JPWO2013051102A1 - インダクタ用線材およびインダクタ - Google Patents

インダクタ用線材およびインダクタ Download PDF

Info

Publication number
JPWO2013051102A1
JPWO2013051102A1 JP2013519907A JP2013519907A JPWO2013051102A1 JP WO2013051102 A1 JPWO2013051102 A1 JP WO2013051102A1 JP 2013519907 A JP2013519907 A JP 2013519907A JP 2013519907 A JP2013519907 A JP 2013519907A JP WO2013051102 A1 JPWO2013051102 A1 JP WO2013051102A1
Authority
JP
Japan
Prior art keywords
magnetic layer
value
inductor
khz
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013519907A
Other languages
English (en)
Inventor
田中 賢吾
賢吾 田中
典善 伏見
典善 伏見
安倍 文彦
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Magnet Wire Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Magnet Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Magnet Wire Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013519907A priority Critical patent/JPWO2013051102A1/ja
Publication of JPWO2013051102A1 publication Critical patent/JPWO2013051102A1/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

導電体の表層に磁性体層を設けるにあたり、抵抗値をも加味してQ値を高めることができるインダクタ用線材およびこの線材を用いたインダクタを提供する。インダクタのコイルに使用されるインダクタ用線材であって、導電体と、前記導電体の表層に設けられた磁性体層とを有しており、前記磁性体層の厚みが0より大きく3.0μm以下である。この線材を使用してQ値の高いインダクタを得る。

