WO2014148430A1 - 電線及びコイル - Google Patents

電線及びコイル Download PDF

Info

Publication number
WO2014148430A1
WO2014148430A1 PCT/JP2014/057129 JP2014057129W WO2014148430A1 WO 2014148430 A1 WO2014148430 A1 WO 2014148430A1 JP 2014057129 W JP2014057129 W JP 2014057129W WO 2014148430 A1 WO2014148430 A1 WO 2014148430A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
electric wire
copper
resistance
frequency
Prior art date
Application number
PCT/JP2014/057129
Other languages
English (en)
French (fr)
Inventor
千尋 上滝
官 寧
泰伸 堀
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201480016903.7A priority Critical patent/CN105051833B/zh
Priority to US14/777,964 priority patent/US9859032B2/en
Priority to JP2015506766A priority patent/JP6062035B2/ja
Priority to EP14770299.7A priority patent/EP2977994A4/en
Publication of WO2014148430A1 publication Critical patent/WO2014148430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements

Definitions

  • the present invention relates to electric wires and coils used at high frequencies.
  • an electric wire having a volume resistivity higher than that of a copper wire is smaller than that of a copper wire in a specific frequency range where the high-frequency resistance is equal to or smaller than that of the copper wire by utilizing the fact that the proximity effect loss is smaller than that of the copper wire. It is also known to use an electric wire having a high volume resistivity (see, for example, Patent Document 6). In addition, formulation of resistance by proximity effect is being studied (for example, see Non-Patent Documents 1 and 2).
  • JP 2009-129550 A Japanese Unexamined Patent Publication No. Sho 62-76216 JP 2005-108654 A International Publication No. 2006/046358 JP 2002-150633 A International Publication No. 2012/023378
  • Patent Document 6 although the frequency range in which the AC resistance is equal to or less than that of the copper wire is defined, the value of the frequency itself is not defined. For this reason, when designing an electric wire or a coil, it may be difficult to determine whether the AC resistance can be equal to or smaller than that of a copper wire at the frequency used, and it may be difficult to design the electric wire or the coil.
  • an object of the present invention is to provide an electric wire and a coil whose alternating current resistance can be equal to or less than that of a copper wire and can be easily designed, and an electric wire that can be easily designed. Is to provide a design method.
  • the radius of the wire is smaller than the skin depth, and the AC resistance value of the wire at the frequency at which the wire is used is the ratio of the cross-sectional area of the entire wire and the cross-sectional area of the first layer of the wire to the DC resistance value of the wire.
  • An electric wire that is defined to be equal to or more than the sum of the DC resistance value of a copper wire having the same shape and outer diameter as the electric wire is provided.
  • a single-layer structure having a first layer made of a material having a lower conductivity than copper, or a two-layer structure in which a second layer made of copper is formed around the first layer.
  • the electric wire has a radius smaller than the skin depth, and the AC resistance value of the electric wire at the frequency at which the electric wire is used is the cross-sectional area of the entire electric wire and the cross-sectional area of the first layer of the electric wire.
  • an electric wire which is a single layer structure having a first layer made of a material having a lower conductivity than copper, or a second layer made of copper around the first layer.
  • the wire AC radius is smaller than the skin depth, and the AC resistance value of the wire at the frequency at which the wire is used is the DC resistance value of the wire.
  • a method of designing an electric wire that is designed to be equal to or greater than the sum of the value obtained by multiplying the ratio of the cross-sectional areas of the first layer and the direct current resistance value of a copper wire having the same shape and outer diameter as the electric wire.
  • alternating current resistance can be reduced or equivalent to a copper wire, and the electric wire and coil which can be designed easily, and the design method of the electric wire which can design this electric wire easily Can be provided.
  • FIG. 1 is a cross-sectional view showing an example of an electric wire according to the first embodiment of the present invention.
  • FIG. 2 is a graph for explaining the skin depth according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view for explaining the skin effect of the electric wire.
  • FIG. 4 is a graph showing calculated values of the relationship between the frequency of the electric wire and the AC resistance according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged graph of a part of FIG.
  • FIG. 6 is a graph showing calculated values and actual measurement values of the relationship between the frequency of the electric wire and the AC resistance according to the first embodiment of the present invention.
  • FIG. 7 is a graph showing measured values obtained by enlarging a part of FIG. FIG.
  • FIG. 8 is a cross-sectional view showing an example of an electric wire according to the second embodiment of the present invention.
  • FIG. 9 is a graph showing a calculated value and an actual measurement value of the relationship between the frequency of the electric wire and the AC resistance according to the second embodiment of the present invention.
  • FIG. 10 is a graph showing actual measurement values obtained by enlarging a part of FIG.
  • the electric wire 1 according to the first embodiment of the present invention is made of a wire having a lower conductivity than copper, and the radius a of the electric wire 1 is smaller than the skin depth, and the electric wire 1 is used.
  • the AC resistance value of the electric wire 1 at a frequency is determined to be equal to or greater than the sum of the DC resistance value of the electric wire 1 and the DC resistance value of a copper wire having the same shape and outer diameter as the electric wire 1.
  • the current density on the conductor surface is the highest, and the current density decreases exponentially from the conductor surface toward the conductor center. This is called the skin effect.
  • the depth at which the current density obtained by multiplying the current density on the conductor surface by 1 / e is defined as the “skin depth”. e is the base of the natural logarithm and 1 / e is about 0.37.
  • the frequency at which the electric wire 1 according to the first embodiment of the present invention is used is appropriately set according to the specifications of each product, and is not particularly limited. For example, it may be about 1 kHz to 1 MHz, or about 10 kHz to 100 kHz. In the case of an IH cooker, it may be about 20 kHz to 100 kHz. If it is a product that uses the commercial power supply frequency as it is in Japan, the United States, Europe, China, etc., it may be about 50 Hz to 60 Hz.
  • the diameter of the electric wire 1 according to the first embodiment of the present invention is preferably about 0.05 mm to 0.6 mm, but is not particularly limited.
  • copper alloys such as brass, phosphor bronze, silicon bronze, copper / beryllium alloy, and copper / nickel / silicon alloy can be used.
  • brass is an alloy (Cu—Zn) containing copper (Cu) and zinc (Zn), and may contain a small amount of elements other than copper and zinc.
  • Silicon bronze is an alloy (Cu—Sn—Si) containing copper, tin (Sn) and silicon (Si), and may contain a small amount of elements other than copper, tin and silicon.
  • Phosphor bronze is an alloy (Cu—Sn—P) containing copper, tin and phosphorus (P), and may contain a small amount of elements other than copper, tin and phosphorus.
  • These copper alloy wires may be plated with tin, copper, chromium (Cr), or the like.
  • the electric wire 1 may have various shapes such as a rectangular shape in addition to a cylindrical shape.
  • covered on the outer periphery of the aluminum (Al) wire may be sufficient.
  • the diameter of the entire CCA line is preferably about 0.05 mm to 0.6 mm, but is not particularly limited.
  • the cross-sectional area of the copper layer is greater than 0 and 30% or less, preferably about 3% to 15%, more preferably about 3% to 10% with respect to the cross-sectional area of the entire wire including the aluminum wire and the copper layer. More desirably, it is about 3% to 5%.
  • the AC resistance can be reduced.
  • the aluminum wire for example, electrical aluminum (EC aluminum) or an Al—Mg—Si based alloy (JIS6000 series) aluminum alloy can be used.
  • an eddy current flows in the conductor due to the magnetic flux in the conductor, and the eddy current increases the AC resistance as a skin effect.
