WO2014148423A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2014148423A1
WO2014148423A1 PCT/JP2014/057111 JP2014057111W WO2014148423A1 WO 2014148423 A1 WO2014148423 A1 WO 2014148423A1 JP 2014057111 W JP2014057111 W JP 2014057111W WO 2014148423 A1 WO2014148423 A1 WO 2014148423A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
spacer
mask layer
semiconductor device
layout pattern
Prior art date
Application number
PCT/JP2014/057111
Other languages
English (en)
French (fr)
Inventor
宏 吉野
那奈 旗谷
前川 厚志
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014148423A1 publication Critical patent/WO2014148423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a fine hole pattern in an array in a layer to be processed.
  • the present invention also relates to a semiconductor device having such a hole pattern.
  • a double patterning technique capable of forming a pattern less than the resolution limit of an exposure machine has been put into practical use.
  • the double patterning technique as disclosed in Patent Document 1, by combining a resist pattern reduction technique and a LELE (Litho-Etch-Litho-Etch) process, half of the lower resolution limit of an exposure machine is obtained.
  • a technique for forming contact holes in a row at a pitch is known.
  • Patent Document 1 it is difficult to form a fine hole pattern in an array.
  • a processing layer is formed on a substrate, and the first mask layer and the first embedded layer are sandwiched between the processing layer and the processing layer in plan view.
  • a first spacer having a first layout pattern is formed, covers the first spacer, and has a second layout pattern so as to be sandwiched between the second mask layer and the second buried layer in plan view.
  • Forming a second spacer selectively removing the second spacer so as to expose at least a portion of the first spacer, and selectively removing an exposed portion of the first spacer;
  • the layer to be processed is selectively removed through a portion where the first spacer is removed.
  • a method for manufacturing a semiconductor device wherein a layer to be processed is formed on a substrate, a hard mask layer is formed on the layer to be processed, and a first mask layer is formed on the hard mask layer. Then, the first mask layer is selectively removed using the first layout pattern until the hard mask is exposed, and the first mask layer covers at least a side surface of the first mask layer and an exposed surface of the hard mask.
  • a first buried layer that covers the first spacer, a second mask layer is formed on the first buried layer, and a second crossing with the first layout pattern is formed.
  • the second mask layer is selectively removed using the layout pattern until the first buried layer is exposed, and at least the side surface of the second mask layer and the exposed surface of the first buried layer are covered.
  • Second spacer Forming a second buried layer covering the second spacer, removing the second buried layer until the second mask layer and the second spacer are exposed, and at least the first
  • the second spacer on the side surface of the second mask layer is selectively removed until the spacer is exposed to form a first opening, and the hard mask is exposed through the first opening.
  • the first spacer on the side surface of the first mask layer is selectively removed to form a second opening, and the hard mask is selectively selected until the work layer is exposed through the second opening. Is removed to form a third opening, and the layer to be processed is selectively removed through the third opening.
  • the semiconductor device comprises five electrodes each having a cup shape and arranged in a substantially straight line in a first, second, third, fourth and fifth order in a predetermined direction, Between the first electrode and the second electrode is arranged at a first pitch, and between the third electrode and the fourth electrode is arranged at the first pitch, the second electrode. And the third electrode are arranged at a second pitch narrower than the first pitch, and the fourth electrode and the fifth electrode are arranged at the second pitch. It is characterized by.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 1st Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • (A) is sectional drawing which shows 1 process of the semiconductor device by 2nd Embodiment, (b) is the top view.
  • FIG. 21 is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 6 is a plan view showing a state where there is no deviation in the X direction between the first layout pattern 120 and the second layout pattern 140.
  • FIG. 6 is a plan view showing a state in which the first layout pattern 120 is shifted in the minus direction (left direction) by d1 in the X direction with respect to the second layout pattern 140.
  • FIG. 6 is a plan view showing a state in which the first layout pattern 120 is shifted in the plus direction (right direction) by d2 in the X direction with respect to the second layout pattern 140. It is a top view for demonstrating the shape of the 1st and 2nd layout pattern 120,140 overlapped by 4th Embodiment. It is a top view which shows 1 process of the semiconductor device by 4th Embodiment. It is a top view which shows 1 process of the semiconductor device by 4th Embodiment. It is a top view which shows 1 process of the semiconductor device by 4th Embodiment. It is a top view which shows 1 process of the semiconductor device by 4th Embodiment. It is a top view which shows 1 process of the semiconductor device by 4th Embodiment. FIG.
  • the first layout pattern 120 is a plan view showing a state where there is no deviation in the X direction between the first layout pattern 120 and the second layout pattern 140 in the fourth embodiment.
  • the first layout pattern 120 is a plan view showing a state in which the first layout pattern 120 is shifted in the minus direction (left direction) by d1 in the X direction with respect to the second layout pattern 140.
  • the first layout pattern 120 is a plan view showing a state where the first layout pattern 120 is shifted in the plus direction (right direction) by d2 in the X direction with respect to the second layout pattern 140.
  • FIGS. 1 to 11 (a) is a cross-sectional view, (b) is a plan view, and a cross-section along the line xx ′ shown in (b) is shown in (a).
  • a layer to be processed 100 on a semiconductor substrate (not shown), a layer to be processed 100, a hard mask layer 110, a first mask layer 125, a first organic film (a carbon-containing BARC film). ) 126, a first silicon-containing organic film 127, and a photoresist 128 are laminated in this order.
  • the layer to be processed 100 is made of an insulating layer mainly composed of silicon oxide
  • the hard mask layer 110 is made of amorphous silicon
  • the first mask layer 125 is made of a plasma silicon oxide film.
  • the first layout pattern 120 is formed on the photoresist 128 by photolithography.
  • the first layout pattern 120 is a plurality of line patterns extending linearly in the W direction.
  • the W direction is a direction having an inclination of 30 ° with respect to the X direction (60 ° with respect to the Y direction).
  • the first silicon-containing organic film 127 is exposed in a portion corresponding to the first layout pattern 120.
  • the L / S (line and space) pitch of the first layout pattern 120 is a value equal to or higher than the resolution limit of the ultraviolet exposure machine, for example, about 120 nm.
  • the first silicon-containing organic film 127 is etched using the patterned photoresist 128 as a mask, and further, the first organic film 126 is etched using the patterned first silicon-containing organic film 127 as a mask. To do. In the etching of the first organic film 126, the remaining photoresist 128 disappears.
  • the first mask layer 125 is etched using the patterned first organic film 126 as a mask. As a result, the pattern formed on the photoresist 128 is transferred to the first mask layer 125 as shown in FIG. In the etching of the first mask layer 125, the remaining first silicon-containing organic film 127 disappears.
  • the patterned first mask layer 125 remains on the hard mask layer 110 as shown in FIG. A state is obtained.
  • the hard mask layer 110 is exposed in a line shape.
  • a first spacer film 130 and a first buried layer 135 are formed on the entire surface in this order.
  • the first spacer film 130 and the first buried layer 135 are preferably films having excellent step coverage.
  • the first spacer film 130 is preferably a silicon nitride film using an LPCVD method.
  • the first buried layer 135 is preferably a silicon oxide film.
  • the thickness of the first spacer film 130 needs to be less than half of the interval between the first layout patterns 120. This is because the first spacer films 130 covering the side walls of the first mask layer 125 are not brought into contact with each other. Specifically, the thickness of the first spacer film 130 is preferably about 20 nm. Thereby, as shown in FIG. 3B, the side wall of the first mask layer 125 is covered with the first spacer film 130. The portion of the first spacer film 130 that covers the side wall of the first mask layer 125 is sandwiched between the first mask layer 125 and the first buried layer 135 in a plan view, as shown in FIG. It becomes the state.
