WO2014148654A1 - Multi-stage type cultivation apparatus for crop in plant factory - Google Patents

Multi-stage type cultivation apparatus for crop in plant factory Download PDF

Info

Publication number
WO2014148654A1
WO2014148654A1 PCT/KR2013/002254 KR2013002254W WO2014148654A1 WO 2014148654 A1 WO2014148654 A1 WO 2014148654A1 KR 2013002254 W KR2013002254 W KR 2013002254W WO 2014148654 A1 WO2014148654 A1 WO 2014148654A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
crop
data
unit
condition
Prior art date
Application number
PCT/KR2013/002254
Other languages
French (fr)
Korean (ko)
Inventor
김상옥
김병오
김동식
강구연
Original Assignee
(주)유양디앤유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유양디앤유 filed Critical (주)유양디앤유
Publication of WO2014148654A1 publication Critical patent/WO2014148654A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • This embodiment relates to a multi-stage cultivation apparatus of plant plant cultivation crops. More specifically, a multistage cultivation apparatus is installed in a plant factory for producing and growing a seeded crop up to a size exceeding a predetermined threshold from the seedling cultivation apparatus, while new crops are transplanted to the multistage cultivation apparatus.
  • the present invention relates to a multi-stage cultivation apparatus for estimating optimal growing conditions of new crops and automatically controlling the growing environment based on the estimated growing conditions.
  • plant cultivation is achieved by feeding fertilizers and water to seeds planted in the soil and taking advantage of photosynthesis in the plants by sunlight.
  • this method of cultivation not only affects the production of climate change, but also creates cost and environmental problems due to the use of fertilizers and pesticides.
  • the production cannot keep up with the demand of consumers.
  • the present embodiment is installed in a plant factory, while producing a multi-stage cultivation apparatus for receiving and growing crops grown up to a size exceeding a predetermined threshold from a seedling cultivation apparatus,
  • the main purpose is to reduce the time and manpower consumption in the process of growing the crops by continuously circulating the culture solution using a plurality of cultivation bed and the circulation pipe inclined at an angle.
  • it saves the learning data learning the growth data according to the cultivation conditions for each crop, and when a new crop is transplanted, the user automatically estimates the optimal cultivation conditions for the cultivation of a new crop based on the learning data and automatically controls the user.
  • Its main purpose is to solve the problem of continually establishing cultivation conditions for plants.
  • This embodiment is a multi-stage cultivation apparatus installed in a plant factory and receiving and growing crops grown to a size exceeding a preset threshold from a seedling cultivation apparatus, wherein the crops are grown by controlling the power provided from the outside.
  • a power supply unit to provide power to the;
  • a cultivation bed unit including a plurality of cultivation beds provided with grooves for transplanting the crops at a predetermined distance and arranged in an inclined form to be spaced apart from each other and flowing in the culture solution therein;
  • a controller configured to receive information on some or all of temperature, humidity, and CO 2 of the plant factory and to control a cultivation environment of the crop based on the received information and preset cultivation conditions;
  • a water supply unit providing the culture solution in which water and nutrient solutions are mixed at a predetermined rate to the cultivation bed;
  • an illumination unit including one or more artificial light sources and illuminating light for growing the crops by controlling some or all of wavelengths, intensities, and irradiation periods of the artificial light sources, wherein the controller is configured for each crop in
  • the controller for controlling the cultivation environment of the crops cultivated in the plant factory the growth data according to the cultivation conditions for each crop in the plant factory using a user input or an image photographing device
  • a data storage unit configured to receive training data received from the received growth data
  • a cultivation condition estimating unit for estimating an optimal cultivation condition for cultivating the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory
  • a data analyzer for comparing the information on some or all of the temperature, humidity, CO2, and pH of the culture solution collected from the plurality of sensors with the cultivation conditions estimated from the cultivation condition estimating unit;
  • a control command generation unit generating a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit.
  • the controller in the method for the controller to control the cultivation environment of the crops cultivated in the plant factory, the growth according to the cultivation conditions for each crop in the plant factory using a user input or an image photographing device Receiving data and storing learning data learned from the received growth data; Estimating an optimal cultivation condition for cultivation of the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory; Comparing the cultivation conditions estimated from the process of estimating the cultivation conditions with information on some or all of information on temperature, humidity, CO2, and pH of the culture medium collected from a plurality of sensors; It provides a method for controlling a growing environment of a crop, comprising the step of generating a control command for controlling the growing environment of the new crop based on the comparison result extracted from the comparing process.
  • a multi-stage cultivation apparatus is installed in a plant factory and provided with a seedling grown up to a size exceeding a predetermined threshold value from a seedling cultivation device, while producing a plurality of inclined angles at a predetermined angle.
  • the culture medium is continuously circulated through the cultivation bed and the circulation pipe to provide to the crop, thereby reducing the time and manpower consumption in the process of growing the crop.
  • it saves the learning data learning the growth data according to the cultivation conditions for each crop, and when a new crop is transplanted, the user automatically estimates the optimal cultivation conditions for the cultivation of a new crop based on the learning data and automatically controls the user. There is an effect that can solve the problem of constantly setting the cultivation conditions for plants.
  • FIG. 1 is a view showing the structure of a multi-stage grower according to the present invention.
  • FIG. 2 is a diagram illustrating a structure of a controller for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
  • FIG. 3 is a view showing the structure of the lighting unit attached to the multi-stage cultivation apparatus according to the invention and using the LED as an artificial light source for cultivating crops.
  • Figure 4 is a view showing the configuration and circuit diagram of the LED module of the lighting unit when using the LED as an artificial light source according to the present invention.
  • FIG. 5 is a flowchart illustrating a method for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
  • a plant factory refers to a system that produces agricultural products throughout the year throughout the facility, such as industrial products using high technology such as environmental control and automation, and is a fully controlled type that completely cultivates crops with only artificial lighting. It is divided into a solar combined use type that grows crops by using sunlight and artificial lighting together in a greenhouse.
  • the plant factory has the technology to control the environmental conditions such as temperature, light, CO2, and culture medium that affect the growth of crops to the optimal state and to automate the work process to produce crops regardless of weather conditions in the facility. it means.
  • the plant factory is implemented in a germination cultivation device for germinating seeds of the crop, a greenhouse installed separately in the plant factory, and receives a germinated crop from the germination cultivation device, and controls the seedling environment of the provided crop to a certain range of sizes. It includes a number of devices specialized in the cultivation of crops, such as a seedling cultivation device for raising crops.
  • the multi-stage cultivation apparatus 100 is installed in a plant factory and received a seedling crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, the crop by controlling the cultivation environment of the provided crop The device for cultivation.
  • FIG. 1 is a view showing the structure of a multi-stage cultivation apparatus 100 according to the present invention.
  • Figure 1 shows a front view of the multi-stage cultivation apparatus 100 viewed from the front.
  • the multi-stage grower 100 includes an air conditioning unit 110, a water supply unit 120, a controller 130, a sensor unit 140, a power supply unit 150, and a cultivation bed unit. 160, an illumination unit 170, and an image photographing device 180.
  • Multi-stage cultivation apparatus 100 is implemented in a plant factory is provided with a seeded crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, by controlling the cultivation environment of the crop provided Finally grow.
  • the multi-stage cultivation apparatus 100 controls the temperature, humidity, etc. of the plant factory in which the multi-stage cultivation apparatus 100 is located by using an external power provided from the outside, and the culture solution in which the water supply and the nutrient solution are mixed at a predetermined ratio. It is circulated in a plurality of cultivation beds arranged in this multi-stage form to provide an optimal cultivation environment for the cultivation of crops.
  • the multi-stage cultivation apparatus 100 stores the learning data learning the growth data according to the cultivation conditions for each crop in the plant factory, and optimally for the cultivation of new crops based on the learning data when new crops are transplanted.
  • the planting environment is automatically controlled by estimating the growing condition.
  • the multistage grower 100 shown in FIG. 1 is illustrated as including only one grower bed in each stage, this is illustrated in the illustrated example to clearly explain the structure of the multistage grower 100. It can only be configured to include a multi-stage, multi-row cultivation bed.
  • the multi-stage cultivation apparatus 100 is provided with a seedling crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, and finally cultivated the provided crop.
  • the crops grown to a size exceeding a preset threshold means a state in which the seeded crops are grown to a size that can be transplanted or set up, and the finally grown crops are grown to a size that can be distributed to consumers. But it is not necessarily limited thereto.
  • the air conditioning unit 110 controls the air conditioning and humidity conditions inside the plant factory in which the multi-stage grower 100 is located to maintain a temperature and humidity suitable for the cultivation of crops implanted in the multi-stage grower 100.
  • the air conditioner 110 includes one or more air conditioners, heaters, and humidifiers, and when receiving a control command from the controller 130, operates the air conditioners, heaters, and humidifiers to adjust temperature and humidity inside the plant factory.
  • the control command received from the controller 130 is generated when the controller 130 determines that the current temperature and humidity of the plant factory is different from the setting range for the optimum temperature and humidity for cultivating a predetermined crop. Through this, the plant factory where the multi-stage grower 100 is located is always controlled to a constant temperature and humidity.
  • the cultivation conditions such as the optimum temperature and humidity for cultivating a predetermined crop from the setting data set by the user, learning data of the crop previously learned and stored in the controller 130 and the controller 130 Means data of any one of the cultivation conditions for the cultivation of estimated new crops.
  • the air conditioning unit 110 circulates the air in the plant factory in which the multi-stage grower 100 is located in a predetermined direction by using an air conditioner and a heater, thereby discharging harmful gases, dust, etc. to the outside of the plant factory. It operates to maintain fresh air in the plant factory.
  • the multi-stage cultivation apparatus 100 further includes a humidification water supply unit (not shown) for supplying water to the humidifier in the air conditioning unit 110, if the water supply for the humidifier is insufficient for use in humidification, stored water supply Provide with a humidifier.
  • a humidification water supply unit (not shown) for supplying water to the humidifier in the air conditioning unit 110, if the water supply for the humidifier is insufficient for use in humidification, stored water supply Provide with a humidifier.
  • the water supply unit 120 receives and stores water supply and nutrient solution from the outside, and produces a culture solution in which the stored water supply and nutrient solution are mixed at a predetermined ratio. Thereafter, the produced culture solution is circulated to the plurality of cultivation beds in the web bed 160 to provide to the crop. Meanwhile, the water supply unit 120 further includes a water supply storage unit 122, a nutrient solution storage unit 124, a culture medium storage unit 125, a circulation pipe 126, 127, and 128, and a pressure pump 129.
  • the water supply storage unit 122 and the nutrient solution storage unit 124 receive and store the water supply and the nutrient solution from the outside, and transfer a predetermined amount of water and nutrient solution to the culture solution storage unit 125 to mix the culture solution at a predetermined ratio.
  • the water supply stored in the water supply storage 122 is maintained at a constant temperature, and may include a ceramic heater (not shown) for controlling the temperature of the water supply for this purpose.
  • the nutrient solution stored in the nutrient solution storage unit 124 in this embodiment is used two or more nutrient solution, but is not necessarily limited thereto.
  • the culture medium storage unit 125 moves the mixed culture solution at a predetermined ratio to the circulation pipes 126, 127, and 128 through the pressure pump 129, and cultivates the culture medium in a plurality of cultivation beds in the cultivation bed unit 160. Provide culture to the crop being grown.
  • the pressure pump 129 is controlled by the controller 130, when the pressure pump 129 receives a control command from the controller 130, by applying pressure to the culture solution stored in the culture medium storage unit 125, the circulation pipe Transfer the culture to (126, 127, 128).
  • the culture solution circulated through the circulation pipes 126, 127, and 128 is re-stored in the culture solution storage unit 125, and the controller 130 determines that the concentration of the culture solution differs from the preset concentration in the course of the circulation. If so, the control unit for transmitting a predetermined amount of water supply and nutrient solution to the culture solution storage unit 125 to the water supply storage unit 122 and the nutrient solution storage unit 124 to maintain the concentration of the culture solution to a predetermined concentration.
  • the circulation pipes 126, 127, and 128 for supplying the culture solution to the culture bed 160 are connected to one side of the culture bed located at the top of the culture bed 160 and one side of the culture solution storage 125.
  • a second circulation pipe 127 connected to a downstream part of the cultivation bed to move the culture medium to a cultivation bed positioned at a lower end, one side of the cultivation bed positioned at the bottom of the cultivation bed part 160 and the other side of the culture medium storage part 125;
  • a third circulation pipe 128 connected to the culture medium circulated from the uppermost cultivation bed to the culture medium storage unit 125.
  • the culture solution stored in the culture solution storage unit 125 is transferred to the cultivation bed located at the top of the cultivation bed unit 160 through the first circulation pipe 126. Sent to the cultivation bed. Thereafter, the culture solution is continuously circulated by being finally transmitted to the culture solution storage unit 125 through the third circulation pipe 128.
  • the controller 130 receives information of some or all of the temperature, humidity and CO2 of the plant factory, and controls the cultivation environment of the crop based on the received information and the predetermined cultivation conditions. That is, the controller 130 compares and analyzes the sensing information collected by using the sensor unit 140 in the multi-stage cultivation apparatus 100 with the cultivation conditions such as temperature, humidity, CO 2, and culture medium set in the controller 130. The control command is generated based on the analysis result and transmitted to the air conditioning unit 110, the water supply unit 120, and the lighting unit 170.
  • the cultivation conditions of the crops previously set in the controller 130 is learning that learning the growth data according to the cultivation conditions for each crop cultivated in the plant, the setting data manually set by the user It includes data of any one of the data and cultivation conditions for the cultivation of a new crop estimated from the controller 130. That is, when the user directly sets the cultivation conditions, the controller 130 controls the cultivation environment of the crop according to the cultivation conditions selected by the user, or according to whether or not the cultivation of the crop transplanted to the multi-stage cultivation apparatus 100. Control the cultivation environment of the crop based on the learned learning data, or control the cultivation environment based on the optimal cultivation conditions for the cultivation of new crops estimated based on the learning data.
  • the controller 130 stores the learning data learning the growth data according to the cultivation conditions for each crop in the plant factory, based on the stored learning data when a new crop is transplanted to the cultivation bed Estimate the optimal growing conditions for growing new crops and control the growing environment based on the estimated growing conditions.
  • the learning data stored in the controller 130 refers to data for learning the growth data according to the cultivation conditions for each crop in the plant factory. That is, the controller 130 grows a crop based on a predetermined growing condition, and receives growth data of the crop using a user input or an image photographing device 180.
  • the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions.
  • the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the cultivated crop satisfies a predetermined threshold based on a predetermined cultivation condition. Store the set cultivation condition as learning data.
  • the controller 130 grows a crop based on a growing condition set by a user while a predetermined amount of learning data is collected.
  • a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
  • the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the grown crops does not satisfy the preset threshold based on the predetermined growing condition, Based on the result of the growth data of the crop, the pre-set cultivation conditions are supplemented, and the supplemented data is stored as learning data.
  • the controller 130 supplements the predetermined growing condition, first analyzes the result of the growth data of the crop, and extracts an error value obtained by converting the difference between the analyzed growth data and the predetermined threshold as a percentage.
  • the controller 130 is set to match the complementary value according to the error range, the controller 130 to determine the complementary value corresponding to the calculated error value, based on the determined complementary value cultivation conditions To complement.
  • the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
  • the controller 130 analyzes the result of the growth data of the crop through the learning process, and when the analysis result determines that the result of 80% of the preset threshold is achieved, the complement value matching the error value of 20% Identify and supplement the pre-established cultivation conditions based on the identified complementary values. Similarly, when an error value of 30% occurs, the complementary value matching the error value of 30% is identified, and the preset cultivation condition is compensated based on the identified complementary value.
  • the complementary value set according to the error range in the controller 130 is a value arbitrarily set by the user, but is not necessarily limited thereto, and is estimated by the controller 130 learning growth data for a plurality of crops. It can be set through a variety of methods.
  • the controller 130 estimates an optimal cultivation condition for the cultivation of a new crop based on the stored learning data when a new crop is transplanted into the cultivation bed of the multi-stage cultivation apparatus 100 and based on the estimated cultivation condition.
  • the controller 130 determines whether a new crop is transplanted to the cultivation bed based on an input signal of the user or an image received from the image photographing device 180, and when it is determined that the new crop is transplanted, the controller 130 stores the stored learning data. Estimate the optimal cultivation conditions for the cultivation of new crops.
  • the learning data stored in the controller 130 is stored in a group according to the characteristics of the pre-cultivated crops, and the controller 130 determines the group to which the crop belongs when a new crop is transplanted. Thereafter, the controller 130 analyzes the learning data of the group to which the crop belongs, estimates an optimal cultivation condition for the cultivation of a new crop in the plant factory, and a control command for controlling the cultivation environment based on the estimated cultivation conditions. Create For example, when a new crop A is transplanted into the multi-stage cultivation apparatus 100, the controller 130 determines a group to which crop A belongs among previously stored learning data.
  • the average value of the extracted cultivation conditions as the optimum cultivation conditions for the cultivation of Crop A Estimate. That is, by estimating the cultivation conditions of the new crops based on the learning data of the crops satisfying the preset thresholds, the new crops also provide the cultivation conditions that induce them to meet the preset thresholds.
  • the controller 130 receives the growth data of the new crop cultivated based on the estimated cultivation conditions, and if it is determined that the growth data of the new crop does not satisfy the preset threshold, the controller 130 outputs the result of the growth data of the new crop. Complement the estimated cultivation conditions on the basis of the basis, and stores the supplemented data as learning data.
  • the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above.
  • the controller 130 stores the estimated cultivation condition as learning data.
  • the controller 130 compares the received input signal with the growing conditions of the new crop estimated by the controller 130 and displays the comparison result to the user.
  • the multi-stage grower 100 may use the user's setting data in a predetermined growing condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop.
  • the user's setting data may not be accurate data in the plant factory, and the controller 130 is a crop that is cultivated based on the input signal and the cultivation conditions estimated from the controller 130 to provide the user with a criterion for this. Infer each of the growth data and display the result to the user.
  • the controller 130 generates a control command for controlling a growing environment of a new crop based on one of an input signal and an estimated growing condition according to a user's selection. That is, the user can select a new crop cultivation condition based on a comparison result of the input signal and the cultivation condition estimated from the controller 130, and the controller 130 selects a cultivation environment of the plant factory based on the selected cultivation condition. To control.
  • the controller 130 is mounted in the form of a touch panel on the outside of the multi-stage grower 100, and further includes a user UI (User Interface) for receiving the user input information. That is, when the user wants to control the multi-stage grower 100, the user can easily control the multi-stage grower 100 by inputting input information through the user UI.
  • a user UI User Interface
  • the controller 130 is a state of the crop being grown in the multi-stage cultivation apparatus 100 and the multi-stage cultivation apparatus 100 based on the information continuously collected through the sensor unit 140 and the image photographing device 180. Keep track of the status of multiple devices in In this case, when it is determined that an abnormality has occurred in the state of the crop and the device, the SMS (Short Message Service) text service provides a monitoring image of the multi-stage grower 100 photographed through the notification of abnormality and the image capturing apparatus 180. It delivers to the user in real time.
  • SMS Short Message Service
  • the sensor unit 140 includes a plurality of sensors for collecting information on temperature, humidity, CO 2, and pH of the culture solution in the plant factory in which the multistage grower 100 is located. That is, the sensor unit 140 collects sensing information corresponding to the corresponding sensor by using a sensor such as a temperature sensor, a humidity sensor, a CO2 sensor, and a PH sensor included in the sensor unit 140, and stores the collected sensing information in the controller. Transmit to 130. On the other hand, the sensor unit 140 continuously collects the sensing information inside the plant factory using a plurality of sensors, and if the collected sensing information has a change value greater than or equal to a preset threshold value, the controller 130 provides information on this. Send it. Subsequently, the controller 130 generates a control command for capturing the multi-stage grower 100 in the image capturing apparatus 180 and receives the captured image to determine the cause of the change.
  • a sensor such as a temperature sensor, a humidity sensor, a CO2 sensor, and a PH sensor included in
  • the power supply unit 150 controls the external power provided from the outside to provide the necessary power for driving each device included in the multi-stage grower 100.
  • the pre-stored reserve power means power generated from a reserve power generator (not shown) through solar and wind power sources of renewable energy, and the reserve power generator is an area where a plant factory is located.
  • the reserve power generator is an area where a plant factory is located.
  • the cultivation bed unit 160 includes a plurality of cultivation beds having grooves for transplanting crops at a predetermined distance and arranged in an inclined form to be spaced apart from each other up and down to be inclined.
  • the plurality of cultivation bed is made of a material such as stainless, aluminum and synthetic resin
  • each of the cultivation bed groove is planted with seedlings to the size exceeding a predetermined threshold from the seedling cultivation device.
  • the plant to be transplanted is transplanted from the seedling cultivation device in a form planted in a fixing medium made of sponge material to fix the crop and easily absorb the culture solution for root growth, but is not necessarily limited thereto.
  • the multi-stage cultivation apparatus 100 may occur in the process of going from the seedling to the final cultivation stage by directly receiving the crops complete seedlings in the seedling cultivation device, without moving the seedlings are complete seeding to a separate cultivation plate It has the effect of reducing time and human consumption.
  • the culture medium is evenly supplied to the plurality of cultivation bed has the effect that the crops implanted in the cultivation bed can be grown uniformly.
