WO2014154130A1 - 模内成型用标签及使用其的带标签的塑料容器 - Google Patents

模内成型用标签及使用其的带标签的塑料容器 Download PDF

Info

Publication number
WO2014154130A1
WO2014154130A1 PCT/CN2014/074024 CN2014074024W WO2014154130A1 WO 2014154130 A1 WO2014154130 A1 WO 2014154130A1 CN 2014074024 W CN2014074024 W CN 2014074024W WO 2014154130 A1 WO2014154130 A1 WO 2014154130A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
olefin
mold
based resin
resin film
Prior art date
Application number
PCT/CN2014/074024
Other languages
English (en)
French (fr)
Inventor
上田隆彦
岩濑祐一
Original Assignee
优泊公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优泊公司 filed Critical 优泊公司
Priority to CN201480008183.XA priority Critical patent/CN104981857A/zh
Priority to JP2016504467A priority patent/JP2016521372A/ja
Priority to BR112015024693A priority patent/BR112015024693A2/pt
Priority to US14/779,056 priority patent/US20160046101A1/en
Priority to MX2015013648A priority patent/MX2015013648A/es
Priority to KR1020157030773A priority patent/KR20150136609A/ko
Publication of WO2014154130A1 publication Critical patent/WO2014154130A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • B65D25/205Means for the attachment of labels, cards, coupons or the like
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2623/00Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/334Applications of adhesives in processes or use of adhesives in the form of films or foils as a label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/006Presence of polyolefin in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene

Definitions

  • the present invention relates to a label for in-mold forming.
  • Plastic containers have recently been used in a variety of sizes and shapes to accommodate a wide variety of liquids (eg edible oils, liquid seasonings, beverages, alcohol, kitchen detergents, laundry detergents, shampoos). , hair conditioners, liquid soaps, disinfecting alcohols, automotive oils, automotive detergents, pesticides, pesticides, herbicides, etc.), and distribute, display, purchase, store, and use them.
  • liquids eg edible oils, liquid seasonings, beverages, alcohol, kitchen detergents, laundry detergents, shampoos.
  • hair conditioners liquid soaps
  • disinfecting alcohols eg., automotive oils, automotive detergents, pesticides, pesticides, herbicides, etc.
  • plastic containers are usually containers having a single layer or a plurality of resin layers using resins such as polyethylene, polypropylene, polyester, polyamide, etc., and are produced by blow molding or the like.
  • a label containing a trade name and other information is provided for the purpose of clearly accommodating the contents.
  • These labels are often placed on a molded plastic container using a paper material with a pressure sensitive adhesive or a heat shrinkable film, and the label may be placed on the container while the plastic container is being molded.
  • an in-mold label process a method of introducing a label into a mold and forming a label on the container while molding the plastic container in the mold is referred to as an in-mold label process.
  • This process has the ability to adhere to the label after the container is molded or the intermediate storage of the molded product. It has the advantage of saving labor, reducing the storage space of intermediate products, and being able to ship immediately.
  • Patent Document 1 German Patent No. 1,807, 766
  • Patent Document 2 U.S. Patent No. 4,837,075
  • Patent Document 3 Japanese Shikai Hira 1 - 105960
  • Patent Document 4 Japanese Laid-Open Patent Publication No. Hei 9-207166
  • the heat-sealable layer uses a low-melting thermoplastic resin to accommodate a wide range of molding conditions, particularly even in the melt extrusion of a container resin. In case of low temperature It can be fully activated to heat seal.
  • the label for in-mold molding of such a low-melting thermoplastic resin is used in the heat-sealable resin layer, if the labeled plastic container is at a high temperature (specifically, a temperature higher than the melting peak temperature of the thermoplastic resin) In the state of being discharged from the mold, the adhesive force is insufficient and bubbles (convex) are generated on the label. Therefore, it is necessary for the labeled plastic container to be sufficiently cooled in the mold to be discharged, and it is necessary to lower the mold cooling temperature in order to improve the cooling effect, or to extend the manufacturing cycle time in order to obtain the cooling time. If the cooling equipment is enhanced to lower the mold cooling temperature and the antifreeze or the like is used for the cooling solvent, the mold can be technically cooled to a freezing point.
  • the present inventors have found that in order to solve these problems, the crystallization characteristics of the thermoplastic resin constituting the heat seal layer of the label for in-mold molding are required on the premise that the manufacturing conditions of the container resin are discharged at a high temperature. Take control.
  • the thermoplastic resin constituting the heat seal layer of the label for in-mold molding has a crystallization temperature (crystallization peak temperature) in a region above a certain temperature, even in ratio In the higher temperature region, the label can be reliably adhered to the plastic container by immediate crystallization (curing), and even if the thermoplastic resin is in a molten state, it has a tack (hot tack strength), and the adhesion is ensured by the adhesion.
  • the label is bonded to the plastic container at the time of the high-temperature discharge, it is possible to provide the label for in-mold molding which does not generate bubbles or the like even in the manufacturing process of the plastic container with the label for molding in the mold, and the like. this invention.
  • the present invention relates to a label for in-mold molding having the characteristics described in the following [1] to [7], and a labeled plastic container according to the following [8].
  • At least one crystal peak obtained by differential scanning calorimetry is between 85 and 10 10 °C.
  • the hot tack strength at 130 ° C is 120 to 350 gf/cm 2 .
  • thermoplastic resin contained in the heat seal layer is an ethylene- ⁇ -olefin copolymer obtained by copolymerization using a metallocene catalyst.
  • thermoplastic resin contained in the heat seal layer is an ethylene-1-hexene copolymer obtained by copolymerization using a metallocene catalyst by a vapor phase method.
  • the production amount per unit time of the container is improved, and even if the cooling time is shortened in order to shorten the manufacturing cycle time, it is possible to suppress the occurrence of defective products due to bubbles or the like. Therefore, the yield is improved and the efficiency of production can be achieved.
  • Figure 1 The state of the bubble.
  • Figure 2 The state of the orange peel (enlarged view). 2 is the appearance of the label after discharge in Example 3, and b in Fig. 2 is the appearance of the label after discharge in Example 1, and c in Fig. 2 is the appearance of the label after discharge in Example 2. detailed description
  • the present invention is described below by the specific embodiments, but the following embodiments are not intended to limit the scope of the claims. Further, the combinations of the features described in the embodiments are not necessarily limited to being necessary for the solution of the present invention.
  • the numerical range indicated by “ ⁇ ” refers to a range including the numerical values described in the front and rear ends of " ⁇ " as the lower limit and the upper limit.
  • the label for in-mold molding of the present invention has a heat-sealable layer containing a thermoplastic resin on one side of the olefin-based resin film.
  • the olefin-based resin film becomes the heat described later in the label for in-mold molding.
  • the support of the sealing layer the olefin-based resin film imparts mechanical strength, rigidity, and the like to the label for in-mold molding, and imparts necessary rigidity when inserting a label into a mold at the time of printing, and further imparts water resistance, chemical resistance, and printability as needed. Opacity, lightness, etc.
  • the composition, constitution, and production method of the olefin-based resin film will be described in detail.
  • Examples of the olefin-based resin used in the olefin-based resin film include high-density polyethylene, medium-density polyethylene, low-density polyethylene, propylene-based resin, poly-4-indolyl-1-pentene, and ethylene- A polyolefin resin such as a cyclic olefin copolymer. Further, examples thereof include homopolymers of olefins such as ethylene, propylene, butene, hexene, octene, butadiene, isoprene, chloroprene, and decyl-1-pentene, and two kinds thereof. A copolymer of the above olefins.
  • examples thereof include an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-mercaptoacrylic acid copolymer, a metal salt of an ethylene-mercaptoacrylic acid copolymer (ionomer), and an ethylene-alkyl acrylate copolymer.
  • a functional group-containing olefin-based resin such as an ethylene-alkyl methacrylate copolymer (preferably having an alkyl group having 1 to 8 carbon atoms), a maleic acid-modified polyethylene, or a maleic acid-modified polypropylene.
  • the propylene-based resin is preferably used in terms of film formability, moisture resistance, mechanical strength, and cost.
  • the propylene-based resin may, for example, be a homopolypropylene having isotactic or syndiotactic and various stereoregularities obtained by homopolymerization of propylene. Further, propylene is mainly used, and it is copolymerized with an ⁇ -olefin such as ethylene, 1-butene, 1-hexene, 1-heptene, 1-octene or 4-decyl-1-pentene. A propylene-based copolymer having various stereoregularities.
  • the propylene-based copolymer may be a ternary system or a ternary system or a polyvalent system, or may be a random copolymer or a block copolymer.
  • the olefin-based resin to be used in the olefin-based resin film may be used singly or in combination of two or more kinds selected from the above olefin-based resins. use. For example, it is also possible to use 2 to 25% by weight of a resin having a melting point lower than that of homopolypropylene in the homopolypropylene. As such a resin having a low melting point, a high density or a low density polyethylene can be cited.
  • the olefin-based resin film may further contain a component other than the olefin resin.
  • the olefin resin film may contain at least one of an inorganic fine powder and an organic filler.
  • the olefin-based resin film contains an inorganic fine powder or the like, the olefin-based resin film can be whitened and opaque, and the visibility of printing on the label for in-mold molding can be improved.
  • the olefin-based resin film contains an inorganic fine powder or the like and is stretched, a plurality of fine pores having a core such as an inorganic fine powder or the like can be formed in the olefin-based resin film, and whitening, opacity, and lightness can be further imparted. Quantify.
  • the inorganic fine powder is not particularly limited as long as it can be whitened or opaque.
  • Specific examples of the inorganic fine powder include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, clay, bismuth ruthenate, magnesium oxide, zinc oxide, titanium oxide, barium titanate, Silica, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, wollastonite, glass fiber, and the like.
  • a surface-treated product of the above inorganic fine powder treated with a fatty acid, a polymer surfactant, an antistatic agent or the like may be mentioned.
  • heavy calcium carbonate, light calcium carbonate, calcined clay, and talc are preferable because they have good pore formability and are inexpensive.
  • titanium oxide is preferred from the viewpoint of whitening and opacity.
  • the organic filler is not particularly limited as long as it can whiten or opaque the olefin-based resin film. These organic fillers are preferably incompatible with the olefin-based resin, have a higher melting point or glass transition temperature than the olefin-based resin, and are finely dispersed under the melt-kneading conditions of the olefin-based resin.
  • organic filler Specific examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, and nylon.
  • -6 nylon-6, 6, cyclic polyolefin, polystyrene, polydecyl acrylate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyether ketone, polyetheretherketone, A polydecyl methacrylate, a poly-4-mercapto-1-pentene, a homopolymer of a cyclic olefin, a copolymer of a cyclic olefin and ethylene, and the like.
  • a fine powder of a thermosetting resin such as a melamine resin can also be used.
  • the above-mentioned inorganic fine powder and the above-mentioned organic filler may be used singly or in combination of two or more kinds.
  • the average particle diameter of the inorganic fine powder and the average particle diameter of the organic filler are preferably ⁇ . ⁇ ⁇ ⁇ or more, more preferably ⁇ . ⁇ ⁇ or more, further preferably 0.5 ⁇ or more. From the viewpoint of ease of mixing with the thermoplastic resin and void formability, it is preferably ⁇ . ⁇ ⁇ ⁇ or more.
  • the average particle diameter of the inorganic fine powder and the average dispersed particle diameter of the organic filler which can be used in the present invention are preferably 30 ⁇ m or less, more preferably 15 ⁇ or less, still more preferably 5 ⁇ or less.
  • the opacity and the printability are improved by the formation of the pores in the inside, it is preferably 30 ⁇ m or less from the viewpoint of difficulty in occurrence of breakage of the sheet during stretching and deterioration of the strength of the surface layer.
  • the measurement is carried out by measuring the particle size (accumulated 50% particle diameter) measured by a particle measuring device such as a laser diffraction type particle measuring device "Microtrac" (manufactured by Nikkiso Co., Ltd.) .
  • the particle diameter of the organic filler dispersed in the thermoplastic resin by melt-kneading and dispersion can also observe the cut surface of the thermoplastic resin film by an electron microscope, and measure the maximum particle diameter of at least 10 particles in the pellet to obtain an average value thereof.
  • the particle size As the particle size.
  • the olefin-based resin film contains inorganic fine powder and organic filler
  • the content of the inorganic fine powder and the organic filler in the olefin-based resin film is preferably 1% by weight or more, more preferably 5% by weight or more, and particularly preferably 10% by weight or more.
  • the content of the inorganic fine powder and the organic filler in the olefin-based resin film is preferably 75% by weight or less, more preferably 40% by weight or less, and particularly preferably 30% by weight or less.
  • the content of the inorganic fine powder and the organic filler is 75% by weight or less, stable formation of the olefin-based resin film is easily achieved.
  • a well-known additive can be arbitrarily added to an olefin type resin film as needed.
  • the additive include an antioxidant, a light stabilizer, a UV absorber, a dispersant of an inorganic fine powder, a lubricant such as a higher fatty acid metal salt, an antiblocking agent such as a higher fatty acid amide, a dye, a pigment, a plasticizer, and a crystal. Nucleating agent, mold release agent, flame retardant, etc.
  • a hindered phenol-based antioxidant, a phosphorus-based antioxidant or an amine-based antioxidant can be usually used in the range of 0.001 to 1% by weight.
  • a light stabilizer a hindered amine light stabilizer, a benzotriazole light stabilizer or a benzophenone light stabilizer can be usually used in the range of 0.001 to 1% by weight.
  • the dispersing agent or the lubricant is used, for example, for the purpose of dispersing the inorganic fine powder.
  • a silane coupling agent a higher fatty acid such as oleic acid or stearic acid, a metal soap, polyacrylic acid, polyacrylic acid, or a salt thereof can be usually used in the range of 0.01 to 4% by weight. These can be added in a range that does not inhibit the printability and heat sealability of the label for in-mold molding.
  • the olefin-based resin film which is a support of the label can be obtained by forming an olefin-based resin into a film to form a desired olefin-based resin film.
  • the olefin-based resin film may be any one in which an inorganic fine powder is optionally blended in the olefin-based resin.
  • the olefin-based resin film may have a single layer structure or a multilayer structure.
  • a preferred embodiment of the olefin-based resin film as the label support in the present invention is a film having a multilayer structure and imparting specific properties to each layer.
  • the olefin-based resin film is formed into a three-layer structure of a surface layer/base layer/surface layer, and the base layer is used to impart appropriate rigidity, opacity, lightness, and the like to the label for in-mold molding, and the surface layer on one side forms a surface structure suitable for printing.
  • the surface layer on the other side is formed into a surface structure suitable for providing a heat seal layer, whereby a recording paper suitable as a label for in-mold molding can be obtained.
  • the olefin resin film can be controlled to a specific range even if a punched in-mold label is formed. Inside.
  • the olefin-based resin film can be produced by various methods known to those skilled in the art, alone or in combination.
  • the molding method is not particularly limited.
  • the olefin-based resin film produced by any method is included in the scope of the present invention without departing from the gist of the present invention.