  • an eddy current flows in the conductor by the external magnetic flux, and the eddy current increases the AC resistance as a proximity effect.
  • the AC resistance R ac per unit length of the electric wire or coil can be expressed by the following formula (1).
  • R s is the resistance of the strand per unit length including an increase due to the skin effect
  • R p is the resistance of the strand per unit length due to the proximity effect.
  • R s and R p are expressed by the following formulas (2) and (3).
  • j is an imaginary unit
  • is a circular ratio
  • is an angular frequency
  • ⁇ 0 is a vacuum permeability
  • a is a wire radius
  • J n represents an nth-order first-order Bessel function
  • is a coefficient representing the strength of the magnetic field acting on the wire.
  • the resistance of the coil or electric wire is proportional to the length of the conductor constituting the coil or electric wire, and inversely proportional to the number of conductors constituting the coil or electric wire. Therefore, when the length of the conductor is 1 and the number of conductors is N, the AC resistance of the coil or the wire is expressed by the following equation (5).
  • the loss of the coil having the number N of strands, the number T of turns, and the length of the conductor of each turn l i is expressed by the following formula (7).
  • i 0 is a wire current.
  • is represented by the following equation (9).
  • H i by assuming a wire or a coil shape, calculation and using the finite element method is obtained by calculation using the Ampere law, and the like.
  • the wire 1 having a conductivity lower than that of copper is used, and the radius a of the electric wire 1 is smaller than the skin depth. Is defined to be equal to or greater than the sum of the direct current resistance of the electric wire 1 and the direct current resistance of the copper wire having the same shape and outer diameter as the electric wire 1.
  • the electric conductivity of the electric wire 1 according to the first embodiment of the present invention is ⁇ 1 [ ⁇ ⁇ 1 ⁇ m ⁇ 1 ], and the electric conductivity of a copper wire having the same shape and outer diameter as the electric wire 1 is ⁇ 2 [ ⁇ ⁇ 1 ⁇ m ⁇ 1 ], a coefficient representing the strength of the magnetic field acting on the electric wire 1 is ⁇ [m ⁇ 1 ], the circularity is ⁇ , the radius of the electric wire 1 and the copper wire is a [m], and the vacuum permeability AC resistance of the electric wire 1 at the frequency to be used, where the magnetic susceptibility is ⁇ 0 [H / m], the number of conductors constituting the electric wire 1 is N [number], and the length of the conductor constituting the electric wire 1 is l [m].
  • R [ ⁇ ] is defined so as to satisfy the following expression (17).
  • the frequency f [kHz] at this time satisfies the following formula (18).
  • the AC resistance at the frequency at which the electric wire or the coil is used, the AC resistance may be equal to or less than that of the copper wire having the same shape and outer diameter as the electric wire. it can. Furthermore, the AC resistance at the frequency at which the electric wire 1 or coil is used can be defined using the DC resistance of the electric wire and the DC resistance of the copper wire having the same shape and outer diameter as the electric wire. Can be designed more easily.
  • Example 4 and 5 show a coil in which copper or aluminum is used, and an enamel wire having an outer diameter of 0.4 mm and a finished diameter of 0.43 mm is twisted and wound on a bobbin having an inner diameter of 20.0 mm for 42 turns.
  • the results obtained by calculating the AC resistance of (2) to (5) and (9) are shown.
  • the conductivity of copper was calculated as 5.80 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1
  • the conductivity of aluminum was calculated as 3.70 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1 .
  • the value of ⁇ was 5.6 mm ⁇ 1 .
  • Al coil the DC resistance of the aluminum coil
  • Cu coil the copper coil
  • the AC resistance of the Al coil is greater than the AC resistance of the Cu coil.
  • the AC resistances of the Al coil and the Cu coil coincide with each other at R 1 .
  • the proximity effect loss is dominant, and the magnitude of the AC resistance is reversed.
  • the AC resistance of the Al coil and the Cu coil coincides with R 2 at the frequency f 2 .
  • the proximity effect is greater than that of copper, so the AC resistance of the Al coil is greater than the AC resistance of the Cu coil.
  • the frequency f1 shifts to the lower frequency side as the strand diameter increases or the number of turns increases.
  • Frequency f 1 as shown in FIG. 4 corresponds to the frequency f 1 of the formula (15). Further, by making the radius a of the electric wire 1 according to the embodiment of the present invention smaller than the skin depth, the frequency f defined by the above equation (18) is higher than the frequency f 2 on the high frequency side shown in FIG. Also lower. Therefore, since the frequency f is defined to be equal to or higher than the frequency f 1 and lower than the frequency f 2 , the AC resistance can be equal to or less than that of a copper wire having the same shape and outer diameter as the electric wire.
  • FIGS. 4 and 5 show the results of measuring the AC resistance of the manufactured Al coil and Cu coil with an LCR meter.
  • FIG. 6 also shows the calculated value of the AC resistance of the Cu coil and the Al coil calculated by the equation (5).
  • the conductivity of copper was calculated as 5.80 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1
  • the conductivity of aluminum was calculated as 3.70 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1 .
  • the shape factor ⁇ was determined to be 5.6 mm ⁇ 1 for both coils from the comparison between the calculated value and the measured value according to Equation (5).
  • the direct current resistance of the Cu coil is 47.9 m ⁇
  • the direct current resistance of the Al coil is 79.4 m ⁇
  • the direct current resistance of the Cu coil is lower than the direct current resistance of the Al coil.
  • the AC resistance increases as the frequency increases, and the AC resistance of the Cu coil and the AC resistance of the Al coil coincide at a certain frequency.
  • the AC resistance is higher than the AC resistance of the Al coil.
  • the frequency when the AC resistance of the Al coil coincides with the AC resistance of the Cu coil is 39 kHz, and the AC resistance at that time is 131 m ⁇ .
  • the AC resistance R 1 calculated by the sum of the DC resistances according to the equation (16) is 127 m ⁇ , and it was confirmed that the AC resistance R 1 was in good agreement with the actually measured AC resistance. Further, the frequency f 1 calculated by the equation (15) was 38.8 kHz, and it was confirmed that it was in good agreement with the actually measured frequency.
  • Design method of electric wires and coils As an example of the electric wire and coil design method according to the first embodiment of the present invention, a wire material having a conductivity lower than that of copper is selected. Furthermore, the radius of the wire is smaller than the skin depth, and the AC resistance of the wire at the frequency at which the wire or coil is used is the sum of the DC resistance of the wire and the DC resistance of the copper wire having the same shape and outer diameter as the wire. Design as above.
  • the electric wire and coil design method can be designed based on the direct current resistance of the electric wire and the direct current resistance of the copper wire having the same shape and outer diameter as the electric wire, It is possible to easily design and manufacture an electric wire and a coil whose AC resistance can be equal to or less than that of a copper wire having the same shape and outer diameter as the electric wire. Note that the above-described electric wire and coil design method can be automatically performed using hardware resources such as a central processing unit (CPU) and a storage device.
  • CPU central processing unit
  • the electric wire 1 according to the second embodiment of the present invention has an inner layer (first layer) 2 and an outer layer (second layer) 3 formed around the inner layer 2, and the inner layer 2 is made of copper.
  • the outer layer 3 is a two-layered wire made of a material having a lower conductivity than copper.
  • the electric wire 1 which concerns on the 2nd Embodiment of this invention is that the radius a of the electric wire 1 is smaller than skin depth, and the alternating current resistance value of the electric wire 1 in the frequency where the electric wire 1 is used is the direct current resistance of the electric wire 1.
