WO2014148620A1 - 二重鎖核酸結合剤、当該結合剤-二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法 - Google Patents

二重鎖核酸結合剤、当該結合剤-二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法 Download PDF

Info

Publication number
WO2014148620A1
WO2014148620A1 PCT/JP2014/057851 JP2014057851W WO2014148620A1 WO 2014148620 A1 WO2014148620 A1 WO 2014148620A1 JP 2014057851 W JP2014057851 W JP 2014057851W WO 2014148620 A1 WO2014148620 A1 WO 2014148620A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
double
stranded nucleic
rna
binding agent
Prior art date
Application number
PCT/JP2014/057851
Other languages
English (en)
French (fr)
Inventor
隆徳 横田
一隆 仁科
猛 和田
倫太朗 岩田
雄介 前田
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to JP2015506862A priority Critical patent/JP6300212B2/ja
Publication of WO2014148620A1 publication Critical patent/WO2014148620A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention is a double-stranded nucleic acid capable of stabilizing a double-stranded nucleic acid binding agent, particularly a double-stranded nucleic acid such as double-stranded RNA, which can be applied in various medical and biological fields.
  • the invention relates to a binder and application of the binder.
  • Non-Patent Documents 1 to 3 nucleic acid drugs, especially RNA interference drugs (RNAi drugs) have been focused as new therapeutic drugs.
  • siRNA which is currently a typical RNAi drug, is not sufficiently effective due to low cell membrane permeability and instability in cells. Therefore, a practical application means is required for constructing a new RNAi drug delivery system (DDS), and many chemical modifications have been proposed to enhance the stability of siRNA (Non-patent Document 4). ⁇ 7).
  • Another strategy for siRNA stabilization is the use of molecules that can non-covalently bind to RNA molecules.
  • RNAi pharmaceuticals are composed of double-stranded RNA that exists as an A-type duplex.
  • Non-patent Document 8 Non-patent Document 8
  • the oligodiaminosaccharide was able to stabilize the A-type RNA duplex and showed binding selectivity to the RNA-RNA duplex.
  • the synthesis of various oligodiaminosaccharides requires many steps and is generally difficult.
  • a cationic oligopeptide composed of an amino acid-bound 8-amino acid group binds to a 12-mer model double-stranded RNA to improve the thermal stability of the RNA.
  • a cationic oligopeptide as an RNA-binding molecule. Peptide synthesis is easier than oligosaccharides, and linking with other molecules typified by delivery molecules such as signal peptides is relatively easy.
  • a cationic oligopeptide was created in which amino acid residues with amino groups (NH 3+ ) at the side chain ends were continuously arranged. The cationic oligopeptide was found in the main groove of the double-stranded RNA. It was confirmed that the thermal stability of the double-stranded RNA-oligopeptide complex was improved by binding to a phosphate group.
  • the binding strength of the above-mentioned cationic oligopeptides with amino groups to the double-stranded RNA is relatively slow.
  • more various cations can be used.
  • the subject of this invention is providing the new means toward the practical use of the drug delivery system using the above-mentioned cationic oligopeptide with an amino group first.
  • RNA-cationic oligopeptide complex in which a cationic oligopeptide having an amino group on its side chain is bound.
  • siRNA used as a double-stranded RNA to be bound still maintains high activity even when the equivalent amount of the cationic oligopeptide is increased. Became.
  • a complex is formed with the cationic oligopeptide, so that at least an RNA-DNA complex duplex is combined with the nuclease resistance.
  • RNAi drugs which is the main body of RNAi pharmaceuticals, is easily degraded in serum because it is degraded in a very short time by nucleases in serum. Therefore, stabilization in the living body is required. At the same time, it is required that the action in the living body is not hindered as much as possible. Further, it was confirmed that the cationic oligopeptide having an amino group as a side chain has more excellent characteristics.
  • a guanidino group is used in place of the amino group in the side chain of the conventional cationic oligopeptide, thereby further improving the binding property and thermal stability with the double-stranded nucleic acid. It has become clear that it is possible to bind even to a B-type double-stranded nucleic acid, which is the main mode of strand DNA, and that resistance to nuclease is observed in the complex.
  • the first aspect of the present invention is an oligopeptide region comprising 2 to 40 amino acids containing a portion in which at least two amino acid residues of the following formula (I) are continuous, and the amino acid of the following formula (I):
  • An oligopeptide comprising an oligopeptide region (hereinafter also referred to as a specific oligopeptide region) that is a single non-contiguous amino acid residue other than a continuous portion of residues (hereinafter referred to as an oligopeptide of the present invention, etc.)
  • a double-stranded nucleic acid binding agent hereinafter also referred to as the nucleic acid binding agent of the present invention).
  • R 1 is a group represented by the group H 3 N + —CH 2 — or the formula (II).
  • R 2 is absent when R 1 is a group H 3 N + —CH 2 —, or is an alkylene group having 1 to 3 carbon atoms, and R 1 is a group represented by the formula (II) Is an alkylene group having 1 to 4 carbon atoms. In one oligopeptide region, R 1 and R 2 are all the same.
  • R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom or a methyl group. ]
  • R 1 is “group H 3 N + —CH 2 —” means that the amino acid residue of formula (I) is “amino acid residue with amino group”. That is, the part of the “group H 3 N + —CH 2 —” excluding the methylene group is an amino group, and this group constitutes the tip of the side chain of the amino acid residue constituting the specific oligopeptide region.
  • the reason for defining R 1 not as an amino group (H 3 N + —) but as a group “group H 3 N + —CH 2 —” is quite formal.
  • the double-stranded nucleic acid to which the oligopeptide of the present invention having a specific oligopeptide region containing this “amino acid residue with an amino group” as a constituent is bound is an A-type double-stranded nucleic acid.
  • R 1 is “group of formula (II)” is based on the fact that the amino acid residue of formula (I) is “amino acid residue with guanidino group”. That is, in the “group of formula (II)”, the group in which R 3 , R 4 and R 5 are all hydrogen atoms is a guanidino group.
  • the double-stranded nucleic acid to which the oligopeptide or the like of the present invention having a specific oligopeptide region containing this “amino acid residue with a guanidino group” as a constituent binds together with the A-type double-stranded nucleic acid and the B-type double-stranded nucleic acid.
  • the number of carbon atoms of the suitable alkylene group R 2 differs between the case where the double-stranded nucleic acid is of the A type and the case of the B type.
  • the A-type duplex structure and the B-type duplex structure are different in the helical structure of nucleic acid depending on the sugar conformation (puckering).
  • B-type duplexes are each based on "S-form conformation of sugar".
  • Distance between base pairs, rotation angle, base pair inclination, number of residues per rotation, width and depth of main groove (major groove) and minor groove (minor groove), distance between phosphate groups For example, the depth of the main groove is 13.5 mm for the A type and 8.5 mm for the B type, and the width is 2.7 mm for the A type and 11.7 mm for the B type.
  • the distance between phosphoric acid groups is 5.9 mm for the A type and 7.0 mm for the B type.
  • RNA / DNA duplex RNA-DNA composite duplex
  • RNA / DNA duplex RNA-DNA composite duplex
  • double strands containing nucleic acid derivatives conforming to these also exist as A-type double strand structures in a physiological environment.
  • a duplex comprising a “double-stranded DNA” and a nucleic acid derivative conforming thereto has a B-type duplex structure at least in a physiological environment.
  • the DNA or RNA in the present invention includes not only a natural type but also artificial DNA or RNA that has been artificially modified.
  • the divalent group R 2 is a group in which the above R 1 is “group H 3 N + —CH 2 —”, that is, the amino acid residue of the formula (I) is “amino acid residue with amino group”. In some cases, it is absent or an alkylene group having 1 to 3 carbon atoms. “Non-existing” described here means “the divalent group R 2 does not exist”, that is, “group H 3 N + —CH 2 —” is attached to the carbon atom at the 2-position of the amino acid residue of the formula (I). Means a direct bond.
  • R 1 is a “group of the formula (II)” based on a guanidino group, it is an alkylene group having 1 to 4 carbon atoms.
  • R 2 is a methylene group having 1 carbon atom (—CH 2 —). It is.
  • R 1 is a “group of formula (II)” based on a guanidino group
  • a preferred R 2 of the above is a trimethylene group having 3 carbon atoms (—CH 2 —CH 2 —CH 2 —).
  • the radix is accompanied by diversity in size. That is, if the strand of the double-stranded nucleic acid is long and the number of phosphate groups increases, the specific oligopeptide region that binds to this can be expressed as “when many are short”, “when few are long”, These combinations will be envisaged and theoretically the variation will increase synergistically as the length of the double stranded nucleic acid increases.
  • oligopeptide of the present invention it is one of the preferred embodiments of the oligopeptide of the present invention that all of the amino acid residues constituting the specific oligopeptide region are composed of the amino acid residues of the formula (I).
  • the “specific oligopeptide region” and other parts in the oligopeptide and the like of the present invention are derived by the definition of the “specific oligopeptide region” described above. That is, a portion where two or more “amino acid residues other than the formula (I)” continue is excluded from the “specific oligopeptide region”.
  • the amino acid residue of the formula (I) closest to the position where two or more “amino acid residues other than the formula (I)” are continuous is The C-terminal side and the N-terminal side are also “ends of the specific oligopeptide region”.
  • the A-type duplex The number of phosphates in the main groove of the RNA duplex that correlate with the length of the chain and the number of amino acid residues in the specific oligopeptide region is calculated as follows.
  • 3 molecules of Dab 8 can bind to the A-type double-chain 21-mer and 4 molecules of 25-mer. Assuming that a short specific oligopeptide region binds several molecules and a long specific oligopeptide region binds one molecule, the number of peptide residues corresponding to a 10-25 mer A-type duplex is 8 34.
  • the double-stranded nucleic acid is an 18 to 25 mer and the number of amino acid residues in the specific oligopeptide region is 8 to 34 : small molecules and large molecules having 8 to 34 amino acid residues
  • the oligopeptide regions are combined in various combinations and bonded according to the number of bases (the number of phosphate groups) of the double-stranded nucleic acid.
  • Double-stranded RNA SiRNA is mainly mentioned as double-stranded RNA of 18 to 25 mer. It is known that microRNA (miRNA) also falls into this category (however, the original miRNA is a single strand, and the embodiment that can be used in the present invention is modified as a double strand).
  • miRNA microRNA
  • this chimeric type A-type double-stranded nucleic acid is expected to be applied as a nucleic acid medicine as an oligonucleotide (antisense oligonucleotide (abbreviated as ASO)) complementary to a partial sequence of mRNA of a target gene.
  • ASO antisense oligonucleotide
  • one of the complementary strands is a nucleic acid containing a region consisting of continuous DNA of 4 bases or more, and the other is an RNA and PNA having a base sequence complementary to the one nucleic acid.
  • a double-stranded nucleic acid that is both or either.
  • the total chain length is usually designed in the range of 10-35 mer with the above-mentioned 4 bases (tetramer) as the minimum length.
  • a suitable standard for the base length is usually a 12 to 25 mer, and a more suitable standard is a 13 to 20 mer.
  • RNA-DNA complex duplex The most basic chimera type duplex is “RNA-DNA complex duplex”.
  • the modified nucleic acid includes a modified nucleic acid continuously or discontinuously in both or either of the 5 ′ terminal side and the 3 ′ terminal side of the “region consisting of continuous DNA of 4 bases or more” in “one nucleic acid” of the complementary strand.
  • a composite DNA chain provided with a region (including a monomer) is exemplified, and LNA is particularly preferable as the modified nucleic acid.
  • continuous means that nucleic acid regions are molecularly continuous by phosphodiester bonds or the like.
  • “discontinuous” means, for example, that nucleic acid regions “are adjacent to each other” without such molecular continuity.
  • the “other nucleic acid” of the complementary strand is RNA, and a region complementary to the region including the modified region of the “one nucleic acid” is modified, and the modification suppresses degradation by RNase.
  • the aspect which has the effect to do is mentioned.
  • Preferred examples of the “modification characterized by suppressing the degradation by RNase” include both 2′-O-methylation and phosphorothioation.
  • a mode in which a functional molecule is bound to “the other nucleic acid” (both RNA and / or PNA) of the complementary strand is also included.
  • the functional molecule is a molecule having an activity of delivering a double-stranded nucleic acid to a target site. This functional molecule can be bound not only in the chimeric duplex but also in the above-described duplex RNA.
  • amino acid residues constituting the specific oligopeptide region are preferably all L-type or all D-type amino acid residues having the same optical activity.
  • a so-called delivery molecule is used in the present invention for purposes such as efficient passage through a generally cationic cell membrane and imparting selectivity to a specific target (organ etc.). It is possible to bind to the oligopeptides.
  • the nucleic acid binding agent of the present invention takes the form as a “nuclease degradation inhibitor” (hereinafter also referred to as the degradation inhibitor of the present invention) based on the “decompression inhibitory effect of nuclease on double-stranded nucleic acid” by its use. (However, RNaseH is excluded from the nuclease for this double-stranded nucleic acid).
  • the double-stranded nucleic acid to be decomposed by the nuclease includes chimeric duplexes such as RNA duplex, DNA duplex, and RNA-DNA composite duplex.
  • the nuclease exemplified herein has an action other than the degradation action on double-stranded nucleic acid, typically possessing the degradation action on single strands of RNA or DNA.
  • nuclease for double-stranded nucleic acid examples include RNase A, oligonucleotidase, RNase II, RNase III, Spleen exonuclease, DNase I, DNase II, Exodeoxyribonuclease VII and the like.
  • RNase A oligonucleotidase
  • RNase II oligonucleotidase
  • RNase III oligonucleotidase
  • Spleen exonuclease DNase I
  • DNase II Exodeoxyribonuclease VII
  • nucleases present in humans are listed, but other nucleases are also included in “nucleases for double-stranded nucleic acids”.
  • nuclease degradation inhibitory effect by nuclease has not been reported at the time of this application, and as described above, the essence of using the nucleic acid binding agent of the present invention for pharmaceutical use, that is, for practical use as a drug delivery system. Effect. If this nuclease degradation inhibitory effect is not accompanied, even if other effects such as a thermal stability effect are observed, it is difficult to realize a pharmaceutical use. However, this nuclease degradation inhibitory effect is not essential for other uses such as research support. In this respect, there is a significance of distinguishing and defining “nucleic acid binding agent” and “nuclease degradation inhibitor”.
  • nucleases There are two types of nucleases: endonuclease that degrades from the inside of the peptide chain and exonuclease that degrades from the end.
  • endonuclease that degrades from the inside of the peptide chain
  • exonuclease that degrades from the end.
  • RNase more endonucleases are present in the intestinal tract that controls absorption of nutrients and the like. Therefore, from an alternative point of view, it can be said that having a decomposition inhibitory effect on endonuclease is more preferable than only having a decomposition inhibitory effect on exonuclease.
  • examples of the endonuclease whose suppression activity should be suppressed include RNase A and RNase III described above.
  • RNase A is also known as RNase, RNase I, Pancreatic RNase, Pancreatic Ribonuclease I, or Ribonuclease I. It cleaves RNA end-to-end by a two-step reaction, prefers the 3'-side of pyrimidine, and chooses 3'-phosphomono or oligonucleotide. It is known to generate.
  • RNaseIII is also known as RibonucleaseIII, RNaseO, or RNaseD, and is known to recognize double-stranded RNA and degrade it endolytically or exotically.
  • the nucleic acid binding agent of the present invention can take an embodiment as a “nuclease degradation accelerator” (hereinafter also referred to as the degradation accelerator of the present invention) based on the “RNaseH degradation promoting effect” by the use thereof.
  • RNaseH is also known as Calf thymus ribonuclease H, Exoribonuclease H, or RNA-DNA-hybrid ribonucleotide hydrolase, and is a chimeric double-stranded RNA such as an RNA-DNA complex duplex. It is known that there are 2 to 3 types of RNaseH in one cell and is widely recognized from bacteria to mammals.
  • the effect of the degradation accelerator of the present invention is that, particularly when a chimeric double-stranded DNA strand or LNA strand (hereinafter also referred to as DNA strand or DNA) is used as an antisense nucleic acid of target mRNA, This is a very advantageous action in rapidly decomposing the chimeric double-stranded RNA strand in the cell and promoting the action of the DNA strand or the like as an antisense nucleic acid.
  • the DNA strand or the like hybridizes to the target mRNA, and the double-stranded mRNA such as the mRNA / DNA is further decomposed by RNase H, and the antisense DNA or the like is released. By repeating such a process, protein synthesis based on the target mRNA can be effectively inhibited.
  • the nucleic acid binding agent of the present invention works both as a degradation inhibitor by nucleases such as RNase A and as a degradation promoter for RNase H.
  • This seemingly contradictory action is based on the difference in the binding site of the nuclease double-stranded nucleic acid that the nucleic acid binding agent of the present invention affects. That is, RNase A is considered to bind to the site where the nucleic acid binding agent of the present invention binds on the major groove side of the double-stranded nucleic acid, so that its action is inhibited by the presence of the nucleic acid binding agent of the present invention. Is bound to a different minor groove side, but rather, the nucleic acid binding agent of the present invention thermodynamically stabilizes a chimeric duplex such as an RNA / DNA duplex, thereby It is thought that decomposition is promoted.
  • the present invention secondly provides a double-stranded nucleic acid-peptide complex (also referred to as the nucleic acid-peptide complex of the present invention) in which the nucleic acid binding agent of the present invention is stabilized by binding to the double-stranded nucleic acid. It is also an invention.
  • the description of the requirements of the nucleic acid-peptide complex of the present invention substantially follows the contents mentioned in the description of the nucleic acid binding agent of the present invention.
  • the double-stranded nucleic acid to be bound is preferably an A-type double-stranded nucleic acid rather than a B-type double-stranded nucleic acid, more preferably siRNA or the like.
  • Examples include chimeric duplexes such as duplex RNA and RNA-DNA composite duplex.
  • the number of amino acid residues in the oligopeptide region Is preferably 8 to 34. That is, (1) the double-stranded nucleic acid is a 10-25 mer and the number of amino acid residues in the oligopeptide region is 8-10; and (2) the double-stranded nucleic acid is an 18-25 mer. And the case where the number of amino acid residues in the oligopeptide region is 8 to 34 is exemplified, as mentioned above in the description of the nucleic acid binding agent of the present invention.
  • the double-stranded nucleic acid is an A-type duplex of about 18 to 25 mer
  • siRNA that is a double-stranded RNA
  • 2 to 3 equivalents of the double-stranded nucleic acid is used.
  • the binding of the nucleic acid binding agent of the invention is preferred in that excellent RNase resistance can be imparted.
  • binding of the nucleic acid binding agent of the invention is more preferable.
  • binding of 1 equivalent or more of the nucleic acid binding agent of the present invention is also a suitable range.
  • the nucleic acid binding agent of the present invention when used for a chimeric duplex such as an RNA / DNA duplex as a degradation promoter by RNase H, it is converted into a tetrameric or higher chimeric duplex.
  • the binding of the nucleic acid binding agent of the present invention is preferably 1 equivalent or more.
  • the chimeric type It is preferred that 2 equivalents or more of the nucleic acid binding agent of the present invention is bound to the duplex. In the case where a chimeric duplex of about 4 to 17 mers is to be bound, it may be suitable for binding of one or more equivalents of the nucleic acid binding agent of the present invention.
  • the nucleic acid-peptide complex of the present invention can be produced by allowing the nucleic acid binding agent of the present invention and the double-stranded nucleic acid to coexist in a buffer solution to form a double-stranded nucleic acid-peptide complex. (Hereinafter also referred to as the production method of the present invention).
  • the “double-stranded nucleic acid” coexisting in the buffer together with the nucleic acid binding agent of the present invention is a “double-stranded nucleic acid after annealing”.
  • the coexistence of the nucleic acid before annealing for making the nucleic acid double-stranded and the nucleic acid binding agent of the present invention is not preferable because it may cause aggregation of nucleic acid molecules.
  • a phosphate buffer as a buffer to be used, it does not contain a divalent anion, particularly a phosphate ion in consideration of the interaction with the phosphate group of a double-stranded nucleic acid. It is preferable to use a buffer solution in order to avoid such agglomeration phenomenon.
  • a Tris buffer, a HEPES buffer, a cacodylate buffer, etc. can be illustrated.
  • the double-stranded nucleic acid such as siRNA or chimeric double-stranded is 18 to 25 mer
  • 2 to 3 equivalents of the nucleic acid binding agent of the present invention is added to the double-stranded nucleic acid. Binding to a double-stranded nucleic acid is preferable in that excellent RNase resistance can be imparted.
  • 2 to 5 equivalents of the nucleic acid binding agent of the present invention and double-stranded nucleic acid such as siRNA or chimeric duplex in the above-mentioned buffer are used. It is preferable to coexist in.
  • the number of equivalents of the nucleic acid binding agent of the present invention in the formed nucleic acid peptide complex of the present invention is also less than 2 equivalents.
  • the effect on the production of the desired siRNA-peptide complex commensurate with the increase in the amount of the nucleic acid binding agent of the present invention is not recognized, and the activity of siRNA may be adversely affected.
  • the double-stranded nucleic acid is a 4 to 17-mer
  • the preferred lower limit of the coexistence amount of the nucleic acid binding agent of the present invention is 1 equivalent to the double-stranded nucleic acid.
  • the upper limit of the preferred range for a 4 to 17-mer double-stranded nucleic acid is 5 equivalents relative to the double-stranded nucleic acid.
  • the present invention provides a pharmaceutical composition (hereinafter also referred to as the pharmaceutical composition of the present invention) characterized by containing the nucleic acid-peptide complex of the present invention.
  • the nucleic acid-peptide complex of the present invention which is excellent in stability in the living environment and maintains the activity of functional RNA such as siRNA, and antisense DNA for suppressing the action of target mRNA are combined.
  • a pharmaceutical composition containing the above-described chimeric duplex as an active ingredient a nucleic acid drug with excellent substantial effects can be provided.
  • the present invention fourthly forms the double-stranded nucleic acid-peptide complex by contacting the nucleic acid binding agent of the present invention and the double-stranded nucleic acid in a buffer solution and binding the agent to the double-stranded nucleic acid.
  • the nucleic acid stabilization method (hereinafter also referred to as the nucleic acid stabilization method of the present invention), and a method for inhibiting the degradation of the double-stranded nucleic acid (hereinafter referred to as the nucleic acid stabilization method).
  • a method for promoting the degradation of double-stranded nucleic acid that promotes the action of RNase H in a chimeric duplex such as an RNA-DNA complex duplex hereinafter referred to as the present invention).
  • a nucleic acid binding agent capable of binding to a double-stranded nucleic acid, particularly an A-type double-stranded nucleic acid such as double-stranded RNA, and improving its stability.
  • a nucleic acid-peptide complex in which a double-stranded nucleic acid is stabilized by binding, a pharmaceutical composition containing the complex, and a method for stabilizing nucleic acid by forming the stabilized double-stranded nucleic acid Provided.
  • a double-stranded nucleic acid nuclease degradation inhibitor capable of binding to double-stranded nucleic acid such as double-stranded RNA and imparting resistance to nuclease degradation, and the degradation inhibitor
  • a method for suppressing nuclease degradation of a double-stranded nucleic acid by forming a double-stranded nucleic acid complex is provided.
  • a nucleic acid degradation promoter that promotes the action of RNase H by binding to a chimeric duplex such as an RNA-DNA complex duplex, and the degradation promoter and the chimeric duplex are bound.
  • CD spectra of RNA / RNA duplexes in the presence and absence of equal amounts of cationic oligopeptides (each peptide and duplex is 20 ° C., pH 7.0, 4 ⁇ M).
  • CD spectra of DNA / DNA duplexes in the presence and absence of equal amounts of cationic oligopeptides (each peptide and duplex is 20 ° C., pH 7.0, 4 ⁇ M).
  • 2 is a drawing showing a difference spectrum in CD spectra of an RNA duplex and an RNA-peptide complex. 2 is a drawing showing the results of examining changes in melting temperature of “peptide complexes having double-stranded RNA or DNA-amino groups”.
  • 6 is a drawing showing the results of examining the change in melting temperature of “peptide complex having double-stranded RNA or DNA-guanidino group”. 6 is a drawing showing the results of examining changes in melting temperature when the amount of cationic oligopeptide added in the “peptide complex having a double-stranded RNA or DNA-guanidino group” is changed. In the oligopeptide with a guanidino group, it is the drawing which examined about the influence which the kind of buffer has on the interaction of a nucleic acid duplex and a cationic peptide.
  • oligopeptide with a guanidino group it is the drawing which examined about the influence which optical activity (difference of L body and D body) exerts on the interaction of a nucleic acid duplex and a cationic peptide.
  • oligopeptide with a guanidino group it is the drawing which examined about the influence which optical activity (difference of a L body, D, and L body) exerts on the interaction of a nucleic acid duplex and a cationic peptide.
  • oligopeptide with a guanidino group it is the figure which examined about the influence which the number of amino acid residues in a specific oligopeptide area
  • RNA by ITC (left) is a drawing showing the titration results of Agp 8 against DNA (right).
  • RNA by ITC (left) is a drawing showing the titration results of Agb 8 against DNA (right). Dab 8 to RNA by ITC in the presence of neomycin (left), Agp 8 (right) is a drawing showing the titration results of Agb 8 (bottom left).
  • Cationic peptides against RNA duplexes (Left: Dap 8, right: Dab 8) is a fluorescence anisotropy change and fitting curve due to the addition of.
  • Cationic peptides against RNA duplexes (Left: Orn 8, right: Lys 8) is a fluorescence anisotropy change and fitting curve due to the addition of.
  • Cationic peptides against RNA duplexes (Left: Agp 8, right: Agb 8) is a fluorescence anisotropy change and fitting curve due to the addition of.
  • Cationic peptides against RNA duplexes (Left: Arg 8, right: Agb 8 G3) is a fluorescence anisotropy change and fitting curve due to the addition of. It is a fluorescence anisotropy change and fitting curve by adding a cationic peptide (left: AgpV, right: neomycin) with respect to RNA duplex. It is drawing which listed the relationship between the dissociation constant of a cationic peptide with respect to RNA duplex, and a melting temperature change.
  • Example 2 is a list of cationic peptides used in Example 2-4. It is drawing which shows the result of having examined the melting temperature of RNA / DNA double strand by changing the density
  • RNA / RNA, RNA / DNA, DNA / DNA is a drawing showing the results of Tm measurement of peptide-RNA / DNA duplexes with varying peptide length of a cationic peptide.
  • This is a model of a complex of siRNA duplex and 1 molecule of Agp 8 (left) and 3 molecules of complex (right).