  • a film layer containing an olefin-based resin can be molded by the following molding or the like: For example, a single-layer or multi-layer T-die, an I-die, or the like connected to a screw-type extruder is used, and a molten resin is used. Extrusion into sheet form casting; calendering; roll forming; blow molding. It is also possible to mold a film layer containing an olefin resin by casting or calendering a mixture of an olefin resin and an organic solvent or oil, and removing the solvent or oil.
  • the olefin-based resin film may have a single-layer structure or a two-layer structure or a three-layer structure or more.
  • the olefin-based resin film is multi-layered, and various functions such as improvement of mechanical properties, writing property, scratch resistance, and secondary processing suitability are possible.
  • various known methods can be used. Specific examples thereof include a dry lamination method using various adhesives, a wet lamination method, and a melt lamination method. Multi-die die method (co-extrusion method) with feed block and multi-manifold, extrusion lamination using multiple die, using various coaters Coating method, etc.
  • a multilayer die can be used in combination with extrusion lamination.
  • the olefin-based resin film may be a film that has not been stretched or a film that has been stretched.
  • the stretching of the olefin-based resin film can be carried out by any one of various methods generally used or a combination thereof, and the method thereof is not particularly limited.
  • the olefin-based resin is melt-kneaded by a screw-type extruder, and the molten resin is extruded into a sheet shape using a T-die or an I-die attached to the extruder, and the sheet is stretched to obtain a resin film.
  • a longitudinal stretching method between rolls using a circumferential speed difference of a roll group a transverse stretching method using a tenter furnace, a continuous biaxial stretching method in which they are combined, or the like can be used.
  • a rolling method using the pressure of the rolls a simultaneous biaxial stretching method using a combination of a tenter furnace and a pantograph, a simultaneous biaxial stretching method using a combination of a tenter furnace and a linear motor, or the like can be used.
  • the molten resin can be extruded into a tubular shape by a circular die connected to a screw extruder, and a biaxial stretching (blow molding) method or the like can be blown into the air.
  • the olefin-based resin film is composed of a plurality of layers, it is preferred that at least one layer is stretched at least in a uniaxial direction. Since the olefin-based resin film obtained by the stretching is excellent in mechanical strength and uniform in thickness, it is possible to obtain in-mold molding which is easy to post-process such as printing.
  • the number of stretching axes of each layer constituting the olefin-based resin film may be 1 axis/1 axis, 1 axis/2 axis, 2 axis/1 axis, 1 axis/1 axis/ 2 axes, 1 axis/2 axes/1 axis, 2 axes/1 axis/1 axis, 1 axis/2 axis/2 axis, 2 axes/2 axes/1 axis, 2 axes/2 axes/2 axes.
  • the stretching may be performed separately before laminating the layers, or may be performed after lamination.
  • the stretched layer It is also possible to stretch again after lamination.
  • the stretching of the olefin resin film is preferably carried out in a temperature range suitable for the olefin resin contained in the film.
  • the olefin-based resin used in the film is a crystal resin
  • it is preferably in a range of a glass transition temperature of the olefin resin.
  • the olefin-based resin used for the film is a crystalline resin
  • it is preferably in a range of not less than the glass transition temperature of the amorphous portion of the olefin-based resin and not more than the melting point of the crystal portion of the olefin-based resin.
  • the stretching temperature of the film is preferably lower than the melting point of the olefin resin used for the film by 1 to 70 °C.
  • the olefin-based resin used for the film is a homopolymer of propylene (melting point: 155 to 167 ° C)
  • it is preferably 100 to 166 ° C
  • the olefin-based resin used for the film is high-density polyethylene (melting point: 121 to 136).
  • C it is preferably 70 to: 135.
  • the stretching speed at the time of stretching the olefin-based resin film is not particularly limited, but it is preferably in the range of 20 to 350 m/min for the stable stretching of the olefin-based resin film.
  • the stretching ratio in the case of stretching the olefin-based resin film can be appropriately determined in consideration of the properties of the olefin-based resin used in the film and the like.
  • the stretching ratio when the film is uniaxially stretched is usually in the range of about 1.5 to 12 times, preferably 2 to 10 times.
  • the stretching ratio at the time of biaxial stretching is usually in the range of 1.5 to 60 times, preferably 4 to 50 times, in terms of area stretching ratio. When it is in this range, it is possible to obtain desired pores, to easily improve opacity, to cause breakage of the olefin-based resin film, and to stably perform stretch molding.
  • the olefin-based resin film contains at least one of the inorganic fine powder and the organic filler and is stretched, fine pores may be formed inside the film. By forming the pores, it is possible to reduce the weight, the flexibility, and the opacity of the olefin-based resin film.
  • the proportion of voids in the film can be expressed as a porosity.
  • the porosity of the olefin-based resin film is preferably 10% or more, more preferably 15% or more, and still more preferably 20% or more.
  • the porosity of the olefin-based resin film is preferably 50% or less, more preferably 45% or less, and still more preferably 40% or less.
  • the cross section of the olefin resin film can be observed by an electron microscope, and the ratio of the area occupied by the hollow holes in the observation region can be obtained.
  • any part of the resin film sample is cut out and solidified by epoxy resin, and then a cut surface perpendicular to the surface direction of the film is formed by a microtome, and the cut surface is attached to the observation surface.
  • gold or gold-palladium or the like is vapor-deposited on the observation surface, and the pores on the surface at an arbitrary magnification (for example, a magnification of 500 to 3000 times) which are easily observed are observed by an electron microscope, and the observed region is taken as an image.
  • the data was subjected to image processing using an image analyzing device to obtain an area ratio of the hole portion, which was taken as a porosity. In this case, the measured values of any of the 10 or more observations can be averaged as the porosity.
  • the thickness of the olefin-based resin film is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and still more preferably 50 ⁇ m or more. When the thickness of the olefin-based resin film is 20 ⁇ m or more, sufficient rigidity is imparted to the label for in-mold molding, and problems during printing and mold insertion are less likely to occur. Further, the thickness of the olefin-based resin film is preferably 200 ⁇ m or less, more preferably 175 ⁇ m or less, and still more preferably 150 ⁇ m or less. When the thickness of the olefin-based resin film is 200 ⁇ m or less, the rigidity does not become excessively high, and the shape followability of the label is easily obtained during molding of the plastic container.
  • the density of the olefin-based resin film is preferably 0.6 g/cm 3 or more, more preferably 0.65 g/cm 3 or more, and still more preferably 0.7 g/cm 3 or more.
  • the density of the olefin-based resin film is 0.6 g/cm 3 or more, sufficient rigidity is imparted to the label for in-mold molding, and problems during printing and mold insertion are less likely to occur.
  • an olefin resin film The density is preferably 0.95 g/cm 3 or less, more preferably 0.9 g/cm 3 or less, still more preferably 0.85 g/cm 3 or less.
  • the density of the olefin-based resin film is 0.95 g/cm or less, the label for light weight and in-mold molding can be easily used.
  • the olefin-based resin film preferably contains pores inside to form a density within the above range.
  • the heat seal layer is a layer containing a thermoplastic resin and having an adhesive for bonding the label for in-mold molding and the plastic container.
  • the composition, constitution, and manufacturing method of the heat seal layer will be described in detail.
  • thermoplastic resin used in the aforementioned heat seal layer has the following features (1) and (2).
  • At least one crystal peak obtained by differential scanning calorimetry is between 85 and 110 °C.
  • the hot tack strength at 130 ° C is 120 to 350 gf / cm 2 .
  • thermoplastic resin examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, and ethylene-(mercapto).
  • examples of the heat-sealable thermoplastic resin include an ⁇ -olefin obtained by copolymerizing at least two kinds of comonomers selected from ⁇ -olefins having 2 to 20 carbon atoms in the molecule. Copolymer or block copolymer.
  • examples of the ⁇ -olefin having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 2-mercapto-1-propene, 1-pentene, 2-mercapto-1-butene, and the like.
  • thermoplastic resin which can easily achieve the characteristics of the above (1) and (2) include an ethylene-propylene random copolymer, an ethylene-1-butene random copolymer, and an ethylene-propylene-1-butene.
  • random copolymers preferred are ethylene-1-hexene random copolymers, propylene-1-butene random copolymers, and ethylene-propylene-1-butene random copolymers.
  • the content of each of the comonomers of the random copolymer is preferably 40% by weight or more, and more preferably 50% by weight or more. It is particularly preferably in the range of 70% by weight or more, and ethylene is preferably 98% by weight or less, more preferably 95% by weight or less, and particularly preferably 93% by weight or less.
  • the ⁇ -olefin is preferably 2% by weight or more, more preferably 5% by weight or more, particularly preferably 7% by weight or more, and the ⁇ -olefin is preferably 60% by weight or less, more preferably 50% by weight or less. It is particularly preferably in the range of 30% by weight or less.
  • the random copolymer is a random copolymer of propylene and an ⁇ -olefin
  • propylene is preferably 75 mol% or more, more preferably 80 mol% or more, and propylene is preferably 88.5 mol% or less, more preferably 86 mol. % below the range.
  • the ⁇ -olefin is preferably in a range of 11.5 mol% or more, and more preferably 14 mol% or more.
  • the ⁇ -olefin is preferably in a range of 25 mol% or less, more preferably 20 mol% or less.
  • propylene is preferably 65 mol% or more, more preferably 74 mol% or more, and particularly preferably 77 mol% or more, and propylene is preferably 98 mol% or less, more preferably 93.5 mol% or less, and particularly preferably 92 mol% or less.
  • the total content of ethylene and ⁇ -olefin is preferably 2 mol% or more, more preferably 6.5 mol% or more, particularly preferably 8 mol% or more, and the total content of ethylene and ⁇ -olefin is preferably 35 mol%.
  • it is more preferably 26 mol% or less, and particularly preferably 23 mol% or less.
  • thermoplastic resin an ethylene _ _ [alpha] -olefin copolymer obtained by copolymerizing a metallocene catalyst easy to achieve (2) wherein the above (1) and, it is preferable.
  • the above copolymer can be obtained by copolymerizing a comonomer component by using the following catalyst to obtain a thermoplastic resin having a desired characteristic: a metallocene catalyst, particularly a metallocene-4 luminol; a metallocene-aluminoxane catalyzing agent; or A catalyst comprising a metallocene compound and a compound which reacts with a metallocene compound to form a stable anion, as disclosed in Japanese Laid-Open Patent Publication No. WO92/01723.
  • thermoplastic resin an ethylene-1-hexene copolymer obtained by copolymerization using a metallocene catalyst by a gas phase method is preferable because it is easy to achieve the characteristics of the above (1) and (2).
  • the olefin copolymer has a higher density than the olefin copolymer, it is easy to achieve the high crystallization peak temperature, which is characterized by the above (1), and has a wide molecular weight distribution. Therefore, it is easy to provide the hot tack which is characteristic of the above (2), and it is easy to construct the problem of the present invention. Heat seal layer.
  • the thermoplastic resin is copolymerized using a metallocene catalyst, the low molecular weight component which is a cause of stickiness is small, and the adhesion of the label for in-mold molding is less likely to occur. question.
  • the thermoplastic resin obtained as described above has (1) a feature that at least one crystal peak obtained by differential scanning calorimetry has at least one between 85 and 110 °C.
  • the peak of the crystal is preferably at least 87 ° C or higher, more preferably at least 89 ° C.
  • the crystal peak is preferably at least one of 105 ° C or less, more preferably 100 ° C or less.
  • This high crystallization peak temperature is not found in the existing low melting point heat sealable thermoplastic resin.
  • the bonding of the in-mold forming label to the plastic container is also completed in a short time.
  • thermoplastic resin has a feature that (2) a heat-adhesive strength at 130 ° C is 120 to 350 gf / cm 2 .
  • the hot tack strength is preferably 140gf / cm 2 or more, more preferably 160gf / cm 2 or more, preferably 340gf / cm 2 or less, more preferably 33 Ogf / cm 2 or less.
  • cohesive force viscosity
  • the label is fixed and held on the plastic container by the adhesive force, and the occurrence of defects such as bubbles can be suppressed, and the present invention has been completed.
  • the hot tack strength is high and exceeds 350 gf/cm 2 , although there is no problem in performance, it is difficult to obtain such a thermoplastic resin.
  • Such a hot tack strength is easily obtained when the molecular weight structure of the thermoplastic resin has a large branching ratio and a wide molecular weight distribution.
  • the molecular weight distribution is too wide, stickiness due to low molecular weight components tends to occur, and therefore it is preferable to appropriately adjust the polymerization conditions of the resin or the like.
  • thermoplastic resin is preferably melted by differential scanning calorimetry.
  • the melting peak is more preferably at least 95 ° C or higher, more preferably at 100 ° C or higher, more preferably at least 128 ° C, more preferably at 127 ° C or lower.
  • the thermoplastic resin preferably has a density of 0.905 to 0.940 g/cm 3 .
  • the density is more preferably 0.910g / cm 3 or more, more preferably 0.91 1 g / cm 3 or more, more preferably 0.939g / cm 3 or less, more preferably 0.929g / cm 3 or less.
  • the density of the thermoplastic resin has a characteristic related to the branching ratio in the molecular structure of the thermoplastic resin. When the density is within this range, the heat seal suitability and high temperature discharge suitability are excellent.
  • additives for the resin may be arbitrarily added to the heat seal layer of the present invention insofar as the desired performance is not impaired.
  • a dye, a nucleating agent, a plasticizer, a releasing agent, an antioxidant, a flame retardant, an ultraviolet absorbing agent and the like can be listed.
  • the method of laminating and laminating the heat-sealing layer containing the thermoplastic resin on one side of the olefin-based film may be a coating method, a co-extrusion method, a melt extrusion lamination method, or a resin composition.
  • a method such as a thermal lamination method of a formed film or a dry lamination method of a film formed of a resin composition.
  • the lamination of the heat seal layer to the olefin resin film may be carried out in the molding operation line of the olefin resin film together with the film formation, or the formed olefin resin film may be laminated on another operation line.
  • the thickness of the heat seal layer is preferably in the range of 0.5 to 20 ⁇ m, more preferably in the range of 1 to 10 ⁇ m.
  • the thickness is 0.5 ⁇ m or more, the thickness of the heat seal layer can be uniformly ensured, and the label can be firmly joined to the plastic container, which is preferable.
  • the thickness is 20 ⁇ m or less, the label for in-mold molding is less likely to be curled, and the label is easily fixed to the mold, which is preferable.