Description

本発明は、インダクタの巻線に使用されるインダクタ用線材および、この線材を用いたインダクタに関する。
インダクタを製造するための巻線用の線材としては、一般的には、銅などの導電体の外側に絶縁層を設けた線材が使用されている。
また、この導電体の表面に磁性体をめっきした線材も知られている。この線材を使用したインダクタでは、1MHzの周波数帯域において、10%程度のインダクタンスUPの効果があると開示されている(例えば、特開昭62−211904号公報参照)。
インダクタの性能は、一般的にQ値(Q値=2π×周波数×インダクタンスLs/巻線抵抗Rs)が高いことで表現される。上述の文献では、インダクタンスLがUPすることについては記載されているが、抵抗値Rについての関係が不明である。また、上記文献では、磁性体層の材質や厚みとの関係が記載されていない。他方、この文献で開示されている共振回路では、Q値を下げることについて記載されているが、Q値を高める(抵抗値を低くする)ことについては記載されていない。
本発明の目的は、上述した事情を鑑みてなされたものであり、導電体の表層に磁性体層を設けるにあたり、抵抗値をも加味してQ値を高めることができるインダクタ用線材およびインダクタを提供することにある。
上述目的を達成するため、本発明によれば、インダクタのコイルに使用されるインダクタ用線材であって、導電体と、前記導電体の表層に設けられた磁性体層とを有し、前記磁性体層の厚みが0より大きく3.0μm以下であることを特徴とする。
好ましくは、使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が100〜500であり、前記磁性体層の厚みが0より大きく3.0μm以下である。
また好ましくは、使用周波数帯域が0.01〜5000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が100〜500であり、前記磁性体層の厚みが0より大きく2.0μm以下である。
また好ましくは、使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0より大きく2.5μm以下である。
また好ましくは、使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0より大きく2.0μm以下である。
また、好ましくは、使用周波数帯域が0.01〜5000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0.5〜1.5μmである。
また、前記磁性体層は、Feを重量比10%以上含む2元素以上の合金であってもよい。
また、前記磁性体層は、Fe−50Ni合金であってもよい。
さらに、前記磁性体層は、Fe−80Ni合金であってもよい。
さらには、前記磁性体層が、実質的にFeからなるものであってもいい。
また、実質的にFeからなる磁性体層の膜厚が、0μmより大きく3.0μm以下であってもよく、より好ましくは、1.5μm以上3.0μm以下である。
これらの場合において、前記磁性体層は、前記導電体と絶縁層との間に設けるようにしてもよい。
他方、上記のインダクタ用線材を使用してインダクタを製作することもできる。
本発明に係るインダクタ用線材によれば、インダクタのコイルに使用されるインダクタ用線材であって、導電体と、該導電体の表層に設けられた磁性体層とを有し、磁性体層の厚みが0より大きく3.0μm以下となる。すなわち、導電体の表層に上記所定厚みの磁性体層を設けているので、磁性体層を設けていない線材と比較して、インダクタンスを向上させると共に抵抗値を下げ、Q値を高めることができる。
図1は、本発明の第1の実施の形態に係る電磁石用線材の構成を概略的に示す断面図である。 図2(A)及び図2(B)は、それぞれ平角線を用いた場合の電磁石用線材の断面図である。 図3は、インダクタ用線材を用いた空心コイルの断面図である。 図4は、空芯コイルの周波数とインダクタンスとの関係を示すグラフ図である。 図5は、空芯コイルの周波数とインダクタンス変化率との関係を示すグラフ図である。 図6は、磁性体層にFe合金を用いた場合の、めっき厚さとインダクタンス変化率との関係を示すグラフ図である。 図7は、磁性体層にFe合金を用いた場合の、めっき厚と抵抗変化率との関係を示すグラフ図である。 図8は、磁性体層にFe合金を用いた場合の、めっき厚とQ値変化率との関係を示すグラフ図である。 図9は、磁性体層にFe−80Ni合金を用いた場合の、めっき厚さとインダクタンス変化率との関係を示すグラフ図である。 図10は、磁性体層にFe−80Ni合金を用いた場合の、めっき厚と抵抗変化率との関係を示すグラフ図である。 図11は、磁性体層にFe−80Ni合金を用いた場合の、めっき厚とQ値変化率との関係を示すグラフ図である。 図12は、磁性体層にFe−50Ni合金を用いた場合の、めっき厚さとインダクタンス変化率との関係を示すグラフ図である。 図13は、磁性体層にFe−50Ni合金を用いた場合の、めっき厚と抵抗変化率との関係を示すグラフ図である。 図14は、磁性体層にFe−50Ni合金を用いた場合の、めっき厚とQ値変化率との関係を示すグラフ図である。 図15は、空芯コイルを2つ使用した状態を示す断面図である。 図16は、本発明の第2の実施の形態に係る電磁石用線材の構成を概略的に示す断面図である。 図17は、電磁石の吸引力を試験するためのソレノイドの断面図である。 図18(A)は、図8のソレノイドを用いた吸引力試験において、電流と吸引力との関係を示すグラフ図であり、図18(B)は、磁性体層の膜厚と吸引力変化率との関係を示すグラフ図である。