  • is a graph showing the change in melting temperature of siRNA-Dab 8 complex. is a graph showing the change in melting temperature of siRNA-Agp 8 complex.
  • FIG. 1 is a drawing showing the results of developing an RNA and RNA-peptide complex treated with RNase A by electrophoresis. It is the figure which examined the RNAi activity of the composite_body
  • the essential component of the nucleic acid binding agent of the present invention is an oligopeptide consisting of 2 to 40 amino acids containing a portion in which at least two amino acid residues of the following formula (I) are consecutive.
  • An oligopeptide comprising a region (specific oligopeptide region) and an oligopeptide region which is one non-continuous amino acid residue other than a continuous portion of the amino acid residue of the following formula (I) It is a peptide derivative (such as an oligopeptide of the present invention).
  • R 1 is a group represented by the group H 3 N + —CH 2 — or the formula (II).
  • R 2 is absent when R 1 is a group H 3 N + —CH 2 —, or is an alkylene group having 1 to 3 carbon atoms, and R 1 is a group represented by the formula (II) Is an alkylene group having 1 to 4 carbon atoms. In one oligopeptide region, R 1 and R 2 are all the same.
  • R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom or a methyl group. ]
  • oligopeptide regions are illustrated while abbreviating an oligopeptide consisting of amino acid residues of formula (I) as An (n is a positive integer indicating the number of bonds of amino acid residues A). Enumerate.
  • (2) -1 A 2 —XA 2 —XA 2 — (X is an amino acid residue other than the amino acid residue of formula (I), which may be the same or different), (2) -2: A 3 -XA 2 -XA 3 ... (X is the same or different amino acid residue other than the amino acid residue of formula (I))
  • other amino acid residues are not particularly limited, and can be appropriately selected according to the degree of freedom intended to be given to the oligopeptide.
  • Glycine is exemplified as an amino acid residue having a large degree of freedom.
  • Other amino acid residues that affect the degree of freedom of the oligopeptide include amino acids having a proline skeleton other than L-alanine and L-proline, for example. Examples thereof include, but are not limited to, L-aminoproline and L-guanidinoproline.
  • the double-stranded nucleic acid to be bound is preferably an A-type double-stranded nucleic acid rather than a B-type double-stranded nucleic acid.
  • Double-stranded DNA is mentioned as a B-type double-stranded nucleic acid under physiological conditions.
  • examples of the A-type double-stranded nucleic acid under physiological conditions include double-stranded RNA and chimeric duplexes such as RNA-DNA composite duplex.
  • Examples of the chemical modification of these nucleic acids include base site modification, such as cytosine 5-methylation, 5-fluorination, 5-bromination, 5-iodination, N4-methylation, and thymidine 5 -Demethylation, 5-fluorination, 5-bromination, 5-iodination, N6-methylation of adenine, 8-bromination, N2-methylation of guanine, 8-bromination, phosphorothioation, methylphosphonation, Examples include methylthiophosphonation, chiral-methylphosphonation, phosphorodithioation, phosphoramidateation, 2'-O-methylation, 2'-MOEation, 2'-APation, 2'-fluorination .
  • base site modification such as cytosine 5-methylation, 5-fluorination, 5-bromination, 5-iodination, N4-methylation, and thymidine 5 -Demethylation, 5-fluorination, 5-bromination, 5-iodination, N6
  • 2'-O-methylation or phosphorothioation is preferred.
  • 2'-O-methyl RNA is known to suppress off-target effects while maintaining the silencing ability of the target gene.
  • these chemical modifications can be applied to the same nucleic acid in combination of a plurality of types.
  • nucleic acid examples include, for example, hexitol nucleic acid (HNA), cyclohexene nucleic acid (CeNA), peptide nucleic acid (PNA), glycol nucleic acid (GNA), threose Nucleic acid (TNA), morpholino nucleic acid, tricyclo-DNA (tcDNA), 2'-O-methylated nucleic acid, 2'-MOE (2'-O-methoxyethyl) nucleic acid, 2'-AP (2'-O- Aminopropyl) nucleic acid, 2′-fluorinated nucleic acid, 2′F-arabino nucleic acid (2′-F-ANA), BNA (Bridged Nucleic Acid).
  • HNA hexitol nucleic acid
  • CeNA cyclohexene nucleic acid
  • PNA peptide nucleic acid
  • GAA glycol nucleic acid
  • TAA threose Nucleic
  • LNA Locked Nucleic Acid®, 2 ′, 4′-BNA
  • ⁇ -L-methyleneo Shi (4'-CH 2 -O-2 ') BNA
  • beta-D-methyleneoxy (4'-CH 2 -O-2 ') BNA
  • ENA ethyleneoxy (4 '- (CH 2 2 ) -O-2 ′) BNA
  • ⁇ -D-thio (4′-CH 2 —S-2 ′) BNA
  • aminooxy 4′-CH 2 —O—N (R 3 ) -2 ′)
  • Oxyamino (4′-CH 2 —N (R 3 ) —O-2 ′) BNA
  • BNA 2 ′, 4′-BNA NC , 2 ′, 4′-BNA COC , 3′amino-2 ', 4'-BNA can be mentioned, and among these, LNA is particularly preferable.
  • phosphoric acid modification improves in vivo stability and cell membrane permeability improves due to increased hydrophobicity.
  • Typical phosphoric acid modification RNA is phosphorothioate RNA (PS-RNA), And boranophosphate RNA (PB-RNA).
  • a functional molecule may be bound to the “other nucleic acid” complementary to the “one nucleic acid”. This bond may be a direct bond or an indirect bond via another substance, but may be directly bonded by a covalent bond, an ionic bond, a hydrogen bond, or the like. In view of obtaining a more stable bond, a covalent bond is more preferable.
  • the “functional molecule” is not particularly limited, and examples thereof include labeling compounds (fluorescent protein, luciferase, etc.) and purification compounds (biotin, avidin, His tag peptide, GST tag peptide, FLAG tag peptide, etc.).
  • the functional molecule is a double-stranded nucleic acid in that the above-mentioned “one nucleic acid” can be efficiently delivered to a target site with high specificity and the expression of the target gene can be suppressed very effectively by the nucleic acid. It is preferable that the molecule
  • a molecule having an activity of delivering a double-stranded nucleic acid to a target site includes, for example, lipids from the viewpoint that the double-stranded nucleic acid of the present invention can be efficiently delivered to the liver and the like with high specificity.
  • lipids include lipids such as cholesterol and fatty acids (for example, vitamin E (tocopherols, tocotrienols), vitamin A, vitamin D), fat-soluble vitamins such as vitamin K (for example, acylcarnitine), acyl CoA, and the like.
  • cholesterol and vitamin E (tocopherols, tocotrienols) are preferable if safety is important.
  • sugar for example, glucose, sucrose
  • the double-stranded nucleic acid of the present invention can be efficiently delivered to the brain with high specificity.
  • proteins are also mentioned as “functional molecules”.
  • double-stranded RNA and “RNA-DNA composite duplex” are used.
  • the “double-stranded RNA” as the binding stabilization target of the binding agent of the present invention is “originally double-stranded RNA” or “originally single-stranded RNA” modified into a double-stranded one. Both "RNA” can be mentioned.
  • RNA having a partially double-stranded structure for example, a hairpin structure, a stem ⁇ loop structure, or a dumbbell structure, can also be a target for binding stabilization of the binding agent of the present invention.
  • RNAs to which the present invention can be applied examples include siRNA, miRNA, piRNA, rasiRNA, smRNA, tncRNA, tncRNA, telomerase RNA, spliceosome snRNA, U7 snRNA, C / DRNA, 7SKRNA and the like.
  • siRNA small interfering RNA
  • RNAi pharmaceutical a foreign double-stranded RNA (dsRNA) ⁇ ⁇ is cleaved by Dicer to form a 21-23 base pair siRNA.
  • This siRNA consumes ATP and binds to proteins such as Ago2, Dice and TRBP to form a complex called RLC (RISC loading complex). Thereafter, the passenger strand ⁇ ⁇ (or sense strand) ⁇ is decomposed and dissociated by the endonuclease to form a complex called RISC in which only the guide strand (or antisense strand) ⁇ ⁇ remains complementary to the target mRNA. RISC suppresses target gene expression by repeatedly binding and decomposing to mRNA complementary to the guide strand.
  • RNAi medicines The main purpose of RNAi medicines is to introduce a siRNA cleaved by Dicer or a precursor to be cleaved into cells to form a RISC carrying the guide strand of the target mRNA and to degrade the mRNA.
  • a siRNA cleaved by Dicer or a precursor to be cleaved into cells to form a RISC carrying the guide strand of the target mRNA and to degrade the mRNA.
  • Such an RNAi drug is expected to be a particularly effective nucleic acid drug because it not only binds to a target but also degrades the target molecule by an in vivo mechanism.
  • the present invention opens the way to practical application of this nucleic acid drug by increasing the in vivo stability of siRNA which is positioned as the main role of this RNAi drug.
  • the “chimeric duplex such as an RNA-DNA complex duplex” as a binding stabilization target of the binding agent of the present invention can be used as a nucleic acid drug.
  • This is intended, for example, for the DNA complexed with RNA to act as an antisense nucleic acid for a specific mRNA.
  • a chimeric duplex such as an RNA / DNA duplex in which the base sequence of RNA to be complexed with DNA is all or part of the sequence of the target mRNA that suppresses its function is used as a nucleic acid drug. it can.
  • This chimeric duplex such as RNA / DNA duplex as nucleic acid medicine recognizes the chimeric duplex such as RNA / DNA duplex as a duplex in the cell and selects the RNA strand
  • RNaseH that decomposes automatically, it becomes a single-stranded DNA having a sequence complementary to the target mRNA, and the single-stranded DNA etc. binds to the target mRNA in the cell and suppresses protein synthesis based on this, And target mRNA is decomposed
  • RNA / DNA duplex is known to be comprehensively associated with excellent resistance to nucleases (for example, Patent Document 1), but on the other hand, As shown in the examples described later, the heat denaturation temperature is lower than that of double-stranded RNA.
  • the RNA / DNA duplex is reduced by the body temperature. Partially denatured and single-stranded RNA is exposed, and the single-stranded RNA or DNA is degraded by RNase A or DNase in the living body before reaching the inside of the cell, thereby inhibiting the desired function. It is assumed that
  • RNA / DNA duplexes to which a cationic peptide is bound can improve the thermal stability, and as a result, the nuclease stability in the human body can also be improved. Is possible.
  • the action of promoting the action of RNase H is recognized together with the stabilizing action of the above-described chimeric duplex such as RNA / DNA duplex, and the RNA / DNA duplex
  • the stabilizing action of the above-described chimeric duplex such as RNA / DNA duplex
  • the RNA / DNA duplex there is a possibility of practical application as a chimeric double-stranded nucleic acid drug.
  • the portion other than the specific oligopeptide derivative in the oligopeptide or the like of the present invention can be appropriately selected as necessary, and is not particularly limited.
  • an amino acid derivative residue to which a signal source such as a protecting group or a fluorescent group such as fluorescein is bound can be used as necessary.
  • a so-called delivery molecule can be bound to the oligopeptide or the like of the present invention.
  • the delivery molecule include a molecule such as a signal peptide capable of introducing the oligopeptide of the present invention into a cell, a molecule having target selectivity, and the like.
  • the oligopeptide of the present invention can be selectively introduced into the liver or the like.
  • the lipid include cholesterol; vitamin E (tocopherols, tocotrienols, etc.), fat-soluble vitamins such as vitamin A and vitamin K; intermediate metabolites such as acylcarnitine and acyl CoA; glycolipids; lipids such as glycerides; And derivatives of these lipids.
  • cholesterol or vitamin E is mentioned as a general preferred example from the viewpoint of safety and the like.
  • sugars such as glucose and sucrose as delivery molecules
  • the oligopeptide of the present invention can be selectively introduced into the brain.
  • binding of the oligopeptide of the present invention to various proteins and receptors on the cell surface of each organ is also recognized as a selective introduction means, antibodies and ligands specific to these cell surface proteins and the like are used. It can also be used as a delivery molecule.
  • the oligopeptide of the present invention is assumed to bind the delivery molecule to the N-terminus or C-terminus, so that the N-terminus is protected with an acetyl group and the C-terminus is protected with an amide group.
  • L-tyrosine having UV absorption is introduced through two residues of glycine.
  • the oligopeptide and the like of the present invention can be produced in accordance with a known peptide chemical synthesis method. That is, it can be produced using a liquid phase peptide synthesis method or a solid phase peptide synthesis method that has now been established as a conventional method.
  • the solid phase peptide synthesis method generally recognized as a suitable chemical synthesis method can also use the Boc solid phase method or the Fmoc solid phase method, and the ligation method can be used as necessary. It is.
  • necessary oligopeptides and the like were synthesized using the Fmoc solid phase method which is most commonly performed at the present time.
  • each amino acid which comprises an oligopeptide etc. can be manufactured by a well-known method, and it is also possible to use a commercial item.
  • the synthesized oligopeptide and the like can be purified by a conventional method such as reverse phase high performance liquid chromatography (reverse phase HPLC) after the deprotection step according to a conventional method.
  • the target oligopeptide can be identified by mass spectrometry (matrix-assisted laser desorption ionization time-of-flight: MALDI-TOF or liquid chromatography-electrospray ionization: LC-ESI).
  • MALDI-TOF matrix-assisted laser desorption ionization time-of-flight
  • LC-ESI liquid chromatography-electrospray ionization
  • the oligopeptide can be hydrolyzed to confirm the amino acid composition and content.
  • the distance between adjacent amino groups and guanidino groups in a specific oligopeptide region having an important significance in the present invention can be confirmed by molecular modeling by molecular mechanics / molecular dynamics calculation.
  • the distance between the amino groups is, for example, a set of two units of the amino acid residue of the formula (I) constituting each specific oligopeptide region accompanied by the amino group in FIG. Means the distance between two nitrogen atoms with two positive charges.
  • the distance between guanidino groups is the average between the nitrogen atoms of two guanidino groups in a set of two units of the amino acid residue of formula (I) constituting each specific oligopeptide region with a guanidino group in FIG. It means distance.
  • 2 and 3 exemplify the chemical formulas of the essential components of the nucleic acid binding agent of the present invention based on the state in which two amino acid residues of the minimum unit constituting the specific oligopeptide region are linked via a peptide bond. Is going.
  • the nucleic acid binding agent of the present invention is an agent which essentially comprises the above oligopeptide of the present invention and is used for binding to a double-stranded nucleic acid.
  • the nucleic acid binding agent of the present invention can take the form of a “nuclease degradation inhibitor for double-stranded nucleic acids” or a “degradation promoter for chimeric duplexes such as RNA-DNA complex duplexes” by RNaseH. This is as described above.
  • nucleic acid-peptide complex of the present invention is a double-stranded nucleic acid-peptide complex in which the nucleic acid binding agent of the present invention is stabilized by binding to a double-stranded nucleic acid. is there.
  • the double-stranded nucleic acid to be bound to the nucleic acid binding agent of the present invention is (1) when R 1 of the amino acid residue of the formula (I) is “group H 3 N + —CH 2 —” (amino A) is a type A double-stranded nucleic acid.
  • R 1 of the amino acid residue of formula (I) is “group of formula (II)” (based on the fact that the amino acid residue of formula (I) is “amino acid residue with guanidino group”) ) And B-type double-stranded nucleic acids as well as A-type double-stranded nucleic acids.
  • the number of carbon atoms of the suitable alkylene group R 2 is different between the case where the double-stranded nucleic acid is A-type and the case where it is B-type, and usually A-type double-stranded nucleic acids are targeted. .
  • the main groove of a double-stranded nucleic acid is a broader groove structure formed inside the double-helix structure of a double-stranded nucleic acid, and is a term for a minor groove that means a narrower groove structure. is there.
  • phosphate groups of nucleotides constituting a double helix are regularly arranged.
  • the nucleic acid-peptide complex of the present invention is formed by the non-covalent bond between the phosphate group with negative charge in the main groove and the amino group or guanidino group in the oligopeptide region with positive charge. As described above, the groove structure of the double helix is different between the A-type double helix and the B-type double helix.
  • the nucleic acid-peptide complex of the present invention is less susceptible to heat denaturation than double-stranded nucleic acids to which no peptide is fused, and resistance to general nucleases against double-stranded nucleic acids is recognized. The function of the double-stranded nucleic acid is not impaired. As described above, when the binding agent of the present invention is bound to a chimeric duplex such as an RNA / DNA duplex, the activity of RNase H is not substantially inhibited but rather promoted. It is.
  • the nucleic acid-peptide complex of the present invention is obtained by forming the double-stranded nucleic acid-peptide complex by coexisting the nucleic acid binding agent of the present invention and the double-stranded nucleic acid in a buffer solution. It can be manufactured (the manufacturing method of the present invention). Furthermore, the “double-stranded nucleic acid” coexisting in the buffer together with the nucleic acid binding agent of the present invention is a “double-stranded nucleic acid after annealing”. The coexistence of the nucleic acid before annealing for making the nucleic acid double-stranded and the nucleic acid binding agent of the present invention is not preferable because it may cause aggregation of RNA molecules.
  • a phosphate buffer as the buffer to be used, in consideration of the interaction with the phosphate group of the double-stranded nucleic acid, a buffer that does not contain a divalent anion, particularly a phosphate ion. It is preferable to use a liquid in order to avoid such agglomeration phenomenon.
  • a Tris buffer, a HEPES buffer, a cacodylate buffer, etc. can be illustrated.
  • the reaction temperature is 0 to 50 ° C., preferably 10 to 40 ° C.
  • the pH of the solvent is 5 to 9, preferably 6 to 8.
  • the equivalent ratio of the double-stranded nucleic acid to the nucleic acid binder of the present invention in the solvent system and the size of the specific oligonucleotide region, such as the oligonucleotide that is an essential component of the nucleic acid binder It also depends on whether the nucleic acid-peptide complex of the invention is prepared. In general, the longer the strand of a double-stranded nucleic acid that is to be bound, the greater the number of bases, the greater the number of phosphate groups that accompanies it, and the amino acid residues that make up the specific oligopeptide region that can bind to them. The radix is accompanied by a large and small diversity.
  • the specific oligopeptide region that binds to this can be expressed as “when many are short”, “when few are long”, These combinations will be envisaged, and theoretically the variation will increase synergistically as the length of the double stranded nucleic acid increases. That is, when the length of the double-stranded nucleic acid is relatively short (like the model double-stranded RNA used in the first half of this example, the one near 12 mer), the binding of the present invention to one double-stranded molecule.
  • the amount of the agent (cationic oligopeptide) is 1 equivalent, and the desired nucleic acid-peptide complex can be prepared by coexisting with the binding agent of the present invention of about 1 to 2 equivalents at most.
  • the number of binding sites (phosphate groups) in the double-stranded nucleic acid also increases, and “a specific oligopeptide having the same number of amino acid groups” that one molecule of double-stranded nucleic acid may require.
  • the equivalent of the binding agent of the present invention in which the oligopeptide of the present invention or the like having a region increases.
  • the diversity of the number of amino acid residues in the specific oligopeptide region also occurs synergistically.
  • the number of amino acid residues in the specific oligopeptide region is 10 to 25-mers of double-stranded nucleic acid. Is roughly divided into 8 to 10, and (2) when the double-stranded nucleic acid is 18 to 25 mer and the number of amino acid residues in the specific oligopeptide region is 8 to 34.
  • double-stranded nucleic acids examples include siRNA, microRNA modified as a double-stranded form (miRNA), RNA-DNA composite duplex, etc. And chimera type double chain.
  • the binding agent of the present invention can be bound at a ratio of 1 equivalent to 3 equivalents.
  • the binding agent of the present invention is obtained when two of the resulting nucleic acid-peptide complexes are doubled. Since there is a tendency not to have sufficient resistance to general nucleases (except RNase H) for heavy chain nucleic acids, it is preferable that the binding is 2 to 3 equivalents. In particular, an excellent feature that even when a plurality of equivalent nucleic acid binding agents of the present invention is bound in this way, the activity of the chimeric duplex such as the original siRNA or RNA / DNA duplex is not substantially adversely affected. Is recognized.
  • nucleic acid binding agent comprising, as an essential component, an oligopeptide containing a specific oligopeptide region containing “amino acid residue (I) with an amino group” as a constituent. Therefore, when binding an A-type double-stranded nucleic acid of about 18 to 25 mer, the binding of the nucleic acid binding agent of the present invention is preferably 2 equivalents or more, particularly preferably 3 equivalents or more. An embodiment using a specific oligopeptide region of “amino acid residue (I) with amino group” is preferable.
  • nucleic acid binding agent of the present invention In order to realize this state, 2 to 5 equivalents, preferably 3 to 4 equivalents, of the nucleic acid binding agent of the present invention, particularly preferably amino group type nucleic acid binding, for 18 to 25-mer double-stranded nucleic acid. It is preferable that the agent and the double-stranded nucleic acid coexist in the above-described buffer solution.
  • the nucleic acid binding agent of the present invention is less than 2 equivalents, the number of equivalents of the nucleic acid binding agent of the present invention in the formed nucleic acid peptide complex of the present invention is also less than 2 equivalents.
  • the effect on the production of the desired-peptide complex commensurate with the increase in the amount of the nucleic acid binding agent of the present invention is not recognized, and it may adversely affect the activity of the original nucleic acid.
  • the nucleic acid-peptide complex of the present invention is produced (produced), and the complex is, for example, an RNAi drug, a research reagent for conducting gene function analysis, an antisense drug, a nucleic acid adjuvant comprising a double-stranded RNA. Etc. can be used.
  • the nucleic acid-peptide complex of the present invention is obtained by contacting the nucleic acid binding agent of the present invention with a double-stranded nucleic acid and binding the agent to the double-stranded nucleic acid.
  • a method for stabilizing nucleic acid is provided, which comprises stabilizing double-stranded nucleic acid.
  • the nucleic acid-peptide fusion of the present invention which is another embodiment of the nucleic acid binding agent of the present invention, is obtained by bringing the degradation inhibitor of the present invention and a double-stranded nucleic acid into contact with each other and binding the agent to the double-stranded nucleic acid.
  • the degradation-suppressing method of the present invention in which degradation by a general nuclease (excluding RNase H) with respect to double-stranded nucleic acid is suppressed. Further, by forming a nucleic acid-peptide fusion by bringing the degradation accelerator of the present invention into contact with a chimeric duplex such as an RNA / DNA duplex and binding the agent to the chimeric duplex, RNase H There is provided a method for promoting double-strand degradation that promotes the action of
  • composition of the present invention is a “pharmaceutical composition characterized by containing the nucleic acid-peptide complex of the present invention”.
  • the nucleic acid-peptide complex of the present invention is administered to the human body as an active ingredient of a “pharmaceutical composition”. Also in the case of direct administration of the nucleic acid-peptide complex, an injection or the like is mixed at the time of use, and this is also included in the pharmaceutical composition.
  • the pharmaceutical composition of the present invention is prepared in the form of a pharmaceutical composition by blending an appropriate pharmaceutical preparation carrier with the nucleic acid-peptide complex of the present invention which is an active ingredient.
  • an appropriate pharmaceutical preparation carrier it is possible to select a carrier according to the use form, and excipients or diluents such as a filler, a bulking agent, a binder, a moistening agent, a disintegrant, and a surfactant are used. can do.
  • the form of the composition is not particularly limited as long as it can effectively contain the nucleic acid-peptide complex of the present invention, and is a solid or ointment such as a tablet, powder, granule, or pill.
  • the nucleic acid-peptide complex of the present invention can be made into a dry product that can be made liquid at the time of use by adding an appropriate carrier.
  • a drug delivery system such as nanoparticles composed of cyclodextrin-containing polymers, polymer micelles, stable nucleic acid lipid particles (SNALP), multifunctional envelope nanostructures (MEND) is utilized.
  • SNALP stable nucleic acid lipid particles
  • MEND multifunctional envelope nanostructures
  • the obtained pharmaceutical composition is administered in an appropriate administration route according to its form, for example, an injectable pharmaceutical composition is administered in a solid form by intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal administration, etc.
  • the pharmaceutical composition is administered orally or enterally.
  • the amount of the nucleic acid-peptide complex of the present invention in the pharmaceutical composition is appropriately selected according to the administration method, dosage form, purpose of use, patient symptom, etc. of the composition, but is not constant.
  • a nucleic acid-peptide complex is prepared in the form of a composition containing about 0.1 to 95% by mass, and the above-mentioned dose (about 0.01 ⁇ g to 10 mg per adult per day, once to 2 times a day
  • the administration is preferably performed 5 to 5 times, and every few days.
  • the nucleic acid-peptide complex of the present invention which is excellent in stability in the living environment and maintains the activity of functional RNA such as siRNA, or the complexed DNA is an antisense nucleic acid of the target mRNA.
  • a pharmaceutical composition containing, as an active ingredient, a chimeric duplex-peptide complex such as RNA / DNA duplex that is used paying attention to the function of siRNA, the chimeric duplex, etc. It is possible to provide a nucleic acid drug that is excellent in the substantial effect.
  • a nucleic acid pharmaceutical of a chimeric double strand such as siRNA or RNA / DNA duplex
  • a therapeutic agent for renal cell cancer using the FAK gene as a target gene a therapeutic agent for age-related macular degeneration (AMD) and macular edema caused by diabetes using the VEGF gene as a target gene, a VEGFR1 gene and an RTP801 gene
  • Age-related macular degeneration (AMD) therapeutic agent targeted gene pancreatic cancer therapeutic agent targeting protein kinase N ⁇ , liver cancer therapeutic agent targeting VEGF gene and kinesin spindle protein, ribonucleotide reductase M2 Hepatic cancer drugs targeting subunits, hepatitis B drugs targeting HBV genome, hepatitis C drugs targeting HCV genome, RSV therapeutic drugs targeting RSV genome, influenza virus genome Targeted influenza drug, Th2 Asthma
  • the pharmaceutical composition of the present invention By administering the pharmaceutical composition of the present invention to the human body in the above-described manner, it is possible to treat the diseases exemplified above by the action of the nucleic acid-peptide complex of the present invention as an active ingredient.
  • the pharmaceutical composition of the present invention can be administered orally with the excellent stability against nucleases such as RNase A and RNase III in the nucleic acid-peptide complex of the present invention.
  • Fmoc amino acid derivatives and Boc amino acid derivatives were purchased from Watanabe Chemical Co., Ltd. and used as they were.
  • Fmoc-Amp-OH was synthesized from L-hydroxyproline (Hyp) according to an existing method and confirmed by NMR.
  • the resin used as the peptide solid phase synthesis carrier was purchased from Nova Biochem or Watanabe Chemical Co., Ltd. Other reagents including amino acids were used without purification.
  • a polypropylene empty column (Pharmacia Biothech) was used for manual synthesis of each peptide chain.
