit 140. In the control C, since the timing of energization and the timing of release compete, the ignition is not finished at the time t4, the value of the ignition control flag remains “1”, and the time At t4, the value of the compare interrupt factor flag is also set to “1”.
  • step S22 the state determination unit 144 determines that the energization timing and the release timing compete at time t4 (step S22: YES), and outputs a state determination result ST to that effect.
  • the ignition control signal generation unit 145 performs the release indicated by the value of the ignition timing data FA acquired in the first process (height FAH in FIG. 7), as in the case of the control B described above.
  • the ignition control signal F is generated and output so that energization is started at time t5B corresponding to the timing of.
  • the ignition timing acquisition unit 143 newly determines in step S24 that the energization timing and the release timing are competing instead of the ignition timing data FA.
  • Ignition timing data FB indicating the predetermined timing is generated and output.
  • the ignition control signal generation unit 145 responds to the second pulse P2 ′ (P2), and is a predetermined value indicated by the value of the ignition timing data FB input from the ignition timing acquisition unit 143 (height FBH in FIG. 7).
  • the ignition control signal F is generated and output so that the ignition coil 200 is opened and the energization is stopped at time t7 corresponding to the above timing.
  • the energization is performed at the time when the timing conflict is determined as in the case of the control B. Is started, and the energization of the ignition coil 200 is stopped at a predetermined timing thereafter.
  • FIG. 8 is a timing chart for explaining the operation of the ignition control device 100, and is a timing chart for explaining the control operation when the rotation of the internal combustion engine is a low speed rotation.
  • the operation in the control D is performed when it is determined in step S12 that the rotation of the internal combustion engine is not a high speed rotation (step S12: NO), that is, when the rotation of the internal combustion engine is determined to be a low speed rotation. Corresponds to the action.
  • step S12 of the first process described above the rotational speed determination unit 142 responds to the first pulse P1 included in the positive pulse PP at time t2 in response to the first pulse P1 (P1
  • the rotational speed RV (T2) of the internal combustion engine is acquired from the time interval T2 of '). From the rotation speed RV (T2), the rotation speed determination unit 142 determines that the rotation of the internal combustion engine is not a high speed rotation (step S12: NO).
  • step S26 the ignition control signal generation unit 146 generates an ignition control signal F having a signal level for starting energization of the ignition coil 200 at time t4 in response to the second pulse P2 ′ (P2). Then, energization of the ignition coil 200 is started by the switch element 160.
  • step S27 the rotation speed acquisition unit 141 responds to the second pulse P2 ′ (P2) included in the negative pulse signal PN at time t3, and the first pulse P1 ′ (P1) included in the pulse signal PP. ) And the second pulse P2 ′ (P2) included in the negative pulse signal PN is acquired as the rotation speed RV (that is, the time from the rise of the first pulse P1 ′ to the rise of the second pulse P2 ′). To do.
  • the rotational speed RV represented by the time interval T1 is referred to as “rotational speed RV (T1)”.
  • step S ⁇ b> 28 the ignition timing acquisition unit 143 acquires ignition timing data FA corresponding to the rotation speed RV (T ⁇ b> 1), and outputs the ignition timing data FA to the ignition timing acquisition unit 143.
  • the ignition timing data FA in this case is data indicating an ignition timing set in advance according to the rotational speed RV of the internal combustion engine represented by the rotational speed RV (T1).
  • the ignition control signal generation unit 145 responds to the second pulse P2 ′ included in the negative pulse signal PN, and the value of the ignition timing data FA input from the ignition timing acquisition unit 143 (the height of FIG. 8).
  • the ignition control signal F having a signal level for stopping the energization by opening the ignition coil 200 at the time t5 designated by FAH) is generated.
  • the control D the energization and release timings of the ignition coil 200 are acquired in response to the second pulse P2, and the energization and release of the ignition coil 200 are controlled.
  • FIG. 9 is a diagram for supplementarily explaining the operation of the state determination unit 144.
  • FIG. 9A shows the relationship among the pulse signal P, the ignition control signal F, the ignition control flag FLG1, and the compare interrupt factor flag FLG2 in the above-described control A (the situation where timing reversal and competition do not occur during high-speed rotation). It is a figure which shows an example, and is a figure for supplementarily explaining operation
  • the value of the ignition control flag FLG1 is set at time t2A. Set to “1”. Thereafter, when the release timing set in the first process arrives at time t5, the value of the compare interrupt factor flag FLG2 is set to “1”, and the value of the compare interrupt factor flag FLG2 is set to “0” after a predetermined time has elapsed. To "”. At this time, the value of the ignition control flag FLG1 is also reset to “0” together with the compare interrupt factor flag FLG2.
  • the value of the ignition control flag FLG1 is “1” near the leading edge (near time t3) of the second pulse P2 in which the determination by the state determination unit 144 (steps S21 and S22) is performed.
  • the value of the flag FLG2 is “0”.
  • FIG. 9B shows an example of the relationship among the pulse signal P, the ignition control signal F, the ignition control flag FLG1, and the compare interrupt factor flag FLG2 in the above-described control B (a situation where the timing is reversed during high-speed rotation). It is a figure shown, and it is a figure for supplementarily explaining operation
  • the value of the ignition control flag FLG1 is set to “1” at time t2A in response to the first pulse P1.
  • the value of the compare interrupt factor flag FLG2 is set to “1”.
  • the control B when the value of the compare interrupt factor flag FLG2 is set to “1” at the time t5A, the signal level of the ignition control signal F is set to a low level, and thereby energization is started.
  • the value of the compare interrupt factor flag FLG2 is reset to “0”.
  • the value of the ignition control flag FLG1 is also reset to “0”.
  • the value of the ignition control flag FLG1 is “0”, and the value of the compare interrupt factor flag FLG2 is also “0”.
  • the combination of the flag values in the control B is different from the combination of the flag values in the control A described above or the control C described later. Therefore, it is possible to determine from the values of the ignition control flag FLG1 and the compare interrupt factor flag FLG2 that the above-described timing reversal has occurred in the state determination unit 144. After this determination, the ignition control signal F is generated so that the ignition coil 200 is opened at time t7 corresponding to a predetermined timing indicated by the value of the ignition timing data FB.
  • the value of the ignition control flag FLG1 becomes “0” only when the timing is reversed. Therefore, in the control B, it is also possible to determine that the timing reversal has occurred from only the value of the ignition control flag FLG1 without referring to the value of the compare interrupt factor flag FLG2. In the description of the operation with reference to FIG. 6 described above, the reverse timing is determined only from the value of the ignition control flag FLG1.
  • FIG. 9C shows an example of the relationship among the pulse signal P, the ignition control signal F, the ignition control flag FLG1, and the compare interrupt factor flag FLG2 in the above-described control C (a situation where timing conflict occurs during high-speed rotation). It is a figure shown, and it is a figure for supplementarily explaining operation
  • the value of the ignition control flag FLG1 is set to “1” at time t2A in response to the first pulse P1.
  • the value of the compare interrupt factor flag FLG2 is set to “1” and energization is started.
  • the value of the ignition control flag FLG1 is “1”, and the value of the compare interrupt factor flag FLG2 is also “1”.
  • the combination of the flag values in the control C is different from the combination of the flag values in the control A and the control B described above. For this reason, it is possible to determine from the values of the ignition control flag FLG1 and the compare interrupt factor flag FLG2 that the above-described timing conflict has occurred in the state determination unit 144. After this determination, the ignition control signal F is generated so that the ignition coil 200 is opened at time t7 corresponding to a predetermined timing indicated by the value of the ignition timing data FB.
  • the ignition timing data is obtained in response to the first pulse P1 ′ included in the positive pulse signal PP. Since energization is started in response to the second pulse P2 ′ acquired and included in the negative pulse signal PN, there is a time margin from when the rotational speed of the internal combustion engine is detected until ignition is performed. Even in the case of rotation, it is possible to secure a processing time for acquiring ignition timing data corresponding to the rotation speed RV. Therefore, the ignition operation at high speed rotation can be stabilized.
  • the control B and the control C since the reversal or competition between the opening timing of the ignition coil 200 and the energization timing is determined and the opening timing data FA and FB are acquired, the rotation speed of the internal combustion engine is rapidly increased. Even in the case of changing to, the ignition operation can be continuously performed, and the ignition operation can be stabilized.
  • the control D when the rotational speed of the internal combustion engine is low, the energization and release of the ignition coil 200 in response to the second pulse P2 ′ that is temporally close to the timing of energization and release of the ignition coil 200. Therefore, the ignition timing can be accurately controlled, and variations in the ignition timing can be suppressed.
  • the timing of opening the ignition coil 200 is acquired in response to the first pulse P1 ′ included in the positive pulse signal PP during high-speed rotation, so that the rotational speed of the internal combustion engine increases. Even so, it is possible to secure the processing time required to acquire the opening timing. For this reason, the opening of the ignition coil can be stably controlled, and the ignition operation can be stabilized.
  • the energization and ignition timings are set in response to the second pulse P2 ', so that the ignition operation can be accurately controlled during low-speed rotation.
  • the present invention is expressed as the ignition control device 100.
  • the present invention can be expressed as an ignition control method by paying attention to the operation of the ignition control device 100.
  • the ignition control method according to the present invention causes the ignition coil to generate a voltage to be supplied to a spark plug provided in the internal combustion engine based on a pulse signal induced in the ignition coil as the internal combustion engine rotates.
  • the opening timing of the ignition coil is acquired in response to the first pulse of the pulse signal, the ignition coil is energized in response to the second pulse following the first pulse, and It includes at least a control step (steps S11 to S13, S12 to S28) for opening the ignition coil based on the opening timing acquired in response to the first pulse.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the rotational speed RV of the internal combustion engine is acquired from the time interval T1 with the pulse P2 ′.
  • the time interval between arbitrary pulses of the first pulse P1 to the third pulse P3 in the previous or previous rotation cycle is obtained.
  • the rotational speed of the current rotational cycle may be used to predict the rotational speed RV from an arbitrary pulse signal included in the pulse signal P.
  • the present invention can be applied to an apparatus and method for controlling ignition of an internal combustion engine.