  • the frequency at which the electric wire 1 according to the second embodiment of the present invention is used is appropriately set according to the specifications of each product, and is not particularly limited. For example, it may be about 1 kHz to 1 MHz, or about 10 kHz to 100 kHz. In the case of an IH cooker, it may be about 20 kHz to 100 kHz. If it is a product that uses the commercial power supply frequency as it is in Japan, the United States, Europe, China, etc., it may be about 50 Hz to 60 Hz.
  • the diameter of the electric wire 1 according to the second embodiment of the present invention is preferably about 0.05 mm to 0.6 mm, but is not particularly limited.
  • a wire constituting the electric wire 1 a copper clad aluminum (CCA) wire in which copper (Cu) as the outer layer 3 is uniformly coated on the outer periphery of the aluminum (Al) wire as the inner layer 2 can be used.
  • the cross-sectional area of the copper layer which is the outer layer 3 is greater than 0 and 30% or less, preferably about 3% to 15%, more preferably 3% with respect to the cross-sectional area of the entire wire including the aluminum wire and the copper layer. About 10%, more preferably about 3% to 5%.
  • the AC resistance can be reduced.
  • the aluminum wire as the inner layer 2 for example, electrical aluminum (EC aluminum) or an Al—Mg—Si alloy (JIS6000 series) aluminum alloy can be used.
  • the electric wire 1 may be a copper pipe enriched with an insulator as the inner layer 2.
  • the insulator include resin and air.
  • the expressions (1) to (11) described in the first embodiment of the present invention can be applied.
  • an electric wire having a two-layer structure in which the radius is a, the radius of the inner layer 2 is b, the conductivity of the outer layer 3 is ⁇ 2 , and the conductivity of the inner layer 2 is ⁇ 1 is used.
  • the direct current resistance is represented by the following equation (19).
  • P L according to Non-Patent Document 2 is expressed by the following equation (20).
  • the high-frequency resistance R ac2 of the coil using the wire having the radius a and the conductivity ⁇ 2 is expressed by the following equations (21) and (22).
  • the frequency f 1 and the high frequency resistance R 1 at this time are expressed by the following equations (24) and (25), respectively.
  • R of the coil with two different wires of sigma 2 of wire ac1 when R ac2 are equal, the resistance value is, the inner layer of the DC resistance to the wire cross-sectional area and the wire of the wire of the two-layer structure It was found that the value obtained by multiplying the ratio of the cross-sectional areas of 2 and the sum of the DC resistance values of copper wires having the same shape and outer diameter as the electric wires were found.
  • an electric wire made of a uniform material is expressed as a case where the radius b of the inner layer 2 is equal to the radius a of the entire electric wire. That is, the following expressions (26) and (27) are obtained, and the expressions (15) and (15) of the frequency f 1 and the high-frequency resistance R 1 for the electric wire 1 in the case of the single-layer structure according to the first embodiment of the present invention. 16).
  • the outer layer 3 is made of copper
  • the inner layer 2 is made of a two-layer structure having a lower conductivity than copper.
  • the radius a is smaller than the skin depth
  • the AC resistance value of the wire 1 at the frequency at which the wire 1 or coil is used, and the DC resistance value of the wire 1 is multiplied by the ratio of the cross-sectional area of the entire wire 1 and the cross-sectional area of the inner layer 2.
  • the thickness of the outer layer 3 of the electric wire 1 may be equal to 0. In that case, the ratio of the cross-sectional area of the entire electric wire 1 and the cross-sectional area of the inner layer 2 is equal to 1.
  • the electric conductivity of the inner layer 2 of the electric wire 1 having a two-layer structure is ⁇ 1 [ ⁇ ⁇ 1 ⁇ m ⁇ 1 ]
  • the electric conductivity of copper is ⁇ 2 [ ⁇ ⁇ 1 ⁇ m ⁇ 1 ]
  • the magnetic field acting on the electric wire 1 Is a coefficient representing the strength of the wire, ⁇ is [m ⁇ 1 ]
  • the circumference is ⁇
  • the radius of the inner layer 2 is b [m]
  • the radius of the electric wire 1 is a [m]
  • the permeability of the vacuum is ⁇ 0 [H / m].
  • the number of conductors constituting the electric wire 1 is N [pieces]
  • the length of the conductor constituting the electric wire 1 is l [m]
  • the AC resistance R [ ⁇ ] of the electric wire 1 at the used frequency is It is defined to satisfy equation (28).
  • the AC resistance has the same shape and outer diameter as the electric wire at the frequency at which the electric wire 1 and the coil are used. It can be equivalent to or less than copper wire. Furthermore, the AC resistance at the frequency at which the two-layered electric wire 1 or coil is used can be defined using the DC resistance of the electric wire 1 and the DC resistance of a copper wire having the same shape and outer diameter as the electric wire 1. Since it can do, the electric wire 1 and a coil can be designed more simply.
  • Example 9 and 10 four enamel wires made of copper or CCA having an outer diameter of 0.6 mm and a finished diameter of 0.63 mm are twisted, and a coil of 42 turns is wound on a bobbin having an inner diameter of 20 mm.
  • the results of measuring AC resistance with an LCR meter are shown.
  • FIG. 9 also shows calculated resistance values of the copper wire coil (hereinafter also referred to as “Cu coil”) and the CCA wire coil (hereinafter also referred to as “CCA coil”) calculated by the above formula (5).
  • Cu coil copper wire coil
  • CCA coil CCA wire coil
  • the electrical conductivity of copper was calculated as 5.8 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1
  • the electrical conductivity of aluminum was calculated as 3.7 ⁇ 10 4 ⁇ ⁇ 1 ⁇ mm ⁇ 1
  • the shape factor ⁇ was determined to be 2.4 mm ⁇ 1 for both coils from the comparison between the calculated value and the measured value according to Equation (5).
  • the direct current resistance of the Cu coil is 47.4 m ⁇
  • the direct current resistance of the CCA coil is 69.9 m ⁇
  • the direct current resistance of the Cu coil is lower than the direct current resistance of the CCA coil.
  • the AC resistance increases as the frequency increases, and the AC resistance of the Cu coil and the AC resistance of the CCA coil coincide with each other at a certain frequency. Is higher than the AC resistance of the CCA coil.
  • the frequency when the AC resistance of the CCA coil coincides with the AC resistance of the Cu coil is 27.3 kHz, and the AC resistance is 131 m ⁇ .
  • the AC resistance R 1 is calculated by the equation (27) is 130Emuomega, it was confirmed that matches well with actual measured AC resistance. Further, the frequency f 1 calculated by the equation (26) was 28.0 kHz, and it was confirmed that it was in good agreement with the actually measured frequency.
  • a wire material is selected in which the outer layer 3 is made of copper and the inner layer 2 is made of a material having lower conductivity than copper. Furthermore, the radius of the electric wire 1 becomes smaller than the skin depth, and the AC resistance of the electric wire at the frequency at which the electric wire 1 or the coil is used becomes the DC resistance value of the electric wire 1 to the cross-sectional area of the entire electric wire 1 and the inner layer 2 of the electric wire 1. It is designed to be equal to or greater than the sum of the value obtained by multiplying the ratio of the cross-sectional areas and the direct current resistance value of the copper wire having the same shape and outer diameter as the electric wire 1.
  • the direct current resistance of the electric wire 1 and the radius of the outer layer 3, the radius of the inner layer 2, and the copper wire having the same shape and outer diameter as the electric wire 1 are used. Since it can be designed based on the direct current resistance, the electric wire 1 and the coil that can reduce or reduce the alternating current resistance to the copper wire having the same shape and outer diameter as the electric wire 1 can be easily designed and manufactured. Note that the above-described electric wire 1 and coil design method can be automatically performed using hardware resources such as a central processing unit (CPU) and a storage device.
  • CPU central processing unit
  • the electric wire of the present invention includes a high-frequency transformer, a motor, a reactor, a choke coil, an induction heating device, a magnetic head, a high-frequency power supply cable, a DC power supply unit, a switching power supply, an AC adapter, an eddy current detection type displacement sensor / flaw detection sensor,
  • the present invention can be used in the electronic equipment industry including the manufacturing industry of various devices such as IH cooking heaters, non-contact power feeding devices, and high-frequency current generators.