  • Peti-sizer (Hypep Laboratories) was used for stirring in manual synthesis and adjusting the reaction temperature.
  • HPLC high performance liquid chromatography
  • pump PU ⁇ 2080i plus (JASCO)
  • detector UV ⁇ 2075i plus (JASCO)
  • low pressure gradient unit LG-2080-02
  • degasser DG ⁇ 2080 ⁇ 53 (JASCO)
  • reverse phase column ⁇ -Bondsphere, C18, 5 ⁇ m, 100A (waters) was used.
  • the elution solvent used was a mixed solvent of solution A: 0.05% TFA / H 2 O, solution B: 0.05% TFA / CH 3 CN, and eluted with a linear gradient of solution A and solution B over 30 minutes. .
  • the detection wavelength was 280 nm.
  • MALDI-TOF-MS analysis Voyager System 4327 (Applied Biosystem) was used and dihydroxybenzoic acid (DHB) was used as a matrix.
  • the CD spectrum was measured using a spectropolarimeter: J-725 (JASCO), a light source: PS-450J (JASCO), and a temperature controller: PTC-348WI (JASCO). Tm measurement was performed using UV-1650PC (SIMADZU). The fluorescence anisotropy was measured using a fluorometer: FP6500 (JASCO), a temperature controller: ETC-273T (JASCO), and a polarizing plate: FDP-243 (JASCO).
  • Example 1 Peptide synthesis 1-1. Design of peptide having amino group First, an amino group was selected as a cationic functional group. Amino groups are protonated under physiological conditions, become cationic, and are common functional groups in RNA-binding molecules, such as RNA-binding proteins and RNA-binding aminoglycosides. In previous studies, Iwata et al. Have succeeded in obtaining oligodiaminoglucose that selectively binds to RNA duplex, and the amino group is considered to be an effective functional group for binding to RNA duplex.
  • peptides having various amino groups capable of efficiently interacting with opposite phosphate groups located in the main groove of the nucleic acid duplex are designed and interacted with the nucleic acid duplex.
  • the effects were compared.
  • the distance between phosphate groups on the main groove differs greatly between the DNA having the B-type double helix structure and the RNA having the A-type double helix structure due to the difference in the higher-order structure, the distance between the phosphate groups
  • amino acids having different side chain lengths L-2,3-diaminopropionic acid (Dap), L-2,4-diaminobutyric acid (Dab), L-ornithine (Orn) ) And L-lysine (Lys).
  • RNA 12-mer The double-stranded RNA 12-mer “r (CGCGAAAUCGCG) 2 ” (SEQ ID NO: 1) and the double-stranded DNA 12-mer “d (CGGCGAATTCGCG) 2 ” (SEQ ID NO: 2) used here are self-complementary sequences that are easy to prepare. In addition, it was selected as a model because it has a high melting temperature and sufficiently forms a duplex near room temperature. There are 4 pairs of 8 opposing phosphates in the RNA 12-mer with A-type double helix structure (FIG. 1).
  • the peptide has a +8 charge so that the Dap 8 , Dab 8 , Orn 8 , Lys 8 octamer, and UV for concentration measurements.
  • An 11-mer peptide in which tyrosine (Tyr) having absorption was introduced through two residues of glycine (Gly) was designed (below).
  • dab 8 using D-amino acid dab was designed together (below).
  • FIG. 2 shows the NN distance of peptides (1) to (4) in the ⁇ sheet structure together with the sequence and structure.
  • Dap 8 Ac-YGG-Dap 8 -NH 2
  • Dab 8 Ac-YGG-Dab 8 -NH 2
  • Orn 8 Ac-YGG-Orn 8 -NH 2
  • Lys 8 Ac-YGG-Lys 8 -NH 2 (2 ′)
  • dab 8 Ac-YGG-dab 8 —NH 2
  • a guanidino group was selected as a cationic functional group.
  • the guanidino group like the amino group, is cationic under physiological conditions and is a functional group often found in RNA-binding proteins.
  • a peptide having a guanidino group was synthesized by solid-phase synthesis of a peptide having an amino group and then converting the peptide having a guanidino group into a guanidino group according to the method of Scheme 1.
  • a peptide having a guanidino group also has amino acids having different side chain lengths such as L-2-amino-3-guanidinopropionic acid (Agp), L-2-amino-4-guanidinobutyl.
  • Oligomers of acid (Agb) and L-arginine (Arg) were designed (below).
  • the peptide was designed as an 11-mer peptide in which an octamer of Agp 8 , Agb 8 , Arg 8 and Tyr with UV absorption were introduced via a Gly diresidue for concentration measurement so that the peptide had a charge of +8.
  • FIG. 3 shows the NN distance of peptides (5) to (7) in the ⁇ sheet structure together with the sequence and structure.
  • Agp 8 Ac-YGG-Agp 8 -NH 2
  • Agb 8 Ac-YGG-Agb 8 -NH 2
  • Arg 8 Ac-YGG-Arg 8 -NH 2
  • agp 8 Ac-YGG-agp 8 -NH 2
  • Dab 8 G1 Ac-YGG-Dab 4 -Gly-Dab 4 -NH 2
  • Dab 8 G2 Ac-YGG-Dab 3 -Gly-Dab 2 -Gly-Dab 3 -NH 2
  • Dab 8 G3 Ac-YGG-Dab 2 -Gly-Dab 2 -Gly-Dab 2 -Gly-Dab 2 -NH 2
  • Agp 8 G1 Ac-YGG-Agp 4 -Gly-Agp 4 -NH 2
  • Agp 8 G2 Ac-YGG-Agp 3 -Gly-Agp 2 -Gly-Agp 3 -NH 2
  • Agp 8 G3 Ac-YGG-Agp 2 -Gly-Agp 2 -Gly-Agp 2 -Gly-Agp 2 -NH 2
  • Agp 8 A1 Ac-YGG-Agp 4 -Ala
  • Peptides were synthesized via a conventional solid phase method by using a 9-fluorenylmethyloxycarbonyl (Fmoc) strategy.
  • the peptide chain was coupled with Fmoc amino acid derivative (5 eq), N, N-diisopropylethyleneamine (DIPEA, 10 eq), and 2- (1H-9-azabenzotriazole-) in dimethylformamide (DMF) for coupling.
  • DIPEA N, N-diisopropylethyleneamine
  • DMF dimethylformamide
  • 25% piperidine / DMF for removal of the Fmoc group, Fmoc-NH-SAL- Assembled on PEG resin.
  • the N-terminal amino group was protected with an acetyl (Ac) group using acetic anhydride (10 eq).
  • the peptide resin was treated with trifluoroacetic acid (TFA) -triisopropylsilane-water (95: 2.5: 2.5, v / v / v ).
  • a peptide having a guanidino group was synthesized by solid-phase synthesis of a peptide having an amino group and then converting the peptide having a guanidino group into a guanidino group according to the above-described Scheme 1 method.
  • the resin was washed 5 times each with DMF and CHCl 3 and dried under reduced pressure in a desiccator.
  • the obtained resin was stirred in TFA / H 2 O / triisopropyl silane [95 / 2.5 / 2.5, v / v / v] for 1 hour at room temperature to perform deprotection and deresining.
  • the resin was filtered off and the peptide was precipitated by addition of ice-cold Et 2 O. After decantation through a centrifuge (3000 rpm, 15 minutes), Et 2 O was vaporized under an argon stream. The precipitate was dried under reduced pressure to obtain a peptide having a crude amino group. Then the crude peptide dioxane / H 2 O (1: 1 , v / v) was added so as to be 10 mM, and the mixture was stirred for 6 hours added guanidyl agent and SatNaHCO 3aq about 20% of the 2.5Equiv. Thereafter, the solution was distilled off, and a peptide having a guanidino group was obtained by treatment with TFA for 1 hour.
  • the peptide was treated with TFA-triisopropylsilane-water (95: 2.5: 2.5, v / v / v). All peptides were purified by reverse phase HPLC (water-0.05% TFA in acetonitrile).
  • Each oligopeptide was successfully identified by matrix-assisted laser desorption / ionization gravimetric analysis (MALDI-TOF-MS). Table 1 shows the molecular weight of the cationic oligopeptide.
  • [ ⁇ ] ⁇ obs (M / LC) [ ⁇ obs : Observed elliptic angle (mdeg), M: molar residue molecular weight, L: optical path length (mm), C: molar residue concentration (mg / ml)]
  • amino groups and guanidino groups in peptides can form intermolecular hydrogen bonds with amino groups in the backbone.
  • the spectra of all peptides showed the presence of random coils. Therefore, the effect of the secondary structure of the peptide was negligible in these cases.
  • the structure of the RNA-peptide complex was also analyzed. Since the peptide exhibited various Tm values depending on the side chain length and the nature of the cationic functional group, not only electrostatic interaction and hydrogen bonding, but also structural elements were present. Interpreted.
  • FIGS. 5-1, 5). 2 are “black and white display”, it is not clear which curve each oligopeptide indicates, but it is difficult for all examples to draw the same curve and to distinguish them. Recognize. If necessary, these drawings can be submitted separately in color.
  • the CD spectra of RNA and DNA duplexes in the presence or absence of peptides were typical A and B types, respectively.
  • RNA binding molecule improves the thermal stability of RNA duplex, double-stranded stability in vivo From the point of expectation, the ability to stabilize double strands can be said to be the most important property of RNA-binding molecules. Therefore, the melting temperature change due to the addition of the peptide to the RNA duplex was examined. In general, molecules that bind more strongly to RNA duplexes tend to increase their melting temperature, so the interaction between peptide and nucleic acid was evaluated from the degree of change in melting temperature. For peptides exhibiting high thermal stability for RNA duplexes, direct interaction was measured by isothermal titration calorimetry or fluorescence anisotropy measurement, and an attempt was made to examine the interaction mode.
  • Example 2-1 Melting temperature (Tm) analysis
  • Tm value melting temperature
  • the Tm value was measured as follows. That is, 100 ⁇ l of 20 mM phosphate buffer (200 mM NaCl) and 92 ⁇ l of sterilized water are added to 8 ⁇ l of 1 mM nucleic acid double-strand aqueous solution, maintained at 95 ° C. for 10 minutes, and then slowly cooled to 10 ° C. at ⁇ 1 ° C./minute. did. To this, 8 ⁇ l of 0.1 mM oligopeptide solution dissolved in 10 mM phosphate buffer (pH 7.0, 100 mM NaCl) was added to form 208 ⁇ l aqueous solution (10 mM phosphate buffer, pH 7.0, 100 mM NaCl). Using this, Tm was measured.
  • the measurement conditions are as follows. Absorption wavelength: 260nm Temperature change: 10 °C ⁇ 95 °C Temperature increase rate: 0.2 ° C / min
  • RNA duplex has a right-handed helical structure, and the amino acids constituting the peptide are molecules having L-form chirality.
  • Dab 8 and dab 8 consisting only of L-form and D-form were added to the RNA duplex and the thermal stability was compared. It shows the extent in T m value. This suggests that the chirality of the peptide does not affect the binding to RNA. This is thought to be because the chirality of the main chain does not affect the binding mode because there is a certain degree of freedom in the side chain.
  • the influence of the buffer during measurement was examined. Assuming that the cationic oligopeptide is used in vivo, it is necessary to examine the behavior under physiological conditions, so the measurement was mainly performed in a phosphate buffer. However, since the cationic functional group of the peptide interacts with the phosphate group of RNA, there is a concern that the condition in which a large amount of phosphate is present in the buffer affects the binding. Therefore, the melting temperature was measured using a HEPES buffer whose buffering capacity is relatively unaffected by temperature (Table 3). When complexes were formed in HEPES buffer, an improvement in the thermal stability of the RNA duplex at about 2 ° C. was observed for each peptide.
  • HEPES is a monovalent anion while phosphoric acid is a divalent anion, so that the influence on the electrostatic interaction with the cationic functional group is different.
  • peptide aggregation at high temperature was not observed in HEPES buffer, and the heat stability was comparable between when RNA and peptide mixture were annealed and when peptide was added to annealed RNA. It was.
  • This difference in behavior is thought to be because the polyvalent peptides crosslink with each other in the phosphate buffer because the bivalent phosphate crosslinks, but the HEPES buffer is monovalent so that it does not crosslink and does not aggregate. It is done.
  • the RNA duplex showed different thermal stability depending on the side chain length as in the case of the peptide having an amino group (FIG. 8, Table 4).
  • a peptide with a shorter side chain length tended to exhibit higher thermal stability, and in particular, the highest T m value was obtained with Agp 8 having the shortest side chain length.
  • the reverse tendency was observed with DNA, and Agp ⁇ Agb ⁇ Arg, and the tendency that the longer the side chain length, the higher the Tm value was observed.
  • the peptide having an amino group aggregates by annealing in a phosphate buffer, but the peptide having a guanidino group hardly shows aggregation.
  • a peptide having a phosphate and an amino group in a phosphate buffer takes a complicated interaction mode.
  • the peptide having an amino group in this way binds strongly to phosphate in the buffer and is difficult to dissociate, so it is thought that it may inhibit the binding to RNA.
  • Dab 8 showed a decrease in thermal stability depending on the introduction of Gly and an increase in the degree of freedom
  • Agp 8 showed no influence of the degree of freedom.
  • Agp 8 even when Ala and Pro were introduced, no effect on thermal stability was observed.
  • the amino group is not so strong in enthalpy interaction with phosphoric acid, so it is remarkably adversely affected by entropy, but the guanidino group interacts very favorably with phosphoric acid in enthalpy. Therefore, it is suggested that the entropy effect was small.
  • Ala position of the guanidino group is significantly changed by the introduction of Pro, but is expected to phosphate groups is varied to interact with guanidino groups showed the same degree of thermal stability and Agp 8. From this, it is considered that the guanidino group interacts so strongly as to obtain effective thermal stability even if it binds to other adjacent phosphoric acid.
  • some guanidino groups may interact with phosphoric acid in the main groove even when the cationic functional groups in all the molecules are not in the main groove, as the thermal stability of Agp 10 is high.
  • Example 2-2 Measurement by isothermal titration calorimetry (ITC) As described above, important factors for efficiently binding to RNA duplex were clarified using various cationic peptides. However, in order to perform more efficient molecular design, it is necessary to quantitatively understand the binding mode of the peptide to the RNA duplex. Therefore, in order to perform a detailed analysis of the interaction, an attempt was made by measurement by isothermal titration calorimetry (ITC).
  • the cationic peptide and the nucleic acid duplex were dissolved in 10 mM phosphate buffer containing 100 mM NaCl at pH 7.0.
  • the peptide solution 150 ⁇ M was added dropwise at 25 ° C. to the nucleic acid duplex solution (10 ⁇ M).
  • the drop of peptide solution was made as the first 0.5 ⁇ l, followed by 24 1.5 ⁇ l (addition is done over 3 seconds at 120 second intervals).
  • the double-stranded nucleic acid comprises self-complementary RNA / RNA duplex “r (CGCGAAAUCGCG: SEQ ID NO: 1) 2 ” and DNA / DNA duplex “d (CGCGGAATTCGCG: SEQ ID NO: 2) 2 ”.
  • Agb 8 has a large degree of freedom of the guanidino group and is thought to be bound to DNA because of the reduced selectivity, which is consistent with the behavior of Tm . Unlike RNA, the endotherm was measured early because the interaction between the guanidino group of Agb 8 and the phosphate of DNA is weak compared to the interaction of phosphate with RNA. .
  • Dab 8 and Agp 8 recognize the higher-order structure of the RNA duplex. Therefore, in order to identify the phosphate group involved in the specific structure recognized by the peptide, that is, to confirm the binding site, a binding inhibition experiment was attempted. In this design, the phosphate groups facing each other in the main groove are most likely to bind to the cationic functional group from the spatial arrangement of the functional group. Therefore, neomycin known to bind to the main groove of RNA was used as an inhibitor.
  • Dab 8 and Agp 8 are bonded with the phosphate group in the main groove or in the vicinity thereof.
  • Example 2-3 Measurement of fluorescence anisotropy Since the interaction between RNA duplex and each peptide is complicated, the binding constant could not be calculated by isothermal titration calorimetry. Therefore, an apparent dissociation constant between the RNA duplex and each peptide was calculated by fluorescence anisotropy measurement, and an attempt was made to compare the binding strength quantitatively.
  • Fluorescence anisotropy measurement is a technique for measuring the interaction by utilizing the difference in the angle of fluorescence emitted according to the binding state and movement state of molecules.
  • Molecules excited by linearly polarized excitation light emit absorbed polarized light and fluorescence.
  • fluorescence having a polarization different from that of the polarized excitation light is recognized. That is, the degree of molecular rotation can be measured by exciting with linearly polarized excitation light and measuring the polarization state (depolarization) of the fluorescence.
  • the interaction can be measured from the apparent molecular weight change before and after the binding. Specifically, changes in the vertical and horizontal directions of the excitation light and fluorescence were measured, and the fluorescence anisotropy was calculated from the following equation.
  • the measured fluorescence anisotropy R was plotted against the concentration of peptide added (not shown because black and white display is extremely difficult. Ready to submit a color drawing if necessary). This plot has the following formula:
  • neomycin (MW 614) is 0.008, and amino acid-containing peptides Dap 8 , Orn 8 , Lys 8 (MW 1000-1400) are about 0.016, Correlation with molecular weight was observed.
  • Dab 8 (MW 1137) had a large change in anisotropy, 0.025, and peptides Agp 8 , Agb 8 , and Arg 8 (MW 1300 to 1600) having a guanidino group showed 0.05.
  • the difference in the degree of anisotropy due to the same molecular weight suggests an influence other than the increase in the apparent molecular weight of RNA due to the interaction.
  • the degree of freedom of the fluorescent group introduced at the terminal changes due to the peptide binding to the RNA duplex, which may have caused a difference in the change in fluorescence anisotropy due to the difference in binding mode. .
  • Dap 8 was bound to RNA to some extent, whereas the Tm measurement did not stabilize the RNA duplex. Dap 8 's amino group does not sufficiently crosslink the RNA duplex phosphate, but interacts non-specifically with phosphate, so the RNA duplex was not thermally stabilized. It is thought. Even with Lys 8 and Arg 8 having a long side chain and a high degree of freedom, it is considered that the degree of thermal stabilization is different due to the difference in bonding mode. With AgpV having an alternating sequence, the charge was +4 and half that of the other peptides, so an effective interaction could not be measured.
  • RNA duplex stabilization such as efficiently cross-linking the phosphoric acid opposite to the RNA duplex.
  • the cationic peptide designed this time has a dissociation constant of about 0.2 to 0.05 ⁇ M with respect to the RNA duplex.
  • the dissociation constant of Tat protein and TAR protein, Rev protein and RRE RNA, and TAR RNA is 0.07. Compared to ⁇ 0.005 ⁇ M, it was found to have a binding strength comparable to or slightly weaker than RNA-binding proteins.
  • Example 2-4 Examination including RNA-DNA complex duplex
  • the side chain length and the main chain length of the cationic peptide including the RNA-DNA complex duplex were made stable.
  • some more were manufactured according to the method mentioned above.
  • the list of cationic peptides used in this example is shown in FIG.
  • T m melting temperature of RNA-DNA complex duplex
  • concentration of nucleic acid 1 ⁇ M, 4 ⁇ M
  • the melting temperature (T m ) was measured in phosphate buffer or Tris-HCl buffer.
  • the sequence of the RNA / DNA duplex is “rACUGACUGACUG / dCAGTCCAGTCAGT” (SEQ ID NO: 3 (RNA strand), SEQ ID NO: 4 (DNA strand)).
  • SEQ ID NO: 3 RNA strand
  • SEQ ID NO: 4 DNA strand
  • the sequence of the RNA duplex used as a control is shown in SEQ ID NO: 1.
  • the temperature of the system was increased at a rate of 0.5 ° C./min.
  • the Tm measurement was also performed according to the method shown at the beginning of “Example 2-1”.
  • the horizontal axis is the temperature
  • the vertical axis is the relative absorbance at 260 nm.
  • the right graph is an enlarged view of the left graph in the vicinity of 37 ° C. where the enzyme treatment is performed. From this result, it was clarified that the state of RNA / DNA duplex was different at 37 ° C. where enzyme treatment was performed. That is, it was confirmed that the RNA / DNA duplex formed a duplex at 4 ⁇ M, but a part of the duplex was dissociated at 1 ⁇ M.
  • FIG. 26 The graph on the left side of FIG. 26 is a measurement result of CD spectrum for RNA / DNA duplex using a cationic peptide with an amino group, and the graph on the right side is an RNA using a cationic peptide with a guanidino group. / Measurement results of CD spectrum for DNA duplex.
  • the complex was prepared according to the method described at the beginning of “Example 2-1” described above, in a 10 mM phosphate buffer containing 100 mM NaCl, 4 ⁇ M peptide and 4 ⁇ M RNA / DNA duplex. Was made to contact.
  • FIG. 27 (1) shows the results for peptides having amino groups (Dap 8 , Dab 8 , Orn 8 , Lys 8 ), and FIG. 27 (2) shows peptides having guanidino groups (Agp 8 , Agb 8 , The results for Arg 8 , Agh 8 ) are shown.
  • Table 13 shows the T m of a RNA / DNA duplex with 10mM phosphate buffer containing 100mM of NaCl.
  • the RNA / DNA duplex also showed the highest thermal stability in Dab 8 and Agp 8 , as in the case of RNA / RNA.
  • the degree of stabilization in the RNA / DNA duplex tended to be as small as 3-4 ° C. compared to RNA / RNA.
  • the cationic peptide binds to each nucleic acid duplex with a binding force equivalent to that of the nucleic acid binding protein of 10 ⁇ 7 to 10 ⁇ 8 M.
  • the binding force is strong in the order of RNA / DNA> RNA / RNA> DNA / DNA. It became clear that the selectivity with respect to is improved (FIG. 28). Further, since the correlation in the same nucleic acid duplex between K d and T m was observed, between the same nucleic acid duplex, tend to exhibit high thermal stability as bonding force is strong is confirmed.
  • Example 3 Interaction between cationic oligopeptide and siRNA As described above, it was confirmed that each peptide improves the thermal stability of the model double-stranded RNA (12-mer). Next, physical properties when the peptide was added to siRNA (21-mer) were evaluated.
  • Example 3-1 Effect on thermal stability Since siRNA (21-mer) has a chain length about twice that of model double-stranded RNA (12-mer), not only the total charge of nucleic acids, The number of phosphate groups present in the main groove is also increasing. For this reason, it was expected that multiple peptides could be bound to siRNA (FIG. 30), and it was expected that the peptide equivalent would have a significant effect on the thermal stability of the duplex.
  • Dab 8 against siRNA (SS: 5′-GUCAUCACACUGAAUACCAdTdT-3 ′ (SEQ ID NO: 5), AS: 5′-UGGUAUUCAGUGUGAUGACdTdT-3 ′ (SEQ ID NO: 6)) that targets ApoB1 known as an apolipoprotein.
  • the thermal stability of the complex to which Agp 8 was added The double-stranded RNA 12-mer has 8 phosphates as binding sites and a total charge of +22, while the siRNA 21-mer (dsRNA 19mer + 2mer overhang) has 22 binding sites of phosphate and a total charge of +40. is there. Therefore, as shown in FIG.
  • siRNA and peptide complex was prepared by adding Dab 8 or Agp 8 to the annealed siRNA in the same manner as double-stranded RNA (12-mer).
  • Example 3-2 Influence on RNase resistance
  • Dab 8 and Agp 8 improve the thermal stability of siRNA (21-mer) as well as model RNA duplex (12-mer). It became clear. Therefore, next, Dab 8 and Agp 8 were added to siRNA to form a complex, and the influence on the stability against nuclease was examined. In addition to improving the binding of cationic peptides to RNA duplexes and improving thermal stability, nuclease resistance for improving in vivo stability is extremely important for RNAi drug DDS.
  • siRNA siRNA-peptide (Dab 8 or Agp 8 ) prepared by preparing 10 ⁇ M siRNA (targeting ApoB1) at a final concentration of 0, 10, 30, 50 ⁇ M peptide (0, 1, 3, 5 equivalents) )
  • a complex was prepared by mixing the mixed aqueous solution at a ratio shown in Table 18 so that the siRNA per well was 100 pmol. Thereafter, the mixture was incubated at 37 ° C. for 25 minutes, and the siRNA was digested with RNase A, an endonuclease that cleaves double-stranded RAN. 6 ⁇ LB was added, the whole amount was applied to a 15% acrylamide gel, and run at 100 V for 60 minutes. After completion of electrophoresis, RNA was stained with ethidium bromide to evaluate the abundance of double-stranded RNA. Table 17 shows the samples flowed in each lane of FIG.
  • Dap 8 , Arg 8 , and Agh 8 showed almost no enzyme resistance, whereas Dab 8 and Orn 8 with an amino group were about 70%, and Agp 8 with a guanidino group. About 50% of dsRNA was confirmed, indicating high enzyme resistance.
  • RNA binding molecules As it (Example 3-3) should be considered due to the influence RNA binding molecules to RNAi activity DDS of RNAi pharmaceutical, there is effect on the RNAi activity.
  • molecules that bind more strongly are required.
  • molecules that bind strongly may inhibit RNAi activity. Therefore, it was confirmed to what extent the siRNA-peptide complex retains RNAi activity.
  • siRNA targeting ApoB1 and siRNA targeting transthyretin (SS: 5′-GUAACCCAAGAGUAUUCCAUDTdT-3 ′ (SEQ ID NO: 7), AS: 5′-AUGGAAUACUCUGUGUACdTdT-3 ′ (SEQ ID NO: 8) ) was used as a model siRNA to evaluate the effect of cationic oligopeptides on RNAi activity: siRNA-peptide mixed aqueous solution (0.6 ⁇ L) prepared to siRNA with a final concentration of 10 ⁇ M, 0, 10, 30, 50 ⁇ M peptide.
  • Lipofectamine 2000 (1 ⁇ L), and OPTI-MEM (100 ⁇ L) were mixed in an Eppendorf® Tube, left to stand at room temperature for 20 minutes, and added to the wells of a 24-well plate, while adding a total of 10 cm dishes.
  • Rat liver in 100% confluent state The cells (McA-RH7777) were collected using trypsin, and then Serum Free Medium was added to a 50% confluent state, and 0.5 mL of this suspension was added to each well at 37 ° C.
  • the siRNA and peptide complex were prepared by adding 1 equivalent of Dab 8 or Agp 8 to the annealed siRNA as in the melting temperature measurement and nuclease resistance test. The results are shown in FIG. The vertical axis in FIG. 34 shows relative RNA activity. As shown here, RNAi activity comparable to that of the system in which neither of these oligopeptides was added was observed. This revealed that 1 equivalent of Dab 8 and Agp 8 did not affect RNAi activity.
  • Dab 8 1 equivalent of peptide, which is insufficient for obtaining enzyme resistance, does not inhibit RNAi activity in both Dab 8 and Agp 8 , but in 3 equivalents or more sufficient to cover all the main grooves, Dab 8 In the system used, the activity was retained, whereas in the system using Agp 8 , the RNAi activity was slightly inhibited. From this, it is considered that Agp 8 has a strong binding force to RNA duplex, but it is necessary to pay attention to its specific dose when used in an excessive amount relative to siRNA. On the other hand, Dab 8 is expected to be a useful molecule for DDS of RNAi drug because it uses sufficient amount to obtain sufficient nuclease resistance and binds to siRNA without inhibiting RNAi activity.
  • RNA-DNA complex duplex As described above, when RNA / DNA duplex is used as a nucleic acid drug, DNA complexed with RNA is antisense to a specific mRNA. The case where it aims at working as a nucleic acid is considered, and it is known that RNA / DNA duplex is originally accompanied by excellent resistance to nuclease comprehensively (for example, Patent Document 1). On the other hand, the heat denaturation temperature is low as shown in Example 2-4 (1). However, as shown in Example 2-4 (3), the cationic peptide was bound. In addition, RNA / DNA duplexes can improve thermal stability, and as a result, nuclease stability in the human body can also be improved.
  • Example 4-1 Examination of resistance of RNA-DNA complex duplex to RNase A
  • a In order to quantitatively evaluate the resistance of RNA / DNA duplex to RNase A, analysis by HPLC was performed. After annealing the same RNA / DNA duplex as used in Example 2-4, each cationic peptide [peptides with amino groups (Dap 8 , Dab 8 , Orn 8 , Lys 8 ), and guanidino Peptides with groups (Agp 8 , Agb 8 , Arg 8 , Agh 8 )]] were added to form a complex, and 10, 2, 1, 0. 5.
  • Samples were prepared with 10 mM Tris-HCl buffer (100 mM NaCl, pH 7.5) so that the concentration of RNase A was 0.1 ⁇ g / ml. Each sample was treated at 37 ° C. for 30 minutes, and then the reaction was stopped by adding an RNase A inhibitor, and the decomposition rate was analyzed by HPLC.
  • Example 4-2 Examination of the promotion of RNA-DNA complex duplex against RNaseH 10 mM Tris-HCl buffer (100 mM NaCl, 0.5 mM MgCl) so as to be a final concentration of 1 ⁇ M or 4 ⁇ M RNA / DNA duplex 2 and pH 7.5). Each sample was treated with 30uC for 30 minutes after adding 20u (unit) RNaseH, then the reaction was stopped by adding an RNaseH inhibitor, and the degradation rate was analyzed by HPLC. The result is shown in FIG. FIG.
  • FIG. 37 is a drawing showing the results of studying the effect on the RNase H activity due to the presence or absence of a cationic peptide binding to an RNA / DNA duplex, and the left of the dotted line in the figure is 1 ⁇ M RNA / DNA duplex The right side of the dotted line shows the result for a 4 ⁇ M RNA / DNA duplex.
  • the thermal stability of the RNA / DNA duplex may be due to the dissociation and denaturation of the duplex being observed at a relatively low temperature, and the stability of the duplex will decrease from around 30 ° C. Degradation of the duplex with RNase H was relatively slow.
  • a cationic peptide with an amino group Dab 8 , Orn 8 , Lys 8
  • RNaseH promotes the degradation of the single-stranded RNA portion. Admitted.
  • an excellent RNaseH degradation activity promoting effect was observed in Arg 8 and Agh 8 .
  • RNA / DNA duplex in which these five kinds of cationic peptides are bound improves the degradation activity of the RNA single strand in the RNA / DNA duplex of RNase H, and these RNA / DNA duplexes It became clear that it was very promising as a nucleic acid drug using a DNA strand as an antisense nucleic acid for a target nucleic acid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