  • the cultivation bed unit 160 is a plurality of longitudinal rungs installed in the longitudinal direction of the plurality of cultivation beds, a plurality of height longitudinal rods installed in the height direction of the plurality of cultivation beds and a plurality of cultivation beds installed in the width direction Supported by a frame with a crosswise cross.
  • the frame supporting the plurality of tanks may have various heights, lengths and widths depending on the size of the cultivation bed and crops.
  • the lighting unit 170 includes one or more artificial light sources and controls some or all of the wavelength, intensity, and irradiation period of the artificial light source to irradiate light for growing a crop. That is, the lighting unit 170 is attached to the lower end of the frame and the plurality of cultivation bed for supporting the cultivation bed unit 160 to control commands for controlling the wavelength, intensity and irradiation period of the artificial light source from the controller 130, etc. And irradiates the crop with optimal light. Meanwhile, in FIG. 1, the lighting unit 170 is attached to the bottom of the frame and the plurality of cultivation beds for supporting the cultivation bed unit 160, but is not necessarily limited thereto, and may provide light necessary for cultivation of crops. If so, it can be installed anywhere.
  • the lighting unit 170 is composed of an LED module made of a printed circuit board (PCB) of a structure that is separated or combined in consideration of the scalability according to the overall length of the cultivation bed 160, a plurality of LED modules Provides light to crops through LEDs.
  • the LED module is composed of three PCB, each PCB is arranged in parallel with a driver device and six RGB (Red-Green-Blue) LED for controlling the LED.
  • RGB Red-Green-Blue
  • the image capturing apparatus 180 is attached to a frame of the multistage grower 100 and photographs an image for monitoring the multistage grower 100. That is, the image capturing apparatus 180 continuously photographs the multistage cultivation apparatus 100 in order to transmit the growth data of crops grown in the multistage cultivation apparatus 100 to the controller 130.
  • the image capturing apparatus 180 continuously monitors the multi-stage grower 100 to photograph crops grown in the cultivation bed 160, and transmits an image thereof to the controller 130. Thereafter, the controller 130 may determine whether or not to transplant a new crop in the cultivation bed unit 160 by receiving an image.
  • FIG. 2 is a diagram illustrating a structure of a controller 130 for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
  • the controller 130 for controlling a cultivation environment of a crop grown in a plant factory includes a data storage unit 202, a cultivation condition estimating unit 204, a data analyzing unit 206, and the like.
  • the control command generation unit 208 is included.
  • the controller 130 according to an embodiment of the present invention is included in the multi-stage cultivation apparatus 100 and controls the cultivation environment of the crop based on the predetermined cultivation conditions, new crops to the multi-stage cultivation apparatus 100 When transplanted, it is possible to estimate the optimal cultivation conditions for growing new crops based on the learning data, but it is not limited to this and can be included in the device for germination, seedling, etc. of crops located in the plant factory to perform the specified functions. have.
  • the data storage unit 202 receives the growth data according to the cultivation conditions for each crop in the plant factory by using the user's input or the image photographing device 180, and stores the learning data for learning the received growth data. That is, the data storage unit 202 receives the growth data of the crops cultivated based on a predetermined cultivation condition using a user input or the image photographing apparatus 180.
  • the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions.
  • the data storage unit 202 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the grown crop satisfies the preset threshold based on the predetermined growing condition.
  • the pre-set cultivation conditions are stored as learning data.
  • the data storage unit 202 grows a crop based on a cultivation condition set by a user while a predetermined amount of learning data is collected.
  • a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
  • the data storage unit 202 analyzes the result of the growth data of the crop through the process of learning the received growth data, and said that the growth data of the crop grown on the basis of the predetermined growing condition does not satisfy the preset threshold. If it is determined, supplement the pre-set cultivation conditions based on the results of the growth data of the crop, and stores the supplemented data as learning data.
  • the data storage unit 202 is a method of complementing the pre-set cultivation conditions first analyzes the results of the growth data of the crop, and extracts the error value converted into a percentage of the difference between the analyzed growth data and the predetermined threshold value.
  • the data storage unit 202 has a complementary value matched thereto according to the error range is set, the data storage unit 202 identifies the complementary value corresponding to the calculated error value, based on the identified complementary value Complement preset planting conditions.
  • the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
  • the data storage unit 202 receives the growth data of the new crop cultivated based on the estimated cultivation condition from the cultivation condition estimating unit 204, and determines that the growth data of the new crop does not satisfy the preset threshold.
  • the cultivation conditions estimated based on the results of the growth data of the new crops are supplemented, and the supplemented data is stored as learning data.
  • the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above.
  • the data storage unit 202 stores the estimated cultivation condition as learning data.
  • the data storage unit 202 is a cultivation condition for the cultivation of new crops estimated from the setting data including the cultivation conditions set by the user, the learning data for learning the growth data of the previously cultivated crops, and the cultivation condition estimating unit 204. Some or all of them are stored and provided as a growing condition for growing crops.
  • the cultivation condition estimating unit 204 estimates an optimal cultivation condition for cultivating the new crop based on the stored crop data. That is, the cultivation condition estimator 204 determines whether or not to transplant a new crop to the cultivation bed 160 of the multi-stage cultivation apparatus 100 based on an image received from the user's input or the image photographing apparatus 180. If the new crops are considered to have been transplanted, the optimum conditions for growing them are estimated.
  • the learning data stored in the data storage unit 202 is stored in a group according to the characteristics of the previously grown crops
  • the cultivation condition estimator 204 is a group to which the crop belongs when a new crop is transplanted To judge. Thereafter, the cultivation condition estimating unit 204 analyzes the learning data of the group to which the crop belongs, and estimates an optimal cultivation condition for cultivation of a new crop in the plant factory. For example, when a new crop A is transplanted into the multistage cultivation apparatus 100, the cultivation condition estimating unit 204 determines a group to which the crop A belongs among the learning data previously stored in the data storage unit 202.
  • the cultivation condition estimator 204 provides a cultivation condition that induces the new crop to satisfy the preset threshold by estimating the cultivation condition of the new crop based on the learning data of the crop satisfying the preset threshold.
  • the data analyzer 206 may collect information about some or all of information on temperature, humidity, CO 2, and pH of the culture medium collected from the plurality of sensors, and the cultivation conditions estimated from the cultivation condition estimating unit 204. Compare. In FIG. 2, it is specified that the data analyzer 206 compares the information collected from the plurality of sensors with the cultivation conditions for the cultivation of a new crop estimated from the cultivation condition estimator 204, but collected from the plurality of sensors. It will be apparent to those skilled in the art that the information and the cultivation conditions preset in the data storage unit 202 may be compared with, for example, user setting data and learning data.
  • the data analyzer 206 compares the received input signal with the cultivation condition estimated from the cultivation condition estimating unit 204 when receiving an input signal for the cultivation condition of a new crop from the user, and compares the result to the user. Display.
  • the controller 130 may use the user's setting data with a preset cultivation condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop.
  • the user's setting data may not be accurate data in the plant factory, and the data analyzing unit 206 uses the input signal and the cultivation condition estimating unit 204 to provide the criterion for the determination. It infers each of the growth data of the crops grown on the basis and displays the result to the user.
  • the control command generation unit 208 generates a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit 206, that is, the control command generation unit 208 is collected from a plurality of sensors
  • the new crop in the plant factory can be obtained by comparing the information on some or all of the temperature, humidity, CO2, and pH of the culture medium in the plant plant with the cultivation conditions estimated from the cultivation condition estimating unit 204. Generate control commands to control the growing environment.
  • the control command generator 208 controls the cultivation environment of a new crop based on a result of comparing the information collected from the plurality of sensors with the cultivation conditions estimated from the cultivation condition estimating unit 204.
  • the cultivation environment of previously grown crops or new crops is controlled based on a result of comparing the information collected from the plurality of sensors with the cultivation conditions set in the data storage unit 202.
  • a control command can be generated.
  • control command generation unit 208 generates a control command based on any one of the input signal and the estimated cultivation conditions for the new plant cultivation conditions input by the user according to the user's selection. That is, the control command generation unit 208 receives the cultivation conditions determined based on the comparison result displayed by the data analyzer 206 from the user, and controls the cultivation environment of the new crop based on the received cultivation conditions. You can create a control command.
  • FIG 3 is a view showing the structure of the lighting unit 170 attached to the multi-stage cultivation apparatus 100 according to the present invention and using the LED as an artificial light source for cultivating crops.
  • the structure of the lighting unit 170 when using the LED as an artificial light source for cultivating the crop is the voltage providing device 300, the first The LED control module unit to the N-th LED control module unit (310, 320), the metering module unit 330, the sensor module unit 340 and the LED module 350.
  • the voltage providing device 300 converts AC power into a DC voltage to provide the first LED control module unit to the Nth LED control module units 310 and 320, and the first LED control module unit to the Nth LED control module unit
  • the 310 and 320 control the LED module 350 according to the state information received from the metering module 330 and the sensor module 340.
  • the voltage providing device 300 may be divided into a plurality of first and second voltage providing devices 300_1 and 300_2.
  • the first voltage providing device 300_1 converts AC power into a DC voltage and provides the first LED control module unit to the Nth LED control module units 310 and 320
  • the second voltage providing device 300_2 is converted.
  • the DC voltage is provided to the sensor module unit 340 and the LED module 350.
  • Each of the voltage providing devices 300 receives a commercial power of 110 or 220 V and converts it into a DC voltage of about 24 V, and the first LED control module unit to the Nth LED control module unit 310 or 320 or the LED module.
  • the output voltage is converted back to a 3.3V DC voltage for driving the integrated circuit IC in 350.
  • the voltage providing device 300 may include an inverter and a DC-DC converter.
  • the first LED control module unit to the N-th LED control module unit communicates with the LED module 350 controlled by each control module unit by a short-range wireless communication, provided to the first voltage providing device 300_1 It is driven by receiving DC voltage.
  • the first LED control module unit to the N-th LED control module unit is a plurality of LED module 350 to each control module unit to manage each of the plurality of LED module 350 in one-to-one It is configured to correspond.
  • the LED module 350 in the Nth column may be driven to have the same luminous condition in the first row, but when different crops are cultivated, the LED module 350 is driven in the luminous condition suitable for the crop. Can be.
  • the LED elements of red, green, and blue are grouped by color to control full color light.
  • the metering module unit 330 is the first LED control module unit to the N-th LED control module unit (310, 320), the sensor module unit 340 and the LED module 350 in the voltage providing device 300 through the short-range wireless communication Obtain information related to voltage, power, and the like. Thereafter, the acquired information is transferred to the controller 130.
  • the metering module unit 330 measures AC input power and total system AC input power of each of the voltage providing devices 300 using a metering sensor, and then digitally converts measured values to generate voltage related information and generate voltage related information. Information is provided to the controller 130. Thereafter, the metering module unit 330 may reset the power state of the voltage providing device 300 according to the analysis result of the controller 130.
  • the sensor module unit 340 includes an illuminance sensor, a wavelength sensor, and the like, and transmits sensing data acquired through each sensor to the sensor unit 140.
  • the role of the sensor module 340 aquatic can be replaced by the sensor unit 140.
  • the sensor unit 140 then provides the corresponding data to the controller unit 130.
  • the controller 130 is based on the information obtained from the sensor module 340, LED module 350 to irradiate the optimal light for cultivating a predetermined crop, the wavelength, intensity and irradiation period of the LED, etc. It generates a control command for controlling the transmits to the LED module 350.
  • the LED module 350 includes first to N-th rows, and a plurality of PCB modules are separated and installed so as to freely expand and install as the areas of the plurality of cultivation beds in the multistage grower 100 increase. It is manufactured in a structure to be combined.
  • each LED module 350 stores ID (Identifier) information including information, such as wavelength, intensity, and irradiation period for the LED light provided to the cultivated crop. Accordingly, even if the LED module 350 is configured to be extended, the same information as the existing LED module 350 may be emitted through a method of transmitting ID information stored in the extended LED module.
  • FIG. 4 is a view showing the configuration and circuit diagram of the LED module 350 of the lighting unit 170 in the case of using the LED as an artificial light source according to the present invention.
  • FIG. 4 (a) shows the configuration of the LED module 350 of the lighting unit 170 in the case of using the LED as an artificial light source
  • Figure 4 (b) is the LED module 350 ) Is a circuit diagram.
  • the LED module 350 is composed of the first to Nth rows and is manufactured to be separated and combined into three PCBs in consideration of expandability of the entire length of the multistage grower 100.
  • Each PCB has 6 driver devices 400 and 6 red-green-blue LEDs 410 arranged in parallel to control the LEDs. can do.
  • the circuit of the LED module 350 includes an input filter that blocks DC flowing from a source and a diode that allows current to flow in a forward direction only.
  • the voltage providing device 300 for supplying power to the LED module 350 converts the commercial power of 110 or 220 V to a 24V DC voltage through the inverter to provide to the LED module 350, and provides a DC-DC converter
  • the DC voltage level of 24 V converted by the inverter is converted into a DC voltage of 3.3 V and output to the driver device 400 of the LED module 350.
  • the driver device 400 may include a full-bridge driving circuit, and includes a reference (REF) resistor between the ground and the ground.
  • the reference resistor adjusts the R, G and B individual output currents, or constant current, according to the resistance value.
  • the driver device 400 receives the DC voltage of 3.3 V provided from the DC-DC converter so that the constant current can be provided in the individual LED device according to the resistance value of the reference resistor.
  • the RGB LED 410 is dimmed under the control of the controller 130.
  • the dimming is controlled by adjusting the duty ratio of the light emitting devices to be turned on and off so that the amount of light emitted from the unit module is adjusted. Means that. For example, if the turn-on time is small, the amount of light emitted is so low that the brightness may be somewhat dark.
  • the LED module 350 may emit light of various colors and various brightness depending on how the LED is driven. For example, when driving the RGB LEDs 410, respectively, a single color of light can be obtained, but when driving the RGB LEDs 410 simultaneously, white light can be obtained. According to the driving scheme as described above, the LED module 350 implements full color. Substantially, the LED module 350 adjusts the wavelength and the amount of light according to the growth state of the crop as well as the type of the crop being grown.
  • FIG. 5 is a flowchart illustrating a method for controlling the cultivation environment of crops grown in a plant factory by the controller 130 according to the present invention.
  • the controller 130 according to an embodiment of the present invention is included in the device for germination, seedling, etc. of the crop located in the plant factory as well as the multi-stage cultivation device 130, the cultivation of the crop germinated or grown in the device You can control the environment.
  • the method for controlling the cultivation environment of crops cultivated in the plant factory according to the present invention is first cultivated for each crop in the plant factory using an input or image photographing device 180 of the user.
  • Receiving the growth data according to the condition and begins with the process of storing the learning data learning the received growth data (S500). That is, the controller 130 receives the growth data of the cultivated crop based on a predetermined cultivation condition using a user input or the image photographing apparatus 180.
  • the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions.
  • the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the cultivated crop satisfies a predetermined threshold based on a predetermined cultivation condition. Store the set cultivation condition as learning data. Meanwhile, the controller 130 grows a crop based on a growing condition set by a user while a predetermined amount of learning data is collected.
  • a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
  • the controller 130 analyzes the result of the growth data of the crop through the process of learning the received growth data, and determines that the growth data of the cultivated crop does not satisfy the preset threshold based on the preset cultivation conditions.
  • the predetermined cultivation condition is supplemented, and the supplemented data is stored as learning data.
  • the controller 130 supplements the predetermined growing condition, first analyzes the result of the growth data of the crop, and extracts an error value obtained by converting the difference between the analyzed growth data and the predetermined threshold as a percentage.
  • the controller 130 is set to match the complementary value according to the error range, the controller 130 to determine the complementary value corresponding to the calculated error value, based on the determined complementary value cultivation conditions To complement.
  • the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
  • the controller 130 receives the growth data of the new crop cultivated based on the estimated cultivation conditions, and if it is determined that the growth data of the new crop does not satisfy the preset threshold, the controller 130 outputs the result of the growth data of the new crop. Complement the estimated cultivation conditions on the basis of the basis, and stores the supplemented data as learning data.
  • the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above.
  • the controller 130 determines that the growth data of the new crop satisfies the preset threshold, the controller 130 stores the estimated growing condition as learning data.
  • the controller 130 may select some or all of the setting data including the cultivation conditions set by the user, the learning data for learning the growth data of the previously cultivated crops, and the cultivation conditions for the cultivation of the new crop estimated from the controller 130. It is stored and provided as a growing condition for growing crops.
  • the controller 130 estimates an optimal growing condition for growing new crops based on the training data (S510). That is, the controller 130 determines whether or not to transplant a new crop to the cultivation bed 160 of the multi-stage grower 100 based on the user's input or the image received from the image photographing apparatus 180, and the new crop. If these are considered to be transplanted, estimate the optimal planting conditions for growing new crops.
  • the learning data stored in the controller 130 is stored in a group according to the characteristics of the pre-cultivated crops, and the controller 130 determines the group to which the crop belongs when a new crop is transplanted. Thereafter, the controller 130 estimates an optimal cultivation condition for cultivation of new crops in the plant factory by analyzing the learning data of the group to which the crop belongs. That is, the controller 130 provides a cultivation condition that induces the new crop to satisfy the preset threshold by estimating the cultivation condition of the new crop based on the learning data of the crop satisfying the preset threshold.
  • the controller 130 determines whether an input signal for a growing condition of a new crop is received from the user (S520), and when the user does not receive an input signal for the growing condition of a new crop from the user, the plant collected from the plurality of sensors. Compare the information on the temperature, humidity, CO2 and pH of the culture medium and estimated cultivation conditions inside the plant (S530). In FIG. 5, it is specified that the controller 130 compares the information collected from the plurality of sensors with the cultivation conditions for the cultivation of a new crop estimated from the controller 130, but is not necessarily limited thereto. It will be apparent to those skilled in the art that the information can be compared with a predetermined planting condition, for example, user's setting data and learning data.
  • the controller 130 determines whether an input signal for a new crop cultivation condition is received from the user (S520), and when the input signal for the new crop cultivation condition is received from the user, the controller 130 estimates the input signal and the estimated input signal.
  • the comparison result of the cultivation conditions is provided to the user, and the user's selection is received (S540).
  • the controller 130 may use the user's setting data in a predetermined cultivation condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop.
  • the user's setting data may not be accurate data in the plant factory, and the controller 130 is cultivated based on the user's input signal and the cultivation condition estimated from the controller 130 to provide a criterion for this to the user. Infer each growth data of the harvested crop and display the result to the user.
  • the controller 130 determines whether the user selects an estimated cultivation condition (S550), and when the user selects an input signal of the user other than the estimated cultivation condition, the temperature inside the plant factory collected from the plurality of sensors. The humidity, CO2, and information about the pH of the culture medium and the cultivation conditions entered by the user is compared (S560).
  • the controller 130 generates a control command for controlling the cultivation environment of the new crop based on the comparison result extracted from the comparing process (S570). That is, when the controller 130 does not receive an input signal for growing conditions of a new crop from the user, the information on the temperature, humidity, CO2, and pH of the culture medium and estimated cultivation inside the plant factory collected from the plurality of sensors Based on the result of the comparison of conditions, a control command to control the cultivation environment of a new crop is generated. In addition, when the controller 130 receives an input signal for growing conditions of a new crop from the user, the controller 130 controls to control the growing environment of the new crop based on one of the input signal and the estimated growing condition according to the user's selection. Create a command.
  • steps S500 to S570 are described as being sequentially executed. However, this is merely illustrative of the technical idea of an embodiment of the present invention, and the general knowledge in the technical field to which an embodiment of the present invention belongs. Those having a variety of modifications and variations may be applicable by changing the order described in FIG. 5 or executing one or more steps of steps S500 to S570 in parallel without departing from the essential characteristics of one embodiment of the present invention. 5 is not limited to the time series order.
  • image recording device 202 data storage unit
  • cultivation condition estimation unit 206 data analysis unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Hydroponics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided is a multi-stage type cultivation apparatus comprising: an electric power supply unit for controlling electric power supplied from the outside to provide the electric power for the purpose of cultivating crops; a cultivation bed unit including a plurality of cultivation beds which are structured to be vertically spaced apart from each other and to be slantingly arranged to cross each other, so as to allow a culture solution to flow to the interior thereof, each of the cultivation beds having a groove in which crops are transplanted at every predetermined distance unit; a controller for receiving information on some or all of the temperature, the humidity and the CO2 concentration of a plant factory and controlling a cultivation environment of the crops on the basis of the received information and a predetermined cultivation condition; a water supply unit for providing, to the cultivation beds, the culture solution obtained by mixing supplied water and a nutrient solution at a predetermined ratio; and an illumination unit including one or more artificial light sources and controlling some or all of the wavelength, the intensity, and the irradiation period of the artificial light sources to irradiate light for cultivating the crops, wherein the controller stores learning data obtained by learning growth data according to a cultivation condition for each crop in the plant factory, estimates an optimal cultivation condition for cultivating a new crop on the basis of the learning data when the new crop is transplanted in the cultivation beds, and controls the cultivation environment on the basis of the estimated cultivation condition.