Abstract

交流抵抗を銅線と同等又は銅線より低減することができ、且つ容易に設計可能である電線を提供する。銅よりも導電率の低い物質からなる第1層を有する一層構造、又は第1層の周囲に銅からなる第2層が形成された二層構造を有する電線1であって、電線1の半径aが表皮深さよりも小さく、電線1が使用される周波数における電線1の交流抵抗値が、電線1の直流抵抗値に電線1全体の断面積と電線1の第1層の断面積の比を乗じた値と、電線1と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されている。

Description

電線及びコイル
本発明は、高周波で使用される電線及びコイルに関する。
高周波電流を通電する機器(変圧器、モータ、リアクトル、誘導加熱装置及び磁気ヘッド装置等)の巻線及び給電ケーブルにおいては、通常、導電率の高さや入手性などの理由により、その線材に銅が用いられている。これらの機器においては、その高周波電流により発生した磁界によって導体内に渦電流損が生じ、その結果として交流抵抗(「高周波抵抗」ともいう。)が増大(表皮効果及び近接効果が増大)することとなって発熱及び消費電力増大を引き起こす。
表皮効果及び近接効果の増大を抑止する対策として、一般的には電線の細径化と各素線を絶縁被覆したリッツ線の採用で図られている(例えば、特許文献1~5参照。)。
しかしながら、先行技術手段では、接続のためのハンダ処理において絶縁皮膜の除去作業が困難であり且つ素線本数が増えるために細径化には限度があることが常識化されている。更に、表皮効果よりも近接効果が圧倒的に支配的な線径においては効果的な抑止対策が見出されておらず、細径化対策により得られる特性には限界があることが常識化されている。なお、特許文献1~5に対策例が示されているが、いずれもアイデア的なものであり具体性に乏しく、有効な対策とは言えない。
また、銅線よりも体積抵抗率が高い電線は、銅線よりも近接効果損が小さいことを利用して、高周波抵抗が銅線と同等か又は小さくなる特定の周波数の範囲において、銅線よりも体積抵抗率が高い電線を用いることが知られている(例えば、特許文献6参照。)。
また、近接効果による抵抗の定式化が検討されている(例えば、非特許文献1~2参照。)
特開2009-129550号公報 特開昭62-76216号公報 特開2005-108654号公報 国際公開第2006/046358号 特開2002-150633号公報 国際公開第2012/023378号
C. R. Sullivan, "Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms, and Two-Dimensional or Three-Dimensional Field", IEEE Trans. on Power Electronics, vol 16, no 1, pp. 142-150, 2001 C. R. Sullivan, "Aluminum Windings and Other Strategies for High-Frequency Magnetics Design in an Era of High Copper and Energy Costs", IEEE Trans. on Power Electronics, vol 23, issue 4, pp. 2044-2051, 2008
しかしながら、特許文献6においては、交流抵抗が銅線と同等以下となる周波数の範囲が規定されているものの、周波数そのものの値が規定されていない。このため、電線やコイルの設計の際に、使用される周波数において交流抵抗が銅線と同等又はそれより小さくできるかどうかの判定が煩雑であり、電線やコイルの設計が困難な場合がある。
 上記課題を鑑み、本発明の目的は、交流抵抗を銅線と同等又は銅線より低減することができ且つ容易に設計可能である電線及びコイル、並びにこの電線を容易に設計することができる電線の設計方法を提供することである。
本発明の一態様によれば、銅よりも導電率の低い物質からなる第1層を有する一層構造、又は第1層の周囲に銅からなる第2層が形成された二層構造を有する電線であって、電線の半径が表皮深さよりも小さく、電線が使用される周波数における電線の交流抵抗値が、電線の直流抵抗値に電線全体の断面積と電線の第1層の断面積の比を乗じた値と、電線と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されている電線が提供される。
本発明の他の態様によれば、銅よりも導電率の低い物質からなる第1層を有する一層構造、又は第1層の周囲に銅からなる第2層が形成された二層構造を有する電線であって、電線の半径が表皮深さよりも小さく、電線が使用される周波数における電線の交流抵抗値が、電線の直流抵抗値に電線全体の断面積と電線の第1層の断面積の比を乗じた値と、電線と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されている電線を使用したコイルが提供される。
本発明の更に他の態様によれば、電線の設計方法であって、銅よりも導電率の低い物質からなる第1層を有する一層構造、又は第1層の周囲に銅からなる第2層が形成された二層構造の線材を用い、電線の半径が表皮深さよりも小さく、且つ電線が使用される周波数における電線の交流抵抗値が、電線の直流抵抗値に電線全体の断面積と電線の第1層の断面積の比を乗じた値と、電線と同じ形状及び外径である銅線の直流抵抗値の和以上となるように設計する電線の設計方法が提供される。
本発明によれば、交流抵抗を銅線と同等又は銅線より低減することができ、且つ容易に設計可能である電線及びコイル、並びにこの電線を容易に設計することができる電線の設計方法を提供することができる。
図1は、本発明の第1の実施の形態に係る電線の一例を示す断面図である。 図2は、本発明の第1の実施の形態に係る表皮深さを説明するためのグラフである。 図3は、電線の表皮効果を説明するための断面図である。 図4は、本発明の第1の実施の形態に係る電線の周波数と交流抵抗との関係の計算値を表すグラフである。 図5は、図4の一部を拡大したグラフである。 図6は、本発明の第1の実施の形態に係る電線の周波数と交流抵抗との関係の計算値及び実測値を表すグラフである。 図7は、図6の一部を拡大した実測値を表すグラフである。 図8は、本発明の第2の実施の形態に係る電線の一例を示す断面図である。 図9は、本発明の第2の実施の形態に係る電線の周波数と交流抵抗との関係の計算値及び実測値を表すグラフである。 図10は、図9の一部を拡大した実測値を表すグラフである。
 次に、図面を参照して、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
(第1の実施の形態)
[電線及びコイル]
本発明の第1の実施の形態に係る電線1は、図1に示すように、銅よりも導電率の低い線材からなり、電線1の半径aが表皮深さよりも小さく、電線1が使用される周波数における電線1の交流抵抗値が、電線1の直流抵抗値と、電線1と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されている。
図2に示すように、導体に交流電流が流れる場合、導体表面における電流密度が最も高くなり、導体表面から導体中心に向かうほど電流密度が指数関数的に小さくなる。これを表皮効果という。このとき、導体表面の電流密度に1/eを乗じた値の電流密度となる深さが「表皮深さ」と定義される。eは、自然対数の底であり、1/eは約0.37である。交流電流の周波数が大きくなるほど導体表面の電流密度は高まり、導体中心の電流密度は低下する。
本発明の第1の実施の形態に係る電線1が使用される周波数は、個々の製品の仕様に応じて適宜設定されるものであり、特に限定されない。例えば1kHz~1MHz程度であっても良いし、10kHz~100kHz程度であっても良い。IH調理器の場合には、20kHz~100kHz程度であっても良い。日本、米国、欧州及び中国等の商用電源周波数をそのまま使用する製品であれば50Hz~60Hz程度であっても良い。
本発明の第1の実施の形態に係る電線1の直径は、0.05mm~0.6mm程度が望ましいが、特に限定されるものではない。電線1を構成する線材としては、黄銅、リン青銅、ケイ素青銅、銅・ベリリウム合金、及び銅・ニッケル・ケイ素合金等の銅合金が使用可能である。このうち、黄銅は、銅(Cu)及び亜鉛(Zn)を含む合金(Cu-Zn)であり、銅と亜鉛以外の少量の元素が含まれていても良い。ケイ素青銅は、銅、スズ(Sn)及びケイ素(Si)を含む合金(Cu-Sn-Si)であり、銅、スズ及びケイ素以外の少量の元素が含まれていても良い。リン青銅は、銅、スズ及びリン(P)を含む合金(Cu-Sn-P)であり、銅、スズ及びリン以外の少量の元素が含まれていても良い。これらの銅合金線には、スズ、銅又はクロム(Cr)等のメッキ処理がされていても良い。また、電線1は円筒状の他、平角状等の種々の形状を有していても良い。
また、本発明の第1の実施の形態に係る電線1として、アルミニウム(Al)線の外周に銅(Cu)が一様に被覆された銅クラッドアルミニウム(CCA)線であっても良い。CCA線全体の直径は、0.05mm~0.6mm程度が望ましいが、特に限定されるものではない。銅層の断面積は、アルミニウム線及び銅層を合わせた電線全体の断面積に対して0より大きく30%以下であり、望ましくは3%~15%程度、より望ましくは3%~10%程度、更に望ましくは3%~5%程度である。銅層の電線全体に対する断面積の比が小さいほど、交流抵抗を低減することができる。アルミニウム線としては、例えば電気用アルミニウム(ECアルミニウム)又はAl-Mg-Si系合金(JIS6000番台)のアルミニウム合金が使用可能である。
電線1等の導体においては、導体内の磁束によって導体内に渦電流が流れ、その渦電流が表皮効果として交流抵抗を増大させる。また、外部磁束により導体内に渦電流が流れ、その渦電流が近接効果として交流抵抗を増大させる。
特許文献6によれば、電線又はコイルの単位長さあたりの交流抵抗Racは、以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000005