陽イオン性オリゴペプチドからなる核酸結合剤と二重鎖RNAの複合体を用いて核酸医薬の進歩の途を提供する。本発明は第一に、側鎖にアミノ基を伴う陽イオン性オリゴペプチドを結合させた「二本鎖RNA-当該陽イオン性オリゴペプチドの複合体」においてヌクレアーゼ抵抗性が現れることと同時に、結合対象の二本鎖RNAが高活性を維持することを見出し、第二に、側鎖にグアニジノ基を伴う陽イオン性オリゴペプチドにおいては、さらに二重鎖核酸との結合性と熱安定性が向上し、二重鎖DNAの主要な態様であるB型二重鎖核酸と結合させることさえも可能であること、さらには複合体においてヌクレアーゼに対する抵抗性が認められることを見出した。また、RNA-DNA複合二重鎖等のキメラ型二重鎖に本発明の陽イオン性オリゴペプチドを結合させると、RNaseHの作用を促進し得ることを見出した。

Description

二重鎖核酸結合剤、当該結合剤-二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法
 本発明は、様々な医学的・生物学的分野において応用可能な、二重鎖核酸結合剤、特に二重鎖RNA等のA型二重鎖核酸を安定化させることの可能な二重鎖核酸結合剤と、当該結合剤の応用に関する発明である。
 近年、核酸医薬、特にRNA干渉医薬(RNAi医薬)は、新たな治療医薬として焦点が当てられている(非特許文献1~3)。しかしながら現在の代表的なRNAi医薬であるsiRNAは、細胞膜透過性の低さと細胞内における不安定性により十分に効果的ではない。そこで、新たなRNAi医薬のデリバリーシステム(DDS)の構築に当たって実用的な適用手段が求められており、siRNAの安定性を高めるために多くの化学的な修飾が提案されている(非特許文献4~7)。siRNAの安定化のためのもう一つの戦略は、RNA分子に非共有結合できる分子の使用である。RNAi医薬は、A型二重鎖として存在する二重鎖RNAにて構成される。従前の研究においてDDSの発展に寄与するために、本発明者らはA型二重鎖核酸の主溝中のリン酸基をターゲットとする「α-(1→4)-linked-2,6-ジアミノ-2,6-ジデオキシ-D-グルコピラノース」を設計した(非特許文献8)。当該オリゴジアミノサッカライドはA型RNA二重鎖を安定させることが可能であり、RNA-RNA二重鎖への結合選択性を示した。しかしながら、様々なオリゴジアミノサッカライドの合成は多くの段階が要求され、一般的に困難である。
 なお本発明に関連して、アミノ基の結合した8アミノ酸基で構成される陽イオン性オリゴペプチドが、12量体モデルの二重鎖RNAに結合して当該RNAの熱安定性を向上させることは、本出願時において公知となっている(2011年3月日本化学会第91春季年会要旨集、同年9月アンチセンス・遺伝子・デリバリーシンポジウム2011要旨集、第48回ペプチド討論会要旨集、2012年3月日本化学会第92春季年会要旨集)。しかしながら、グアニジノ基の結合した陽イオン性オリゴペプチドにおける同知見は新規性喪失の例外規定の適用内であり、アミノ基とグアニジノ基の双方のタイプにおいて、陽イオン性オリゴペプチドにおけるsiRNAを用いたヌクレアーゼ耐性に関する知見や、キメラ型二重鎖におけるRNaseH活性の促進作用は、非公知である。またここに記載された事項は全て、米国におけるいわゆるグレースピリオドの適用期間内の発表である。
特開2008-125374号公報 国際公開第2013/089283号公報
Davidson, B. L.; McCray, P. B. Nat. Rev. Genetics 2011, 12, 329-40. Pecot, C. V.; Calin, G. a; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. Nat. Rev. Cancer 2011, 11, 59-67. Kim, S.-S.; Garg, H.; Joshi, A.; Manjunath, N. Trends Mol. Med. 2009, 15, 491-500. a) Czauderna, F. Nucleic Acids Res. 2003, 31, 2705-2716. b) Robbins, M.; Judge, A.; Maclachlan, I. Oligonucleotides2009, 19, 57-67. Jackson, A. L.; Burchard, J.; Leake, D.; Reynolds, A.; Schelter, J.; Guo, J. I. E.; Johnson, J. M.; Lim, L. E. E.; Karpilow, J. O. N.; Nichols, K. I. M.; Marshall, W.; Khvorova, A.; Linsley, P. S. RNA2006, 1197-1205. Foerster, C.; Zydek, M.; Rothkegel, M.; Wu, Z.; Gallin, C.; Gessner, R.; Lisdat, F.; Fuerste, J.P. Biochem. Biophys. Res. Commun. 2012, 419,60-5. a) Eckstein, F. Biochimie 2002, 84, 841-848. b) Amarzguioui,M. Nucleic Acids Res.2003, 31, 589-595. Iwata, R.; Sudo, M.; Nagafuji, K.; Wada, T. J. Org. Chem.2011, 76, 5895-5906. 2011年3月日本化学会第91春季年会要旨集 2011年9月アンチセンス・遺伝子・デリバリーシンポジウム2011要旨集 2011年9月第48回ペプチド討論会要旨集 2012年3月日本化学会第92春季年会要旨集
 上記の状況下で本発明者らは、RNA結合性分子として陽イオン性オリゴペプチドを用いることに想到した。ペプチドの合成はオリゴサッカライドよりも容易であり、例えばシグナルペプチド等のデリバリー分子に代表される他の分子との連結も比較的容易である。その一環として、側鎖端にアミノ基(NH3+)を伴うアミノ酸残基を連続して配列した陽イオン性オリゴペプチドを作出したところ、当該陽イオン性オリゴペプチドが二重鎖RNAの主溝のリン酸基と結合し、当該二重鎖RNA-オリゴペプチド複合体の熱安定性が向上することが確認された。
 しかしながら上記のアミノ基を伴う陽イオン性オリゴペプチドの二重鎖RNAに対する結合強度は比較的緩徐であり、ドラッグデリバリーシステムとしての実用化に際しては、例えば結合力や結合態様において、さらに多様な陽イオン性オリゴペプチドの提供が望まれる。本発明の課題は第一に、上記のアミノ基を伴う陽イオン性オリゴペプチドを用いるドラッグデリバリーシステムの実用化に向けての、新たな手段を提供することである。そして第二に、同じくドラッグデリバリーシステムの実用化や研究手段の多様化に向けて、さらに強い二重鎖核酸に対する結合力を有する陽イオン性オリゴペプチドを提供することにある。
 上記の第一の課題に関し、側鎖にアミノ基を伴う陽イオン性オリゴペプチドを結合させた「二重鎖RNA-当該陽イオン性オリゴペプチドの複合体」における、ヌクレアーゼ(RNase)に対する抵抗性を検証したところ、優れたヌクレアーゼ抵抗性が現れることと同時に、結合対象の二重鎖RNAとして用いたsiRNAは、当該陽イオン性オリゴペプチドの当量を増加させても依然として高活性を維持することが明らかになった。また、アンチセンスオリゴヌクレオチドとして応用可能なキメラ型二重鎖においては、上記陽イオン性オリゴペプチドと複合体が形成されることにより、上記のヌクレアーゼ抵抗性と共に、少なくともRNA-DNA複合二重鎖のRNA鎖を分解する活性を有するRNaseHの作用を増強することが明らかになった。RNAi医薬をはじめとする核酸医薬の課題の一つは、核酸医薬の生体内での安定性である。核酸医薬は生体内のヌクレアーゼにより容易に分解されるため、現状においては医薬単体で有効な活性を示すことは困難である。特にRNAi医薬の本体であるRNAは血清内のヌクレアーゼにより極短時間に分解されるため、血清中で容易に分解される。そのため、生体内での安定化が必要とされている。それと同時に生体内での作用が可能な限り妨げられないことが要求される。さらにアミノ基を側鎖とする陽イオン性オリゴペプチドにおいて、より優れた特徴があることも確認された。
 また第二の課題に関し、従来の陽イオン性オリゴペプチドの側鎖のアミノ基に代えて、グアニジノ基とすることにより、さらに二重鎖核酸との結合性と熱安定性が向上し、二重鎖DNAの主要な態様であるB型二重鎖核酸と結合させることさえも可能であること、さらには複合体においてヌクレアーゼに対する抵抗性が認められることが明らかになった。
 このような新たな重要な知見を基に、本発明者は下記の発明を提供するに至った。
 本発明は第一に、下記式(I)のアミノ酸残基が少なくとも2個連続する部分を含む2~40個のアミノ酸からなるオリゴペプチド領域であって、かつ、当該下記式(I)のアミノ酸残基の連続部分以外は、連続しない1個のアミノ酸残基であるオリゴペプチド領域(以下、特定オリゴペプチド領域ともいう)、を含むオリゴペプチド又は当該オリゴペプチド誘導体(以下、本発明のオリゴペプチド等ともいう)からなること、を特徴とする二重鎖核酸結合剤(以下、本発明の核酸結合剤ともいう)を提供する。
Figure JPOXMLDOC01-appb-C000003
[式(I)において、Rは、基H-CH-、又は、式(II)で示される基である。Rは、Rが基H-CH-の場合は、存在しない、若しくは、炭素原子数1~3のアルキレン基であり、Rが式(II)で示される基の場合は炭素原子数1~4のアルキレン基である。一つのオリゴペプチド領域においてR及びRは全て同一である。]
Figure JPOXMLDOC01-appb-C000004
[式(II)中、R、R及びRは、同一又は異なって、水素原子若しくはメチル基である。]
 Rが「基H-CH-」である態様は、式(I)のアミノ酸残基が「アミノ基を伴うアミノ酸残基」であることを意味する。すなわち「基H-CH-」のメチレン基を除いた部分がアミノ基であり、この基が特定オリゴペプチド領域を構成するアミノ酸残基の側鎖の先端部を構成する。Rをアミノ基(H-)とせずに基「基H-CH-」と定義した理由は、全く形式的なものである。
 この「アミノ基を伴うアミノ酸残基」を構成として含む特定オリゴペプチド領域を有する本発明のオリゴペプチド等が結合する二重鎖核酸は、A型二重鎖核酸である。
 これに対してRが「式(II)の基」である態様は、式(I)のアミノ酸残基が「グアニジノ基を伴うアミノ酸残基」であることを基本とするものである。すなわち「式(II)の基」の、R、R及びRが全て水素原子である当該基がグアニジノ基である。
 この「グアニジノ基等を伴うアミノ酸残基」を構成として含む特定オリゴペプチド領域を有する本発明のオリゴペプチド等が結合する二重鎖核酸は、A型二重鎖核酸と共に、B型二重鎖核酸も対象となり得る。ただし、当該二重鎖核酸がA型である場合とB型である場合とは、好適なアルキレン基Rの炭素原子数がそれぞれ異なっている。
 A型二重鎖構造とB型二重鎖構造は、糖の立体配座(パッカリング)によって異なる核酸のらせん構造の区別であり、A型二重鎖は「糖のN型コンフォメーション」に、B型二重鎖は「糖のS型コンフォメーション」に、それぞれ基づいている。それぞれ、塩基対間の距離、回転角、塩基対の傾き、一回転当たりの残基数、主溝(メジャーグルーブ)と副溝(マイナーグルーブ)の広さと深さ、リン酸基間の距離、において違いがあり、例えば、主溝の深さはA型が13.5Å・B型が8.5Åであり、同広さはA型が2.7Å・B型が11.7Åである。リン酸基間の距離はA型が5.9Å・B型が7.0Åである。
 「二重鎖RNA」と「RNA-DNA複合二重鎖(以下、「RNA/DNA二重鎖」とも記載する)は、少なくとも生理的環境下ではA型二重鎖構造をとることが知られている。また、これらに準じる核酸誘導体を含む二重鎖も同様」に生理的環境下においてA型二重鎖構造として存在することが知られている。これに対して「二重鎖DNA」と、これに準じる核酸誘導体を含む二重鎖は、少なくとも生理的環境下ではB型二重鎖構造をとることが知られている。後述するように本発明におけるDNA又はRNAは、天然型のみならず、人為的な修飾が施された人工のDNA又はRNAが含まれる。
 上記の通り、二価基Rは、上記のRが「基H-CH-」の場合、すなわち式(I)のアミノ酸残基が「アミノ基を伴うアミノ酸残基」の場合は、存在しない、若しくは、炭素原子数1~3のアルキレン基である。ここに記した「存在しない」とは、「二価基Rが存在しない」こと、すなわち式(I)のアミノ酸残基の2位の炭素原子に「基H-CH-」が直接結合していることを意味する。
 これに対して上記のRがグアニジノ基に基づく「式(II)の基」の場合は、炭素原子数1~4のアルキレン基である。
 いずれの場合にも本発明のオリゴペプチド等が結合する二重鎖核酸が「A型二重鎖」の場合には、好適なRは炭素原子数が1のメチレン基(-CH-)である。これに対して、上記のRがグアニジノ基に基づく「式(II)の基」の場合に、本発明のオリゴペプチド等が結合する二重鎖核酸が「B型二重鎖」である場合の好適なRは、炭素原子数が3のトリメチレン基(-CH-CH-CH-)である。
 一般的に結合の対象となる二重鎖核酸の鎖が長く塩基数が多いほど、それに伴うリン酸基の数も多くなり、これらに結合することが可能な特定オリゴペプチド領域を構成するアミノ酸残基数は大小についての多様性を伴う。すなわち二重鎖核酸の鎖が長くリン酸基の数が増加すれば、これに結合する特定オリゴペプチド領域として、「短いものが多数個の場合」、「長いものが少数個の場合」、さらにこれらの組み合わせが考えられることになり、理論上そのバリエーションは、二重鎖核酸の長さが増すに従い相乗的に増加することになる。
 本発明のオリゴペプチド等において、特定オリゴペプチド領域を構成するアミノ酸残基の全てが式(I)のアミノ酸残基からなることは本発明のオリゴペプチド等の好適な態様の一つである。ここで本発明のオリゴペプチド等における「特定オリゴペプチド領域」とそれ以外の部分は、上記した「特定オリゴペプチド領域」の定義により導かれる。すなわち、「式(I)以外のアミノ酸残基」が2つ以上連続する箇所は、「特定オリゴペプチド領域」からは外れることになる。この場合、2つ以上連続する式(I)のアミノ酸残基のうち、「式(I)以外のアミノ酸残基」が2つ以上連続する箇所に最も近い式(I)のアミノ酸残基、が、C末端側もN末端側も同様に「特定オリゴペプチド領域の末端」となる。
 この「特定オリゴペプチド領域を構成するアミノ酸残基の全てが式(I)のアミノ酸残基からなる場合」で、かつ、二重鎖核酸がA型二重鎖の場合において、当該A型二重鎖の長さと、特定オリゴペプチド領域のアミノ酸残基数と相関するRNA二重鎖の主溝の向かい合うリン酸の数については以下の様に計算がなされる。
12量体の場合:リン酸基の数=11個、主溝に無いリン酸の数=7個(オリゴマーの長さによらず一定)、主溝で向かい合うリン酸基の数=11-7=4対、結合に必要なオリゴペプチドの正電荷の数=4×2=8;
25量体の場合:リン酸基の数=24個、主溝に無いリン酸基の数=7個(オリゴマーの長さによらず一定)、主溝で向かい合うリン酸基の数=24-7=17対、結合に必要なオリゴペプチドの正電荷の数=17×2=34;
 この計算によれば、A型二重鎖21量体には3分子、25量体には4分子のDabが結合し得ることになる。短い特定オリゴペプチド領域が数分子結合する場合と、長い特定オリゴペプチド領域が1分子結合する場合を想定すれば、10~25量体のA型二重鎖に対応するペプチド残基数は8~34となる。
 これらのことを二重鎖核酸の塩基数10~25量体の範囲で類型化すると、
(1)二重鎖核酸が10~25量体であり、かつ、特定オリゴペプチド領域のアミノ酸残基数は8~10である場合:アミノ酸残基数が8~10という小分子の特定オリゴペプチド領域のみが、二重鎖核酸の塩基数(リン酸基数)に応じた結合をする態様である。
(2)二重鎖核酸が18~25量体であり、かつ、特定オリゴペプチド領域のアミノ酸残基数は8~34である場合:アミノ酸残基数が8~34という小分子と大分子のオリゴペプチド領域が多様な組み合わせで、二重鎖核酸の塩基数(リン酸基数)に応じた結合をする態様である。
 ここで主なA型二重鎖核酸について簡単に開示する。これらのA型二重鎖核酸の製造方法は既に公知である(例えば特許文献1、2)。
(a)二重鎖RNA
 主に18~25量体の二重鎖RNAとしてsiRNAが挙げられる。microRNA(miRNA)もこの範疇に入ることが知られている(ただし、オリジナルのmiRNAは一重鎖であり、本発明において用い得る態様はこれを二重鎖として改変されたものである)。
(b)キメラ型二重鎖
 これについては、例えば、特許文献1と特許文献2、特に特許文献2において具体的かつ詳細に開示されている。
 後述するようにこのキメラ型態様のA型二重鎖核酸は、標的遺伝子のmRNAの部分配列に相補的なオリゴヌクレオチド(アンチセンスオリゴヌクレオチド(略称ASO))として、核酸医薬としての応用が期待されている。
 具体的には、「相補鎖のうち『一方』が4塩基以上の連続したDNAからなる領域を含む核酸であり、『他方』が当該一方の核酸と相補的な塩基配列を有するRNAとPNAの双方又はいずれかである二重鎖核酸」である。ASOとして用いられる場合、全体の鎖長として、上記の4塩基(4量体)を最低長として、通常10~35量体の範囲で設計される。好適な塩基長の目安として、通常は12~25量体であり、さらに好適な目安として13~20量体が挙げられる。
 最も基本的なキメラ型二重鎖として、「RNA-DNA複合二重鎖」が挙げられる。
 さらに前記相補鎖の「一方の核酸」における、「4塩基以上の連続したDNAからなる領域」の5’末端側と3’末端側の双方又はいずれかにおいて、連続又は不連続に修飾核酸を含む領域(単量体を含む)が設けられている複合DNA鎖が挙げられ、当該修飾核酸として、特にLNAが好適例として挙げられる。ここで「連続」とは、核酸の領域同士が、ホスホジエステル結合等により分子的に連続であることを意味する。これに対して「不連続」とはこの様な分子的な連続性を伴わずに、例えば核酸の領域同士が「隣り合って存在している」等を意味する。
 前記相補鎖の「他方の核酸」がRNAであって、上記「一方の核酸」の修飾領域を含む領域に対して相補的な領域が修飾されており、当該修飾がRNA分解酵素による分解を抑制する効果を有するものである態様が挙げられる。この「RNA分解酵素による分解を抑制する効果を有することを特徴とする修飾」として、特に、2’-O-メチル化とホスホロチオエート化の双方又はいずれかが好適例として挙げられる。
 また、前記相補鎖の「他方の核酸」(RNAとPNAの双方又はいずれか)に機能性分子が結合している態様も挙げられる。当該機能性分子として、二重鎖核酸を標的部位に送達させる活性を有する分子である。この機能性分子は、キメラ型二重鎖のみならず、上述した二重鎖RNAにおいて結合させることもできる。
 また、特定オリゴペプチド領域を構成するアミノ酸残基のうち、光学活性を伴うアミノ酸残基は、全てL型、あるいは、全てD型の同一の光学活性を有するアミノ酸残基であることが好適である。
 さらに本発明のオリゴペプチド等における、概ね陽イオン性の細胞膜の効率的な通過や、特定の標的(臓器等)への選択性を付与するため等の目的のために、いわゆるデリバリー分子を本発明のオリゴペプチド等に結合させることが可能である。
 本発明の核酸結合剤は、その使用による「二重鎖核酸に対するヌクレアーゼによる分解抑制効果」に基づいた「ヌクレアーゼ分解抑制剤」(以下、本発明の分解抑制剤ともいう)としての態様をとることが可能である(ただし、この二重鎖核酸に対するヌクレアーゼからRNaseHは除外する)。このヌクレアーゼの分解対象である二重鎖核酸には、RNA二重鎖、DNA二重鎖、及び、RNA-DNA複合二重鎖等のキメラ型二重鎖が含まれる。また、ここに例示されるヌクレアーゼにおける二重鎖核酸に対する分解作用以外の作用、典型的にはRNAやDNAの一重鎖に対する分解作用を保有することを除外するものではない。
 「二重鎖核酸に対するヌクレアーゼ」として、例えば、RNaseA、オリゴヌクレオチダーゼ(oligonucleotidase)、RNaseII、RNaseIII、Spleen exonuclease、DNaseI、DNaseII、エクソデオキシリボヌクレアーゼ(Exodeoxyribonuclease)VII等が挙げられる。ここではヒトにおいて存在するヌクレアーゼを一部例示列挙したが、それ以外も「二重鎖核酸に対するヌクレアーゼ」に含まれる。
 このヌクレアーゼによる分解抑制効果は、本出願時点における報告はなされておらず、かつ、上述した様に本発明の核酸結合剤を医薬用途、すなわちドラッグデリバリーシステムとしての実用化に向けて用いる場合の本質的な効果である。このヌクレアーゼ分解抑制効果が伴わなければ、他の効果、例えば熱安定性効果が認められても、医薬用途の実現することは困難である。ただし、他の用途、例えば、研究支援用途等においては、このヌクレアーゼ分解抑制効果は必須とはいえない。この点において、「核酸結合剤」と「ヌクレアーゼ分解抑制剤」を区別して規定する意義が存在する。なお、ヌクレアーゼには、ペプチド鎖内部から分解するエンドヌクレアーゼと、末端から分解するエキソヌクレアーゼの2種類があり、RNaseの場合は、栄養素等の吸収を司る腸管部にエンドヌクレアーゼがより多く存在する。そのため択一的視点からすると、エンドヌクレアーゼに対する分解抑制効果を有することが、エキソヌクレアーゼに対する分解抑制効果のみを有するよりも好適であるといえる。本発明において、特にその分解活性を抑制するべきエンドヌクレアーゼとしては、例えば、上記のRNaseA、RNaseIII等が挙げられる。RNaseAは、別名をRNase、RNaseI、Pancreatic RNase、Pancreatic Ribonuclease、又は、RibonucleaseIともいい、2段階反応によりRNAをエンド的に切断し、ピリミジンの3’-側を好み、3’-ホスホモノ又はオリゴヌクレオチドを生成することが知られている。RNaseIIIは、別名をRibonucleaseIII、RNaseO、又は、RNaseDともいい、二重鎖RNAを認識して、エンド的若しくはエキソ的に分解することが知られている。
 さらに本発明の核酸結合剤は、その使用による「RNaseHの分解促進効果」に基づいた「ヌクレアーゼ分解促進剤」(以下、本発明の分解促進剤ともいう)としての態様をとることが可能である。RNaseHは、別名をCalf thymus ribonucleaseH、エキソリボヌクレアーゼ(Exoribonuclease)H、又は、RNA-DNA-ハイブリッドリボヌクレオチドハイドロラーゼ(hybrid ribonucleotidohydrolase)ともいい、RNA-DNA複合二重鎖等のキメラ型二重鎖のRNAをエンド的に分解し、5’-ホスホモノ又はオリゴヌクレオチドを生成し、細菌から哺乳類まで広く認められ、1つの細胞に2~3種類のRNaseHが存在することが知られている。
 本発明の分解促進剤の効果は、特にキメラ型二重鎖のDNA鎖やLNA鎖(以下、DNA鎖等、又は、DNA等ともいう)を、標的mRNAのアンチセンス核酸として用いる場合に、標的細胞内において速やかに当該キメラ型二重鎖のRNA鎖を分解して、アンチセンス核酸としてのDNA鎖等の働きを促進する上で非常に有利な作用である。当該DNA鎖等は標的mRNAにハイブリダイズし、当該mRNA/DNA等の二重鎖のmRNAはさらに、RNaseHより分解されて、当該アンチセンスDNA等が遊離する。このようなプロセスを繰り返すことにより、標的mRNAに基づくタンパク合成を効果的に阻害することが可能である。
 上述した通りに本発明の核酸結合剤は、RNaseA等のヌクレアーゼによる分解抑制剤としても、RNaseHに対する分解促進剤としても働く。この一見相反する働きは、本発明の核酸結合剤が影響を与えるヌクレアーゼの二重鎖核酸の結合部位の違いに基づくものである。すなわち、RNaseAは二重鎖核酸のメジャーグルーブ側の本発明の核酸結合剤が結合する部位に結合すると考えられるために、本発明の核酸結合剤の存在により働きが阻害されるが、対してRNaseHは、これとは異なるマイナーグルーブ側に結合するため、むしろ、本発明の核酸結合剤がRNA/DNA二重鎖等のキメラ型二重鎖を熱力学的に安定化することによって、RNA鎖の分解が促進されるものと考えられる。
 本発明は第二に、本発明の核酸結合剤が二重鎖核酸に結合して安定化された、二重鎖核酸-ペプチド複合体(本発明の核酸-ペプチド複合体ともいう)を提供する発明でもある。
 本発明の核酸-ペプチド複合体の要件の説明は、実質的に本発明の核酸結合剤の説明において言及した内容に従う。例えば上記のこの本発明の核酸-ペプチド複合体において、結合の対象となる二重鎖核酸はB型二重鎖核酸よりもA型二重鎖核酸が好適であり、さらに好適にはsiRNA等の二重鎖RNAや、RNA-DNA複合二重鎖等のキメラ型二重鎖が挙げられる。また、結合の対象となる二重鎖核酸が10~25量体であり、かつ、オリゴペプチド領域の全てが式(I)のアミノ酸残基からなる場合には、オリゴペプチド領域のアミノ酸残基数は8~34であることが好適である。すなわち、(1)二重鎖核酸が10~25量体であり、かつ、オリゴペプチド領域のアミノ酸残基数は8~10である場合と、(2)二重鎖核酸が18~25量体であり、かつ、オリゴペプチド領域のアミノ酸残基数は8~34である場合が例示されること等、については上記の本発明の核酸結合剤の説明において言及した通りである。これらに加えて、二重鎖核酸が18~25量体程度のA型二重鎖、例えば二重鎖RNAであるsiRNAの場合には、当該二重鎖核酸に対して2~3当量の本発明の核酸結合剤が結合していることが、優れたRNase抵抗性が付与され得るという点において好適である。特に、この様に複数当量本発明の核酸結合剤を結合させても、本来のsiRNAの活性に悪影響を全く与えないという優れた特徴が、「アミノ基を伴うアミノ酸残基(I)」を構成として含む特定オリゴペプチド領域を有する本発明のオリゴペプチド等からなる核酸結合剤においても認められる。よって18~25量体程度のA型二重鎖核酸を結合対象とする場合に、この「アミノ基を伴うアミノ酸残基(I)」の特定オリゴペプチド領域を用いる態様では、2当量以上の本発明の核酸結合剤の結合がより好適であるといえる。4~17量体程度のA型二重鎖核酸を結合対象とする場合には、1当量以上の本発明の核酸結合剤の結合も好適な範囲である。
 これに対して、RNaseHによる分解促進剤として本発明の核酸結合剤をRNA/DNA二重鎖等のキメラ型二重鎖に対して用いる場合には、4量体以上のキメラ型二重鎖に対して1当量以上の本発明の核酸結合剤の結合が好適である。
 RNaseA等のヌクレアーゼに対する分解抑制とRNaseHの分解促進の両方の作用を18~35量体のRNA/DNA二重鎖等のキメラ型二重鎖に対して効果的に発揮させる場合には、キメラ型二重鎖に対して2当量以上の本発明の核酸結合剤を結合させることが好適である。4~17量体程度のキメラ型二重鎖を結合対象とする場合には、1当量以上の本発明の核酸結合剤の結合であっても好適である。
 本発明の核酸-ペプチド複合体は、本発明の核酸結合剤、及び、二重鎖核酸を、緩衝液中において共存させて、二重鎖核酸-ペプチド複合体を形成させることにより製造することができる(以下、本発明の製造方法ともいう)。
 本発明の核酸結合剤と共に緩衝液中に共存させる「二重鎖核酸」は、「アニーリング後の二重鎖核酸」である。核酸を改めて二重鎖とするためのアニーリング前の核酸と、本発明の核酸結合剤を共存させることは、核酸分子の凝集を招く可能性があるため好適とはいえない。また、用いる緩衝液は、リン酸緩衝液を用いることも可能であるが、二重鎖核酸のリン酸基との相互作用を考慮して、二価の陰イオン、特にリン酸イオンを含有しない緩衝液を用いることが、かかる凝集現象を回避するために好適である。例えば、Tris緩衝液、HEPES緩衝液、カコジル酸緩衝液等が例示できる。
 また、siRNAやキメラ型二重鎖等の二重鎖核酸が18~25量体の場合は、上記の様に当該二重鎖核酸に対して2~3当量の本発明の核酸結合剤が当該二重鎖核酸に結合していることが、優れたRNase抵抗性が付与され得るという点において好適である。この状態を実現するために、当該二重鎖核酸に対して2~5当量の本発明の核酸結合剤、及び、siRNAやキメラ型二重鎖等の二重鎖核酸を、上述した緩衝液中において共存させることが好適である。本発明の核酸結合剤が2当量未満であると、形成される本発明の核酸ペプチド複合体における、本発明の核酸結合剤の当量数も2当量未満となってしまう。また、同5当量を超えても、本発明の核酸結合剤の増量に見合った所望のsiRNA-ペプチド複合体製造に対する効果は認められなくなり、かえってsiRNAの活性に悪影響を及ぼす可能性がある。これに対して二重鎖核酸が4~17量体の場合には、上記の本発明の核酸結合剤の共存量の好適な下限は当該二重鎖核酸に対して1当量である。4~17量体二重鎖核酸における好適範囲の上限は当該二重鎖核酸に対して5当量である。
 本発明は第三に、本発明の核酸-ペプチド複合体を含有することを特徴とする、医薬品組成物(以下、本発明の医薬品組成物ともいう)を提供する発明である。生体環境における安定性に優れ、かつ、siRNA等の機能性RNAの活性の維持がなされている本発明の核酸-ペプチド複合体や、標的mRNAの働きを抑制するためのアンチセンスDNA等を複合化した、前記のキメラ型二重鎖を有効成分として含有する医薬品組成物を提供することにより、実質的な効果に優れる核酸医薬を提供することができる。
 本発明は第四に、本発明の核酸結合剤及び二重鎖核酸を緩衝液中にて接触させ、当該剤を当該二重鎖核酸に結合させることによる二重鎖核酸-ペプチド複合体の形成により、当該二重鎖核酸を安定化させることを特徴とする、核酸の安定化方法(以下、本発明の核酸安定化方法ともいう)、並びに、同二重鎖核酸分解の抑制方法(以下、本発明の分解抑制方法ともいう)を提供する発明であり、RNA-DNA複合二重鎖等のキメラ型二重鎖におけるRNaseHの働きを促進する二重鎖核酸分解の促進方法(以下、本発明の分解促進方法ともいう)を提供する発明でもある。これらの本発明の方法における諸要件については、本発明の核酸結合剤の説明、及び、本発明の核酸-ペプチド複合体とその製造方法の説明等、において言及した通りである。
 本発明により、二重鎖核酸、特に二重鎖RNA等のA型二重鎖核酸に結合して、その安定性を向上させることが可能な核酸結合剤が提供され、さらに当該核酸結合剤が結合してなる二重鎖核酸の安定化がなされた核酸-ペプチド複合体、当該複合体を含有する医薬品組成物、及び、当該安定化二重鎖核酸を形成させることによる核酸の安定化方法が提供される。また本発明により、二重鎖RNA等の二重鎖核酸に結合して、そのヌクレアーゼ分解に対する抵抗性を付与することが可能な二重鎖核酸のヌクレアーゼ分解抑制剤、並びに、当該分解抑制剤と二重鎖核酸の複合体を形成させることによる、当該二重鎖核酸のヌクレアーゼ分解の抑制方法が提供される。さらに本発明により、RNA-DNA複合二重鎖等のキメラ型二重鎖に結合して、RNaseHの働きを促進する核酸分解促進剤、並びに、当該分解促進剤とキメラ型二重鎖に結合して複合体を形成させることによる、当該キメラ型二重鎖のヌクレアーゼ分解の促進方法が提供される。