Abstract

 本発明の一態様による点火制御装置(100)は、内燃機関のイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御装置であって、前記イグニッションコイルを通電し開放するためのスイッチ素子(160)と、前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させるように前記スイッチ素子を制御する制御部(140)と、を少なくとも含む。

Description

点火制御装置および点火制御方法
 本発明は、内燃機関の点火制御装置および点火制御方法に関する。
 単発の内燃機関の誘導放電型点火制御装置の一種として、所謂トランジスタ・マグネト方式の点火制御装置が知られている(特許文献1)。この種の点火制御装置は、内燃機関の回転に伴ってイグニッションコイルにより発電される電力を電源として動作し、前記イグニッションコイルが発生させるパルス信号に基づいて前記イグニッションコイルの通電の開始と停止(開放)を制御する。そして、前記イグニッションコイルの通電が停止されたときに発生する高電圧を点火プラグに印加して放電を発生させることにより、内燃機関のシリンダー内に導入された燃料混合気に点火させる。この種の点火制御装置は、コンデンサ、ツェナーダイオード、トランジスタ等の回路素子から構成され、所望の点火タイミングが得られるように各回路定数が予め設定されている。
2005-307761号公報
 上述の従来技術によれば、点火タイミングを定める回路定数は固定されているため、内燃機関の回転速度が変化すると、適正な点火タイミングが得られなくなるおそれがある。特に、内燃機関の回転速度が高速になる程、各回転周期において、イグニッションコイルの通電の開始と停止の各制御動作を内燃機関の回転速度に追従させることが困難になり、適正な点火タイミングを得ることが困難になる。
 本発明は、上記事情に鑑みてなされたものであり、内燃機関の回転速度が変化しても、点火動作を安定化させることができる点火制御装置および点火制御方法を提供することを目的としている。
 本発明の一態様によれば、内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御装置であって、前記イグニッションコイルを通電し開放するためのスイッチ素子と、前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させるように前記スイッチ素子を制御する制御部と、を少なくとも含む点火制御装置を提案している。
 本発明の一態様によれば、例えば、前記制御部は、前記イグニッションコイルの通電のタイミングと開放のタイミングとが逆転しているか否かを判定し、前記判定の結果が否定的である場合、前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させ、前記判定の結果が肯定的である場合、所定のタイミングに基づいて前記イグニッションコイルを開放させるように、前記スイッチ素子を制御する。
 本発明の一態様によれば、例えば、前記制御部は、前記イグニッションコイルの開放のタイミングが前記通電のタイミングよりも遅い場合、前記イグニッションコイルの開放のタイミングと通電のタイミングとが逆転していない旨の判定を行い、前記イグニッションコイルの開放のタイミングが前記通電のタイミングよりも早い場合、前記イグニッションコイルの開放のタイミングと通電のタイミングとが逆転している旨の判定を行う。
 本発明の一態様によれば、例えば、前記制御部は、前記イグニッションコイルの開放のタイミングが、前記イグニッションコイルの通電の開始を制御するための処理期間内にある場合、前記イグニッションコイルの開放のタイミングが前記通電のタイミングと競合すると判定する。
 本発明の一態様によれば、例えば、前記制御部は、前記イグニッションコイルの開放のタイミングが前記通電のタイミングと競合すると判定した場合、前記第2パルスの後縁以降のタイミングを前記所定のタイミングとして前記イグニッションコイルを開放させるように前記スイッチ素子を制御する。
 本発明の一態様によれば、内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御装置であって、前記イグニッションコイルに誘起されるパルス信号から当該点火制御装置の動作に必要とされる電源電圧を生成する電源生成部と、前記イグニッションコイルに誘起される前記パルス信号から第1極性の第1パルスを検出する第1極性パルス信号検出部と、前記イグニッションコイルに誘起される前記パルス信号から前記第1パルスに続く第2極性の第2パルスを検出する第2極性パルス信号検出部と、前記イグニッションコイルを通電し開放するためのスイッチ素子と、前記第1パルスに応答して前記内燃機関の回転速度を取得し、前記内燃機関の回転速度が所定値以上であるか否かを判定し、前記回転速度が所定値以上である場合、前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させるように前記スイッチ素子を制御するための点火制御信号を出力する制御部と、前記点火制御信号に基づいて前記スイッチ素子を駆動する駆動部と、を少なくとも含む点火制御装置を提案している。
 本発明の一態様によれば、例えば、前記制御部は、前記第1極性パルス信号検出部により生成された前記第1パルスに基づいて前記内燃機関の回転速度を取得する回転速度取得部と、前記回転速度取得部により取得された前記内燃機関の回転速度が前記所定値以上であるか否かを判定する回転速度判定部と、前記回転速度判定部の判定結果が肯定的である場合、前記第1パルスに基づいて前記イグニッションコイルの開放のタイミングを取得して出力する点火タイミング取得部と、前記第2パルスに応答して、前記イグニッションコイルの通電のタイミングと開放のタイミングとが逆転しているか否かを判定する状態判定部と、前記第2パルスに応答して前記イグニッションコイルの通電を開始させ、前記点火タイミング取得部から出力されたタイミングに基づいて前記イグニッションコイルの通電を停止させるように、前記点火制御信号を生成する点火制御信号生成部と、を備え、前記点火タイミング取得部は、前記状態判定部の判定結果が否定的である場合、前記第1パルスに基づいて取得した前記開放のタイミングを維持して出力し、前記状態判定部の判定結果が肯定的である場合、前記第1パルスに基づいて取得した前記開放のタイミングに代えて所定のタイミングを取得して出力し、前記点火制御信号生成部は、前記状態判定部による判定の前に前記開放のタイミングが到来した場合には前記開放のタイミングで前記イグニッションコイルの通電を開始させるように前記点火制御信号を生成する。
 本発明の一態様によれば、例えば、前記制御部は、前記内燃機関の回転速度が前記所定値未満である場合、前記第2パルスに応答して前記イグニッションコイルを通電させ開放させるように前記スイッチ素子を制御する。
 本発明の一態様によれば、内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御方法であって、前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させる制御段階を少なくとも含む点火制御方法を提案している。
 本発明の一態様によれば、イグニッションコイルの点火動作を安定化させることができる。
本発明の実施形態による点火制御装置の構成の一例を概略的に示すブロック図である。 本発明の実施形態による点火制御装置が備える制御部の構成の一例を概略的に示すブロック図である。 本発明の実施形態による点火制御装置の動作(第1処理)の流れを示すフローチャートである。 本発明の実施形態による点火制御装置の動作(第2処理)の流れを示すフローチャートである。 本発明の実施形態による点火制御装置の動作(高速回転時の動作)を説明するためのタイミングチャートである。 本発明の実施形態による点火制御装置の動作(高速回転でタイミングが逆転した場合の動作)を説明するためのタイミングチャートである。 本発明の実施形態による点火制御装置の動作(高速回転でタイミングが競合した場合の動作)を説明するためのタイミングチャートである。 本発明の実施形態による点火制御装置の動作(低速回転時の動作)を説明するためのタイミングチャートである。 本発明の実施形態による点火制御装置が備える状態判定部の動作を補足説明するための図である。
[構成の説明]
 図1は、本発明の実施形態による点火制御装置100の構成の一例を概略的に示すブロック図である。点火制御装置100は、図示しない内燃機関の回転に伴ってイグニッションコイル200に誘起される電圧から得られるパルス信号に基づき、前記内燃機関の点火プラグ300に供給される電圧をイグニッションコイル200に発生させるように構成され、電源生成部110、正パルス信号検出部(第1極性パルス信号検出部)120、負パルス信号検出部(第2極性パルス信号検出部)130、制御部140、駆動部150、スイッチ素子160を備える。
 点火制御装置100の出力部には、イグニッションコイル200の1次側コイルL1が接続され、その2次側コイルL2には点火プラグ300が接続されている。また、イグニッションコイル200の1次側コイルL1は、図示しない内燃機関のフライホイールの外周部に隣接して配置されている。このフライホイールの外周部には、イグニッションコイル200の1次側コイルL1にパルス信号を誘起させるための磁力板(図示なし)が取り付けられている。内燃機関が回転してフライホイールが回転すると、各回転周期において、イグニッションコイル200の1次側コイルL1に“正パルス-負パルス-正パルス”のパルス列を含む後述のパルス信号P(図5~図8)が誘起される。本実施形態では、各回転周期でイグニッションコイル200の1次側コイルL1に誘起されるパルス信号Pに含まれる“正パルス-負パルス-正パルス”のパルス列のうち、先頭の正パルス(第1極性パルス)を第1パルスP1と称し、この第1パルスP1に続く負パルス(第2極性パルス)を第2パルスP2と称し、この第2パルスP2に続く正パルスを第3パルスP3と称す。本実施形態では、パルス信号Pは、“正パルス-負パルス-正パルス”のパルス列を含むものとするが、このパルス列を構成するパルスの極性(正/負)および数はこれに限定されず、任意である。
 電源生成部110は、イグニッションコイル200の1次側コイルL1に誘起されたパルス信号Pに含まれるパルスのうち、正パルスである第1パルスP1および第3パルスP3の電圧から点火制御装置100の各部の動作に必要とされる電源電圧VDDを生成するものである。なお、電源生成部110は、制御部140と一体的に構成されてもよい。
 正パルス信号検出部120は、イグニッションコイル200の1次側コイルL1に誘起されたパルス信号Pから第1パルスP1と第3パルスP3を検出して正パルス信号PPを出力するものである。正パルス信号PPは、パルス信号Pに含まれる第1パルスP1および第3パルスP3にそれぞれ対応する第1パルスP1’および第3パルスP3’を含んでいる(図5~図8)。負パルス信号検出部130は、イグニッションコイル200の1次側コイルL1に誘起されたパルス信号Pから、第1パルスP1に続く第2パルスP2を検出して負パルス信号PNを出力するものである。負パルス信号PNは、パルス信号Pに含まれる第2パルスP2に対応する第2パルスP2’を含んでいる(図5~図8)。