以下、本発明の実施の形態に係るインダクタ用線材1について、図面を用いて詳細に説明する。図1は、本発明の第1の実施の形態に係るインダクタ用線材1の構成を概略的に示す断面図である。
インダクタ用線材1は、線材の芯である導電体2と、この導電体2の外側を覆う磁性体層3と、この磁性体層3のさらに外周を覆う絶縁層4とで構成されている。
導電体2は、その断面形状が円形をなしており、素材として導電性を有する銅が使用されている。
磁性体層3は、導電性を有するものであり、数μmオーダーの厚みに形成されており、例えば0より大きく3.0μm以下の厚みで形成されている。この磁性体層3は、導電体2の外周の全体を均一に覆う態様でめっきなどによって形成されている。磁性体層3の材料としては、Feを重量比10%以上含む2元素以上の合金によって形成されている。また、好ましくは、Fe−50Ni合金、Fe−80Ni合金によって形成されている。
絶縁層4は、例えば、エナメル絶縁層であり、その層の厚みは約35μmに形成されている。
また、インダクタ用線材は、図2に示すように、平角線で構成することもできる。
図2(A)に示すインダクタ用線材11は、線材の芯である導電体12の断面形状が矩形状であり、その4辺の外側の全体を覆うように磁性体層13が形成されている。また、この磁性体層13の外側には、磁性体層13の外側の全体を覆うように絶縁層14が形成されている。このような平角線は、コアに巻き付ける際に隣接する線材の間に隙間が生じないようにすることができる点で優れている。
また、図2(B)に示すインダクタ用線材21は、断面矩形状の導電体22の下辺の下側にのみ磁性体層23を形成したものである。そして、これらの外側を覆うように絶縁層24が形成されている。
次に、本実施の形態に係るインダクタ用線材1を用いたインダクタの実験について、図3〜図14を用いて説明する。本事例は、インダクタ用線材1の磁性体層の材質および膜厚を変えたときのインダクタのインダクタンス変化を実験によって検証したものである。
従来、このようなインダクタンス用線材としては、導電体の外側に絶縁層のみを有するものが使用されていた。また、磁性体層をめっきすることで高周波帯域でインダクタンスLsが増加する点については知られているが、線材の抵抗値Rsとの関係は知られていない。これに対し、今回の実験では、線材のインダクタンスLsと抵抗値Rsとを、磁性体層の材質および厚みの観点から測定した結果、これらの関係に最適値があることが判明した。
この実験では、インダクタ用線材として、以下の3種類を実験している。
(A)インダクタ用線材1A(線径φ0.5)
導電体:主に銅
磁性体層:Feを主とする合金
磁性体層の外側に絶縁層エナメル(35μm)
(B)インダクタ用線材1B(線径φ0.5)
導電体:主に銅
磁性体層:Fe−50Ni 熱処理あり
磁性体層の外側に絶縁層エナメル(35μm)
(C)インダクタ用線材1C(線径φ0.5)
導電体:主に銅
磁性体層:Fe−80Ni 熱処理なし
磁性体層の外側に絶縁層エナメル(35μm)
なお、以下の説明で、符号に付されたA,B,Cの添字は、それぞれ、上記(A)(B)(C)のインダクタ用線材に対応するものとする。
このインダクタ用線材1A、1B、1Cのそれぞれの初透磁率は、比透磁率で、100、2000、500である。
また、インダクタ用線材1A、1B、1Cのそれぞれの飽和磁束密度(T)は、2.0(T)、1.5(T)、0.75(T)である。
本実験で使用する空芯コイル30Aは、図3に示すように、インダクタ用線材1Aを円筒形に巻き、円筒の中に何も入れていないものである。この空芯コイル30Aの直径はφ6mm、巻数は17ターンである。
同様に、空芯コイル30B、30Cも線材(磁性体層の材質)が異なるのみで、その基本構成は同じである。
このような構成で、まず、めっき厚を3μmにしたときの、使用帯域の周波数とインダクタンスとの関係について実験した。
図4は、空芯コイルの周波数とインダクタンスとの関係を示すグラフ図、図5は、空芯コイルの周波数とインダクタンス変化率との関係を示すグラフ図である。なお、これらの図において、符号40Aは、インダクタ用線材1A(めっき厚3μm)を用いた空芯コイル30Aでの測定値、符号40Bは、空芯コイル30Bでの測定値、符号40Cは、空芯コイル30Cでの測定値を示す。また、符号41は、磁性体層を設けない線材で構成した空芯コイルでの測定値を示す(なお、図5において符号41の測定値は、変化率がどの周波数でも0%になるため省略する)。
図4および図5に示す実験結果から、以下のことが判断できる。
(イ)インダクタ用線材1A、1B、1Cを用いた空芯コイル30A、30B、30C(符号40A、40B、40C)は、図4に示すように、周波数帯域0.01kHz〜10000kHzの全範囲において、磁性体層を設けていない線材(符号41)よりもインダクタンスが高い値となる。これにより、導電体2の表層にFeを重量比10%以上含む2元素以上の合金からなる磁性体層3を設けることで、インダクタ用線材1A、1B、1Cは、インダクタンスがUPすると判断できる。
特に、Fe−50Ni合金を設けた線材1B(空芯コイル40B、符号40Bで示す)が上述の全周波数帯域で最も高い値(例えば、周波数1000kHzでは、符号41と比べて約2倍のインダクタンスを得られる)になることが分かった。
また、Fe−80Ni合金を設けた線材1C(空芯コイル40C、符号40Cで示す)においても、例えば周波数1000kHzでは、符号41と比べて約1.7倍のインダクタンスを得られている。
(ロ)インダクタ用線材1A、1B、1Cを用いた空芯コイル30A、30B、30C(符号40A、40B、40C)は、図5に示すように、周波数帯域0.01kHz〜10000kHzの全範囲において、インダクタンス変化率(磁性体層を設けていない線材を使用した空芯コイルに対する変化率をいう)が向上する。