12量体のRNA二重鎖の構造、及び、当該RNA二重鎖とアミノ基を有するペプチド(Dab)の複合体のモデルである。 実施例において設計したアミノ基を有する陽イオン性オリゴペプチド配列と構造並びにアミノ基間距離を示した図面である。 実施例において設計したグアニジノ基を有する陽イオン性オリゴペプチド配列と構造並びにグアニジノ基間距離を示した図面である。 交互配列を有するグアニジノ基を伴う陽イオン性オリゴペプチドの一つの(Agp4)配列と構造を、グアニジノ基間距離と、その基構造と共に示した図面である。 等量の陽イオン性オリゴペプチド(各々のペプチドと二重鎖は、20℃、pH7.0、4μM)の存在下と非存在下における、RNA/RNA二重鎖のCDスペクトルである。 等量の陽イオン性オリゴペプチド(各々のペプチドと二重鎖は、20℃、pH7.0、4μM)の存在下と非存在下における、DNA/DNA二重鎖のCDスペクトルである。 RNA二重鎖とRNA-ペプチド複合体のCDスペクトルにおける差スペクトルを示した図面である。 「二重鎖RNA又はDNA-アミノ基を有するペプチド複合体」の融解温度の変化について検討した結果を示す図面である。 「二重鎖RNA又はDNA-グアニジノ基を有するペプチド複合体」の融解温度の変化について検討した結果を示す図面である。 「二重鎖RNA又はDNA-グアニジノ基を有するペプチド複合体」の陽イオン性オリゴペプチドの添加量を変化させた場合の融解温度の変化について検討した結果を示す図面である。 グアニジノ基を伴うオリゴペプチドにおいて、緩衝液の種類が核酸二重鎖と陽イオン性ペプチドの相互作用に及ぼす影響に関して検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、光学活性(L体とD体の差違)が核酸二重鎖と陽イオン性ペプチドの相互作用に及ぼす影響に関して検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、光学活性(L体とD,L体の差違)が核酸二重鎖と陽イオン性ペプチドの相互作用に及ぼす影響に関して検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、特定オリゴペプチド領域におけるアミノ酸残基数が核酸二重鎖と陽イオン性ペプチドの相互作用に及ぼす影響に関して検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、RNA-交互配列ペプチド複合体の融解温度の変化を検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、主鎖に自由度の異なるアミノ酸を導入した場合の融解温度の変化を検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、主鎖に自由度を低くするプロリン骨格のアミノ酸を導入した場合の融解温度の変化を検討した図面である。 グアニジノ基を伴うオリゴペプチドにおいて、オリゴペプチドの蛍光基修飾が核酸二重鎖の融解温度に及ぼす影響に関して検討した結果を示す図面である。 ITCによるRNA(左)、DNA(右)に対するDabの滴定結果を示す図面である。 ITCによるRNA(左)、DNA(右)に対するAgpの滴定結果を示す図面である。 ITCによるRNA(左)、DNA(右)に対するAgbの滴定結果を示す図面である。 ネオマイシン存在下でのITCによるRNAに対するDab(左)、Agp(右)、Agb(左下)の滴定結果を示す図面である。 RNA二重鎖に対して陽イオン性ペプチド(左:Dap、右:Dab)を添加したことによる蛍光異方性変化およびフィッティング曲線である。 RNA二重鎖に対して陽イオン性ペプチド(左:Orn、右:Lys)を添加したことによる蛍光異方性変化およびフィッティング曲線である。 RNA二重鎖に対して陽イオン性ペプチド(左:Agp、右:Agb)を添加したことによる蛍光異方性変化およびフィッティング曲線である。 RNA二重鎖に対して陽イオン性ペプチド(左:Arg、右:AgbG3)を添加したことによる蛍光異方性変化およびフィッティング曲線である。 RNA二重鎖に対して陽イオン性ペプチド(左:AgpV、右:ネオマイシン)を添加したことによる蛍光異方性変化およびフィッティング曲線である。 RNA二重鎖に対する陽イオン性ペプチドの解離定数及び融解温度変化の関係を一覧した図面である。 実施例2-4で用いた陽イオン性ペプチドの一覧である。 RNA/DNA二重鎖の融解温度を、当該鎖の濃度を変えて検討した結果を示す図面であり、右図は左図の拡大図である。 RNA/DNA二重鎖についてのCDスペクトルの測定結果を、アミノ基を伴う陽イオン性ペプチド(左)と、グアニジノ基を伴う陽イオン性ペプチドにおいて検討した結果を示す図面である。 アミノ基を伴うオリゴペプチド(1)、及び、グアニジノ基を伴うオリゴペプチド(2)、においてペプチド-RNA/DNA二重鎖における融解温度の変化を検討した図面である。 陽イオン性ペプチドと3種の核酸二重鎖(RNA/RNA、RNA/DNA、DNA/DNA)の蛍光異方性測定による結合定数を比較した結果を示す図面である。 陽イオン性ペプチドのペプチド長を変化させ、ペプチド-RNA/DNA二重鎖のT測定を行った結果を示す図面である。 siRNAの二重鎖と1分子のAgpの複合体(左)と同3分子の複合体(右)のモデルである。 siRNA-Dab複合体の融解温度の変化を示したグラフである。 siRNA-Agp複合体の融解温度の変化を示したグラフである。 RNaseAで処理したRNA及びRNA-ペプチド複合体を電気泳動により展開した結果を示す図面である。 siRNAに対して、陽イオン性オリゴペプチド1当量での複合体のRNAi活性を検討した図面である。 hApoBに働くsiRNAに対して、陽イオン性オリゴペプチド1当量、3当量、及び、5当量での複合体のRNAi活性を検討した結果を表す図面である。 1μMのRNA/DNA二重鎖に対するDabの結合の有無によるRNaseA耐性に与える影響を考察した結果を示す図面であり、左がRNaseAを0.5μg/ml共存させた場合の結果を、右が0.1μg/ml共存させた場合の結果を示している。 RNA/DNA二重鎖に対する陽イオン性ペプチドの結合の有無によるRNaseH活性に与える影響を考察した結果を示す図面である。
1.本発明の核酸結合剤
 上述の様に本発明の核酸結合剤の本質的成分は、下記式(I)のアミノ酸残基が少なくとも2個連続する部分を含む2~40個のアミノ酸からなるオリゴペプチド領域(特定オリゴペプチド領域)であって、かつ、当該下記式(I)のアミノ酸残基の連続部分以外は、連続しない1個のアミノ酸残基であるオリゴペプチド領域、を含むオリゴペプチド又は当該オリゴペプチド誘導体(本発明のオリゴペプチド等)である。
Figure JPOXMLDOC01-appb-C000005
[式(I)において、Rは、基H-CH-、又は、式(II)で示される基である。Rは、Rが基H-CH-の場合は、存在しない、若しくは、炭素原子数1~3のアルキレン基であり、Rが式(II)で示される基の場合は炭素原子数1~4のアルキレン基である。一つのオリゴペプチド領域においてR及びRは全て同一である。]
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R、R及びRは、同一又は異なって、水素原子若しくはメチル基である。]
 以下、式(I)のアミノ酸残基からなるオリゴペプチドをAn(nはアミノ酸残基Aの結合数を示す正の整数である)と略記しつつ、特定オリゴペプチド領域の具体的な態様を例示列挙する。
(1)A(nは2~40)
 すなわち特定オリゴペプチド領域全てが式(I)のアミノ酸残基である態様である。
(2)[A-X](mは2又は3以上の数であり、pは[A-X]単位の繰り返し数を表し、当該繰り返し単位の中でXは同一でも異なってもよい式(I)のアミノ酸残基以外のアミノ酸残基である)
 すなわち式(I)のアミノ酸残基が2個、又は2個を超える数連なる単位の間に、他のアミノ酸残基を挟む態様である。この他のアミノ酸残基は特定オリゴペプチド領域の自由度(フレキシビリティー)を増す、場合によっては減ずる等の目的で挿入することができる。この態様(2)の具体例として例えば、以下のものが挙げられるが、これらに限定されるものではない。
 (2)-1:A-X-A-X-A-・・・(Xは同一でも異なってもよい式(I)のアミノ酸残基以外のアミノ酸残基である)、
 (2)-2:A-X-A-X-A・・・(Xは同一でも異なってもよい式(I)のアミノ酸残基以外のアミノ酸残基である)
 上記の「他のアミノ酸残基」は特に限定されず、オリゴペプチドに与えることを企図する自由度に応じて適宜選択することができる。自由度の大きなアミノ酸残基としてグリシンが挙げられるが、それ以外にオリゴペプチドの自由度に影響を与えるアミノ酸残基としては、例えばL-アラニン、L-プロリンの他、プロリン骨格を有するアミノ酸として、L-アミノプロリン、L-グアニジノプロリン等を挙げることができるが、これらに限定されるものではない。
 上述した様に、結合の対象となる二重鎖核酸はB型二重鎖核酸よりもA型二重鎖核酸が好適である。生理的条件下でB型二重鎖核酸であるものとして二重鎖DNAが挙げられる。同じく、生理的条件下でA型二重鎖核酸であるものとして二重鎖RNA、RNA-DNA複合二重鎖等キメラ型二重鎖が挙げられる。また、これらのいわば天然型の核酸以外に、ヌクレアーゼ耐性の向上等を目的として化学修飾を加えたDNAやRNAを用いたA型二重鎖核酸を用いることもできる。このような化学修飾を伴う核酸を、本発明に係わるキメラ型二重鎖を構成する核酸として適宜用いることができる。
 これらの核酸の化学修飾の態様としては、塩基部位の修飾態様として、例えば、シトシンの5-メチル化、5-フルオロ化、5-ブロモ化、5-ヨード化、N4-メチル化、チミジンの5-デメチル化、5-フルオロ化、5-ブロモ化、5-ヨード化、アデニンのN6-メチル化、8-ブロモ化、グアニンのN2-メチル化、8-ブロモ化、ホスホロチオエート化、メチルホスホネート化、メチルチオホスホネート化、キラル-メチルホスホネート化、ホスホロジチオエート化、ホスホロアミデート化、2’-O-メチル化、2’-MOE化、2’-AP化、2’-フルオロ化が挙げられる。例えば体内動態を重視すれば、2’-O-メチル化、又は、ホスホロチオエート化が好ましい。例えば、2’-O-メチルRNAは標的遺伝子のサイレンシング能を維持しつつ、オフターゲット効果を抑制することが知られている。さらに、これらの化学修飾は同一の核酸に対して、複数種組み合わせて施すことも可能である。
 また、連続4塩基以上のDNA領域を含む「一方の核酸」を構成し得る核酸として、例えば、ヘキシトール核酸(HNA)、シクロヘキセン核酸(CeNA)、ペプチド核酸(PNA)、グリコール核酸(GNA)、トレオース核酸(TNA)、モルホリノ核酸、トリシクロ-DNA(tcDNA)、2’-O-メチル化核酸、2’-MOE(2’-O-メトキシエチル)化核酸、2’-AP(2’-O-アミノプロピル)化核酸、2’-フルオロ化核酸、2’F‐アラビノ核酸(2'-F-ANA)、BNA(架橋化核酸(Bridged Nucleic Acid)が挙げられる。特にこれらの中でBNAとしては、LNA(ロックド核酸(Locked Nucleic Acid(登録商標)、2’,4’-BNA)とも称される、α-L-メチレンオキシ(4’-CH-O-2’)BNA)又はβ-D-メチレンオキシ(4’-CH-O-2’)BNA、ENAとも称されるエチレンオキシ(4’-(CH-O-2’)BNA)、β-D-チオ(4’-CH-S-2’)BNA、アミノオキシ(4’-CH-O-N(R)-2’)BNA、2’,4’-BNANCとも称されるオキシアミノ(4’-CH-N(R)-O-2’)BNA、2’,4’-BNACOC、3’アミノ-2’,4’-BNAが挙げられ、これらの中でも特にLNAが好適である。
 リン酸部修飾による生体内での安定性の向上や、疎水性の増加による細胞膜透過性の向上が知られているが、代表的なリン酸部修飾RNAは、ホスホロチオエートRNA(PS-RNA)や、ボラノホスフェートRNA(PB-RNA)が挙げられる。
 また、上記の「一方の核酸」に対して相補的な「他方の核酸」には機能性分子が結合していてもよい。この結合は、直接的な結合であってもよく、他の物質を介した間接的な結合であってもよいが、共有結合、イオン結合、水素結合等で直接的に結合していることが好ましく、より安定した結合が得られるという観点から、共有結合がより好ましい。当該「機能性分子」としては特に制限はなく、標識化合物(蛍光タンパク質、ルシフェラーゼ等)、精製用化合物(ビオチン、アビジン、Hisタグペプチド、GSTタグペプチド、FLAGタグペプチド等)が挙げられる。
 上記の「一方の核酸」を特異性高く効率的に標的部位に送達し、かつ当該核酸によって標的遺伝子の発現を非常に効果的に抑制し得る点から、上記機能性分子は、二重鎖核酸を標的部位に送達させる活性を有する分子が結合していることが好ましい。
 「二重鎖核酸を標的部位に送達させる活性を有する分子」として、例えば、肝臓等に特異性高く効率的に本発明の二重鎖核酸を送達できるという点から、脂質が挙げられる。このような脂質としては、コレステロール、脂肪酸等の脂質(例えば、ビタミンE(トコフェロール類、トコトリエノール類)、ビタミンA,ビタミンD)、ビタミンK等の脂溶性ビタミン(例えば、アシルカルニチン)、アシルCoA等の中間代謝物、糖脂質、グリセリド、並びにそれらの誘導体等を例示することができる。例えば、安全性を重視すれば、コレステロール、ビタミンE(トコフェロール類、トコトリエノール類)が好ましい。また、脳に特異性高く効率的に本発明の二重鎖核酸を送達できるという点からは、糖(例えば、グルコース、スクロース)が挙げられる。また、各臓器の細胞表面にある各種タンパク質に結合することにより、当該臓器に特異性高く効率的に本発明の二重鎖核酸を送達できるという点から、受容体のリガンドや抗体等のペプチドやタンパク質も「機能性分子」として挙げられる。
 後述する実施例では「二重鎖のRNA」と「RNA-DNA複合二重鎖」が用いられている。
 本発明の結合剤の結合安定化対象としての「二重鎖のRNA」は、「元来二重鎖RNAであるもの」、「元来は一重鎖RNAであるものを二重鎖に改変したRNA」双方を挙げることができる。また、部分的に二重鎖になっている構造、例えば、ヘアピン型構造、ステムαループ構造、ダンベル型構造を有するRNAも、本発明の結合剤の結合安定化対象となり得る。本発明を適用可能な比較的低分子のRNAを列挙すれば、siRNA、miRNA、piRNA、rasiRNA、smRNA、tncRNA、tncRNA、テロメラーゼRNA、スプライセオソームsnRNA、U7snRNA、C/DRNA、7SKRNA等が挙げられるが、これらに限定されるものではない。これらの中で現実的な医薬用途(RNAi医薬)に用い得るものとしてsiRNA(低分子干渉RNA:small interfering RNA)が挙げられる。siRNAによるRNA干渉は、まず、外来二重鎖RNA (dsRNA) がDicerにより切断され、21~23塩基対のsiRNAが形成される。このsiRNAがATPを消費してAgo2、Dice、TRBPなどの蛋白質と結合し、RLC(RISC loading complex) と呼ばれる複合体を形成する。その後、パッセンジャー鎖 (又はセンス鎖) がエンドヌクレアーゼにより分解、解離し、標的のmRNAに相補的なガイド鎖 (又はアンチセンス鎖) のみが残るRISCと呼ばれる複合体が形成される。RISCはガイド鎖と相補的なmRNAに結合と分解を繰り返すことで、標的遺伝子の発現を抑制する。
 RNAi医薬では、このDicerにより切断されたsiRNAまたは切断される前駆体を細胞内に導入することで、標的mRNAのガイド鎖を保有するRISCを形成し、mRNAを分解することを主要な目的とする。このようなRNAi医薬は、標的に結合するだけでなく、生体内の機構により標的分子を分解するため、特に有効な核酸医薬として期待されている。本発明は、このRNAi医薬の主役と位置付けられるsiRNAの生体内での安定性を増加させることにより、この核酸医薬の実用化への途を開くものである。
 本発明の結合剤の結合安定化対象としての「RNA-DNA複合二重鎖等のキメラ型二重鎖」は、核酸医薬として用いることができるものである。これは例えば、RNAと複合化されたDNAが特定のmRNAに対するアンチセンス核酸として働くことを目的とするものである。すなわち、DNAと複合化させるRNAの塩基配列を、その働きを抑制する標的mRNAの配列の全部又は一部としたRNA/DNA二重鎖等のキメラ型二重鎖、を核酸医薬として用いることができる。この核酸医薬としてのRNA/DNA二重鎖等のキメラ型二重鎖は、細胞内においてRNA/DNA二重鎖等のキメラ型二重鎖を二重鎖として認識して、そのRNA鎖を選択的に分解するRNaseHの働きにより、標的mRNAに対して相補的な配列を有する一重鎖DNA等となり、当該一重鎖DNA等が細胞内の標的mRNAと結合してこれに基づくタンパク合成を抑制し、かつ、上記RNaseHの働きによって標的mRNAは分解される。このプロセスが細胞内で繰り返し行われることにより、標的mRNAの働きを極めて効果的に抑制することが可能となる。
 キメラ型二重鎖のうち、最も基本的なRNA/DNA二重鎖は総合的にヌクレアーゼに対して優れた耐性を伴うことが知られている(例えば、特許文献1)が、その反面で、後述する実施例で示す通りに熱変性温度が二重鎖RNAと比べても低くなっており、例えば人体に投与されて低濃度になった場合に、その体温によりRNA/DNA二重鎖が一部変性し一重鎖RNAが露出して、当該一重鎖RNAやDNAが、細胞内に到達する前に生体内のRNaseAやDNase等により分解されてしまい、所望の働きをすることが阻害されてしまうことが想定される。
 これも実施例に示す様に、陽イオン性ペプチドを結合させたRNA/DNA二重鎖では熱安定性を向上させることが可能であり、その結果、人体におけるヌクアーゼ安定性もまた向上させることが可能である。その反面、少なくとも細胞内におけるRNaseH、の働きを決定的に阻害しないことが必要であり、好ましくは当該RNaseHの働きを少なくとも阻害せず、更に好ましくは当該RNaseHの働きの促進が認められることである。
 驚くべきことに、本発明の結合剤においては上述したRNA/DNA二重鎖等のキメラ型二重鎖の安定化作用と共に、RNaseHの働きを促進する作用が認められ、RNA/DNA二重鎖等のキメラ型二重鎖の核酸医薬としての実用化の途を開くものである。
 本発明のオリゴペプチド等における、特定オリゴペプチド誘導体以外の部分は必要に応じて適宜選択することが可能であり、特に限定されない。例えば、必要に応じて保護基やフルオレセイン等の蛍光基等のシグナル源が結合されているアミノ酸誘導体残基を用いることも可能である。いわゆるデリバリー分子を本発明のオリゴペプチド等に結合させることが可能である。デリバリー分子としては、本発明のオリゴペプチド等を細胞内に導入し得るシグナルペプチド等の分子、標的選択性を有する分子等を挙げることができる。
 例えば、脂質をデリバリー分子として用いることで、肝臓等に対して選択的に本発明のオリゴペプチド等を体内導入することができる。当該脂質としては、例えばコレステロール;ビタミンE(トコフェロール類、トコトリエノール類等)、ビタミンA、ビタミンK等の脂溶性ビタミン;アシルカルニチン、アシルCoA等の中間代謝物;糖脂質;グリセリド等の脂質、並びに、これらの脂質の誘導体が挙げられる。これらの中でコレステロール又はビタミンE類は、安全性等の観点から一般的な好適例として挙げられる。さらに、グルコースやスクロース等の糖をデリバリー分子として用いることで、脳に対して選択的に本発明のオリゴペプチドを導入することが可能となる。また、各臓器の細胞表面にある各種の蛋白質や受容体に本発明のオリゴペプチドを結合させることも選択的な導入手段として認められるため、これらの細胞表面蛋白等に特異的な抗体やリガンドをデリバリー分子として用いることも可能である。
 後述する実施例では、本発明のオリゴペプチド等は、N末端やC末端に上記のデリバリー分子を結合させることが想定されるため、N末端をアセチル基、C末端をアミド基で保護したものを用いている。また、濃度測定のためUV吸収をもつL-チロシンを、グリシンを2残基介して導入している。
 本発明のオリゴペプチド等は、公知のペプチドの化学合成法に従い製造することが可能である。すなわち、今や常法として確立している液相ペプチド合成法、又は、固相ペプチド合成法を用いて製造することが可能である。そして、一般的に好適な化学合成法として認識されている固相ペプチド合成法も、Boc固相法又はFmoc固相法を用いることが可能であり、必要に応じてライゲーション法を用いることも可能である。後述する実施例では、現時点で最も一般的に行われているFmoc固相法を用いて必要なオリゴペプチド等の合成を行った。また、オリゴペプチド等を構成する個々のアミノ酸は、公知の方法により製造可能であり、市販品を用いることも可能である。
 合成したオリゴペプチド等は常法に従い、脱保護等の工程後に、逆相高速液体クロマトグラフィー(逆相HPLC)等の常法により精製することが可能である。そして、質量分析法(matrix-assisted laser desorption ionization time-of-flight:MALDI-TOF、又は、liquid chromatography-electro spray ionization:LC-ESI)により目的のオリゴペプチドの同定を行うことが可能である。最終的にはオリゴペプチドを加水分解して、アミノ酸組成と含有量の確認を行うことができる。また、本発明に重要な意義を有する特定オリゴペプチド領域において隣り合うアミノ基やグアニジノ基間の距離は、分子力学・分子動力学計算による分子モデリング等によって確認することが可能である。なお当該アミノ基間やグアニジノ基間の距離のうちアミノ基間の距離とは、例えば図2のアミノ基を伴う各特定オリゴペプチド領域を構成する2単位の式(I)のアミノ酸残基の組における2つのプラスチャージを伴う窒素原子間の距離を意味する。また、グアニジノ基間の距離とは、例えば図3のグアニジノ基を伴う各特定オリゴペプチド領域を構成する2単位の式(I)のアミノ酸残基の組における2つのグアニジノ基の窒素原子間の平均距離のことを意味する。図2及び図3では、特定オリゴペプチド領域を構成する最小単位の2アミノ酸残基がペプチド結合を介して連なっている状態を基にして、本発明の核酸結合剤の本質成分の化学式の例示を行っている。
 以上の本発明のオリゴペプチド等を本質成分し、かつ、二重鎖核酸への結合を用途とする剤が、本発明の核酸結合剤である。
 本発明の核酸結合剤は、「二重鎖核酸のヌクレアーゼ分解抑制剤」、又は、RNaseHによる「RNA-DNA複合二重鎖等のキメラ型二重鎖の分解促進剤」としての態様をとり得ることは上述した通りである。
2.本発明の核酸-ペプチド複合体等
 本発明の核酸-ペプチド複合体は、前述の本発明の核酸結合剤が二重鎖核酸に結合して安定化された、二重鎖核酸-ペプチド複合体である。
 前述の様に本発明の核酸結合剤と結合させる二重鎖核酸は、(1)式(I)のアミノ酸残基のRが「基H-CH-」である場合(アミノ基を伴うアミノ酸残基である場合)は、A型二重鎖核酸である。
 (2)式(I)のアミノ酸残基のRが「式(II)の基」である場合(式(I)のアミノ酸残基が「グアニジノ基を伴うアミノ酸残基」であることを基本とするものである場合)は、A型二重鎖核酸と共に、B型二重鎖核酸も対象となり得る。ただし、当該二重鎖核酸がA型である場合とB型である場合とは、好適なアルキレン基Rの炭素原子数がそれぞれ異なっており、通常はA型二重鎖核酸が対象となる。
 本発明の核酸結合剤と結合させる二重鎖核酸の好適な具体例については、上の「本発明の結合剤」の欄において既に記載した通りである。なお、二重鎖核酸の主溝とは、二重鎖核酸の二重らせん構造のらせん内部において形成される幅広い方の溝構造であり、幅狭い方の溝構造を意味する副溝に対する用語である。主溝と副溝には、二重らせんを構成するヌクレオチドのリン酸基が規則正しく並んでいる。この主溝の負電荷を伴うリン酸基と、正電荷を伴うオリゴペプチド領域のアミノ基やグアニジノ基が非共有結合をなすことにより、本発明の核酸-ペプチド複合体が形成される。この二重らせんの溝構造は、A型二重らせんとB型二重らせんにおいて異なっていることは前述した通りである。本発明の核酸-ペプチド複合体は、ペプチドが融合していない二重鎖核酸と比較して熱変性しにくく、二重鎖核酸に対する一般的なヌクレアーゼに対する抵抗性も認められ、実質的に本来の二重鎖核酸の働きは損なわれない。RNA/DNA二重鎖等のキメラ型二重鎖に本発明の結合剤を結合させた場合に、RNaseHの働きを実質的に阻害せずに、むしろ促進する性質も認められることは上述した通りである。
 上述した様に本発明の核酸-ペプチド複合体は、本発明の核酸結合剤、及び、二重鎖核酸を、緩衝液中において共存させて、二重鎖核酸-ペプチド複合体を形成させることにより製造することができる(本発明の製造方法)。さらに本発明の核酸結合剤と共に緩衝液中に共存させる「二重鎖核酸」は、「アニーリング後の二重鎖核酸」である。核酸を改めて二重鎖とするためのアニーリング前の核酸と、本発明の核酸結合剤を共存させることは、RNA分子の凝集を招く可能性があるため好適とはいえない。また、用いる緩衝液はリン酸緩衝液を用いることも可能であるが、二重鎖核酸のリン酸基との相互作用を考慮して、二価の陰イオン、特にリン酸イオンを含有しない緩衝液を用いることが、かかる凝集現象を回避するために好適である。例えば、Tris緩衝液、HEPES緩衝液、カコジル酸緩衝液等が例示できる。反応温度は0~50℃、好適には10~40℃であり、溶媒のpHは5~9、好適には6~8である。また、当該溶媒系における二重鎖核酸と本発明の核酸結合剤の当量比や核酸結合剤の本質成分であるオリゴヌクレオチド等、特に特定オリゴヌクレオチド領域の大きさは、どのような結合状態の本発明の核酸-ペプチド複合体を調製するかによっても異なる。一般的に結合の対象となる二重鎖核酸の鎖が長く塩基数が多いほど、それに伴うリン酸基の数も多くなり、これらに結合することが可能な特定オリゴペプチド領域を構成するアミノ酸残基数は大小の多様性を伴う。すなわち二重鎖核酸の鎖が長くリン酸基の数が増加すれば、これに結合する特定オリゴペプチド領域として、「短いものが多数個の場合」、「長いものが少数個の場合」、さらにこれらの組み合わせが考えられることになり、理論上そのバリエーションは、二重鎖核酸の長さが増すに従い相乗的に増加することになる。すなわち、二重鎖核酸の長さが比較的短い場合(本実施例の前半で用いたモデル二重鎖RNAの様に12mer近傍のもの)は、二重鎖1分子に対して本発明の結合剤(陽イオン性オリゴペプチド)は1当量であり、せいぜい1~2当量程度の本発明の結合剤を共存させることで、所望の核酸-ペプチド複合体を調製することができる。しかしながら二重鎖核酸のサイズが大きくなれば、当該二重鎖核酸における結合サイト(リン酸基)の数も多くなり、二重鎖核酸一分子が要求し得る「同一のアミノ酸基数の特定オリゴペプチド領域(典型的には8~12mer程度)を有する」本発明のオリゴペプチド等が本質成分である本発明の結合剤、の当量は増加する。また、特定オリゴペプチド領域のアミノ酸残基数の多様性も相乗的に生じてくる。
 前述した様に二重鎖核酸の塩基数10~25量体の範囲で類型化すると、(1)二重鎖核酸が10~25量体であり、かつ、特定オリゴペプチド領域のアミノ酸残基数は8~10である場合と、(2)二重鎖核酸が18~25量体であり、かつ、特定オリゴペプチド領域のアミノ酸残基数は8~34である場合、に大別される。
 そして18~25量体となり得る二重鎖核酸を例示すれば、A型二重鎖の代表的態様としてsiRNA、二重鎖形態として改変されたmicroRNA(miRNA)、RNA-DNA複合二重鎖等のキメラ型二重鎖等が挙げられる。
 これらの2種類の態様のうち(1)の、アミノ酸残基数が8~10という小分子のオリゴペプチド領域のみが二重鎖核酸の塩基数(リン酸基数)に応じた結合をする態様において述べれば、例えば、RNAi医薬において有望な小分子RNAの一つであるsiRNAやキメラ型二重鎖核酸では、本発明の結合剤は1当量から3当量の割合で結合させることができる。ただし、特に二重鎖核酸の塩基数が18~25量体以上の場合(上記態様(2))においては、本発明の結合剤の1当量の結合は、出来上がった核酸-ペプチド複合体が二重鎖核酸に対する一般的なヌクレアーゼ(RNaseHを除く)への十分な抵抗性を伴わない傾向が認められるので、2~3当量の結合であることが好適である。特に、この様に複数当量本発明の核酸結合剤を結合させても、本来のsiRNAやRNA/DNA二重鎖等のキメラ型二重鎖の活性に実質的な悪影響を与えないという優れた特徴が認められる。これは、「アミノ基を伴うアミノ酸残基(I)」を構成として含む特定オリゴペプチド領域を含むオリゴペプチド等を本質成分とする核酸結合剤において特に優れている。よって18~25量体程度のA型二重鎖核酸を結合対象とする場合に、2当量以上、特に好適には3当量以上の本発明の核酸結合剤の結合が好適であり、特に、この「アミノ基を伴うアミノ酸残基(I)」の特定オリゴペプチド領域を用いる態様が好適である。
 この状態を実現するために、18~25量体の二重鎖核酸に対して2~5当量、好適には3~4当量の本発明の核酸結合剤、特に好ましくはアミノ基タイプの核酸結合剤、及び、当該二重鎖核酸を、上述した緩衝液中において共存させることが好ましい。本発明の核酸結合剤が2当量未満であると、形成される本発明の核酸ペプチド複合体における、本発明の核酸結合剤の当量数も2当量未満となってしまう。また、同5当量を超えても、本発明の核酸結合剤の増量に見合った所望の-ペプチド複合体製造に対する効果は認められなくなり、かえって本来の核酸の活性に悪影響を及ぼす可能性がある。
 この様にして本発明の核酸-ペプチド複合体が製造(生産)され、当該複合体は例えばRNAi医薬、遺伝子機能解析等を行うための研究試薬、アンチセンス医薬、二重鎖RNAからなる核酸アジュバント等として用いることができる。
 この本発明の核酸-ペプチド複合体に関連して、本発明の核酸結合剤及び二重鎖核酸を接触させ、当該剤を当該二重鎖核酸に結合させることによる本発明の核酸-ペプチド複合体の形成により、二重鎖核酸を安定化させることを特徴とする、核酸の安定化方法の提供がなされる。また、本発明の核酸結合剤の別態様である、本発明の分解抑制剤及び二重鎖核酸を接触させ、当該剤を当該二重鎖核酸に結合させることによる本発明の核酸-ペプチド融合体の形成により、二重鎖核酸に対する一般的なヌクレアーゼ(RNaseHを除く)による分解が抑制される、本発明の分解抑制方法が提供される。また、本発明の分解促進剤及びRNA/DNA二重鎖等のキメラ型二重鎖を接触させ、当該剤を当該キメラ型二重鎖に結合させることによる核酸-ペプチド融合体の形成により、RNaseHの働きを促進する、二重鎖分解の促進方法が提供される。
3.本発明の医薬組成物
 上述の様に本発明の医薬組成物は、「本発明の核酸-ペプチド複合体を含有することを特徴とする、医薬品組成物」である。
 上述した様に本発明の核酸-ペプチド複合体は、「医薬組成物」の有効成分として人体に投与される。当該核酸-ペプチド複合体の直接投与の場合も、注射剤等を用時混合することになるので、これも医薬組成物に含められる。
 本発明の医薬組成物は、有効成分である本発明の核酸-ペプチド複合体と共に適切な医薬製剤担体を配合して製剤組成物の形態に調製される。当該製剤担体としては、使用形態に応じた担体を選択することが可能であり、充填剤、増量剤、結合剤、付湿剤、崩壊剤、界面活性剤等の賦形剤ないし希釈剤を使用することができる。組成物の形態は、本発明の核酸-ペプチド複合体を効果的に含有可能な形態であれば特に限定されるものではなく、錠剤、粉末剤、顆粒剤、丸剤等の固剤や軟膏剤であってもよいが、通常は、液剤、懸濁剤、乳剤等の注射剤形態とするのが好適である。また、本発明の核酸-ペプチド複合体を適切な担体の添加によって使用時に液状となし得る乾燥品とすることも可能である。さらに本発明の医薬品組成物において、シクロデキストリン含有ポリマーで構成されたナノ粒子、高分子ミセル、安定核酸脂質粒子(SNALP)、多機能エンベローブ型ナノ構造体(MEND)等のドラッグデリバリーシステム活用して、本発明の核酸-ペプチド複合体の有効成分としての効果をより向上させることが可能である。
 得られた医薬品組成物は、その形態に応じた適切な投与経路、例えば、注射剤形態の医薬品組成物は、静脈内、筋肉内、皮下、皮内、腹腔内投与等により、固剤形態の医薬品組成物は、経口ないし経腸にて投与される。医薬品組成物中の本発明の核酸-ペプチド複合体の量は、当該組成物の投与方法、投与形態、使用目的、患者の症状等に応じて適宜選択され一定ではないが、通常、本発明の核酸-ペプチド複合体を、0.1~95質量%程度含有する組成物形態に調製して、上述した投与量(1日成人1人当たり0.01μg~10mg程度であり、一日1回ないし2~5回、さらに数日おきに行うことも可能である)、にて投与を行うことが好ましい。
 この様に生体環境における安定性に優れ、かつ、siRNA等の機能性RNAの活性の維持がなされている本発明の核酸-ペプチド複合体や、複合化されたDNAが、標的mRNAのアンチセンス核酸の機能に着目して用いられるRNA/DNA二重鎖等のキメラ型二重鎖-ペプチド複合体を有効成分として含有する医薬品組成物を提供することにより、siRNAや当該キメラ型二重鎖等が司る実質的な効果に優れる核酸医薬を提供することができる。siRNAやRNA/DNA二重鎖等キメラ型二重鎖の核酸医薬としての用途は、がんや各種疾患の治療薬や、HIVやHCVの抗ウイルス薬として用いることが可能である。例を挙げれば、FAK遺伝子を標的遺伝子とした腎細胞がん治療薬、VEGF遺伝子をターゲット遺伝子とした加齢性黄斑変性症(AMD)と糖尿病による黄斑浮腫の治療薬、VEGFR1遺伝子やRTP801遺伝子をターゲット遺伝子とした加齢性黄斑変性症(AMD)治療薬、プロテインキナーゼNβをターゲットとした膵臓がん治療薬、VEGF遺伝子とキネシン紡錘体蛋白質をターゲットとした肝がん治療薬、リボヌクレオチドレダクターゼM2サブユニットをターゲットとした肝がん治療薬、HBVゲノムをターゲットとしたB型肝炎治療薬、HCVゲノムをターゲットとしたC型肝炎治療薬、RSVゲノムをターゲットとしたRSV治療薬、インフルエンザウイルスゲノムをターゲットとしたインフルエンザ治療薬、Th2サイトカインをターゲットとした喘息治療薬、PCSK9遺伝子をターゲットとした高コレステロール血症治療薬、HIV-1ゲノムをターゲットにしたAIDS治療薬、heir growth geneをターゲットとした脱毛治療薬、Huntingtin又はα-synucleinをターゲットとしたパーキンソン病治療薬、スーパーオキシドムスターゼをターゲットとした筋萎縮性側索硬化症(ALS)治療薬、TNF-αをターゲットとする炎症性疾患治療薬、等が挙げられる。