 本実施形態では、イグニッションコイル200に誘起されるパルス信号Pは、主として点火制御に関する処理のトリガーとして使用され、その限りにおいて、第1パルスP1’、第2パルスP2’、第3パルスP3’は、それぞれ、パルス信号Pに含まれる第1パルスP1、第2パルスP2、第3パルスP3と等価である。そこで、以下では、特に明示する場合を除き、第1パルスP1および第1パルスP1’を「第1パルスP1」と称し、第2パルスP2および第2パルスP2’を「第2パルスP2」と称し、第3パルスP3および第3パルスP3’を「第3パルスP3」と称し、これらを区別しない。ただし、電源生成部110については、第1パルスP1および第3パルスP3は、イグニッションコイル200に誘起されるパルス信号Pに含まれる正パルスを意味している。
 制御部140は、内燃機関の回転速度に応じてスイッチ素子160を制御するための点火制御信号Fを生成するものである。本実施形態では、制御部140は例えばマイコン(マイクロコンピュータ(Micro computer)の略称)により実現され、制御部140の機能はマイコンのソフトウェアにより実現されたものとするが、この例に限定されず、ハードウェアにより実現されてもよく、その実現手法は任意である。制御部140は、第1パルスP1に応答して内燃機関の回転速度を取得し、該内燃機関の回転速度が所定値以上であるか否かを判定することにより、その回転速度に応じた点火制御を実施する。本実施形態では、上記所定値は、高速回転時の回転速度の下限値を意味するものとする。この下限値は、内燃機関の特性に合わせて任意に設定し得る。また、上記所定値は、高速回転時の回転速度の下限値に限らず、高速回転時の点火動作を安定化させることを限度として任意に設定し得る。制御部140は、内燃機関の回転速度が上記所定値以上である場合、即ち高速である場合、この回転速度に合わせてイグニッションコイル200の開放のタイミングを取得し、第1パルスP1に続く第2パルスP2に応答してイグニッションコイル200を通電させると共に第1パルスP1に応答して取得した上記の開放のタイミングに基づいてイグニッションコイル200を開放させるように、スイッチ素子160を制御するための点火制御信号Fを出力する。この点火制御信号Fは駆動部150に出力される。なお、上述の例えば正パルス信号検出部120および負パルス信号検出部130は制御部140と一体的に構成されてもよい。
 駆動部150は、制御部140から入力される点火制御信号Fに基づいてスイッチ素子160を駆動するためのバッファであり、点火制御信号Fの信号レベルに応じてスイッチ素子160をオン・オフさせるための駆動信号Dをスイッチ素子160の制御端子に出力するように構成されている。なお、駆動部150は、制御部140と一体的に構成されてもよい。
 スイッチ素子160は、駆動部150により駆動されてイグニッションコイル200を通電し開放するためのものである。本実施形態では、イグニッションコイル200の通電は、1次側コイルL1に誘起された電圧に基づいて1次側コイルL1に電流を流すことを意味し、イグニッションコイル200の開放は、1次側コイルL1に流れる上記電流を遮断することを意味する。本実施形態では、スイッチ素子160はnpn型トランジスタであり、このnpn型トランジスタのエミッタはイグニッションコイル200の1次側コイルL1の正端子に接続され、そのコレクタは、イグニッションコイル200の1次側コイルL1の負端子に接続されている。また、スイッチ素子160の制御端子をなすnpn型トランジスタのベースは駆動部150の出力部に接続され、駆動部150から駆動信号Dが印加される。駆動信号Dに基づきスイッチ素子160がオンすると、イグニッションコイル200の1次側コイルL1が通電され、スイッチ素子160がオフすると、イグニッションコイル200の1次側コイルL1が開放されて通電が停止される。即ち、スイッチ素子160のオン・オフに応じてイグニッションコイル200の通電および開放が制御される。なお、npn型トランジスタに限らず、スイッチ素子160として任意のデバイスを用いることができる。
 図2は、制御部140の構成の一例を概略的に示すブロック図である。
 制御部140は、回転速度取得部141、回転速度判定部142、点火タイミング取得部143、状態判定部144、点火制御信号生成部145を備える。このうち、回転速度取得部141は、正パルス信号検出部120により検出された第1パルスP1を含む正パルス信号PPから内燃機関の回転速度RVを取得するものである。回転速度判定部142は、回転速度取得部141により取得された内燃機関の回転速度RVが上記の所定値以上であるか否かを判定して、その速度判定結果RVJを出力するものである。点火タイミング取得部143は、回転速度判定部142の速度判定結果RVJが肯定的である場合、即ち、回転速度RVが所定値以上である場合、正パルス信号PPに含まれた第1パルスP1に基づいてイグニッションコイル200の開放のタイミングを取得し、このタイミングを示す点火タイミングデータFAを出力するものである。
 状態判定部144は、回転速度判定部142の速度判定結果RVJが肯定的である場合、即ち、回転速度RVが所定値以上であり、内燃機関の回転が高速回転である場合、第2パルスP2に応答して、イグニッションコイル200の通電のタイミングと開放のタイミングとの間の時系列的な状態を判定して、その状態判定結果STを出力するものである。具体的には、状態判定部144は、イグニッションコイル200の通電のタイミングと開放のタイミングとが逆転している状態にあるか否か、または、これらのタイミングが競合している状態にあるか否かを判定する。本実施形態において、イグニッションコイル200の通電のタイミングと開放のタイミングとが逆転している状態とは、開放のタイミングが通電のタイミングの前となっている状態を意味する。また、イグニッションコイル200の通電のタイミングと開放のタイミングとが競合している状態とは、通電のタイミングと開放のタイミングの先後関係を判別できない状態を意味する。本実施形態では、通電のタイミングと開放のタイミングとが競合している状態とは、通電を実施するための処理の期間中に開放のタイミングが到来したことにより、通電を実施するための処理の後でなければ、制御部140が通電のタイミングと開放のタイミングとの先後関係を判別するための処理を実施できない状態を指す。通電のタイミングと開放のタイミングとが競合している状態の例としては、通電のタイミングと開放のタイミングが一致している状態、または近接している状態が挙げられる。ただし、この例に限定されることなく、通電のタイミングと開放のタイミングの先後関係を判別できない状態であれば、どのような状態であってもよい。
 状態判定部144はマイコンのフラグ(点火制御フラグ、コンペア割り込み要因フラグ)を利用して上述のタイミングの状態判定を行う。その詳細については後述する。
 状態判定部144の状態判定結果STが否定的である場合、即ち、通電のタイミングと開放のタイミングとが逆転も競合もしていない場合、点火タイミング取得部143は、第1パルスP1に基づいて取得した上記の開放のタイミングを維持して出力する。これに対し、状態判定部144の状態判定結果STが肯定的である場合、即ち、通電のタイミングと開放のタイミングとが逆転または競合している場合、点火タイミング取得部143は、第1パルスP1に基づいて取得した上記の開放のタイミングに代えて、上記肯定的判定後の所定のタイミングを新たに取得し、この所定のタイミングを示す点火タイミングデータFBを出力する。本実施形態では、制御部140の点火タイミング取得部143は、イグニッションコイル200の開放のタイミングと通電のタイミングとが逆転または競合していると判定された場合、第2パルスP2の後縁以降のタイミングを上記所定のタイミングとして取得する。ただし、この例に限定されず、上記所定のタイミングは、イグニッションコイル200の開放のタイミングと通電のタイミングとが逆転または競合している旨の判定がなされた後であればよく、内燃機関の特性等に応じて任意に設定し得る。
 点火制御信号生成部145は、スイッチ素子160を介してイグニッションコイル200の通電と開放を制御するための点火制御信号Fを生成するものである。具体的には、点火制御信号生成部145は、基本的には、負パルス信号PNに含まれる第2パルスP2(P2’)に応答してイグニッションコイル200の通電を開始させ、点火タイミング取得部143から入力された点火タイミングデータFAまたは点火タイミングデータFBにより示されるタイミングに基づいてイグニッションコイル200の通電を停止させるように、点火制御信号Fを生成する。ただし、本実施形態では、通電のタイミングと開放のタイミングが逆転したことにより、状態判定部144による判定の前に上記の開放のタイミングが到来した場合、または、開放のタイミングと通電のタイミングが競合した場合、点火制御信号生成部146は、上記の開放のタイミングでイグニッションコイル200の通電を開始させるように点火制御信号Fを生成する。従って、通電のタイミングと開放のタイミングが逆転した場合には、イグニッションコイル200の通電は、第2パルスP2が発生する前に実施され、開放のタイミングと通電のタイミングが競合した場合には、第2パルスP2が発生した直後に実施されることになる。また、点火制御信号Fの信号レベルは、イグニッションコイル200の通電を開始させるタイミングでローレベルとなり、点火タイミング再取得部145から出力される点火タイミングデータに基づいてイグニッションコイル200の通電を停止させるタイミングでハイレベルとなるように生成される。即ち、点火制御信号Fがローレベルの期間中、イグニッションコイル200が通電される。ただし、このような点火制御信号Fの信号レベルは説明のための一例であり、後段の駆動部150およびスイッチ素子160の電気的特性に合わせて任意に設定し得る。
 また、後述するように、制御部140は、回転速度判定部142の速度判定結果RVJが否定的である場合、即ち、内燃機関の回転速度RVが上記所定値よりも小さい場合、正パルス信号PPに含まれた第2パルスP2に応答してイグニッションコイル200を通電させ開放させるように点火制御信号Fを生成して出力する。即ち、この場合、イグニッションコイル200の通電と開放の両方が第2パルスP2に応答して制御される。ただし、この例に限定されることなく、通電と開放の何れか一方または両方を第1パルスP1に従って制御することも可能である。
[動作の説明]
 次に、本実施形態による点火制御装置100の動作を説明する。
 点火制御装置100が適用された内燃機関が回転を始めると、図5~図8に示すように、“第1パルスP1(正パルス)-第2パルスP2(負パルス)-第3パルスP3(正パルス)”のパルス列を含むパルス信号Pが、イグニッションコイル200の1次側コイルL1に誘起される。電源生成部110は、イグニッションコイル200に誘起されたパルス信号Pに含まれるパルスのうち、正パルスである第1パルスP1と第3パルスP3の電圧を用いて電源電圧VDDを生成し、正パルス信号検出部120、負パルス信号検出部130、制御部140、駆動部150に供給する。