特に、空芯コイル30A、30B、30Cのいずれも、1000kHz以上の周波数帯域で、1000kHz以下の帯域よりもインダクタンス変化率がUPすることが分かった。このことから、高い周波数帯域では、磁性体層を設けることで高いインダスタンスを得ることができると判断できる。
次に、上述した空芯コイル30A、30B、30Cにおいて、磁性体層3の膜厚(めっき厚)を1.0μm、3.0μm、5.0μmに変えた場合のインダクタンス変化および抵抗値変化を測定した。このとき、インダクタンスおよび抵抗値の変化は、周波数帯域によって異なるため、周波数を0.01kHz、0.1kHz、1kHz、2kHz、10kHz、20kHz、100kHz、1000kHz、5000kHzの値でそれぞれ測定した。なお、電流値は、5A/mmである。
そして、これらの測定値から、それぞれのQ値を計算した。
図6〜図8は、空芯コイル30Aにおける、めっき厚に対するインダクタンス、抵抗値、およびQ値の関係をそれぞれ示したものである。なお、図6〜図8(図9〜図14も同じ)では、上述した各周波数ごとにデータを測定して、この周波数毎に折れ線グラフを作成している(グラフの下側にその周波数の区別を示す)。
図6のグラフからは、全ての周波数帯域において、めっき厚を1.0μmから3.0μmまで増加させると、インダクタンスLsは増加することが分かる。
しかしながら、抵抗値Rについては、図7に示すように、周波数帯域が5000kHzの場合において、めっき厚が1.0μmから2.0μmまで増加するに従い抵抗値Rが減少するが、めっき厚が2.0μmから3.0μmまで増加するに従い抵抗値Rが増加することが分かった。また、図8に示すように、Q値についても、めっき厚が1.0μmから2.0μmまで増加するに従いQ値が増加するが、めっき厚が2.0μmから3.0μmまで増加するに従いQ値が減少することが分かった。すなわち、Q値が減少する部分においては、インダクタンスLsの増加分よりも抵抗値Rの増加分が大きいため、Q値が減少したものである。
このことから、空芯コイル30AのQ値を高めるには、まず、その空芯コイル30Aが使用される周波数帯域において、抵抗値Rsがめっきをしない場合に対して所定量減少するめっき厚とするとよい。さらに、抵抗値Rsが最小値(あるいは極小値)周辺となるめっき厚とするとなおよい。
また、周波数帯域によって区別すると、5000kHzまたはそれ以上の周波数帯域で使用する空芯コイル30Aの場合には、めっき厚を約2.0μm(1μmよりも大きく3μmよりも小さい)にすることがよいことがわかる。
図9〜図11は、空芯コイル30Cにおける、めっき厚に対するインダクタンス、抵抗値、およびQ値の関係をそれぞれ示したものである。
図9のグラフからは、全ての周波数帯域において、めっき厚を1.0μmから3.0μmまで増加させると、インダクタンスLsは増加することが分かる。
しかしながら、抵抗値Rについては、図10に示すように、周波数帯域が1000kHzの場合において、めっき厚が1.0μmから2.0μmまで増加するに従い抵抗値Rが減少するが、めっき厚が2.0μmから3.0μmまで増加するに従い抵抗値Rが増加することが分かった。また、図11に示すように、Q値についても、めっき厚が1.0μmから2.0μmまで増加するに従いQ値が増加するが、めっき厚が2.0μmから3.0μmまで増加するに従いQ値が減少することが分かった。すなわち、Q値が減少する部分においては、インダクタンスLsの増加分よりも抵抗値Rの増加分が大きいため、Q値が減少したものである。
同様に、周波数帯域が5000kHzの場合において同様の見方をすると、図11に示すように、Q値についても、めっき厚が0μm(0μmを含まず)から1.0μmまで増加するに従いQ値が増加するが、めっき厚が1.0μmから2.0μmまで増加するに従いQ値が減少することが分かった。
このことから、空芯コイル30CのQ値を高める場合には、まず、周波数帯域によって区別する必要があることが分かる。すなわち、1000kHz(100kHzよりも大きく5000kHzよりも小さい)の周波数帯域で使用する空芯コイル30Cの場合には、めっき厚を約2.0μm(1μmよりも大きく3μmよりも小さい)にすることがよい。また、5000kHzまたはそれ以上の帯域で使用する空芯コイル30Cの場合には、めっき厚を1μm(0μmよりも大きく2μmよりも小さい)にすることがよいことがわかる。
さらには、上述した1000kHzおよび5000kHzの測定結果から、使用周波数帯域が大きくなるに従って磁性体層3の厚みを薄くしていくことにより、Q値を最大化(最適化)することができることがわかる。また、今回の測定結果では1000kHz以下の帯域でQ値の最大値が現れていないが、上述した周波数帯域の大きさと磁性体層3の厚みとの関係が成立するものと推定される。
図12〜図14は、空芯コイル30Bにおける、めっき厚に対するインダクタンス、抵抗値、およびQ値の関係をそれぞれ示したものである。
図12のグラフからは、全ての周波数帯域において、めっき厚を1.0μmから3.0μmまで増加させると、インダクタンスLsは増加することが分かる。
しかしながら、抵抗値Rについては、図13に示すように、周波数帯域が1000kHzの場合(○印でプロットしているデータ)において、めっき厚が1.0μmから2.0μmまで増加するに従い抵抗値Rが微増するが、めっき厚が2.0μmから3.0μmまで増加するに従い抵抗値Rが増加することが分かった。また、図14に示すように、Q値についても、めっき厚が1.0μmから2.0μmまで増加するに従いQ値が増加するが、めっき厚が2.0μmから3.0μmまで増加するに従いQ値が減少することが分かった。すなわち、Q値が減少する部分においては、インダクタンスLsの増加分よりも抵抗値Rの増加分が大きいため、Q値が減少したものである。