  • the heat-sealing layer of the in-mold forming labels is embossed in a manner as described in JP-A No. 2-84319 and JP-A-3-260689.
  • the embossed pattern for example, a linear density of 20 to 1500 lines per 2.54 cm can be exemplified.
  • the size of the valley for example, the ten-point average roughness Rz measured by the method described in JIS-B-0601 is in the range of 1 to 30 ⁇ m. It is preferable to select the number and depth of the embossing rolls used for the processing to achieve such linear density and valley.
  • in-mold forming labels if necessary, surface properties such as corona discharge can be used to improve printability and adhesion.
  • Printing can be performed by gravure printing, offset printing, flexographic printing, sealing printing, screen printing, and the like.
  • a label printed with a barcode, a manufacturer, a sales company name, a character, a product name, a method of use, or the like can be used.
  • the label for in-mold molding after printing can be separated into a necessary shape size by punching.
  • These in-mold forming labels may be labels attached to the entire surface of the plastic container or partial labels attached to a part of the surface. For example, it can be used as a blank label around the side of a cup-shaped plastic container shaped by injection molding, or as a label attached to the front and back surfaces of a bottle-shaped plastic container shaped by hollow molding.
  • any of the methods of hollow molding, injection molding, and differential pressure molding can obtain a labeled plastic container by an in-mold labeling process.
  • In-mold forming standard of the present invention The signing can utilize any of the above molding methods.
  • the label for in-mold molding is placed in the cavity of at least one of the molds of the mold, and then by suction, Electrostatically fixed to the inner wall of the mold, and then the parison of the resin as the molding material of the container or the melt of the preform is introduced between the molds, and after the mold is closed, the hollow molding is performed by a conventional method, and the label is integrally molded into the plastic container. Labeled plastic container on the outer wall.
  • the label for in-mold molding is placed in the cavity of the female mold, and then attracted by static electricity.
  • the mold is fixed to the inner wall of the mold, and after the mold is closed, the melt of the resin as the molding material of the container is injected into the mold to form a container, and the labeled plastic container in which the label is integrally fused to the outer wall of the plastic container is molded.
  • the in-mold forming label is placed in the cavity of the lower female mold of the differential pressure forming mold so that the heat sealing layer of the label faces the cavity side of the mold (the printing side is in contact with the mold). After that, it is fixed to the inner wall of the mold by suction and static electricity, and then the molten material of the resin sheet as the container molding material is introduced above the lower female mold, and differential pressure molding is performed by a conventional method, and the label is integrally molded to the outer wall of the container. Labeled plastic container.
  • the differential pressure forming may be any one of vacuum forming and compressed air forming, but it is generally preferred to use both and utilize a plug assist differential pressure forming.
  • the label for in-mold molding of the present invention is particularly useful as a label for use in hollow molding or injection molding in which a plastic container is likely to be discharged from a mold at a high temperature.
  • the labeled plastic container obtained by the above method can reduce the occurrence of defects such as peeling of the label, air bubbles, or the like due to deformation of the label.
  • the labelled plastic container preferably does not easily peel off the label.
  • the bonding strength of the label to the plastic container measured by the following method is preferably
  • the label adhesive strength is 200 gf/15 mm or more, more preferably 300 gf / 15 mm or more, further preferably 400 gf / 15 mm or more.
  • the label adhesive strength is 200 gf/15 mm or more, the label is not easily peeled off during use of the plastic container.
  • the label adhesive strength is preferably 1500 gf / 15 mm or less, more preferably 1200 gf / 15 mm or less, still more preferably 1000 gf / 15 mm or less. Although the higher the label bonding strength, the better, it is difficult to obtain a label bonding strength exceeding 1500 gf / 15 m m.
  • the labeled plastic container obtained by the present invention is also excellent in adaptability to high-temperature content filling.
  • the melting point (melting peak temperature) of the thermoplastic resin of the heat-sealing layer is low.
  • the plastic container has a problem that the thermoplastic resin is melted to cause peeling of the label for in-mold molding.
  • thermoplastic resin having a melting point (melting peak temperature) of a specific temperature or higher in the heat sealing layer of the in-mold forming label it is possible to provide in-mold molding even when the content is filled at a high temperature. Labeled plastic containers that do not peel off the label.
  • the olefin-based resin obtained by mixing the materials described in Table 1 in the mixing ratios shown in Table 2 was melt-kneaded using an extruder set to 250 V, and then supplied to a T-die set at 250 ° C, and extruded. In the form of a sheet, it was cooled to about 60 ° C with a cooling roll to obtain an unstretched sheet. Then, the unstretched sheet was again heated to the longitudinal stretching temperature shown in Table 2, and the magnification described in Table 2 was stretched in the longitudinal direction by the circumferential speed difference of the roll group, and cooled to about 60 ° C by a cooling roll. Thus, a stretched sheet was obtained.
  • thermoplastic resin of the type described in Table 2 was melt-kneaded using an extruder set at 230 ° C, and then extruded into a sheet shape by a T-die set at 230 ° C to pull the thermoplastic resin and pull the thermoplastic resin.
  • the stretched sheet is introduced between the metal chill roll and the felt-like rubber roll having the embossed pattern of 150 lines, and the embossing pattern is transferred to the thermoplastic resin side while being joined, and is cooled by the cooling roll.
  • a two-layer structure having an olefin resin film/heat seal layer was obtained.
  • the laminated resin sheet was again heated to the transverse stretching temperature shown in Table 2 using a tenter furnace, and then the magnification described in Table 2 was stretched in the transverse direction by a tenter, and further, heat setting was adjusted to 160 °C.
  • the region was annealed, cooled to about 60 ° C by a cooling roll, and the edge portion was cut off to obtain a biaxially stretched resin film having a two-layer structure having the thickness, density, and inorganic fine powder content shown in Table 2, which was used as a mold. Internal molding label.
  • the biaxially stretched resin film was introduced into a corona discharge processor by a guide roller, and the surface of the olefin-based resin film side was subjected to corona discharge treatment at a treatment amount of 50 W ⁇ min/m 2 , and the coil was taken up by a coiler. take.
  • the laminated resin sheet of Comparative Example 4 was unstable and repeatedly broken when it was stretched in the transverse direction by using a tenter, so that the biaxially stretched resin film could not be obtained.
  • the olefin-based resin obtained by mixing the PP 1 , CA 1 and TIO shown in Table 1 in the mixing ratios shown in Table 2 was melt-kneaded using an extruder set to 250 V, and then supplied to the olefin-based resin.
  • the T-die set at 250 ° C was extruded into a sheet and cooled to about 60 ° C with a cooling roll to obtain an unstretched sheet.
  • the unstretched sheet was again heated to the longitudinal stretching temperature shown in Table 2, and the magnification described in Table 2 was stretched in the longitudinal direction by the circumferential speed difference of the roll group, and cooled to about 60 ° C by a cooling roll.
  • a stretched sheet was obtained.
  • the PE2 shown in Table 1 was melt-kneaded using an extruder set at 230 ° C, and then extruded into a sheet shape by a T-die set at 230 ° C to introduce the thermoplastic resin and the stretched sheet. Between the metal chill roll and the felt-like rubber roll having the embossed pattern of #400 line, the embossed pattern is transferred to the thermoplastic resin side, and the embossed pattern is bonded to join the two, and the edge portion is cut. A uniaxially stretched resin film having a two-layer structure of an olefin resin film/heat seal layer having a thickness, a density, and an inorganic fine powder content as described in Table 2 was obtained, and this was used as a label for in-mold molding.
  • the uniaxially stretched resin film was introduced into a corona discharge processor by a guide roller, and the surface of the olefin-based resin film side was subjected to corona discharge treatment at a treatment amount of 50 W ⁇ min/m 2 , and the coil was taken up by a coiler. take.
  • the olefin-based resin obtained by mixing 95% by weight of PP 1 and 5% by weight of TIO described in Table 1 and the PE 2 described in Table 1 were separately melt-kneaded using two extruders set at 250 ° C, and then supplied.
  • a co-extrusion die set to 250 ° C laminated and extruded into a sheet shape, introduced into a semi-mirror-like cooling roll and a felt-like rubber roll, and cooled while being clamped.
  • An unstretched resin film having a two-layer structure having an olefin resin film/heat seal layer having a thickness, a density, and an inorganic fine powder content as shown in Table 2 was obtained, and this was used as a label for in-mold molding.
  • the unstretched resin film was introduced into a corona discharge processor by a guide roller, and the surface of the olefin-based resin film side was subjected to corona discharge treatment at a treatment amount of 50 W ⁇ min/m 2 , and wound up by a coiler. .
  • a metal cooling roll which has been subjected to mirror polishing of hardened chrome plating is processed into a semi-mirror surface, and then polished and finished.
  • the rubber hardness (according to JIS K-6301: 1995) measured by a spring type JIS hardness meter is 70 Hs, and the silica sand and quartz having a particle diameter of 31 to 37 ⁇ m are contained in a ratio of 20 to 55 wt%.
  • the fine particles of the glass have a diameter of 300 mm and a width of 1500 mm.
  • the semi-mirror-like cooling roll was brought into contact with the thermoplastic resin side, and the felt-like rubber roller was brought into contact with the olefin-based resin side to carry out molding.
  • the thickness of the label for in-mold molding of the present invention was measured in accordance with JIS-K-7130 using a constant-pressure thickness measuring device (manufactured by Teclock Corporation, equipment name: PG-01 J).
  • each layer of the olefin-based resin film and the heat-sealing layer constituting the label for in-mold molding was determined as follows: The sample to be measured was cooled to a temperature of -60 ° C or lower with liquid nitrogen, and a razor (manufactured by Schick Japan KK, Product name: Proline Blade) The sample for the measurement of the cross-section was cut at right angles to the sample placed on the glass plate, and the obtained test was performed using a scanning electron microscope (manufactured by JEOL Ltd., equipment name: JSM-6490). The cross-sectional observation was carried out, and the boundary line of each thermoplastic resin composition was discriminated from the composition appearance, and the thickness of each layer was obtained by multiplying the overall thickness by the observed layer thickness ratio. The results are summarized in Table 2.
  • the density of the label for in-mold forming in the present invention is obtained by dividing the basis weight obtained above by the thickness obtained as described above. The results are summarized in Table 2.
  • thermoplastic resin to be used is determined by a water-replacement method using a press sheet of a thermoplastic resin to be used in accordance with the method of JIS-K-7112. The results are shown in Table 1.
  • the crystallization peak temperature of the thermoplastic resin of the present invention is a value measured in accordance with JIS-K-7121, using a differential scanning calorimeter (device name: DSC6200, Seiko
  • the melting peak temperature of the thermoplastic resin of the present invention is a value measured in accordance with JIS-K-7121, using a differential scanning calorimeter (device name: DSC6200, manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C /min for thermoplastic When the resin is heated, the main peak temperature measured is taken as the melting peak temperature. The results are shown in Table 1.
  • the hot tack strength of the present invention was measured using an adhesion tester (device name: Model TAC-II, manufactured by Rhesca Corporation).
  • the label for in-mold molding was cut into a size of 100 mm in width and 100 mm in length to prepare an evaluation sample, and the evaluation sample was placed on the sample stage adjusted to a temperature of 30 ° C with the heat-sealing layer facing upward. Then, a 30 mm-diameter probe whose temperature was adjusted to 130 ° C was adhered to the surface of the heat-sealing layer side of the evaluation sample with a load of 50 gf for 60 seconds, and then the probe was lifted at a speed of 120 mm/min to obtain an evaluation sample. The resistance received by the probe due to the adhesive force of the thermoplastic resin at the time of detachment was taken as the load value, and the maximum value was taken as the heat-adhesive strength. The results are summarized in Table 2.
  • the in-mold forming label obtained by each of the examples and the comparative examples was punched into a rectangular shape having a width of 60 mm and a length of 10 mm, and was used as a label for use in the production of a labeled plastic container.
  • the label was placed on one side of the blow molding mold capable of molding a bottle having a 400 ml content amount so that the heat seal layer faced the cavity side, and was fixed to the mold by suction, and then melted at a high density at 170 ° C between the molds.
  • the label attached portion of the labeled plastic container is cut out in a strip length of 15 mm by using a tensile tester (equipment). Name: Autograph AGS-D type, manufactured by Shimadzu Corporation:) T-stripping at a tensile speed of 300 mm/min to determine the bond strength between the label and the container. The results are summarized in Table 3.
  • the in-mold forming label obtained by each of the examples and the comparative examples was punched into a rectangular shape having a width of 60 mm and a length of 10 mm, and was used as a label for use in the production of a labeled plastic container.
  • the label was placed on one side of the blow molding mold capable of molding a bottle having a 400 ml content amount so that the heat seal layer faced the cavity side, and was fixed to the mold by suction, and then melted at a high density at 170 ° C between the molds.
  • the labeled plastic container using the labels for in-mold molding of Examples 1 to 9 is not only excellent in the bonding strength of the label, but also manufactured under high-temperature discharge conditions in which the production cycle time is shortened in order to improve productivity. It is also possible to suppress the occurrence of defective products due to poor appearance immediately after discharge, and it is possible to achieve desired production efficiency.
  • thermoplastic resin of the label had a thermal adhesive strength at 130 ° C of less than 120 gf/cm 2 , the thermoplastic resin was melted under high temperature conditions. The cohesive force necessary to hold the label on the container is insufficient, and the label is deformed to generate bubbles in the label.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本发明提供模内成型用标签及使用其的带标签的塑料容器。本发明的模内成型用标签,其在烯烃系树脂薄膜的单面具有热封层,该热封层包含具有(1)和(2)特征的热塑性树脂,(1)利用差示扫描量热测定得到的结晶峰在85~110℃之间至少存在1个,(2)130℃下的热粘强度为120~350gf/cm 2