Description

식물공장 재배작물의 다단형 재배장치Multi-stage Cultivator of Plant Plant Cultivated Crop
본 실시예는 식물공장 재배작물의 다단형 재배장치에 관한 것이다. 더욱 상세하게는, 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받아 재배하기 위한 다단형 재배장치를 제작하는 한편, 다단형 재배장치에 새로운 작물이 이식되는 경우 새로운 작물의 최적의 재배조건을 추정하고, 추정된 재배조건에 근거하여 재배환경을 자동으로 제어하는 다단형 재배장치에 관한 것이다.This embodiment relates to a multi-stage cultivation apparatus of plant plant cultivation crops. More specifically, a multistage cultivation apparatus is installed in a plant factory for producing and growing a seeded crop up to a size exceeding a predetermined threshold from the seedling cultivation apparatus, while new crops are transplanted to the multistage cultivation apparatus. The present invention relates to a multi-stage cultivation apparatus for estimating optimal growing conditions of new crops and automatically controlling the growing environment based on the estimated growing conditions.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the present embodiment and do not constitute a prior art.
일반적으로 식물재배는 토양에 심은 종자에 비료와 물을 주고, 태양광에 의해 식물 내에서 일어나는 광합성을 이용하는 방식으로 이루어진다. 그런데 이러한 재배 방법은 기후의 변화가 생산량에 영향을 미칠 뿐 아니라, 비료나 농약의 사용으로 인한 비용 문제와 환경 문제가 발생하게 된다. 또한, 식물을 재배하는 데 오랜 시간이 걸리기 때문에 소비자의 수요에 비해 생산량이 따라가지 못하고 있다. In general, plant cultivation is achieved by feeding fertilizers and water to seeds planted in the soil and taking advantage of photosynthesis in the plants by sunlight. However, this method of cultivation not only affects the production of climate change, but also creates cost and environmental problems due to the use of fertilizers and pesticides. In addition, because it takes a long time to grow plants, the production cannot keep up with the demand of consumers.
최근에는 식물의 성장이 광합성에 의해 이루어지는 것에 주목해, 인공 광원인 LED(Light Emitting Diode)를 사용하여 광합성에 필요한 파장을 공급해 줌으로써 식물의 성장을 촉진시킬 뿐 아니라 기후에 영향을 받지 않고, 무농약의 식물 재배가 가능한 친환경적인 식물재배 방식이 각광받고 있다. 하지만 이러한 식물 재배 방식은 좁은 공간과 밀폐된 공간에 많은 조명이 위치하기 때문에 내부의 온도나 습도에 변화가 발생하고, 이 때문에 식물 성장에 장애 및 에너지 비용이 과도하게 발생한다는 문제가 있다. 또한, 지속적으로 식물에 제공되는 급수 및 배양액의 여분을 확인하고, 이를 재공급해야 하기 때문에 시간적, 인력 소비가 발생하며 재배되는 식물의 종류가 변화되는 경우 사용자가 새로운 식물에 대한 재배조건을 지속적으로 재설정해야 하는 문제가 있다.In recent years, it is noted that the growth of plants is caused by photosynthesis. By using a light emitting diode (LED), which is an artificial light source, by supplying the wavelength required for photosynthesis, not only does the plant grow but also is not affected by the climate, Eco-friendly plant cultivation methods that can grow plants are in the spotlight. However, this method of plant cultivation has a problem in that a lot of lighting is located in a narrow space and an enclosed space, which causes a change in the internal temperature or humidity, which causes excessive problems in plant growth and excessive energy costs. In addition, because of the constant supply and replenishment of the water supply and culture solution provided to the plant, it must be re-supplied, resulting in time and manpower consumption, and when the type of plant is changed, the user can keep growing conditions for the new plant. There is a problem that needs to be reset.
전술한 문제점을 해결하기 위해 본 실시예는, 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받아 재배하기 위한 다단형 재배장치를 제작하는 한편, 기 설정된 각도로 기울어진 복수의 재배 베드 및 순환파이프를 이용하여 배양액을 지속적으로 순환시켜 작물에 제공함으로써 작물을 재배하는 과정에서 발생하는 시간적, 인력 소비를 줄이는 데 주된 목적이 있다. 또한, 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 새로운 작물이 이식되는 경우 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하여 자동으로 제어함으로써 사용자가 새로운 식물에 대한 재배조건을 지속적으로 설정해야 하는 문제를 해결하고자 하는 데 주된 목적이 있다.In order to solve the above problems, the present embodiment is installed in a plant factory, while producing a multi-stage cultivation apparatus for receiving and growing crops grown up to a size exceeding a predetermined threshold from a seedling cultivation apparatus, The main purpose is to reduce the time and manpower consumption in the process of growing the crops by continuously circulating the culture solution using a plurality of cultivation bed and the circulation pipe inclined at an angle. In addition, it saves the learning data learning the growth data according to the cultivation conditions for each crop, and when a new crop is transplanted, the user automatically estimates the optimal cultivation conditions for the cultivation of a new crop based on the learning data and automatically controls the user. Its main purpose is to solve the problem of continually establishing cultivation conditions for plants.
본 실시예는, 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받아 재배하는 다단형 재배장치에 있어서, 외부로부터 제공받은 전력을 제어하여 상기 작물을 재배하기 위한 전력으로 제공하는 전원공급부; 일정 거리 단위로 상기 작물을 이식하기 위한 홈을 구비하고, 서로 상하로 이격되며 엇갈려 기울어진 형태로 배치되어 내부에 배양액을 흘려보낼 수 있도록 구조된 복수의 재배 베드를 포함하는 재배 베드부; 상기 식물공장의 온도, 습도 및 CO2 중 일부 또는 전부의 정보를 수신하고, 수신된 정보와 기 설정된 재배조건에 근거하여 상기 작물의 재배환경을 제어하는 컨트롤러; 상기 재배 베드에 급수 및 양액을 기 설정된 비율로 혼합한 상기 배양액을 제공하는 급수부; 및 하나 이상의 인공광원을 포함하며 상기 인공광원의 파장, 강도 및 조사주기 중 일부 또는 전부를 제어하여 상기 작물을 재배하기 위한 광을 조사하는 조명부를 포함하되, 상기 컨트롤러는 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 상기 재배 베드에 새로운 작물이 이식되는 경우 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하고, 추정된 재배조건에 근거하여 재배환경을 제어하는 것을 특징으로 하는 다단형 재배장치를 제공한다.This embodiment is a multi-stage cultivation apparatus installed in a plant factory and receiving and growing crops grown to a size exceeding a preset threshold from a seedling cultivation apparatus, wherein the crops are grown by controlling the power provided from the outside. A power supply unit to provide power to the; A cultivation bed unit including a plurality of cultivation beds provided with grooves for transplanting the crops at a predetermined distance and arranged in an inclined form to be spaced apart from each other and flowing in the culture solution therein; A controller configured to receive information on some or all of temperature, humidity, and CO 2 of the plant factory and to control a cultivation environment of the crop based on the received information and preset cultivation conditions; A water supply unit providing the culture solution in which water and nutrient solutions are mixed at a predetermined rate to the cultivation bed; And an illumination unit including one or more artificial light sources and illuminating light for growing the crops by controlling some or all of wavelengths, intensities, and irradiation periods of the artificial light sources, wherein the controller is configured for each crop in the plant factory. Storing learning data learning growth data according to cultivation conditions, and when new crops are transplanted to the cultivation bed, estimates optimal cultivation conditions for cultivating the new crops based on the learning data, and estimated cultivation conditions It provides a multi-stage growing device, characterized in that for controlling the growing environment based on.
또한, 본 실시예의 다른 측면에 의하면, 식물공장 내에 재배되는 작물의 재배환경을 제어하는 컨트롤러에 있어서, 사용자의 입력 또는 영상촬영 장치를 이용하여 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장하는 데이터 저장부; 상기 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 재배조건 추정부; 복수의 센서로부터 수집된 상기 식물공장 내부의 온도, 습도, CO2 및 상기 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 상기 재배조건 추정부로부터 추정된 재배조건을 비교하는 데이터 분석부; 및 상기 데이터 분석부의 비교결과를 기반으로 상기 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성하는 제어명령 생성부를 포함하는 것을 특징으로 하는 컨트롤러를 제공한다.In addition, according to another aspect of the present embodiment, in the controller for controlling the cultivation environment of the crops cultivated in the plant factory, the growth data according to the cultivation conditions for each crop in the plant factory using a user input or an image photographing device A data storage unit configured to receive training data received from the received growth data; A cultivation condition estimating unit for estimating an optimal cultivation condition for cultivating the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory; A data analyzer for comparing the information on some or all of the temperature, humidity, CO2, and pH of the culture solution collected from the plurality of sensors with the cultivation conditions estimated from the cultivation condition estimating unit; And a control command generation unit generating a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit.
또한, 본 실시예의 다른 측면에 의하면, 컨트롤러가 식물공장 내에 재배되는 작물의 재배환경을 제어하는 방법에 있어서, 사용자의 입력 또는 영상촬영 장치를 이용하여 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장하는 과정; 상기 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 과정; 복수의 센서로부터 수집된 상기 식물공장 내부의 온도, 습도, CO2 및 상기 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 상기 재배조건을 추정하는 과정으로부터 추정된 재배조건을 비교하는 과정; 상기 비교하는 과정으로부터 추출된 비교결과를 기반으로 상기 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성하는 과정을 포함하는 것을 특징으로 하는 작물의 재배환경 제어방법을 제공한다.In addition, according to another aspect of the present embodiment, in the method for the controller to control the cultivation environment of the crops cultivated in the plant factory, the growth according to the cultivation conditions for each crop in the plant factory using a user input or an image photographing device Receiving data and storing learning data learned from the received growth data; Estimating an optimal cultivation condition for cultivation of the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory; Comparing the cultivation conditions estimated from the process of estimating the cultivation conditions with information on some or all of information on temperature, humidity, CO2, and pH of the culture medium collected from a plurality of sensors; It provides a method for controlling a growing environment of a crop, comprising the step of generating a control command for controlling the growing environment of the new crop based on the comparison result extracted from the comparing process.
본 실시예에 의하면, 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받아 재배하기 위한 다단형 재배장치를 제작하는 한편, 기 설정된 각도로 기울어진 복수의 재배 베드 및 순환파이프를 통해 배양액을 지속적으로 순환시켜 작물에 제공함으로써 작물을 재배하는 과정에서 발생하는 시간적, 인력 소비를 줄일 수 있는 효과가 있다. 또한, 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 새로운 작물이 이식되는 경우 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하여 자동으로 제어함으로써 사용자가 새로운 식물에 대한 재배조건을 지속적으로 설정해야 하는 문제점을 해결할 수 있는 효과가 있다.According to the present embodiment, a multi-stage cultivation apparatus is installed in a plant factory and provided with a seedling grown up to a size exceeding a predetermined threshold value from a seedling cultivation device, while producing a plurality of inclined angles at a predetermined angle. The culture medium is continuously circulated through the cultivation bed and the circulation pipe to provide to the crop, thereby reducing the time and manpower consumption in the process of growing the crop. In addition, it saves the learning data learning the growth data according to the cultivation conditions for each crop, and when a new crop is transplanted, the user automatically estimates the optimal cultivation conditions for the cultivation of a new crop based on the learning data and automatically controls the user. There is an effect that can solve the problem of constantly setting the cultivation conditions for plants.
도 1은 본 발명에 따른 다단형 재배장치의 구조를 도시한 도면이다.1 is a view showing the structure of a multi-stage grower according to the present invention.
도 2는 본 발명에 따른 식물공장 내에 재배되는 작물의 재배환경을 제어하는 컨트롤러의 구조를 도시한 도면이다.2 is a diagram illustrating a structure of a controller for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
도 3은 본 발명에 따른 다단형 재배장치에 부착되며 작물을 재배하기 위한 인공광원으로 엘이디를 사용하는 경우의 조명부의 구조를 도시한 도면이다.3 is a view showing the structure of the lighting unit attached to the multi-stage cultivation apparatus according to the invention and using the LED as an artificial light source for cultivating crops.
도 4는 본 발명에 따른 인공광원으로 엘이디를 사용하는 경우의 조명부의 엘이디 모듈의 구성 및 회로도를 나타낸 도면이다.Figure 4 is a view showing the configuration and circuit diagram of the LED module of the lighting unit when using the LED as an artificial light source according to the present invention.
도 5는 본 발명에 따른 컨트롤러가 식물공장 내에 재배되는 작물의 재배환경을 제어하는 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
식물공장은 환경제어와 자동화 등 고도기술을 이용하여 공업제품을 생산하는 것 같이 시설 내에서 농산물을 연중에 걸쳐 생산하는 시스템을 의미하며, 외부와 완전히 차단하고 인공조명만으로 작물을 재배하는 완전제어형과 온실 등과 같은 실내에서 태양광과 인공조명을 병용하여 작물을 재배하는 태양광 병용형으로 나누어진다. 즉, 식물공장은 작물의 성장에 영향을 미치는 온도, 광, CO2, 배양액 등의 환경조건을 최적의 상태로 제어하고 작업공정을 자동화하여 시설 내에서 작물을 기상조건에 관계없이 생산할 수 있는 기술을 의미한다. 한편, 식물공장은 작물의 씨앗을 발아시키기 위한 발아 재배장치, 식물공장 내 별도로 설치된 온실에 구현되며 발아 재배장치로부터 발아가 완료된 작물을 제공받고, 제공받은 작물의 육묘환경을 제어하여 일정 범위의 크기까지 작물을 육묘하기 위한 육묘재배 장치 등 작물의 재배에 특화된 다수의 장치를 포함한다.A plant factory refers to a system that produces agricultural products throughout the year throughout the facility, such as industrial products using high technology such as environmental control and automation, and is a fully controlled type that completely cultivates crops with only artificial lighting. It is divided into a solar combined use type that grows crops by using sunlight and artificial lighting together in a greenhouse. In other words, the plant factory has the technology to control the environmental conditions such as temperature, light, CO2, and culture medium that affect the growth of crops to the optimal state and to automate the work process to produce crops regardless of weather conditions in the facility. it means. On the other hand, the plant factory is implemented in a germination cultivation device for germinating seeds of the crop, a greenhouse installed separately in the plant factory, and receives a germinated crop from the germination cultivation device, and controls the seedling environment of the provided crop to a certain range of sizes. It includes a number of devices specialized in the cultivation of crops, such as a seedling cultivation device for raising crops.
본 발명의 실시예에 따른 다단형 재배장치(100)는 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받고, 제공받은 작물의 재배환경을 제어하여 작물을 재배하기 위한 장치이다.The multi-stage cultivation apparatus 100 according to an embodiment of the present invention is installed in a plant factory and received a seedling crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, the crop by controlling the cultivation environment of the provided crop The device for cultivation.
도 1은 본 발명에 따른 다단형 재배장치(100)의 구조를 도시한 도면이다. 한편, 도 1은 다단형 재배장치(100)를 정면에서 바라본 정면도를 도시하였다.1 is a view showing the structure of a multi-stage cultivation apparatus 100 according to the present invention. On the other hand, Figure 1 shows a front view of the multi-stage cultivation apparatus 100 viewed from the front.
도 1에서 도시하듯이 본 발명에 따른 다단형 재배장치(100)는 공조부(110), 급수부(120), 컨트롤러(130), 센서부(140), 전원공급부(150), 재배 베드부(160), 조명부(170) 및 영상촬영 장치(180)를 포함한다.As shown in FIG. 1, the multi-stage grower 100 according to the present invention includes an air conditioning unit 110, a water supply unit 120, a controller 130, a sensor unit 140, a power supply unit 150, and a cultivation bed unit. 160, an illumination unit 170, and an image photographing device 180.
본 발명의 실시예에 따른 다단형 재배장치(100)는 식물공장 내에 구현되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받고, 제공받은 작물의 재배환경을 제어하여 작물을 최종적으로 재배한다. 이때, 다단형 재배장치(100)는 외부로부터 제공받은 외부전력을 이용하여 다단형 재배장치(100)가 위치하는 식물공장의 온도, 습도 등을 제어하고, 급수 및 양액이 일정 비율로 혼합된 배양액이 다단 형태로 배치된 복수의 재배 베드에 순환되도록 하여 작물의 재배를 위한 최적의 재배환경을 제공한다. Multi-stage cultivation apparatus 100 according to an embodiment of the present invention is implemented in a plant factory is provided with a seeded crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, by controlling the cultivation environment of the crop provided Finally grow. At this time, the multi-stage cultivation apparatus 100 controls the temperature, humidity, etc. of the plant factory in which the multi-stage cultivation apparatus 100 is located by using an external power provided from the outside, and the culture solution in which the water supply and the nutrient solution are mixed at a predetermined ratio. It is circulated in a plurality of cultivation beds arranged in this multi-stage form to provide an optimal cultivation environment for the cultivation of crops.
또한, 다단형 재배장치(100)는 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 새로운 작물이 이식되는 경우 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하여 식물공장의 재배환경을 자동으로 제어한다. 한편, 도 1에서 도시된 다단형 재배장치(100)는 각 단에 하나의 재배 베드만을 포함하고 있는 것으로 도시되었지만, 이는 다단형 재배장치(100)의 구조를 명확하게 설명하기 위해 도시된 예시에 불과하며 다단, 다열의 재배 베드를 포함하도록 구성될 수 있다.In addition, the multi-stage cultivation apparatus 100 stores the learning data learning the growth data according to the cultivation conditions for each crop in the plant factory, and optimally for the cultivation of new crops based on the learning data when new crops are transplanted. The planting environment is automatically controlled by estimating the growing condition. Meanwhile, although the multistage grower 100 shown in FIG. 1 is illustrated as including only one grower bed in each stage, this is illustrated in the illustrated example to clearly explain the structure of the multistage grower 100. It can only be configured to include a multi-stage, multi-row cultivation bed.
한편, 다단형 재배장치(100)는 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받으며, 제공받은 작물을 최종적으로 재배한다. 이때, 기 설정된 임계값을 초과하는 크기까지 육묘된 작물은 발아가 완료된 작물이 기 설정된 이식 또는 정식이 가능한 크기까지 육묘된 상태를 의미하며, 최종적으로 재배된 작물은 소비자들에 유통 가능한 크기까지 재배된 상태를 의미하나 반드시 이에 한정되지는 않는다.On the other hand, the multi-stage cultivation apparatus 100 is provided with a seedling crop up to a size exceeding a predetermined threshold value from the seedling cultivation device, and finally cultivated the provided crop. In this case, the crops grown to a size exceeding a preset threshold means a state in which the seeded crops are grown to a size that can be transplanted or set up, and the finally grown crops are grown to a size that can be distributed to consumers. But it is not necessarily limited thereto.
공조부(110)는 다단형 재배장치(100)에 이식되어 있는 작물의 재배에 적합한 온도 및 습도를 유지하기 위해 다단형 재배장치(100)가 위치하는 식물공장 내부의 냉난방 및 습도 상태를 조절한다. 즉, 공조부(110)는 하나 이상의 에어컨, 히터 및 가습기를 포함하며, 컨트롤러(130)로부터 제어명령을 수신하는 경우, 에어컨, 히터 및 가습기를 동작시켜 식물공장 내부의 온도 및 습도를 조절한다. 이때, 컨트롤러(130)로부터 수신한 제어명령은 컨트롤러(130)가 식물공장의 현재 온도 및 습도가 기 설정된 작물을 재배하기 위한 최적의 온도 및 습도에 대한 설정범위와 다르다고 판단하는 경우 생성된다. 이를 통해, 다단형 재배장치(100)가 위치하는 식물공장은 항상 일정한 온도 및 습도로 제어된다. 한편, 본 발명에 따른, 기 설정된 작물을 재배하기 위한 최적의 온도 및 습도 등의 재배조건은 사용자에 의해 설정된 설정 데이터, 컨트롤러(130)에 기학습되어 저장된 작물의 학습 데이터 및 컨트롤러(130)로부터 추정된 새로운 작물의 재배를 위한 재배조건 중 어느 하나의 데이터를 의미한다.The air conditioning unit 110 controls the air conditioning and humidity conditions inside the plant factory in which the multi-stage grower 100 is located to maintain a temperature and humidity suitable for the cultivation of crops implanted in the multi-stage grower 100. . That is, the air conditioner 110 includes one or more air conditioners, heaters, and humidifiers, and when receiving a control command from the controller 130, operates the air conditioners, heaters, and humidifiers to adjust temperature and humidity inside the plant factory. At this time, the control command received from the controller 130 is generated when the controller 130 determines that the current temperature and humidity of the plant factory is different from the setting range for the optimum temperature and humidity for cultivating a predetermined crop. Through this, the plant factory where the multi-stage grower 100 is located is always controlled to a constant temperature and humidity. On the other hand, according to the present invention, the cultivation conditions such as the optimum temperature and humidity for cultivating a predetermined crop from the setting data set by the user, learning data of the crop previously learned and stored in the controller 130 and the controller 130 Means data of any one of the cultivation conditions for the cultivation of estimated new crops.
또한, 공조부(110)는 에어컨 및 히터를 이용하여 다단형 재배장치(100)가 위치하는 식물공장 내부의 공기를 일정한 방향으로 순환시키고, 이를 통해 유해 기체, 분진 등을 식물공장 외부로 배출하여 식물공장 내 신선한 공기가 유지되도록 동작한다.In addition, the air conditioning unit 110 circulates the air in the plant factory in which the multi-stage grower 100 is located in a predetermined direction by using an air conditioner and a heater, thereby discharging harmful gases, dust, etc. to the outside of the plant factory. It operates to maintain fresh air in the plant factory.
한편, 다단형 재배장치(100)는 공조부(110) 내 가습기에 급수를 제공하는 가습용 급수 제공부(미도시)를 더 포함하여 가습기가 가습용도로 사용하기 위한 급수가 부족한 경우, 저장된 급수를 가습기로 제공한다.On the other hand, the multi-stage cultivation apparatus 100 further includes a humidification water supply unit (not shown) for supplying water to the humidifier in the air conditioning unit 110, if the water supply for the humidifier is insufficient for use in humidification, stored water supply Provide with a humidifier.
급수부(120)는 외부로부터 급수 및 양액을 제공받아 저장하고, 저장된 급수 및 양액을 기 설정된 비율로 혼합한 배양액을 생산한다. 이후, 생산된 배양액을 재베 베드부(160) 내 복수의 재배 베드로 순환시켜 작물에 제공한다. 한편, 급수부(120)는 급수 저장부(122), 양액 저장부(124), 배양액 저장부(125), 순환 파이프(126, 127, 128) 및 가압펌프(129)를 더 포함한다.The water supply unit 120 receives and stores water supply and nutrient solution from the outside, and produces a culture solution in which the stored water supply and nutrient solution are mixed at a predetermined ratio. Thereafter, the produced culture solution is circulated to the plurality of cultivation beds in the web bed 160 to provide to the crop. Meanwhile, the water supply unit 120 further includes a water supply storage unit 122, a nutrient solution storage unit 124, a culture medium storage unit 125, a circulation pipe 126, 127, and 128, and a pressure pump 129.
급수 저장부(122) 및 양액 저장부(124)는 외부로부터 급수 및 양액을 제공받아 저장하며 기 설정된 일정한 양의 급수와 양액을 배양액 저장부(125)로 이동시켜 기 설정된 비율로 혼합된 배양액을 생성한다. 한편, 급수 저장부(122)에 저장되는 급수는 일정한 온도로 유지되며, 이를 위해 급수의 온도를 조절하는 세라믹 히터(미도시)를 별도로 포함할 수 있다.The water supply storage unit 122 and the nutrient solution storage unit 124 receive and store the water supply and the nutrient solution from the outside, and transfer a predetermined amount of water and nutrient solution to the culture solution storage unit 125 to mix the culture solution at a predetermined ratio. Create Meanwhile, the water supply stored in the water supply storage 122 is maintained at a constant temperature, and may include a ceramic heater (not shown) for controlling the temperature of the water supply for this purpose.
한편, 본 실시예에서 양액 저장부(124)에 저장되는 양액은 2종 이상의 양액이 사용되나 반드시 이에 한정되지는 않는다.On the other hand, the nutrient solution stored in the nutrient solution storage unit 124 in this embodiment is used two or more nutrient solution, but is not necessarily limited thereto.