  • a second mask layer (BARC film) 145, a second silicon-containing organic film 147, and a photoresist 148 are stacked in this order on the entire surface.
  • the second mask layer 145 the same material as that of the first organic film 126 can be used.
  • the second mask layer 145 may be made of amorphous carbon, and a SiN / SiON laminated film may be used instead of the second silicon-containing organic film 147.
  • a second layout pattern 140 is formed on the photoresist 148 by photolithography.
  • the second layout pattern 140 is a plurality of linear patterns extending linearly in the Y direction.
  • the first layout pattern 120 and the second layout pattern 140 intersect with each other at an angle of 60 °.
  • the L / S (line and space) pitch of the second layout pattern 140 is also a value not less than the resolution limit of the ultraviolet exposure machine, for example, about 120 nm.
  • the second silicon-containing organic film 147 is etched using the patterned photoresist 148 as a mask, and further, the second mask layer 145 is etched using the patterned second silicon-containing organic film 147 as a mask.
  • the photoresist 148 disappears
  • the second silicon-containing organic film 147 disappears, as shown in FIG. A state in which the patterned second mask layer 145 remains on the first buried layer 135 is obtained.
  • the first embedded layer 135 is exposed in a line shape.
  • a second spacer film 150 and a second buried layer 155 are formed on the entire surface in this order.
  • the second spacer film 150 is preferably a low-temperature silicon oxide film
  • the second embedded layer 155 is preferably an organic film.
  • the surface of the second spacer film 150 facing each other can be embedded and the surface thereof can be flattened by being formed by a coating method.
  • the thickness of the second spacer film 150 needs to be less than half of the interval of the second layout pattern 140. This is because the second spacer films 150 covering the side walls of the second mask layer 145 are not brought into contact with each other. Specifically, the thickness of the second spacer film 150 is preferably about 20 nm. Thereby, as shown in FIG. 6B, the side wall of the second mask layer 145 is covered with the second spacer film 150. The portion of the second spacer film 150 that covers the side wall of the second mask layer 145 is sandwiched between the second mask layer 145 and the second buried layer 155 in plan view, as shown in FIG. It becomes a state.
  • the second buried layer 155 and the second spacer film 150 are etched back until the second mask layer 145 is exposed.
  • the second spacer film 150 is made of a low-temperature silicon oxide film and the second buried layer 155 is made of an organic film
  • plasma etching using a CF 4 / O 2 / Ar mixed gas as an etching gas is performed.
  • the etching rates of the second buried layer 155 and the second spacer film 150 can be made substantially the same.
  • FIG. 7B the second embedded layer 155 is exposed in a line shape along the second layout pattern 140, and the periphery thereof is surrounded by the second spacer film 150. Become.
  • the first opening 160 is formed by selectively etching the exposed second spacer film 150.
  • the second spacer film 150 is made of a low-temperature silicon oxide film and the second mask layer 145 and the second buried layer 155 are made of an organic film, plasma using a CF 4 / Ar mixed gas as an etching gas. If etching is performed, only the second spacer film 150 can be selectively removed.
  • the etching needs to be performed until the first spacer film 130 is exposed, but the etching needs to be stopped before the first spacer film 130 directly formed on the hard mask layer 110 is exposed.
  • a portion of the first spacer film 130 that covers the upper surface or the side surface of the first mask layer 125 that is overlapped with the second spacer film 150 is exposed.
  • a portion of the first spacer film 130 that covers the upper surface of the first mask layer 125 is not exposed and is kept covered with the first buried layer 135.
  • the first spacer film 130 is used with the first buried layer 135 as a mask. Are selectively removed to form a second opening 165.
  • the first spacer film 130 is made of a silicon nitride film and the first buried layer 135 is made of a silicon oxide film
  • plasma etching using a CH 2 F 2 / O 2 mixed gas as an etching gas is performed. Since a selection ratio of about 5 times can be secured, only the first spacer film 130 can be selectively removed.
  • FIG. 9B only the portion of the hard mask layer 110 covered with both the first spacer film 130 and the second spacer film 150, that is, the portion where both intersect, It will be exposed through the second opening 165.
  • the exposed hard mask layer 110 is etched.
  • the exposed portion of the hard mask layer 110 is a third opening 170 where the first opening 160 and the second opening 165 intersect, and the hard mask layer 110 located in the third opening 170 is etched. Is done.
  • the hard mask layer 110 is patterned, and the layer to be processed 100 located in the third opening 170 is exposed as shown in FIG.
  • the exposed portion of the work layer 100 is in the form of an array.
  • the layer to be processed 100 is etched using the patterned hard mask layer 110 as a mask.
  • the hard mask layer 110 is made of amorphous silicon and the layer to be processed 100 is made of silicon oxide, plasma etching using a C 4 F 8 / CHF 3 / O 2 / Ar mixed gas as an etching gas is performed.
  • Each layer remaining on the hard mask layer 110 is also etched.
  • hole patterns H are formed in an array in the layer to be processed 100, and the pitch can be reduced to half the resolution limit at a minimum.
  • the hole patterns H can be formed in the processed layer 100 in an array at a pitch less than the resolution limit.
  • 12 to 18 are process diagrams for explaining a method of manufacturing a semiconductor device according to the second embodiment of the present invention.
  • 12 to 18 (a) is a cross-sectional view, (b) is a plan view, and a cross-section along line xx ′ shown in (b) is shown in (a).
  • 12 to 18, the same elements as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the first buried layer 135 and the first spacer film 130 are removed until the first mask layer 125 is exposed as shown in FIG. To do.
  • Such a process can be performed by etch back by plasma etching.
  • the first spacer film 130 is exposed in a line shape (precisely, a ring shape) along the first layout pattern 120.
  • the subsequent steps are basically the same as those in the first embodiment. That is, as shown in FIGS. 13A and 13B, a second mask layer (BARC film) 145, a second silicon-containing organic film 147, and a photoresist 148 are stacked in this order on the entire surface, and the photoresist 148 is formed. Then, the second layout pattern 140 is formed. Next, the second silicon-containing organic film 147 and the second mask layer 145 are etched using the patterned photoresist 148 as a mask. By the time the second mask layer 145 is etched away, the photoresist 148 and the second silicon-containing organic film 147 disappear, and as shown in FIGS. 14A and 14B, the first buried layer 135 is removed. A state in which the second mask layer 145 patterned thereon remains is obtained.
  • a second spacer film 150 and a second buried layer 155 are formed on the entire surface in this order, and then shown in FIGS. 16A and 16B.
  • the second buried layer 155 and the second spacer film 150 are etched back until the second mask layer 145 is exposed.
  • the first opening 160 is formed by selectively etching the exposed second spacer film 150, and further exposed by this.
  • the second opening 165 is formed by selectively removing the first spacer film 130.
  • the hard mask layer 110 is patterned through the second opening 165, and the layer to be processed 100 is etched using the patterned hard mask layer 110 as a mask, as shown in FIGS. 18 (a) and 18 (b).
  • the hole pattern H can be formed in an array in the layer 100 to be processed located in the third opening 170 that is the intersection.
  • the hole patterns H can be formed in the processed layer 100 in an array at a pitch less than the resolution limit, as in the first embodiment.
  • the second mask layer Each mask material such as 145 can be thinned.
  • FIG. 19A and 19B are process diagrams for explaining a semiconductor device manufacturing method according to the third embodiment of the present invention, in which FIG. 19A is a sectional view and FIG. 19B is a plan view.
  • a support layer 84 which is a second processed layer, is added between the processed layer 100 and the hard mask layer 110.
  • the support layer 84 and the layer to be processed 100 are both patterned using the hard mask layer 110 as a mask, and an arrayed hole pattern H is formed.
  • Such a layer configuration is suitable for manufacturing a cell capacitor of DRAM (Dynamic Random Access Memory).
  • FIG. 20 is a plan view of a DRAM memory cell array
  • FIG. 21 is a cross-sectional view taken along the line AA ′ of FIG.