Description

模内成型用标签及使用其的带标签的塑料容器 技术领域
本发明涉及模内成型用标签。
特别是涉及在塑料容器的制造中, 在模具内进行容器成型 的同时给该容器贴附模内成型用标签而制造带标签的塑料容器 时, 即使缩短其制造循环时间, 也能够抑制标签的剥离、 气泡 之类的因标签的变形产生缺陷品的模内成型用标签。 另外, 涉 及通过使用这种模内成型用标签能够高效率地制造、 品质稳定 的带标签的塑料容器。 背景技术
塑料容器近来使用了各种各样的尺寸、 形状, 用于容纳各 种各样的液体(例如食用油、 液体调味料、 饮料、 酒类、 厨房用 洗涤剂、 衣料用洗涤剂、 洗发剂、 整发剂、 液体皂、 消毒用酒 精、 汽车用油、 汽车用洗涤剂、 农药、 杀虫剂、 除草剂等)并将 其流通、 陈列、 采购、 保管、 使用。
这些塑料容器通常是具有使用了聚乙烯、 聚丙烯、 聚酯、 聚酰胺等树脂的单层或多个树脂层的容器, 通过吹塑成型等来 制造。
另外, 在这些塑料容器中, 为了明确容纳的内容物而设置 包含商品名和其它信息的标签。 这些标签多数情况下使用带压 敏粘合剂的紙材料或者使用热收缩性薄膜设置在成型后的塑料 容器上, 标签也可以在塑料容器成型的同时设置在该容器上。
一般先向模具内导入标签、 在模具内成型塑料容器的同时 在该容器上设置标签的方法称为模内标签工艺。 该工艺由于不 需要容器成型后的标签粘贴或成型品的中间保管, 所以具有能 够节省劳力、 削减中间品保管空间、 可立即出货的优点。
关于模内标签工艺以及用于该工艺的模内标签, 可以参照 大量文献。 例如, 1969年由德国的 Rosier等公开了对透明的塑 料薄膜施以反转印刷而作为模内标签, 通过模内标签工艺将其 贴附于塑料容器(专利文献 1 )。 另外, 1989年由美国的 Dudley公 开了由包含热活化的乙烯共聚物粘接层的共挤出塑料薄膜形成 的模内标签(专利文献 2)。
另外, 1989年由安田公开了对热封性树脂层施以了压花加 工的模内标签(专利文献 3); 1997年由大野公开了热封性树脂层 中使用了以乙烯 -α-烯烃共聚物作为主要成分的模内标签, 该乙 烯 -α-烯烃共聚物是使用茂金属催化剂使 40〜98重量%的乙烯与 60〜2重量%的碳原子数为 3〜30的 α-烯烃共聚而得到的(专利文 献 4)。
现有技术文献
专利文献
专利文献 1 : 德国专利第 1 ,807, 766号公报
专利文献 2 : 美国专利第 4, 837, 075号公报
专利文献 3 : 日本实开平 1 - 105960号公报
专利文献 4 : 日本特开平 9-207166号公报 发明内容
发明要解决的问题
如上所述, 模内标签工艺中, 在同时进行塑料容器的成型 和标签的粘贴方面具有生产率高的优点。
迄今为止的大部分模内成型用标签中,如专利文献 4等所示 那样, 其热封性的层使用低熔点的热塑性树脂以适应广泛的成 型条件、 特别是即使在容器树脂的熔融挤出温度低的情况下也 可以充分活化来热封。
然而, 热封性树脂层中使用了这种低熔点的热塑性树脂的 模内成型用标签,若带标签的塑料容器在高温的状态下(具体而 言在高于热塑性树脂的熔融峰温度的温度状态下)从模具排出, 则粘接力不足而多在标签上产生气泡(凸出)。 因此, 带标签的 塑料容器有必要在模具内充分冷却后排出, 为了提高冷却效果 需要降低模具冷却温度, 或者为了争取冷却时间而需要延长制 造循环时间。 若为了降低模具冷却温度而进行冷却设备的增强 并且对冷却溶剂使用防冻液等, 则技术上能够将模具冷却至冰 点下。
然而, 尤其是在近年不断成为塑料容器的生产地点的日益 高温多湿的低纬度地区, 若模具冷却温度降低, 则有在模具表 面产生结露、 对塑料容器的稳定成型带来不良影响的可能。 因 此, 在这些地区, 通常需要使用不会产生结露的温和的冷却条 件、 相应地需要延长制造循环时间。
然而, 这种制造循环时间的冗长有损模内标签工艺原本的 优点即生产率高。 另外, 近年来, 即使这种高温多湿的生产地 点, 为了进一步提高生产率而想要缩短制造循环时间的这种期 望也提高。因此,期望即使在高温条件下从模具排出(以下为"高 温排出,,)也能够获得不会产生气泡等、 品质稳定的塑料容器的 模内成型用标签的出现。
用于解决问题的方案
本发明人等进行了深入地研究, 结果发现, 为了解决这些 问题, 在高温排出这种容器树脂的制造条件的前提下, 需要对 构成模内成型用标签的热封层的热塑性树脂的结晶特性进行控 制。 具体发现, 构成模内成型用标签的热封层的热塑性树脂在 某特定温度以上的区域具有结晶温度(结晶峰温度), 即使在比 较高温区域也能通过立即结晶化(固化)而切实地进行标签与塑 料容器的贴附, 而且直至结晶为止, 即使热塑性树脂为熔解状 态也具有粘力(热粘强度), 利用该粘力保证高温排出时的标签 与塑料容器的接合, 由此能够提供在带模内成型用标签的塑料 容器的制造工序中、 即使缩短冷却时间也不会产生气泡等的模 内成型用标签, 从而完成了本发明。
即, 本发明涉及具有下述 [ 1 ]〜[7]所述特征的模内成型用标 签, 以及下述 [8]所述的带标签的塑料容器。
[ 1 ] 一种模内成型用标签, 其在烯烃系树脂薄膜的单面具 有热封层, 该热封层包含具有(1 )和(2)特征的热塑性树脂,
( 1 )利用差示扫描量热测定得到的结晶峰在 85〜 1 10 °C之间 至少存在 1个。
(2 ) 130 °C下的热粘强度为 120〜350 gf/cm2
[2] 根据 [ 1 ]所述的模内成型用标签, 其特征在于, 热封层 包含的热塑性树脂的利用差示扫描量热测定得到的熔解峰在 90〜: 130 °C之间至少存在 1个。
[3] 根据 [ 1 ]或 [2]所述的模内成型用标签, 其特征在于, 热 封层包含的热塑性树脂为使用茂金属催化剂共聚得到的乙烯 -α-烯烃共聚物。
[4] 根据 [3]所述的模内成型用标签, 其特征在于, 热封层 包含的热塑性树脂为通过气相法使用茂金属催化剂共聚得到的 乙烯 - 1 -己烯共聚物。
[5] 根据 [ 1 ]〜[4]中任一项所述的模内成型用标签, 其特征 在于, 热封层包含的热塑性树脂的密度为 0.905〜0.940g/cm3
[6] 根据 [ 1 ]〜[5]中任一项所述的模内成型用标签, 其特征 在于, 烯烃系树脂薄膜包含烯烃系树脂和 1〜75重量%的无机微 细粉末。 [7] 根据 [ 1 ]〜[6]中任一项所述的模内成型用标签, 其特征 在于, 烯烃系树脂薄膜至少在单轴方向被拉伸。
[8] 一种带标签的塑料容器, 其贴附有 [ 1 ]〜[7]中任一项所 述的模内成型用标签。
发明的效果
根据本发明, 在带模内成型用标签的塑料容器的制造工序 中, 由于该容器的单位时间生产量提高, 即使为了缩短制造循 环时间而缩短冷却时间, 也能够抑制因气泡等产生缺陷品, 因 此成品率得到改善、 可以实现生产的效率化。 附图说明
图 1 气泡的状态。
图 2 橘皮的状态(放大图)。图 2的 a为实施例 3中的排出后的 标签外观, 图 2的 b为实施例 1中的排出后的标签外观, 图 2的 c 为实施例 2中的排出后的标签外观。 具体实施方式
以下, 通过具体实施方式对本发明进行说明, 但是以下的 实施方式不用于限定权利要求保护的范围。 另外, 实施方式中 说明的特征的组合并不限于均是本发明的解决方案所必需的。 需要说明的是,在本说明书中使用 "〜"来表示的数值范围指的是 包含"〜"的前后端所记载的数值作为下限值及上限值的范围。
[模内成型用标签]
本发明的模内成型用标签在烯烃系树脂薄膜的单面具有包 含热塑性树脂的热封层。
[烯烃系树脂薄膜]
烯烃系树脂薄膜成为模内成型用标签中后面详细说明的热 封层的支承体。 另外, 烯烃系树脂薄膜通过对模内成型用标签 赋予机械强度、 刚度等, 在印刷时、 向模具插入标签时赋予必 要的刚性, 进而赋予耐水性、 耐化学品性、 根据需要的印刷性、 不透明性、 轻量性等。 以下, 对烯烃系树脂薄膜的组成、 构成、 制造方法进行详细说明。
[烯烃系树脂]
作为前述烯烃系树脂薄膜中使用的烯烃系树脂, 可列举出 例如高密度聚乙烯、 中密度聚乙烯、 低密度聚乙烯、 丙烯系树 脂、 聚 _4-曱基 - 1 -戊烯、 乙烯 -环状烯烃共聚物等聚烯烃系树脂 等。 另外, 可列举出乙烯、 丙烯、 丁烯、 己烯、 辛烯、 丁二烯、 异戊二烯、 氯丁二烯、 曱基 - 1 -戊烯等烯烃类的均聚物以及由 2 种以上的这些烯烃类形成的共聚物。 另外, 可列举出乙烯 -乙酸 乙烯酯共聚物、 乙烯-丙烯酸共聚物、 乙烯-曱基丙烯酸共聚物、 乙烯-曱基丙烯酸共聚物的金属盐(离聚物)、 乙烯-丙烯酸烷基酯 共聚物、 乙烯 -曱基丙烯酸烷基酯共聚物(优选烷基的碳原子数 为 1〜8)、 马来酸改性聚乙烯、 马来酸改性聚丙烯等含有官能团 的烯烃系树脂。
进而, 这些烯烃系树脂中, 丙烯系树脂从薄膜成型性、 防 湿性、 机械强度、 成本方面考虑优选使用。
作为丙烯系树脂, 可列举出例如丙烯均聚而成的具有等规 或间规及各种立构规整性的均聚丙烯。 另外, 可列举出以丙烯 为主体, 将其与乙烯、 1 -丁烯、 1 -己烯、 1 -庚烯、 1 -辛烯、 4- 曱基 - 1 -戊烯等 α-烯烃共聚得到的具有各种立构规整性的丙烯 系共聚物。 丙烯系共聚物可以是 2元系、 也可以是 3元系以上的 多元系, 另外可以是无规共聚物、 也可以是嵌段共聚物。
作为烯烃系树脂薄膜中使用的烯烃系树脂, 可以从上述烯 烃系树脂中选择 1种来单独使用、 也可以选择 2种以上组合来使 用。 例如还可以在均聚丙烯中配混使用 2〜25重量%的熔点低于 均聚丙烯的树脂。 作为这种熔点低的树脂, 可列举出高密度或 低密度的聚乙烯。
本发明中, 烯烃系树脂薄膜还可以含有烯烃系树脂以外的 成分。 例如烯烃系树脂薄膜可以含有无机微细粉末和有机填料 中的至少一者。 烯烃系树脂薄膜通过含有无机微细粉末等, 可 以使烯烃系树脂薄膜白化、 不透明化, 可以提高模内成型用标 签上的印刷的可视性。 进而, 烯烃系树脂薄膜含有无机微细粉 末等并将其拉伸时, 可以在烯烃系树脂薄膜内部形成许多以无 机 £细粉末等为核的 £细空孔, 可以进一步赋予白化、 不透明 化、 轻量化。
[无机 £细粉末]
作为无机微细粉末,只要可以使前述烯烃系树脂薄膜白化、 不透明化, 则对其种类没有特别限定。 作为无机微细粉末的具 体例子, 可列举出重质碳酸钙、 轻质碳酸钙、 煅烧粘土、 滑石、 硅藻土、 白土、 ;琉酸钡、 氧化镁、 氧化锌、 氧化钛、 钛酸钡、 二氧化硅、 氧化铝、 沸石、 云母、 絹云母、 膨润土、 海泡石、 蛭石、 白云石、 硅灰石、 玻璃纤维等。 另外, 还可列举出上述 无机微细粉末的经过脂肪酸、 高分子表面活性剂、 抗静电剂等 处理的表面处理品。 其中, 重质碳酸钙、 轻质碳酸钙、 煅烧粘 土、 滑石由于空孔成型性良好、 廉价, 因此优选。 另外, 氧化 钛从白化和不透明化方面考虑优选。
[有机填料]
有机填料只要可以使前述烯烃系树脂薄膜白化、不透明化, 则对其种类没有特别限定。 这些有机填料优选与前述烯烃系树 脂不相容、 熔点或玻璃化转变温度比前述烯烃系树脂高、 在前 述烯烃系树脂的熔融混炼条件下进行微分散。 作为有机填料的 具体例子, 可列举出聚对苯二曱酸乙二酯、 聚对苯二曱酸丁二 酯、 聚萘二曱酸乙二酯、 聚苯乙烯、 聚酰胺、 聚碳酸酯、 尼龙
-6、 尼龙 -6, 6、 环状聚烯烃、 聚苯乙烯、 聚曱基丙烯酸酯、 聚亚 乙基硫醚、 聚苯硫醚、 聚酰亚胺、 聚醚酮、 聚醚醚酮、 聚曱基 丙烯酸曱酯、 聚 -4-曱基 - 1 -戊烯、 环状烯烃的均聚物、 环状烯烃 与乙烯的共聚物等。 另外, 还可以使用三聚氰胺树脂之类的热 固化树脂的微粉末。
前述无机微细粉末和前述有机填料可以从上述成分中选择 1种单独使用, 还可以选择 2种以上组合使用。 组合 2种以上使用 前述无机微细粉末的平均粒径和前述有机填料的平均分散 粒径优选为 Ο.Ο Ι μηι以上, 更优选为 Ο. ΐ μηι以上, 进一步优选为 0.5μηι以上。 从与热塑性树脂的混合容易性、 空孔成型性方面 考虑, 优选为 Ο. Ο Ι μηι以上。 另外, 本发明中可以使用的无机微 细粉末的平均粒径和有机填料的平均分散粒径优选为 30μηι以 下, 更优选为 15μηι以下, 进一步优选为 5μηι以下。 通过拉伸使 内部产生空孔而提高不透明性、 印刷性的情况下, 从难以产生 拉伸时的片材断裂、 表面层强度降低等故障的观点考虑, 优选 为 30μηι以下。 以如下测定: 通过利用颗粒计测装置例如激光衍射式颗粒计测 装置" Microtrac" (株式会社日机装制,商品名)测定的累积为 50% 的粒径(累积 50%粒径)进行测定。 另外, 通过熔融混炼和分散而 分散在热塑性树脂中的有机填料的粒径还可以通过电子显微镜 观察前述热塑性树脂薄膜的切断面, 测定颗粒中至少 10个的最 大粒径, 求得其平均值作为粒径。
本发明中, 烯烃系树脂薄膜包含无机微细粉末和有机填料 中的至少一者时, 烯烃系树脂薄膜中的无机微细粉末和有机填 料的含量优选为 1重量%以上, 更优选为 5重量%以上, 特别优 选为 10重量%以上。 若无机微细粉末和有机填料的含量为 1 %以 上, 则容易达成所得到烯烃系树脂薄膜的白化、 不透明化。 另 一方面, 烯烃系树脂薄膜中的无机微细粉末和有机填料的含量 优选为 75重量%以下, 更优选为 40重量%以下, 特别优选为 30 重量%以下。 若无机微细粉末和有机填料的含量为 75重量%以 下, 则容易达成烯烃系树脂薄膜的稳定的成型。
[任意成分]
烯烃系树脂薄膜中可以根据需要任意添加公知的添加剂。 作为该添加剂, 可列举出抗氧化剂、 光稳定剂、 紫外线吸收剂、 无机微细粉末的分散剂、 高级脂肪酸金属盐等润滑剂、 高级脂 肪酰胺等防粘连剂、 染料、 颜料、 增塑剂、 结晶成核剂、 脱模 剂、 阻燃剂等。
添加抗氧化剂时, 通常可以在 0.001〜1重量%的范围内使用 位阻酚系抗氧化剂、 磷系抗氧化剂或胺系抗氧化剂等。 使用光 稳定剂时, 通常可以在 0.001〜1重量%的范围内使用位阻胺系光 稳定剂、 苯并三唑系光稳定剂或二苯曱酮系光稳定剂。 分散剂 或润滑剂例如以分散无机微细粉末为目的而使用。 具体而言, 通常可以在 0.01〜4重量%的范围内使用硅烷偶联剂、 油酸或硬 脂酸等高级脂肪酸、 金属皂、 聚丙烯酸、 聚曱基丙烯酸或它们 的盐等。 它们可以在不阻碍模内成型用标签的印刷性、 热封性 的范围内添加。
[烯烃系树脂薄膜的构成]
成为标签的支承体的烯烃系树脂薄膜可以通过将烯烃系树 脂制膜、 形成所希望的烯烃系树脂薄膜来得到。 另外, 烯烃系 树脂薄膜还可以为将在烯烃系树脂中任意配混有无机微细粉 末、有机填料和公知的添加剂等而成的物质制膜而形成的薄膜。 烯烃系树脂薄膜可以为单层结构或多层结构。
本发明中的作为标签支承体的烯烃系树脂薄膜的优选方式 为多层结构并对各层赋予特有的性质的薄膜。 例如, 使烯烃系 树脂薄膜形成表层 /基层 /表层的三层结构, 利用基层对模内成 型用标签赋予适合的刚度、 不透明性、 轻量性等, 一侧表层形 成适于印刷的表面结构, 另一侧表层形成适于设置热封层的表 面结构, 由此可以得到作为模内成型用标签适合的记录用紙。 另一方面, 通过适当设计一侧表层与另一侧表层的组成、 厚度 等, 烯烃系树脂薄膜自不必说, 即使形成沖裁了的模内成型用 标签的方式也能够将卷曲控制在特定范围内。
[烯烃系树脂薄膜的成型]
烯烃系树脂薄膜可以通过单独或者组合本领域技术人员公 知的各种方法而制造。 对其成型方法没有特别限定。 通过任何 方法制造的烯烃系树脂薄膜, 只要不脱离本发明的宗旨, 则均 包含在本发明的范围内。
烯烃系树脂薄膜可以使用下述成型等将包含烯烃系树月旨的 薄膜层成型: 例如使用连接于螺杆型挤出机的单层或多层的 T 型模、 I型模等, 将熔融树脂挤出成片状的铸造成型; 压延成型; 轧制成型; 吹塑成型等。 还可以使用将烯烃系树脂与有机溶剂 或油的混合物铸造成型或压延成型后、 去除溶剂或油的方法来 将包含烯烃系树脂的薄膜层成型。