배양액 저장부(125)는 기 설정된 비율로 혼합된 배양액을 가압펌프(129)를 통해 순환 파이프(126, 127, 128)로 이동시키며, 이를 통해 재배 베드부(160) 내 복수의 재배 베드에 재배되고 있는 작물에 배양액을 제공한다. 이때, 가압펌프(129)는 컨트롤러(130)에 의해 제어되며, 가압펌프(129)는 컨트롤러(130)로부터 제어명령을 수신하는 경우, 배양액 저장부(125)에 저장된 배양액에 압력을 가해 순환 파이프(126, 127, 128)로 배양액을 이동시킨다.The culture medium storage unit 125 moves the mixed culture solution at a predetermined ratio to the circulation pipes 126, 127, and 128 through the pressure pump 129, and cultivates the culture medium in a plurality of cultivation beds in the cultivation bed unit 160. Provide culture to the crop being grown. At this time, the pressure pump 129 is controlled by the controller 130, when the pressure pump 129 receives a control command from the controller 130, by applying pressure to the culture solution stored in the culture medium storage unit 125, the circulation pipe Transfer the culture to (126, 127, 128).
한편, 순환 파이프(126, 127, 128)를 통해 순환되는 배양액은 배양액 저장부(125)에 재저장되며, 컨트롤러(130)는 순환되는 과정에서 배양액의 농도가 기 설정된 농도와 차이가 발생하였다고 판단되는 경우, 급수 저장부(122) 및 양액 저장부(124)에 일정량의 급수 및 양액을 배양액 저장부(125)로 전달하기 위한 제어명령을 전달하여 배양액의 농도를 기 설정된 농도로 유지시킨다.Meanwhile, the culture solution circulated through the circulation pipes 126, 127, and 128 is re-stored in the culture solution storage unit 125, and the controller 130 determines that the concentration of the culture solution differs from the preset concentration in the course of the circulation. If so, the control unit for transmitting a predetermined amount of water supply and nutrient solution to the culture solution storage unit 125 to the water supply storage unit 122 and the nutrient solution storage unit 124 to maintain the concentration of the culture solution to a predetermined concentration.
한편, 배양액을 재배 베드부(160)로 공급하는 순환 파이프(126, 127, 128)는 재배 베드부(160)의 최상단에 위치한 재배 베드의 일측 및 배양액 저장부(125)의 일측에 연결되어 배양액 저장부(125)에 저장된 배양액을 최상단에 위치한 재배 베드로 이동시키는 제1 순환 파이프(126), 최상단에 위치한 재배 베드의 타측 및 최상단의 재배 베드의 하단에 위치한 재배 베드의 일측에 연결되며, 복수의 재배 베드의 하류부에 각각 연결되어 배양액을 하단에 위치하는 재배 베드로 이동시키는 제2 순환 파이프(127), 재배 베드부(160)의 최하단에 위치한 재배 베드의 일측 및 배양액 저장부(125)의 타측과 연결되어 최상단에 위치한 재배 베드로부터 순환된 배양액을 배양액 저장부(125)로 전송하는 제3 순환 파이프(128)를 포함한다. 즉, 배양액 저장부(125)에 저장된 배양액은 제1 순환 파이프(126)를 통해 재배 베드부(160)의 최상단에 위치한 재배 베드로 전송되고, 제2 순환 파이프(127)를 통해 하단에 위치한 각각의 재배 베드로 전송된다. 이후, 제3 순환 파이프(128)를 통해 배양액 저장부(125)로 최종적으로 전송됨으로써 지속적으로 배양액을 순환시킨다.Meanwhile, the circulation pipes 126, 127, and 128 for supplying the culture solution to the culture bed 160 are connected to one side of the culture bed located at the top of the culture bed 160 and one side of the culture solution storage 125. A first circulation pipe 126 for moving the culture solution stored in the storage unit 125 to the cultivation bed located at the top, connected to the other side of the cultivation bed located at the top and one side of the cultivation bed located at the bottom of the top cultivation bed, A second circulation pipe 127 connected to a downstream part of the cultivation bed to move the culture medium to a cultivation bed positioned at a lower end, one side of the cultivation bed positioned at the bottom of the cultivation bed part 160 and the other side of the culture medium storage part 125; And a third circulation pipe 128 connected to the culture medium circulated from the uppermost cultivation bed to the culture medium storage unit 125. That is, the culture solution stored in the culture solution storage unit 125 is transferred to the cultivation bed located at the top of the cultivation bed unit 160 through the first circulation pipe 126. Sent to the cultivation bed. Thereafter, the culture solution is continuously circulated by being finally transmitted to the culture solution storage unit 125 through the third circulation pipe 128.
컨트롤러(130)는 식물공장의 온도, 습도 및 CO2 중 일부 또는 전부의 정보를 수신하고, 수신된 정보와 기 설정된 재배조건에 근거하여 작물의 재배환경을 제어한다. 즉, 컨트롤러(130)는 다단형 재배장치(100) 내 센서부(140)를 이용하여 수집된 센싱정보와 컨트롤러(130)에 기 설정된 온도, 습도, CO2 및 배양액 등의 재배조건을 비교 분석하고, 분석 결과를 기반으로 제어명령을 생성하여 공조부(110), 급수부(120) 및 조명부(170) 등에 전달한다. The controller 130 receives information of some or all of the temperature, humidity and CO2 of the plant factory, and controls the cultivation environment of the crop based on the received information and the predetermined cultivation conditions. That is, the controller 130 compares and analyzes the sensing information collected by using the sensor unit 140 in the multi-stage cultivation apparatus 100 with the cultivation conditions such as temperature, humidity, CO 2, and culture medium set in the controller 130. The control command is generated based on the analysis result and transmitted to the air conditioning unit 110, the water supply unit 120, and the lighting unit 170.
한편, 본 발명의 실시예에 따른 컨트롤러(130)에 기 설정되어 있는 작물의 재배조건은 사용자에 의해 수동으로 설정된 설정 데이터, 식물공장 내에서 재배되었던 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터 및 컨트롤러(130)로부터 추정된 새로운 작물의 재배를 위한 재배조건 중 어느 하나의 데이터를 포함한다. 즉, 컨트롤러(130)는 사용자가 재배조건을 직접 설정하는 경우, 사용자가 선택한 재배조건에 따라 작물의 재배환경을 제어하거나, 다단형 재배장치(100)에 이식된 작물의 기 재배 여부에 따라 기학습된 학습 데이터를 기반으로 작물의 재배환경을 제어하거나, 학습 데이터를 기반으로 추정된 새로운 작물의 재배를 위한 최적의 재배조건에 근거하여 재배환경을 제어한다.On the other hand, the cultivation conditions of the crops previously set in the controller 130 according to an embodiment of the present invention is learning that learning the growth data according to the cultivation conditions for each crop cultivated in the plant, the setting data manually set by the user It includes data of any one of the data and cultivation conditions for the cultivation of a new crop estimated from the controller 130. That is, when the user directly sets the cultivation conditions, the controller 130 controls the cultivation environment of the crop according to the cultivation conditions selected by the user, or according to whether or not the cultivation of the crop transplanted to the multi-stage cultivation apparatus 100. Control the cultivation environment of the crop based on the learned learning data, or control the cultivation environment based on the optimal cultivation conditions for the cultivation of new crops estimated based on the learning data.
한편, 본 발명의 실시예에 따른 컨트롤러(130)는 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 재배 베드에 새로운 작물이 이식되는 경우 저장된 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하고, 추정된 재배조건에 근거하여 재배환경을 제어한다.On the other hand, the controller 130 according to an embodiment of the present invention stores the learning data learning the growth data according to the cultivation conditions for each crop in the plant factory, based on the stored learning data when a new crop is transplanted to the cultivation bed Estimate the optimal growing conditions for growing new crops and control the growing environment based on the estimated growing conditions.
이때, 컨트롤러(130)에 저장된 학습 데이터는 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 학습한 데이터를 의미한다. 즉, 컨트롤러(130)는 기 설정된 재배조건에 근거하여 작물을 재배하고, 사용자의 입력 또는 영상촬영 장치(180)를 이용하여 해당 작물의 성장 데이터를 수신한다. 한편 작물의 성장 데이터에는 기 설정된 재배조건에 따른 작물의 성장 및 수확량 등의 정보가 포함되어 있다. 이후, 컨트롤러(130)는 수신한 성장 데이터를 학습하는 과정을 통해 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단하는 경우, 기 설정된 재배조건을 학습 데이터로서 저장한다. 한편, 컨트롤러(130)는 일정 양의 학습 데이터가 수집되는 동안에는 사용자에 의해 설정된 재배조건을 기반으로 하여 작물을 재배한다. 이 경우 일정 양의 학습 데이터는 새로운 작물이 이식되는 경우, 새로운 작물의 재배조건을 유추할 수 있는 데이터의 양을 의미하나 반드시 이에 한정되지는 않는다.In this case, the learning data stored in the controller 130 refers to data for learning the growth data according to the cultivation conditions for each crop in the plant factory. That is, the controller 130 grows a crop based on a predetermined growing condition, and receives growth data of the crop using a user input or an image photographing device 180. On the other hand, the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions. Subsequently, the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the cultivated crop satisfies a predetermined threshold based on a predetermined cultivation condition. Store the set cultivation condition as learning data. Meanwhile, the controller 130 grows a crop based on a growing condition set by a user while a predetermined amount of learning data is collected. In this case, a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
한편, 컨트롤러(130)는 수신한 성장 데이터를 학습하는 과정을 통해 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단하는 경우, 작물의 성장 데이터의 결과를 기반으로 기 설정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 컨트롤러(130)가 기 설정된 재배조건을 보완하는 방법은 먼저 작물의 성장 데이터의 결과를 분석하고, 분석한 성장 데이터와 기 설정된 임계치의 차를 백분율로 환산한 오차값을 추출한다. 한편, 컨트롤러(130)에는 오차 범위에 따라 그에 매칭되는 보완값이 설정되어 있으며, 컨트롤러(130)는 계산된 오차값에 대응되는 보완값을 파악하고, 파악된 보완값을 기반으로 기 설정된 재배조건을 보완한다. 이때, 오차 범위에 따라 설정되어 있는 보완값은 온도, 습도, CO2, 조도 및 배양액 등의 재배조건의 + 또는 - 값을 포함한다.On the other hand, when the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the grown crops does not satisfy the preset threshold based on the predetermined growing condition, Based on the result of the growth data of the crop, the pre-set cultivation conditions are supplemented, and the supplemented data is stored as learning data. In this case, the controller 130 supplements the predetermined growing condition, first analyzes the result of the growth data of the crop, and extracts an error value obtained by converting the difference between the analyzed growth data and the predetermined threshold as a percentage. On the other hand, the controller 130 is set to match the complementary value according to the error range, the controller 130 to determine the complementary value corresponding to the calculated error value, based on the determined complementary value cultivation conditions To complement. At this time, the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
예를 들어, 컨트롤러(130)는 학습하는 과정을 통해 작물의 성장 데이터의 결과를 분석하고 분석결과가 기 설정된 임계치의 80%의 결과를 달성했다고 판단한 경우, 20%의 오차값에 매칭되는 보완값을 파악하고, 파악된 보완값을 기반으로 기 설정된 재배조건을 보완한다. 마찬가지로 30%의 오차값이 발생한 경우, 30%의 오차값에 매칭되는 보완값을 파악하고, 파악된 보완값을 기반으로 기 설정된 재배조건을 보완한다. For example, the controller 130 analyzes the result of the growth data of the crop through the learning process, and when the analysis result determines that the result of 80% of the preset threshold is achieved, the complement value matching the error value of 20% Identify and supplement the pre-established cultivation conditions based on the identified complementary values. Similarly, when an error value of 30% occurs, the complementary value matching the error value of 30% is identified, and the preset cultivation condition is compensated based on the identified complementary value.
한편, 컨트롤러(130)에 오차 범위에 따라 설정되어 있는 보완값은 사용자에 의해 임의적으로 설정된 값이나 반드시 이에 한정되지는 않고, 컨트롤러(130)가 다수의 작물에 대한 성장 데이터를 학습함으로써 추정된 값 등 다양한 방법을 통해 설정될 수 있다.The complementary value set according to the error range in the controller 130 is a value arbitrarily set by the user, but is not necessarily limited thereto, and is estimated by the controller 130 learning growth data for a plurality of crops. It can be set through a variety of methods.
또한, 컨트롤러(130)는 다단형 재배장치(100)의 재배 베드에 새로운 작물이 이식되는 경우 저장된 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하고, 추정된 재배조건에 근거하여 재배환경을 제어한다. 즉, 컨트롤러(130)는 사용자의 입력신호 또는 영상촬영 장치(180)로부터 수신한 영상을 기반으로 재배 베드에 새로운 작물의 이식 여부를 판단하고, 새로운 작물이 이식되었다고 판단되는 경우, 저장된 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다. 한편, 컨트롤러(130)에 저장되어 있는 학습 데이터는 기 재배된 작물의 특성에 따라 각각 그룹을 이루어 저장되어 있으며, 컨트롤러(130)는 새로운 작물이 이식되는 경우 해당 작물이 속한 그룹을 판단한다. 이후, 컨트롤러(130)는 해당 작물이 속한 그룹의 학습 데이터를 분석하여 식물공장 내 새로운 작물의 재배를 위한 최적의 재배조건을 추정하고, 추정된 재배조건을 기반으로 재배환경을 제어하기 위한 제어명령을 생성한다. 예를 들어 다단형 재배장치(100)에 새로운 작물 A가 이식되는 경우, 컨트롤러(130)는 기 저장된 학습 데이터 중 작물 A가 속한 그룹을 판단한다. 이후, 작물 A가 속한 그룹의 학습 데이터를 분석하여 온도, 습도, CO2, 조도 및 배양액 등의 재배조건의 평균값을 추출하고, 추출된 재배조건의 평균값을 작물 A의 재배를 위한 최적의 재배조건으로 추정한다. 즉, 기 설정된 임계치를 만족시키는 작물의 학습 데이터를 기반으로 새로운 작물의 재배조건을 추정함으로써 새로운 작물 역시 기 설정된 임계치를 만족시키도록 유도하는 재배조건을 제공한다.In addition, the controller 130 estimates an optimal cultivation condition for the cultivation of a new crop based on the stored learning data when a new crop is transplanted into the cultivation bed of the multi-stage cultivation apparatus 100 and based on the estimated cultivation condition. To control the cultivation environment. That is, the controller 130 determines whether a new crop is transplanted to the cultivation bed based on an input signal of the user or an image received from the image photographing device 180, and when it is determined that the new crop is transplanted, the controller 130 stores the stored learning data. Estimate the optimal cultivation conditions for the cultivation of new crops. On the other hand, the learning data stored in the controller 130 is stored in a group according to the characteristics of the pre-cultivated crops, and the controller 130 determines the group to which the crop belongs when a new crop is transplanted. Thereafter, the controller 130 analyzes the learning data of the group to which the crop belongs, estimates an optimal cultivation condition for the cultivation of a new crop in the plant factory, and a control command for controlling the cultivation environment based on the estimated cultivation conditions. Create For example, when a new crop A is transplanted into the multi-stage cultivation apparatus 100, the controller 130 determines a group to which crop A belongs among previously stored learning data. Then, by analyzing the learning data of the group belonging to Crop A to extract the average value of the cultivation conditions, such as temperature, humidity, CO2, roughness and culture medium, the average value of the extracted cultivation conditions as the optimum cultivation conditions for the cultivation of Crop A Estimate. That is, by estimating the cultivation conditions of the new crops based on the learning data of the crops satisfying the preset thresholds, the new crops also provide the cultivation conditions that induce them to meet the preset thresholds.
한편, 컨트롤러(130)는 추정된 재배조건에 근거하여 재배된 새로운 작물의 성장 데이터를 수신하고, 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 새로운 작물의 성장 데이터의 결과를 기반으로 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 컨트롤러(130)가 추정된 재배조건을 보완하는 방법은 앞서 명시된, 기 설정된 재배조건을 보완하는 방법과 동일하다. 마찬가지로, 컨트롤러(130)는 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단되는 경우, 추정된 재배조건을 학습 데이터로서 저장한다.On the other hand, the controller 130 receives the growth data of the new crop cultivated based on the estimated cultivation conditions, and if it is determined that the growth data of the new crop does not satisfy the preset threshold, the controller 130 outputs the result of the growth data of the new crop. Complement the estimated cultivation conditions on the basis of the basis, and stores the supplemented data as learning data. In this case, the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above. Similarly, when it is determined that the growth data of the new crop satisfies the preset threshold, the controller 130 stores the estimated cultivation condition as learning data.
또한, 컨트롤러(130)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신하는 경우, 수신한 입력신호와 컨트롤러(130)가 추정한 새로운 작물의 재배조건을 비교하고 비교결과를 사용자에게 디스플레이한다. 본 발명의 실시예에 따른 다단형 재배장치(100)는 기 설정된 재배조건으로 사용자의 설정 데이터를 사용할 수 있다. 이에 새로운 작물이 이식되는 경우 역시 사용자가 새로운 작물에 대한 재배조건을 설정할 수 있다. 하지만 사용자의 설정 데이터는 해당 식물공장에 있어서 정확한 데이터가 아닐 수 있으며 컨트롤러(130)는 이에 대한 판단 기준을 사용자에게 제공하기 위해 입력신호와 컨트롤러(130)로부터 추정된 재배조건을 기반으로 재배된 작물의 성장 데이터를 각각 유추하여 그 결과를 사용자에게 디스플레이한다.In addition, when the controller 130 receives an input signal for growing conditions of a new crop from the user, the controller 130 compares the received input signal with the growing conditions of the new crop estimated by the controller 130 and displays the comparison result to the user. . The multi-stage grower 100 according to the embodiment of the present invention may use the user's setting data in a predetermined growing condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop. However, the user's setting data may not be accurate data in the plant factory, and the controller 130 is a crop that is cultivated based on the input signal and the cultivation conditions estimated from the controller 130 to provide the user with a criterion for this. Infer each of the growth data and display the result to the user.
이후, 컨트롤러(130)는 사용자의 선택에 따라 입력신호 및 추정된 재배조건 중 어느 하나에 근거하여 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다. 즉, 사용자는 입력신호와 컨트롤러(130)로부터 추정된 재배조건에 대한 비교결과를 기반으로 새로운 작물의 재배조건을 선택할 수 있으며, 컨트롤러(130)는 선택된 재배조건에 근거하여 식물공장의 재배환경을 제어한다.Thereafter, the controller 130 generates a control command for controlling a growing environment of a new crop based on one of an input signal and an estimated growing condition according to a user's selection. That is, the user can select a new crop cultivation condition based on a comparison result of the input signal and the cultivation condition estimated from the controller 130, and the controller 130 selects a cultivation environment of the plant factory based on the selected cultivation condition. To control.
한편, 컨트롤러(130)는 다단형 재배장치(100)의 외부에 터치 패널 형태로 장착되며, 사용자의 입력정보를 수신하기 위한 사용자 UI(User Interface)를 추가로 포함하고 있다. 즉, 사용자는 다단형 재배장치(100)를 제어하고자 하는 경우, 사용자 UI를 통해 입력정보를 입력함으로써 손쉽게 다단형 재배장치(100)를 제어할 수 있다.On the other hand, the controller 130 is mounted in the form of a touch panel on the outside of the multi-stage grower 100, and further includes a user UI (User Interface) for receiving the user input information. That is, when the user wants to control the multi-stage grower 100, the user can easily control the multi-stage grower 100 by inputting input information through the user UI.
또한, 컨트롤러(130)는 센서부(140) 및 영상촬영 장치(180)를 통해 지속적으로 수집되는 정보를 기반으로 다단형 재배장치(100)에서 재배되고 있는 작물의 상태 및 다단형 재배장치(100)에 포함된 다수의 장치에 대한 상태를 지속적으로 파악한다. 이때, 작물의 상태 및 장치에 이상이 발생하였다고 판단되는 경우, 이상발생 알림 및 영상촬영 장치(180)를 통해 촬영된 다단형 재배장치(100)에 대한 모니터링 영상을 SMS(Short Message Service) 문자 서비스 등을 이용하여 사용자에게 실시간으로 전달한다.In addition, the controller 130 is a state of the crop being grown in the multi-stage cultivation apparatus 100 and the multi-stage cultivation apparatus 100 based on the information continuously collected through the sensor unit 140 and the image photographing device 180. Keep track of the status of multiple devices in In this case, when it is determined that an abnormality has occurred in the state of the crop and the device, the SMS (Short Message Service) text service provides a monitoring image of the multi-stage grower 100 photographed through the notification of abnormality and the image capturing apparatus 180. It delivers to the user in real time.
센서부(140)는 다단형 재배장치(100)가 위치하는 식물공장 내부에 온도, 습도, CO2 및 배양액의 PH에 대한 정보 등을 수집하기 위한 다수의 센서를 포함한다. 즉, 센서부(140)는 센서부(140)에 포함된 온도센서, 습도센서, CO2 센서 및 PH 센서 등의 센서를 이용하여 해당 센서에 대응되는 센싱정보를 수집하고, 수집된 센싱정보를 컨트롤러(130)에 전송한다. 한편, 센서부(140)는 다수의 센서를 이용하여 지속적으로 식물공장 내부의 센싱정보를 수집하고, 수집한 센싱정보가 기 설정된 임계치 값 이상의 변화 값을 가지는 경우, 컨트롤러(130)에 이에 대한 정보를 전송한다. 이후, 컨트롤러(130)는 영상촬영 장치(180)에 다단형 재배장치(100)를 촬영하기 위한 제어명령을 생성하고, 촬영된 영상을 수신하여 해당 변화가 발생한 원인을 판단한다.The sensor unit 140 includes a plurality of sensors for collecting information on temperature, humidity, CO 2, and pH of the culture solution in the plant factory in which the multistage grower 100 is located. That is, the sensor unit 140 collects sensing information corresponding to the corresponding sensor by using a sensor such as a temperature sensor, a humidity sensor, a CO2 sensor, and a PH sensor included in the sensor unit 140, and stores the collected sensing information in the controller. Transmit to 130. On the other hand, the sensor unit 140 continuously collects the sensing information inside the plant factory using a plurality of sensors, and if the collected sensing information has a change value greater than or equal to a preset threshold value, the controller 130 provides information on this. Send it. Subsequently, the controller 130 generates a control command for capturing the multi-stage grower 100 in the image capturing apparatus 180 and receives the captured image to determine the cause of the change.
전원공급부(150)는 외부로부터 제공받은 외부전력을 제어하여 다단형 재배장치(100)에 포함된 각각의 장치를 구동하기 위한 필요전력을 제공한다. 한편, 전원공급부(150)는 외부로부터 외부전력을 제공받을 수 없는 경우, 기 저장되어 있는 예비전력을 다단형 재배장치(100)에 전달할 수 있다. 이때, 기 저장되어 있는 예비전력은 신재생 에너지의 근원이 되는 태양광 및 풍력 등을 통해 예비전력 생산장치(미도시)로부터 생산된 전력을 의미하며, 예비전력 생산장치는 식물공장이 위치하는 지역의 특성에 따라 다단형 재배장치(100)에 추가로 설치될 수 있다.The power supply unit 150 controls the external power provided from the outside to provide the necessary power for driving each device included in the multi-stage grower 100. On the other hand, when the power supply unit 150 cannot receive external power from the outside, it is possible to transfer the pre-stored preliminary power to the multi-stage grower 100. At this time, the pre-stored reserve power means power generated from a reserve power generator (not shown) through solar and wind power sources of renewable energy, and the reserve power generator is an area where a plant factory is located. Depending on the characteristics of the multi-stage cultivation apparatus 100 may be additionally installed.
재배 베드부(160)는 일정 거리 단위로 작물을 이식하기 위한 홈을 구비하고, 서로 상하로 이격되며 엇갈려 기울어진 형태로 배치되어 내부에 배양액을 흘려보낼 수 있도록 구조된 복수의 재배 베드를 포함한다. 한편, 복수의 재배 베드는 스테인레스, 알루미늄 및 합성수지 등의 재질로 제작되며, 각각의 재배 베드 홈에는 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물이 이식된다. 이때, 이식되는 작물은 작물을 고정하고 뿌리 성장을 위해 배양액의 흡수가 용이한 스폰지 재질의 고정용 배지에 심어진 형태로 육묘재배 장치로부터 이식되나 반드시 이에 한정되지는 않는다.The cultivation bed unit 160 includes a plurality of cultivation beds having grooves for transplanting crops at a predetermined distance and arranged in an inclined form to be spaced apart from each other up and down to be inclined. . On the other hand, the plurality of cultivation bed is made of a material such as stainless, aluminum and synthetic resin, each of the cultivation bed groove is planted with seedlings to the size exceeding a predetermined threshold from the seedling cultivation device. In this case, the plant to be transplanted is transplanted from the seedling cultivation device in a form planted in a fixing medium made of sponge material to fix the crop and easily absorb the culture solution for root growth, but is not necessarily limited thereto.
즉, 다단형 재배장치(100)는 별도의 재배판으로 육묘가 완료된 작물을 옮겨 심지 않고, 육묘재배 장치에서 육묘가 완료된 작물을 바로 제공받음으로써 육묘에서 최종 재배 단계로 넘어가는 과정에서 발생할 수 있는 시간적, 인적 소비를 줄일 수 있는 효과가 있다. 또한, 복수의 재배 베드에 배양액이 고르게 공급되도록 하여 재배 베드에 이식된 작물이 균일하게 성장할 수 있는 효과가 있다.In other words, the multi-stage cultivation apparatus 100 may occur in the process of going from the seedling to the final cultivation stage by directly receiving the crops complete seedlings in the seedling cultivation device, without moving the seedlings are complete seeding to a separate cultivation plate It has the effect of reducing time and human consumption. In addition, the culture medium is evenly supplied to the plurality of cultivation bed has the effect that the crops implanted in the cultivation bed can be grown uniformly.