  • an active region 11 partitioned by an element isolation region 20 is provided in the semiconductor substrate 10, and two word lines 30 are embedded in one active region 11. These word lines 30 function as gate electrodes of DRAM cell transistors. A side surface and a bottom portion of the word line 30 are covered with a gate insulating film 31, and an upper portion of the word line 30 is covered with a cap insulating film 32.
  • One of the source / drain regions of the cell transistor is connected to the bit line 50 via the bit contact plug 55, and the other is connected to the capacitor contact plug 70 as a base.
  • the upper portion of the bit line 50 is covered with an insulating film 51.
  • the capacitor contact plug 70 is connected to the lower electrode 81 of the cell capacitor 80.
  • the capacitor contact plug 70 is formed by burying a conductive film in a contact hole opened in the interlayer insulating layers 40 and 60.
  • Reference numeral H shown in FIG. 20 denotes an array-shaped hole pattern, which is used as an inner wall when the lower electrode 81 is formed in the manufacturing process.
  • the cell capacitor 80 has a structure in which a capacitive insulating film 82 is provided between a lower electrode 81 and an upper electrode (counter electrode) 83.
  • the lower electrode 81 has a cylinder with a closed bottom, that is, a cup shape, and the adjacent lower electrodes 81 are partially coupled to each other by a support layer 84. This prevents the lower electrode 81 having a high aspect ratio from collapsing. Further, an insulating film 78 for preventing contact is provided below the adjacent lower electrode 81.
  • the upper part of the cell capacitor 80 is covered with an interlayer insulating film 90 and a protective insulating film 93.
  • the lower electrode 81 is formed by forming a large number of hole patterns H in an array as shown in FIGS. 19A and 19B, and then forming a conductive film so as to cover the inner wall thereof. be able to. Then, after forming the lower electrode 81, the layer 100 to be processed is removed, and the capacitor insulating film 82 and the upper electrode 83 are formed. Thus, the DRAM cell capacitor 80 is completed.
  • the manufacturing method according to the present invention is suitable for the case where a large number of DRAM cell capacitors 80 are formed in an array.
  • the arrangement pitch of the lower electrodes 81 can be controlled by the second layout pattern 140. More specifically, the arrangement pitch of the lower electrodes 81 can be controlled by the line width and space width of the second mask layer 145. That is, when attention is paid to the cell capacitors 80A to 80E shown in FIG. 20, the pitch between two adjacent cell capacitors is determined by one of the line width and the space width of the second mask layer 145.
  • the cell capacitors 80A to 80E are cell capacitors arranged in this order on a straight line in the W direction.
  • the pitch of the cell capacitors 80A and 80B and the pitch of the cell capacitors 80C and 80D are determined by the line width of the second mask layer 145
  • the pitch of the cell capacitors 80B and 80C and the pitch of the cell capacitors 80D and 80E are It depends on the space width of the second mask layer 145.
  • the pitch of the cell capacitors 80A and 80B and the pitch of the cell capacitors 80C and 80D are determined by the space width of the second mask layer 145
  • the pitch of the cell capacitors 80B and 80C and the pitch of the cell capacitors 80D and 80E are , Depending on the line width of the second mask layer 145.
  • the line width of the second mask layer 145 is WL
  • the space width is WS
  • the pitch of the cell capacitors 80A and 80B and the pitch of the cell capacitors 80C and 80D are P1
  • the pitch of the cell capacitors 80B and 80C and the cell capacitor 80D P2
  • FIG. 22 to 24 are plan views showing a state in which the first layout pattern 120 and the second layout pattern 140 are overlaid.
  • FIG. 22 shows a state in which there is no deviation in the X direction
  • FIG. FIG. 23 shows a state shifted by d1
  • FIG. 23 shows a state shifted by d2 in the X direction.
  • the first layout pattern 120 is shifted in the minus direction (left direction) with respect to the second layout pattern 140
  • the hole pattern H as designed can be correctly formed. As already described, the hole pattern H is formed at a portion where the first spacer film 130 and the second spacer film 150 intersect.
  • W1 is the thickness of the first spacer film 130
  • W2 is the width of the second mask layer 145 in the X direction.
  • the value of W2-W1 is very small, and therefore the tolerance for alignment deviation in the X direction is very small.
  • FIG. 25 is a plan view for explaining the shapes of the first and second layout patterns 120 and 140 overlapped according to the fourth embodiment of the present invention.
  • the end portion of the first layout pattern 120 extending in the W direction is bent in the Y direction, and the second layout pattern 140 extending in the Y direction. Is reduced in the X direction. Since the first layout pattern 120 is a pattern extending in the W direction, that is, an oblique direction, the width seen in the X direction is somewhat wide. For this reason, if the end portion of the first layout pattern 120 is bent in the Y direction, an enlarged pattern 120E having a sufficiently wide width in the X direction can be obtained. In this embodiment, alignment is performed so that the enlarged pattern 120E includes the reduced pattern 140S of the second layout pattern 140 in plan view. As shown in FIG. 25, the enlarged pattern 120E includes every other reduced pattern 140S, and the remaining reduced patterns 140S are arranged between adjacent enlarged patterns 120E. This increases the alignment margin in the X direction.
  • a first layout pattern 120 having an enlarged pattern 120E whose end is bent in the Y direction is formed.
  • a first spacer film 130 is formed on the sidewall of the first mask layer 125.
  • the second mask layer 145 is patterned as shown in FIG. 28 to reduce the width in the X direction at the end portion.
  • a second layout pattern 140 is formed. If the second spacer film 150 is formed on the side wall of the second mask layer 145, the structure shown in FIG. 29 is obtained.
  • FIG. 30 to 32 are plan views showing a state in which the first layout pattern 120 and the second layout pattern 140 are superimposed, FIG. 30 is a state in which there is no deviation in the X direction, and FIG. 31 is a direction in the X direction.
  • FIG. 32 shows a state shifted by d1
  • FIG. 32 shows a state shifted by d2 in the X direction.
  • the first layout pattern 120 is shifted in the minus direction (left direction) with respect to the second layout pattern 140
  • the hole pattern H is formed correctly.
  • the hole pattern H is formed at a portion where the first spacer film 130 and the second spacer film 150 intersect.
  • the error pattern E1 that is not intended in this embodiment is Not formed.
  • the two hole patterns H The error pattern E2 that is connected is not formed. In either case of FIG. 31 and FIG. 32, the hole pattern H as designed can be formed correctly.
  • the alignment margin can be greatly expanded.
  • the first layout pattern 120 and the second layout pattern 140 are formed in this order, and the corresponding mask layers 125 and 145 are negative patterns.
  • the present invention is not limited to this. It is not something. That is, the formation order of the first layout pattern 120 and the second layout pattern 140 may be reversed, or one or both of the mask layers 125 and 145 may be a positive pattern.
  • a first layout pattern 120 having a reduced pattern 120S extending in the Y direction and having a reduced width in the X direction at the end. are formed in a positive pattern.
  • FIG. 34 when the first spacer film 130 is formed on the sidewall of the first mask layer 125, the first layout pattern 120 is completed.
  • the first layout pattern 120 in the present embodiment has the same shape as the second layout pattern 140 in the fourth embodiment.
  • a second layout pattern 140 having an enlarged pattern 140E extending in the W direction and having an end bent in the Y direction is positively formed. Form with a pattern. Then, if the second spacer film 150 is formed on the sidewall of the second mask layer 145, the structure shown in FIG. 36 is obtained.
  • the second layout pattern 140 in the present embodiment has the same shape as the first layout pattern 120 in the fourth embodiment.
  • the layout pattern 120 extending in the Y direction and the layout pattern 140 extending in the W direction are formed in this order, and the mask layers 125 and 145 are both positive patterns.
  • the same structure as that obtained by the processes shown in FIGS. 26 to 29 can be obtained. As to which one is adopted, it is only necessary to select one that can easily resolve the photoresist in the photolithography process.
  • the material of each layer illustrated in the above embodiments is an example in the present invention, and the present invention is not limited to this.
  • the material of each illustrated layer does not mean that it is a pure material, but means that it is a material containing the material as a main component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