[多层化]
烯烃系树脂薄膜可以为单层结构, 也可以为 2层结构、 3层 结构以上的多层结构。 烯烃系树脂薄膜通过多层化, 附加机械 特性的提高、 写入性、 耐擦拭性、 2次加工适应性等各种功能成 为可能。 将烯烃系树脂薄膜形成多层构造时可以使用公知的各种方 法, 作为具体例子, 可列举出使用了各种粘接剂的干式层压方 法、 湿式层压方式和熔融层压方式, 使用了进料塞(feed block)、 多分流管(multi-manifold)的多层口模方式(共挤出方式), 使用 多个口模的挤出层压方式, 使用了各种涂布机的涂覆方法等。 另外, 也可以将多层口模与挤出层压组合使用。
[拉伸]
烯烃系树脂薄膜可以为未进行拉伸的薄膜或进行拉伸后的 薄膜。 烯烃系树脂薄膜的拉伸可以通过通常使用的各种方法的 任一种或其组合来进行, 对其方法没有特别限定。 例如作为使 用螺杆型挤出机将前述烯烃系树脂熔融混炼、 将熔融树脂使用 连接于该挤出机的 T型模、 I型模挤出成片状后、 拉伸该片而得 到树脂薄膜的方法, 可以使用利用辊组的圓周速度差的辊间纵 向拉伸法、 利用拉幅炉的横向拉伸法、 它们组合而成的连续双 轴拉伸法等。 另外, 可以使用利用辊的压力的轧制法、 利用拉 幅炉和缩放仪的组合的同时双轴拉伸法、 利用拉幅炉和线性电 动机的组合的同时双轴拉伸法等。 进而, 可以使用连接于螺杆 型挤出机的圓型模将熔融树脂挤出成型为管状后、 向其吹入空 气的同时双轴拉伸(吹塑成型)法等。
烯烃系树脂薄膜由多层构成时, 优选其至少一层至少在单 轴方向被拉伸。 通过拉伸得到的烯烃系树脂薄膜由于机械强度 高、 厚度的均匀性优异, 因此能够得到印刷等后加工容易的模 内成型用。 烯烃系树脂薄膜为多层结构时, 构成该烯烃系树脂 薄膜的各层的拉伸轴数可以为 1轴 /1轴、 1轴 /2轴、 2轴 /1轴、 1 轴 /1轴 /2轴、 1轴 /2轴 /1轴、 2轴 /1轴 /1轴、 1轴 /2轴 /2轴、 2轴 /2轴 /1轴、 2轴 /2轴 /2轴。 拉伸多层时, 可以在层叠各层之前分别进 行拉伸, 也可以在层叠之后一并进行拉伸。 另外, 拉伸了的层 还可以在层叠后再次拉伸。
烯烃系树脂薄膜的拉伸优选在该薄膜包含的烯烃系树脂适 合的温度范围内实施。 具体而言, 该薄膜使用的烯烃系树脂为 结晶 ' \±树脂时, 优选处于该烯烃系树脂的玻璃化转变温度以 上的范围内。 另外, 该薄膜使用的烯烃系树脂为结晶性树脂时, 优选处于该烯烃系树脂的非结晶部分的玻璃化转变温度以上且 该烯烃系树脂的结晶部分的熔点以下的范围内。 具体而言, 薄 膜的拉伸温度优选比薄膜使用的烯烃系树脂的熔点低 1〜70 °C的 温度。 例如, 该薄膜使用的烯烃系树脂为丙烯的均聚物(熔点 155〜167 °C )时优选为 100〜166 °C, 该薄膜使用的烯烃系树脂为高 密度聚乙烯(熔点 121〜136。C )时优选为 70〜: 135。C。
对拉伸烯烃系树脂薄膜时的拉伸速度没有特别限定, 但是 为了烯烃系树脂薄膜稳定的拉伸成型, 优选处于 20〜350m/分钟 的范围内。 拉伸烯烃系树脂薄膜时的拉伸倍率可考虑到该薄膜 使用的烯烃系树脂的特性等来适当决定。 例如, 该薄膜使用的 烯烃系树脂为丙烯的均聚物或其共聚物时, 单向拉伸该薄膜时 的拉伸倍率通常处于约 1.5〜12倍、 优选处于 2〜10倍的范围内, 双轴拉伸时的拉伸倍率按面积拉伸倍率计通常处于 1 .5〜60倍、 优选处于 4〜50倍的范围内。 若处于该范围内, 则有能够得到所 希望的空孔、 容易提高不透明性、 不易产生烯烃系树脂薄膜的 断裂、 能够稳定地拉伸成型的倾向。
[空孔的形成]
烯烃系树脂薄膜只要包含前述无机微细粉末和有机填料中 的至少一者、 且拉伸而成, 则有可能在薄膜内部形成微细的空 孔。 通过形成空孔, 烯烃系树脂薄膜的轻量化、 柔软性的提高、 不透明度的提高等成为可能。
空孔在薄膜中所占的比例可以以空孔率表示。 从得到轻量 性、不透明性的观点考虑,烯烃系树脂薄膜的空孔率优选为 10 % 以上, 更优选为 15%以上, 进一步优选为 20%以上。 另一方面, 从维持机械强度的观点考虑, 烯烃系树脂薄膜的空孔率优选为 50%以下, 更优选为 45%以下, 进一步优选为 40%以下。 对于烯 烃系树脂薄膜中的空孔率的测定方法, 可以用电子显微镜观察 烯烃系树脂薄膜的断面, 由观察区域中空孔所占面积的比率求 得。 具体而言, 从树脂薄膜试样切取任意一部分, 用环氧树脂 包埋使其固化后, 使用切片机制作与薄膜的面方向垂直的切断 面, 以切断面为观察面的方式粘贴到观察试样台, 对该观察面 蒸镀金或金-钯等, 利用电子显微镜观察容易观察的任意倍率 (例如 500倍〜 3000倍的放大倍率)下的表面的空孔, 进而拍摄观 察到的区域作为图像数据, 利用图像分析装置对该图像进行图 像处理, 求得空孔部分的面积率, 将其作为空孔率。 这种情况 下, 可以将任意 10处以上的观察的测定值平均作为空孔率。
[厚度]
烯烃系树脂薄膜的厚度优选为 30μηι以上, 更优选为 40μηι 以上, 进一步优选为 50μηι以上。 烯烃系树脂薄膜的厚度为 20μηι 以上时, 对模内成型用标签赋予充分的刚性, 不易产生印刷时、 模具插入时的问题。另外,烯烃系树脂薄膜的厚度优选为 200μηι 以下, 更优选为 175μηι以下, 进一步优选为 150μηι以下。 烯烃 系树脂薄膜的厚度为 200μηι以下时, 刚性不会变得过高, 塑料 容器成型时容易得到标签的形状追随性。
[密度]
烯烃系树脂薄膜的密度优选为 0.6g/cm3以上, 更优选为 0.65g/cm3以上, 进一步优选为 0.7g/cm3以上。 烯烃系树脂薄膜 的密度为 0.6g/cm3以上时, 对模内成型用标签赋予充分的刚性, 不易产生印刷时、 模具插入时的问题。 另外, 烯烃系树脂薄膜 的密度优选为 0.95g/cm3以下, 更优选为 0.9g/cm3以下, 进一步 优选为 0.85 g/cm3以下。 烯烃系树脂薄膜的密度为 0.95 g/cm 以下 时, 轻量且模内成型用标签容易使用。 烯烃系树脂薄膜优选内 部包含空孔、 形成上述范围内的密度。
[热封层]
热封层是含有热塑性树脂、 具有用于模内成型用标签与塑 料容器的接合的粘接剂作用的层。 以下, 对热封层的组成、 构 成、 制造方法进行详细说明。
[热塑性树脂 J
前述热封层中使用的热塑性树脂具有下述(1)和(2)的特征。
(1) 利用差示扫描量热测定得到的结晶峰在 85〜 110 °C之间 至少存在 1个。
(2) 130°C下的热粘强度为 120〜350gf/cm2
[组成]
作为这种热封性的热塑性树脂, 可列举出高密度聚乙烯、 中密度聚乙烯、 低密度聚乙烯、 直链状低密度聚乙烯、 乙烯- 乙酸乙烯酯共聚物、 乙烯- (曱基)丙烯酸共聚物、 乙烯- (曱基)丙 烯酸烷基酯共聚物(烷基的碳原子数为 1〜8)、 乙烯- (曱基)丙烯酸 共聚物的金属盐(Zn、 Al、 Li、 K、 Na)、 或者使用茂金属催化 剂共聚得到的乙烯系共聚物等熔点为 80〜138 °C的乙烯系树脂。
另外, 作为这种热封性的热塑性树脂, 可列举出使选自分 子内具有 2〜20个碳原子的 α-烯烃中的至少 2种以上的共聚单体 进行共聚得到的 α-烯烃的无规共聚物或嵌段共聚物。 作为 2〜20 个碳原子数的 α-烯烃, 可列举出例如乙烯、 丙烯、 1-丁烯、 2- 曱基 _1-丙烯、 1-戊烯、 2-曱基 -1-丁烯、 3-曱基 -1-丁烯、 1-己烯、 2-乙基 -1-丁烯、 2, 3-二曱基 -1-丁烯、 2-曱基 -1-戊烯、 3-曱基 -1- 戊烯、 4-曱基 -1-戊烯、 4-曱基 -1-己烯、 4,4-二曱基 -1-戊烯、 3,3- 二曱基 -1-丁烯、 1-庚烯、 曱基 -1-己烯、 二曱基 -1-戊烯、 乙基 -1- 戊烯、 三曱基 -1-丁烯、 曱基乙基 -1-丁烯、 1-辛烯、 1-庚烯、 曱 基 -1-戊烯、 乙基 -1-己烯、 二曱基 -1-己烯、 丙基 -1-庚烯、 曱基 乙基 -1-庚烯、 三曱基 -1-戊烯、 丙基 -1-戊烯、 二乙基 -1-丁烯、 1_壬烯、 1-癸烯、 1-十一烯、 1-十二烯、 十八烯等。 从共聚容易 性、 经济性等观点考虑, 这些 α-烯烃中优选为乙烯、 丙烯、 1- 丁烯、 1-戊烯、 1-己烯、 1-辛烯。
其中, 作为容易达成上述(1)和(2)的特征的热塑性树脂, 可 列举出例如乙烯-丙烯无规共聚物、 乙烯 -1-丁烯无规共聚物、 乙烯 -丙烯 _1_丁烯无规共聚物、 乙烯 -1-己烯无规共聚物、 乙烯- 丙烯 -1-己烯无规共聚物、 乙烯 -1-辛烯无规共聚物、 丙烯 -1-丁 烯无规共聚物、 丙烯 -1-己烯无规共聚物等。这些无规共聚物中, 优选为乙烯 -1-己烯无规共聚物、 丙烯 -1-丁烯无规共聚物、 乙烯 -丙烯 _1_丁烯无规共聚物。
[构成]
另外, 对于这些无规共聚物的共聚单体各自的含量, 在无 规共聚物为乙烯与 α-烯烃的无规共聚物时, 乙烯优选为 40重量 %以上、 更优选为 50重量%以上、 特别优选为 70重量%以上的范 围, 乙烯优选为 98重量%以下、 更优选为 95重量%以下、 特别 优选为 93重量%以下的范围。 另一方面, α-烯烃优选为 2重量% 以上、 更优选为 5重量%以上、 特别优选为 7重量%以上的范围, α-烯烃优选为 60重量%以下、 更优选为 50重量%以下、 特别优选 为 30重量%以下的范围。
另外, 无规共聚物为丙烯与 α-烯烃的无规共聚物时, 丙烯 优选为 75摩尔%以上、 更优选为 80摩尔%以上的范围, 丙烯优 选为 88.5摩尔%以下、更优选为 86摩尔%以下的范围。另一方面, α-烯烃优选为 11.5摩尔%以上、 更优选为 14摩尔%以上的范围, α-烯烃优选为 25摩尔%以下、 更优选为 20摩尔%以下的范围。 另外,无规共聚物为丙烯与乙烯与 α-烯烃的无规共聚物时, 丙烯优选为 65摩尔%以上、 更优选为 74摩尔%以上、 特别优选 为 77摩尔%以上的范围, 丙烯优选为 98摩尔%以下、 更优选为 93.5摩尔%以下、 特别优选为 92摩尔%以下的范围。 另一方面, 乙烯与 α-烯烃的含量总计优选为 2摩尔%以上、进一步优选为 6.5 摩尔%以上、 特别优选为 8摩尔%以上的范围, 乙烯与 α-烯烃的 含量总计优选为 35摩尔%以下、 进一步优选为 26摩尔%以下、 特别优选为 23摩尔%以下的范围。
[制造方法]
进而, 作为热塑性树脂, 使用茂金属催化剂共聚得到的乙 烯 _α_烯烃共聚物容易达成上述(1 )和(2)的特征, 所以优选。
上述共聚物可以通过使用以下催化剂使共聚单体成分共聚 得到具有所希望特征的热塑性树脂: 茂金属催化剂、 特别是茂 金属 -4吕氧; ¾ (metallocene-aluminoxane)催 4匕剂、 或者例 ^口国际 公开公报 WO92/01723号公报等所公开的由茂金属化合物和、与 茂金属化合物反应形成稳定的阴离子的化合物构成的催化剂。
尤其是, 作为热塑性树脂, 使用通过气相法使用茂金属催 化剂进行共聚得到的乙烯 - 1 -己烯共聚物容易达成上述(1 )和(2) 的特征, 所以优选。 使用茂金属催化剂、 通过气相法共聚得到 的乙烯 -α-烯烃共聚物与以往的日本特开平 9-207166号公报等 中出现的、 通过使用淤浆的溶液法共聚得到的茂金属系乙烯 -α- 烯烃共聚物相比密度高, 因此容易达成上述(1 )的特征即高的结 晶峰温度, 而且分子量分布宽, 因此容易具备上述(2)的特征即 热粘性, 容易构筑能够解决本发明课题的热封层。 另外, 热塑 性树脂若是使用茂金属催化剂进行了共聚的, 则成为黏膩原因 的低分子量成分少, 不易产生模内成型用标签的粘连等不良问 题。
[特征]
如上所述那样得到的热塑性树脂具有(1 )利用差示扫描量 热测定得到的结晶峰在 85〜1 10 °C之间至少存在 1个的特征。该结 晶峰优选在 87 °C以上、 更优选在 89 °C以上至少存在 1个。 该结晶 峰优选在 105 °C以下、 更优选在 100 °C以下至少存在 1个。 这种高 的结晶峰温度是在现有的低熔点热封性的热塑性树脂中未发现 的。 通过使热塑性树脂在该温度区域具有结晶峰, 在高温排出 的塑料容器在大气中被自然冷却、 尺寸也变化的过程中, 模内 成型用标签的热封层的结晶化在短时间内结束, 因此模内成型 用标签与塑料容器的粘接也在短时间内结束。 由此, 能够抑制 在塑料容器的高温排出条件下, 由于未粘接标签的状态下容器 的尺寸变化所引起的标签的浮起、 气泡等不良问题。
另 外, 该热塑性树脂具有(2) 130 °C下的热粘强度为 120〜350gf/cm2的特征。该热粘强度优选为 140gf/cm2以上、 进一 步优选为 160gf/cm2以上,优选为 340gf/cm2以下、 进一步优选为 33 Ogf/cm2以下。 发现上述温度下的热粘强度高于 120gf/cm2时, 即使塑料容器被高温排出、 热塑性树脂处于熔融状态下也能得 到内聚力(粘力), 直至热塑性树脂通过自然冷却固化而完成标 签与塑料容器的粘接为止期间, 利用该粘力将标签固定、 保持 在塑料容器上, 能够抑制气泡等不良问题的产生, 完成了本发 明。 该热粘强度高而超过 350gf/cm2时, 虽然没有性能上的不良 问题, 但是难以得到这种热塑性树脂。 这种热粘强度在热塑性 树脂的分子结构中的支链比例多、 且分子量分布宽的情况下容 易得到。 然而, 若分子量分布过宽, 则容易产生低分子量成分 引起的黏膩, 因此优选通过树脂的聚合条件等进行适度调整。
进而, 该热塑性树脂优选利用差示扫描量热测定得到的熔 解峰在 90〜: 130 °C之间至少存在 1个。 该熔解峰更优选在 95 °C以 上、进一步优选在 100 °C以上至少存在 1个,更优选在 128 °C以下、 进一步优选在 127 °C以下至少存在 1个。 通过使热塑性树脂在该 温度区域具有熔解峰, 热封适应性提高。
进而,该热塑性树脂优选密度为 0.905〜0.940g/cm3。 该密度 更优选为 0.910g/cm3以上、 进一步优选为 0.91 1 g/cm3以上, 更优 选为 0.939g/cm3以下、 进一步优选为 0.929g/cm3以下。 热塑性树 脂的密度具有与热塑性树脂的分子结构中的支链比例相关的特 征。 该密度处于该范围内时, 上述热封适应性和高温排出适应 性优异。
进而, 在不妨害所希望性能的范围内, 本发明的热封层中 可以任意添加公知的其它树脂用添加剂。 作为该添加剂, 可列 举出染料、 成核剂、 增塑剂、 脱模剂、 抗氧化剂、 阻燃剂、 紫 外线吸收剂等。
[模内成型用标签的制造]
[层叠]
作为将包含上述热塑性树脂的热封层在上述烯烃系树 旨薄 膜的单面制膜、 层叠的方法, 可列举出涂覆法、 共挤出法、 熔 融挤出层压法、 由树脂组合物形成的薄膜的热层压法或由树脂 组合物形成的薄膜的干式层压法等方法。
热封层对烯烃系树脂薄膜的层叠可以在烯烃系树脂薄膜的 成型操作线中与薄膜成型一起实施, 也可以在别的操作线中对 已成型的烯烃系树脂薄膜实施层叠。
[厚度]
热封层的厚度优选处于 0.5〜20μηι的范围内, 更优选处于 1〜10μηι的范围内。 该厚度为 0.5μηι以上时, 可以均匀地确保热 封层的厚度, 可以使标签与塑料容器牢固地接合, 所以优选。 另外, 该厚度为 20μηι以下时, 模内成型用标签不易卷曲、 容易 将标签固定到模具, 所以优选。
[模内成型用标签的加工]
[压花加工]
为了进一步抑制气泡的产生, 优选如日本特开平 2-84319 号公报、 日本特开平 3-260689号公报中记载的方式对这些模内 成型用标签的热封层实施压花加工。 作为压花花紋, 可例示出 例如每 2.54cm为 20〜: 1500线的线密度。 作为谷的大小, 可例示出 例如通过 JIS-B-0601记载的方法测得的十点平均粗糙度 Rz处于 1〜30μηι范围内。 优选选择加工所使用的压花辊的线数、 深度以 达到这种线密度、 谷。