 本発明の医薬組成物の人体へ上述した態様の投与を行うことにより、有効成分としての本発明の核酸-ペプチド複合体の働きにより、上記例示の疾患の治療を行うことが可能となる。特に本発明の医薬組成物においては、本発明の核酸-ペプチド複合体におけるRNaseAやRNaseIII等のヌクレアーゼに対する優れた安定性に伴い、経口投与が可能となる。
 以下、本発明の実施例を開示する。
◇ 実施例において用いた試薬、機械、装置
 実施例の開示に先立ち、ここで用いた試薬、機械、装置について述べる。
 Fmocアミノ酸誘導体、Bocアミノ酸誘導体は渡辺化学工業株式会社より購入し、そのまま用いた。Fmoc-Amp-OHは既存の手法に従ってL-ヒドロキシプロリン(Hyp)から合成し、NMRにて確認したものを用いた。ペプチド固相合成担体としての樹脂は、Nova biochem社又は渡辺化学工業株式会社より購入したものを用いた。他の試薬は、アミノ酸を含め、市販のものを精製せずに用いた。
 各ペプチド鎖の手動合成にはポリプロピレン製エンプティーカラム(Pharmacia Biothech)を用いた。手動合成で攪拌、反応温度調節には、Peti-syzer(ハイペップ研究所)を用いた。高速液体クロマトグラフィー(HPLC)には、ポンプ:PU・2080i plus(日本分光)、検出器:UV・2075i plus(日本分光)、低圧グラジェントユニット:LG-2080-02(日本分光)、デガッサ:DG・2080・53(日本分光)、逆相カラム:μ-Bondasphere,C18,5μm,100A(waters)を用いた。溶出溶媒としては、A液:0.05% TFA/HO、B液:0.05% TFA/CHCNの混合溶媒を用い、30分間でA液とB液の直線勾配により溶出した。検出波長は280nmとした。MALDI-TOF-MS分析Voyager System 4327(Applied Biosystem)を用いて行い、ジヒドロキシベンゾイックアシッド(DHB)をマトリックスとして用いた。
 CDスペクトルは、分光偏光計:J-725(日本分光)、光源:PS-450J(日本分光)、温度制御装置:PTC-348WI(日本分光) を用いて測定した。また、T測定はUV-1650PC(SIMADZU) を用いて測定した。蛍光異方性は、蛍光光度計:FP6500(日本分光)、温度制御装置:ETC-273T(日本分光)、偏光板:FDP-243(日本分光) を用いて測定した。
[実施例1] ペプチド合成
1-1 アミノ基を有するペプチドの設計
 まず初めに、陽イオン性官能基としてアミノ基を選択した。アミノ基は生理条件下でプロトン化され、陽イオン性となり、RNA結合蛋白質やRNA結合性のアミノグリコシドなどの様に、RNA結合分子中によくみられる官能基である。先行研究で、IwataらはRNA二重鎖に選択的に結合するオリゴジアミノグルコースの獲得にも成功しており、アミノ基はRNA二重鎖との結合に有効な官能基と考えられる。
 ここでは図1に示す様に核酸二重鎖の主溝に位置する向かい合ったリン酸基に効率的に相互作用可能な、種々のアミノ基を有するペプチドを設計し、核酸二重鎖との相互作用を比較検討した。ここで、B型二重らせん構造をとるDNAとA型二重らせん構造をとるRNAにおいて、高次構造の違いから、主溝上のリン酸基間の距離が大きく異なるため、リン酸基間距離の差を認識することで、RNA二重鎖選択的に結合する分子の獲得が期待される。そこで、陽イオン性オリゴヌクレオチドにおけるアミノ基間距離を制御することで、RNA二重鎖に効率的に結合するペプチドの獲得を目指した。ペプチド上のアミノ基間距離を制御するため、側鎖長の異なるアミノ酸、L-2,3-ジアミノプロピオン酸(Dap)、L-2,4-ジアミノブチル酸(Dab)、L-オルニチン(Orn)、L-リジン(Lys)を用いて設計した。
 ここではまず二重鎖RNA12量体を用いて陽イオン性オリゴペプチドとの相互作用を解析することとした。今回用いる二重鎖RNA12量体「r(CGCGAAUUCGCG)」(配列番号1)、二重鎖DNA12量体「d(CGCGAATTCGCG)」(配列番号2)は自己相補的配列で調製が簡便であり、また、融解温度も高く室温近傍で十分に二重鎖を形成する配列であるため、モデルとして選択した。A型二重らせん構造を有するRNA12量体には4組、8個の向かい合うリン酸が存在する(図1)。この規則的に配列した4組の向かい合ったリン酸を標的とするため、ペプチドは+8の電荷をもつ様にDap、Dab、Orn、Lysの8量体及び、濃度測定のためUV吸収をもつチロシン(Tyr)を、グリシン(Gly)を二残基介して導入した11量体のペプチドを設計した(下記)。また、Dabのアミノ酸のキラリティの影響を検討するためD体のアミノ酸dabを用いたdabを合わせて設計した(下記)。図2には、βシート構造におけるペプチド(1)~(4)のN-N間距離を、配列と構造と共に示している。
(1)Dap:Ac-YGG-Dap-NH
(2)Dab:Ac-YGG-Dab-NH
(3)Orn:Ac-YGG-Orn-NH
(4)Lys:Ac-YGG-Lys-NH
(2’)dab:Ac-YGG-dab-NH
1-2 グアニジノ基を有するペプチドの設計
 次に、陽イオン性官能基としてグアニジノ基を選択した。グアニジノ基はアミノ基同様、生理条件下で陽イオン性を示し、RNA結合蛋白質によくみられる官能基である。グアニジノ基を有するペプチドの合成は、アミノ基を有するペプチドを固相合成した後に、Scheme 1の方法に従い、グアニジノ基に変換することで行った。
Figure JPOXMLDOC01-appb-C000007
 アミノ基を有するペプチドの場合と同様に、グアニジノ基を有するペプチドでも、側鎖長の異なるアミノ酸、L-2-アミノ-3-グアニジノプロピオン酸(Agp)、L-2-アミノ-4-グアニジノブチル酸(Agb)、L-アルギニン(Arg)のオリゴマーを設計した(下記)。ペプチドは+8の電荷をもつ様にAgp、Agb、Argの8量体及び、濃度測定のためUV吸収をもつTyrをGly二残基介して導入した11量体のペプチドを設計した。また、Dabと同様に、Agpのアミノ酸のキラリティの影響を検討するためD体のアミノ酸agpを用いたagpを合わせて設計した。図3には、βシート構造におけるペプチド(5)~(7)のN-N間距離を、配列と構造と共に示している。
(5)Agp:Ac-YGG-Agp-NH
(6)Agb:Ac-YGG-Agb-NH
(7)Arg:Ac-YGG-Arg-NH
(8)agp:Ac-YGG-agp-NH
1-3 交互配列を有するペプチドの設計
 次に、官能基の配置や種類の影響を検討するため、二種類のアミノ酸が交互に配列したペプチドを設計した(下記及び図4)。まず、キラリティの影響を検討するため、D体とL体のアミノ酸を交互に配列したD,L-Agpを設計した。さらに、他の官能基の効果を検討するため、グアニジノ基を有するアミノ酸と他のアミノ酸の交互配列を設計した。グアニジノ基を有するアミノ酸としては、グアニジノ基の間隔が広くなりすぎることを懸念し、最も側鎖長の短いAgpを用いた。このAgpと自由度の高いGly、疎水性の異なるL-アラニン(Ala)、L-バリン(Val)、RNA結合蛋白質中でリン酸と水素結合を形成することが知られているL-セリン(Ser),L-アスパラギン(Asp)の交互配列を設計した。主溝の4組のリン酸基との相互作用を想定しているため、ペプチド側も(Agp-aa)の4回繰り返し配列を設計した。それぞれ、AgpG、AgpA、AgpV、AgpS、AgpNと略記する。
(9)D,L-Agp:Ac-YGG-(agp-Agp)-NH
(10)AgpG:Ac-YGG-(AgpG)-NH
(11)AgpA:Ac-YGG-(AgpA)-NH
(12)AgpV:Ac-YGG-(AgpV)-NH
(13)AgpS:Ac-YGG-(AgpS)-NH
(14)AgpN:Ac-YGG-(AgpN)-NH
1-4 主鎖の自由度を変化させたペプチドの設計
 ペプチド鎖の自由度を変化させるため、Dab、Agp中に自由度の高いGlyを1~3ヶ所導入したペプチド、Agp中に自由度の異なるL-Ala及びL-プロリン(Pro)を導入したペプチドを設計した(下記(15)~(32))。それぞれ、AgpG1、AgpG2、AgpG3、AgpA1、AgpA2、AgpP1、AgpP2と略称した。また、Dab、Agpに対してそれぞれプロリン骨格をもつL-アミノプロリン(Amp)、L-グアニジノプロリン(Gup)に1,2,4,8ヶ所置換したDabAmp、DabAmp、DabAmp、Amp、AgpGup、AgpGup、AgpGupを設計した。
(15)DabG1:Ac-YGG-Dab-Gly-Dab-NH
(16)DabG2:Ac-YGG-Dab-Gly-Dab-Gly-Dab-NH
(17)DabG3:Ac-YGG-Dab-Gly-Dab-Gly-Dab-Gly-Dab-NH
(18)AgpG1:Ac-YGG-Agp-Gly-Agp-NH
(19)AgpG2:Ac-YGG-Agp-Gly-Agp-Gly-Agp-NH
(20)AgpG3:Ac-YGG-Agp-Gly-Agp-Gly-Agp-Gly-Agp-NH
(21)AgpA1:Ac-YGG-Agp-Ala-Agp-NH
(22)AgpA2:Ac-YGG-Agp-Ala-Agp-Ala-Agp-NH
(23)AgpP1:Ac-YGG-Agp-Pro-Agp-NH
(24)AgpP2:Ac-YGG-Agp-Pro-Agp-Pro-Agp-NH
(25)DabAmp:Ac-YGG-Dab-Amp-Dab-NH
(26)DabAmp:Ac-YGG-Dab-Amp-Dab-Amp-Dab-NH
(27)DabAmp:Ac-YGG-(Dab-Amp)-NH
(28)Amp:Ac-YGG-Amp-NH
(29)AgpGup:Ac-YGG-Agp-Gup-Agp-NH
(30)AgpGup:Ac-YGG-Agp-Gup-Agp-Amp-Agp-NH
(31)AgpGup:Ac-YGG-(Agp-Gup)-NH
(32)Gup:Ac-YGG-Gup-NH
1-5 蛍光基修飾ペプチドの合成
 ペプチドの生体内での動態を追跡する目的で、蛍光官能基としてフルオレセインを導入したペプチドを設計した。ここで、フルオレセインイソシアネート(FITC)を用いてN末端に導入することを試みたが、α-アミノ酸ではエドマン分解によりN末端のアミノ酸ごと蛍光基が脱離してしまい、1残基短いペプチドが得られた。そのため、Scheme 2の通りに、ペプチドのN末端に、β-Alaを介してFITCを導入したペプチドを設計した。このペプチドの合成はMALDI-TOF-MSにより確認した。
Figure JPOXMLDOC01-appb-C000008
1-6 ペプチド合成
 ペプチドは、9-フルオレニルメチルオキシカルボニル(Fmoc)戦略を用いることによって、従来の固相法を介して合成した。ペプチド鎖は、カップリングのためにジメチルホルムアミド(DMF)中のFmocアミノ酸誘導体(5当量)、N,N-ジイソプロピルエチレンアミン(DIPEA、10当量)、及び2-(1H-9-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HATU、5当量)、並びにFmoc基の除去のために25%ピペリジン/DMFを用いて、Fmoc-NH-SAL-PEG樹脂上で組み立てた。最後のアミノ酸のカップリングの後、無水酢酸(10当量)を用いて、N-末端のアミノ基をアセチル(Ac)基で保護した。当該樹脂から当該ペプチドを切り離し、側鎖保護基を除去するために、当該ペプチド樹脂をトリフルオロ酢酸(TFA)-トリイソプロピルシラン-水(95:2.5:2.5,v/v/v)で処理した。飽和NaHCO3aq(200μl)中のペプチドの一部を、1,3-ジ-Boc-2-(トリフルオロメチルスルホニル)グアニジン(1アミノ基につき10当量)の、ジオキサン(200μl)溶液に加え、室温で一晩撹拌し、次いで真空内で濃縮した。
 前述の通りにグアニジノ基を有するペプチドの合成は、アミノ基を有するペプチドを固相合成した後に、前述のScheme 1の方法に従い、グアニジノ基に変換することで行った。まず樹脂をDMF,CHClでそれぞれ5回洗浄し、デシケーター中で減圧乾燥した。得られた樹脂を室温でTFA/HO/triisopropyl silane [95/2.5/2.5,v/v/v]中で1時間撹拌し、脱保護・脱樹脂を行った。樹脂を濾去し、氷冷EtOによりを加えてペプチドを沈殿させた。遠心分離機 (3000rpm、15分) にかけてデカンテーションした後、EtOをアルゴン気流下気化させた。沈殿を減圧乾燥し、粗精製のアミノ基を有するペプチドを得た。次に粗ペプチドをジオキサン/ HO(1:1, v/v) を10mMになる様に加え、2.5equivのグアニジル化剤と20%ほどsatNaHCO3aqを加えて6時間撹拌した。その後溶液を留去し、TFAにて1時間処理することでグアニジノ基を有するペプチドを得た。グアニジノ基から保護基を除去するために、当該ペプチドを、TFA-トリイソプロピルシラン-水(95:2.5:2.5, v/v/v)で処理した。全てのペプチドを逆相HPLC(水-アセトニトリル中0.05%TFA)で精製した。
 各オリゴペプチドは、マトリックス支援レーザー脱離イオン化重量分析法(MALDI-TOF-MS)により、成功裏に同定された。表1は、陽イオン性オリゴペプチドの分子量を示す。
Figure JPOXMLDOC01-appb-T000009
1-7 CDスペクトルによる測定
 溶液中のペプチドとRNA-ペプチド複合体の構造は、円二色性分散計(CD spectroscopy:Jasco J-720WI spectropolarimeter)を用いて解析された。すなわち全てのCDスペクトルを20℃で記録し、機器の設定は、解像度が0.1nm、感度が10mdeg、応答が4秒、速度が10nm/分、累積を6とした。
 スペクトルはペプチドのアミド結合に基づくモル残基楕円率[θ]/degcm2dmol-1 で表し、[θ]は以下の式から算出した。なお、モル残基濃度にはアミド結合数(ペプチド濃度×残基数)を用いた。
     [θ]=θobs(M/LC)
 [θobs:実測の楕円角(mdeg)、M:モル残基分子量、L:光路長(mm)、C:モル残基濃度(mg/ml)]
 分子機構の計算に基づいて、ペプチド、特にDapとAgp中の、アミノ基とグアニジノ基は、主鎖中のアミノ基を伴う分子間の水素結合を形成することが可能である。しかしながら二重鎖核酸の非存在下では、全てのペプチドのスペクトルはランダムコイルの存在を示した。ゆえにペプチドの二次構造の影響は、これらのケースでは無視することができるものであった。RNA-ペプチド複合体の構造もまた解析された。当該ペプチドは、側鎖長及び陽イオン性官能基の性質に依存して様々なTm値を示したために、静電的な相互作用と水素結合だけではなく、構造的な要素も存在していたと解釈される。しかしながらRNAとDNAの二重鎖の両者とも、いくつかの陽イオン性オリゴペプチドの添加においては、核酸における構造的な感知可能な変化は何も認められなかった(図5-1、図5-2)。図5-1及び図5-2は「白黒表示」ゆえ、各オリゴペプチド同士がいずれの曲線を指すのかが明らかではないが、全ての例がほぼ同じ曲線を描き判別をすることが難しいことがわかる。これらの図は、必要があればカラーの図面を別途提出することが可能である。ペプチドの存在下又は非存在下でRNAとDNA二重鎖のCDスペクトルは、それぞれ典型的なA型とB型のらせんであった。二重鎖RNAに対して1当量の各ペプチドを添加したことで、265nm及び210nm付近のピークの変化がみられ、特に210nm付近のピークの変化が大きく変化している。ペプチド添加前後のスペクトルの差をとると、図6(左がアミノ基タイプ、右がグアニジノ基タイプ)のようなシグナルが得られた。このスペクトルがペプチドに由来するシグナルだと仮定した場合、β-シート構造に特徴的な形状をしている。そのため、ペプチドは核酸と結合することでβ-シート様の構造が誘起されていることが推測される。
[実施例2] 陽イオン性オリゴペプチドとモデル核酸二重鎖(12量体)の相互作用
 RNA結合分子がRNA二重鎖の熱安定性を向上させれば、生体内でも二重鎖の安定化が期待される点から、二重鎖の安定化能はRNA結合分子の最も重要な性質であると言える。そこで、RNA二重鎖に対してペプチドを添加したことによる融解温度変化を検討した。また、一般的にRNA二重鎖に対して強く結合する分子ほど、その融解温度を上昇させる傾向がみられているため、ペプチド‐核酸間の相互作用を融解温度の変化の度合いから評価した。RNA二重鎖に対して高い熱安定性を示すペプチドに対しては、等温滴定カロリメトリーや蛍光異方性測定により、直接相互作用を測定し、相互作用様式に関して検討を試みた。
実施例2-1) 融解温度(Tm)解析
 (2-1(1)) アミノ基を有する陽イオン性オリゴペプチドと核酸二重鎖との融解温度測定
 本例では、アニーリングさせたRNA二重鎖に対してペプチドを添加して複合体を形成させ、その融解温度(T値)を測定した。本来であれば、RNA二重鎖とペプチドを共存させてアニーリングすることで最安定構造に収束することが望ましいが、RNAとペプチドの混合溶液をアニーリングしたところ、RNA二重鎖の安定化は観測されなかった。これは、アミノ基を有するペプチドがリン酸緩衝液中で昇温することにより凝集するためと考えられる。実際に、各ペプチド溶液のUV吸収スペクトル、CDスペクトル及びHPLC追跡にて、チロシン由来のシグナルの消失が観測されることから、陽イオン性ペプチドの分解ではなく凝集により、ペプチド濃度が減少したことが示唆された。そのため、以降の測定はすべてアニーリングした核酸二重鎖に対してペプチドを添加して核酸-ペプチド複合体を調製した。
 T値の測定は次の要領で行った。すなわち、1mM核酸二重鎖水溶液8μlに対し、20mMリン酸緩衝液(200mM NaCl)100μl、及び、滅菌水を92μl加え、95℃で10分保った後-1℃/分で10℃まで徐冷した。これに10mMリン酸緩衝液(pH7.0、100mM NaCl)に溶解した0.1mMオリゴペプチド溶液を8μl加えることで208μlの水溶液(10mMリン酸バッファー、pH7.0、100mM NaCl)とした。これを用いてTを測定した。
 測定条件は以下のとおりである。
 吸収波長:260nm
 温度変化:10℃→95℃
 昇温速度:0.2℃/分
 RNA二重鎖に対して各ペプチドを添加したところ、側鎖長に応じて異なるT値を示した。側鎖長が最も短いDapを添加したことによる熱安定性の上昇は見られなかったが、Dab、Orn、Lysを比較したところ、側鎖長が短いペプチドほど高い熱安定性を示す傾向が見られた(図7、表2)。特にDabでは最も高い熱安定性を示した。一方、DNA二重鎖に対してペプチドを添加したところ、いずれのペプチドでも有効な熱安定性の向上は見られなかった。これはDabのアミノ基間距離がRNA二重鎖のリン酸基間距離によく適合したためと考えられる。DNAではリン酸基の間隔がRNA二重鎖よりも二倍以上広いため、いずれのペプチドも有効な相互作用を形成できなかったと考えられる。
 前述した様に、RNA二重鎖の熱安定性には陽イオン性ペプチドの官能基の距離が大きく影響することが示唆されたが、他の構造的特徴についても検討することにした。RNA二重鎖は右巻きのらせん構造であり、ペプチドを構成するアミノ酸もL体のキラリティをもつ分子である。この分子のキラリティが相互作用に及ぼす影響を検討するため、L体、D体のみからなるDab、dabをRNA二重鎖に添加して熱安定性を比較したところ、両ペプチド共にほぼ同程度のT値を示した。このことから、ペプチドのキラリティはRNAへの結合に影響を与えないことが示唆された。これは、側鎖にある程度の自由度があるため、主鎖のキラリティが結合様式に影響を及ぼさないのではないかと考えられる。
Figure JPOXMLDOC01-appb-T000010
 次に、測定時の緩衝液の影響に関して検討した。陽イオン性オリゴペプチドを生体内で用いることを想定して、生理的条件での挙動を調べる必要があるため、主として測定はリン酸緩衝液中で行った。しかし、ペプチドの陽イオン性官能基がRNAのリン酸基と相互作用するため、緩衝液中に多量にリン酸が存在する条件は、結合に少なからず影響を及ぼすことが懸念された。そこで、緩衝能が温度の影響を比較的受けにくいHEPESバッファーを用いて、融解温度を測定した(表3)。HEPES緩衝液中で複合体を形成させた場合、各ペプチドにて2℃程度のRNA二重鎖の熱安定性の向上が観測された。これは、リン酸が2価の陰イオンであるのに対して、HEPESが1価の陰イオンであることから、陽イオン性官能基との静電相互作用に与える影響が異なると考えられる。特に異なる挙動として、HEPESバッファー中では高温でのペプチドの凝集が観測されず、RNAとペプチドの混合液をアニーリングした場合と、アニーリングしたRNAにペプチドを加えた場合で同程度の熱安定性を示した。この挙動の差は、リン酸緩衝液中では多価ペプチド同士を2価のリン酸が架橋するため凝集するのが、HEPESバッファーでは1価であるため架橋されず、凝集しないのではないかと考えられる。なお、後述するITCでの複雑な挙動は、これら緩衝液の成分なども関与しているためと考えられる。以上のことから、相互作用RNA-ペプチド間の相互作用の性質を正確にみるためには、リン酸緩衝液のみでなく、カコジル酸緩衝液などを用いる条件が有効であることが示唆された。
Figure JPOXMLDOC01-appb-T000011
2-1(2)) グアニジノ基を有するペプチドと核酸二重鎖との融解温度測定
 次に「グアニジノ基を有する各ペプチドと核酸二重鎖複合体」の融解温度を測定した。アミノ基を有するペプチドの場合と異なり、グアニジノ基を有するペプチドはリン酸緩衝液中で核酸とともにアニーリングしても凝集は確認されなかったが、同条件で熱安定化能を比較するため、アミノ基を有するペプチドと同様の手法で測定を行った。
 グアニジノ基を有するペプチドをRNA二重鎖に対して添加したところ、アミノ基を有するペプチドの場合と同様に、RNA二重鎖は側鎖長に応じて異なる熱安定性を示した(図8、表4)。側鎖長が短いペプチドほど高い熱安定性を示す傾向が見られ、特に側鎖長が最も短いAgpの場合に最も高いT値を示した。一方、DNAでは逆の傾向が見られ、Agp<Agb<Argと、側鎖長が長いほど高いT値を示す傾向が見られた。これはAgpの官能基間距離が、RNA二重鎖のリン酸基間距離とよく適合したため、高いT値を示したのではないかと考えられる。この様に、RNAに対しては、側鎖長と官能基間距離が適合することで陽イオン性ペプチドの親和力が向上したことが示唆された。一方、DNAに対しては、側鎖長が長くなるにつれ、官能基間距離がDNA二重鎖の主溝のリン酸間距離に適合するため、熱安定性も向上させたと考えられる。なお、DNAに対しては明らかにリン酸基の間隔が陽イオン性ペプチドの官能基間距離よりも長いため、RNAほど有効に相互作用できないため、ΔTがRNAと比較して小さいと推測される。RNAに対して加えるAgpの当量を増加させると、低温領域で吸光度の増加が観測されたことから、過剰量のAgp存在下ではRNA分子間相互作用が生じて凝集体が形成されると考えられる(図9)。
Figure JPOXMLDOC01-appb-T000012
 次に緩衝液の種類が核酸二重鎖と陽イオン性ペプチドの相互作用に及ぼす影響に関して検討した。グアニジノ基を有するペプチドでも、リン酸緩衝液をHEPESバッファーに変更したことによるTの向上が見られた(図10、表5)。しかし、アミノ基ほどT値は大きく変化しなかった。RNA二重鎖の熱安定性の上昇は、緩衝剤の電荷が2価から1価へ変化したことにより、静電相互作用に及ぼす影響が変化したことによると考えられる。グアニジノ基とアミノ基のRNA二重鎖の熱安定性に及ぼす影響の差異は、緩衝液中のリン酸と陽イオン性ペプチドの官能基との結合様式が関与しているのではないかと考えられる。前述のとおり、アミノ基を有するペプチドはリン酸緩衝液中でアニーリングすることで凝集することが確認されているが、グアニジノ基を有するペプチドでは凝集がほぼ見られない。この様に、リン酸緩衝液中のリン酸とアミノ基を有するペプチドは複雑な相互作用様式をとることが予想される。おそらく、この様にアミノ基を有するペプチドは緩衝液中のリン酸と強く結合をし、解離しにくいため、RNAとの結合を阻害するのではないかと考えられる。
Figure JPOXMLDOC01-appb-T000013
 また、アミノ酸キラリティの影響を検討するため、Agpとagpを比較したところ、RNA二重鎖は両ペプチド共にほぼ同程度の熱安定性を示した。このことから、グアニジノ基を有するペプチドを構成するアミノ酸のキラリティは、RNAへの結合に大きな影響を及ぼさないことが示唆された(図11)。これは、アミノ基を有するペプチドの場合と同様に、側鎖にある程度の自由度があるため、主鎖のキラリティがRNAに対する結合に大きな影響を及ぼさないのではないかと考えられる。一方、L体とD体を交互に配列した(Agp-agp)では優位な熱安定性の減少が見られた。これは、α-アミノ酸骨格をもつPNAでも見られる現象であり、主鎖がホモキラルである構造がヘテロキラルな構造と比較して核酸との結合に適していることが示唆される(図12、表6)
Figure JPOXMLDOC01-appb-T000014
 Agpオリゴマーでの残基数と結合の相関を確認するため、Agp、Agp、Agp、Agp10についてRNA二重鎖に対する結合を確認したところ、ペプチド鎖が長いほどRNA二重鎖と強く結合することがわかった(図13、表7)。そのため、分子中の各グアニジノ基はそれぞれRNAのリン酸と有効に相互作用していることが考えられる。特にAgp10でも強い結合を形成したことは、余ったグアニジノ基が主溝の8個のリン酸以外とも結合していることが示唆された。
Figure JPOXMLDOC01-appb-T000015
 (2-1(3)) 交互配列を有するペプチドと核酸二重鎖との融解温度測定
 RNA二重鎖に対して、Agpと他の官能基をもつアミノ酸の種々の交互配列を有するペプチド、及び同じ電荷を有するAgpを添加し、T値の比較を行った(図14、表8)。前項までのペプチドと比較して、交互配列を有するペプチドは電荷が半分になったため、RNA二重鎖に対して2当量のペプチドを添加した。この場合、相互作用点が半減したため、RNA二重鎖に対して2当量加えてもなおAgpと比較して低い値ではあるが、Agpで有意なT値の上昇が見られた。一方、他のいずれの交互配列を有するペプチドでも熱安定性の有意な向上が見られなかった。図14において、AgpV、AgpS及びAgpNは曲線の目視での区別は困難である。AgpGでは微小な安定化が観測されたが、他のペプチドでは、ほぼ熱安定化は確認されなかった。これは、他の交互配列ペプチドがβ-炭素により回転の自由度が大きく制限されることから、グアニジノ基の方向が制御されているために、RNAの向かい合ったリン酸と有効に相互作用できなかったと考えられる。それに対して、AgpGではグリシンのメチレン鎖に自由度がある事で主溝のリン酸を架橋する形で結合できるため、若干の熱安定化が見られたのではないかと考えられる。しかし、RNAの熱安定性を向上させるためには、Agpの連続した配列が極めて有効であることが明らかとなった。連続したAgpを有するペプチドでは、側鎖間の電荷の反発から、側鎖が主査に対して逆方向に伸びやすく、向かい合ったリン酸との相互作用に有利な構造をとるのではないかと考えられる。陽イオン性ペプチドがRNAに結合する際、ペプチドは交互に側鎖が伸びるβ-構造を誘起されている可能性があり、この結果とよく合致している。
Figure JPOXMLDOC01-appb-T000016
 (2-1(4)) 自由度を変化させたペプチドと核酸二重鎖との融解温度測定
 上記の検討の結果、側鎖長の違いやペプチドの配列が複合体の熱安定性に大きな影響を及ぼすことが示された。この熱安定性の差は、官能基間の強く相互作用するエンタルピー的な要因だけでなく、ペプチドの自由度によるエントロピー的な要因も考えられる。そこで、エントロピー的な要因を検討するため、主鎖に自由度の異なるアミノ酸を導入して主鎖の自由度を変化させたペプチドを設計し、RNA二重鎖の熱安定性に及ぼす影響を検討した。
 まず、ペプチドの自由度を上げるため、Dab、Agpに等間隔に1~3個のGlyを導入したところ、ペプチドに応じて異なる傾向が見られた(図15、表9)。DabではGlyの導入、自由度の増加に依存して熱安定性の低下が見られたが、それに対しAgpでは自由度の影響が見られなかった。さらに、AgpではAla、Proを導入しても熱安定性への影響が見られなかった。
Figure JPOXMLDOC01-appb-T000017
 同様に自由度を下げるため、プロリン骨格をもつAmp、Gupを導入して熱安定性への影響を検討した。グリシンを導入した場合と同様に、DabはAmpによる熱安定性の低下が見られたが、AgpはGupによる熱安定性の変化は見られなかった(図16、表10)。特にDabをAmpに置換したことにより、傾斜の減少が観測された。これはペプチドにプロリン骨格を導入したことで構造が変化し、主溝に適合しない構造に変化したためと推測される。これらのことから、アミノ基はリン酸との相互作用がエンタルピー的にそれほど強くないため、エントロピー的に不利な影響を顕著に受けるが、グアニジノ基はリン酸とエンタルピー的に極めて有利に相互作用するため、エントロピー的な影響が小さかったことが示唆される。なお、Ala、Proを導入することでグアニジノ基の位置が大きく変化し、グアニジノ基と相互作用するリン酸基は変化すると予想されるが、Agpと同程度の熱安定性を示した。このことから、グアニジノ基は隣接した他のリン酸などと結合しても、有効な熱安定性を獲得し得るほど強く相互作用することが考えられる。つまり、Agp10の熱安定性が高かった様に、すべての分子内の陽イオン性官能基が主溝内にない場合でも、一部のグアニジノ基が主溝のリン酸と相互作用していれば、それを足場に他の部位のリン酸とも共同的に有効な相互作用ができることが示唆された。
Figure JPOXMLDOC01-appb-T000018
 (2-1(5)) 蛍光基修飾したペプチドと核酸二重鎖との融解温度測定
 蛍光基は一般的に広い共鳴構造をとるため、かさ高い官能基である。実施例ではモデルとしてフルオレセインを導入したペプチドを合成したが、蛍光基が陽イオン性ペプチドの近傍にある事で相互作用に影響を及ぼすことが懸念された。そのため、FITC修飾した陽イオン性ペプチドとRNA二重鎖複合体の融解温度測定により相互作用の評価を試みた。
 他のペプチドと同様にアニーリングしたRNA二重鎖に対して1当量の蛍光基修飾したペプチドを添加して融解温度を測定したところ、蛍光基のない陽イオン性ペプチドと同様の挙動を示した(図17、表11)。特にAc-YGG-DabとFITC-Dabはほぼ同じ融解温度を示したことから、蛍光基を導入した場合でもRNA二重鎖に対する相互作用は影響を受けないことが明らかとなった。これは、ペプチドへの蛍光基の導入を、β-Alaを介してFITCを反応させたて行ったため、陽イオン性残基とフルオレセインが十分に離れており、かつ自由度も高いため立体障害の影響を受けなかったと考えられる。
Figure JPOXMLDOC01-appb-T000019
実施例2-2) 等温滴定カロリメトリー(ITC)による計測
 前述の様に、種々の陽イオン性ペプチドを用いてRNA二重鎖に効率的に結合するために重要な因子を明らかにした。しかし、より効率的な分子設計を行うためには、RNA二重鎖に対するペプチドの結合様式を定量的に理解する必要がある。そこで、相互作用の詳細な解析を行うため、等温滴定カロリメトリー(ITC)による測定を試みた。
 すなわち、陽イオン性ペプチド及び核酸二重鎖を、pH7.0の、100mM NaClを含む10mMリン酸緩衝液に溶解した。当該ペプチド溶液(150μM)を核酸二重鎖溶液(10μM)に25℃で滴下した。ペプチド溶液の滴下は、最初の0.5μl、続いて24回の1.5μl(添加は、120秒間隔で3秒間にわたって行われる)、として行った。前述した様に二重鎖核酸は、自己相補的RNA/RNA二重鎖「r(CGCGAAUUCGCG:配列番号1)」、及び、DNA/DNA二重鎖「d(CGCGAATTCGCG:配列番号2)」を用いた。
 RNA二重鎖およびDNA二重鎖に対してDab、Agp、Agbをそれぞれ滴定したところ、静電相互作用による発熱を伴う相互作用だけではなく、脱水和、溶媒中のリン酸との脱リン酸和による吸熱を伴う相互作用も確認された(図18:Dab、図19:Agp、図20:Agb)。