ここで、Rは表皮効果による増加を含む、単位長さあたりの素線の抵抗であり、Rは近接効果による、単位長さあたりの素線の抵抗である。ここで、特許文献6によれば、R、Rは以下の式(2)及び(3)で表される。
Figure JPOXMLDOC01-appb-M000006

ここで、jは虚数単位、πは円周率、ωは角周波数、μは真空の透磁率、aは素線半径、
Figure JPOXMLDOC01-appb-I000007
は複素数の実数部、Jはn次の第一種ベッセル関数を表す。また、αは素線に作用する磁界の強度を表す係数である。
コイルや電線の抵抗は、コイルや電線を構成する導体の長さに比例し、コイルや電線を構成する導体の素線本数に反比例する。よって、導体の長さをl、導体の素線本数をNとすると、コイルや電線の交流抵抗は以下の式(5)で表される。
Figure JPOXMLDOC01-appb-M000008

特許文献6によると、電線・コイルの各素線に作用する磁界の強度をHとしたとき、渦電流による単位長さあたりの導線の損失Pは以下の式(6)で表される。
Figure JPOXMLDOC01-appb-M000009

よって、素線数N、ターン数T、各ターンの導体の長さがlのコイルの損失は、以下の式(7)で表される。
Figure JPOXMLDOC01-appb-M000010
なお、ターン数が1の電線の場合は、T=1である。また、エネルギー損失が、電流の2乗と抵抗の積の2分の1で表されることから、式(5)より近接効果による損失は、以下の式(8)で表される。
Figure JPOXMLDOC01-appb-M000011

ここで、iは素線電流である。式(7)及び(8)より、αは以下の式(9)で表される。
Figure JPOXMLDOC01-appb-M000012

ここで、Hは、電線やコイル形状を仮定することにより、有限要素法を用いた計算や、アンペール則等を用いた計算により得られる。
周波数が十分に高い場合、表皮効果が顕著になり、仮に図3に示すように電線1の半径aが表皮深さdよりも大きい場合には、図3に斜線部分で示すように、素線電流は表皮深さdまでに集中して流れる。一方、本発明の第1の実施の形態においては、図1に示すように、電線1の半径aが表皮深さよりも小さいので、表皮効果が十分小さくなり、素線電流は電線1全体に流れる。したがって、電線1及びコイルの交流抵抗は近接効果が支配的になり、Rs-は直流抵抗に等しくなり、以下の式(10)で表される。また、非特許文献1によれば、Pは以下の式(11)で表される。
Figure JPOXMLDOC01-appb-M000013


よって、導電率がσ、σの異なる2種類の線材を用いたコイルの交流抵抗Rac1、Rac2は以下の式(12)、(13)で表される。
Figure JPOXMLDOC01-appb-M000014


ここで、Rac1、Rac2の値が等しいと仮定すると、以下の式(14)が得られる。
Figure JPOXMLDOC01-appb-M000015


このときの周波数f、及び交流抵抗Rはそれぞれ以下の式(15)、(16)で表される。
Figure JPOXMLDOC01-appb-M000016


このように、導電率がσ、σの異なる2種類の線材を用いたコイルの交流抵抗Rac1、Rac2が等しいとき、その抵抗はそれらのコイルの直流抵抗の和に等しいことが見出された。
そこで、本発明の第1の実施の形態に係る電線1及びそれを用いたコイルでは、銅よりも導電率の低い線材を用い、電線1の半径aが表皮深さよりも小さく、電線1やコイルが使用される周波数における電線1の交流抵抗を、電線1の直流抵抗と、電線1と同じ形状及び外径である銅線の直流抵抗の和以上に規定する。
即ち、本発明の第1の実施の形態に係る電線1の導電率をσ[Ω-1・m-1]、電線1と同じ形状及び外径である銅線の導電率をσ[Ω-1・m-1]、電線1に作用する磁界の強度を表す係数をα[m-1]、円周率をπ、電線1及び銅線の半径をa[m]、真空の透磁率をμ[H/m]、電線1を構成する導体の本数をN[本]、電線1を構成する導体の長さをl[m]として、使用される周波数における電線1の交流抵抗R[Ω]が、以下の式(17)を満たすように規定される。
Figure JPOXMLDOC01-appb-M000017