[印刷加工]
另外, 对于这些模内成型用标签, 根据需要, 可通过电晕 放电等表面处理来改善印刷性、 粘接性。 印刷可以采用凹版印 刷、 胶版印刷、 柔性印刷、 封缄印刷、 丝网印刷等方法。 模内 成型用标签可以使用印刷有条形码、 制造商、 销售公司名、 性 状(character) , 商品名、 使用方法等的标签。
[沖裁加工]
印刷后的模内成型用标签, 可以通过沖裁加工而分离为必 需的形状尺寸来使用。 这些模内成型用标签可以为贴附于塑料 容器的全部表面的标签或者贴附于一部分表面的部分性的标 签。 例如, 可以用作缠卷通过注射成型赋形的杯状塑料容器的 侧面周围的空白标签, 或用作贴附在通过中空成型赋形的瓶状 塑料容器的表面和背面的标签。
[模内成型]
中空成型、 注射成型、 压差成型的任一种方法均能够通过 模内标签工艺得到带标签的塑料容器。 本发明的模内成型用标 签可以利用上述任一种成型方法。
例如在中空成型中, 以标签的热封层朝向模具的模腔侧(印 刷侧与模具相接)的方式在成型模具的至少一个模具的模腔内 配置模内成型用标签后, 通过吸引、 静电而固定于模具内壁, 接着将作为容器成型材料的树脂的型坯或预成型坯的熔融物导 入到模具间, 合模后通过常规方法进行中空成型, 成型出该标 签一体地融合于塑料容器外壁的带标签的塑料容器。
另外, 例如在注射成型中, 以标签的热封层朝向模具的模 腔侧(印刷侧与模具相接)的方式在雌模具的模腔内配置模内成 型用标签后, 通过吸引、 静电而固定于模具内壁, 合模后将作 为容器成型材料的树脂的熔融物注射到模具内进行容器成型, 成型出该标签一体地融合于塑料容器外壁的带标签的塑料容 器。
另外, 例如在压差成型中, 以标签的热封层朝向模具的模 腔侧(印刷侧与模具相接)的方式在压差成型模具的下雌模具的 模腔内设置模内成型用标签后, 通过吸引、 静电而固定于模具 内壁, 接着将作为容器成型材料的树脂片的熔融物导入到下雌 模具的上方, 通过常规方法进行压差成型, 成型出该标签一体 地融合于容器外壁的带标签的塑料容器。 压差成型可采用真空 成型、 压缩空气成型中的任一种, 但是一般优选并用两者并且 利用了模塞辅助(plug assist)的压差成型。
本发明的模内成型用标签作为塑料容器有可能在高温状态 下从模具排出的中空成型、 注射成型中使用的标签是特别有用 的。
[带标签的塑料容器]
通过上述方法得到的带标签的塑料容器可以减少标签的剥 离、 气泡之类的因标签的变形引起的缺陷品的产生。 另外, 带标签的塑料容器优选标签不容易剥离。 具体而言, 通过下述方法测得的标签对塑料容器的粘接强度优选为
200gf/15mm以上, 更优选为 300gf/15mm以上, 进一步优选为 400gf/15mm以上。 标签粘接强度为 200gf/15mm以上时, 在塑料 容器的使用中标签不容易剥离。 另一方面, 标签粘接强度优选 为 1500gf/15mm以下, 更优选为 1200gf/15mm以下, 进一步优选 为 1000gf/15mm以下。 虽然标签粘接强度越高越好, 但是难以 得到超过 1500 g f/ 15 m m的标签粘接强度。
[带标签的塑料容器对于高温的内容物填充的适应性] 通过本发明得到的带标签的塑料容器对于高温的内容物填 充的适应性也优异。
对现有的带模内成型用标签的塑料容器进行高温的内容物 的填充时或连同容器内容物一起在高温下进行热杀菌时, 热封 层的热塑性树脂的熔点(熔解峰温度)低的塑料容器存在热塑性 树脂熔解而产生模内成型用标签剥离的问题。
如本发明这样, 通过在模内成型用标签的热封层使用具有 特定温度以上的熔点(熔解峰温度)的热塑性树脂, 即使在高温 下填充内容物的情况下, 也能够提供模内成型用标签不会剥离 的带标签的塑料容器。
[实施例]
以下列举出实施例和比较例对本发明的特征进行更具体的 说明。
以下的实施例所示的材料、 用量、 比例、 处理内容、 处理 顺序等, 只要不脱离本发明的宗旨就可进行适当变更。 因此, 本发明的范围并不受以下所示的具体例子的限定性解释。 需要 说明的是, 实施例和比较例中模内成型用标签的制造所使用的 原料汇总示于表 1中。
Figure imgf000024_0001
[实施例 1〜7、 比较例 1〜4]
将表 1记载的材料按照表 2记载的配合比例混合而成的烯烃 系树脂使用设定为 250 V的挤出机熔融混炼后, 供给到设定为 250 °C的 T型模, 挤出成片状, 将其用冷却辊冷却至约 60 °C, 得 到未拉伸片。接着, 将该未拉伸片再次加热至表 2记载的纵向拉 伸温度后,利用辊组的圓周速度差而在纵方向拉伸表 2记载的倍 率, 利用冷却辊冷却至约 60 °C, 从而得到拉伸片。
接着, 将表 2记载的种类的热塑性树脂使用设定为 230 °C的 挤出机熔融混炼后, 由设定为 230 °C的 T型模挤出成片状, 将该 热塑性树脂和拉伸片导入到赋形有 # 150线的 版压花的金属冷 却辊与毛毡样橡胶辊之间, 边进行夹持使两者接合边向热塑性 树脂侧转印压花图案, 利用冷却辊进行冷却, 得到具有烯烃系 树脂薄膜 /热封层的双层结构。
接着,使用拉幅炉将该层叠树脂片再次加热至表 2记载的横 向拉伸温度后, 使用拉幅机在横方向拉伸表 2记载的倍率后, 进 而通过调整至 160 °C的热定形区域进行退火处理,用冷却辊冷却 至约 60 °C, 切去边缘部, 得到具有表 2记载的厚度、 密度、 无机 微细粉末含量的双层结构的双轴拉伸树脂薄膜, 将其作为模内 成型用标签。
接着, 利用导辊将该双轴拉伸树脂薄膜导入到电晕放电处 理器, 以 50W.分钟 /m2的处理量对烯烃系树脂薄膜侧的表面实 施电晕放电处理, 用卷取机卷取。
对于比较例 4的层叠树脂片,由于在使用拉幅机进行横向拉 伸时, 不稳定、 屡次断裂, 因此不能得到双轴拉伸树脂薄膜。
[实施例 8、 10]
将表 1记载的 PP 1、 C A 1和 TIO以表 2记载的配混比例混合而 成的烯烃系树脂使用设定为 250 V的挤出机熔融混炼后,供给到 设定为 250 °C的 T型模, 挤出成片状, 将其用冷却辊冷却至约 60 °C , 得到未拉伸片。 接着, 将该未拉伸片再次加热至表 2记载 的纵向拉伸温度后,利用辊组的圓周速度差而在纵方向拉伸表 2 记载的倍率, 利用冷却辊冷却至约 60 °C, 从而得到拉伸片。
接着, 将表 1记载的 PE2使用设定为 230 °C的挤出机熔融混 炼后, 由设定为 230 °C的 T型模挤出成片状, 将该热塑性树脂和 拉伸片导入到赋形有 #400线的 版压花的金属冷却辊与毛毡样 橡胶辊之间, 边向热塑性树脂侧转印压花图案边进行夹持使两 者接合, 进行冷却, 切去边缘部, 得到具有表 2记载的厚度、 密 度、无机微细粉末含量的烯烃系树脂薄膜 /热封层的双层结构的 单轴拉伸树脂薄膜, 将其作为模内成型用标签。
接着, 利用导辊将该单轴拉伸树脂薄膜导入到电晕放电处 理器, 以 50W.分钟 /m2的处理量对烯烃系树脂薄膜侧的表面实 施电晕放电处理, 用卷取机卷取。
[实施例 9]
将表 1记载的 95重量% P P 1和 5重量% T I O混合而成的烯烃系 树脂以及表 1记载的 PE2使用设定为 250 °C的 2台挤出机分别熔 融混炼后, 将它们供给到设定为 250 °C的 1台共挤出模具, 在模 具内层叠并挤出成片状, 将其导入到半镜面样冷却辊与毛毡样 橡胶辊之间, 边夹持边进行冷却, 得到具有表 2记载的厚度、 密 度、无机微细粉末含量的具有烯烃系树脂薄膜 /热封层的双层结 构的未拉伸树脂薄膜, 将其作为模内成型用标签。
接着, 利用导辊将该未拉伸树脂薄膜导入到电晕放电处理 器, 以 50W.分钟 /m2的处理量对烯烃系树脂薄膜侧的表面实施 电晕放电处理, 用卷取机卷取。
作为该半镜面样冷却辊, 使用将进行了硬化镀铬的镜面抛 光的金属冷却辊加工成半镜面样后进行研磨精加工而得到的、 表面粗糙度(按照 JIS B-0601测得的算术平均粗糙度 Ra)为 0.3μηι、 最大高度(Ry)为 2.9μηι、 十点平均粗糙度(Rz)为 2.2μηι的 直径 450mm、 宽 1500mm的辊, 冷却温度为 70 °C 。
作为该毛毡样橡胶辊,使用利用弹簧式 JIS硬度计测得的橡 胶硬度(按照 JIS K-6301 : 1995)为 70Hs、 以 20〜55重量%的比例 含有粒径为 31〜37μηι的硅砂、 石英玻璃的微细颗粒的直径 300mm, 宽 1500mm的辊。
夹持时使半镜面样冷却辊与热塑性树脂侧相接、 毛毡样橡 胶辊与烯烃系树脂侧相接来进行成型。
[评价例]
(厚度)
对于本发明的模内成型用标签的厚度, 按照 JIS-K-7130 , 使用定压厚度测定器(Teclock Corporation制, 设备名: PG-01 J) 进行测定。
构成模内成型用标签的烯烃系树脂薄膜和热封层的各层的 厚度如下求得: 将测定对象试样用液氮冷却至 -60 °C以下的温 度, 用剃刀(Schick Japan K.K.制, 商品名: Proline Blade)对置 于玻璃板上的试样直角切断制成断面测定用的试样, 使用扫描 电子显微镜(日本电子(株)制, 设备名: JSM-6490)对所得到的 试样进行断面观察, 从组成外观判别各热塑性树脂组合物的边 界线, 将整体厚度与观察到的层厚度比率相乘, 由此求得上述 各层的厚度。 结果汇总示于表 2中。
(基重)
对于本发明中的模内成型用标签的基重, 按照 JIS-P-8124 , 用电子天平称量沖裁成 l OOmmx 100mm尺寸的样品来进行测 定。
(密度) 本发明中的模内成型用标签的密度是作为将上述得到的基 重除以上述得到的厚度得到的值来求得。 结果汇总示于表 2中。
另外, 对于所使用的热塑性树脂的密度, 按照 JIS-K-71 12 的 A法, 利用水中置换法由所使用的热塑性树脂的加压片求得。 结果示于表 1中。
(利用差示扫描量热测定得到的结晶峰温度)
本发明的热塑性树脂的结晶峰温度为按照 JIS-K-7121测定 得到的值, 使用差示扫描量热计(设备名: DSC6200, Seiko
Instruments Inc.制)使热塑性树脂完全熔融后, 以冷却速度 10 °C / 分钟冷却时测定得到的主要峰温度作为结晶峰温度。 结果示于 表 1中。
(利用差示扫描量热测定得到的熔解峰温度)
本发明的热塑性树脂的熔解峰温度为按照 JIS-K-7121测定 得到的值, 使用差示扫描量热计(设备名: DSC6200, Seiko Instruments Inc .制)以加热速度 10 °C /分钟对热塑性树脂进行加 热时, 测定得到的主要峰温度作为熔解峰温度。 结果示于表 1 中。
(热粘强度)
本发明的热粘强度使用 粘附试验机(设备名 : Model TAC-II , Rhesca Corporation制)进行测定。
具体而言, 将模内成型用标签裁断成宽 100mm、 长 100mm 的尺寸而制成评价样品, 将该评价样品以热封层朝上的方式设 置在温度调节至 30 °C的试样台之上,接着使温度调节至 130 °C的 30mm直径的探针以 50gf的载荷与评价样品的热封层侧的表面 密合 60秒后, 以 120mm/分钟的速度提起探针, 取得从评价样品 脱离时的、 探针由于热塑性树脂的粘合力而受到的阻力作为载 荷值, 将其最大值作为热粘强度。 结果汇总示于表 2中。
Figure imgf000029_0001
(标签粘接强度)
将由各实施例、 比较例得到的模内成型用标签沖裁加工成 宽 60mm、 长 1 10mm的长方形, 作为在带标签的塑料容器的制造 中使用的标签。 以热封层朝向模腔侧的方式将该标签配置在能 够成型 400ml内容量的瓶的吹塑成型用模具的一方, 利用吸引 固定于模具上后, 在模具间于 170 °C下熔融高密度聚乙烯(商品 名 "Novatec HD HB420R" , Japan Polyethylene Corporation制, MFR(JIS-K7210)=0.2g/10分钟, 熔解峰温度(JIS-K7121 )=133。C, 结晶峰温度(JIS-K7121 )= 1 15 °C, 密度 =0.956g/cm3)并挤出为型 坯状,接着将模具合模后, 向型坯内供给 4.2kg/cm2的压缩空气, 16秒内使型坯膨胀与模具密合而形成容器状,并且与标签融合, 接着在模具内冷却成型物, 开模而得到带标签的塑料容器。 此 时, 模具冷却温度为 20 °C, 压射周期时间为 28秒 /次。
带标签的塑料容器在 23 °C、 相对湿度 50%的环境下保存 1周 后, 以 15 mm宽的长条状切取带标签的塑料容器的标签贴附部 分, 通过使用拉伸试验机(设备名: Autograph AGS-D型, (株) 岛津制作所制:), 在 300mm/分钟的拉伸速度下进行 T字剥离来求 得标签与容器之间的粘接强度。 结果汇总示于表 3中。
(高温排出性)
将由各实施例、 比较例得到的模内成型用标签沖裁加工成 宽 60mm、 长 1 10mm的长方形, 作为在带标签的塑料容器的制造 中使用的标签。 以热封层朝向模腔侧的方式将该标签配置在能 够成型 400ml内容量的瓶的吹塑成型用模具的一方, 利用吸引 固定于模具上后, 在模具间于 170 °C下熔融高密度聚乙烯(商品 名 "Novatec HD HB420R" , Japan Polyethylene Corporation制, MFR(JIS-K7210)=0.2g/10分钟, 熔解峰温度(JIS-K7121 )=133。C, 结晶峰温度(JIS-K7121 )= 1 15 °C, 密度 =0.956g/cm3)并挤出为型 坯状,接着将模具合模后, 向型坯内供给 4.2kg/cm2的压缩空气, 8秒内使型坯膨胀与模具密合而形成容器状, 并且与标签融合, 接着在模具内冷却成型物, 开模而得到带标签的塑料容器。 此 时, 模具冷却温度为 20 °C, 压射周期时间为 20秒 /次, 标签贴合 部的塑料容器的壁厚调整为 1.8mm。
开模, 肉眼观察刚排出后(容器排出温度: 105 °C )的带标签 的塑料容器的标签贴附部分, 按照以下基准进行评价。 结果汇 总示于表 3中。
◎: 良好(未看到外观不良)
O: 良好(虽然产生少许外观不良, 但是在实用范围内) X: 不良(产生因气泡引起的外观不良)
[表 3]
Figure imgf000031_0001
由表 3可知, 使用了实施例 1〜9的模内成型用标签的带标签 的塑料容器不仅标签的粘接强度良好, 而且即使在为了提高生 产率而缩短制造循环时间的高温排出条件下制造, 也能够抑制 在刚排出后产生因外观不良引起的缺陷品的产生, 能够实现所 希望的生产的效率化。
另一方面,使用了比较例 1的模内成型用标签的带标签的塑 料容器, 由于标签的热塑性树脂的结晶峰低于 85 °C, 因此从高 温排出直至利用 自然冷却而热塑性树脂结晶化为止需要很长时 间, 在此期间标签变形而在标签产生气泡。
另夕卜,使用了比较例 2的模内成型用标签的带标签的塑料容 器, 由 于标签的热塑性树脂在 130 °C下的热粘强度不足 120gf/cm2 , 热塑性树脂在高温条件下熔融时的、 用于在容器上 保持标签而必需的内聚力不充分,标签变形而在标签产生气泡。
另夕卜,使用了比较例 3的模内成型用标签的带标签的塑料容 器, 虽然标签的热塑性树脂的结晶峰温度超过 1 10 °C, 但是由于 标签的热塑性树脂在 130 °C下的热粘强度不足 120gf/cm2, 因此 与比较例 2同样地, 热塑性树脂在高温条件下熔融时的、 用于在 容器上保持标签而必需的内聚力不充分, 此时标签本身浮起而 从原位置偏离, 产生外观不良。
因而, 可知实施例 1〜9的模内成型用标签与不满足本发明 特征的比较例 1〜3的模内成型用标签相比更优异。