한편, 재배 베드부(160)는 복수의 재배 베드의 길이방향으로 설치된 다수의 길이방향 가로대, 복수의 재배 베드의 높이방향으로 설치된 다수의 높이방향 세로대 및 복수의 재배 베드의 폭방향으로 설치된 다수의 폭방향 가로대를 포함한 프레임에 의해 지탱된다. 이때, 복수의 수조를 지탱하는 프레임은 재배 베드 및 작물의 크기에 따라 다양한 높이, 길이 및 폭을 가질 수 있다.On the other hand, the cultivation bed unit 160 is a plurality of longitudinal rungs installed in the longitudinal direction of the plurality of cultivation beds, a plurality of height longitudinal rods installed in the height direction of the plurality of cultivation beds and a plurality of cultivation beds installed in the width direction Supported by a frame with a crosswise cross. In this case, the frame supporting the plurality of tanks may have various heights, lengths and widths depending on the size of the cultivation bed and crops.
조명부(170)는 하나 이상의 인공광원을 포함하며 인공광원의 파장, 강도 및 조사주기 중 일부 또는 전부를 제어하여 작물을 재배하기 위한 광을 조사한다. 즉, 조명부(170)는 재배 베드부(160)를 지지하기 위한 프레임 및 복수의 재배 베드의 하단에 부착되어 컨트롤러(130)로부터 인공광원의 파장, 강도 및 조사주기 등을 제어하기 위한 제어명령을 수신하고, 이를 통해 작물에 기 설정된 최적의 광을 조사한다. 한편, 도 1에서는 조명부(170)가 재배 베드부(160)를 지지하기 위한 프레임 및 복수의 재배 베드의 하단에 부착된다고 명시하였으나 반드시 이에 한정되지는 않고, 작물의 재배에 필요한 광을 제공할 수 있으면 어떠한 곳이라도 설치될 수 있다.The lighting unit 170 includes one or more artificial light sources and controls some or all of the wavelength, intensity, and irradiation period of the artificial light source to irradiate light for growing a crop. That is, the lighting unit 170 is attached to the lower end of the frame and the plurality of cultivation bed for supporting the cultivation bed unit 160 to control commands for controlling the wavelength, intensity and irradiation period of the artificial light source from the controller 130, etc. And irradiates the crop with optimal light. Meanwhile, in FIG. 1, the lighting unit 170 is attached to the bottom of the frame and the plurality of cultivation beds for supporting the cultivation bed unit 160, but is not necessarily limited thereto, and may provide light necessary for cultivation of crops. If so, it can be installed anywhere.
또한, 조명부(170)는 재배 베드부(160)의 전체 길이에 따른 확장성을 고려하여 분리 또는 결합 되는 구조의 PCB(Printed Circuit Board)로 제작된 엘이디 모듈로 구성되어 있으며, 엘이디 모듈 내 다수의 엘이디를 통해 작물에 광을 제공한다. 한편, 엘이디 모듈은 3개의 PCB로 구성되며, 각각의 PCB는 엘이디를 제어하기 위한 드라이버 장치와 RGB(Red-Green-Blue) 엘이디가 6개씩 병렬로 배치되어 있다. 조명부(170)는 인공광원으로 엘이디를 사용하는 것으로 설명되었지만 반드시 이에 한정되지는 않고 작물의 재배에 필요한 조도를 제공할 수 있다면 다양한 인공광원이 사용될 수 있다.In addition, the lighting unit 170 is composed of an LED module made of a printed circuit board (PCB) of a structure that is separated or combined in consideration of the scalability according to the overall length of the cultivation bed 160, a plurality of LED modules Provides light to crops through LEDs. On the other hand, the LED module is composed of three PCB, each PCB is arranged in parallel with a driver device and six RGB (Red-Green-Blue) LED for controlling the LED. Although the lighting unit 170 has been described as using an LED as an artificial light source, various artificial light sources may be used as long as the illumination unit 170 may provide illumination required for growing a crop.
영상촬영 장치(180)는 다단형 재배장치(100)의 프레임에 부착되며 다단형 재배장치(100)를 모니터링하기 위한 영상을 촬영한다. 즉, 영상촬영 장치(180)는 다단형 재배장치(100)에 재배되는 작물의 성장 데이터를 컨트롤러(130)에 전송하기 위해 지속적으로 다단형 재배장치(100)를 촬영한다.The image capturing apparatus 180 is attached to a frame of the multistage grower 100 and photographs an image for monitoring the multistage grower 100. That is, the image capturing apparatus 180 continuously photographs the multistage cultivation apparatus 100 in order to transmit the growth data of crops grown in the multistage cultivation apparatus 100 to the controller 130.
또한, 영상촬영 장치(180)는 다단형 재배장치(100)를 지속적으로 모니터링하여 재배 베드부(160)에 재배되는 작물을 촬영하고, 이에 대한 영상을 컨트롤러(130)에 전송한다. 이후, 컨트롤러(130)는 영상을 수신하여 재배 베드부(160) 내 새로운 작물의 이식 여부를 파악할 수 있다. In addition, the image capturing apparatus 180 continuously monitors the multi-stage grower 100 to photograph crops grown in the cultivation bed 160, and transmits an image thereof to the controller 130. Thereafter, the controller 130 may determine whether or not to transplant a new crop in the cultivation bed unit 160 by receiving an image.
도 2는 본 발명에 따른 식물공장 내에 재배되는 작물의 재배환경을 제어하는 컨트롤러(130)의 구조를 도시한 도면이다.2 is a diagram illustrating a structure of a controller 130 for controlling a cultivation environment of crops grown in a plant factory according to the present invention.
도 2에서 도시하듯이, 본 발명에 따른 식물공장 내에 재배되는 작물의 재배환경을 제어하는 컨트롤러(130)는 데이터 저장부(202), 재배조건 추정부(204), 데이터 분석부(206) 및 제어명령 생성부(208)를 포함한다. 한편, 본 발명의 실시예에 따른 컨트롤러(130)는 다단형 재배장치(100)에 포함되며 기 설정된 재배조건에 근거하여 작물의 재배환경을 제어하고, 새로운 작물이 다단형 재배장치(100)에 이식되는 경우 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정하지만 반드시 이에 한정되지는 않고 식물공장 내에 위치하는 작물의 발아, 육묘 등을 위한 장치에 포함되어 명시된 기능을 수행할 수 있다.As shown in FIG. 2, the controller 130 for controlling a cultivation environment of a crop grown in a plant factory according to the present invention includes a data storage unit 202, a cultivation condition estimating unit 204, a data analyzing unit 206, and the like. The control command generation unit 208 is included. On the other hand, the controller 130 according to an embodiment of the present invention is included in the multi-stage cultivation apparatus 100 and controls the cultivation environment of the crop based on the predetermined cultivation conditions, new crops to the multi-stage cultivation apparatus 100 When transplanted, it is possible to estimate the optimal cultivation conditions for growing new crops based on the learning data, but it is not limited to this and can be included in the device for germination, seedling, etc. of crops located in the plant factory to perform the specified functions. have.
데이터 저장부(202)는 사용자의 입력 또는 영상촬영 장치(180)를 이용하여 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장한다. 즉, 데이터 저장부(202)는 사용자의 입력 또는 영상촬영 장치(180)를 이용하여 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터를 수신한다. 한편 작물의 성장 데이터에는 기 설정된 재배조건에 따른 작물의 성장 및 수확량 등의 정보가 포함되어 있다. The data storage unit 202 receives the growth data according to the cultivation conditions for each crop in the plant factory by using the user's input or the image photographing device 180, and stores the learning data for learning the received growth data. That is, the data storage unit 202 receives the growth data of the crops cultivated based on a predetermined cultivation condition using a user input or the image photographing apparatus 180. On the other hand, the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions.
이후, 데이터 저장부(202)는 수신한 성장 데이터를 학습하는 과정을 통해 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단하는 경우, 기 설정된 재배조건을 학습 데이터로서 저장한다. 한편, 데이터 저장부(202)는 일정 양의 학습 데이터가 수집되는 동안에는 사용자에 의해 기 설정된 재배조건을 기반으로 하여 작물을 재배한다. 이 경우 일정 양의 학습 데이터는 새로운 작물이 이식되는 경우, 새로운 작물의 재배조건을 유추할 수 있는 데이터의 양을 의미하나 반드시 이에 한정되지는 않는다.Thereafter, the data storage unit 202 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the grown crop satisfies the preset threshold based on the predetermined growing condition. In addition, the pre-set cultivation conditions are stored as learning data. Meanwhile, the data storage unit 202 grows a crop based on a cultivation condition set by a user while a predetermined amount of learning data is collected. In this case, a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
또한, 데이터 저장부(202)는 수신한 성장 데이터를 학습하는 과정을 통해 작물의 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단하는 경우, 작물의 성장 데이터의 결과를 기반으로 기 설정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 데이터 저장부(202)가 기 설정된 재배조건을 보완하는 방법은 먼저 작물의 성장 데이터의 결과를 분석하고, 분석한 성장 데이터와 기 설정된 임계치의 차를 백분율로 환산한 오차값을 추출한다. 한편, 데이터 저장부(202)에는 오차 범위에 따라 그에 매칭되는 보완값이 설정되어 있으며, 데이터 저장부(202)는 계산된 오차값에 대응되는 보완값을 파악하고, 파악된 보완값을 기반으로 기 설정된 재배조건을 보완한다. 이때, 오차 범위에 따라 설정되어 있는 보완값은 온도, 습도, CO2, 조도 및 배양액 등의 재배조건의 + 또는 - 값을 포함한다.In addition, the data storage unit 202 analyzes the result of the growth data of the crop through the process of learning the received growth data, and said that the growth data of the crop grown on the basis of the predetermined growing condition does not satisfy the preset threshold. If it is determined, supplement the pre-set cultivation conditions based on the results of the growth data of the crop, and stores the supplemented data as learning data. In this case, the data storage unit 202 is a method of complementing the pre-set cultivation conditions first analyzes the results of the growth data of the crop, and extracts the error value converted into a percentage of the difference between the analyzed growth data and the predetermined threshold value. On the other hand, the data storage unit 202 has a complementary value matched thereto according to the error range is set, the data storage unit 202 identifies the complementary value corresponding to the calculated error value, based on the identified complementary value Complement preset planting conditions. At this time, the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
또한, 데이터 저장부(202)는 재배조건 추정부(204)로부터 추정된 재배조건에 근거하여 재배된 새로운 작물의 성장 데이터를 수신하고, 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 새로운 작물의 성장 데이터의 결과를 기반으로 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 컨트롤러(130)가 추정된 재배조건을 보완하는 방법은 앞서 명시된, 기 설정된 재배조건을 보완하는 방법과 동일하다. 한편, 데이터 저장부(202)는 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단되는 경우, 추정된 재배조건을 학습 데이터로서 저장한다.In addition, the data storage unit 202 receives the growth data of the new crop cultivated based on the estimated cultivation condition from the cultivation condition estimating unit 204, and determines that the growth data of the new crop does not satisfy the preset threshold. In this case, the cultivation conditions estimated based on the results of the growth data of the new crops are supplemented, and the supplemented data is stored as learning data. In this case, the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above. On the other hand, if it is determined that the growth data of the new crop satisfies the preset threshold, the data storage unit 202 stores the estimated cultivation condition as learning data.
즉, 데이터 저장부(202)는 사용자로부터 설정된 재배조건을 포함한 설정 데이터, 기 재배된 작물의 성장 데이터를 학습한 학습 데이터 및 재배조건 추정부(204)로부터 추정된 새로운 작물의 재배를 위한 재배조건 중 일부 또는 전부를 저장하여 작물을 재배하기 위한 재배조건으로서 제공한다.That is, the data storage unit 202 is a cultivation condition for the cultivation of new crops estimated from the setting data including the cultivation conditions set by the user, the learning data for learning the growth data of the previously cultivated crops, and the cultivation condition estimating unit 204. Some or all of them are stored and provided as a growing condition for growing crops.
재배조건 추정부(204)는 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 저장된 작물별 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다. 즉, 재배조건 추정부(204)는 사용자의 입력 또는 영상촬영 장치(180)로부터 수신한 영상을 기반으로 다단형 재배장치(100)의 재배 베드부(160)에 새로운 작물의 이식 여부를 판단하고, 새로운 작물이 이식되었다고 판단되는 경우 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다.When the cultivation condition estimating unit 204 recognizes that a new crop is being grown in the plant factory, the cultivation condition estimating unit 204 estimates an optimal cultivation condition for cultivating the new crop based on the stored crop data. That is, the cultivation condition estimator 204 determines whether or not to transplant a new crop to the cultivation bed 160 of the multi-stage cultivation apparatus 100 based on an image received from the user's input or the image photographing apparatus 180. If the new crops are considered to have been transplanted, the optimum conditions for growing them are estimated.
한편, 데이터 저장부(202)에 저장되어 있는 학습 데이터는 기 재배된 작물의 특성에 따라 각각 그룹을 이루어 저장되어 있으며, 재배조건 추정부(204)는 새로운 작물이 이식되는 경우 해당 작물이 속한 그룹을 판단한다. 이후, 재배조건 추정부(204)는 해당 작물이 속한 그룹의 학습 데이터를 분석하여 식물공장 내 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다. 예를 들어 다단형 재배장치(100)에 새로운 작물 A가 이식되는 경우, 재배조건 추정부(204)는 데이터 저장부(202)에 기 저장된 학습 데이터 중 작물 A가 속한 그룹을 판단한다. 이후, 작물 A가 속한 그룹의 학습 데이터를 분석하여 온도, 습도, CO2, 조도 및 배양액 등의 재배조건의 평균값을 추출하고, 추출된 재배조건의 평균값을 작물 A의 재배를 위한 최적의 재배조건으로 추정한다. 즉, 재배조건 추정부(204)는 기 설정된 임계치를 만족시키는 작물의 학습 데이터를 기반으로 새로운 작물의 재배조건을 추정함으로써 새로운 작물 역시 기 설정된 임계치를 만족시키도록 유도하는 재배조건을 제공한다.On the other hand, the learning data stored in the data storage unit 202 is stored in a group according to the characteristics of the previously grown crops, the cultivation condition estimator 204 is a group to which the crop belongs when a new crop is transplanted To judge. Thereafter, the cultivation condition estimating unit 204 analyzes the learning data of the group to which the crop belongs, and estimates an optimal cultivation condition for cultivation of a new crop in the plant factory. For example, when a new crop A is transplanted into the multistage cultivation apparatus 100, the cultivation condition estimating unit 204 determines a group to which the crop A belongs among the learning data previously stored in the data storage unit 202. Then, by analyzing the learning data of the group belonging to Crop A to extract the average value of the cultivation conditions, such as temperature, humidity, CO2, roughness and culture medium, the average value of the extracted cultivation conditions as the optimum cultivation conditions for the cultivation of Crop A Estimate. That is, the cultivation condition estimator 204 provides a cultivation condition that induces the new crop to satisfy the preset threshold by estimating the cultivation condition of the new crop based on the learning data of the crop satisfying the preset threshold.
데이터 분석부(206)는 복수의 센서로부터 수집된 식물공장 내부의 온도, 습도, CO2 및 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 재배조건 추정부(204)로부터 추정된 재배조건을 비교한다. 한편, 도 2에서는 데이터 분석부(206)가 복수의 센서로부터 수집한 정보와 재배조건 추정부(204)로부터 추정된 새로운 작물의 재배를 위한 재배조건을 비교한다고 명시하였지만, 복수의 센서로부터 수집한 정보와 데이터 저장부(202)에 기 설정된 재배조건, 예를 들어 사용자의 설정 데이터 및 학습 데이터를 비교할 수 있음은 당업자에게 당연시되는 바이다.The data analyzer 206 may collect information about some or all of information on temperature, humidity, CO 2, and pH of the culture medium collected from the plurality of sensors, and the cultivation conditions estimated from the cultivation condition estimating unit 204. Compare. In FIG. 2, it is specified that the data analyzer 206 compares the information collected from the plurality of sensors with the cultivation conditions for the cultivation of a new crop estimated from the cultivation condition estimator 204, but collected from the plurality of sensors. It will be apparent to those skilled in the art that the information and the cultivation conditions preset in the data storage unit 202 may be compared with, for example, user setting data and learning data.
또한, 데이터 분석부(206)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신하는 경우 수신한 입력신호와 재배조건 추정부(204)로부터 추정된 재배조건을 비교하고, 비교결과를 사용자에게 디스플레이한다. 본 발명의 실시예에 따른 컨트롤러(130)는 기 설정된 재배조건으로 사용자의 설정 데이터를 사용할 수 있다. 이에 새로운 작물이 이식되는 경우 역시 사용자가 새로운 작물에 대한 재배조건을 설정할 수 있다. 하지만 사용자의 설정 데이터는 해당 식물공장에 있어서 정확한 데이터가 아닐 수 있으며 데이터 분석부(206)는 이에 대한 판단 기준을 사용자에게 제공하기 위해 입력신호와 재배조건 추정부(204)로부터 추정된 재배조건을 기반으로 재배된 작물의 성장 데이터를 각각 유추하여 그 결과를 사용자에게 디스플레이한다.In addition, the data analyzer 206 compares the received input signal with the cultivation condition estimated from the cultivation condition estimating unit 204 when receiving an input signal for the cultivation condition of a new crop from the user, and compares the result to the user. Display. The controller 130 according to the exemplary embodiment of the present invention may use the user's setting data with a preset cultivation condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop. However, the user's setting data may not be accurate data in the plant factory, and the data analyzing unit 206 uses the input signal and the cultivation condition estimating unit 204 to provide the criterion for the determination. It infers each of the growth data of the crops grown on the basis and displays the result to the user.
제어명령 생성부(208)는 데이터 분석부(206)의 비교결과를 기반으로 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다, 즉, 제어명령 생성부(208)는 복수의 센서로부터 수집된 식물공장 내부의 온도, 습도, CO2 및 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 재배조건 추정부(204)로부터 추정된 재배조건의 비교결과를 이용하여 식물공장 내에서 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다. 한편, 도 2에서는 제어명령 생성부(208)가 복수의 센서로부터 수집한 정보와 재배조건 추정부(204)로부터 추정된 재배조건의 비교결과를 기반으로 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다고 명시하였지만, 반드시 이에 한정되지는 않고, 복수의 센서로부터 수집한 정보와 데이터 저장부(202)에 기 설정된 재배조건의 비교결과를 기반으로 기 재배되었던 작물 또는 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성할 수 있다.The control command generation unit 208 generates a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit 206, that is, the control command generation unit 208 is collected from a plurality of sensors The new crop in the plant factory can be obtained by comparing the information on some or all of the temperature, humidity, CO2, and pH of the culture medium in the plant plant with the cultivation conditions estimated from the cultivation condition estimating unit 204. Generate control commands to control the growing environment. Meanwhile, in FIG. 2, the control command generator 208 controls the cultivation environment of a new crop based on a result of comparing the information collected from the plurality of sensors with the cultivation conditions estimated from the cultivation condition estimating unit 204. Although not limited thereto, the cultivation environment of previously grown crops or new crops is controlled based on a result of comparing the information collected from the plurality of sensors with the cultivation conditions set in the data storage unit 202. A control command can be generated.
또한, 제어명령 생성부(208)는 사용자의 선택에 따라 사용자에 의해 입력된 새로운 작물의 재배조건에 대한 입력신호 및 추정된 재배조건 중 어느 하나에 근거하여 제어명령을 생성한다. 즉, 제어명령 생성부(208)는 사용자로부터 데이터 분석부(206)를 이용하여 디스플레이된 비교결과를 기반으로 결정된 재배조건을 수신하고, 수신한 재배조건에 근거하여 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성할 수 있다.In addition, the control command generation unit 208 generates a control command based on any one of the input signal and the estimated cultivation conditions for the new plant cultivation conditions input by the user according to the user's selection. That is, the control command generation unit 208 receives the cultivation conditions determined based on the comparison result displayed by the data analyzer 206 from the user, and controls the cultivation environment of the new crop based on the received cultivation conditions. You can create a control command.
도 3은 본 발명에 따른 다단형 재배장치(100)에 부착되며 작물을 재배하기 위한 인공광원으로 엘이디를 사용하는 경우의 조명부(170)의 구조를 도시한 도면이다.3 is a view showing the structure of the lighting unit 170 attached to the multi-stage cultivation apparatus 100 according to the present invention and using the LED as an artificial light source for cultivating crops.
도 3에 도시하듯이 본 발명에 따른 다단형 재배장치(100)에 부착되며 작물을 재배하기 위한 인공광원으로 엘이디를 사용하는 경우의 조명부(170)의 구조는 전압제공장치(300), 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320), 미터링모듈부(330), 센서모듈부(340) 및 엘이디 모듈(350)을 포함한다.As shown in Figure 3 attached to the multi-stage cultivation apparatus 100 according to the present invention, the structure of the lighting unit 170 when using the LED as an artificial light source for cultivating the crop is the voltage providing device 300, the first The LED control module unit to the N-th LED control module unit (310, 320), the metering module unit 330, the sensor module unit 340 and the LED module 350.
전압제공장치(300)는 AC 전원을 DC 전압으로 변환하여 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320)로 제공하며, 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320)는 미터링모듈부(330), 센서모듈부(340)로부터 수신된 상태정보에 따라, 엘이디 모듈(350)을 제어한다. The voltage providing device 300 converts AC power into a DC voltage to provide the first LED control module unit to the Nth LED control module units 310 and 320, and the first LED control module unit to the Nth LED control module unit The 310 and 320 control the LED module 350 according to the state information received from the metering module 330 and the sensor module 340.
전압제공장치(300)는 복수의 제1 및 제2 전압제공장치(300_1, 300_2)로 구분될 수 있다. 제1 전압제공장치(300_1)는 AC 전원을 DC 전압으로 변환하여 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320)로 제공하며, 제2 전압제공장치(300_2)는 변환된 DC 전압을 센서모듈부(340) 및 엘이디 모듈(350)로 제공한다. 각각의 전압제공장치(300)는 110 또는 220 V의 상용전원을 입력받아 24 V 가량의 DC 전압으로 변환하고, 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320) 또는 엘이디 모듈(350) 내의 집적회로(IC)를 구동하기 위한 3.3 V 가량의 DC 전압으로 다시 변환하여 출력한다. 이를 위하여 전압제공장치(300)는 인버터와 DC-DC 컨버터를 포함할 수 있다.The voltage providing device 300 may be divided into a plurality of first and second voltage providing devices 300_1 and 300_2. The first voltage providing device 300_1 converts AC power into a DC voltage and provides the first LED control module unit to the Nth LED control module units 310 and 320, and the second voltage providing device 300_2 is converted. The DC voltage is provided to the sensor module unit 340 and the LED module 350. Each of the voltage providing devices 300 receives a commercial power of 110 or 220 V and converts it into a DC voltage of about 24 V, and the first LED control module unit to the Nth LED control module unit 310 or 320 or the LED module. The output voltage is converted back to a 3.3V DC voltage for driving the integrated circuit IC in 350. To this end, the voltage providing device 300 may include an inverter and a DC-DC converter.
제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320)는 근거리 무선통신에 의해 각각의 제어모듈부가 제어하는 엘이디 모듈(350)과 통신하며, 제1 전압제공장치(300_1)로 제공되는 DC 전압을 제공받아 구동한다. The first LED control module unit to the N-th LED control module unit (310, 320) communicates with the LED module 350 controlled by each control module unit by a short-range wireless communication, provided to the first voltage providing device 300_1 It is driven by receiving DC voltage.
한편, 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320)는 복수의 엘이디 모듈(350)을 각각 관장할 수 있도록 각각의 제어모듈부에 복수의 엘이디 모듈(350)이 일대일로 대응되도록 구성된다. 이에, 컨트롤러(130)의 제어에 따라 제1 열에서 제N 열의 엘이디 모듈(350)이 서로 동일한 발광 조건을 갖도록 구동될 수 있지만, 서로 다른 작물이 재배되는 경우에는 해당 작물에 적합한 발광 조건으로 구동될 수 있다. On the other hand, the first LED control module unit to the N-th LED control module unit (310, 320) is a plurality of LED module 350 to each control module unit to manage each of the plurality of LED module 350 in one-to-one It is configured to correspond. Thus, under the control of the controller 130, the LED module 350 in the Nth column may be driven to have the same luminous condition in the first row, but when different crops are cultivated, the LED module 350 is driven in the luminous condition suitable for the crop. Can be.