同様に、周波数帯域が5000kHzの場合において同様の見方をすると、図14に示すように、Q値についても、めっき厚が0μm(0μmを含まず)から1.0μmまで増加するに従いQ値が増加するが、めっき厚が1.0μmから2.0μmまで増加するに従いQ値が減少することが分かった。
このことから、空芯コイル30BのQ値を高める場合には、まず、周波数帯域によって区別する必要があることが分かる。すなわち、1000kHz(100kHzよりも大きく5000kHzよりも小さい)の周波数帯域で使用する空芯コイル30Bの場合には、めっき厚を約2.0μm(1μmよりも大きく3μmよりも小さい)にすることがよい。また、5000kHzまたはそれ以上の帯域で使用する空芯コイル30Bの場合には、めっき厚を1μm(0μmよりも大きく2μmよりも小さい)にすることがよいことがわかる。
さらには、上述した1000kHzおよび5000kHzの測定結果から、使用周波数帯域が大きくなるに従って磁性体層3の厚みを薄くしていくことにより、Q値を最大化(最適化)することができることが判断できる。また、今回の測定結果では1000kHz以下の帯域でQ値の最大値が現れていないが、上述した周波数帯域の大きさと磁性体層3の厚みとの関係が成立するものと推定される。
また、比透磁率に着目してみると、図8及び図11の結果から、比透磁率が100〜500の場合、めっき厚が0より大きく3.0μm以下、好ましくは0.5μm以上3.0μm以下であると、周波数帯域が0.01〜1000kHz以下で良好なQ値が得られることがわかる。また、同範囲の比透磁率において、めっき厚が0より大きく2.0μm以下、好ましくは0.5μm以上2.0μm以下であると、周波数帯域が0.01〜5000kHz以下で良好なQ値が得られることがわかる。
比透磁率が500〜2000の場合には、めっき厚が0より大きく2.5μm以下、好ましくは0.5μm以上2.0μm以下であると、周波数帯域が0.01〜1000kHz以下で良好なQ値が得られることがわかる(図11、図14)。また、同範囲の比透磁率において、めっき厚が0より大きく2.0μm以下、好ましくは0.5μm以上2.0μm以下であると、周波数帯域が0.01〜1000kHz以下で良好なQ値が得られることがわかる。さらに、同範囲の比透磁率において、めっき厚が0.5〜1.5μmであると、周波数帯域が0.01〜5000kHz以下で良好なQ値が得られることがわかる。
本発明の実施の形態に係るインダクタ用線材によれば、インダクタのコイル30A、30B、30Cに使用されるインダクタ用線材1(11、21)であって、導電体2(12、22)の表層に厚みが0より大きく3.0μm以下の磁性体層3(13、23)を設けているので、磁性体層3(13、23)を設けていない線材と比較して、コイル30A、30B、30CのインダクタンスLsを向上させると共に抵抗値Rを下げ、Q値を高めることができる。
また、磁性体層3(13、23)は、Feを重量比10%以上含む2元素以上の合金、とりわけFe−50Ni合金、或いは、Fe−80Ni合金であるので、磁性体層3(13、23)をめっきなどによって容易に形成することができる。
一方、Fe−50Ni合金またはFe−80Ni合金の磁性体層3(13、23)の厚みを、使用周波数帯域が大きくなるに従って薄くしているので、インダクタンスLsの増加と、抵抗Rの増加または減少を考慮した高いQ値を実現することができる。すなわち、最適なQ値を実現することができる。
また、Feを重量比10%以上含む2元素以上の合金の磁性体層の厚みを、使用周波数帯域が5000kHzまたはそれより大きい場合に、1μmより大きく3μmよりも小さくしているので、インダクタンスLsの増加と、抵抗Rの増加または減少を考慮した高いQ値を実現させることができる。
さらに、Fe−50Ni合金またはFe−80Ni合金の磁性体層3(13、23)の厚みを、使用周波数帯域が100kHzよりも大きく5000kHzよりも小さい場合に、1μmより大きく3μmよりも小さくしているので、インダクタンスLsの増加と、抵抗Rの増加または減少を考慮した高いQ値を実現させることができる。
さらにまた、Fe−50Ni合金またはFe−80Ni合金の磁性体層3(13、23)の厚みを、使用周波数帯域が5000kHzまたはそれより大きい場合に、0μmより大きく2μmよりも小さくしているので、インダクタンスLsの増加と、抵抗Rの増加または減少を考慮した高いQ値を実現させることができる。
また、図6〜14を、比透磁率の値からみると、比透磁率が100〜2000程度の範囲において、めっき厚を0.5〜3.0μmとすることによって、100kHz〜5000kHz程度、とりわけ100kHz〜1000kHz程度の周波数帯で良好なQ値を有するインダクタを得ることができることがわかる。
そして、上記比透磁率の範囲内では、この値を低め(100〜500程度)にすることによって、Q値の増加率は低めだが、0.5〜2.5μm程度の比較的広いめっき厚の範囲において、5000kHz程度までの周波数でQ値が高いインダクタ用線材を得ることができる。
また、この値を高め(500〜2000程度)にすると、0.5〜1.5μmのめっき厚の範囲では5000kHz程度までの周波数において非常に高いQ値を得ることができる。そして、周波数帯が1000kHz程度までにすれば、0.5〜3.0μmのめっき厚でさらに高いQ値を得ることができる。
これらの場合において、磁性体層3(13)は、導電体2(12)と絶縁層4(14)との間に設けるようにしているので、銅を材料とする導電体2(12)にめっきで容易に磁性体層3(13)を形成することができる。