 電源電圧VDDは、第1パルスP1および第3パルスP3を用いて生成される電圧であるため、図5~図8に示すように、第1パルスP1および第3パルスP3が消失すれば、時間の経過とともに徐々に低下するが、各回転周期において、制御部140等が動作するのに充分に足りる電圧である。
 正パルス信号検出部120および負パルス信号検出部130は、電源生成部110から供給される電源電圧VDDで動作し、パルス信号Pから正パルス信号PPおよび負パルス信号PNをそれぞれ生成する。即ち、正パルス信号検出部120は、パルス信号Pから正パルスである第1パルスP1と第3パルスP3を検出し、これら第1パルスP1および第3パルスP3に対応する第1パルスP1’および第3パルスP3’を含む正パルス信号PPを生成して制御部140に出力する。また、負パルス信号検出部130は、パルス信号Pから負パルスである第2パルスP2を検出し、この第2パルスP2に対応する第2パルスP2’を含む負パルス信号PNを生成して制御部140に出力する。
 制御部140は、電源生成部110から供給された電源電圧VDDで動作し、概略的には、正パルス信号PPに含まれた第1パルスP1’に応答してイグニッションコイル200の開放のタイミングを取得し、第2パルスP2’に応答してイグニッションコイル200の通電のタイミングを取得し、これらのタイミングに従ってイグニッションコイル200の通電と開放とを制御する。この制御において、制御部140は、パルス信号Pの第1パルスP1に対応する正パルス信号PPの第1パルスP1’に応答してイグニッションコイル200の開放のタイミングを取得するための第1処理を実施する。また、上記の制御において、制御部140は、第1パルスP1に続く第2パルスP2に対応する負パルス信号PNの第2パルスP2’に応答してイグニッションコイル200の1次側コイルを通電させ、第1パルスP1’に応答して取得した開放のタイミングに基づいてイグニッションコイル200を開放させるための第2処理を実施する。
 図3のフローチャートに沿って、制御部140が実施する第1処理を説明する。
 図3は、制御部140が実施する第1処理の流れを示すフローチャートである。ステップS11において、制御部140を構成する回転速度取得部141は、内燃機関の回転速度RVを取得する。本実施形態では、回転速度取得部141は、回転速度RVとして、図5~図8に示す第1パルスP1’(P1)の時間間隔T2、即ち、内燃機関の前の回転周期における第1パルスP1’(P1)の立ち上がりから現在の回転周期における第1パルスP1’(P1)の立ち上がりまでの時間(周期)を取得する。一般に、内燃機関の回転速度は、1分あたりの回転数によって表されるが、第1パルスP1’(P1)の時間間隔T2と対応関係を有することから、本実施形態では、回転速度取得部141は、第1パルスP1’(P1)の時間間隔T2を内燃機関の回転速度RVとして取得する。以下では、時間間隔T2により表される回転速度RVを「回転速度RV(T2)」と称す。
 続いて、ステップS12において、制御部140の回転速度判定部142は、回転速度取得部141により取得された回転速度RV(T2)から、内燃機関の回転が高速回転であるか否かを判定する。具体的には、回転速度判定部142は、高速回転時の回転速度の下限値を示す前述の所定値と回転速度RV(T2)とを比較し、回転速度RV(T2)が前述の所定値以上であれば、内燃機関の回転は高速回転であると判定する(ステップS12:YES)。
 内燃機関の回転が高速回転であれば(ステップS12:YES)、ステップS13において、制御部140を構成する点火タイミング取得部143は、正パルス信号PPに含まれた第1パルスP1’に応答して、回転速度RV(T2)に基づき点火タイミングデータFAを取得し、これを点火制御信号生成部145に出力する。本実施形態では、点火タイミングデータFAは、第1パルスP1’(P1)を基準としたイグニッションコイル200の開放のタイミング、即ち所望の点火タイミングを表すデータであり、図5において、第1パルスP1’の立ち上がりの時刻t2から点火時刻t5までの時間を表すデータである。図5では、説明の便宜上、点火タイミングデータFAを表す波形の高さFAHにより時刻t2から点火時刻t5までの時間を模式的に表しているが、点火タイミングデータFAは、時刻t2から点火時刻t5までの時間を表すデータである。点火タイミングデータFAは、回転速度RV(T2)に応じて適切に設定される。例えば、点火タイミングデータFAは、回転速度RV(T2)に対応させてテーブル化されており、点火タイミング取得部143は、回転速度RV(T2)に基づいて上記テーブルを参照することにより点火タイミングデータFAを取得する。
 点火タイミングデータFAは、回転速度RV(T2)が速いほど、図5に示す第1パルスP1’(P1)の立ち上がりの時刻t2から点火時刻t5までの時間が短くなるように設定され、逆に、回転速度RV(T2)が遅いほど、図5に示す第1パルスP1’(P1)の立ち上がりの時刻t2から点火時刻t5までの時間が長くなるように設定される。このような点火タイミングデータFAと回転速度RV(T2)との対応関係は任意に設定することができ、内燃機関の回転速度RV(T2)に対して点火タイミングを適切に設定することができる。従って、前述した従来技術のように回路定数により点火タイミングを設定する場合に比較して、点火動作を安定化させることが可能になる。
 本実施形態では、点火タイミングデータFAが取得されると、制御部140を構成するマイコンの点火制御フラグの値として「1」が設定され、点火タイミングを指定するための上記マイコンの点火タイマに点火タイミングデータFAで示される値が設定される。上述の点火制御フラグの値は、点火タイマのタイマ値が点火タイミングデータFAで示される値に到達した場合に、「0」にリセットされる。したがって、点火制御フラグの値から、点火が実施されたか否かを知ることができる。具体的には、点火制御フラグの値が「0」であれば、開放のタイミングが既に到来し、点火が実施されたことが把握される。
 上述のステップS12において、内燃機関の回転が高速回転でないと判定された場合(ステップS12:NO)、即ち低速回転であれば、上述のステップS13の処理は実施されずに第1処理は終了する。なお、この場合、制御部140を構成するマイコンの点火制御フラグの値は「0」である。
 結局、第1処理によれば、内燃機関の回転が高速回転である場合にのみ、正パルス信号PPに含まれる第1パルスP1’(P1)に応答して、回転速度RV(T2)に基づき点火タイミングデータFAが取得される。
 次に、図4に示すフローチャートに沿って、制御部140が実施する第2処理を説明する。
 図4は、制御部140が実施する第2処理の流れを示すフローチャートである。第2処理は、上述の第1処理において取得された内燃機関の回転速度RV(T2)と点火タイミングデータFAに応じて、次の4種類の制御A~Dに関する処理を含んでいる。
・制御A:内燃機関の回転が高速回転であり、通電タイミングと点火タイミングの順序が正常である場合の制御(S12:YES~S21:NO~S22:NO~S23)。
・制御B:内燃機関の回転が高速回転であり、通電タイミングと点火タイミングの順序が逆転している場合の制御(S12:YES~S21:YES~S25)。
・制御C:内燃機関の回転が高速回転であり、通電タイミングと点火タイミングの順序が競合している場合の制御(S12:YES~S21:NO~S22:YES~S24)。
・制御D:内燃機関の回転が低速回転である場合の制御(ステップS12:NO~S26~S27~S28)。
 以下、制御A~Dを順に説明する。
[制御A]
 図5のタイミングチャートを参照しながら、制御Aに関する制御部140の動作を説明する。図5は、点火制御装置100の動作を説明するためのタイミングチャートであり、内燃機関の回転が高速回転であって通電タイミングと点火タイミングの順序が正常である場合の制御部140の制御動作を説明するためのタイミングチャートである。
 制御Aが実施される状況下では、上述した第1処理のステップS12において、時刻t2で正パルス信号PPに含まれる第1パルスP1’(P1)に応答して、回転速度判定部142が、内燃機関の回転が高速回転であると判定する(ステップS12:YES)。この場合、上述した第1処理のステップS13において、点火タイミング取得部143が点火タイミングデータFAを取得し、この点火タイミングデータFAを点火制御信号生成部145に出力する。
 続いて、ステップS21において、制御部140を構成する状態判定部144は、時刻t3で正パルス信号PPに含まれる第2パルスP2’(P2)に応答して、通電前に点火が終了したか否かを判定する。即ち、制御部140は、第2パルスP2’(P2)に応答して実施されるイグニッションコイル200の通電のタイミングと、上述の第1処理において取得された点火タイミングデータFAにより示されるイグニッションコイル200の開放のタイミングとが逆転しているか否かを判定する。制御部140は、点火タイミングデータFAにより示されるイグニッションコイル200の開放のタイミングが、イグニッションコイル200の通電のタイミングよりも遅い場合、イグニッションコイルの開放のタイミングと通電のタイミングとが逆転していない旨の判定を行い、イグニッションコイル200の開放のタイミングが上記の通電のタイミングよりも早い場合、イグニッションコイル200の開放のタイミングと通電のタイミングとが逆転している旨の判定を行う。
 本実施形態では、イグニッションコイル200の通電のタイミングと開放のタイミングとが逆転しているか否かの判定は、これらのタイミングを直接的に比較するのではなく、例えば、制御部140を構成するマイコンの点火制御フラグを利用して行うことができる。即ち、状態判定部144は、前述の第1処理において点火タイミングデータFAの取得時に設定されたマイコンの点火制御フラグの値から通電前に点火が終了したか否かを判定することができる。制御Aでは、通電のタイミングと開放のタイミングの順序が正常な状況を想定しているので、時刻t3では点火制御フラグの値は、第1処理において設定された値「1」に維持されており、この値から、通電前に点火が終了していないことが把握される。従って、ステップS21において、状態判定部144は、時刻t3でマイコンの点火制御フラグの値が「1」に維持されていれば、通電前に点火は終了していないと判定する(ステップS21:NO)。
 続いて、ステップS22において、状態判定部144は、点火タイミング取得部143において取得された点火タイミングデータFAにより示される開放のタイミングと、負パルス信号PNに含まれる第2パルスP2’(P2)に応答して実施される通電のタイミングとが競合するか否かを判定する。この判定手法に関し、次に説明するように、制御部140を構成するマイコンのコンペア割り込み要因フラグ(割り込み処理のフラグ)の値を利用して、タイミングの競合が発生しているか否かを判定することができる。このコンペア割り込み要因フラグの値は、点火タイミングデータFAの値(図5の高さFAH)により示される開放のタイミングで点火処理の要求が発生した場合に「1」に設定され、その後、一定時間が経過した時点で「0」にリセットされる。このとき、上述の点火制御フラグの値もコンペア割り込み要因フラグと共に「0」にリセットされる。