このときの周波数f[kHz]は、以下の式(18)を満たす。
Figure JPOXMLDOC01-appb-M000018

本発明の第1の実施の形態に係る電線1及びコイルによれば、電線やコイルが使用される周波数において、交流抵抗を電線と同じ形状及び外径である銅線と同等以下とすることができる。更に、電線1やコイルが使用される周波数における交流抵抗を、電線の直流抵抗と、電線と同じ形状及び外径である銅線の直流抵抗とを用いて規定することができるので、電線やコイルをより簡便に設計することができる。
[実施例]
図4及び図5は、材質が銅又はアルミニウムの、外径が0.4mmで、仕上がり径が0.43mmのエナメル線を9本撚り、内径が20.0mmのボビンに、42ターン巻いたコイルの交流抵抗を、式(2)~(5)及び(9)を用いて計算した結果を示す。
ここで、銅の導電率は5.80×10Ω-1・mm-1、アルミニウムの導電率は3.70×10Ω-1・mm-1として計算した。また、αの値は5.6mm-1と得られた。
図4及び図5より、アルミニウムのコイル(以下、「Alコイル」ともいう)の直流抵抗は銅のコイル(以下、「Cuコイル」ともいう)よりも大きいことが分かる。また、周波数fから周波数fよりも高い周波数fまでの特定の周波数領域において、Alコイルの交流抵抗がCuコイルの交流抵抗よりも小さいことが分かる。
即ち、周波数fより低い周波数では、Alコイルの交流抵抗はCuコイルの交流抵抗よりも大きい。周波数fにおいてAlコイルとCuコイルの交流抵抗はRで一致する。周波数fから周波数fにまでの特定の周波数領域では、近接効果損が支配的となるため、交流抵抗の大小が逆転する。周波数fでAlコイルとCuコイルの交流抵抗はRで一致する。周波数fよりも高い周波数では、その近接効果が銅よりも大きくなるため、Alコイルの交流抵抗が、Cuコイルの交流抵抗よりも大きくなる。また、周波数f1は、素線径が太くなるほど又は巻数が多くなるほど低周波数側へシフトする。
図4に示した周波数fが、上記式(15)の周波数fに対応する。また、本発明の実施の形態に係る電線1の半径aを表皮深さよりも小さくすることにより、上記式(18)で規定される周波数fが、図4に示した高周波側の周波数fよりも低くなる。したがって、周波数fが周波数f以上で且つ周波数fよりも低く規定されるため、交流抵抗を電線と同じ形状及び外径である銅線と同等以下とすることができる。
次に、図4及び図5に示したAlコイル及びCuコイルの交流抵抗を計算したときと同じ条件でAlコイル及びCuコイルを作製した。即ち、外径が0.4mmで仕上がり径が0.43mmである材質が銅、またはアルミニウムのエナメル線を9本撚り、内径が20mmのボビンに、42ターン巻いたAlコイル及びCuコイルを作製した。作製したAlコイル及びCuコイルの交流抵抗をLCRメーターで測定した結果を図6及び図7に示す。図6には、式(5)により計算されるCuコイルとAlコイルの交流抵抗の計算値も示した。ただし、銅の導電率は5.80×10Ω-1・mm-1、アルミニウムの導電率は3.70×10Ω-1・mm-1、として計算した。また、形状因子αは式(5)による計算値と測定値の比較から、両方のコイルで5.6mm-1と求めた。
Cuコイルの直流抵抗は47.9mΩ、Alコイルの直流抵抗は79.4mΩであり、Cuコイルの直流抵抗がAlコイルの直流抵抗よりも低い。しかし、図6及び図7に示すように、周波数が高くなるにつれて交流抵抗は上昇し、ある周波数でCuコイルの交流抵抗とAlコイルの交流抵抗とが一致し、より高周波側では、Cuコイルの交流抵抗がAlコイルの交流抵抗よりも高くなる。Alコイルの交流抵抗とCuコイルの交流抵抗が一致するときの周波数は39kHz、そのときの交流抵抗は131mΩである。この実測値に対して、式(16)による直流抵抗の和によって計算される交流抵抗Rは127mΩであり、実測された交流抵抗によく一致することが確かめられた。また、式(15)によって計算される周波数fは38.8kHzであり、実測された周波数によく一致することが確かめられた。
[電線及びコイルの設計方法]
本発明の第1の実施の形態に係る電線及びコイルの設計方法の一例としては、銅よりも導電率の低い線材を選択する。更に、電線の半径が表皮深さよりも小さくなり、電線やコイルが使用される周波数における電線の交流抵抗が、電線の直流抵抗と、電線と同じ形状及び外径である銅線の直流抵抗の和以上となるように設計する。
本発明の第1の実施の形態に係る電線及びコイルの設計方法によれば、電線の直流抵抗及び電線と同じ形状及び外径である銅線の直流抵抗に基づいて設計することができるため、交流抵抗を電線と同じ形状及び外径である銅線と同等以下とすることが可能な電線及びコイルを容易に設計及び製造することができる。なお、上述した電線及びコイルの設計方法は、中央処理装置(CPU)や記憶装置等のハードウェア資源を用いて自動的に行うことも可能である。
(第2の実施の形態)
[電線及びコイル]
本発明の第2の実施の形態に係る電線1は、図8に示すように、内層(第1層)2及び内層2の周囲に外層(第2層)3が形成され、内層2が銅よりも導電率の低い物質からなり、外層3が銅からなる二層構造の線材である。そして、本発明の第2の実施の形態に係る電線1は、電線1の半径aが表皮深さよりも小さく、電線1が使用される周波数における電線1の交流抵抗値が、電線1の直流抵抗値に電線1全体の断面積と電線の内層2の断面積の比を乗じた値と、電線1と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されている。
本発明の第2の実施の形態に係る電線1が使用される周波数は、個々の製品の仕様に応じて適宜設定されるものであり、特に限定されない。例えば1kHz~1MHz程度であっても良いし、10kHz~100kHz程度であっても良い。IH調理器の場合には、20kHz~100kHz程度であっても良い。日本、米国、欧州及び中国等の商用電源周波数をそのまま使用する製品であれば50Hz~60Hz程度であっても良い。
本発明の第2の実施の形態に係る電線1の直径は、0.05mm~0.6mm程度が望ましいが、特に限定されるものではない。電線1を構成する線材としては、内層2としてのアルミニウム(Al)線の外周に、外層3としての銅(Cu)が一様に被覆された銅クラッドアルミニウム(CCA)線が使用可能である。外層3である銅層の断面積は、アルミニウム線及び銅層を合わせた電線全体の断面積に対して0より大きく30%以下であり、望ましくは3%~15%程度、より望ましくは3%~10%程度、更に望ましくは3%~5%程度である。銅層の電線全体に対する断面積の比が小さいほど、交流抵抗を低減することができる。内層2としてのアルミニウム線としては、例えば電気用アルミニウム(ECアルミニウム)又はAl-Mg-Si系合金(JIS6000番台)のアルミニウム合金が使用可能である。
また、内層2の材料としては、アルミニウムの他にも、銅よりも導電率の低い種々の物質が採用可能であるが、非磁性材料が好ましい。例えば、電線1が、内層2として絶縁体を充実した銅のパイプであってもよい。絶縁体としては樹脂や空気等が挙げられる。
本発明の第2の実施の形態においても、本発明の第1の実施の形態において説明した式(1)~(11)を適用することができる。本発明の第2の実施の形態において、半径がaで、内層2の半径がbで、外層3の導電率がσであり、内層2の導電率がσの二層構造の電線の直流抵抗は、以下の式(19)で表される。また、非特許文献2によればPは以下の式(20)で表される。
Figure JPOXMLDOC01-appb-M000019

よって、半径がaで、内層2の半径がbで、外層3の導電率がσであり、内層2の導電率がσの二層構造の線材を用いたコイルの高周波抵抗Rac1と、半径がaで、導電率がσの線材を用いたコイルの高周波抵抗Rac2は以下の式(21)、(22)で表される。
Figure JPOXMLDOC01-appb-M000020