被加工層(100)上に,平面視で第1のマスク層(125)および第1の埋設層(135)に挟まれるように第1のスペーサー(130)を形成し,第1のスペーサー(130)を覆い,平面視で第2のマスク層(145)および第2の埋設層(155)に挟まれるように第2のスペーサー(150)を形成する。その後,第1のスペーサー(130)の少なくとも一部を露出するように,第2のスペーサー(150)を選択的に除去し,さらに,第1のスペーサー(130)の露出部分を選択的に除去し,第1のスペーサー(130)を除去した部分を通して被加工層(100)を選択的に除去する。これにより,被加工層(100)上に解像限界未満の微細なホールパターン(H)をアレイ状に形成することができる。

Description

半導体装置及びその製造方法
 本発明は半導体装置の製造方法に関し、特に、被加工層に微細なホールパターンをアレイ状に形成する方法に関する。また、本発明は、このようなホールパターンを有する半導体装置に関する。
 半導体装置の製造プロセスにおいては、露光機の解像限界未満のパターンを形成することが可能なダブルパターニング技術の実用化が進められている。ダブルパターニング技術の一例としては、特許文献1に開示されているように、レジストパターンの縮小技術とLELE(Litho-Etch-Litho-Etch)プロセスを組み合わせることによって、露光機の解像下限の半分のピッチでコンタクトホールを列状に形成する技術が知られている。
特開2005-129761号公報
 しかしながら、特許文献1に記載された技術では、微細なホールパターンをアレイ状に形成することは困難である。
 本発明の一側面による半導体装置の製造方法は、基板上に被加工層を形成し、前記被加工層上に、平面視で第1のマスク層および第1の埋設層に挟まれるように、第1のレイアウトパターンを有する第1のスペーサーを形成し、前記第1のスペーサーを覆い、平面視で第2のマスク層および第2の埋設層に挟まれるように、第2のレイアウトパターンを有する第2のスペーサーを形成し、前記第1のスペーサーの少なくとも一部を露出するように、前記第2のスペーサーを選択的に除去し、前記第1のスペーサーの露出部分を選択的に除去し、前記第1のスペーサーを除去した部分を通して前記被加工層を選択的に除去することを特徴とする。
 本発明の他の側面による半導体装置の製造方法は、基板上に被加工層を形成し、前記被加工層上にハードマスク層を形成し、前記ハードマスク層上に第1のマスク層を形成し、第1のレイアウトパターンを用いて前記ハードマスクが露出するまで前記第1のマスク層を選択的に除去し、少なくとも前記第1のマスク層の側面および前記ハードマスクの露出面を覆う第1のスペーサーを形成し、前記第1のスペーサーを覆う第1の埋設層を形成し、前記第1の埋設層上に第2のマスク層を形成し、前記第1のレイアウトパターンと交差する第2のレイアウトパターンを用いて前記第1の埋設層が露出するまで前記第2のマスク層を選択的に除去し、少なくとも前記第2のマスク層の側面および前記第1の埋設層の露出面を覆う第2のスペーサーを形成し、前記第2のスペーサーを覆う第2の埋設層を形成し、前記第2のマスク層および前記第2のスペーサーが露出するまで前記第2の埋設層を除去し、少なくとも前記第1のスペーサーが露出するまで選択的に前記第2のマスク層の側面の前記第2のスペーサーを除去して第1の開口部を形成し、前記第1の開口部を通して前記ハードマスクが露出するまで選択的に前記第1のマスク層の側面の第1のスペーサーを除去して第2の開口部を形成し、前記第2の開口部を通して前記被加工層が露出するまで選択的に前記ハードマスクを除去して第3の開口部を形成し、前記第3の開口部を通して前記被加工層を選択的に除去することを特徴とする。
 本発明による半導体装置は、各々がカップ形状を有し、所定の方向に第1、第2、第3、第4および第5の順序で概略一直線上に配列された5つの電極を備え、前記第1の電極と前記第2の電極との間が第1のピッチで配列され、前記第3の電極と前記第4の電極との間が前記第1のピッチで配列され前記第2の電極と前記第3の電極との間が前記第1のピッチより狭い第2のピッチで配列され、前記第4の電極と前記第5の電極との間が前記第2にピッチで配列されることを特徴とする。
 本発明によれば、微細なホールパターンをアレイ状に形成することが可能となる。
(a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第1の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第2の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 (a)は第3の実施形態による半導体装置の一工程を示す断面図であり、(b)はその平面図である。 第3の実施形態によるDRAMのメモリセルアレイの平面図である。 図20のA-A'線に沿った断面図である。 第1のレイアウトパターン120と第2のレイアウトパターン140にX方向のズレがない状態を示す平面図である。 第1のレイアウトパターン120が第2のレイアウトパターン140に対してX方向にd1だけマイナス方向(左方向)にずれている状態を示す平面図である。 第1のレイアウトパターン120が第2のレイアウトパターン140に対してX方向にd2だけプラス方向(右方向)にずれている状態を示す平面図である。 第4の実施形態によって重ね合わされた第1及び第2のレイアウトパターン120,140の形状を説明するための平面図である。 第4の実施形態による半導体装置の一工程を示す平面図である。 第4の実施形態による半導体装置の一工程を示す平面図である。 第4の実施形態による半導体装置の一工程を示す平面図である。 第4の実施形態による半導体装置の一工程を示す平面図である。 第4の実施形態において、第1のレイアウトパターン120と第2のレイアウトパターン140にX方向のズレがない状態を示す平面図である。 第4の実施形態において、第1のレイアウトパターン120が第2のレイアウトパターン140に対してX方向にd1だけマイナス方向(左方向)にずれている状態を示す平面図である。 第4の実施形態において、第1のレイアウトパターン120が第2のレイアウトパターン140に対してX方向にd2だけプラス方向(右方向)にずれている状態を示す平面図である。 第5の実施形態による半導体装置の一工程を示す平面図である。 第5の実施形態による半導体装置の一工程を示す平面図である。 第5の実施形態による半導体装置の一工程を示す平面図である。 第5の実施形態による半導体装置の一工程を示す平面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
 まず、図1~図11を参照して本発明の第1の実施形態について説明する。図1~図11において、(a)は断面図、(b)は平面図であり、(b)に示すx-x'線に沿った断面が(a)に示されている。
 まず、図1(a)に示すように、半導体基板(図示せず)上に、被加工層100、ハードマスク層110、第1のマスク層125、第1の有機膜(炭素を含むBARC膜)126、第1のシリコン含有有機膜127、フォトレジスト128をこの順に積層する。特に限定されるものではないが、被加工層100は酸化シリコンを主成分とする絶縁層からなり、ハードマスク層110はアモルファスシリコンからなり、第1のマスク層125はプラズマシリコン酸化膜からなる。
 次に、フォトリソグラフィー法により、フォトレジスト128に第1のレイアウトパターン120を形成する。図1(b)に示すように、第1のレイアウトパターン120は、W方向に直線的に延在する複数のライン状パターンである。特に限定されるものではないが、W方向とはX方向に対して30°(Y方向に対して60°)の傾きを持った方向である。これにより、第1のレイアウトパターン120に相当する部分において、第1のシリコン含有有機膜127が露出した状態となる。第1のレイアウトパターン120のL/S(ラインアンドスペース)のピッチは、紫外線露光機の解像限界以上の値、例えば120nm程度である。
 次に、パターニングされたフォトレジスト128をマスクとして、第1のシリコン含有有機膜127をエッチングし、さらに、パターニングされた第1のシリコン含有有機膜127をマスクとして、第1の有機膜126をエッチングする。第1の有機膜126のエッチングにおいては、残存するフォトレジスト128が消失する。次に、パターニングされた第1の有機膜126をマスクとして、第1のマスク層125をエッチングする。これにより、図2(a)に示すように、フォトレジスト128に形成したパターンが第1のマスク層125に転写されることになる。第1のマスク層125のエッチングにおいては、残存する第1のシリコン含有有機膜127が消失する。その後、例えば酸素プラスマを用いて、残存する第1の有機膜126を除去すれば、図2(a)に示すように、パターニングされた第1のマスク層125がハードマスク層110上に残存した状態が得られる。図2(b)に示すように、第1のレイアウトパターン120に相当する部分においては、ハードマスク層110がライン状に露出した状態となる。