また、上述したインダクタ用線材1、11、21を用いてインダクタを製造することにより、インダクタンスLsの増加と、抵抗Rの増加または減少を考慮した高いQ値を実現させたインダクタを得ることができる。
以上、本発明の実施の形態に係るインダクタ用線材1(11、21)について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
例えば、本実施の形態における空芯コイル30A、30B、30Cの実験例では、1つの空芯コイルを用いてデータを測定しているが、その応用例として、図15に示すように、例えばトランスなどのように、2つの空芯コイル50(受信コイル50A、発信コイル50B)を用いて伝送される電力をUPさせることができる。
発信コイル50Bに電圧Eを加えたとき、
受信コイル50Aに流れる電流I
=E×jwM/((R+jwL)(R+jwL)+(wM)
:発信コイル50Bのインダクタンス
:発信コイル50Bの抵抗(直流抵抗と交流抵抗の和)
:受信コイル50Aのインダクタンス
:受信コイル50Aの抵抗(直流抵抗と交流抵抗の和)
w:コイル50Bに流れる電流の角周波数
M:LとLの相互インダクタンス
受信コイル50Aの起電力E
=−jwM
よって伝送電力Wは
W=E=(wM)/((R+jwL)(R+jwL)+(wM)
=wL/R=wL/Rであるから
分母の構成要素は
(R+jwL)(R+jwL
=(1/wQ+jL/wL)(1/wQ+jL/wL
で表される。
すなわち、上述の式のQ値(Q,Q)がUPすることにより、伝送される電力WをUPさせることができる。
なお、前述実施例は一例であり、その他、アンテナコイルや電磁誘導や磁気共鳴を利用した信号や電力伝送コイルに適用することも可能であり、効率のよい信号、電力伝送を可能にする。
上記第1実施形態では、磁性体層3(13、23)がFe金属を所定量含む合金からなるものを例に挙げた。これに加えて、本発明者は、磁性体層がFe単体からなる場合にも、電磁石用線材に磁性体層を設けない場合と比較して吸引力をUPさせることができることを見出した。
図7は、本発明の第2の実施の形態に係る電磁石用線材の構成を概略的に示す断面図である。尚、本実施形態に係る電磁石用線材の構成は、第1の実施形態に係る電磁石用線材と基本的に同じであるので、以下に異なる部分を説明する。
電磁石用線材161は、線材の芯である導電体162と、導電体162の外側を覆う磁性体層163と、この磁性体層163の外周を覆う金属層164と、この金属層164のさらに外周を覆う絶縁層165とで構成されている。すなわち磁性体層163は、導電体162と金属層164との間に設けられている。本実施形態では、電磁石用線材161の線径は例えばφ0.5である。
磁性体層163は、磁性体層がFe(一元素)からなる膜で形成されている。磁性体層の膜厚は、0μmよりも大きく3.0μm以下であり、好ましくは1.5μm以上3.0μm以下である。金属層164は、数μmオーダーの厚みに形成されており、例えばNiからなる。
図17(A)及び図17(B)は、インダクタ用線材を用いたコイルの断面図である。本実施形態における空心コイル170aは、図17(A)に示すように、Feからなる磁性体層(厚さ3μm)が形成されたインダクタ用線材161を円筒形に巻き、円筒の中に何も入れていないものである。この空心コイル170aの直径はφ25mm、巻数は150ターンである。また、この空心コイル170の円筒内に、断面略コの字型のフェライト製心材171におけるコア172が配設されたコイル170bを、図17(B)に示す。
図18(A)及び図18(B)は、それぞれ図17(A)及び図17(B)に示すコイルの周波数とQ値変化率との関係を示す図である。図18(A)のグラフから、空心コイル170aの場合には、周波数約2kHz以上約500kHz以下で、周波数が増加するに従いQ値変化率が増加することが判った。また、周波数100kHzでQ値変化率は約40%増加し、周波数500kHzではQ値変化率が約60%増加することが分かった。
また、図18(B)のグラフから、フェライトコアを使用したコイル170bの場合には、周波数約2kHz以上約500kHz以下で、周波数が増加するに従いQ値変化率が増加することが分かった。また、周波数50kHzではQ値変化率が約80%、周波数100kHzでQ値変化率は約97%、周波数500kHzでQ値変化率が約120%増加することが分かった。さらに、周波数約5kHz以上約500kHz以下の範囲では、フェライトコアを使用したコイル170bのQ値は、いずれの周波数においても空心コイルのQ値と比較して2倍以上の値を示すことが分かった。
本実施形態に係るインダクタ用線材によれば、磁性体層163がFeからなる膜で形成されることにより、磁性体層163を設けない場合と比較して空心コイル170aのQ値を高めることができる。また、フェライトコアを使用したコイル170bの場合、上記周波数帯域において、空心コイル170aのQ値と比較して2倍以上となる高いQ値を実現することができる。
なお、本実施形態では磁性体層163がFeからなるが、これに限らず、実質的にFeからなるものであってもよい。本構成によっても上記同様の効果を奏することができる。
また、本実施の形態では磁性体層の形成にFe一元素、Feを主とする合金、あるいはFe−Ni合金を使用したが、これに限らず、磁性体を構成することのできるものであれば如何なる材料を使用してもよい。
1、11、21、161 インダクタ用線材
2、12、22、162 導電体
3、13、23、163 磁性体層
4、14、24 絶縁層
30A、30B、30C、170a 空芯コイル
40A、40B、40C 測定値
50 空芯コイル
50A 受信コイル
50B 発信コイル
164 金属層
170b フェライトコアを使用したコイル