 RNA二重鎖に対してDabを滴定した場合では脱水和に起因すると思われる急激な吸熱が観測されたのち、RNA-ペプチド間相互作用による発熱が観測された。一方、DNAに対してペプチドを滴定した場合では相互作用による熱量変化が観測されなかった。次に、RNAに対してAgpを滴定した場合では、はじめほとんど発熱が見られなかったが、次第に発熱量が増加し、その後発熱量の減少が観測された。これはDabの場合と同様に吸熱を伴う相互作用と発熱を伴う相互作用が共存していると考えられる。グアニジノ基がアミノ基よりもリン酸と強く相互作用するため、AgpはDabよりも発熱量が一見大きく、吸熱が見られなかったと考えられる。また、一方、DNAに対してAgpを滴定した場合でも有意な相互作用は観測されなかった。それらに対し、AgbをRNA,DNAに対して添加した場合、双方ともに相互作用による熱量変化がみられた(図20)。RNAに対してAgbを滴定した場合、Agpと同様に吸熱は測定されず、当初小さい発熱が測定されたのちに次第に発熱が大きくなり、その後、発熱量の減少が観測された。これは、グアニジノ基がリン酸と強く相互作用するため発熱が優先的に測定されたと考えられる。各滴定における発熱量はAgpと比較して大きかった。これはAgbの方がAgpより側鎖が長く、自由度が大きいため、グアニジノ基がよりリン酸と相互作用しやすい位置に配置できるためエンタルピー的により有利になったためと考えられる。一方、DNAに対しては吸熱が測定されたのち、次第に発熱が大きくなり、その後発熱の減少が観測された。Agbはグアニジノ基の自由度が大きく、選択性が減少したためにDNAに対しても結合したと考えられ、Tの挙動とも一致する。RNAの場合とは異なり、初期に吸熱が測定されたのは、Agbのグアニジノ基とDNAのリン酸との相互作用が、RNAのリン酸との相互作用と比較して弱いためと考えられる。
 前述した様に、核酸二重鎖-ペプチド間の相互作用様式は複雑であり、熱力学的パラメータの算出はできなかった。しかし、Dab、AgpはRNA二重鎖選択的に結合することが確認された。つまり、単純なリン酸の配列ではなく、RNA二重鎖特有の高次構造を認識していることが示唆された。一方、Agbでは側鎖が長いため、グアニジノ基の自由度が高く、特定の構造に対する選択性が減少し、RNA、DNAともに相互作用し得る結果が得られた。
 Dab、AgpはRNA二重鎖の高次構造を認識することが示唆された。そこで、ペプチドが認識する特定の構造に関与するリン酸基を特定する、つまり結合部位を確認するために、結合阻害実験を試みた。本設計では主溝の向かい合ったリン酸基が、官能基の空間的配置から陽イオン性官能基と最も結合する可能性が高い。そこで、RNAの主溝に結合することが知られているネオマイシンを阻害剤として用いた。
 過剰量のネオマイシン存在下で各ペプチドを添加したところ、顕著な相互作用の阻害が確認された(図21)。Dabでは吸熱を伴う相互作用が確認されたのに対して、Agpではほとんど相互作用が確認できなかった。Dabでは発熱を伴う相互作用のみが阻害されたのに対して、Agpでは吸熱を伴う相互作用も阻害された。これは、Agpのグアニジノ基が水溶液中のリン酸とも強く相互作用するため、阻害のされ方に差が生じたのではないかと考えられる。また、Agbでは吸熱を伴う相互作用が確認された。これはグアニジノ基の自由度が高いため、非特異的な相互作用のみが測定された結果ではないかと考えられる。以上のことから、Dab、Agpは主溝またはその近傍のリン酸基が関与して結合していることが示唆された。
実施例2-3) 蛍光異方性(Fluorescence anisotropy)測定
 RNA二重鎖と各ペプチドの相互作用が複雑であるため、等温滴定カロリメトリーでは結合定数を算出することができなかった。そこで、蛍光異方性測定によりRNA二重鎖と各ペプチドとの見かけの解離定数を算出し、結合力を定量的に比較することを試みた。
 蛍光異方性測定とは、分子の結合状態や運動状態に応じて発する蛍光の角度が異なることを利用して、相互作用を測定する手法である。直線偏光した励起光で励起された分子は、吸収した偏光と蛍光を発する。しかし、励起状態でいる間に、自由運動により分子が回転することで、偏光励起光とは異なる偏光の蛍光が認められる。つまり、直線偏光した励起光で励起し、蛍光の偏光状態(偏光解消)を測定することで分子の回転度を測定可能である。これを利用して、結合前後の見かけの分子量変化から相互作用の測定が可能である。具体的には、励起光・蛍光それぞれ鉛直・水平方向の変更を測定し、下式から蛍光異方性度を算出した。
        R = IVV-GIVH / IVV+2GIVH
           (G = IHV / IHH
[式中、Rは蛍光異方性であり、IVV、IVH、IHV、IHHは、鉛直、水平方向の励起光での鉛直、水平方向の蛍光強度である。Vは鉛直、Hは水平を示し、例えばIVVは鉛直の励起光・鉛直の蛍光強度の組を表している。]
 蛍光異方性測定は分子量が小さいほど自由回転が大きく、偏光が測定しにくい。そのため、分子量が小さく自由度の高いペプチド(FITC-β-Ala-Dap、Dab、Orn、Lys)ではなく、分子量が大きく、構造が固いRNA二重鎖に蛍光基を導入して蛍光異方性測定を行った。さらに本例では水溶液の粘性を上げることが知られるTween20を添加して測定を行った。RNAの5’側をフルオレセインで修飾したRNA(Fluorescein-rCGCGAAUUCGCG:配列番号1)に各陽イオン性ペプチドを添加した際の蛍光異方性を測定した。測定した蛍光異方性Rを添加したペプチド濃度に対してプロットした(白黒表示が著しく困難なため図示せず。必要に応じてカラー図面を提出する用意有り。)。このプロットを下式:
Figure JPOXMLDOC01-appb-M000020
でフィッティングすることで、見かけの解離定数を算出した(図22-1~5、表12)。Agp、Agb、AgpG3では、低濃度(<0.05μM)における傾きが多少異なり、ITCでも観測された様に複数の結合様式の存在が示唆された。
 まず、異方性度変化の比較を行うと、ネオマイシン(MW 614)では0.008、アミノ基を有するペプチドDap、Orn、Lys(MW 1000~1400)では0.016程度であり、分子量との相関がみられた。一方、Dab(MW 1137)では0.025、グアニジノ基を有するペプチドAgp、Agb、Arg(MW 1300~1600)では0.05と、異方性度の大きな変化がみられた。同程度の分子量による異方性度の違いは、相互作用によるRNAの見かけの分子量が増加した以外の影響が示唆される。要因としては末端に導入した蛍光基の自由度が、RNA二重鎖にペプチドが結合したことで変化するため、結合様式の違いから蛍光異方性度の変化に差が生じたことが考えられる。
 次に算出された解離定数を比較すると、Tの変化と解離定数の間に相関がみられた(図23)。なお、ネオマイシンのRNAに対する解離定数の測定値は1.0×10-7であり、文献値の1.8×10-7とも十分近い値を示した。RNA二重鎖の熱安定性を最も向上させたAgpとAgpG3は最も強い結合力を示した。解離定数が2倍程度のDab、Orn、Agbの場合でも同程度の熱安定化と結合力が観測された。これに対して解離定数が3~5倍のDap、Lys、Argでは多少挙動に差が生じた。蛍光異方性測定からDapではある程度RNAに結合しているのに対して、T測定ではRNA二重鎖の安定化はみられなかった。Dapのアミノ基がRNA二重鎖のリン酸を十分に架橋するのではなく、非特異的にリン酸と相互作用するため、RNA二重鎖の熱安定化が得られなかったのではないかと考えられる。側鎖が長く自由度の高いLysとArgでも結合様式の違いから熱安定化の度合いが異なるのではないかと考えられる。交互配列を有するAgpVでは電荷が+4、と他のペプチドの半分であるため、有効な相互作用が測定できなかった。
 以上より、RNA二重鎖に対して選択性をもつペプチドは、強固に結合するほど高い熱安定性を示すことが示された。これは、主溝の向かい合ったリン酸をより強く架橋するほど、二重鎖の状態が安定化されるためと考えられる。また、ネオマイシンのRNAに対する結合力と比較して、陽イオン性ペプチドはRNA二重鎖の熱安定性を大きく向上させた。このことから、ペプチドの構造がRNA二重鎖の向かい合ったリン酸を効率的に架橋するなど、RNA二重鎖安定化に適した構造をしていることが考えられる。今回設計した陽イオン性ペプチドはRNA二重鎖に対して0.2~0.05μM程度の解離定数をもち、Tat proteinとTAR RNAやRev proteinとRRE RNA、TAR RNAの示す解離定数0.07-0.005μMと比較すると、RNA結合蛋白質と同程度か若干弱い結合力をもつことが明らかとなった。
Figure JPOXMLDOC01-appb-T000021
実施例2-4) RNA-DNA複合二重鎖を含めた検討
 この実施例ではRNA-DNA複合二重鎖を含めて、陽イオン性ペプチドの側鎖長と主鎖長が熱安定性にどのような影響を及ぼすかを検討するため、前述の陽イオン性ペプチドに加えて、さらにいくつかを前述した手法に準じて製造した。なお、本実施例で用いた陽イオン性ペプチドの一覧を図24において示した。
2-4(1)) RNA-DNA複合二重鎖の融解温度(T)測定
 RNA/DNA二重鎖の各測定条件での核酸の状態を確認するため、核酸の濃度を1μM、4μMにおける融解温度(T)を、リン酸緩衝液又はTris-HCl緩衝液中において測定した。RNA/DNA二重鎖の配列は、「rACUGACUGACUG/dCAGTCAGTCAGT」(配列番号3(RNA鎖)、配列番号4(DNA鎖))である。また、対照として用いたRNA二重鎖の配列は配列番号1に示したものである。系の温度は0.5℃/分の割合で上昇させた。T測定も、「実施例2-1」の冒頭に示した方法に準じて行った。
 その結果を示す図25のグラフの横軸は温度であり、縦軸は260nmにおける相対的吸光度である。右のグラフは、酵素処理を行う37℃近傍における、左のグラフの拡大図である。この結果より、酵素処理を行う37℃ではRNA/DNA二重鎖の状態が異なることが明らかになった。すなわち、RNA/DNA二重鎖は4μMでは二重鎖を形成しているが、1μMでは一部の二重鎖が解離している状態であることが確認された。
2-4(2)) RNA-DNA複合二重鎖のCDスペクトル測定
 RNA/DNA二重鎖に対して陽イオン性ペプチドが結合した際の構造変化をCDスペクトルにて確認した。陽イオン性ペプチドは、前述したDap、Dab、Orn、Lys、Agp、Agb、Argの他に、「Agh」(Ac-YGG-Agh-NH)を合成して用いた。CDスペクトル測定は、実施例1の「1-7 CDスペクトルによる測定」の冒頭の内容に従って行い、10mMリン酸緩衝液(pH7.0、100mM NaCl、20℃)中で5mMのRNA/DNA二重鎖に対して1当量の各陽イオン性ペプチドを加え、結合前後のCDスペクトルをそれぞれ測定して比較した。その結果を図26において示す。図26の左側のグラフはアミノ基を伴う陽イオン性ペプチドを用いたRNA/DNA二重鎖についてのCDスペクトルの測定結果であり、右側のグラフはグアニジノ基を伴う陽イオン性ペプチドを用いたRNA/DNA二重鎖についてのCDスペクトルの測定結果である。
 その結果、アミノ基を伴う陽イオン性ペプチドにおいては、スペクトルにそれほど大きな変化は認められなかった。Lysのみシグナルが多少大きくなったが、スペクトルの形状に目立った際は認められなかった。一方、グアニジノ基を伴う陽イオン性ペプチドにおいては、260nmのピークが大きくなるのに対し、210nmのピークが小さくなっており、陽イオン性ペプチドが結合したことによる何らかの構造変化が起こっていることが示された。
2-4(3)) 側鎖長の異なる陽イオン性ペプチドと核酸二重鎖の相互作用の検討
 この検討のために、前述したDap、Dab、Orn、Lys、Agp、Agb、Arg、及び、Aghを用いた。この実施例では、カチオン性ペプチドが、A型二重鎖核酸であるRNA/DNA二重鎖の安定化に及ぼす影響を確認するため、RNA/DNA二重鎖のT測定を行った。複合体の調製は前述した「実施例2-1」の冒頭に示した方法に準じて、100mMのNaClを含有する10mMリン酸緩衝液中で、4μMのペプチドと4μMのRNA/DNA二重鎖を接触させて行った。
 そのT測定の結果を図27に示す。図27(1)はアミノ基を有するペプチド(Dap、Dab、Orn、Lys)についての結果を示しており、図27(2)はグアニジノ基を有するペプチド(Agp、Agb、Arg、Agh)についての結果を示している。表13は、100mMのNaClを含有する10mMリン酸緩衝液中でのRNA/DNA二重鎖のTを示している。
Figure JPOXMLDOC01-appb-T000022
 図27と表13において、RNA/DNA二重鎖においてもRNA/RNAの場合と同様に、DabとAgpにおいて最も高い熱安定性を示した。しかし、RNA/DNA二重鎖における安定化の度合いは、RNA/RNAの場合と比較して3~4℃ほど小さい傾向が認められた。
 次に、カチオン性ペプチドと核酸二重鎖の解離定数(K)を前出(実施例2-3)の蛍光異方性測定に基づき算出した(表14)。
Figure JPOXMLDOC01-appb-T000023
 その結果、陽イオン性ペプチドは各核酸二重鎖に対して、10-7~10-8Mの、核酸結合タンパク質と同等の結合力で結合することが示された。核酸二重鎖間で比較すると、RNA/DNA > RNA/RNA > DNA/DNAの順で結合力が強い傾向が見られ、ペプチド間で比較すると、側鎖長が短くなるほどA型核酸二重鎖に対する選択性が向上することが明らかとなった(図28)。また、同一の核酸二重鎖においてKとT間で相関がみられたことから、同一の核酸二重鎖間では、結合力が強いほど高い熱安定性を示す傾向が確認された。
2-4(4)) 主鎖長の異なるカチオン性ペプチドと核酸二重鎖の相互作用の検討
 前記の実施例では、陽イオン性分子は主溝の向かい合った8個のリン酸をターゲットとして8個のアミノ基を有する様に設計した。しかし、アミノ基をさらに増やすことにより、向かい合ったリン酸以外の部位とも相互作用を形成することを確認するため、ペプチド長を変化させ、RNA/DNA二重鎖のT測定を行った。結果を図29と表15に示す。
Figure JPOXMLDOC01-appb-T000024
 その結果、RNA/DNA二重鎖ではDabより長い領域においても、鎖長に応じた熱安定性の向上が認められた。特に、最も長いDab12においては+19℃と極めて高い熱安定性を示した。このことから、主溝の向かい合ったリン酸に限らず、両末端側の官能基とも効率的に相互作用することが示された。
[実施例3] 陽イオン性オリゴペプチドとsiRNAの相互作用
 前述のとおり、各ペプチドはモデル二重鎖RNA(12量体)の熱安定性を向上させることが確認された。次にsiRNA(21量体)に対してペプチドを添加した際の物性を評価した。
実施例3-1) 熱安定性への影響
 siRNA(21量体)は、モデル二重鎖RNA(12量体)より2倍程度の鎖長をもつため、核酸の総電荷だけでなく、主溝に存在するリン酸基対の数も増えている。そのため、siRNAには複数のペプチドが結合可能だと予想され(図30)、ペプチドの当量が二重鎖の熱安定性に大きな影響を及ぼすが予想された。そこで、まずアポリポ蛋白質として知られるApoB1を標的とするsiRNA(SS:5’-GUCAUCACACUGAAUACCAdTdT-3’(配列番号5)、AS:5’-UGGUAUUCAGUGUGAUGACdTdT-3’(配列番号6))に対してDabとAgpを加えた複合体の熱安定性を調べた。二重鎖RNA12量体では結合部位となるリン酸が8個、総電荷が+22であるが、siRNA 21量体(dsRNA 19mer+ 2mer overhang)では結合部位のリン酸が22個、総電荷が+40である。そのため、図30右に示す様に最大3分子のペプチドが主溝に結合可能である。そこで12量体二重鎖RNAでは陽イオン性ペプチドを1当量のみ加えたが、siRNA21量体では1当量の他、結合部位となるリン酸に合わせた3当量、総電荷を合わせた5当量を用いて複合体を形成させた。siRNAとペプチド複合体の調製は二重鎖RNA(12量体)と同様に、アニーリングしたsiRNAにDab又はAgpを加えて調製した。
 Dabを1当量用いた場合、主溝が十分にカバーできていないためか、温度に伴い吸光度のなだらかな上昇が認められた(図31)。一方、3及び5当量のDabを用いた場合、融解温度付近での吸光度の比較的急な上昇が認められた(図31)。また、3及び5当量を用いた場合の融解温度の差はほぼ認められなかった(図31)。これは、Dabを3当量用いることで、ペプチドが主溝に存在するリン酸すべてに、ほぼ完全に結合しているため、それ以上のペプチドの添加による熱安定性の向上が見られなかったのではないかと考えられる。ここで、モデルRNA12量体とsiRNA21量体のΔTを比較
すると、1当量の時には安定化の効果が比較的小さいが、siRNAに3当量のDabを加えた場合に、RNA12量体に1当量のDabを加えた場合と同程度のΔTを示した(表17)。この結果より、RNAの長さによらず、主溝に対して十分な当量のDabを添加した場合、DabはRNA二重鎖の熱安定性に同程度の影響を及ぼすことが示唆された。
 次にsiRNAにAgpを1当量用いて複合体を形成した場合、Dabと比較して吸光度の急な上昇が認められた(図32)。これはAgpがDabと比較してより強く結合するため、1当量でも吸光度の上昇が急に起こったのではないかと考えられる。一方、3及び5当量のAgpを用いた場合、低温領域に吸光度の減少が観測された。これは、RNAと強く結合するAgpが、RNA二重鎖に結合しきれずに溶液中に多数存在することで、分子間で相互作用しやすくなり、凝集体が形成したため吸光度の減少が観測されたと考えられる。この様な挙動の差から、AgpはDabと異なり、siRNAに1当量加えた場合でもRNA12量体とほぼ同程度のΔTを示したと考えられる(表16)。
Figure JPOXMLDOC01-appb-T000025
実施例3-2) RNase耐性への影響
 前述した様にDabとAgpは、モデルRNA二重鎖(12量体)と同様に、siRNA(21量体)の熱安定性を向上させることが明らかとなった。そこで次に、siRNAに対してDab及びAgpを加えて複合体を形成させ、ヌクレアーゼに対する安定性に及ぼす影響を調べた。RNAi医薬のDDSには陽イオン性ペプチドのRNA二重鎖への結合や熱安定性の向上に加え、生体内での安定性の向上のためのヌクレアーゼ耐性が極めて重要である。
(1)siRNAに対する検討
 終濃度が10μM siRNA(ApoB1を標的とする)を、0、10、30、50μM ペプチド(0、1、3、5当量)に調製したsiRNA-ペプチド(Dab又はAgp)混合水溶液を、1wellあたりのsiRNAが100pmolとなる様に、表18の比率で混合して複合体を調製した。その後37℃で25分間インキュベートして、siRNAを、二重鎖RANを切断するエンドヌクレアーゼであるRNaseAで分解した。6×LBを加えて、全量を15% アクリルアミドゲルにアプライし、100Vで60分間泳動させた。泳動が完了した後、エチジウムブロミドにてRNAを染色して、二重鎖RNAの存在量を評価した。図33の各レーンに流したサンプルを表17に示す。
Figure JPOXMLDOC01-appb-T000026
 レーン3、5のsiRNA単体がRNaseAにより完全に分解されるのに対して、RNA-ペプチド複合体ではRNAが分解されずに存在していることが観測された。特に、Dabを1当量用いたレーン6では低分子領域に、部分的に分解されたと思われるバンドが認められるのに対して、3当量のレーン7及び5当量のレーン8では分解の抑制が認められた。また、3、5当量のペプチドを加えた場合、siRNAよりも高分子領域にバンドが観測された。これはsiRNAにペプチドが結合したことによる分子量の増加に加え、陽イオン性ペプチドがsiRNAに結合したことで複合体の総電荷が打ち消され、泳動しにくくなったものと考えられる。
 一方、Agpを1、3、5当量用いたレーン9、10、11においてもDabと同様の傾向が観測されたが、全体としてバンドが薄かった。低分子領域にバンドが認められないにもかかわらず、バンドが薄いことから、siRNA量の減少よりもsiRNAの染色がペプチドに阻害された可能性が考えられる。また、Agpの方がDabよりもsiRNA複合体が凝集しやすいことなどの影響も考えられるが、凝集が起こらない1当量のAgpでもRNAを示すバンドが薄いことから、DabとAgpのsiRNAに対する結合様式の差などに基づいて、RNA二重鎖のエチジウムブロミドの染色の差が影響していると考えられる。そのため、siRNAを蛍光標識するなど、ペプチドの影響を受けないと思われる検出法により、改めて確認する必要がある。
 この様にAgpは検出法について検討が必要であるが、これらの結果より、主溝全体を覆うのに十分な3当量以上のペプチドを用いることで、DabとsiRNAの複合体が十分なヌクレアーゼ耐性を獲得することが明らかとなった。DabとAgpは、RNA結合蛋白質と同等の強い結合力でsiRNAに結合しているため、RNaseAによる分解を十分に阻害できたと考えられる。
(2)モデルRNA二重鎖(12量体)を用いたペプチド複合体の酵素耐性の定量的検討
 dsRNA-ペプチド複合体の酵素耐性を定量的に評価するため、HPLCによる解析を行った。まずdsRNA(r(CGCGAAUUCGCG))をアニーリング後、各陽イオン性ペプチドを1当量加えて複合体を形成し、10μM dsRNA-peptide溶液を調製した。その後、10mM Tris-HClバッファー(100mM NaCl、pH7.5)で終濃度1μM dsRNA、10μg/ml RNaseAになる様に調製し37℃で1時間処理した。その後RNaseA阻害剤を加えて反応を停止後すぐにHPLCにて解析した。内部標準として加えたベンズアミドに対する残存dsRNAの面積比より酵素耐性を評価した。
 結果を表18に示す。
Figure JPOXMLDOC01-appb-T000027
 陽イオン性ペプチドの中で、Dap、Arg、及び、Aghは殆ど酵素耐性を示さなかったのに対し、アミノ基を伴うDabとOrnは7割程度、グアニジノ基をもつAgpは5割程度のdsRNAの残存が確認され、高い酵素耐性を示した。
実施例3-3) RNAi活性への影響
 RNA結合分子によるRNAi医薬のDDSで考慮すべきこととして、RNAi活性に及ぼす影響がある。RNAi医薬の輸送や安定化を考えたとき、より強く結合する分子が求められる。しかしその一方で、強く結合する分子はRNAi活性を阻害する可能性がある。そこで、siRNA-ペプチド複合体がRNAi活性をどの程度保持しているか確認した。
 本例ではApoB1を標的としたsiRNA及びトランスサイレチン(hTTR)を標的としたsiRNA(SS:5’-GUAACCAAGAGUAUUCCAUdTdT-3’(配列番号7)、AS:5’-AUGGAAUACUCUUGGUUACdTdT-3’(配列番号8)をモデルsiRNAとして用いて、陽イオン性オリゴペプチドがRNAi活性に与える影響を評価した。終濃度が10μMのsiRNA、0、10、30、50μM peptideに調製したsiRNA-ペプチド混合水溶液(0.6μL)、Lipofectamine2000(1μL)、OPTI-MEM(100μL)をEppendorf Tube内で混合した。転倒混和後常温にて20分放置してから、24well-plateのwellに全量加えた。一方、10cm dish1枚に100%confluentな状態のラット肝癌由来細胞(McA-RH7777)を、トリプシンを用いて回収した後、Serum Free Mediumを50%confluent状態となる様に加えた。この懸濁溶液を0.5mLずつ各wellに加えて、37℃で培養した。6時間後上清を捨て、通常の培養液であるDMEM溶液(10%FBS + 1% penicillin/streptomycin)を0.5mLずつ加えた。24時間後、上清を捨てて細胞からIsogenを用いてRNAを抽出し、400ngのRNAからSuper Script IIIとRandom Hexamersを用いてcDNAを合成した。さらにこれを10分の1に希釈した後、quantitative TaqMan system using the Light Cycler 480 Real-Time PCR InstrumentとrApoBとrGAPDHのプライマー及びプローブを用いてqPCRを行い、rApoBとrGAPDHの発現量を定量した。
 siRNAとペプチド複合体の調製は、融解温度測定やヌクレアーゼ耐性試験と同様に、アニーリングしたsiRNAに1当量のDab又はAgpを加えて調製した。結果を図34に示す。図34の縦軸は、相対的RNA活性を示す。ここに示す通りに、両オリゴペプチドにおいてこれらを加えていない系と同程度のRNAi活性が認められた。このことから1当量のDabとAgpは、RNAi活性に影響を及ぼさないことが明らかとなった。
 しかし、siRNAに対して1当量のDabとAgpを加えた場合、主溝の一部にしかオリゴペプチドが結合していないために、siRNAの活性が保持されていたことが考えられる。また、1当量のDabとAgpの添加では十分な酵素耐性を示さないことは実施例3-2にて示した通りである。そこで、siRNAに対して加えるペプチドの当量を増やし、主溝に対して十分あるいは過剰量のペプチドが存在した状態でsiRNA-ペプチド複合体を調製し、RNAi活性に対する影響を検討した。hApoBに働くsiRNAに対して1当量、3当量、及び、5当量のDabとAgpを添加して複合体を調製し、1当量の時と同様にRNAi活性を確認した(図35;図35の縦軸は、相対的RNA活性を示す)。その結果、hApoBに働くsiRNAに対してDabを加えた系及び1当量のAgpを加えた系ではRNAi活性が保持されることが明らかとなった。一方、3当量及び5当量のAgpを加えた系では、ペプチドの添加量依存的に若干ではあるが、RNAi活性の低下が観測された。融解温度測定時に観測された様に、5当量のAgpをsiRNAに加えた場合には、RNA二重鎖の凝集による活性の低下が考えられる。しかし、それほど吸光度の減少が見られなかった3当量のAgpを用いた系でも、RNAi活性の減少が認められたことから、AgpはsiRNAと強く結合し、細胞質中でも解離しづらいためにRNAi活性を阻害したとも考えられる。阻害の機構は、RISC形成時のAgo蛋白質のsiRNAに対する結合阻害や、RISC形成時のsiRNA二重鎖の解離を阻害することが考えられる。siRNAに対してAgpを1~5当量用いた複合体はほぼ同じ熱安定性を示したにもかかわらず、Agpを1当量用いただけで十分なsiRNA活性を示したことから、siRNA二重鎖の解離を阻害した影響とは考えがたい。そのため、過剰量のAgpはsiRNAのRISC形成過程を阻害したと考えられる。一方DabはAgpと比較して結合力が弱いため、いずれかのプロセスでsiRNAから解離し、RISC形成を阻害しなかったためRNAi活性が保持されたと考えられる。この結果より、酵素耐性の獲得には不十分量である1当量のペプチドではDab、AgpともにRNAi活性を阻害しないが、主溝をすべて覆うのに十分な3当量以上では、Dabを用いた系では活性を保持したのに対して、Agpを用いた系ではRNAi活性が若干ではあるが阻害された。このことから、AgpはRNA二重鎖に対する結合力は強いが、siRNAに対して過剰量用いる場合にはその具体的な用量に留意する必要があると考えられる。一方、Dabは過剰量用いることで十分なヌクレアーゼ耐性を獲得し、かつ、RNAi活性を阻害せずにsiRNAに結合するため、RNAi医薬のDDSの有用な分子として期待される。
[実施例4]RNA-DNA複合二重鎖のRNaseに対する挙動の検討
 前述した様にRNA/DNA二重鎖が核酸医薬として用いられる場合、RNAと複合化されたDNAが特定のmRNAに対するアンチセンス核酸として働くことを目的とする場合が考えられ、元々RNA/DNA二重鎖は総合的にヌクレアーゼに対して優れた耐性を伴うことが知られている(例えば、特許文献1)。その反面で、実施例2-4(1)にて示した通りに熱変性温度が低くなっているが、実施例2-4(3)にて示した様に、陽イオン性ペプチドを結合させたRNA/DNA二重鎖では熱安定性を向上させることが可能であり、その結果、人体におけるヌクアーゼ安定性もまた向上させることができる。
 しかしながら既に述べた様に、少なくとも細胞内におけるRNaseHの働きを決定的に阻害しないことが必要であり、ここではRNA/DNA二重鎖のRNaseAに対する挙動と共に、さらにRNaseHに対する作用を検討した。
(実施例4-1) RNA-DNA複合二重鎖のRNaseAに対する耐性の検討
 (a)RNA/DNA二重鎖のRNaseAに対する耐性を定量的に評価するため、HPLCによる解析を行った。実施例2-4において用いたのと同じRNA/DNA二重鎖をアニーリングした後、各陽イオン性ペプチド[アミノ基を伴うペプチド(Dap、Dab、Orn、Lys)、及び、グアニジノ基を伴うペプチド(Agp、Agb、Arg、Agh)]を加えて複合体を形成し、終濃度4μMのRNA/DNA二重鎖に対して、それぞれ10、2、1、0.5、0.1μg/mlのRNaseAとなる様に10mM Tris-HCl緩衝液(100mM NaCl、pH7.5)でサンプルを調製した。各サンプルは37℃下で30分処理した後に、RNaseA阻害剤を加えて反応を停止し、HPLCにて分解速度を解析した。
 その結果、4μMのRNA/DNA二重鎖は1μg/ml以上のRNaseAに対しては耐性を示さず、全長(full length)のRNA鎖はほぼ分解されていた。これに対しいずれの陽イオン性ペプチドを加えた場合でも決定的なRNaseA耐性の向上は認められなかったが、分解の促進は認められなかった。分解プロファイルは陽イオン性ペプチドごとに異なり、特にDabとAgpでは比較的長鎖と思われるRNAが観測された。この結果はペプチドが核酸二重鎖の結合した一部分のみRNaseA耐性が向上したのではないかと推測される。
 (b)次に人体内の核酸医薬の投与環境を想定して、比較的低濃度である1μMのRNA/DNA二重鎖の陽イオン性ペプチド結合の効果を検討した。
 上記(a)と同様にして、1μMのRNA/DNA二重鎖に対するDabの結合の有無によるRNaseA耐性に与える影響を考察した。RNaseAの共存量は比較的低比率に設定し、0.1、0.5μg/mlの2種類の共存群を設けた。結果を図36に示す。図36の左がaseAを0.5μg/ml共存させた場合の結果であり、右が同じく0.1μg/ml共存させた場合の結果である。各々のRNaseAの濃度条件において有意に全長(full length)のRNA鎖の残存率を向上させた。これはRNA/DNA二重鎖の解離した部位からRNaseAにより分解されるため、熱安定性の向上によりRNaseA耐性が向上したと考えてられる。
 以上示した結果からRNA/DNA二重鎖においては、RNaseAに対する耐性は、RNA/DNA二重鎖に比べて低下せずに、条件によっては向上させることが明らかになった。これは、RNA/DNA二重鎖を核酸医薬として用いる場合の人体における標的部位に達するまでの安定性を示している。
実施例4-2RNA-DNA複合二重鎖のRNaseHに対する促進性の検討
 終濃度1μM又は4μM RNA/DNA二重鎖となるように10mM Tris-HCl緩衝液(100mM NaCl、0.5mM MgCl、pH7.5)でサンプルを調製した。各サンプルは20u(ユニット)RNaseHを加えて30℃で30分処理した後に、RNaseH阻害剤を加えて反応を停止し、HPLCにて分解速度を解析した。その結果を図37に示す。図37は、RNA/DNA二重鎖に対する陽イオン性ペプチドの結合の有無によるRNaseH活性に与える影響を考察した結果を示す図面であり、図中の点線より左が1μMのRNA/DNA二重鎖における結果を示しており、点線より右が4μMのRNA/DNA二重鎖における結果を示している。
 前述した様にRNA/DNA二重鎖の熱安定性については比較的低い温度で二重鎖の解離変性が認められ、30℃付近から二重鎖の安定性が低くなるためか、RNA/DNA二重鎖のRNaseHによる分解は比較的遅かった。これに対しアミノ基を伴う陽イオン性ペプチド(Dab、Orn、Lys)を結合させると、1μMのRNA/DNA二重鎖の場合には、RNaseHによる一重鎖RNA部分の分解の促進が認められた。グアニジノ基を伴う陽イオン性ペプチドを結合させた場合には、ArgとAghにおいて優れたRNaseHの分解活性の促進効果が認められた。すなわちこれらの5種類の陽イオン性ペプチドを結合させたRNA/DNA二重鎖は、RNaseHのRNA/DNA二重鎖におけるRNA一重鎖の分解活性を向上させ、これらのRNA/DNA二重鎖のDNA鎖を標的核酸に対するアンチセンス核酸とする核酸医薬として非常に有望であることが明らかになった。ただし、顕著なRNaseHの促進効果を示さないDap、Agp、AgbにおいてもRNaseHの作用はRNA/DNA二重鎖と同程度には認められており、これらの陽イオン性ペプチドの使用により認められる温度安定性を勘案すれば、これらの陽イオン性ペプチドもまた同様のRNA/DNA二重鎖のDNA鎖を標的核酸に対するアンチセンス核酸とする核酸医薬として有望であることが認められる。特にAgpとAgbにおける結果は、そのRNA/DNA二重鎖に結合することによる二重鎖の構造変化により、RNaseHによるRNA/DNA二重鎖の認識の阻害が関係しているものと考えられる。
 さらに二重鎖の融解温度を上昇させるため、4μMのRNA/DNA二重鎖(Dab)に対してRNaseH処理を行うと、RNA/DNA二重鎖のみでも効率的に分解されており、熱安定性の向上がRNaseHの活性を増大させることが示唆された。これは二重鎖の熱安定性が向上してRNA/DNA二重鎖の構造が安定になることで、RNaseHにより認識されやすくなったためであると考えられる。これは上記の1μMのRNA/DNA二重鎖における結果を裏付けるものであるともいえる。