즉, PWM을 통해 엘이디 모듈(350)을 디밍(Dimming) 제어하는 한편, 적, 녹, 청의 엘이디 소자들을 색 별로 그룹 제어함으로써 풀 컬러의 광을 제공하도록 제어하게 된다. That is, while dimming the LED module 350 through PWM, the LED elements of red, green, and blue are grouped by color to control full color light.
미터링모듈부(330)는 근거리 무선통신을 통해 전압제공장치(300)에서 제1 엘이디 제어모듈부 내지 제N 엘이디 제어모듈부(310, 320), 센서모듈부(340) 및 엘이디 모듈(350)로 제공되는 전압, 전력 등에 관련된 정보를 취득한다. 이후, 취득된 정보는 컨트롤러(130)로 전달된다.The metering module unit 330 is the first LED control module unit to the N-th LED control module unit (310, 320), the sensor module unit 340 and the LED module 350 in the voltage providing device 300 through the short-range wireless communication Obtain information related to voltage, power, and the like. Thereafter, the acquired information is transferred to the controller 130.
즉, 미터링모듈부(330)는 전압제공장치(300) 각각의 교류입력전력과 전체시스템 교류입력전력을 미터링 센서 등으로 측정한 후 측정값을 디지털 변환하여 전압 관련 정보를 생성하고 생성한 전압 관련 정보를 컨트롤러(130)에 제공한다. 이후, 미터링모듈부(330)는 컨트롤러(130)의 분석 결과에 따라 전압제공장치(300)의 전력 상태를 재설정할 수 있게 된다. That is, the metering module unit 330 measures AC input power and total system AC input power of each of the voltage providing devices 300 using a metering sensor, and then digitally converts measured values to generate voltage related information and generate voltage related information. Information is provided to the controller 130. Thereafter, the metering module unit 330 may reset the power state of the voltage providing device 300 according to the analysis result of the controller 130.
센서모듈부(340)는 조도센서 및 파장센서 등을 포함하며, 각각의 센서를 통해 취득되는 센싱 데이터를 센서부(140)로 전송한다. 한편, 센서모듈부(340)가 수생하는 역할은 센서부(140)에 의해 대체될 수 있다. 이후 센서부(140)는 해당 데이터를 컨트롤러부(130)로 제공한다. 한편, 컨트롤러부(130)는 센서모듈부(340)로부터 취득된 정보를 기반으로 엘이디 모듈(350)이 기 설정된 작물을 재배하기 위한 최적의 광을 조사하도록, 엘이디의 파장, 강도 및 조사주기 등을 제어하기 위한 제어명령을 생성하여 엘이디 모듈(350)로 전송한다.The sensor module unit 340 includes an illuminance sensor, a wavelength sensor, and the like, and transmits sensing data acquired through each sensor to the sensor unit 140. On the other hand, the role of the sensor module 340 aquatic can be replaced by the sensor unit 140. The sensor unit 140 then provides the corresponding data to the controller unit 130. On the other hand, the controller 130 is based on the information obtained from the sensor module 340, LED module 350 to irradiate the optimal light for cultivating a predetermined crop, the wavelength, intensity and irradiation period of the LED, etc. It generates a control command for controlling the transmits to the LED module 350.
엘이디 모듈(350)은 제1 내지 제N 개의 열을 이루어 구비되고, 다단형 재배장치(100) 내의 복수의 재배 베드의 면적이 증가함에 따라 자유롭게 확장하여 설치가 이루어지도록 다수의 PCB 모듈이 분리 및 결합되는 구조로 제작된다. 또한, 각각의 엘이디 모듈(350)은 재배되는 작물에 제공되는 엘이디 광에 대한 파장, 강도 및 조사주기 등의 정보를 포함한 ID(Identifier) 정보를 저장한다. 이를 통해, 엘이디 모듈(350)을 확장하여 구성하더라도 확장된 엘이디 모듈에 기 저장된 ID 정보를 전송하는 방법을 통해 기존의 엘이디 모듈(350)과 동일한 정보의 광을 발광할 수 있다.The LED module 350 includes first to N-th rows, and a plurality of PCB modules are separated and installed so as to freely expand and install as the areas of the plurality of cultivation beds in the multistage grower 100 increase. It is manufactured in a structure to be combined. In addition, each LED module 350 stores ID (Identifier) information including information, such as wavelength, intensity, and irradiation period for the LED light provided to the cultivated crop. Accordingly, even if the LED module 350 is configured to be extended, the same information as the existing LED module 350 may be emitted through a method of transmitting ID information stored in the extended LED module.
도 4는 본 발명에 따른 인공광원으로 엘이디를 사용하는 경우의 조명부(170)의 엘이디 모듈(350)의 구성 및 회로도를 나타낸 도면이다.4 is a view showing the configuration and circuit diagram of the LED module 350 of the lighting unit 170 in the case of using the LED as an artificial light source according to the present invention.
본 발명의 일 실시예에 따른 도 4의 (a)는 인공광원으로 엘이디를 사용하는 경우의 조명부(170)의 엘이디 모듈(350)의 구성을 도시하였으며 도 4의 (b)는 엘이디 모듈(350)의 회로도를 도시하였다.4 (a) according to an embodiment of the present invention shows the configuration of the LED module 350 of the lighting unit 170 in the case of using the LED as an artificial light source, and Figure 4 (b) is the LED module 350 ) Is a circuit diagram.
엘이디 모듈(350)은 제1 내지 제N 개의 열로 이루어져 있으며 다단형 재배장치(100)의 전체 길이에 대한 확장성을 고려하여 3개의 PCB로 분리 및 결합하도록 제작되었다. 각각의 PCB는 엘이디를 제어하기 위한 드라이버 장치(400)와 RGB(Red-Green-Blue) 엘이디(410)가 각각 6개씩 병렬로 배치되어 일반적인 전력을 사용하는 경우, 사용자가 필요한 전압 분배를 손쉽게 적용할 수 있다.The LED module 350 is composed of the first to Nth rows and is manufactured to be separated and combined into three PCBs in consideration of expandability of the entire length of the multistage grower 100. Each PCB has 6 driver devices 400 and 6 red-green-blue LEDs 410 arranged in parallel to control the LEDs. can do.
엘이디 모듈(350)의 회로는 소스로부터 유입되는 DC를 막아주는 입력필터와 순방향으로만 전류가 흐르게 하는 다이오드를 포함한다. 이때, 엘이디 모듈(350)에 전원을 공급하는 전압제공장치(300)는 인버터를 통해 110 또는 220 V의 상용전원을 24V DC 전압으로 변환하여 엘이디 모듈(350)로 제공하며, DC-DC 컨버터를 통해 인버터에 의해 변환된 24 V의 DC 전압 레벨을 다시 3.3 V의 DC 전압으로 변환하여 엘이디 모듈(350)의 드라이버 장치(400)로 출력하게 된다.The circuit of the LED module 350 includes an input filter that blocks DC flowing from a source and a diode that allows current to flow in a forward direction only. At this time, the voltage providing device 300 for supplying power to the LED module 350 converts the commercial power of 110 or 220 V to a 24V DC voltage through the inverter to provide to the LED module 350, and provides a DC-DC converter The DC voltage level of 24 V converted by the inverter is converted into a DC voltage of 3.3 V and output to the driver device 400 of the LED module 350.
드라이버 장치(400)는 풀 브리지 방식의 구동 회로를 포함할 수 있으며, 접지와의 사이에 레퍼런스(REF) 저항을 포함한다. 레퍼런스 저항은 저항값에 따라 R, G, B의 개별 출력 전류, 즉 정전류를 조절한다. 다시 말해, 드라이버 장치(400)는 DC-DC 컨버터에서 제공되는 3.3 V의 DC 전압을 제공받아 레퍼런스 저항의 저항값에 따라 정전류가 개별 엘이디 소자에서 제공될 수 있도록 한다.The driver device 400 may include a full-bridge driving circuit, and includes a reference (REF) resistor between the ground and the ground. The reference resistor adjusts the R, G and B individual output currents, or constant current, according to the resistance value. In other words, the driver device 400 receives the DC voltage of 3.3 V provided from the DC-DC converter so that the constant current can be provided in the individual LED device according to the resistance value of the reference resistor.
RGB 엘이디(410)는 컨트롤러(130)의 제어에 따라 디밍 제어되는데, 여기서 디밍 제어된다는 것은 발광소자들의 턴온 및 턴오프되는 듀티비를 조절하여 PWM 구동함으로써 단위모듈에서 제공되는 빛의 발광량이 조절되는 것을 의미한다. 가령 턴온 시간이 적으면 그만큼 발광량이 적으므로 밝기는 다소 어두울 수 있다. 또한 엘이디 모듈(350)은 엘이디를 어떻게 구동시키느냐에 따라 다양한 색과 다양한 밝기의 빛을 발광할 수 있다. 예를 들어, RGB 엘이디(410)를 각각 구동시키게 되면, 단일 색의 빛을 각각 얻을 수 있지만, RGB 엘이디(410)를 동시에 구동시키게 되면 백색광을 얻을 수 있는 것이다. 이와 같은 구동 방식에 따라 엘이디 모듈(350)은 풀 컬러를 구현하게 된다. 실질적으로 엘이디 모듈(350)은 재배되는 작물의 종류뿐 아니라 작물의 성장 상태에 따라서 파장 및 광량이 조절된다.The RGB LED 410 is dimmed under the control of the controller 130. Here, the dimming is controlled by adjusting the duty ratio of the light emitting devices to be turned on and off so that the amount of light emitted from the unit module is adjusted. Means that. For example, if the turn-on time is small, the amount of light emitted is so low that the brightness may be somewhat dark. In addition, the LED module 350 may emit light of various colors and various brightness depending on how the LED is driven. For example, when driving the RGB LEDs 410, respectively, a single color of light can be obtained, but when driving the RGB LEDs 410 simultaneously, white light can be obtained. According to the driving scheme as described above, the LED module 350 implements full color. Substantially, the LED module 350 adjusts the wavelength and the amount of light according to the growth state of the crop as well as the type of the crop being grown.
도 5는 본 발명에 따른 컨트롤러(130)가 식물공장 내에 재배되는 작물의 재배환경을 제어하는 방법을 설명하기 위한 순서도이다. 한편, 본 발명의 실시예에 따른 컨트롤러(130)는 다단형 재배장치(130)뿐만 아니라 식물공장 내에 위치하는 작물의 발아, 육묘 등을 위한 장치에 포함되어 해당 장치에 발아 또는 육묘되는 작물의 재배환경을 제어할 수 있다.5 is a flowchart illustrating a method for controlling the cultivation environment of crops grown in a plant factory by the controller 130 according to the present invention. On the other hand, the controller 130 according to an embodiment of the present invention is included in the device for germination, seedling, etc. of the crop located in the plant factory as well as the multi-stage cultivation device 130, the cultivation of the crop germinated or grown in the device You can control the environment.
도 5에서 도시하듯이 본 발명에 따른 컨트롤러(130)가 식물공장 내에 재배되는 작물의 재배환경을 제어하는 방법은 먼저 사용자의 입력 또는 영상촬영 장치(180)를 이용하여 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장하는 과정으로 시작된다(S500). 즉, 컨트롤러(130)는 사용자의 입력 또는 영상촬영 장치(180)를 이용하여 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터를 수신한다. 한편 작물의 성장 데이터에는 기 설정된 재배조건에 따른 작물의 성장 및 수확량 등의 정보가 포함되어 있다. As shown in FIG. 5, the method for controlling the cultivation environment of crops cultivated in the plant factory according to the present invention is first cultivated for each crop in the plant factory using an input or image photographing device 180 of the user. Receiving the growth data according to the condition, and begins with the process of storing the learning data learning the received growth data (S500). That is, the controller 130 receives the growth data of the cultivated crop based on a predetermined cultivation condition using a user input or the image photographing apparatus 180. On the other hand, the growth data of the crop includes information such as the growth and yield of the crop according to the predetermined growing conditions.
이후, 컨트롤러(130)는 수신한 성장 데이터를 학습하는 과정을 통해 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단하는 경우, 기 설정된 재배조건을 학습 데이터로서 저장한다. 한편, 컨트롤러(130)는 일정 양의 학습 데이터가 수집되는 동안에는 사용자에 의해 설정된 재배조건을 기반으로 하여 작물을 재배한다. 이 경우 일정 양의 학습 데이터는 새로운 작물이 이식되는 경우, 새로운 작물의 재배조건을 유추할 수 있는 데이터의 양을 의미하나 반드시 이에 한정되지는 않는다.Subsequently, the controller 130 analyzes the result of the growth data through the process of learning the received growth data, and determines that the growth data of the cultivated crop satisfies a predetermined threshold based on a predetermined cultivation condition. Store the set cultivation condition as learning data. Meanwhile, the controller 130 grows a crop based on a growing condition set by a user while a predetermined amount of learning data is collected. In this case, a certain amount of learning data means, but not necessarily limited to, the amount of data that can be inferred when the new crop is transplanted, the growing conditions of the new crop.
또한, 컨트롤러(130)는 수신한 성장 데이터를 학습하는 과정을 통해 작물의 성장 데이터의 결과를 분석하고, 기 설정된 재배조건에 근거하여 재배된 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단하는 경우, 작물의 성장 데이터의 결과를 기반으로 기 설정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 컨트롤러(130)가 기 설정된 재배조건을 보완하는 방법은 먼저 작물의 성장 데이터의 결과를 분석하고, 분석한 성장 데이터와 기 설정된 임계치의 차를 백분율로 환산한 오차값을 추출한다. 한편, 컨트롤러(130)에는 오차 범위에 따라 그에 매칭되는 보완값이 설정되어 있으며, 컨트롤러(130)는 계산된 오차값에 대응되는 보완값을 파악하고, 파악된 보완값을 기반으로 기 설정된 재배조건을 보완한다. 이때, 오차 범위에 따라 설정되어 있는 보완값은 온도, 습도, CO2, 조도 및 배양액 등의 재배조건의 + 또는 - 값을 포함한다.In addition, the controller 130 analyzes the result of the growth data of the crop through the process of learning the received growth data, and determines that the growth data of the cultivated crop does not satisfy the preset threshold based on the preset cultivation conditions. In this case, based on the result of the growth data of the crop, the predetermined cultivation condition is supplemented, and the supplemented data is stored as learning data. In this case, the controller 130 supplements the predetermined growing condition, first analyzes the result of the growth data of the crop, and extracts an error value obtained by converting the difference between the analyzed growth data and the predetermined threshold as a percentage. On the other hand, the controller 130 is set to match the complementary value according to the error range, the controller 130 to determine the complementary value corresponding to the calculated error value, based on the determined complementary value cultivation conditions To complement. At this time, the complementary value set according to the error range includes + or-value of the cultivation conditions such as temperature, humidity, CO2, roughness and culture medium.
한편, 컨트롤러(130)는 추정된 재배조건에 근거하여 재배된 새로운 작물의 성장 데이터를 수신하고, 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 새로운 작물의 성장 데이터의 결과를 기반으로 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장한다. 이때, 컨트롤러(130)가 추정된 재배조건을 보완하는 방법은 앞서 명시된, 기 설정된 재배조건을 보완하는 방법과 동일하다. 마찬가지로 컨트롤러(130)는 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단하는 경우, 추정된 재배조건을 학습 데이터로서 저장한다. On the other hand, the controller 130 receives the growth data of the new crop cultivated based on the estimated cultivation conditions, and if it is determined that the growth data of the new crop does not satisfy the preset threshold, the controller 130 outputs the result of the growth data of the new crop. Complement the estimated cultivation conditions on the basis of the basis, and stores the supplemented data as learning data. In this case, the method for compensating the estimated cultivation condition by the controller 130 is the same as the method for compensating the preset cultivation condition as described above. Similarly, when the controller 130 determines that the growth data of the new crop satisfies the preset threshold, the controller 130 stores the estimated growing condition as learning data.
즉, 컨트롤러(130)는 사용자로부터 설정된 재배조건을 포함한 설정 데이터, 기 재배된 작물의 성장 데이터를 학습한 학습 데이터 및 컨트롤러(130)로부터 추정된 새로운 작물의 재배를 위한 재배조건 중 일부 또는 전부를 저장하여 작물을 재배하기 위한 재배조건으로서 제공한다.That is, the controller 130 may select some or all of the setting data including the cultivation conditions set by the user, the learning data for learning the growth data of the previously cultivated crops, and the cultivation conditions for the cultivation of the new crop estimated from the controller 130. It is stored and provided as a growing condition for growing crops.
컨트롤러(130)는 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 학습 데이터를 기반으로 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다(S510). 즉, 컨트롤러(130)는 사용자의 입력 또는 영상촬영 장치(180)로부터 수신한 영상을 기반으로 다단형 재배장치(100)의 재배 베드부(160)에 새로운 작물의 이식 여부를 판단하고, 새로운 작물이 이식되었다고 판단되는 경우 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다.When the controller 130 recognizes that new crops are being grown in the plant factory, the controller 130 estimates an optimal growing condition for growing new crops based on the training data (S510). That is, the controller 130 determines whether or not to transplant a new crop to the cultivation bed 160 of the multi-stage grower 100 based on the user's input or the image received from the image photographing apparatus 180, and the new crop. If these are considered to be transplanted, estimate the optimal planting conditions for growing new crops.
한편, 컨트롤러(130)에 저장되어 있는 학습 데이터는 기 재배된 작물의 특성에 따라 각각 그룹을 이루어 저장되어 있으며, 컨트롤러(130)는 새로운 작물이 이식되는 경우 해당 작물이 속한 그룹을 판단한다. 이후, 컨트롤러(130)는 해당 작물이 속한 그룹의 학습 데이터를 분석하여 식물공장 내 새로운 작물의 재배를 위한 최적의 재배조건을 추정한다. 즉, 컨트롤러(130)는 기 설정된 임계치를 만족시키는 작물의 학습 데이터를 기반으로 새로운 작물의 재배조건을 추정함으로써 새로운 작물 역시 기 설정된 임계치를 만족시키도록 유도하는 재배조건을 제공한다.On the other hand, the learning data stored in the controller 130 is stored in a group according to the characteristics of the pre-cultivated crops, and the controller 130 determines the group to which the crop belongs when a new crop is transplanted. Thereafter, the controller 130 estimates an optimal cultivation condition for cultivation of new crops in the plant factory by analyzing the learning data of the group to which the crop belongs. That is, the controller 130 provides a cultivation condition that induces the new crop to satisfy the preset threshold by estimating the cultivation condition of the new crop based on the learning data of the crop satisfying the preset threshold.
컨트롤러(130)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호의 수신 여부를 파악하고(S520), 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신하지 않은 경우, 복수의 센서로부터 수집된 식물공장 내부의 온도, 습도, CO2 및 배양액의 PH에 대한 정보와 추정된 재배조건을 비교한다(S530). 한편, 도 5에서는 컨트롤러(130)가 복수의 센서로부터 수집한 정보와 컨트롤러(130)로부터 추정된 새로운 작물의 재배를 위한 재배조건을 비교한다고 명시하였지만, 반드시 이에 한정되지는 않고 복수의 센서로부터 수집한 정보와 컨트롤러(130)에 기 설정된 재배조건, 예를 들어 사용자의 설정 데이터 및 학습 데이터와 비교할 수 있음은 당업자에게 당연시되는 바이다.The controller 130 determines whether an input signal for a growing condition of a new crop is received from the user (S520), and when the user does not receive an input signal for the growing condition of a new crop from the user, the plant collected from the plurality of sensors. Compare the information on the temperature, humidity, CO2 and pH of the culture medium and estimated cultivation conditions inside the plant (S530). In FIG. 5, it is specified that the controller 130 compares the information collected from the plurality of sensors with the cultivation conditions for the cultivation of a new crop estimated from the controller 130, but is not necessarily limited thereto. It will be apparent to those skilled in the art that the information can be compared with a predetermined planting condition, for example, user's setting data and learning data.
즉, 컨트롤러(130)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호의 수신 여부를 파악하고(S520), 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신한 경우 수신한 입력신호와 추정된 재배조건에 대한 비교결과를 사용자에게 제공하고, 이에 대한 사용자의 선택을 수신한다(S540). 한편, 컨트롤러(130)는 기 설정된 재배조건으로 사용자의 설정 데이터를 사용할 수 있다. 이에 새로운 작물이 이식되는 경우 역시 사용자가 새로운 작물에 대한 재배조건을 설정할 수 있다. 하지만 사용자의 설정 데이터는 해당 식물공장에 있어서 정확한 데이터가 아닐 수 있으며 컨트롤러(130)는 이에 대한 판단 기준을 사용자에게 제공하기 위해 사용자의 입력신호와 컨트롤러(130)로부터 추정된 재배조건을 기반으로 재배된 작물의 성장 데이터를 각각 유추하여 그 결과를 사용자에게 디스플레이한다.That is, the controller 130 determines whether an input signal for a new crop cultivation condition is received from the user (S520), and when the input signal for the new crop cultivation condition is received from the user, the controller 130 estimates the input signal and the estimated input signal. The comparison result of the cultivation conditions is provided to the user, and the user's selection is received (S540). On the other hand, the controller 130 may use the user's setting data in a predetermined cultivation condition. In this case, when a new crop is transplanted, the user can also set a growing condition for the new crop. However, the user's setting data may not be accurate data in the plant factory, and the controller 130 is cultivated based on the user's input signal and the cultivation condition estimated from the controller 130 to provide a criterion for this to the user. Infer each growth data of the harvested crop and display the result to the user.
이후, 컨트롤러(130)는 사용자가 추정된 재배조건을 선택하였는지 여부를 파악하고(S550), 사용자가 추정된 재배조건이 아닌 사용자의 입력신호를 선택한 경우 복수의 센서로부터 수집된 식물공장 내부의 온도, 습도, CO2 및 배양액의 PH에 대한 정보와 사용자가 입력한 재배조건을 비교한다(S560).Thereafter, the controller 130 determines whether the user selects an estimated cultivation condition (S550), and when the user selects an input signal of the user other than the estimated cultivation condition, the temperature inside the plant factory collected from the plurality of sensors. The humidity, CO2, and information about the pH of the culture medium and the cultivation conditions entered by the user is compared (S560).
컨트롤러(130)는 비교하는 과정으로부터 추출된 비교결과를 기반으로 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다(S570). 즉, 컨트롤러(130)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신하지 않은 경우, 복수의 센서로부터 수집된 식물공장 내부의 온도, 습도, CO2 및 배양액의 PH에 대한 정보와 추정된 재배조건의 비교결과를 기반으로 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다. 또한, 컨트롤러(130)는 사용자로부터 새로운 작물의 재배조건에 대한 입력신호를 수신하는 경우 사용자의 선택에 따라 입력신호 및 추정된 재배조건 중 어느 하나에 근거하여 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성한다.The controller 130 generates a control command for controlling the cultivation environment of the new crop based on the comparison result extracted from the comparing process (S570). That is, when the controller 130 does not receive an input signal for growing conditions of a new crop from the user, the information on the temperature, humidity, CO2, and pH of the culture medium and estimated cultivation inside the plant factory collected from the plurality of sensors Based on the result of the comparison of conditions, a control command to control the cultivation environment of a new crop is generated. In addition, when the controller 130 receives an input signal for growing conditions of a new crop from the user, the controller 130 controls to control the growing environment of the new crop based on one of the input signal and the estimated growing condition according to the user's selection. Create a command.
도 5에서는 단계 S500 내지 단계 S570을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 5에 기재된 순서를 변경하여 실행하거나 단계 S500 내지 단계 S570 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 5는 시계열적인 순서로 한정되는 것은 아니다.In FIG. 5, steps S500 to S570 are described as being sequentially executed. However, this is merely illustrative of the technical idea of an embodiment of the present invention, and the general knowledge in the technical field to which an embodiment of the present invention belongs. Those having a variety of modifications and variations may be applicable by changing the order described in FIG. 5 or executing one or more steps of steps S500 to S570 in parallel without departing from the essential characteristics of one embodiment of the present invention. 5 is not limited to the time series order.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which the present embodiment belongs may make various modifications and changes without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment but to describe the present invention, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
(부호의 설명)(Explanation of the sign)
100: 다단형 재배장치 110: 공조부100: multi-stage grower 110: air conditioning unit
120: 급수부 130: 컨트롤러120: water supply unit 130: controller
140: 센서부 150: 전원공급부140: sensor unit 150: power supply unit
160: 재배 베드부 170: 조명부160: cultivation bed unit 170: lighting unit
180: 영상촬영 장치 202: 데이터 저장부180: image recording device 202: data storage unit
204: 재배조건 추정부 206: 데이터 분석부204: cultivation condition estimation unit 206: data analysis unit
208: 제어명령 생성부208: control command generation unit
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 03월 19일 한국에 출원한 특허출원번호 제 10-2013-0029174 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority pursuant to Article 119 (a) (35 USC § 119 (a)) of the US Patent Act No. 10-2013-0029174, filed with Korea on March 19, 2013. All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (18)