 次に、図3(a)に示すように、第1のスペーサー膜130及び第1の埋設層135をこの順に全面に形成する。第1のスペーサー膜130及び第1の埋設層135は段差被覆性に優れた膜を用いることが好ましく、例えば第1のスペーサー膜130についてはLPCVD法を用いたシリコン窒化膜であることが好ましく、第1の埋設層135についてはシリコン酸化膜であることが好ましい。
 ここで、第1のスペーサー膜130の膜厚は、第1のレイアウトパターン120の間隔の半分未満である必要がある。これは、第1のマスク層125の側壁を覆う第1のスペーサー膜130同士を接触させないためである。具体的には、第1のスペーサー膜130の膜厚を20nm程度とすることが好ましい。これにより、図3(b)に示すように、第1のマスク層125の側壁が第1のスペーサー膜130で覆われた状態となる。第1のスペーサー膜130のうち第1のマスク層125の側壁を覆う部分は、図3(a)に示すように、平面視で第1のマスク層125と第1の埋設層135に挟まれた状態となる。
 次に、図4(a)に示すように、全面に第2のマスク層(BARC膜)145、第2のシリコン含有有機膜147、フォトレジスト148をこの順に積層する。第2のマスク層145としては、第1の有機膜126と同じ材料を用いることができる。或いは、第2のマスク層145をアモルファスカーボンとし、第2のシリコン含有有機膜147の代わりにSiN/SiON積層膜を用いても構わない。
 次に、フォトリソグラフィー法により、フォトレジスト148に第2のレイアウトパターン140を形成する。図4(b)に示すように、第2のレイアウトパターン140は、Y方向に直線的に延在する複数のライン状パターンである。これにより、第1のレイアウトパターン120と第2のレイアウトパターン140は、60°の角度を持って交差することになる。第2のレイアウトパターン140のL/S(ラインアンドスペース)のピッチについても、紫外線露光機の解像限界以上の値、例えば120nm程度である。
 次に、パターニングされたフォトレジスト148をマスクとして、第2のシリコン含有有機膜147をエッチングし、さらに、パターニングされた第2のシリコン含有有機膜147をマスクとして、第2のマスク層145をエッチングする。第2のシリコン含有有機膜147のエッチングにおいてはフォトレジスト148が消失し、第2のマスク層145のエッチングにおいては第2シリコン含有有機膜147が消失し、図5(a)に示すように、パターニングされた第2のマスク層145が第1の埋設層135上に残存した状態が得られる。図5(b)に示すように、第2のレイアウトパターン140に相当する部分においては、第1の埋設層135がライン状に露出した状態となる。
 次に、図6(a)に示すように、第2のスペーサー膜150及び第2の埋設層155をこの順に全面に形成する。第2のスペーサー膜150については低温シリコン酸化膜であることが好ましく、第2の埋設層155については有機膜であることが好ましい。第2の埋設層155として有機膜を用いた場合、塗布法で形成することにより、互いに対向する第2のスペーサ膜150同士の間を埋設すると共にその表面を平坦化することができる。
 ここで、第2のスペーサー膜150の膜厚は、第2のレイアウトパターン140の間隔の半分未満である必要がある。これは、第2のマスク層145の側壁を覆う第2のスペーサー膜150同士を接触させないためである。具体的には、第2のスペーサー膜150の膜厚を20nm程度とすることが好ましい。これにより、図6(b)に示すように、第2のマスク層145の側壁が第2のスペーサー膜150で覆われた状態となる。第2のスペーサー膜150のうち第2のマスク層145の側壁を覆う部分は、図6(a)に示すように、平面視で第2のマスク層145と第2の埋設層155に挟まれた状態となる。
 次に、図7(a)に示すように、第2のマスク層145が露出するまで第2の埋設層155及び第2のスペーサー膜150をエッチバックする。ここで、第2のスペーサー膜150が低温シリコン酸化膜からなり、第2の埋設層155が有機膜からなる場合、エッチングガスとしてCF/O/Ar混合ガスを用いたプラズマエッチングを行えば、第2の埋設層155と第2のスペーサー膜150のエッチングレートをほぼ同じとすることができる。これにより、図7(b)に示すように、第2の埋設層155が第2のレイアウトパターン140にそってライン状に露出し、その周囲が第2のスペーサー膜150によって囲まれた状態となる。
 次に、図8(a)に示すように、露出している第2のスペーサー膜150を選択的にエッチングすることによって、第1の開口部160を形成する。ここで、第2のスペーサー膜150が低温シリコン酸化膜からなり、第2のマスク層145及び第2の埋設層155が有機膜からなる場合、エッチングガスとしてCF/Ar混合ガスを用いたプラズマエッチングを行えば、第2のスペーサー膜150のみを選択的に除去することが可能となる。
 かかるエッチングは第1のスペーサー膜130が露出するまで行う必要があるが、ハードマスク層110上に直接形成された第1のスペーサー膜130が露出する前にエッチングを停止させる必要がある。これにより、図8(b)に示すように、第1のマスク層125の上面又は側面を覆う第1のスペーサー膜130のうち、第2のスペーサー膜150と重なっていた部分が露出することになる。第1のスペーサー膜130のうち、第1のマスク層125の上面を覆う部分は露出されず、第1の埋設層135で覆われた状態に保たれる。
 ここまでの工程により、第2のレイアウトパターン140のラインパターンのピッチ(=120nm)の半分のピッチ(=60nm)で第1の開口部160が形成されることになる。したがって、第1の開口部160のライン幅及びスペース幅を30nmとすることができる。
 次に、図9(a)に示すように、プラズマアッシングによって第2のマスク層145及び第2の埋設層155を全て除去した後、第1の埋設層135をマスクとして第1のスペーサー膜130を選択的に除去し、第2の開口部165を形成する。ここで、第1のスペーサー膜130がシリコン窒化膜からなり、第1の埋設層135がシリコン酸化膜からなる場合、エッチングガスとしてCH/O混合ガスを用いたプラズマエッチングを行えば、5倍程度の選択比を確保することができるため、第1のスペーサー膜130のみを選択的に除去することが可能となる。これにより、図9(b)に示すように、ハードマスク層110のうち、第1のスペーサー膜130と第2のスペーサー膜150の両方に覆われた部分、つまり両者が交差する部分だけが、第2の開口部165を介して露出することになる。
 次に、図10(a)に示すように、露出しているハードマスク層110をエッチングする。ハードマスク層110の露出部分は、第1の開口部160と第2の開口部165が交差する第3の開口部170であり、かかる第3の開口部170に位置するハードマスク層110がエッチングされる。これによりハードマスク層110がパターニングされ、図10(b)に示すように、第3の開口部170に位置する被加工層100が露出することになる。被加工層100の露出部分はアレイ状である。
 そして、図11(a)に示すように、パターニングされたハードマスク層110をマスクとして、被加工層100をエッチングする。ここで、ハードマスク層110がアモルファスシリコンからなり、被加工層100が酸化シリコンからなる場合、エッチングガスとしてC/CHF/O/Ar混合ガスを用いたプラズマエッチングを行えば、ハードマスク層110上に残存する各層もエッチングされる。これにより、図11(b)に示すように、被加工層100にはホールパターンHがアレイ状に形成され、そのピッチを最小で解像限界の半分とすることが可能となる。
 このように、本実施形態による半導体装置の製造方法によれば、解像限界未満のピッチで被加工層100にホールパターンHをアレイ状に形成することが可能となる。
 次に、本発明の第2の実施形態について説明する。
 図12~図18は、本発明の第2の実施形態による半導体装置の製造方法を説明するための工程図である。図12~図18において、(a)は断面図、(b)は平面図であり、(b)に示すx-x'線に沿った断面が(a)に示されている。また、図12~図18において、第1の実施形態と同一の要素には同一の符号を付し、重複する説明は省略する。