Claims

权 利 要 求 书
1 . 一种模内成型用标签,其在烯烃系树脂薄膜的单面具有 热封层, 该热封层包含具有( 1 )和( 2 )特征的热塑性树脂,
( 1 )利用差示扫描量热测定得到的结晶峰在 85〜 1 10 °C之间 至少存在 1个,
(2 ) 130 °C下的热粘强度为 120〜350 gf/cm2
2. 根据权利要求 1所述的模内成型用标签, 其特征在于, 热封层包含的热塑性树脂的利用差示扫描量热测定得到的熔解 峰在 90〜: 130 °C之间至少存在 1个。
3. 根据权利要求 1或 2所述的模内成型用标签, 其特征在 于, 热封层包含的热塑性树脂为使用茂金属催化剂共聚得到的 乙烯 _α_烯烃共聚物。
4. 根据权利要求 3所述的模内成型用标签, 其特征在于, 热封层包含的热塑性树脂为通过气相法使用茂金属催化剂共聚 得到的乙烯 - 1 -己烯共聚物。
5. 根据权利要求 1〜4中任一项所述的模内成型用标签, 其 特 征 在 于 , 热 封 层 包 含 的 热 塑 性 树 脂 的 密 度 为 0.905〜0.940g/cm3
6. 根据权利要求 1〜5中任一项所述的模内成型用标签, 其 特征在于, 烯烃系树脂薄膜包含烯烃系树脂和 1〜75重量%的无 机微细粉末。
7. 根据权利要求 1〜6中任一项所述的模内成型用标签, 其 特征在于, 烯烃系树脂薄膜至少在单轴方向拉伸。
8. 一种带标签的塑料容器, 其贴附有权利要求 1〜7中任一 项所述的模内成型用标签。
PCT/CN2014/074024 2013-03-28 2014-03-25 模内成型用标签及使用其的带标签的塑料容器 WO2014154130A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480008183.XA CN104981857A (zh) 2013-03-28 2014-03-25 模内成型用标签及使用其的带标签的塑料容器
JP2016504467A JP2016521372A (ja) 2013-03-28 2014-03-25 インモールド成形用ラベルおよびこれを用いたラベル付きプラスチック容器
BR112015024693A BR112015024693A2 (pt) 2013-03-28 2014-03-25 etiqueta em molde, e, recipiente plástico etiquetado
US14/779,056 US20160046101A1 (en) 2013-03-28 2014-03-25 In-mold label and labeled plastic container using same
MX2015013648A MX2015013648A (es) 2013-03-28 2014-03-25 Etiqueta en el molde y recipiente de plastico etiquetado que usa la misma.
KR1020157030773A KR20150136609A (ko) 2013-03-28 2014-03-25 인몰드 성형용 라벨 및 이것을 사용한 라벨이 부착된 플라스틱 용기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105575.5A CN104077956B (zh) 2013-03-28 2013-03-28 模内成型用标签及使用其的带标签的塑料容器
CN201310105575.5 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014154130A1 true WO2014154130A1 (zh) 2014-10-02

Family

ID=51599187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074024 WO2014154130A1 (zh) 2013-03-28 2014-03-25 模内成型用标签及使用其的带标签的塑料容器

Country Status (7)

Country Link
US (1) US20160046101A1 (zh)
JP (1) JP2016521372A (zh)
KR (1) KR20150136609A (zh)
CN (2) CN104077956B (zh)
BR (1) BR112015024693A2 (zh)
MX (1) MX2015013648A (zh)
WO (1) WO2014154130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220367B2 (en) 2014-12-08 2022-01-11 Dai Nippon Printing Co., Ltd. Composite preform, composite container, composite preform, plastic member, and method for producing composite container

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835410B (zh) * 2015-05-08 2018-03-20 东莞市赛维印刷实业有限公司 标签
JP6858489B2 (ja) * 2016-03-18 2021-04-14 株式会社フジシール インモールドラベル連続体、及びその製造方法
JP7037739B2 (ja) 2017-09-12 2022-03-17 大日本印刷株式会社 容器および該容器を作製するためのプリフォーム
JP7100820B2 (ja) * 2017-09-28 2022-07-14 大日本印刷株式会社 複合容器および該複合容器の作製に用いられる複合プリフォーム
CA3149755C (en) 2021-02-23 2024-01-09 Taghleef Industries Inc. Multilayer film with increased surface roughness and method of making the same
KR20240056344A (ko) 2022-10-21 2024-04-30 최석현 비닐팩 부착 1회분 헬스 보충제 용기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308886A (ja) * 1993-04-27 1994-11-04 Oji Yuka Synthetic Paper Co Ltd クーポン券付インモールド用ラベル
US5811163A (en) * 1996-02-02 1998-09-22 Oji-Yuka Synthetic Paper Co., Ltd. In-mold label and container decorated therewith
US20020050319A1 (en) * 2000-07-24 2002-05-02 Yupo Corporation Label for in-mold decorating and labeled resin molded article
CN1923507A (zh) * 2005-09-02 2007-03-07 优泊公司 模内成型用标签和用该标签装饰的树脂容器
CN101202002A (zh) * 2006-09-07 2008-06-18 优泊公司 具有优异的标签去除性的标签和带有该标签的容器
CN102712186A (zh) * 2010-01-22 2012-10-03 普瑞曼聚合物株式会社 多层吹塑容器及其制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837075A (en) * 1986-07-14 1989-06-06 The Dow Chemical Company Coextruded plastic film label for in-mold labeling
DD300443A5 (de) * 1989-09-13 1992-06-11 Exxon Chemical Patents Inc Heissschmelzklebstoff
JPH07501845A (ja) * 1991-12-13 1995-02-23 エクソン・ケミカル・パテンツ・インク エチレンとより長いアルファーオレフィンのコポリマー
US5206075A (en) * 1991-12-19 1993-04-27 Exxon Chemical Patents Inc. Sealable polyolefin films containing very low density ethylene copolymers
EP0738294B1 (en) * 1993-04-28 2000-11-29 The Dow Chemical Company Process for making cross-linked ethylenic polymer foam structures
JPH09230791A (ja) * 1996-02-22 1997-09-05 Kao Corp 熱活性型ラベル及びラベル付き成形体の製造方法
US6726969B1 (en) * 1997-01-28 2004-04-27 Avery Dennison Corporation In-mold labels and uses thereof
US6312828B1 (en) * 1997-05-30 2001-11-06 Fuji Photo Film Co., Ltd. Packaging material for photographic photosensitive material
EP1122704A4 (en) * 1998-10-15 2009-01-28 Yupo Corp LABEL FOR MOLDING MOLD
JP4067714B2 (ja) * 1999-09-06 2008-03-26 三井化学株式会社 ポリオレフィン合成パルプおよびヒートシール紙
ATE502859T1 (de) * 1999-07-23 2011-04-15 Yupo Corp Etikettierte kunststoffflasche
JP2001129878A (ja) * 1999-11-01 2001-05-15 Japan Polychem Corp ラベル貼着中空容器
US7067603B1 (en) * 1999-12-22 2006-06-27 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
JP2002012288A (ja) * 2000-06-28 2002-01-15 Nitto Denko Corp 電子部品搬送用カバーテープ及び電子部品搬送体
US7351478B2 (en) * 2001-03-16 2008-04-01 Fina Technology, Inc. Heat-seal films and method of manufacture
JP2003237753A (ja) * 2002-02-15 2003-08-27 Toppan Printing Co Ltd インモールドラベルおよびラベル付き容器
KR101125333B1 (ko) * 2003-06-10 2012-03-27 다우 글로벌 테크놀로지스 엘엘씨 에틸렌 중합체 블렌드로부터 제조된 필름층
DE102008005945A1 (de) * 2008-01-24 2009-07-30 Evonik Degussa Gmbh Verfahren zur Herstellung von Polyolefinen mit syndiotaktischen Strukturelementen, Polyolefine und deren Verwendung
MY156166A (en) * 2008-08-12 2016-01-15 Sumitomo Bakelite Co Cover tape for electronic component packing body and electronic component packing body
JP5943941B2 (ja) * 2011-12-28 2016-07-05 三井化学株式会社 エチレン系重合体組成物、及びこれから得られる成形体
US20160009018A1 (en) * 2013-03-01 2016-01-14 Yupo Corporation In-mold label for stretch blow molding and labeled stretch blow molded product using same
CN104369939A (zh) * 2013-08-13 2015-02-25 优泊公司 带标签中空成形容器以及中空容器成形方法
CN203921422U (zh) * 2014-07-01 2014-11-05 优泊公司 带标签的吹塑成形容器及吹塑成型用模具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308886A (ja) * 1993-04-27 1994-11-04 Oji Yuka Synthetic Paper Co Ltd クーポン券付インモールド用ラベル
US5811163A (en) * 1996-02-02 1998-09-22 Oji-Yuka Synthetic Paper Co., Ltd. In-mold label and container decorated therewith
US20020050319A1 (en) * 2000-07-24 2002-05-02 Yupo Corporation Label for in-mold decorating and labeled resin molded article
CN1923507A (zh) * 2005-09-02 2007-03-07 优泊公司 模内成型用标签和用该标签装饰的树脂容器
CN101202002A (zh) * 2006-09-07 2008-06-18 优泊公司 具有优异的标签去除性的标签和带有该标签的容器
CN102712186A (zh) * 2010-01-22 2012-10-03 普瑞曼聚合物株式会社 多层吹塑容器及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220367B2 (en) 2014-12-08 2022-01-11 Dai Nippon Printing Co., Ltd. Composite preform, composite container, composite preform, plastic member, and method for producing composite container

Also Published As

Publication number Publication date
MX2015013648A (es) 2016-02-18
KR20150136609A (ko) 2015-12-07
CN104981857A (zh) 2015-10-14
CN104077956A (zh) 2014-10-01
BR112015024693A2 (pt) 2017-07-18
CN104077956B (zh) 2017-05-17
US20160046101A1 (en) 2016-02-18
JP2016521372A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
TWI681001B (zh) 熱塑性樹脂膜及其製造方法、模內成形用標籤與附設標籤的塑膠容器及其製造方法
WO2014154130A1 (zh) 模内成型用标签及使用其的带标签的塑料容器
JP5579394B2 (ja) インモールド成形用ラベル
TWI364446B (en) Surface protective film
KR102478586B1 (ko) 인몰드 라벨 및 인몰드 라벨 부착 용기
WO2014112389A1 (ja) インモールドラベル、樹脂成形品及びその製造方法
JP5859230B2 (ja) インモールド成形用ラベル及びそれを用いたラベル付き樹脂成形品
JP5492547B2 (ja) ラベル付き容器とその製造方法
JP2016511437A (ja) ストレッチブロー用インモールドラベルおよび該ラベル付きストレッチブロー成形品
JP7303939B2 (ja) 感熱ラベル
JP7289011B2 (ja) 感熱ラベル及び感熱ラベルの製造方法
WO2023027067A1 (ja) 積層体、感熱ラベル、インモールドラベル及びラベル付き容器
WO2022210896A1 (ja) 積層体及び積層体の製造方法
KR20240050377A (ko) 인몰드 라벨 및 라벨이 부착된 용기
CN113302050B (zh) 记录用纸及其用途、以及记录用纸的制造方法
JP2023150257A (ja) 熱可塑性樹脂フィルム、ラベル及びインモールドラベル
WO2021193312A1 (ja) 粘着シート積層体及びその製造方法
JP2005075420A (ja) 袋物
JP2023032553A (ja) 積層体、感熱ラベル、インモールドラベル及びラベル付き樹脂容器
JP2018134857A (ja) 加飾フィルムおよびそれを用いた加飾成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013648

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016504467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506901

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157030773

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024693

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14774653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015024693

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150925