  1. 식물공장 내에 설치되며 육묘재배 장치로부터 기 설정된 임계값을 초과하는 크기까지 육묘된 작물을 제공받아 재배하는 다단형 재배장치에 있어서,In the multi-stage cultivation apparatus is installed in the plant factory and receives and grows the seedlings to the size exceeding the predetermined threshold from the seedling cultivation device,
    외부로부터 제공받은 전력을 제어하여 상기 작물을 재배하기 위한 전력으로 제공하는 전원공급부;A power supply unit controlling power received from the outside to provide power for cultivating the crop;
    일정 거리 단위로 상기 작물을 이식하기 위한 홈을 구비하고, 서로 상하로 이격되며 엇갈려 기울어진 형태로 배치되어 내부에 배양액을 흘려보낼 수 있도록 구조된 복수의 재배 베드를 포함하는 재배 베드부;A cultivation bed unit including a plurality of cultivation beds provided with grooves for transplanting the crops at a predetermined distance and arranged in an inclined form to be spaced apart from each other and flowing in the culture solution therein;
    상기 식물공장의 온도, 습도 및 CO2 중 일부 또는 전부의 정보를 수신하고, 수신된 정보와 기 설정된 재배조건에 근거하여 상기 작물의 재배환경을 제어하는 컨트롤러;A controller configured to receive information on some or all of temperature, humidity, and CO 2 of the plant factory and to control a cultivation environment of the crop based on the received information and preset cultivation conditions;
    상기 재배 베드에 급수 및 양액을 기 설정된 비율로 혼합한 상기 배양액을 제공하는 급수부; 및A water supply unit providing the culture solution in which water and nutrient solutions are mixed at a predetermined rate to the cultivation bed; And
    하나 이상의 인공광원을 포함하며 상기 인공광원의 파장, 강도 및 조사주기 중 일부 또는 전부를 제어하여 상기 작물을 재배하기 위한 광을 조사하는 조명부를 포함하되,Including at least one artificial light source and including a lighting unit for irradiating light for growing the crop by controlling some or all of the wavelength, intensity and irradiation period of the artificial light source,
    상기 컨트롤러는 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 학습한 학습 데이터를 저장하고, 상기 재배 베드에 새로운 작물이 이식되는 경우 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하고, 추정된 재배조건에 근거하여 재배환경을 제어하는 것을 특징으로 하는 다단형 재배장치.The controller stores the learning data learning the growth data according to the cultivation conditions for each crop in the plant factory, and when a new crop is transplanted to the cultivation bed is optimal for the cultivation of the new crop based on the learning data And estimating the cultivation conditions and controlling the cultivation environment based on the estimated cultivation conditions.
  2. 제 1항에 있어서,The method of claim 1,
    상기 다단형 재배장치는,The multi-stage grower,
    상기 작물을 재배하기 위한 냉난방 및 습도를 조절하는 공조부;Air conditioning unit for controlling the heating and cooling and humidity for cultivating the crop;
    상기 식물공장 내부에 온도, 습도, CO2 및 상기 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보를 수집하기 위한 다수의 센서를 포함하는 센서부; 및A sensor unit including a plurality of sensors for collecting information on some or all of information on temperature, humidity, CO 2, and pH of the culture solution in the plant factory; And
    상기 다단형 재배장치를 모니터링하기 위한 영상을 촬영하는 영상촬영 장치Imaging device for taking an image for monitoring the multi-stage growing device
    를 더 포함하는 것을 특징으로 하는 다단형 재배장치.Multi-stage grower characterized in that it further comprises.
  3. 제 2항에 있어서,The method of claim 2,
    상기 컨트롤러는,The controller,
    사용자의 입력 또는 상기 영상촬영 장치를 이용하여 상기 성장 데이터를 수신하고, 상기 성장 데이터를 학습한 학습 데이터를 저장하는 데이터 저장부;A data storage unit configured to receive the growth data by using a user input or the image photographing apparatus and to store learning data learned from the growth data;
    상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 재배조건 추정부;A cultivation condition estimator for estimating an optimal cultivation condition for cultivation of the new crop based on the learning data;
    상기 센서부로부터 수집된 정보와 상기 재배조건 추정부로부터 추정된 재배조건을 비교하는 데이터 분석부; 및A data analyzing unit comparing the information collected from the sensor unit with the growing condition estimated from the growing condition estimating unit; And
    상기 데이터 분석부의 비교결과를 기반으로 상기 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성하는 제어명령 생성부Control command generation unit for generating a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit
    를 포함하는 것을 특징으로 하는 다단형 재배장치.Multi-stage cultivation apparatus comprising a.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 데이터 저장부는 상기 기 설정된 재배조건에 근거하여 재배된 상기 작물의 성장 데이터를 수신하고, 상기 작물의 성장 데이터가 기 설정된 임계치를 만족시킨다고 판단하는 경우, 상기 기 설정된 재배조건을 학습 데이터로서 저장하는 것을 특징으로 하는 다단형 재배장치.The data storage unit receives the growth data of the crop cultivated based on the preset cultivation conditions, and when it is determined that the growth data of the crop satisfies a preset threshold, stores the preset cultivation conditions as learning data. Multi-stage grower, characterized in that.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 데이터 저장부는 상기 기 설정된 재배조건에 근거하여 재배된 상기 작물의 성장 데이터를 수신하고, 상기 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단하는 경우, 상기 작물의 성장 데이터의 결과를 기반으로 상기 기 설정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장하는 것을 특징으로 하는 다단형 재배장치.When the data storage unit receives the growth data of the crop grown based on the preset cultivation conditions and determines that the growth data of the crop does not satisfy a preset threshold, the data storage unit based on a result of the growth data of the crop Complementing the preset cultivation condition, characterized in that for storing the supplemented data as learning data multi-stage grower.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 데이터 저장부는 상기 추정된 재배조건에 근거하여 재배된 상기 새로운 작물의 성장 데이터를 수신하고, 상기 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 상기 새로운 작물의 성장 데이터의 결과를 기반으로 상기 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장하는 것을 특징으로 하는 다단형 재배장치.The data storage unit receives the growth data of the new crop grown on the basis of the estimated cultivation conditions, and when it is determined that the growth data of the new crop does not satisfy a preset threshold, the result of the growth data of the new crop. Complementing the estimated cultivation conditions based on the, multi-stage grower, characterized in that for storing the supplemented data as learning data.
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 재배조건 추정부는 상기 사용자의 입력 또는 상기 영상촬영 장치로부터 수신한 영상을 기반으로 상기 재배 베드에 상기 새로운 작물의 이식 여부를 판단하고, 상기 새로운 작물이 이식되었다고 판단되는 경우 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 것을 특징으로 하는 다단형 재배장치.The cultivation condition estimating unit determines whether the new crop is transplanted to the cultivation bed based on the user's input or the image received from the image photographing apparatus, and if it is determined that the new crop is transplanted, cultivation of the new crop is performed. Multi-stage grower, characterized in that for estimating the optimum growing conditions for.
  8. 제 3항에 있어서,The method of claim 3, wherein
    상기 데이터 분석부는 상기 사용자로부터 상기 새로운 작물의 재배조건에 대한 입력신호를 수신하는 경우 상기 입력신호와 상기 재배조건 추정부로부터 추정된 재배조건을 비교하고, 비교결과를 상기 사용자에게 디스플레이하는 것을 특징으로 하는 다단형 재배장치.The data analysis unit compares the input signal with the cultivation conditions estimated from the cultivation condition estimating unit when receiving an input signal for the cultivation condition of the new crop from the user, and displays the comparison result to the user. Multi-stage grower.
  9. 제 8항에 있어서,The method of claim 8,
    상기 제어명령 생성부는 상기 사용자의 선택에 따라 상기 입력신호 및 상기 추정된 재배조건 중 어느 하나에 근거하여 상기 제어명령을 생성하는 것을 특징으로 하는 다단형 재배장치.And the control command generation unit generates the control command based on one of the input signal and the estimated planting condition according to the user's selection.
  10. 제 1항에 있어서,The method of claim 1,
    상기 급수부는,The water supply unit,
    상기 급수를 저장하는 급수 저장부;A water storage unit for storing the water supply;
    상기 양액을 저장하는 양액 저장부;A nutrient solution storage unit for storing the nutrient solution;
    상기 급수 저장부 및 상기 양액 저장부로부터 제공받은 상기 급수 및 상기 양액을 기 설정된 비율로 혼합한 상기 배양액을 저장하는 배양액 저장부;A culture medium storage unit for storing the culture solution obtained by mixing the water supply and the nutrient solution supplied from the water supply storage unit and the nutrient solution storage unit at a predetermined ratio;
    상기 배양액을 상기 재배 베드부에 공급 및 순환시키기 위한 순환 파이프; 및A circulation pipe for supplying and circulating the culture solution to the culture bed; And
    상기 순환 파이프로 상기 배양액을 이동시키기 위한 가압펌프Pressurized pump for moving the culture liquid to the circulation pipe
    를 더 포함하는 것을 특징으로 하는 다단형 재배장치.Multi-stage grower characterized in that it further comprises.
  11. 제 10항에 있어서,The method of claim 10,
    상기 순환 파이프는,  The circulation pipe,
    상기 재배 베드부의 최상단에 위치한 재배 베드의 일측 및 상기 배양액 저장부의 일측에 연결되어 상기 배양액을 상기 최상단에 위치한 재배 베드로 이동시키는 제1 순환 파이프;A first circulation pipe connected to one side of the cultivation bed located at the top of the cultivation bed and one side of the culture medium storage part to move the culture medium to the cultivation bed located at the top;
    상기 최상단에 위치한 재배 베드의 타측 및 상기 최상단의 재배 베드 하단에 위치한 재배 베드의 일측에 연결되고, 상기 복수의 재배 베드의 하류부에 각각 연결되어 상기 배양액을 이동시키는 제2 순환 파이프; 및A second circulation pipe connected to the other side of the cultivation bed positioned at the uppermost end and the cultivation bed positioned at the bottom of the uppermost cultivation bed, and connected to downstream portions of the plurality of cultivation beds to move the culture solution; And
    상기 재배 베드부의 최하단에 위치한 재배 베드의 일측 및 상기 배양액 저장부의 타측에 연결되어 상기 배양액을 상기 배양액 저장부로 이동시키는 제3 순환 파이프A third circulation pipe connected to one side of the cultivation bed located at the bottom of the cultivation bed part and the other side of the culture medium storage part to move the culture medium to the culture medium storage part;
    를 포함하는 것을 특징으로 하는 다단형 재배장치.Multi-stage cultivation apparatus comprising a.
  12. 제 1항에 있어서,The method of claim 1,
    상기 조명부는 상기 재배 베드부를 지지하기 위한 프레임 및 상기 복수의 재배 베드의 하단에 부착되고, 상기 복수의 재배 베드의 확장성을 고려하여 분리 또는 결합 되는 구조의 PCB(Printed Circuit Board)로 제작된 엘이디 모듈로 구성되는 것을 특징으로 하는 다단형 재배장치.The lighting unit is attached to the frame for supporting the cultivation bed and the lower end of the plurality of cultivation bed, LED is made of a printed circuit board (PCB) of the structure is separated or combined in consideration of the expandability of the plurality of cultivation bed Multi-stage grower, characterized in that consisting of modules.
  13. 식물공장 내에 재배되는 작물의 재배환경을 제어하는 컨트롤러에 있어서,In the controller for controlling the cultivation environment of crops grown in the plant factory,
    사용자의 입력 또는 영상촬영 장치를 이용하여 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장하는 데이터 저장부;A data storage unit for receiving growth data according to cultivation conditions for each crop in the plant factory using a user input or an image photographing device, and storing learning data for learning the received growth data;
    상기 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 재배조건 추정부;A cultivation condition estimating unit for estimating an optimal cultivation condition for cultivating the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory;
    복수의 센서로부터 수집된 상기 식물공장 내부의 온도, 습도, CO2 및 상기 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 상기 재배조건 추정부로부터 추정된 재배조건을 비교하는 데이터 분석부; 및A data analyzer for comparing the information on some or all of the temperature, humidity, CO2, and pH of the culture solution collected from the plurality of sensors with the cultivation conditions estimated from the cultivation condition estimating unit; And
    상기 데이터 분석부의 비교결과를 기반으로 상기 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성하는 제어명령 생성부Control command generation unit for generating a control command for controlling the cultivation environment of the new crop based on the comparison result of the data analysis unit
    를 포함하는 것을 특징으로 하는 컨트롤러.Controller comprising a.
  14. 제 13항에 있어서,The method of claim 13,
    상기 데이터 저장부는 상기 추정된 재배조건에 근거하여 재배된 상기 새로운 작물의 성장 데이터를 수신하고, 상기 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 상기 새로운 작물의 성장 데이터의 결과를 기반으로 상기 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장하는 것을 특징으로 하는 컨트롤러.The data storage unit receives the growth data of the new crop grown on the basis of the estimated cultivation conditions, and when it is determined that the growth data of the new crop does not satisfy a preset threshold, the result of the growth data of the new crop. Compensating the estimated cultivation conditions based on the, and stores the supplemented data as learning data.
  15. 컨트롤러가 식물공장 내에 재배되는 작물의 재배환경을 제어하는 방법에 있어서,In the method for the controller to control the growing environment of crops grown in the plant factory,
    사용자의 입력 또는 영상촬영 장치를 이용하여 상기 식물공장 내에서 작물별로 재배조건에 따른 성장 데이터를 수신하고, 수신한 성장 데이터를 학습한 학습 데이터를 저장하는 과정;Receiving growth data according to cultivation conditions for each crop in the plant factory by using a user's input or an image photographing device, and storing learning data learning the received growth data;
    상기 식물공장 내에 새로운 작물이 재배되고 있음을 인지하는 경우, 상기 학습 데이터를 기반으로 상기 새로운 작물의 재배를 위한 최적의 재배조건을 추정하는 과정;Estimating an optimal cultivation condition for cultivation of the new crop based on the learning data when recognizing that a new crop is being grown in the plant factory;
    복수의 센서로부터 수집된 상기 식물공장 내부의 온도, 습도, CO2 및 상기 배양액의 PH에 대한 정보 중 일부 또는 전부에 대한 정보와 상기 재배조건을 추정하는 과정으로부터 추정된 재배조건을 비교하는 과정;Comparing the cultivation conditions estimated from the process of estimating the cultivation conditions with information on some or all of information on temperature, humidity, CO2, and pH of the culture medium collected from a plurality of sensors;
    상기 비교하는 과정으로부터 추출된 비교결과를 기반으로 상기 새로운 작물의 재배환경을 제어하기 위한 제어명령을 생성하는 과정Generating a control command for controlling the cultivation environment of the new crop based on the comparison result extracted from the comparing process
    을 포함하는 것을 특징으로 하는 작물의 재배환경 제어방법.Cultivation environment control method of a crop comprising a.
  16. 제 15항에 있어서,The method of claim 15,
    상기 학습 데이터를 저장하는 과정은 상기 추정된 재배조건에 근거하여 재배된 상기 새로운 작물의 성장 데이터를 수신하고, 상기 새로운 작물의 성장 데이터가 기 설정된 임계치를 만족시키지 못한다고 판단되는 경우, 상기 새로운 작물의 성장 데이터의 결과를 기반으로 상기 추정된 재배조건을 보완하고, 보완된 데이터를 학습 데이터로서 저장하는 과정을 더 포함하는 것을 특징으로 하는 작물의 재배환경 제어방법.The storing of the learning data may include receiving growth data of the new crop cultivated based on the estimated cultivation conditions, and if it is determined that the growth data of the new crop does not satisfy a preset threshold, Compensating the estimated cultivation conditions based on the results of the growth data, and further comprising the step of storing the supplemented data as learning data.
  17. 제 15항에 있어서,The method of claim 15,
    상기 비교하는 과정은 상기 사용자로부터 상기 새로운 작물의 재배조건에 대한 입력신호를 수신하는 경우 상기 입력신호와 상기 추정된 재배조건을 비교하고, 비교결과를 상기 사용자에게 디스플레이하는 과정을 더 포함하는 것을 특징으로 하는 작물의 재배환경 제어방법.The comparing may further include comparing the input signal with the estimated cultivation condition when the input signal for the cultivation condition of the new crop is received from the user, and displaying the comparison result to the user. Method of controlling the cultivation environment of crops.
  18. 제 17항에 있어서,The method of claim 17,
    상기 제어명령을 생성하는 과정은 상기 사용자의 선택에 따라 상기 입력신호 및 상기 추정된 재배조건 중 어느 하나에 근거하여 상기 제어명령을 생성하는 과정을 더 포함하는 것을 특징으로 하는 작물의 재배환경 제어방법.The generating of the control command may further include generating the control command based on any one of the input signal and the estimated cultivation condition according to the user's selection. .
PCT/KR2013/002254 2013-03-19 2013-03-19 Multi-stage type cultivation apparatus for crop in plant factory WO2014148654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130029174A KR101321336B1 (en) 2013-03-19 2013-03-19 Plant cultivating apparatus
KR10-2013-0029174 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148654A1 true WO2014148654A1 (en) 2014-09-25