 まず、図1~図3に示したプロセスを経た後、図12(a)に示すように、第1のマスク層125が露出するまで第1の埋設層135及び第1のスペーサー膜130を除去する。かかる工程は、プラズマエッチングによるエッチバックによって行うことができる。これにより、図12(b)に示すように、第1のスペーサー膜130は、第1のレイアウトパターン120に沿ってライン状(正確にはリング状)に露出することになる。
 その後の工程は基本的に第1の実施形態と同様である。つまり、図13(a),(b)に示すように、全面に第2のマスク層(BARC膜)145、第2のシリコン含有有機膜147、フォトレジスト148をこの順に積層し、フォトレジスト148に第2のレイアウトパターン140を形成する。次に、パターニングされたフォトレジスト148をマスクとして、第2のシリコン含有有機膜147及び第2のマスク層145をエッチングする。第2のマスク層145がエッチング除去されるまでにはフォトレジスト148及び第2のシリコン含有有機膜147が消失し、図14(a),(b)に示すように、第1の埋設層135上にパターニングされた第2のマスク層145が残存した状態が得られる。
 次に、図15(a),(b)に示すように、第2のスペーサー膜150及び第2の埋設層155をこの順に全面に形成した後、図16(a),(b)に示すように、第2のマスク層145が露出するまで第2の埋設層155及び第2のスペーサー膜150をエッチバックする。そして、図17(a),(b)に示すように、露出している第2のスペーサー膜150を選択的にエッチングすることによって第1の開口部160を形成し、さらに、これによって露出した第1のスペーサー膜130を選択的に除去することによって、第2の開口部165を形成する。
 そして、第2の開口部165を介してハードマスク層110をパターニングし、図18(a),(b)に示すように、パターニングされたハードマスク層110をマスクとして被加工層100をエッチングすれば、交差部である第3の開口部170に位置する被加工層100にホールパターンHをアレイ状に形成することができる。
 このように、本実施形態による半導体装置の製造方法によれば、第1の実施形態と同様、解像限界未満のピッチで被加工層100にホールパターンHをアレイ状に形成することが可能となる。しかも、本実施形態では、被加工層100が薄い場合や、ハードマスク層110および第1のマスク層125と被加工層100のエッチングレートの選択比を大きく取れる場合には、第2のマスク層145などの各マスク材を薄くすることができる。これにより、製造プロセス中におけるフォトレジストや各マスク材の倒壊を防止することが可能となる。
 次に、本発明の第3の実施形態について説明する。
 図19は、本発明の第3の実施形態による半導体装置の製造方法を説明するための工程図であり、(a)は断面図、(b)は平面図である。
 図19(a)に示すように、本実施形態では被加工層100とハードマスク層110との間に第2の被加工層であるサポート層84が追加されている。サポート層84及び被加工層100は、いずれもハードマスク層110をマスクとしてパターニングされ、アレイ状のホールパターンHが形成される。このような層構成は、DRAM(Dynamic Random Access Memory)のセルキャパシタを作製する場合に好適である。
 図20はDRAMのメモリセルアレイの平面図であり、図21は図20のA-A'線に沿った断面図である。
 図21に示すように、半導体基板10には素子分離領域20によって区画された活性領域11が設けられており、1つの活性領域11内には2本のワード線30が埋め込まれている。これらワード線30は、DRAMのセルトランジスタのゲート電極として機能する。ワード線30の側面及び底部はゲート絶縁膜31で覆われており、ワード線30の上部はキャップ絶縁膜32で覆われている。セルトランジスタのソース/ドレイン領域の一方はビットコンタクトプラグ55を介してビット線50に接続され、他方は下地となる容量コンタクトプラグ70に接続されている。ビット線50の上部は絶縁膜51で覆われている。容量コンタクトプラグ70は、セルキャパシタ80の下部電極81に接続される。容量コンタクトプラグ70は、層間絶縁層40,60に開口したコンタクトホールに導電膜を埋設することによって形成される。図20に示す符号Hはアレイ状のホールパターンであり、製造過程において下部電極81を形成する際の内壁として用いられる。
 セルキャパシタ80は、下部電極81と上部電極(対向電極)83との間に容量絶縁膜82が設けられた構造を有している。下部電極81は、底部が閉塞されたシリンダー、つまりカップ形状を有しており、隣接する下部電極81同士はサポート層84によって部分的に結合されている。これにより、高いアスペクト比を有する下部電極81の倒壊が防止されている。また、隣接する下部電極81の下部には、接触を防止するための絶縁膜78が設けられている。セルキャパシタ80の上部は、層間絶縁膜90及び保護絶縁膜93によって覆われる。
 ここで、下部電極81は、図19(a),(b)に示すように多数のホールパターンHをアレイ状に形成した後、その内壁を覆うように導電膜を成膜することによって形成することができる。そして、下部電極81を形成した後、被加工層100を除去し、容量絶縁膜82及び上部電極83を形成すれば、DRAMのセルキャパシタ80が完成する。このように、本発明による製造方法は、DRAMのセルキャパシタ80をアレイ状に多数形成する場合に好適である。
 本実施形態においては、下部電極81の配列ピッチを第2のレイアウトパターン140によって制御することができる。より具体的には、第2のマスク層145のライン幅とスペース幅によって下部電極81の配列ピッチを制御することができる。つまり、図20に示すセルキャパシタ80A~80Eに着目した場合、隣接する2個のセルキャパシタのピッチは、第2のマスク層145のライン幅及びスペース幅の一方によって決まる。ここで、セルキャパシタ80A~80Eは、W方向に一直線上にこの順に配列されたセルキャパシタである。
 例えば、セルキャパシタ80Aと80Bのピッチや、セルキャパシタ80Cと80Dのピッチが第2のマスク層145のライン幅によって決まる場合、セルキャパシタ80Bと80Cのピッチや、セルキャパシタ80Dと80Eのピッチは、第2のマスク層145のスペース幅によって決まる。逆に、セルキャパシタ80Aと80Bのピッチや、セルキャパシタ80Cと80Dのピッチが第2のマスク層145のスペース幅によって決まる場合、セルキャパシタ80Bと80Cのピッチや、セルキャパシタ80Dと80Eのピッチは、第2のマスク層145のライン幅によって決まる。
 したがって、第2のマスク層145のライン幅をWL、スペース幅をWSとし、セルキャパシタ80Aと80Bのピッチ及びセルキャパシタ80Cと80DのピッチをP1とし、セルキャパシタ80Bと80Cのピッチ及びセルキャパシタ80Dと80EのピッチをP2とした場合、
  P1=WL
  P2=WS
または
  P1=WS
  P2=WL
となる。このため、WL≠WSである場合、P1≠P2となる。
 したがって、1つ離れた2個のセルキャパシタのピッチ、例えば、セルキャパシタ80Aと80Cのピッチ、セルキャパシタ80Bと80Dのピッチについては、第2のマスク層145のピッチ(ライン幅+スペース幅)によって決まる。つまり、
  P1+P2=WL+WS
である。
 次に、本発明の第4の実施形態について説明する。
 図22~図24は、第1のレイアウトパターン120と第2のレイアウトパターン140とを重ね合わせた状態を示す平面図であり、図22はX方向におけるズレがない状態、図23はX方向にd1だけずれている状態、図23はX方向にd2だけずれている状態をそれぞれ示している。図23に示す例では、第1のレイアウトパターン120が第2のレイアウトパターン140に対してマイナス方向(左方向)にずれているのに対し、図24に示す例では、第1のレイアウトパターン120が第2のレイアウトパターン140に対してプラス方向(右方向)にずれている。
 図22に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140とが正しく重ね合わされている場合、設計通りのホールパターンHを正しく形成することができる。既に説明したように、ホールパターンHは、第1のスペーサー膜130と第2のスペーサー膜150が交差する部分に形成される。