Claims (14)

  1. インダクタのコイルに使用されるインダクタ用線材であって、
    導電体と、前記導電体の表層に設けられた磁性体層とを有し、
    前記磁性体層の厚みが0より大きく3.0μm以下であることを特徴とするインダクタ用線材。
  2. 使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が100〜500であり、前記磁性体層の厚みが0より大きく3.0μm以下であることを特徴とする請求項1に記載のインダクタ用線材。
  3. 使用周波数帯域が0.01〜5000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が100〜500であり、前記磁性体層の厚みが0より大きく2.0μm以下であることを特徴とする請求項2に記載のインダクタ用線材。
  4. 使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0より大きく2.5μm以下であることを特徴とする請求項1に記載のインダクタ用線材。
  5. 使用周波数帯域が0.01〜1000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0より大きく2.0μm以下であることを特徴とする請求項4に記載のインダクタ用線材。
  6. 使用周波数帯域が0.01〜5000kHz以下である場合に、前記磁性体層の初透磁率を比透磁率で表した値が500〜2000であり、前記磁性体層の厚みが0.5〜1.5μmであることを特徴とする請求項1に記載のインダクタ用線材。
  7. 前記磁性体層は、Feを重量比10%以上含む2元素以上の合金であることを特徴とする請求項2から請求項6のいずれか1項に記載のインダクタ用線材。
  8. 前記磁性体層は、Fe−50Ni合金であることを特徴とする請求項7に記載のインダクタ用線材。
  9. 前記磁性体層は、Fe−80Ni合金であることを特徴とする請求項7に記載のインダクタ用線材。
  10. 前記磁性体層は、実質的にFeからなることを特徴とする請求項1に記載のインダクタ用線材。
  11. 前記磁性体層の厚みが0μmより大きく3.0μm以下であることを特徴とする請求項10に記載のインダクタ用線材。
  12. 前記磁性体層の厚みが1.5μm以上3.0μm以下であることを特徴とする請求項11に記載のインダクタ用線材。
  13. 前記磁性体層は、前記導電体と絶縁層との間に設けられていることを特徴とする請求項1から請求項12のいずれか1項に記載のインダクタ用線材。
  14. 請求項1から請求項13のいずれか1項に記載のインダクタ用線材を使用したインダクタ。
JP2013519907A 2011-10-04 2011-10-04 インダクタ用線材およびインダクタ Pending JPWO2013051102A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013519907A JPWO2013051102A1 (ja) 2011-10-04 2011-10-04 インダクタ用線材およびインダクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013519907A JPWO2013051102A1 (ja) 2011-10-04 2011-10-04 インダクタ用線材およびインダクタ