 状態判定部144は、第2パルスP2’(P2)に応答して制御部140がイグニッションコイル200の通電の開始を制御するための処理期間において、イグニッションコイル200の開放を制御するためのコンペア割り込み要因フラグの値が「1」である場合、イグニッションコイル200の開放のタイミングが通電のタイミングと競合すると判定する(ステップS22:YES)。具体的には、状態判定部144は、点火制御フラグの値が「1」であり、且つ、コンペア割り込み要因フラグの値が「1」であれば、状態判定部144は、イグニッションコイル200の通電のタイミングと開放のタイミングとが競合しており、これらのタイミングの先後を判別できないと判定する。
 ただし、制御Aでは、通電のタイミングと開放のタイミングの順序は正常であり、時刻t3では点火処理の要求は発生しないので、状態判定部144が第2パルスP2’(P2)に応答してタイミングの先後を判定する時点では、コンペア割り込み要因フラグの値は「0」であり、且つ、点火制御フラグの値は「1」である。この場合、状態判定部144は、通電のタイミングと開放のタイミングは競合していない旨の否定的な判定を行い(ステップS22:NO)、その旨の状態判定結果STを点火タイミング取得部143に出力する。この状態判定結果STを受けて、点火タイミング取得部143は、上述の第1処理において点火制御信号生成部145に出力した点火タイミングデータFAを維持して出力する。
 続いて、ステップS23において、点火制御信号生成部145は、時刻t3で負パルス信号PNに含まれる第2パルスP2’(P2)に応答して、時刻t4でイグニッションコイル200の通電を開始させるように、点火制御信号Fを生成する。この点火制御信号Fを受けて、図1の駆動部150は駆動信号Dとしてハイレベルを出力し、スイッチ素子160をオン状態とする。これによりイグニッションコイル200の1次側コイルL1が通電される。イグニッションコイル200の通電の開始までが第2処理において実施されるが、この後、点火制御信号生成部145は、点火タイミング取得部143から入力された点火タイミングデータFAにより示される開放のタイミングに相当する時刻t5でイグニッションコイル200を開放させて通電を停止させるように、点火制御信号Fを生成する。この点火制御信号Fを受けて、図1の駆動部15は、駆動信号Dとしてローレベルを出力し、スイッチ素子160をオフ状態とする。これによりイグニッションコイル200の1次側コイルL1が開放されて通電が停止され、点火が実施される。このように、ステップS21およびステップS22の判定結果が共に否定的である場合、即ち、通電前に点火が終了しておらず、通電と開放のタイミングも競合していない場合、第1パルスP1に応答して取得された点火タイミングデータFAに基づいてイグニッションコイル200が開放されて通電が停止され、この通電の停止により点火が実施される。
 以上、制御Aによれば、第2パルスP2に応答して通電が開始され、第1パルスP1に応答して取得された点火タイミングに従って通電の停止(点火)が制御される。
[制御B]
 次に、図6のタイミングチャートを参照しながら、制御Bに関する制御部140の動作を説明する。図6は、点火制御装置100の動作を説明するためのタイミングチャートであり、内燃機関の回転が高速回転であって通電のタイミングと開放のタイミングの順序が逆転している場合の制御部140の制御動作を説明するためのタイミングチャートである。このようなタイミングの逆転は、例えば、内燃機関の回転速度の急激な低下によって発生し得る。制御Bでの動作は、上述の制御AのステップS21において、通電のタイミングと開放のタイミングが完全に逆転していると判定される場合の動作、即ち、時刻t3以前に点火タイミングデータFAによって示される開放のタイミングが到来する場合の動作に相当する。
 本実施形態では、通電のタイミングと開放のタイミングの順序が逆転し、通電前に点火が終了した場合、即ち、通電前に開放のタイミングが到来した場合、上述の第1処理において取得された点火タイミングデータFAの値(図6の高さFAH)によって示される開放のタイミングで通電が開始されるように点火制御信号生成部145が点火制御信号Fを生成して出力する。図6では、本来の通電のタイミングに相当する時刻t3よりも前の時刻t5Aで点火が終了し、時刻t5Aで通電が開始される。制御Bでは、通電のタイミングと開放のタイミングの順序が逆転している状況を想定しているので、時刻t3よりも前の時刻t5Aにおいて通電が開始され、この時点でマイコンの点火制御フラグの値は「0」にリセットされる。
 上述のステップS21において、制御部140を構成する状態判定部144は、時刻t3で負パルス信号PNに含まれる第2パルスP2’(P2)に応答して、時刻t4で通電前に点火が終了したか否かを判定する。本実施形態では、状態判定部144は、時刻t4で、前述の第1処理において設定されたマイコンの点火制御フラグの値から通電前に点火が終了したか否かを判定する。具体的には、ステップS21において、状態判定部144は、時刻t4で点火制御フラグの値が「0」である場合、通電前に点火が終了したと判定し(ステップS21:YES)、その旨の状態判定結果STを出力する。この場合、コンペア割り込み要因フラグの値は問わない。この状態判定結果STを受け、ステップS25において、点火タイミング取得部143は、第1処理において出力した点火タイミングデータFAに代え、新たに、例えば負パルスである第2パルスP2の後縁以降の所定のタイミングを取得して、この所定のタイミングを示す点火タイミングデータFBを出力する。
 本実施形態では、点火タイミングデータFBは、点火制御フラグの値から通電前に点火が終了したか否かを判定する時刻t4を基準としたイグニッションコイル200の開放のタイミングを表すデータであり、図6において、時刻t4から所定のタイミングに相当する点火時刻t7までの時間を表すデータである。図6では、前述の点火タイミングデータFAと同様に、説明の便宜上、点火タイミングデータFBを表す波形の高さFBHにより時刻t4から点火時刻t7までの時間を模式的に表している。前述したように、上記所定のタイミングは、イグニッションコイル200の開放のタイミングと通電のタイミングとが逆転または競合している旨の判定がなされた後であればよく、内燃機関の特性等に応じて任意に設定し得る。
 点火制御信号生成部145は、点火タイミング取得部143から入力された点火タイミングデータFBの値(図6の高さFBH)により示される所定のタイミングに相当する時刻t7でイグニッションコイル200を開放させて通電を停止させるように、点火制御信号Fを生成する。この点火制御信号Fを受けて、図1の駆動部150は駆動信号Dとしてローレベルを出力し、スイッチ素子160をオフ状態とする。これによりイグニッションコイル200の1次側コイルL1が開放されて通電が停止される。
 このように、制御Bでは、通電前に点火が終了した場合、この点火の終了のタイミングで通電が開始される。そして、回転速度RVとは関係なく、所定のタイミングでイグニッションコイル200の1次側コイルL1の通電が停止され、点火が強制的に実施される。ここで、本実施形態では、上記の所定のタイミングが第2パルスP2の後縁以降に設定されているので、イグニッションコイル200からエネルギーが放出された状態でイグニッションコイル200の1次側コイルL1の通電が停止される。このため、1次側コイルL1の通電が停止されても、点火に必要な放電は発生せず、イグニッションコイル200の残留エネルギーによる不安定な点火動作を防止することができる。
 以上、制御Bによれば、第1処理において第1パルスP1に応答して取得した開放のタイミングが通電のタイミングと逆転した場合、第2パルスP2に応答して新たに取得された所定のタイミングでイグニッションコイル200が開放されて通電が停止される。
[制御C]
 次に、図7のタイミングチャートを参照しながら、制御Cに関する制御部140の動作を説明する。図7は、点火制御装置100の動作を説明するためのタイミングチャートであり、内燃機関の回転が高速回転であって通電のタイミングと開放のタイミングの順序が競合している場合の制御動作を説明するためのタイミングチャートである。このようなタイミングの競合は、例えば、内燃機関の回転速度の緩やかな低下によって発生し得る。制御Cでの動作は、前述の制御AのステップS22において、通電のタイミングと開放のタイミングが競合していると判定される場合の動作、即ち、点火タイミングデータFAで指定される開放のタイミングの時刻t5Bが通電のタイミングと一致または近接する場合の動作に相当する。図7の例では、点火タイミングデータFAで指定される点火時刻t5Bが、第2処理のトリガーとなる第2パルスP2の前縁の時刻t3よりも後であって通電が開始する時刻t4の前の通電処理期間内に位置している。
 前述のステップS22において、制御部140を構成する状態判定部144は、第2パルスP2’(P2)に応答して、時刻t4で、通電のタイミングと開放のタイミングが競合しているか否かを判定する。例えば、制御部140を構成するマイコンの点火制御フラグとコンペア割り込み要因フラグの各値から点火タイミングと通電タイミングとが競合するか否かを判定することができる。制御Cでは、通電のタイミングと開放のタイミングとが競合している状況にあるので、時刻t4では点火は終了しておらず、点火制御フラグの値は「1」のままであり、且つ、時刻t4ではコンペア割り込み要因フラグの値も「1」に設定されている。これら点火制御フラグとコンペア割り込み要因フラグの各値から通電のタイミングと開放のタイミングとが競合していることが把握される。この場合、ステップS22において、状態判定部144は、時刻t4で通電のタイミングと開放のタイミングとが競合していると判定し(ステップS22:YES)、その旨の状態判定結果STを出力する。この状態判定結果STを受けて、点火制御信号生成部145は、上述の制御Bと同様に、第1処理において取得された点火タイミングデータFAの値(図7の高さFAH)によって示される開放のタイミングに相当する時刻t5Bで通電が開始されるように点火制御信号Fを生成して出力する。
 続いて、点火タイミング取得部143は、上述の制御Bと同様に、ステップS24において、点火タイミングデータFAに代えて、新たに、通電のタイミングと開放のタイミングとが競合している旨の判定後の所定のタイミングを示す点火タイミングデータFBを生成して出力する。また、点火制御信号生成部145は、第2パルスP2’(P2)に応答して、点火タイミング取得部143から入力された点火タイミングデータFBの値(図7の高さFBH)で示される所定のタイミングに相当する時刻t7でイグニッションコイル200を開放させて通電を停止させるように点火制御信号Fを生成して出力する。
 以上、制御Cによれば、第1パルスP1’(P1)に応答して取得した開放のタイミングが通電のタイミングと競合した場合、制御Bと同様に、タイミングの競合が判定された時点で通電が開始され、その後の所定のタイミングでイグニッションコイル200の通電が停止される。
[制御D]
 次に、図8のタイミングチャートを参照しながら、制御Dに関する制御部140の動作を説明する。図8は、点火制御装置100の動作を説明するためのタイミングチャートであり、内燃機関の回転が低速回転である場合の制御動作を説明するためのタイミングチャートである。制御Dでの動作は、前述のステップS12において、内燃機関の回転が高速回転ではないと判定された場合(ステップS12:NO)、即ち内燃機関の回転が低速回転であると判定された場合の動作に相当する。