ここで、Rac1、Rac2の値が等しいと仮定すると、以下の式(23)が得られる。
Figure JPOXMLDOC01-appb-M000021

このときの周波数f、及び高周波抵抗Rはそれぞれ以下の式(24)、(25)で表される。
Figure JPOXMLDOC01-appb-M000022

このように、半径がaで、内層2の半径がbで、外層3の導電率がσであり、内層3の導電率がσの二層構造の線材と、半径がaで導電率がσの線材の異なる2種類の線材を用いたコイルの高周波抵抗Rac1、Rac2が等しいとき、その抵抗値は、二層構造の線材の直流抵抗値に線材の断面積と線材の内層2の断面積の比を乗じた値と、電線と同じ形状及び外径である銅線の直流抵抗値の和に等しいことが見出された。
ここで、本発明の第2の実施の形態に係る電線の一形態として、一様な材料からなる電線は、内層2の半径bが電線全体の半径aと等しい場合として表される。即ち、以下の式(26)及び(27)となり、本発明の第1の実施の形態に係る一層構造の場合の電線1についての周波数f、及び高周波抵抗Rの式(15)及び(16)と等しくなる。
Figure JPOXMLDOC01-appb-M000023

このように、半径がaで導電率がσの線材と、半径がaで導電率がσの線材の異なる2種類の線材を用いたコイルの高周波抵抗Rac1、Rac2が等しいとき、その抵抗値R1は、それらの線材の直流抵抗値の和に等しいことが見出された。
そこで、本発明の第2の実施の形態に係る電線1及びそれを用いたコイルでは、外層3が銅で、内層2が銅よりも導電率の低い二層構造の線材を用い、電線1の半径aが表皮深さよりも小さく、電線1やコイルが使用される周波数における電線1の交流抵抗値を、電線1の直流抵抗値に電線1全体の断面積と内層2の断面積の比を乗じた値と、電線1と同じ形状及び外径である銅線の直流抵抗値の和以上に規定する。ただし、電線1の外層3の厚さは0に等しくてもよく、その場合、電線1全体の断面積と内層2の断面積の比は1に等しい。
即ち、二層構造の電線1の内層2の導電率をσ[Ω-1・m-1]、銅の導電率をσ[Ω-1・m-1]、電線1に作用する磁界の強度を表す係数をα[m-1]、円周率をπ、内層2の半径をb[m]、電線1の半径をa[m]、真空の透磁率をμ[H/m]、電線1を構成する導体の本数をN[本]、電線1を構成する導体の長さをl[m]として、使用される周波数における電線1の交流抵抗R[Ω]が、以下の式(28)を満たすように規定される。
Figure JPOXMLDOC01-appb-M000024

このときの周波数f[kHz]は、以下の式(29)を満たす。
Figure JPOXMLDOC01-appb-M000025

本発明の第2の実施の形態に係る二層構造の電線1及びそれを用いたコイルによれば、電線1やコイルが使用される周波数において、交流抵抗を電線と同じ形状及び外径である銅線と同等又はそれより低減することができる。更に、二層構造の電線1やコイルが使用される周波数における交流抵抗を、電線1の直流抵抗と、電線1と同じ形状及び外径である銅線の直流抵抗とを用いて規定することができるので、電線1やコイルをより簡便に設計することができる。
[実施例]
図9及び図10に、外径が0.6mmで、仕上がり径が0.63mmである材質が銅、またはCCAのエナメル線を4本撚り、内径が20mmのボビンに、42ターン巻いたコイルの交流抵抗をLCRメーターで測定した結果を示した。図9には、上記式(5)により計算される銅線コイル(以下、「Cuコイル」ともいう)とCCA線コイル(以下、「CCAコイル」ともいう)の抵抗計算値も示した。ただし、銅の導電率は5.8×10Ω-1・mm-1、アルミニウムの導電率は3.7×10Ω-1・mm-1、として計算した。また、形状因子αは式(5)による計算値と測定値の比較から、両方のコイルで2.4mm-1と求めた。
Cuコイルの直流抵抗は47.4mΩ、CCAコイルの直流抵抗は69.9mΩであり、Cuコイルの直流抵抗がCCAコイルの直流抵抗よりも低い。しかし、図9及び図10に示すように、周波数が高くなるにつれて交流抵抗は上昇し、ある周波数でCuコイルの交流抵抗とCCAコイルの交流抵抗とが一致し、それより高周波数側ではCuコイルの交流抵抗がCCAコイルの交流抵抗よりも高くなる。また、CCAコイルの交流抵抗とCuコイルの交流抵抗とが一致するときの周波数は27.3kHz、交流抵抗は131mΩである。この実測値に対して、式(27)によって計算される交流抵抗Rは130mΩであり、実測された交流抵抗によく一致することが確かめられた。また、式(26)によって計算される周波数fは28.0kHzであり、実測された周波数によく一致することが確かめられた。
[電線及びコイルの設計方法]
本発明の第2の実施の形態に係る電線1及びコイルの設計方法の一例としては、外層3が銅からなり、内層2が銅よりも導電率の低い物質からなる線材を選択する。更に、電線1の半径が表皮深さよりも小さくなり、電線1やコイルが使用される周波数における電線の交流抵抗が、電線1の直流抵抗値に電線1全体の断面積と電線1の内層2の断面積の比を乗じた値と、電線1と同じ形状及び外径である銅線の直流抵抗値の和以上となるように設計する。
本発明の第2の実施の形態に係る電線及びコイルの設計方法によれば、電線1の直流抵抗と外層3の半径、内層2の半径及び電線1と同じ形状及び外径である銅線の直流抵抗に基づいて設計することができるため、交流抵抗を電線1と同じ形状及び外径である銅線と同等又はそれより低減可能な電線1及びコイルを容易に設計及び製造することができる。なお、上述した電線1及びコイルの設計方法は、中央処理装置(CPU)や記憶装置等のハードウェア資源を用いて自動的に行うことも可能である。
(その他の実施の形態)
 上記のように、本発明は第1及び第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
本発明の電線は、高周波変圧器、モータ、リアクトル、チョークコイル、誘導加熱装置、磁気ヘッド、高周波給電ケーブル、DC電源ユニット、スイッチング電源、ACアダプタ、渦電流検出方式等の変位センサ・探傷センサ、IHクッキングヒータ、非接触給電装置又は高周波電流発生装置等の種々の装置の製造業を含む電子機器産業に利用可能である。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
1…電線
2…内層
3…外層

Claims (6)

  1. 銅よりも導電率の低い物質からなる第1層を有する一層構造、又は前記第1層の周囲に銅からなる第2層が形成された二層構造を有する電線であって、
    前記電線の半径が表皮深さよりも小さく、
    前記電線が使用される周波数における前記電線の交流抵抗値が、前記電線の直流抵抗値に電線全体の断面積と電線の第1層の断面積の比を乗じた値と、前記電線と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されていることを特徴とする電線。
  2. 前記電線が一層構造であるとき、前記電線が使用される周波数における前記電線の交流抵抗値が、前記電線の直流抵抗値と、前記電線と同じ形状及び外径である銅線の直流抵抗値の和以上に規定されていることを特徴とする請求項1に記載の電線。
  3. 前記電線の導電率をσ、前記銅線の導電率をσ、前記電線に作用する磁界の強度を表す係数をα、円周率をπ、前記電線及び銅線の半径をa、真空の透磁率をμ、前記電線を構成する導体の本数をN、前記電線を構成する導体の長さをlとして、前記電線が使用される周波数fが、以下の式
    Figure JPOXMLDOC01-appb-M000001


    で規定され、且つ
    前記電線が使用される周波数における前記電線の交流抵抗Rが、以下の式
    Figure JPOXMLDOC01-appb-M000002