Claims (40)

  1.  下記式(I)のアミノ酸残基が少なくとも2個連続する部分を含む2~40個のアミノ酸からなるオリゴペプチド領域であって、かつ、当該下記式(I)のアミノ酸残基の連続部分以外は、連続しない1個のアミノ酸残基であるオリゴペプチド領域、を含むオリゴペプチド又は当該オリゴペプチド誘導体からなること、を特徴とする二重鎖核酸結合剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)において、Rは、基H-CH-、又は、式(II)で示される基である。Rは、Rが基H-CH-の場合は、存在しない、若しくは、炭素原子数1~3のアルキレン基であり、Rが式(II)で示される基の場合は炭素原子数1~4のアルキレン基である。一つのオリゴペプチド領域においてR及びRは全て同一である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R、R及びRは、同一又は異なって、水素原子若しくはメチル基である。]
  2.  Rは式(II)の基であることを特徴とする、請求項1に記載の二重鎖核酸結合剤。
  3.  式(II)の基のR、R及びRは全て水素原子である、請求項2に記載の二重鎖核酸結合剤。
  4.  Rは基H-CH-であることを特徴とする、請求項1に記載の二重鎖核酸結合剤。
  5.  二重鎖核酸はA型二重鎖核酸であることを特徴とする、請求項2~4のいずれかに記載の二重鎖核酸結合剤。
  6.  A型二重鎖核酸は二重鎖RNAであることを特徴とする、請求項5に記載の二重鎖核酸結合剤。
  7.  A型二重鎖核酸は、相補鎖のうち一方が4塩基以上の連続したDNAからなる領域を含む核酸であり、他方が当該一方の核酸と相補的な塩基配列を有するRNA及び/又はPNAであることを特徴とする、請求項5に記載の二重鎖核酸結合剤。
  8.  A型二重鎖核酸はRNA-DNA複合二重鎖であることを特徴とする、請求項6に記載の二重鎖核酸結合剤。
  9.  前記相補鎖の一方の核酸は、4塩基以上の連続したDNAからなる領域の5’末端側及び/又は3’末端側において、連続又は不連続に修飾核酸を含む領域が設けられている複合DNA鎖であることを特徴とする、請求項7又は8に記載の二重鎖核酸結合剤。
  10.  前記相補鎖の一方の核酸における前記修飾核酸はLNAであることを特徴とする、請求項9に記載の二重鎖核酸結合剤。
  11.  前記相補鎖の他方の核酸がRNAであって、一方の核酸の修飾領域を含む領域に対して相補的な領域が修飾されており、当該修飾がRNA分解酵素による分解を抑制する効果を有するものであることを特徴とする、請求項9又は10に記載の二重鎖核酸結合剤。
  12.  前記修飾が、2’-O-メチル化及び/又はホスホロチオエート化であることを特徴とする、請求項11に記載の二重鎖核酸結合剤。
  13.  前記相補鎖の他方の核酸に機能性分子が結合していることを特徴とする、請求項6~11のいずれかに記載の二重鎖核酸結合剤。
  14.  機能性分子は、二重鎖核酸を標的部位に送達させる活性を有する分子である、請求項13に記載の二重鎖核酸結合剤。
  15.  A型二重鎖核酸は18~25量体であることを特徴とする、請求項5~14のいずれかに記載の二重鎖核酸結合剤。
  16.  式(I)のRはメチレン基であることを特徴とする、請求項5~15のいずれかに記載の二重鎖核酸結合剤。
  17.  二重鎖核酸はB型二重鎖核酸であることを特徴とする、請求項2又は3に記載の二重鎖核酸結合剤。
  18.  B型二重鎖核酸は二重鎖DNAであることを特徴とする、請求項10に記載の二重鎖核酸結合剤。
  19.  式(I)のRはトリメチレン基であることを特徴とする、請求項17又は18に記載の二重鎖核酸結合剤。
  20.  オリゴペプチド領域の全てが式(I)のアミノ酸残基からなることを特徴とする、請求項1~19のいずれかに記載の二重鎖核酸結合剤。
  21.  二重鎖核酸が10~25量体であり、かつ、オリゴペプチド領域のアミノ酸残基数は8~10であることを特徴とする、請求項20に記載の二重鎖核酸結合剤。
  22.  二重鎖核酸が18~25量体であり、かつ、オリゴペプチド領域のアミノ酸残基数は8~34であることを特徴とする、請求項20に記載の二重鎖核酸結合剤。
  23.  二重鎖核酸がsiRNAであり、かつ、オリゴペプチド領域のアミノ酸残基数は8~34であることを特徴とする、請求項20に記載の二重鎖核酸結合剤。
  24.  オリゴペプチド領域を構成するアミノ酸残基のうち光学活性を伴うアミノ酸残基は、全てL型、あるいは、全てD型の光学活性を有するアミノ酸残基であることを特徴とする、請求項1~23のいずれかに記載の二重鎖核酸結合剤。
  25.  デリバリー分子が結合しているオリゴペプチド又は当該オリゴペプチド誘導体からなることを特徴とする、請求項1~24のいずれかに記載の二重鎖核酸結合剤。
  26.  二重鎖核酸結合剤は、二重鎖核酸に対するヌクレアーゼによる分解抑制剤であることを特徴とする、請求項1~25のいずれかに記載の二重鎖核酸結合剤(ただし、当該ヌクレアーゼはRNaseHを除外する)。
  27.  ヌクレアーゼはエンドヌクレアーゼであることを特徴とする、請求項26に記載の二重鎖核酸結合剤。
  28.  ヌクレアーゼはRNaseA又はRNaseIIIであることを特徴とする、請求項26に記載の二重鎖核酸結合剤。
  29.  二重鎖核酸結合剤は、RNaseHによる分解促進剤であることを特徴とする、請求項7~14のいずれかに記載の二重鎖核酸結合剤。
  30.  請求項1~29のいずれかに記載の二重鎖核酸結合剤が、対応する二重鎖核酸に結合してなることを特徴とする、二重鎖核酸-ペプチド複合体。
  31.  18~25量体の二重鎖核酸に対して2~3当量の二重鎖核酸結合剤が当該二重鎖RNAに結合していることを特徴とする、請求項30に記載の二重鎖核酸-ペプチド複合体。
  32.  siRNAに対して2~3当量の二重鎖核酸結合剤が当該二重鎖RNAに結合していることを特徴とする、請求項31に記載の二重鎖核酸-ペプチド複合体。
  33.  4~25量体の請求項7~14のいずれかに記載された二重鎖核酸結合剤を構成する複合二重鎖に対して1~3当量の二重鎖核酸結合剤が当該複合二重鎖に結合していることを特徴とする、請求項23に記載の二重鎖核酸-ペプチド複合体。
  34.  請求項1~29のいずれかに記載の二重鎖核酸結合剤、及び、二重鎖核酸を、緩衝液中において共存させて、二重鎖核酸-ペプチド複合体を形成させることを特徴とする、二重鎖核酸-ペプチド複合体の製造方法。
  35.  18~25量体のA型二重鎖核酸に対して2~5当量の請求項8に記載の二重鎖核酸結合剤、及び、当該RNAを、緩衝液中において共存させて、二重鎖核酸-ペプチド複合体を形成させることを特徴とする、二重鎖核酸-ペプチド複合体の製造方法。
  36.  緩衝液は、リン酸イオンが含有されていない緩衝液であることを特徴とする、請求項34又は35に記載の二重鎖核酸-ペプチド複合体の製造方法。
  37.  請求項30~33のいずれかの二重鎖核酸-ペプチド複合体を含有することを特徴とする、医薬品組成物。
  38.  請求項1~29のいずれかに記載の二重鎖核酸結合剤、及び、二重鎖核酸を緩衝液中にて接触させ、当該剤を当該二重鎖核酸に結合させることによる二重鎖核酸-ペプチド複合体の形成により、当該二重鎖核酸を安定化させることを特徴とする、核酸の安定化方法。
  39.  請求項26~28のいずれかに記載の二重鎖核酸結合剤、及び、二重鎖核酸を緩衝液中にて接触させ、当該剤を当該二重鎖核酸に結合させることによる複合体の形成により、当該二重鎖核酸において、二重鎖核酸に対するヌクレアーゼによる分解に対する抵抗性を付与することを特徴とする、二重鎖核酸分解の抑制方法(ただし、当該ヌクレアーゼはRNaseHを除外する)。
  40.  請求項29に記載の二重鎖核酸結合剤、及び、4~25量体の7~14のいずれかに記載された二重鎖核酸結合剤を構成する複合二重鎖を緩衝液中にて接触させ、当該剤を当該複合二重鎖に結合させることによる複合体の形成により、当該複合二重鎖におけるRNaseHによる分解を促進することを特徴とする、二重鎖核酸分解の促進方法。
     
     
PCT/JP2014/057851 2013-03-21 2014-03-20 二重鎖核酸結合剤、当該結合剤-二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法 WO2014148620A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506862A JP6300212B2 (ja) 2013-03-21 2014-03-20 二重鎖核酸結合剤、当該結合剤−二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013057521 2013-03-21
JP2013-057521 2013-03-21
JP2013-211580 2013-10-09
JP2013211580 2013-10-09

Publications (1)

Publication Number Publication Date
WO2014148620A1 true WO2014148620A1 (ja) 2014-09-25

Family

ID=51580290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057851 WO2014148620A1 (ja) 2013-03-21 2014-03-20 二重鎖核酸結合剤、当該結合剤-二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法

Country Status (2)

Country Link
JP (1) JP6300212B2 (ja)
WO (1) WO2014148620A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053338A1 (ja) * 2013-10-08 2015-04-16 学校法人東京理科大学 カチオン性ペプチドおよびそれを含む医薬組成物
WO2020262555A1 (ja) * 2019-06-28 2020-12-30 国立大学法人東京医科歯科大学 核酸医薬副作用軽減剤、該核酸医薬副作用軽減剤を含む医薬組成物、並びに核酸医薬の副作用惹起性を軽減する方法
WO2021015234A1 (ja) * 2019-07-24 2021-01-28 国立大学法人東北大学 キメラ分子、医薬組成物、標的核酸の切断方法、及び、標的核酸切断用又は診断用キット
WO2021080020A1 (ja) 2019-10-25 2021-04-29 国立大学法人高知大学 核酸送達促進剤
WO2023013134A1 (ja) * 2021-08-02 2023-02-09 コニカミノルタ株式会社 組成物の評価方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125374A (ja) * 2006-11-17 2008-06-05 Geneticlab Co Ltd Dna/rnaキメラオリゴヌクレオチド
WO2012159215A1 (en) * 2011-05-24 2012-11-29 Polyvalor S.E.C. Compositions and methods for efficacious and safe delivery of sirna using specific chitosan-based nanocomplexes
WO2013089283A1 (en) * 2011-12-16 2013-06-20 National University Corporation Tokyo Medical And Dental University Chimeric double-stranded nucleic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125374A (ja) * 2006-11-17 2008-06-05 Geneticlab Co Ltd Dna/rnaキメラオリゴヌクレオチド
WO2012159215A1 (en) * 2011-05-24 2012-11-29 Polyvalor S.E.C. Compositions and methods for efficacious and safe delivery of sirna using specific chitosan-based nanocomplexes
WO2013089283A1 (en) * 2011-12-16 2013-06-20 National University Corporation Tokyo Medical And Dental University Chimeric double-stranded nucleic acid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAEDA Y. ET AL.: "Synthesis and properties of cationic oligopeptides with different side chain lengths that bind to RNA duplexes", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 21, pages 1717 - 1723, XP029002608, DOI: doi:10.1016/j.bmc.2013.01.053 *
YUSUKE MAEDA ET AL.: "RNA Ketsugosei Shinki Oligo Cationic Peptide no Gosei", 91ST ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2011) KOEN YOKOSHU III, 11 March 2011 (2011-03-11), pages 777 *
YUSUKE MAEDA ET AL.: "RNA Nijusa o Ninshiki suru Shinki Cation-sei Jinko Peptide no Gosei", 93RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2013 NEN) KOEN YOKOSHU III, 8 March 2013 (2013-03-08), pages 930 *
YUSUKE MAEDA ET AL.: "Shinki RNA Ketsugosei Jinko Peptide no Gosei", 92ND ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2012) KOEN YOKOSHU III, 9 March 2012 (2012-03-09), pages 783 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053338A1 (ja) * 2013-10-08 2015-04-16 学校法人東京理科大学 カチオン性ペプチドおよびそれを含む医薬組成物
WO2020262555A1 (ja) * 2019-06-28 2020-12-30 国立大学法人東京医科歯科大学 核酸医薬副作用軽減剤、該核酸医薬副作用軽減剤を含む医薬組成物、並びに核酸医薬の副作用惹起性を軽減する方法
WO2021015234A1 (ja) * 2019-07-24 2021-01-28 国立大学法人東北大学 キメラ分子、医薬組成物、標的核酸の切断方法、及び、標的核酸切断用又は診断用キット
CN114144525A (zh) * 2019-07-24 2022-03-04 国立大学法人东北大学 嵌合分子、药物组合物、靶核酸的切割方法以及靶核酸切割用或诊断用试剂盒
WO2021080020A1 (ja) 2019-10-25 2021-04-29 国立大学法人高知大学 核酸送達促進剤
CN114599375A (zh) * 2019-10-25 2022-06-07 国立大学法人高知大学 核酸递送促进剂
EP4049664A4 (en) * 2019-10-25 2024-01-24 National University Corporation Kochi University AMPLIFIER OF NUCLEIC ACID DELIVERY
WO2023013134A1 (ja) * 2021-08-02 2023-02-09 コニカミノルタ株式会社 組成物の評価方法

Also Published As

Publication number Publication date
JPWO2014148620A1 (ja) 2017-02-16
JP6300212B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
US11034955B2 (en) Chimeric double-stranded nucleic acid
TWI811238B (zh) 用於抑制脂蛋白元C-III(APOC3)表現之RNAi試劑及組合物
JP7033452B2 (ja) 定義されたマルチコンジュゲートオリゴヌクレオチド
JP6604544B2 (ja) エクソンスキッピング効果を有する二本鎖アンチセンス核酸
JP6300212B2 (ja) 二重鎖核酸結合剤、当該結合剤−二重鎖核酸複合体、当該複合体を含有する医薬品組成物、及び、当該複合体の製造方法
WO2021127650A1 (en) Compositions for delivery of antisense compounds
KR102623311B1 (ko) 감소된 신장 청소율을 갖는 다중결합 올리고뉴클레오티드
JP2018512041A (ja) P21遺伝子調節のためのrna干渉剤
KR20100106314A (ko) Rna 간섭 효과가 높은 지질 수식 2중쇄 rna
US20160076036A1 (en) Rna aptamers against baff-r as cell-type specific delivery agents and methods for their use
WO2023169548A1 (zh) Lpa抑制剂及其用途
WO2024088190A1 (zh) 一种抑制lpa基因表达的rna抑制剂及其应用
CN111212909A (zh) 用于抑制去唾液酸糖蛋白受体1的表达的RNAi试剂和组合物
WO2011135140A1 (es) Método para la administración de oligonucleótidos
WO2018221649A1 (ja) Apcsの発現を抑制する核酸
KR102259402B1 (ko) 개선된 안정성을 갖는 핵산 분자 및 이의 용도
WO2020262555A1 (ja) 核酸医薬副作用軽減剤、該核酸医薬副作用軽減剤を含む医薬組成物、並びに核酸医薬の副作用惹起性を軽減する方法
WO2024137545A1 (en) Arnatar compounds and methods for enhanced cellular uptake
Wang Poly (ethylene) Glycol-Based Bottlebrush Polymers as Nanocarriers for Oligonucleotide Therapeutics: Design, Synthesis, and Applications
WO2024192379A1 (en) Rnai agents for inhibiting expression of mitochondrial amidoxime reducing component 1 (marc1), pharmaceutical compositions thereof, and methods of use
CA3132505A1 (en) Multimeric oligonucleotides with enhanced bioactivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767382

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015506862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767382

Country of ref document: EP

Kind code of ref document: A1