 制御Dが実施される状況では、前述の第1処理のステップS12において、回転速度判定部142は、時刻t2で正パルスPPに含まれる第1パルスP1に応答して、第1パルスP1(P1’)の時間間隔T2から内燃機関の回転速度RV(T2)を取得する。回転速度RV(T2)から、回転速度判定部142は、内燃機関の回転が高速回転ではないと判定する(ステップS12:NO)。
 続いて、ステップS26において、点火制御信号生成部146は、第2パルスP2’(P2)に応答して、時刻t4でイグニッションコイル200の通電を開始させる信号レベルを有する点火制御信号Fを生成し、スイッチ素子160によりイグニッションコイル200の通電を開始させる。
 続いて、ステップS27において、回転速度取得部141は、時刻t3で負パルス信号PNに含まれる第2パルスP2’(P2)に応答して、パルス信号PPに含まれる第1パルスP1’(P1)と負パルス信号PNに含まれる第2パルスP2’(P2)との時間間隔T1(即ち、第1パルスP1’の立ち上がりから第2パルスP2’の立ち上がりまでの時間)を回転速度RVとして取得する。以下では、時間間隔T1により表される回転速度RVを「回転速度RV(T1)」と称す。続いて、ステップS28において、点火タイミング取得部143は、回転速度RV(T1)に応じた点火タイミングデータFAを取得し、この点火タイミングデータFAを点火タイミング取得部143に出力する。この場合の点火タイミングデータFAは、回転速度RV(T1)によって表される内燃機関の回転速度RVに応じて予め設定された点火タイミングを示すデータである。
 続いて、点火制御信号生成部145は、負パルス信号PNに含まれた第2パルスP2’に応答して、点火タイミング取得部143から入力された点火タイミングデータFAの値(図8の高さFAH)で指定される時刻t5でイグニッションコイル200を開放させて通電を停止させる信号レベルを有する点火制御信号Fを生成する。
 以上、制御Dによれば、第2パルスP2に応答してイグニッションコイル200の通電と開放の各タイミングが取得されて、イグニッションコイル200の通電と開放が制御される。
 次に、状態判定部144の判定動作を補足説明する。
 図9は、状態判定部144の動作を補足説明するための図である。
 図9(A)は、上述した制御A(高速回転時にタイミングの逆転および競合が発生しない状況)におけるパルス信号P、点火制御信号F、点火制御フラグFLG1、コンペア割り込み要因フラグFLG2の間の関係の一例を示す図であり、図5を参照して説明した状態判定部144の動作を補足説明するための図である。図9(A)に示すように、制御Aでは、時刻t2で第1パルスP1に応答して前述の第1処理において開放のタイミングが設定されると、時刻t2Aで点火制御フラグFLG1の値が「1」に設定される。その後、時刻t5で、第1処理において設定された開放のタイミングが到来すると、コンペア割り込み要因フラグFLG2の値が「1」に設定され、一定時間の経過後にコンペア割り込み要因フラグFLG2の値が「0」にリセットされる。このとき、点火制御フラグFLG1の値もコンペア割り込み要因フラグFLG2と共に「0」にリセットされる。
 ここで、状態判定部144による判定(ステップS21,S22)が実施される第2パルスP2の前縁付近(時刻t3付近)では、点火制御フラグFLG1の値は「1」であり、コンペア割り込み要因フラグFLG2の値は「0」である。このような制御Aにおける各フラグの値の組み合わせは、タイミングの逆転または競合が発生する状況を前提とする制御Bまたは制御Cにおける後述の各フラグの値の組み合わせと異なる。このため、点火制御フラグFLG1およびコンペア割り込み要因フラグFLG2の各値から、状態判定部144において、上述したタイミングの逆転および競合が発生していないことを判定することが可能になる。
 図9(B)は、上述した制御B(高速回転時にタイミングの逆転が発生する状況)におけるパルス信号P、点火制御信号F、点火制御フラグFLG1、コンペア割り込み要因フラグFLG2の間の関係の一例を示す図であり、図6を参照して説明した状態判定部144の動作を補足説明するための図である。図9(B)に示すように、制御Bにおいても制御Aと同様に、第1パルスP1に応答して時刻t2Aで点火制御フラグFLG1の値が「1」に設定される。そして、時刻t5Aで開放のタイミングが到来すると、コンペア割り込み要因フラグFLG2の値が「1」に設定される。ここで、制御Bでは、時刻t5Aでコンペア割り込み要因フラグFLG2の値が「1」に設定されると、点火制御信号Fの信号レベルがローレベルに設定され、これにより通電が開始される。また、コンペア割り込み要因フラグFLG2の値が「1」に設定されてから一定時間の経過後に、このコンペア割り込み要因フラグFLG2の値が「0」にリセットされる。このとき、点火制御フラグFLG1の値も「0」にリセットされる。
 ここで、状態判定部144による判定(ステップS21)が実施される時刻t4では、点火制御フラグFLG1の値は「0」であり、コンペア割り込み要因フラグFLG2の値も「0」である。このような制御Bにおける各フラグの値の組み合わせは、上述の制御Aまたは後述の制御Cにおける各フラグの値の組み合わせと異なる。このため、点火制御フラグFLG1およびコンペア割り込み要因フラグFLG2の各値から、状態判定部144において、上述したタイミングの逆転が発生していることを判定することが可能になる。この判定の後、点火タイミングデータFBの値で示される所定のタイミングに相当する時刻t7でイグニッションコイル200を開放させるように点火制御信号Fが生成される。
 なお、状態判定部144による判定(ステップS21)が実施される時刻t4において、点火制御フラグFLG1の値は、タイミングの逆転が発生した場合にのみ「0」になる。従って、制御Bでは、コンペア割り込み要因フラグFLG2の値を参照することなく、点火制御フラグFLG1の値のみから、タイミングの逆転が発生したことを判定することもできる。前述の図6を参照した動作の説明では、点火制御フラグFLG1の値のみからタイミングの逆転を判定している。
 図9(C)は、上述した制御C(高速回転時にタイミングの競合が発生する状況)におけるパルス信号P、点火制御信号F、点火制御フラグFLG1、コンペア割り込み要因フラグFLG2の間の関係の一例を示す図であり、図7を参照して説明した状態判定部144の動作を補足説明するための図である。図9(C)に示すように、制御Cにおいても制御Aと同様に、第1パルスP1に応答して時刻t2Aで点火制御フラグFLG1の値が「1」に設定される。そして、前述した第2処理を実行中の時刻t3と時刻t4の間の時刻t5Bで開放のタイミングが到来すると、コンペア割り込み要因フラグFLG2の値が「1」に設定され、通電が開始される。
 ここで、状態判定部144による判定(ステップS22)が実施される時刻t4では、点火制御フラグFLG1の値は「1」であり、コンペア割り込み要因フラグFLG2の値も「1」である。このような制御Cにおける各フラグの値の組み合わせは、上述の制御Aおよび制御Bにおける各フラグの値の組み合わせと異なる。このため、点火制御フラグFLG1およびコンペア割り込み要因フラグFLG2の各値から、状態判定部144において、上述したタイミングの競合が発生していることを判定することが可能になる。この判定の後、点火タイミングデータFBの値で示される所定のタイミングに相当する時刻t7でイグニッションコイル200を開放させるように点火制御信号Fが生成される。
 上述した制御A~Dのうち、制御A~Cによれば、内燃機関の回転速度RVが高速である場合、正パルス信号PPに含まれた第1パルスP1’に応答して点火タイミングデータが取得され、負パルス信号PNに含まれた第2パルスP2’に応答して通電が開始されるので、内燃機関の回転速度が検出されてから点火を実施するまでに時間的余裕が生まれ、高速回転であっても、回転速度RVに応じた点火タイミングデータを取得するための処理時間を確保することができる。従って、高速回転における点火動作を安定化させることができる。
 また、制御Bおよび制御Cによれば、イグニッションコイル200の開放のタイミングと通電のタイミングとの逆転または競合を判定して開放のタイミングデータFA,FBを取得するので、内燃機関の回転速度が急激に変化した場合であっても、点火動作を継続的に実施することができ、点火動作を安定化させることができる。
 更に、制御Dによれば、内燃機関の回転速度が低速である場合、イグニッションコイル200の通電と開放の各タイミングに時間的に近い第2パルスP2’に応答してイグニッションコイル200の通電と開放を制御するので、点火タイミングを精度よく制御することができ、点火タイミングのバラツキを抑制することができる。
 上述した本発明の実施形態によれば、高速回転時に、正パルス信号PPに含まれる第1パルスP1’に応答してイグニッションコイル200の開放のタイミングを取得するので、内燃機関の回転速度が上昇しても、開放のタイミングの取得に要する処理時間を確保することができる。このため、イグニッションコイルの開放を安定的に制御することができ、点火動作を安定化させることができる。また、内燃機関の回転速度が低下した場合、第2パルスP2’に応答して通電と点火の各タイミングが設定されるので、低速回転時に精度よく点火動作を制御することができる。
 上述した実施形態では、本発明を点火制御装置100として表現したが、本発明は、点火制御装置100の動作に着目して、点火制御方法として表現することができる。この場合、本発明による点火制御方法は、内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御方法であって、前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させる制御段階(ステップS11~S13,S12~S28)を少なくとも含む。
 以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
 例えば、上述の実施形態では、前の回転周期の第1パルスP1’と現在の回転周期の第1パルスP1’との時間間隔T2、または、現在の回転周期の第1パルスP1’と第2パルスP2’との時間間隔T1から内燃機関の回転速度RVを取得するものとしたが、例えば、前回または前々回の回転周期における第1パルスP1~第3パルスP3の任意のパルス間の時間間隔を用いて現在の回転周期の回転速度を予測してもよく、パルス信号Pに含まれる任意のパルス信号から回転速度RVを取得することができる。
 本発明は、内燃機関の点火を制御する装置や方法に適用できる。
 100  点火制御装置
 110  電源生成部
 120  正パルス信号検出部
 130  負パルス信号検出部
 140  制御部
 141  回転速度取得部
 142  回転速度判定部
 143  点火タイミング取得部
 144  状態判定部
 145  点火制御信号生成部
 150  駆動部
 160  スイッチ素子
 200  イグニッションコイル
 300  点火プラグ