 これに対し、図23に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140のX方向におけるアライメントがd1だけ左にずれた場合、意図しないエラーパターンE1が形成されてしまう。逆に、図24に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140のX方向におけるアライメントがd2だけ右にずれた場合、2つのホールパターンHが繋がったエラーパターンE2が形成されてしまう。このようなエラーパターンE1,E2の発生を防止するためには、X方向におけるアライメントずれ許容量の合計値を△Xとした場合、
  △X<W2-W1
とする必要がある。ここで、W1は第1のスペーサー膜130の膜厚であり、W2は第2のマスク層145のX方向における幅である。図22からも明らかなとおり、W2-W1の値は非常に小さく、したがって、X方向におけるアライメントのずれ許容量は非常に小さい。
 図25は、本発明の第4の実施形態によって重ね合わされた第1及び第2のレイアウトパターン120,140の形状を説明するための平面図である。
 図25に示すように、本実施形態においては、W方向に延在する第1のレイアウトパターン120の端部がY方向に屈曲しているとともに、Y方向に延在する第2のレイアウトパターン140の端部がX方向に縮小されている。第1のレイアウトパターン120は、W方向、つまり、斜め方向に延在するパターンであることから、X方向に見た幅はある程度広い。このため、第1のレイアウトパターン120の端部をY方向に屈曲させると、X方向に十分に広い幅を持った拡大パターン120Eを得ることができる。そして、本実施形態では、この拡大パターン120Eに第2のレイアウトパターン140の縮小パターン140Sが平面視で包含されるよう、アライメントを行う。図25に示すように、拡大パターン120Eは縮小パターン140Sを一つおきに包含し、残りの縮小パターン140Sは隣接する拡大パターン120E間に配置される。これにより、X方向におけるアライメントマージンが拡大する。
 次に、本実施形態による半導体装置の製造方法について、図26~図29を参照しながら説明する。
 まず、図26に示すように、第1のマスク層125をパターニングすることによって、端部がY方向に屈曲した拡大パターン120Eを有する第1のレイアウトパターン120を形成する。次に、図27に示すように、第1のマスク層125の側壁に第1のスペーサー膜130を形成する。そして、第1の埋設層135の形成など図示しないプロセスを経た後、図28に示すように第2のマスク層145をパターニングすることによって、端部におけるX方向の幅が縮小された縮小パターン140Sを有する第2のレイアウトパターン140を形成する。そして、第2のマスク層145の側壁に第2のスペーサー膜150を形成すれば、図29に示す構造が得られる。
 図30~図32は、第1のレイアウトパターン120と第2のレイアウトパターン140とを重ね合わせた状態を示す平面図であり、図30はX方向におけるズレがない状態、図31はX方向にd1だけずれている状態、図32はX方向にd2だけずれている状態をそれぞれ示している。図31に示す例では、第1のレイアウトパターン120が第2のレイアウトパターン140に対してマイナス方向(左方向)にずれているのに対し、図32に示す例では、第1のレイアウトパターン120が第2のレイアウトパターン140に対してプラス方向(右方向)にずれている。
 図30に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140とが正しく重ね合わされている場合、つまり、拡大パターン120EのX方向における中心と、縮小パターン140SのX方向における中心が一致している場合、当然ながら、設計通りのホールパターンHを正しく形成することができる。ホールパターンHは、第1のスペーサー膜130と第2のスペーサー膜150が交差する部分に形成される。
 また、図31に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140のX方向におけるアライメントがd1だけ左にずれた場合であっても、本実施形態では意図しないエラーパターンE1は形成されない。同様に、図32に示すように、第1のレイアウトパターン120と第2のレイアウトパターン140のX方向におけるアライメントがd2だけ右にずれた場合であっても、本実施形態では2つのホールパターンHが繋がったエラーパターンE2は形成されない。図31及び図32のいずれのケースであっても、設計通りのホールパターンHを正しく形成することができる。
 ここで、拡大パターン120EのX方向における内寸をW3、縮小パターン140SのX方向における外寸をW4とした場合、X方向におけるアライメントずれ許容量の合計△Xは、
  △X<W3-W4
となる。この値は、上述したW2-W1の値よりも十分に大きいことから、アライメントマージンを大幅に拡大することが可能となる。
 次に、本発明の第5の実施形態について説明する。
 上述した第4の実施形態では、第1のレイアウトパターン120及び第2のレイアウトパターン140をこの順に形成し、それぞれ対応するマスク層125,145をネガパターンとしているが、本発明がこれに限定されるものではない。つまり、第1のレイアウトパターン120と第2のレイアウトパターン140の形成順序は逆であっても構わないし、マスク層125,145の一方又は両方がポジパターンであっても構わない。
 次に、本実施形態による半導体装置の製造方法について、図33~図36を参照しながら説明する。
 まず、図33に示すように、第1のマスク層125をパターニングすることによって、Y方向に延在し、端部におけるX方向の幅が縮小された縮小パターン120Sを有する第1のレイアウトパターン120をポジパターンで形成する。次に、図34に示すように、第1のマスク層125の側壁に第1のスペーサー膜130を形成すれば、第1のレイアウトパターン120が完成する。本実施形態における第1のレイアウトパターン120は、第4の実施形態における第2のレイアウトパターン140と同じ形状を有している。
 次に、図35に示すように、第2のマスク層145をパターニングすることによって、W方向に延在し、端部がY方向に屈曲した拡大パターン140Eを有する第2のレイアウトパターン140をポジパターンで形成する。そして、第2のマスク層145の側壁に第2のスペーサー膜150を形成すれば、図36に示す構造が得られる。本実施形態における第2のレイアウトパターン140は、第4の実施形態における第1のレイアウトパターン120と同じ形状を有している。
 図33~図36に示すプロセスでは、Y方向に延在するレイアウトパターン120及びW方向に延在するレイアウトパターン140をこの順に形成しており、且つ、マスク層125,145をいずれもポジパターンとしているが、平面視で見れば、図26~図29に示したプロセスにて得られる構造と同じ構造を得ることができる。いずれを採用するかは、フォトリソグラフィー工程においてフォトレジストを解像しやすい方を選択すれば良い。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記の各実施形態において例示した各層の材料は本発明における一例であり、本発明がこれに限定されるものではない。また、例示した各層の材料は、それぞれ純粋な材料であることを意味するものではなく、当該材料を主成分とする材料であることを意味している。
10   半導体基板
11   活性領域
20   素子分離領域
30   ワード線
31   ゲート絶縁膜
32   キャップ絶縁膜
40   層間絶縁層
50   ビット線
51   絶縁膜
55   ビットコンタクトプラグ
60   層間絶縁層
70   容量コンタクトプラグ
78   絶縁膜
80,80A~80E  セルキャパシタ
81   下部電極
82   容量絶縁膜
83   上部電極
84   サポート層
90   層間絶縁膜
93   保護絶縁膜
100  被加工層
110  ハードマスク層
120  第1のレイアウトパターン
120E 拡大パターン
120S 縮小パターン
125  第1のマスク層
126  有機膜
127  シリコン含有有機膜
128  フォトレジスト
130  第1のスペーサー膜
135  第1の埋設層
140  第2のレイアウトパターン
140E 拡大パターン
140S 縮小パターン
145  第2のマスク層
147  シリコン含有有機膜
148  フォトレジスト
150  第2のスペーサー膜
155  第2の埋設層
160  第1の開口部
165  第2の開口部
170  第3の開口部
E1,E2  エラーパターン
H    ホールパターン

Claims (9)

  1.  基板上に被加工層を形成し、
     前記被加工層上に、平面視で第1のマスク層および第1の埋設層に挟まれるように、第1のレイアウトパターンを有する第1のスペーサーを形成し、
     前記第1のスペーサーを覆い、平面視で第2のマスク層および第2の埋設層に挟まれるように、第2のレイアウトパターンを有する第2のスペーサーを形成し、
     前記第1のスペーサーの少なくとも一部を露出するように、前記第2のスペーサーを選択的に除去し、
     前記第1のスペーサーの露出部分を選択的に除去し、
     前記第1のスペーサーを除去した部分を通して前記被加工層を選択的に除去する、
    半導体装置の製造方法。
  2.  基板上に被加工層を形成し、
     前記被加工層上にハードマスク層を形成し、
     前記ハードマスク層上に第1のマスク層を形成し、
     第1のレイアウトパターンを用いて前記ハードマスクが露出するまで前記第1のマスク層を選択的に除去し、
     少なくとも前記第1のマスク層の側面および前記ハードマスクの露出面を覆う第1のスペーサーを形成し、
     前記第1のスペーサーを覆う第1の埋設層を形成し、
     前記第1の埋設層上に第2のマスク層を形成し、
     前記第1のレイアウトパターンと交差する第2のレイアウトパターンを用いて前記第1の埋設層が露出するまで前記第2のマスク層を選択的に除去し、
     少なくとも前記第2のマスク層の側面および前記第1の埋設層の露出面を覆う第2のスペーサーを形成し、
     前記第2のスペーサーを覆う第2の埋設層を形成し、
     前記第2のマスク層および前記第2のスペーサーが露出するまで前記第2の埋設層を除去し、
     少なくとも前記第1のスペーサーが露出するまで選択的に前記第2のマスク層の側面の前記第2のスペーサーを除去して第1の開口部を形成し、
     前記第1の開口部を通して前記ハードマスクが露出するまで選択的に前記第1のマスク層の側面の第1のスペーサーを除去して第2の開口部を形成し、
     前記第2の開口部を通して前記被加工層が露出するまで選択的に前記ハードマスクを除去して第3の開口部を形成し、
     前記第3の開口部を通して前記被加工層を選択的に除去する、
    半導体装置の製造方法。
  3.  前記第1のスペーサーを覆う第1の埋設層を形成した後、前記第2のマスク層を形成する前に、
     前記第1の埋設層および前記第1のスペーサーを前記第1のマスク層が露出する様に除去する、
    請求項2に記載の半導体装置の製造方法。
  4.  前記被加工層は少なくとも酸化シリコンを主成分とする絶縁層を含み、前記ハードマスクがシリコン層である、
    請求項2に記載の半導体装置の製造方法。
  5.  前記第1のマスク層が酸化シリコンを主成分とする材料からなる、
    請求項2に記載の半導体装置の製造方法。
  6.  前記第2のマスク層が炭素を含む材料からなる、
    請求項5に記載の半導体装置の製造方法。
  7.  各々がカップ形状を有し、所定の方向に第1、第2、第3、第4および第5の順序で概略一直線上に配列された5つの電極を備え、
     前記第1の電極と前記第2の電極との間が第1のピッチで配列され、
     前記第3の電極と前記第4の電極との間が前記第1のピッチで配列され
     前記第2の電極と前記第3の電極との間が前記第1のピッチより狭い第2のピッチで配列され、
     前記第4の電極と前記第5の電極との間が前記第2にピッチで配列される半導体装置。
  8.  前記5つの電極の全部を絶縁膜を介して覆う対向電極を更に備える、
    請求項7に記載の半導体装置。
  9.  5つの電界効果トランジスタを更に備え、
     前記5つの電極の各々が前記5つの電界効果トランジスタの対応するそれぞれのソース領域又はドレイン領域と電気的に接続され、5つのDRAMセルを構成する
    請求項8に記載の半導体装置。
PCT/JP2014/057111 2013-03-21 2014-03-17 半導体装置及びその製造方法 WO2014148423A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-058306 2013-03-21
JP2013058306 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148423A1 true WO2014148423A1 (ja) 2014-09-25

Family

ID=51580102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057111 WO2014148423A1 (ja) 2013-03-21 2014-03-17 半導体装置及びその製造方法

Country Status (2)

Country Link
TW (1) TW201507108A (ja)
WO (1) WO2014148423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671822A1 (en) * 2018-12-20 2020-06-24 IMEC vzw Self-aligned contact hole and pillar array patterning
EP3998627A4 (en) * 2020-09-17 2022-10-19 Changxin Memory Technologies, Inc. MANUFACTURING PROCESSES FOR SEMICONDUCTOR STRUCTURE AND SEMICONDUCTOR STRUCTURE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151664A (ja) * 2000-11-13 2002-05-24 Hitachi Ltd 半導体集積回路装置の製造方法
JP2009135400A (ja) * 2007-11-29 2009-06-18 Hynix Semiconductor Inc 半導体素子のハードマスクパターン及びその形成方法
JP2009170453A (ja) * 2008-01-10 2009-07-30 Toshiba Corp パターン形成方法
JP2014011299A (ja) * 2012-06-29 2014-01-20 Ps4 Luxco S A R L 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151664A (ja) * 2000-11-13 2002-05-24 Hitachi Ltd 半導体集積回路装置の製造方法
JP2009135400A (ja) * 2007-11-29 2009-06-18 Hynix Semiconductor Inc 半導体素子のハードマスクパターン及びその形成方法
JP2009170453A (ja) * 2008-01-10 2009-07-30 Toshiba Corp パターン形成方法
JP2014011299A (ja) * 2012-06-29 2014-01-20 Ps4 Luxco S A R L 半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671822A1 (en) * 2018-12-20 2020-06-24 IMEC vzw Self-aligned contact hole and pillar array patterning
EP3998627A4 (en) * 2020-09-17 2022-10-19 Changxin Memory Technologies, Inc. MANUFACTURING PROCESSES FOR SEMICONDUCTOR STRUCTURE AND SEMICONDUCTOR STRUCTURE
US11985807B2 (en) 2020-09-17 2024-05-14 Changxin Memory Technologies, Inc. Method for manufacturing semiconductor structure and semiconductor structure

Also Published As

Publication number Publication date
TW201507108A (zh) 2015-02-16

Similar Documents

Publication Publication Date Title
US20150004774A1 (en) Methods of fabricating a semiconductor device including fine patterns
KR20110028971A (ko) 사이즈가 구별되는 2종의 콘택 홀을 1회 포토 공정으로 형성하는 반도체 소자의 제조방법
JP2011018825A (ja) 半導体装置及びその製造方法
TWI571915B (zh) 電容器下電極之製造方法及半導體裝置
JP2010272714A (ja) 半導体装置及びその製造方法
JP2009135407A (ja) 半導体素子のハードマスクパターン形成方法
JP2009135400A (ja) 半導体素子のハードマスクパターン及びその形成方法
WO2014123170A1 (ja) 半導体装置及びその製造方法
JP2016033968A (ja) 半導体装置の製造方法
US7615815B2 (en) Cell region layout of semiconductor device and method of forming contact pad using the same
JP5529365B2 (ja) 半導体記憶装置及びその製造方法
JP2013030582A (ja) 半導体装置の製造方法
US6352896B1 (en) Method of manufacturing DRAM capacitor
WO2014148423A1 (ja) 半導体装置及びその製造方法
WO2014103734A1 (ja) 半導体装置の製造方法
JP2015138914A (ja) 半導体装置の製造方法
WO2014142253A1 (ja) 半導体装置の製造方法
WO2014091947A1 (ja) 半導体装置
KR101138843B1 (ko) 반도체 메모리 장치 및 그 제조방법
JP2014241325A (ja) 半導体装置及び半導体装置の製造方法
KR20150109466A (ko) 반도체 장치의 제조 방법
TWI530992B (zh) 以免光罩方式定義位元線溝槽之半導體基底及其製造方法
US8710565B2 (en) Semiconductor device and manufacturing method
US8129791B2 (en) Semiconductor device having a contact plug and manufacturing method thereof
JP2016154194A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14770817

Country of ref document: EP

Kind code of ref document: A1