Family

ID=49639116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002254 WO2014148654A1 (en) 2013-03-19 2013-03-19 Multi-stage type cultivation apparatus for crop in plant factory

Country Status (2)

Country Link
KR (1) KR101321336B1 (en)
WO (1) WO2014148654A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104472443A (en) * 2014-12-30 2015-04-01 中国农业科学院柑桔研究所 Indoor biological activity assay method of orange ceroplastes rubens maskell and application of indoor biological activity assay method
CN104798627A (en) * 2015-04-26 2015-07-29 湖南三箭农业科技有限公司 Automatic control device for plant growth environment
CN106417028A (en) * 2016-10-14 2017-02-22 屏南县惠荣农业科技有限公司 Succulent tissue culture container
CN109931987A (en) * 2019-04-15 2019-06-25 天津中津科苑智能科技有限公司 A kind of intelligent vegetable planting machine environment based on cloud precisely monitors system and method
US10785928B2 (en) 2016-12-09 2020-09-29 Eden Works, Inc. Methods systems and apparatus for cultivating densely seeded crops
CN113221723A (en) * 2021-05-08 2021-08-06 余治梅 Traceable self-feedback learning urban plant factory
US11116156B2 (en) 2016-04-21 2021-09-14 Upward Enterprises Inc. Stacked shallow water culture (SSWC) growing systems, apparatus and methods
WO2023120961A1 (en) * 2021-12-21 2023-06-29 엘지전자 주식회사 Plant management method and application program

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101582389B1 (en) * 2013-12-19 2016-01-20 순천대학교 산학협력단 Wireless Controllable Plant Cultivation System
KR101614925B1 (en) 2014-03-10 2016-04-22 (주)태종 plants cultivating apparatus for family use
KR101593629B1 (en) * 2014-03-27 2016-02-12 (주)성진테크 Custom-type automatic temperature adjustment and control system for cropping house
KR101563563B1 (en) 2015-04-01 2015-10-27 주식회사 애그로닉스 Crop cultivation equipment for optimal environment point derivation for the growth of the crop
CN104879869A (en) * 2015-05-14 2015-09-02 方天成 Plant type refrigerating air conditioner
KR200485239Y1 (en) 2015-08-05 2017-12-12 박성범 Plant growing apparatus
KR20170028721A (en) * 2015-09-04 2017-03-14 주식회사 케이티 System for controling greenhouse environment and parameter of controller of greenhouse
CN105594488A (en) * 2016-01-27 2016-05-25 苏州宏奇锐自动化有限公司 Water storage self-irrigation type flowerpot with function of filtering detection
KR101869034B1 (en) * 2016-11-30 2018-07-19 주종문 Independent module-type personalization plant cultivating device and plant factory system based on independent module-type personalization plant cultivating device
KR101712582B1 (en) * 2016-12-30 2017-03-06 주식회사 청오엔지니어링 recycle supplying systems of nutrient solution of cultivation under structure used ICT
KR101887503B1 (en) * 2017-06-13 2018-08-10 (주)다온정보 Apparatus for smart control system in greenhouse using artificial intelligence
KR102077221B1 (en) * 2018-07-18 2020-02-13 최유화 Big-data based smart controlling method for enhancing graft-take and the plant factory system
KR20200049777A (en) 2018-10-24 2020-05-08 주식회사 엔씽 Hydroponics
US11399472B2 (en) * 2019-03-29 2022-08-02 Steve Bates Fodder machine
KR102283841B1 (en) 2019-11-06 2021-08-02 한국과학기술연구원 Automatic plant cultivation system
KR102291473B1 (en) * 2019-11-19 2021-08-20 그린산업 주식회사 Small hydroponics cultivation apparatus
KR102431742B1 (en) * 2020-02-12 2022-08-11 강성실 Hydroponics Growth Device Advancing Cart and ICT Smart Farm Technology
CA3179465A1 (en) * 2020-05-19 2021-11-25 Yuki Matsuda Method for cultivating strawberry
KR102444052B1 (en) 2020-06-19 2022-09-19 대한민국 Medicinal crop sprout vegetable regeneration multi-stage material system
CN113785718A (en) * 2021-09-10 2021-12-14 安徽极光照明工程有限公司 Big data based self-learning planting lamp control system and control method
KR20240032318A (en) 2022-09-02 2024-03-12 박요성 Prefabricated Gutter Hydroponics System
KR102567682B1 (en) * 2022-12-12 2023-08-18 농업회사법인 뉴건강나라 주식회사 Ai spray cultivation and wastewater minimization method for health management of smart fram root zone
KR102619885B1 (en) * 2022-12-27 2024-01-04 고덕상 Small plant factory system
KR102589015B1 (en) * 2022-12-27 2023-10-13 고덕상 Plant factory system for including light source control apparatus
KR102619886B1 (en) * 2022-12-27 2024-01-04 고덕상 Small plant factory system
KR102589017B1 (en) * 2022-12-27 2023-10-13 고덕상 Plant factory system
KR102598707B1 (en) * 2022-12-27 2023-11-07 고덕상 Plant factory system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576243A (en) * 1991-09-23 1993-03-30 Yamazaki Sangyo:Yugen Control device of culture chamber
JPH07163253A (en) * 1993-10-14 1995-06-27 Hideo Shimizu Three-dimensional plant-cultivation factory having controlled environment
JP2004000146A (en) * 2002-04-24 2004-01-08 Kitaokagumi:Kk Method and apparatus for cultivating vegetable
JP2008125479A (en) * 2006-11-24 2008-06-05 Anix Plants Works Ltd Plant cultivation system
JP2010279269A (en) * 2009-06-03 2010-12-16 Kansei Devices:Kk Vegetable factory
KR101211246B1 (en) * 2012-04-10 2012-12-11 김완중 Water culture system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577286B2 (en) 2001-03-30 2004-10-13 渡辺パイプ株式会社 Cultivation support system and hydroponics system
JP4009441B2 (en) 2001-08-08 2007-11-14 株式会社日立製作所 Crop cultivation evaluation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576243A (en) * 1991-09-23 1993-03-30 Yamazaki Sangyo:Yugen Control device of culture chamber
JPH07163253A (en) * 1993-10-14 1995-06-27 Hideo Shimizu Three-dimensional plant-cultivation factory having controlled environment
JP2004000146A (en) * 2002-04-24 2004-01-08 Kitaokagumi:Kk Method and apparatus for cultivating vegetable
JP2008125479A (en) * 2006-11-24 2008-06-05 Anix Plants Works Ltd Plant cultivation system
JP2010279269A (en) * 2009-06-03 2010-12-16 Kansei Devices:Kk Vegetable factory
KR101211246B1 (en) * 2012-04-10 2012-12-11 김완중 Water culture system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104472443A (en) * 2014-12-30 2015-04-01 中国农业科学院柑桔研究所 Indoor biological activity assay method of orange ceroplastes rubens maskell and application of indoor biological activity assay method
CN104798627A (en) * 2015-04-26 2015-07-29 湖南三箭农业科技有限公司 Automatic control device for plant growth environment
US11116156B2 (en) 2016-04-21 2021-09-14 Upward Enterprises Inc. Stacked shallow water culture (SSWC) growing systems, apparatus and methods
CN106417028A (en) * 2016-10-14 2017-02-22 屏南县惠荣农业科技有限公司 Succulent tissue culture container
US10785928B2 (en) 2016-12-09 2020-09-29 Eden Works, Inc. Methods systems and apparatus for cultivating densely seeded crops
CN109931987A (en) * 2019-04-15 2019-06-25 天津中津科苑智能科技有限公司 A kind of intelligent vegetable planting machine environment based on cloud precisely monitors system and method
CN113221723A (en) * 2021-05-08 2021-08-06 余治梅 Traceable self-feedback learning urban plant factory
CN113221723B (en) * 2021-05-08 2024-04-09 余治梅 Traceable self-feedback learning urban plant factory
WO2023120961A1 (en) * 2021-12-21 2023-06-29 엘지전자 주식회사 Plant management method and application program

Also Published As

Publication number Publication date
KR101321336B1 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
WO2014148654A1 (en) Multi-stage type cultivation apparatus for crop in plant factory
WO2014051202A1 (en) Apparatus for cultivating bulky feed providing environment for germination and growth of crops
WO2014196744A1 (en) Greenhouse-type coarse fodder cultivation device for crop germination and seedling raising
WO2014058081A1 (en) System and method for cultivating plant using led lighting, led lighting device for plant cultivation and method for driving said device
WO2014051203A1 (en) Apparatus for germinating and cultivating providing optimal environment for crop germination, and system for cultivating plants by using same
WO2014148653A1 (en) Controller apparatus for controlling cultivation environment of cultivation crop in plant factory and method therefor
WO2019050093A1 (en) Plant cultivation system enabling autonomous control and remote control
CN109716953B (en) Plant factory
CN103135540A (en) Plant tissue culture environmental information monitoring and simulating system
WO2016117884A1 (en) Vertically hanging vegetation apparatus
AU2017348643A1 (en) Horticultural luminaire, horticultural lighting arrangement and method for controlling horticultural lighting arrangement
KR20150033363A (en) Plant factory LED lighting system with cooling and radiation structure
CN205026508U (en) Miniature plant factory's intelligent lighting device
CN103053363A (en) Integrated intelligent energy-saving photovoltaic greenhouse
WO2014148655A1 (en) Seedling growing method for crop in plant factory and seedling growing apparatus therefor
KR101394486B1 (en) light irradition apparatus for plant
KR101191618B1 (en) System and method for growing plants by using led illumination, led illumination apparatus for growing plants and driving method thereof
WO2014051204A1 (en) Independent apparatus for cultivating plants to cultivate and harvest seedlings of grown crops
CN203027822U (en) Integrated intelligent type energy-saving photovoltaic greenhouse
KR20200053833A (en) Plant cultivating apparatus
CN103109702B (en) Method for controlling rice seedling growth by optical spectrum, and raising spectrum regulating appliance and equipment
CN210841028U (en) Plant culture device
WO2023085517A1 (en) Plant-cultivation apparatus
KR20140001689A (en) Led green house controlling system using solar cell module
WO2014017705A1 (en) Plant-factory lighting device having waterproof function and attaching and detaching function, and artificial-lighting germination device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879018

Country of ref document: EP

Kind code of ref document: A1