Claims (9)

  1.  内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御装置であって、
     前記イグニッションコイルを通電し開放するためのスイッチ素子と、
     前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させるように前記スイッチ素子を制御する制御部と、
     を少なくとも含む点火制御装置。
  2.  前記制御部は、
     前記イグニッションコイルの通電のタイミングと開放のタイミングとが逆転しているか否かを判定し、前記判定の結果が否定的である場合、前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させ、前記判定の結果が肯定的である場合、所定のタイミングに基づいて前記イグニッションコイルを開放させるように、前記スイッチ素子を制御する、請求項1に記載の点火制御装置。
  3.  前記制御部は、
     前記イグニッションコイルの開放のタイミングが前記通電のタイミングよりも遅い場合、前記イグニッションコイルの開放のタイミングと通電のタイミングとが逆転していない旨の判定を行い、前記イグニッションコイルの開放のタイミングが前記通電のタイミングよりも早い場合、前記イグニッションコイルの開放のタイミングと通電のタイミングとが逆転している旨の判定を行う、請求項2に記載の点火制御装置。
  4.  前記制御部は、
     前記イグニッションコイルの開放のタイミングが、前記イグニッションコイルの通電の開始を制御するための処理期間内にある場合、前記イグニッションコイルの開放のタイミングが前記通電のタイミングと競合すると判定する、請求項3に記載の点火制御装置。
  5.  前記制御部は、前記イグニッションコイルの開放のタイミングが前記通電のタイミングと競合すると判定した場合、前記第2パルスの後縁以降のタイミングを前記所定のタイミングとして前記イグニッションコイルを開放させるように前記スイッチ素子を制御する、請求項4に記載の点火制御装置。
  6.  内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御装置であって、
     前記イグニッションコイルに誘起されるパルス信号から当該点火制御装置の動作に必要とされる電源電圧を生成する電源生成部と、
     前記イグニッションコイルに誘起される前記パルス信号から第1極性の第1パルスを検出する第1極性パルス信号検出部と、
     前記イグニッションコイルに誘起される前記パルス信号から前記第1パルスに続く第2極性の第2パルスを検出する第2極性パルス信号検出部と、
     前記イグニッションコイルを通電し開放するためのスイッチ素子と、
     前記第1パルスに応答して前記内燃機関の回転速度を取得し、前記内燃機関の回転速度が所定値以上であるか否かを判定し、前記回転速度が所定値以上である場合、前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させるように前記スイッチ素子を制御するための点火制御信号を出力する制御部と、
     前記点火制御信号に基づいて前記スイッチ素子を駆動する駆動部と、
     を少なくとも含む点火制御装置。
  7.  前記制御部は、
     前記第1極性パルス信号検出部により生成された前記第1パルスに基づいて前記内燃機関の回転速度を取得する回転速度取得部と、
     前記回転速度取得部により取得された前記内燃機関の回転速度が前記所定値以上であるか否かを判定する回転速度判定部と、
     前記回転速度判定部の判定結果が肯定的である場合、前記第1パルスに基づいて前記イグニッションコイルの開放のタイミングを取得して出力する点火タイミング取得部と、
     前記第2パルスに応答して、前記イグニッションコイルの通電のタイミングと開放のタイミングとが逆転しているか否かを判定する状態判定部と、
     前記第2パルスに応答して前記イグニッションコイルの通電を開始させ、前記点火タイミング取得部から出力されたタイミングに基づいて前記イグニッションコイルの通電を停止させるように、前記点火制御信号を生成する点火制御信号生成部と、
     を備え、
     前記点火タイミング取得部は、
     前記状態判定部の判定結果が否定的である場合、前記第1パルスに基づいて取得した前記開放のタイミングを維持して出力し、前記状態判定部の判定結果が肯定的である場合、前記第1パルスに基づいて取得した前記開放のタイミングに代えて所定のタイミングを取得して出力し、
     前記点火制御信号生成部は、
     前記状態判定部による判定の前に前記開放のタイミングが到来した場合には前記開放のタイミングで前記イグニッションコイルの通電を開始させるように前記点火制御信号を生成する、請求項6に記載の点火制御装置。
  8.  前記制御部は、
     前記内燃機関の回転速度が前記所定値未満である場合、前記第2パルスに応答して前記イグニッションコイルを通電させ開放させるように前記スイッチ素子を制御する、請求項6または7に記載の点火制御装置。
  9.  内燃機関の回転に伴ってイグニッションコイルに誘起されるパルス信号に基づき、前記内燃機関に備えられた点火プラグに供給される電圧を前記イグニッションコイルに発生させる点火制御方法であって、
     前記パルス信号の第1パルスに応答して前記イグニッションコイルの開放のタイミングを取得し、前記第1パルスに続く第2パルスに応答して前記イグニッションコイルを通電させると共に前記第1パルスに応答して取得した前記開放のタイミングに基づいて前記イグニッションコイルを開放させる制御段階を少なくとも含む点火制御方法。
PCT/JP2013/058560 2013-03-25 2013-03-25 点火制御装置および点火制御方法 WO2014155484A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015507712A JP5908164B2 (ja) 2013-03-25 2013-03-25 点火制御装置および点火制御方法
PCT/JP2013/058560 WO2014155484A1 (ja) 2013-03-25 2013-03-25 点火制御装置および点火制御方法
US14/763,959 US10359020B2 (en) 2013-03-25 2013-03-25 Ignition control apparatus and ignition control method
CN201380073553.3A CN105008712B (zh) 2013-03-25 2013-03-25 点火控制装置以及点火控制方法
EP13880232.7A EP2982858A4 (en) 2013-03-25 2013-03-25 Ignition control device and ignition control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058560 WO2014155484A1 (ja) 2013-03-25 2013-03-25 点火制御装置および点火制御方法