    で規定されていることを特徴とする請求項2に記載の電線。
  4. 前記電線が二層構造であり、前記第1層の導電率をσ、銅の導電率をσ、前記電線に作用する磁界の強度を表す係数をα、円周率をπ、前記第1層の半径をb、前記電線の半径をa、真空の透磁率をμ、前記電線を構成する導体の本数をN、前記電線を構成する導体の長さをlとして、前記電線が使用される周波数fが、以下の式
    Figure JPOXMLDOC01-appb-M000003


    で規定され、且つ
    前記電線が使用される周波数における前記電線の交流抵抗Rが、以下の式
    Figure JPOXMLDOC01-appb-M000004


    で規定されていることを特徴とする請求項1に記載の電線。
  5. 請求項1~4のいずれか1項に記載された電線を使用したことを特徴とするコイル。
  6. 電線の設計方法であって、
    銅よりも導電率の低い物質からなる第1層を有する一層構造、又は前記第1層の周囲に銅からなる第2層が形成された二層構造の線材を用い、
    前記電線の半径が表皮深さよりも小さく、且つ前記電線が使用される周波数における前記電線の交流抵抗値が、前記電線の直流抵抗値に電線全体の断面積と電線の第1層の断面積の比を乗じた値と、前記電線と同じ形状及び外径である銅線の直流抵抗値の和以上となるように設計することを特徴とする電線の設計方法。
PCT/JP2014/057129 2013-03-18 2014-03-17 電線及びコイル WO2014148430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480016903.7A CN105051833B (zh) 2013-03-18 2014-03-17 电线及线圈
US14/777,964 US9859032B2 (en) 2013-03-18 2014-03-17 Electric wire for reducing AC resistance to be equal to or less than copper wire
JP2015506766A JP6062035B2 (ja) 2013-03-18 2014-03-17 電線及びコイル
EP14770299.7A EP2977994A4 (en) 2013-03-18 2014-03-17 Wire and coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055394 2013-03-18
JP2013-055394 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148430A1 true WO2014148430A1 (ja) 2014-09-25

Family

ID=51580109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057129 WO2014148430A1 (ja) 2013-03-18 2014-03-17 電線及びコイル

Country Status (5)

Country Link
US (1) US9859032B2 (ja)
EP (1) EP2977994A4 (ja)
JP (1) JP6062035B2 (ja)
CN (1) CN105051833B (ja)
WO (1) WO2014148430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087735A (ja) * 2018-11-27 2020-06-04 キヤノン電子管デバイス株式会社 回転陽極x線管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059142A1 (fr) * 2016-11-18 2018-05-25 Continental Automotive France Dispositif d'actionnement electromagnetique
DE102017211543A1 (de) * 2017-07-06 2019-01-10 Siemens Aktiengesellschaft Modularer Mehrpegelenergiewandler
ES2751695A1 (es) * 2018-10-01 2020-04-01 Bsh Electrodomesticos Espana Sa Dispositivo de aparato de cocción por inducción
EP3713050B1 (en) * 2019-03-22 2022-05-25 ABB Schweiz AG Induction motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276216A (ja) 1985-09-30 1987-04-08 株式会社フジクラ 高周波電線
JP2002150633A (ja) 2000-11-07 2002-05-24 Matsushita Electric Ind Co Ltd 磁気ヘッド装置
JP2005108654A (ja) 2003-09-30 2005-04-21 Canon Inc リッツ線、それを用いた励磁コイルおよび誘導加熱装置
WO2006046358A1 (ja) 2004-10-28 2006-05-04 Shinshu University 高周波コイルを備えた機器
JP2009129550A (ja) 2007-11-20 2009-06-11 Totoku Electric Co Ltd クラッド電線、リッツ線、集合線およびコイル
WO2012023378A1 (ja) 2010-08-20 2012-02-23 株式会社フジクラ 電線、コイル、電線の設計装置及び電気モータ
US20120125651A1 (en) * 2010-11-18 2012-05-24 Timothy Raymond Pearson Method and apparatus for reduction of skin effect losses in electrical conductors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096577A (en) * 1956-01-12 1963-07-09 Westinghouse Electric Corp Method of making aluminum clad copper wire
FR1428517A (fr) * 1964-11-26 1966-02-18 Organes de transmission d'énergie électrique à absorption sélective
FR2233685B1 (ja) * 1973-06-12 1977-05-06 Josse Bernard
US4256945A (en) * 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US5574260B1 (en) * 1995-03-06 2000-01-18 Gore & Ass Composite conductor having improved high frequency signal transmission characteristics
CN201075311Y (zh) * 2007-09-14 2008-06-18 曹秉华 一种电线电缆
EP2071588A3 (en) * 2007-12-12 2011-11-23 Alcatel Lucent Bi-material radio frequency transmission line and the associated manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276216A (ja) 1985-09-30 1987-04-08 株式会社フジクラ 高周波電線
JP2002150633A (ja) 2000-11-07 2002-05-24 Matsushita Electric Ind Co Ltd 磁気ヘッド装置
JP2005108654A (ja) 2003-09-30 2005-04-21 Canon Inc リッツ線、それを用いた励磁コイルおよび誘導加熱装置
WO2006046358A1 (ja) 2004-10-28 2006-05-04 Shinshu University 高周波コイルを備えた機器
JP2009129550A (ja) 2007-11-20 2009-06-11 Totoku Electric Co Ltd クラッド電線、リッツ線、集合線およびコイル
WO2012023378A1 (ja) 2010-08-20 2012-02-23 株式会社フジクラ 電線、コイル、電線の設計装置及び電気モータ
US20120125651A1 (en) * 2010-11-18 2012-05-24 Timothy Raymond Pearson Method and apparatus for reduction of skin effect losses in electrical conductors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. R. SULLIVAN: "Aluminum Windings and Other Strategies for High-Frequency Magnetics Design in an Era of High Copper and Energy Costs", IEEE TRANS. ON POWER ELECTRONICS, vol. 23, no. 4, 2008, pages 2044 - 2051
C. R. SULLIVAN: "Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary waveforms, and Two-Dimensional or Three-Dimensional Field", IEEE TRANS. ON POWER ELECTRONICS, vol. 16, no. 1, 2001, pages 142 - 150, XP011043532
See also references of EP2977994A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087735A (ja) * 2018-11-27 2020-06-04 キヤノン電子管デバイス株式会社 回転陽極x線管

Also Published As

Publication number Publication date
US20160276051A1 (en) 2016-09-22
CN105051833A (zh) 2015-11-11
CN105051833B (zh) 2017-03-15
EP2977994A4 (en) 2017-01-11
JPWO2014148430A1 (ja) 2017-02-16
US9859032B2 (en) 2018-01-02
JP6062035B2 (ja) 2017-01-18
EP2977994A1 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
US9425662B2 (en) Electric wire, coil, device for designing electric wire, and electric motor
JP5266340B2 (ja) 高周波電線及び高周波コイル
JP6062035B2 (ja) 電線及びコイル
JP5407004B2 (ja) 電線及びコイル
JP6194369B2 (ja) 高周波用電線およびコイル
JP2012147670A5 (ja)
Wang et al. Copper loss analysis of EV charging coupler
JP2012169288A5 (ja)
JP2015065081A (ja) 高周波電線および高周波コイル
CN105556619A (zh) 用于运输交流电的方法和铠装电力电缆
JP5668097B2 (ja) 電線およびコイル
Wojda et al. Copper-clad aluminum windings as an alternative conductor for high-power electric vehicle wireless charging
Um et al. Modeling of frequency-dependent winding losses in solid and litz-wire toroidal inductors
JPWO2013051102A1 (ja) インダクタ用線材およびインダクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016903.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506766

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777964

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014770299

Country of ref document: EP