Publications (1)

Publication Number Publication Date
JPWO2013051102A1 true JPWO2013051102A1 (ja) 2015-03-30

Family

ID=52818641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013519907A Pending JPWO2013051102A1 (ja) 2011-10-04 2011-10-04 インダクタ用線材およびインダクタ

Country Status (1)

Country Link
JP (1) JPWO2013051102A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155708A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Wire material for inductor coil
JPS62211904A (ja) * 1986-03-13 1987-09-17 Matsushita Electric Ind Co Ltd 高周波インダクタ
JP2009021325A (ja) * 2007-07-11 2009-01-29 Murata Mfg Co Ltd 巻線型コモンモードチョークコイル
JP2009277396A (ja) * 2008-05-13 2009-11-26 Totoku Electric Co Ltd 電線およびコイル
JP2011114085A (ja) * 2009-11-25 2011-06-09 Furukawa Electric Co Ltd:The 磁性線材及びインダクタ
JP2011210638A (ja) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The 電磁石用線材
JP2011222617A (ja) * 2010-04-06 2011-11-04 Furukawa Electric Co Ltd:The インダクタ用線材およびインダクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155708A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Wire material for inductor coil
JPS62211904A (ja) * 1986-03-13 1987-09-17 Matsushita Electric Ind Co Ltd 高周波インダクタ
JP2009021325A (ja) * 2007-07-11 2009-01-29 Murata Mfg Co Ltd 巻線型コモンモードチョークコイル
JP2009277396A (ja) * 2008-05-13 2009-11-26 Totoku Electric Co Ltd 電線およびコイル
JP2011114085A (ja) * 2009-11-25 2011-06-09 Furukawa Electric Co Ltd:The 磁性線材及びインダクタ
JP2011210638A (ja) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The 電磁石用線材
JP2011222617A (ja) * 2010-04-06 2011-11-04 Furukawa Electric Co Ltd:The インダクタ用線材およびインダクタ

Similar Documents

Publication Publication Date Title
JP2011222617A (ja) インダクタ用線材およびインダクタ
JP5393097B2 (ja) アルファ巻きコイル
JP7131815B2 (ja) ワイヤレス電力伝送コイルユニット
US10692646B2 (en) Single litz wire transformers
RU2320045C1 (ru) Трансформатор
JP2009129550A (ja) クラッド電線、リッツ線、集合線およびコイル
JP5346487B2 (ja) インダクタンス素子
JP2011210638A (ja) 電磁石用線材
JP2007324380A (ja) 高周波用コモンモードチョークコイル
JP2014199902A (ja) 線路、スパイラルインダクタ、ミアンダインダクタ、ソレノイドコイル
JP2016225216A (ja) ノイズ抑制ケーブル
US20140203899A1 (en) Electromagnet, motor and solenoid
JP2011114085A (ja) 磁性線材及びインダクタ
WO2013051102A1 (ja) インダクタ用線材およびインダクタ
JPWO2013051102A1 (ja) インダクタ用線材およびインダクタ
US20100188184A1 (en) Inductor and core member thereof
TW200921898A (en) Inductor structure
JP2010050241A (ja) 電気機器用コイルおよびコイル用電線
TW201814742A (zh) 線圈部件
JP6439594B2 (ja) ノイズ抑制ケーブル
JP6856059B2 (ja) インダクタ
CN109215942B (zh) 电感元件及lc滤波器
JP2008258403A (ja) インダクタンス部品
JP2007134631A (ja) 電源用のインダクタ
JP7296081B2 (ja) インダクタ

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131125