Publications (1)

Publication Number Publication Date
WO2014155484A1 true WO2014155484A1 (ja) 2014-10-02

Family

ID=51622577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058560 WO2014155484A1 (ja) 2013-03-25 2013-03-25 点火制御装置および点火制御方法

Country Status (5)

Country Link
US (1) US10359020B2 (ja)
EP (1) EP2982858A4 (ja)
JP (1) JP5908164B2 (ja)
CN (1) CN105008712B (ja)
WO (1) WO2014155484A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4302403A1 (en) * 2021-03-03 2024-01-10 Transient Plasma Systems, Inc. Apparatus and methods of detecting transient discharge modes and/or closed loop control of pulsed systems employing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191382U (ja) * 1982-06-15 1983-12-19 国産電機株式会社 内燃機関用点火装置
JPS6425473U (ja) * 1987-08-06 1989-02-13
JP2005307761A (ja) 2004-04-16 2005-11-04 Kokusan Denki Co Ltd 電流遮断形内燃機関用点火装置
JP2006328959A (ja) * 2005-05-23 2006-12-07 Kokusan Denki Co Ltd エンジン用点火装置
JP2012229654A (ja) * 2011-04-26 2012-11-22 Shindengen Electric Mfg Co Ltd 点火装置、及びその点火制御方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617540B2 (ja) * 1973-07-10 1981-04-23
US4116188A (en) * 1973-10-17 1978-09-26 Nippondenso Co., Ltd. Capacitor discharge type contactless ignition system for internal combustion engines
JPS5584863A (en) * 1978-12-19 1980-06-26 Mitsubishi Electric Corp Magnetic sparking system
US4553427A (en) * 1983-03-08 1985-11-19 Nippondenso Co., Ltd. Rotational reference position detection apparatus
JPS60119372A (ja) * 1983-11-30 1985-06-26 Hitachi Ltd 電子進角式点火装置
US4624234A (en) * 1984-03-21 1986-11-25 Nippondenso Co., Ltd. Electronic ignition timing adjusting system for internal combustion engines
US4509493A (en) * 1984-06-13 1985-04-09 Allied Corporation Small engine ignition system with spark advance
US4566425A (en) * 1984-07-02 1986-01-28 Kokusan Denki Co., Ltd. Ignition system of the condensor-discharge type for internal combustion engine
US4643150A (en) * 1984-10-26 1987-02-17 Honda Giken Kogyo Kabushiki Kaisha Ignition timing control system for internal combustion engines
US5111798A (en) * 1984-11-22 1992-05-12 Notaras John Arthur Transistor ignition circuit
JP2681771B2 (ja) * 1985-07-24 1997-11-26 本田技研工業株式会社 内燃エンジンの電子点火時期制御方法
SE464039B (sv) * 1989-06-12 1991-02-25 Electrolux Ab Varvtalsbegraensande taendkretskoppling
US4924831A (en) * 1989-07-10 1990-05-15 R. E. Phelon Company, Inc. Capacitor discharge ignition system with microprocessor timing control
EP0411292A3 (en) * 1989-07-29 1991-08-07 Pruefrex-Elektro-Apparatebau Inh. Helga Mueller, Geb. Dutschke Ignition system with magnetogenerator for combustion engines
JPH0717815Y2 (ja) * 1990-01-31 1995-04-26 国産電機株式会社 内燃機関用点火装置
US5638798A (en) * 1996-03-25 1997-06-17 Ford Motor Company Method and system for generating ignition coil control pulses
SE518603C2 (sv) * 2000-03-08 2002-10-29 Sem Ab Krets för att uppnå tändförställning, varvtalsbegränsning och för att förhindra backslag och baklängesgång i ett magnettändsystem
SE0000766L (sv) * 2000-03-08 2001-06-25 Sem Ab Krets för tändförställning, varvtalsbegränsning och förhindrande av baklängesgång i magnettändsystem
JP3832287B2 (ja) * 2001-08-07 2006-10-11 国産電機株式会社 コンデンサ放電式内燃機関用点火装置
US6761148B2 (en) * 2001-09-03 2004-07-13 Prufrex-Electro-Apparateubau, Inh. Helga Muller, Geb Dutschke Electronic rotation speed-dependent control and/or diagnosis process for combustion engines
MXPA04008727A (es) * 2002-03-12 2004-12-06 Phelon Co Inc Ignicion de descarga controlada por procesador con angulo de encendido fijo al arranque.
EP2383462A1 (en) * 2002-04-12 2011-11-02 Iida Denki Kogyo Co., Ltd. Method and device for controlling ignition timing of ignition device for internal combustion engine
US6889677B2 (en) * 2003-02-03 2005-05-10 Honda Giken Kogyo Kabushiki Kaisha Capacitor discharge ignition device for internal combustion engine
JP4577031B2 (ja) * 2005-02-03 2010-11-10 国産電機株式会社 内燃機関用点火装置
JP4314439B2 (ja) * 2006-05-18 2009-08-19 飯田電機工業株式会社 内燃機関用点火装置におけるトリガ信号制御方法とトリガ信号制御回路
US20080011272A1 (en) * 2006-07-12 2008-01-17 Jorgen Bengtsson Apparatus and method for ignition timing for small gasoline engine
JP4826802B2 (ja) * 2007-03-19 2011-11-30 国産電機株式会社 内燃機関用点火装置
JP4925011B2 (ja) * 2007-12-27 2012-04-25 飯田電機工業株式会社 内燃機関用点火装置の点火時点制御方法と点火時点制御装置。
JP4978915B2 (ja) * 2009-02-09 2012-07-18 飯田電機工業株式会社 内燃機関用点火装置の点火時点制御装置
US9243602B2 (en) * 2009-11-06 2016-01-26 Sem Aktiebolag Ignition system control method and system
JP5758593B2 (ja) * 2010-06-28 2015-08-05 パナソニック エコソリューションズ池田電機株式会社 コンデンサ充放電式エンジン点火装置
JP5644724B2 (ja) * 2011-09-14 2014-12-24 国産電機株式会社 内燃機関用制御装置
CN104364512B (zh) * 2012-12-19 2017-03-08 新电元工业株式会社 点火控制装置及点火控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191382U (ja) * 1982-06-15 1983-12-19 国産電機株式会社 内燃機関用点火装置
JPS6425473U (ja) * 1987-08-06 1989-02-13
JP2005307761A (ja) 2004-04-16 2005-11-04 Kokusan Denki Co Ltd 電流遮断形内燃機関用点火装置
JP2006328959A (ja) * 2005-05-23 2006-12-07 Kokusan Denki Co Ltd エンジン用点火装置
JP2012229654A (ja) * 2011-04-26 2012-11-22 Shindengen Electric Mfg Co Ltd 点火装置、及びその点火制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982858A4

Also Published As

Publication number Publication date
JPWO2014155484A1 (ja) 2017-02-16
EP2982858A1 (en) 2016-02-10
CN105008712B (zh) 2016-11-09
US20150369203A1 (en) 2015-12-24
EP2982858A4 (en) 2018-02-28
US10359020B2 (en) 2019-07-23
JP5908164B2 (ja) 2016-04-26
CN105008712A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2014097914A1 (ja) 点火制御装置および点火制御方法
JP5811068B2 (ja) 内燃機関の点火装置
JP2011132904A (ja) エンジン始動制御装置
JP4679630B2 (ja) 内燃機関の燃焼状態検出装置
CN103715946B (zh) 电动机启动方法、电动机启动装置和电动机
US8970115B2 (en) Delaying startup under fault conditions
CN104912712B (zh) 发动机起动器单元
JP5908164B2 (ja) 点火制御装置および点火制御方法
JP6478973B2 (ja) 燃料噴射弁制御装置
JP4519178B2 (ja) 車両用交流発電機の制御装置
US9366218B2 (en) Ignition device for battery-less engine and method for starting and operating battery-less engine
JP5963358B2 (ja) 点火制御装置および点火制御方法
JP2019203489A5 (ja)
JP2016048065A (ja) 内燃機関用点火システム
JP5839005B2 (ja) エンジン始動装置及びエンジン始動方法
JP2005218201A5 (ja)
JP2014043811A5 (ja)
JP2021050673A (ja) 内燃機関用点火装置
JP2007309098A (ja) 内燃機関用点火コイル
JP6140623B2 (ja) 点火制御装置、点火制御方法
TW201440397A (zh) 用於振動馬達的驅動電路以及用於振動馬達的驅動方法
JP2020172865A5 (ja)
JP2007198220A (ja) 内燃機関の無接点点火装置
JPH0727407Y2 (ja) ディーゼルエンジンの電磁燃料ポンプ駆動装置
JP2016035257A (ja) 内燃機関の自動停止/再始動制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507712

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013880232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14763959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE