WO2014148420A1 - パワーモジュール用基板の製造方法 - Google Patents

パワーモジュール用基板の製造方法 Download PDF

Info

Publication number
WO2014148420A1
WO2014148420A1 PCT/JP2014/057098 JP2014057098W WO2014148420A1 WO 2014148420 A1 WO2014148420 A1 WO 2014148420A1 JP 2014057098 W JP2014057098 W JP 2014057098W WO 2014148420 A1 WO2014148420 A1 WO 2014148420A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
substrate
power module
copper plate
bonding
Prior art date
Application number
PCT/JP2014/057098
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
長友 義幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020157025159A priority Critical patent/KR102224535B1/ko
Priority to CN201480012586.1A priority patent/CN105027277B/zh
Priority to EP14767678.7A priority patent/EP2978018B1/en
Priority to US14/772,913 priority patent/US9833855B2/en
Publication of WO2014148420A1 publication Critical patent/WO2014148420A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0006Exothermic brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3611Phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to a method for manufacturing a power module substrate in which a circuit layer is disposed on one surface of a ceramic substrate and a metal layer is disposed on the other surface.
  • a power module substrate in which a metal plate having excellent conductivity is bonded as a circuit layer and a metal layer to one surface and the other surface of a ceramic substrate made of has been widely used. Further, in such a power module substrate, a heat sink may be bonded to the metal layer side via a solder material.
  • the power module substrate shown in Patent Document 1 has a structure in which a circuit layer and a metal layer are formed by bonding a copper plate to one surface and the other surface of a ceramic substrate.
  • a copper plate is disposed on one surface and the other surface of a ceramic substrate with an Ag—Cu—Ti brazing material interposed therebetween, and heat treatment is performed to bond the copper plate.
  • Patent Document 2 proposes a power module substrate in which a circuit layer is formed by bonding a copper plate to one surface of a ceramic substrate and a metal layer is formed by bonding an aluminum plate to the other surface.
  • a circuit layer is formed by bonding a copper plate to one surface of a ceramic substrate
  • a metal layer is formed by bonding an aluminum plate to the other surface.
  • the metal layer of the power module substrate and the heat sink are joined, the thermal stress generated between the power module substrate and the heat sink when a cooling cycle is applied, the metal layer made of aluminum having a relatively small deformation resistance. It is possible to suppress the generation of cracks in the ceramic substrate.
  • heat treatment is performed with one surface of the ceramic substrate interposed with an Ag—Cu—Ti brazing material, the copper plate is joined, and then the other side of the ceramic substrate.
  • the aluminum plate is bonded by heat treatment with an Al—Si brazing material interposed between the two surfaces.
  • the melting point of the Ag—Cu—Ti brazing material is higher than the melting point of the aluminum plate
  • Ag—Cu— is formed on one surface of the ceramic substrate like the power module substrate disclosed in Patent Document 2.
  • the present invention has been made in view of the above-described circumstances, and is capable of bonding a copper plate on one surface of a ceramic substrate and an aluminum plate on the other surface at the same time and at a low temperature, and for a power module having a low manufacturing cost.
  • An object is to provide a method for manufacturing a substrate.
  • the method for manufacturing a power module substrate of the present invention includes a ceramic substrate, a circuit layer formed by bonding a copper plate to one surface of the ceramic substrate, and an aluminum plate bonded to the other surface of the ceramic substrate.
  • a power module substrate comprising: a metal layer comprising: an active metal material and a filler material having a melting point of 660 ° C. or less on one surface side of the ceramic substrate; A first laminating step of laminating the copper plate; a second laminating step of laminating the ceramic substrate and the aluminum plate via a bonding material on the other surface side of the ceramic substrate; and the laminated ceramic substrate.
  • the melting point is the solidus temperature.
  • the filler material refers to a brazing material or a solder material.
  • a copper plate is laminated on one surface side of the ceramic substrate via an active metal material and a filler material having a melting point of 660 ° C. or less, and the ceramic substrate,
  • the copper plate laminated on the ceramic substrate is heat-treated together with the aluminum plate laminated on the ceramic substrate.
  • the active metal dissolves in the molten liquid phase filler material, the wettability of the liquid phase filler material to the ceramic substrate increases, and after the filler material solidifies, the ceramic substrate passes through the filler material.
  • the copper plate is joined well.
  • the melting point of the filler material is preferably 600 ° C. or less.
  • the melting point of the filler material is 660 ° C. or less
  • the liquid phase of the filler material can be formed at a lower temperature than when an Ag—Cu—Ti brazing material is used.
  • the thermal load on the ceramic substrate can be reduced.
  • the ceramic substrate and the copper plate are joined using a filler material that does not contain Ag, the manufacturing cost can be reduced as compared with the case where an Ag—Cu—Ti brazing material is used.
  • the filler material may be disposed on the ceramic substrate side, and the active metal material may be disposed on the copper plate side.
  • the copper plate and the active metal material can be bonded by solid phase diffusion bonding during the heat treatment, and a liquid phase of Cu and the active metal is generated at the bonding interface, resulting in bumps at the bonding interface, It is possible to suppress fluctuations.
  • the active metal material is interposed between the liquid phase of the filler material and the copper plate, the liquid phase of the filler material and the copper plate are not in direct contact with each other, and a bump is formed at the joining interface or the thickness is increased. Can be reliably suppressed.
  • the filler material is well bonded to the ceramic substrate, and the active metal material and the copper plate are bonded by solid phase diffusion bonding, so that the ceramic substrate and the copper plate can be bonded well even at low temperature conditions. It is possible to suppress thermal degradation of the ceramic substrate.
  • the filler material may be a brazing material having a liquidus temperature of 450 ° C. or higher.
  • the brazing material may be any one selected from a Cu—P—Sn—Ni brazing material, a Cu—Sn brazing material, and a Cu—Al brazing material.
  • the filler material may be a solder material having a liquidus temperature of less than 450 ° C.
  • the solder material may be a Cu—P—Sn—Ni based solder material or a Cu—Sn based solder material.
  • the copper plate can be bonded to one surface of the ceramic substrate at a low temperature
  • the aluminum plate can be simultaneously bonded to the other surface of the ceramic substrate.
  • the manufacturing process can be simplified, the time required for the manufacturing can be shortened, and the manufacturing cost can be reduced.
  • the copper plate and the aluminum plate can be joined simultaneously by a single heat treatment, the thermal load on the ceramic substrate can be reduced and the warpage of the ceramic substrate can be reduced compared to the case where the copper plate and the aluminum plate are joined separately. Moreover, it can suppress that a crack generate
  • the active metal material may be a Ti material.
  • the surface of the ceramic substrate can be reliably wetted with the liquid phase of the filler material by dissolving Ti in the liquid phase of the filler material, and the solid phase diffusion bonding of the Ti material and the copper plate can be performed. It is possible to reliably bond the ceramic substrate and the copper plate.
  • the present invention it is possible to provide a method for manufacturing a power module substrate which can be bonded simultaneously at a low temperature with a copper plate on one surface of the ceramic substrate and an aluminum plate on the other surface, and at a low manufacturing cost.
  • FIG. 1 shows a power module 1 including a power module substrate 10 according to the present embodiment.
  • the power module 1 includes a power module substrate 10 on which a circuit layer 12 is disposed, a semiconductor element 3 bonded to one surface (upper surface in FIG. 1) of the circuit layer 12 via a bonding layer 2, power And a heat sink 30 disposed on the other side (lower side in FIG. 1) of the module substrate 10.
  • the power module substrate 10 includes a ceramic substrate 11, a circuit layer 12 disposed on one surface (the upper surface in FIG. 2) of the ceramic substrate 11, and the other surface of the ceramic substrate 11. And a metal layer 13 disposed on the lower surface in FIG.
  • the ceramic substrate 11 is made of ceramics such as AlN (aluminum nitride), Si 3 N 4 (silicon nitride), and Al 2 O 3 (alumina) having high insulating properties. In this embodiment, it is comprised with AlN (aluminum nitride) excellent in heat dissipation. Further, the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, and in this embodiment is set to 0.635 mm.
  • the circuit layer 12 is formed by bonding a conductive copper or copper alloy metal plate to one surface of the ceramic substrate 11.
  • the circuit layer 12 is formed by joining copper rolled sheets having a purity of 99.99% by mass or more. Note that the thickness of the circuit layer 12 is set within a range of 0.1 mm or more and 1.0 mm or less, and is set to 0.3 mm in the present embodiment.
  • the metal layer 13 is formed by joining a metal plate of aluminum or aluminum alloy to the other surface of the ceramic substrate 11.
  • the metal layer 13 is formed by joining aluminum rolled plates having a purity of 99.99% by mass or more.
  • the thickness of the metal layer 13 is set in a range of 0.1 mm to 3.0 mm, and is set to 1.6 mm in the present embodiment.
  • the semiconductor element 3 is made of a semiconductor material such as Si.
  • the semiconductor element 3 and the circuit layer 12 are bonded via the bonding layer 2.
  • the bonding layer 2 is made of, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
  • the heat sink 30 is for dissipating heat from the power module substrate 10 described above.
  • the heat sink 30 is made of aluminum or an aluminum alloy.
  • the heat sink 30 is made of A6063 (aluminum alloy).
  • the heat sink 30 is provided with a flow path 31 through which a cooling fluid flows.
  • the heat sink 30 and the metal layer 13 are joined by an Al—Si brazing material.
  • the filler material 25, the active metal material 26, and the copper plate 22 that becomes the circuit layer 12 are sequentially stacked on one surface (the upper surface in FIG. 4) of the ceramic substrate 11 (first stacked layer).
  • the bonding material 27 and the aluminum plate 23 to be the metal layer 13 are sequentially laminated on the other surface (the lower surface in FIG. 4) of the ceramic substrate 11 (second lamination step S02). .
  • the filler material 25 is disposed on the ceramic substrate 11 side, and the active metal material 26 is disposed on the copper plate 22 side, and between the ceramic substrate 11 and the aluminum plate 23, A bonding material 27 is disposed.
  • the filler material 25 is a Cu—P—Sn—Ni based brazing material, a Cu—Sn based brazing material, a Cu—Al based brazing material, or a Cu—P—Sn—Ni based solder having a melting point of 660 ° C. or less. Or a Cu—Sn solder material. Desirably, the melting point is 600 ° C. or lower.
  • a Cu—P—Sn—Ni-based brazing foil (Cu-7 mass% P-15 mass% Sn-10 mass% Ni) is used as the filler material 25.
  • the thickness of the filler material 25 is in the range of 5 ⁇ m to 150 ⁇ m.
  • the active metal material 26 contains, for example, one or more of active elements such as Ti, Zr, Nb, and Hf.
  • active elements such as Ti, Zr, Nb, and Hf.
  • a Ti foil is used as the active metal material 26. Yes.
  • the thickness of the active metal material 26 is in the range of 1 ⁇ m to 20 ⁇ m.
  • the bonding material 27 is an Al—Si brazing material containing Si as a melting point lowering element, and specifically, an Al—7.5 mass% Si brazing material is used.
  • a vacuum heating furnace is charged and heated (heat treatment step S03).
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa
  • the heating temperature is in the range of 600 ° C. to 650 ° C.
  • the heating time is 30 minutes or more. The range is set to 360 minutes or less.
  • the active metal material 26 (Ti foil) and the copper plate 22 are joined by solid phase diffusion bonding, and the filler material 25 melts to form a liquid phase, which is solidified.
  • the ceramic substrate 11 and the active metal material 26 are joined via the filler material 25.
  • the bonding material 27 is melted to form a liquid phase, and the liquid phase is solidified, whereby the ceramic substrate 11 and the aluminum plate 23 are bonded via the bonding material 27.
  • the joining surface of the active metal material 26 and the copper plate 22 to be joined by solid phase diffusion joining is a smooth surface in advance.
  • the circuit layer 12 is formed on one surface of the ceramic substrate 11 and the metal layer 13 is formed on the other surface of the ceramic substrate 11 to manufacture the power module substrate 10 according to the present embodiment.
  • the heat sink 30 is bonded to the lower surface of the metal layer 13 of the power module substrate 10 via an Al—Si brazing material (heat sink bonding step S04).
  • the semiconductor element 3 is bonded to the upper surface of the circuit layer 12 of the power module substrate 10 via a solder material (semiconductor element bonding step S05). In this way, the power module 1 according to this embodiment is manufactured.
  • the filler material 25 having a melting point of 660 ° C. or less is disposed on the ceramic substrate 11 side between the ceramic substrate 11 and the copper plate 22 and activated on the copper plate 22 side. Since the heat treatment is performed in a state where the metal material 26 (Ti foil in the present embodiment) is arranged, during the heating, the Ti melts into the melted liquid phase filler material 25, and the ceramic substrate of the liquid phase melt material 25 After the filler material 25 is solidified, the copper plate 22 is joined to the ceramic substrate 11 via the filler material 25, and the joint material 25 has high joining reliability.
  • the metal material 26 Ti foil in the present embodiment
  • the active metal material 26 and the copper plate 22 are laminated and heated and held at a temperature of 600 ° C. or higher and 650 ° C. or lower, so that Ti atoms contained in the active metal material 26 are retained.
  • the active metal material 26 and the copper plate 22 can be solid-phase diffusion bonded by diffusing into the copper plate 22 and diffusing the copper atoms contained in the copper plate 22 into the active metal material 26.
  • the heating temperature is 600 ° C. or higher, diffusion of Ti atoms contained in the active metal material 26 and copper atoms contained in the copper plate 22 is promoted, and solid phase diffusion can be sufficiently achieved in a short time. Moreover, when heating temperature is 650 degrees C or less, it can suppress that a liquid phase arises between the active metal material 26 and the copper plate 22, and a bump arises in a joining interface, or thickness changes. Therefore, the heating temperature is set in the above range.
  • the pressurized pressure is set in the above range.
  • the melting point of the filler material 25 is 660 ° C. or less, the liquid phase of the filler material can be formed at a lower temperature than when an Ag—Cu—Ti brazing material is used.
  • the active metal material 26 is interposed between the filler material 25 and the copper plate 22, the liquid phase of the filler material 25 and the copper plate 22 are not in direct contact, and bumps are generated at the joining interface. , The thickness can be prevented from changing.
  • the surface where the active metal material 26 and the copper plate 22 are joined is a smooth surface in advance, it is possible to suppress the formation of a gap at the joining interface, and the active metal material 26 and the copper plate 22 are reliably joined. can do.
  • the filler material 25 is well bonded to the ceramic substrate 11 and the active metal material 26 and the copper plate 22 are bonded by solid phase diffusion bonding, the ceramic substrate 11 and the copper plate 22 are well bonded.
  • the bonding reliability between the ceramic substrate 11 and the circuit layer 12 can be improved.
  • the ceramic substrate 11 and the copper plate 22 are joined using the filler material 25 that does not contain Ag, the manufacturing cost can be reduced as compared with the case where the Ag—Cu—Ti brazing material is used.
  • the copper plate 22 can be bonded to one surface of the ceramic substrate 11 at a low temperature as described above, the copper plate 22 is bonded to one surface of the ceramic substrate 11 and the aluminum plate 23 is bonded to the other surface simultaneously. Can do.
  • the manufacturing process can be simplified and the time required for the manufacturing can be shortened, and the manufacturing cost can be reduced.
  • the thermal load on the ceramic substrate 11 can be reduced compared to the case where the copper plate 22 and the aluminum plate 23 are joined separately, and the ceramic substrate 11 It is possible to reduce the warpage of the ceramic substrate 11 and to prevent the ceramic substrate 11 from cracking.
  • the circuit layer 12 made of the copper plate 22 is formed on one surface of the ceramic substrate 11, so that the heat from the semiconductor element 3 is spread. Can be diffused to the ceramic substrate 11 side. Moreover, since the deformation resistance of the copper plate 22 is large, the deformation of the circuit layer 12 is suppressed when a heat cycle is applied, and the deformation of the bonding layer 2 that bonds the semiconductor element 3 and the circuit layer 12 is suppressed. Reliability can be improved. Further, since the metal layer 13 made of the aluminum plate 23 is formed on the other surface of the ceramic substrate 11, the metal layer 13 absorbs thermal stress generated between the power module substrate 10 and the heat sink 30 during a heat cycle load. And it can suppress that a crack generate
  • the transient liquid phase bonding method Transient Liquid Phase Bonding, TLP
  • TLP Transient Liquid Phase Bonding
  • the transient liquid phase bonding method as shown in FIG. 5, after the fixed layer 127 is formed by fixing an additive element such as Si or Cu to the bonding surface of the aluminum plate 23 with the ceramic substrate 11 by sputtering or the like.
  • the ceramic substrate 11 and the aluminum plate 23 are laminated, pressed in the laminating direction, and subjected to heat treatment, whereby the ceramic substrate 11 and the aluminum plate 23 can be joined.
  • the ceramic substrate 11 and the aluminum plate 23 can be laminated via the fixing layer 127 as a bonding material, and the copper plate 22 and the aluminum plate 23 can be bonded simultaneously.
  • pressure applied in the lamination direction is a 1kgf / cm 2 (98kPa) above 35kgf / cm 2 (3430kPa) below.
  • the heating temperature and the heating time in the heat treatment are 600 ° C. or more and 650 ° C. or less, and 30 minutes or more and 360 minutes or less.
  • additive elements such as Zn, Ge, Ag, Mg, Ca, Ga, or Li may be used as the additive element of the fixed layer.
  • the ceramic substrate and the aluminum plate can be bonded by using a metal paste having metal particles and an organic substance as a bonding material.
  • the metal paste include an Ag paste having Ag particles and an organic substance.
  • an Ag paste 227 is applied to the other surface of the ceramic substrate 11 by screen printing or the like, and the ceramic substrate 11 and the aluminum plate 23 are laminated via the Ag paste 227 to perform heat treatment.
  • the copper plate 22 and the aluminum plate 23 can be simultaneously bonded to the ceramic substrate 11.
  • pressure applied in the lamination direction is a 1kgf / cm 2 (98kPa) above 35kgf / cm 2 (3430kPa) below.
  • the heating temperature and the heating time in the heat treatment are 600 ° C. or more and 650 ° C. or less, and 30 minutes or more and 360 minutes or less.
  • the present invention is not limited to this.
  • TLP transient liquid phase bonding method
  • the power module substrate and the heat sink may be bonded to each other through the fixing layer.
  • the power module substrate and the heat sink may be joined via an Ag paste containing Ag particles and an organic substance.
  • the heat sink has a cooling channel
  • the structure of the heat sink is not particularly limited, and for example, an air-cooled heat sink may be used.
  • the heat sink may have a radiation fin.
  • the ceramic substrate / filler material / active metal material / copper plate was laminated in this order and the inventive example 13 on the ceramic substrate side was The layers were laminated in the order of ceramic substrate / active metal material / filler material / copper plate.
  • Al—Si was an Al-7.5 mass% Si brazing material.
  • Cu (TLP) used Cu as the fixing layer.
  • the “Ag paste” was an Ag paste containing Ag particles and organic matter.
  • a vacuum heating furnace inserts in a vacuum heating furnace in the state pressurized with the pressure of 12 kgf / cm ⁇ 2 > (1176 kPa) in the lamination direction, and a copper plate is joined to one surface of a ceramic substrate by heating, and an aluminum plate is attached to the other surface. Then, a circuit layer and a metal layer were formed on one surface and the other surface of the ceramic substrate.
  • the pressure in the vacuum heating furnace was set within the range of 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less, and the heating temperature and the heating time were set as shown in Table 1. In this way, a power module substrate was obtained.
  • the heat sink was an aluminum plate (50 mm ⁇ 60 mm ⁇ 5 mmt) made of A6063, and the heat sink was joined by the method shown in Table 1.
  • Al—Si shown in Table 1 for the heat sink bonding method, an Al-10.5 mass% Si brazing material is used, “Cu (TLP)” uses a fixed layer of Cu, and “Ag paste” uses Ag. Bonding was performed using an Ag paste containing particles and organic matter.
  • the pressure at the time of joining the power module substrate and the ceramic substrate was 12 kgf / cm 2 (1176 kPa), the heating temperature was 610 ° C., the heating time was 60 minutes, and this was performed in a vacuum atmosphere. In this way, power module substrates with heat sinks of Invention Examples 1 to 13 were produced.
  • the bonding rate between the circuit layer and the ceramic substrate and the bonding rate between the metal layer and the ceramic substrate were evaluated. Furthermore, a thermal cycle test was performed on the power module substrate with a heat sink, and the bonding rate between the circuit layer and the ceramic substrate after the test and the bonding rate between the metal layer and the ceramic substrate were evaluated. A test method for the cooling / heating cycle and a method for evaluating the bonding rate will be described below.
  • the thermal cycle test uses TSB-51 made by ESP Co., Ltd., and the power module substrate with a heat sink is maintained in a liquid phase (Fluorinert) for 5 minutes in a temperature environment of ⁇ 40 ° C., and then 125 ° C. The temperature change process was continued for 5 minutes and maintained in the same temperature environment for 5 minutes, and the process of returning to the temperature environment at ⁇ 40 ° C. was taken as one cycle.
  • TSB-51 made by ESP Co., Ltd.
  • the bonding rate at the interface between the ceramic substrate and the circuit layer and the bonding rate at the interface between the ceramic substrate and the metal layer were evaluated using an ultrasonic flaw detector, and calculated from the following equations: .
  • the initial bonding area is the area to be bonded before bonding, that is, the area of the circuit layer and the metal layer in this embodiment.
  • peeling is indicated by a white portion in the joint, and thus the area of the white portion was taken as the peeling area.
  • Examples 1 to 13 of the present invention in which a circuit layer and a metal layer were simultaneously formed on one surface and the other surface of a ceramic substrate using a melting material having a melting point of 660 ° C. or lower, the initial joining rate was high, and the thermal cycle It was confirmed that a power module substrate with a heat sink capable of maintaining a high bonding rate even after being loaded was obtained.
  • the present invention relates to a method for manufacturing a power module substrate which can be bonded simultaneously at a low temperature with a copper plate on one surface of a ceramic substrate and an aluminum plate on the other surface, and at a low manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)

Abstract

 このパワーモジュール用基板の製造方法は、セラミックス基板(11)の一方の面側において、活性金属材(26)及び融点が660℃以下の溶加材(25)を介して、セラミックス基板(11)と銅板(22)とを積層する第一積層工程と、セラミックス基板(11)の他方の面側において、接合材(27)を介してセラミックス基板(11)とアルミニウム板(23)とを積層する第二積層工程と、積層されたセラミックス基板(11)、銅板(22)、及びアルミニウム板(23)を加熱処理する加熱処理工程と、を備え、セラミックス基板(11)と銅板(22)、及びセラミックス基板(11)とアルミニウム板(23)を同時に接合する。

Description

パワーモジュール用基板の製造方法
 この発明は、セラミックス基板の一方の面に回路層が配設され、他方の面に金属層が配設されたパワーモジュール用基板の製造方法に関する。
 本願は、2013年3月18日に日本に出願された特願2013-055518号に対して優先権を主張し、その内容をここに援用する。
 風力発電、電気自動車等の電気車両などを制御するために用いられる大電力制御用のパワー半導体素子においては、発熱量が多いことから、これを搭載する基板としては、例えばAlN(窒化アルミ)などからなるセラミックス基板の一方の面及び他方の面に、導電性の優れた金属板を回路層及び金属層として接合したパワーモジュール用基板が、従来から広く用いられている。さらに、このようなパワーモジュール用基板は、金属層側に、はんだ材を介してヒートシンクが接合されることもある。
 例えば、特許文献1に示すパワーモジュール用基板においては、セラミックス基板の一方の面及び他方の面に、銅板を接合することで回路層及び金属層が形成された構造とされている。このパワーモジュール用基板は、セラミックス基板の一方の面及び他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている。
 ところで、はんだ材を介して特許文献1に開示されたパワーモジュール用基板の金属層とヒートシンクとを接合した場合、冷熱サイクルが負荷された際に、パワーモジュール用基板とヒートシンクとの間に熱膨張係数の差に起因する熱応力が発生するが、金属層が変形抵抗の大きい銅からなるため、前述の熱応力を金属層が変形することによって吸収することができず、セラミックス基板に割れが発生するおそれがあった。
 そこで、特許文献2には、セラミックス基板の一方の面に銅板を接合することで回路層が形成され、他方の面にアルミニウム板を接合することで金属層が形成されたパワーモジュール用基板が提案されている。このパワーモジュール用基板の金属層とヒートシンクとを接合した場合、冷熱サイクルが負荷された際にパワーモジュール用基板とヒートシンクとの間に生じる熱応力を、比較的変形抵抗が小さいアルミニウムからなる金属層によって吸収し、セラミックス基板に割れが生じることを抑制できる。
 ここで、特許文献2に記載されたパワーモジュール用基板では、セラミックス基板の一方の面にAg-Cu-Ti系ろう材を介在させて加熱処理を行い、銅板を接合した後に、セラミックス基板の他方の面にAl-Si系ろう材を介在させて加熱処理を行い、アルミニウム板を接合している。
特許第3211856号公報 特開2003-197826号公報
 ところで、特許文献1、2に開示されたように、Ag-Cu-Ti系ろう材を用いてセラミックス基板と銅板とを接合すると、Ag-Cu-Ti系ろう材の融点が高いため、セラミックス基板が熱により劣化してしまう問題があった。
 また、Ag-Cu-Ti系ろう材は、高価なAgを含有しているため製造コストが高くなる問題もあった。
 また、Ag-Cu-Ti系ろう材は、その融点がアルミニウム板の融点よりも高いため、特許文献2に開示されたパワーモジュール用基板のように、セラミックス基板の一方の面にAg-Cu-Ti系ろう材を介して銅板を接合し、セラミックス基板の他方の面にAl-Si系ろう材を介してアルミニウム板を接合する際には、先に銅板を接合した後に、次いでアルミニウム板を接合しなければならなかった。すなわち、回路層及び金属層を形成するために、接合を二度に分けて行わなければならず、製造工程が複雑化するとともに製造に要する時間も長くなり、製造コストが高くなる問題があった。さらに、接合時に二回熱処理が行われることにより、セラミックス基板にかかる熱負荷が大きくなり、セラミックス基板の反りが大きくなったり、セラミックス基板に割れが生じたりするおそれもあった。
 この発明は、前述した事情に鑑みてなされたものであって、セラミックス基板の一方の面に銅板を、他方の面にアルミニウム板を、同時かつ低温で接合でき、さらに製造コストが低いパワーモジュール用基板の製造方法を提供することを目的とする。
 本発明のパワーモジュール用基板の製造方法の態様は、セラミックス基板と、このセラミックス基板の一方の面に銅板が接合されてなる回路層と、前記セラミックス基板の他方の面にアルミニウム板が接合されてなる金属層と、を備えたパワーモジュール用基板の製造方法であって、前記セラミックス基板の一方の面側において、活性金属材及び融点が660℃以下の溶加材を介して、前記セラミックス基板と前記銅板とを積層する第一積層工程と、前記セラミックス基板の他方の面側において、接合材を介して前記セラミックス基板と前記アルミニウム板とを積層する第二積層工程と、積層された前記セラミックス基板、前記銅板、及び前記アルミニウム板を加熱処理する加熱処理工程と、を備え、前記セラミックス基板と前記銅板、及び前記セラミックス基板と前記アルミニウム板を同時に接合する。
 なお、本発明において融点は、固相線温度としている。また、本発明において溶加材はろう材又ははんだ材等を指す。
 本発明のパワーモジュール用基板の製造方法によれば、セラミックス基板の一方の面側に、活性金属材及び融点が660℃以下の溶加材を介して銅板を積層し、前記セラミックス基板と、該セラミックス基板上に積層された前記銅板とを、前記セラミックス基板上に積層された前記アルミニウム板と共に加熱処理する。加熱処理時、溶融した液相の溶加材に活性金属が溶け込み、液相の溶加材のセラミックス基板に対する濡れ性が高まり、溶加材が凝固した後にはセラミックス基板に溶加材を介して銅板が良好に接合される。
 なお、前記溶加材の融点は600℃以下であることが望ましい。
 また、溶加材の融点が660℃以下とされているので、Ag-Cu-Ti系ろう材を用いた場合よりも低い温度で溶加材の液相を形成することができる。このような低温域で加熱処理を行うと、セラミックス基板への熱的な負荷を軽減することができる。
さらに、Agを含有しない溶加材を用いてセラミックス基板と銅板とを接合するので、Ag-Cu-Ti系ろう材を用いた場合よりも製造コストを低減できる。
 前記第一積層工程において、前記セラミックス基板側に前記溶加材を配置し、前記銅板側に前記活性金属材を配置してもよい。
 このような場合、銅板と活性金属材とを加熱処理時に固相拡散接合によって接合することができ、接合界面にCuと活性金属との液相が生じて接合界面にコブが生じたり、厚みが変動したりすることを抑制可能となる。また、溶加材の液相と銅板との間に活性金属材が介在されているので、溶加材の液相と銅板とが直接接触することがなく、接合界面にコブが生じたり、厚みが変動したりすることを確実に抑制できる。
 このように、溶加材がセラミックス基板と良好に接合されるとともに、活性金属材と銅板とが固相拡散接合によって接合されるので、低温条件でもセラミックス基板と銅板とを良好に接合することができ、セラミックス基板が熱劣化することを抑制できる。
 また、上述のパワーモジュール用基板の製造方法において、前記溶加材は液相線温度450℃以上のろう材であってもよい。
 具体的には、前記ろう材は、Cu-P-Sn-Ni系ろう材、Cu-Sn系ろう材、及びCu-Al系ろう材の中から選択されるいずれか一種であってもよい。
 このようなろう材を用いた場合、ろう材の融点が低いので、低温条件でも確実にセラミックス基板と銅板との接合を行うことができる。
 また、上述のパワーモジュール用基板の製造方法において、前記溶加材は液相線温度450℃未満のはんだ材であってもよい。
 具体的には、前記はんだ材は、Cu-P-Sn-Ni系はんだ材又はCu-Sn系はんだ材であってもよい。
 このようなはんだ材を用いた場合、はんだ材の融点が前記ろう材よりも低いので、より低温条件でもセラミックス基板と銅板との接合を行うことができる。
 さらに、上述したようにセラミックス基板の一方の面に銅板を低温で接合することができるので、セラミックス基板の他方の面にアルミニウム板を同時に接合することができる。このように、セラミックス基板の一方の面及び他方の面に、銅板及びアルミニウム板を同時に接合することで、製造工程を簡略化するとともに製造に要する時間を短縮し、製造コストを低減できる。さらに、一回の加熱処理で銅板とアルミニウム板を同時に接合できるので、銅板とアルミニウム板を別々に接合する場合と比較して、セラミックス基板にかかる熱負荷を低減し、セラミックス基板の反りを小さくでき、またセラミックス基板に割れが発生することを抑制できる。
 また、上述のパワーモジュール用基板の製造方法において、前記活性金属材はTi材であってもよい。これにより、溶加材の液相中にTiが溶け込むことで確実にセラミックス基板の表面を溶加材の液相で濡れさせることができるとともに、Ti材と銅板とを固相拡散接合することができ、セラミックス基板と銅板とを確実に接合することが可能となる。
 本発明によれば、セラミックス基板の一方の面に銅板を、他方の面にアルミニウム板を、同時かつ低温で接合でき、さらに製造コストが低いパワーモジュール用基板の製造方法を提供することができる。
本発明の一実施形態に係るパワーモジュール用基板を用いたパワーモジュールの概略説明図である。 本発明の一実施形態に係るパワーモジュール用基板の概略説明図である。 本発明の一実施形態に係るパワーモジュール用基板の製造方法及びパワーモジュールの製造方法を説明するフロー図である。 本発明の一実施形態に係るパワーモジュール用基板の製造方法及びパワーモジュールの製造方法の概略説明図である。 本発明の他の実施形態に係るパワーモジュール用基板の製造方法の概略説明図である。 本発明の他の実施形態に係るパワーモジュール用基板の製造方法の概略説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
 図1に、本実施形態に係るパワーモジュール用基板10を備えたパワーモジュール1を示す。
 このパワーモジュール1は、回路層12が配設されたパワーモジュール用基板10と、回路層12の一方の面(図1において上面)に接合層2を介して接合された半導体素子3と、パワーモジュール用基板10の他方側(図1において下側)に配置されたヒートシンク30と、を備えている。
 パワーモジュール用基板10は、図2に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図2において上面)に配設された回路層12と、セラミックス基板11の他方の面(図2において下面)に配設された金属層13と、を備えている。
 セラミックス基板11は、絶縁性の高いAlN(窒化アルミ)、Si(窒化ケイ素)、Al(アルミナ)等のセラミックスで構成されている。本実施形態では、放熱性の優れたAlN(窒化アルミ)で構成されている。また、セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、セラミックス基板11の一方の面に、導電性を有する銅又は銅合金の金属板が接合されることにより形成されている。本実施形態においては、回路層12は、純度99.99質量%以上の銅の圧延板を接合することで形成されている。なお、回路層12の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.3mmに設定されている。
 金属層13は、セラミックス基板11の他方の面に、アルミニウム又はアルミニウム合金の金属板が接合されることにより形成されている。本実施形態においては、金属層13は、純度99.99質量%以上のアルミニウムの圧延板を接合することで形成されている。なお、金属層13の厚さは0.1mm以上3.0mm以下の範囲内に設定されており、本実施形態では、1.6mmに設定されている。
 半導体素子3は、Si等の半導体材料で構成されている。この半導体素子3と回路層12は、接合層2を介して接合されている。
 接合層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
 ヒートシンク30は、前述のパワーモジュール用基板10からの熱を放散するためのものである。本実施形態においては、ヒートシンク30は、アルミニウム又はアルミニウム合金で構成されており、本実施形態ではA6063(アルミニウム合金)で構成されている。このヒートシンク30には、冷却用の流体が流れるための流路31が設けられている。なお、このヒートシンク30と金属層13とが、Al-Si系ろう材によって接合されている。
 次に、本実施形態に係るパワーモジュール1の製造方法について、図3のフロー図及び図4を参照して説明する。
 まず、図4に示すように、セラミックス基板11の一方の面(図4において上面)に、溶加材25、活性金属材26、及び回路層12となる銅板22を順に積層する(第一積層工程S01)とともに、セラミックス基板11の他方の面(図4において下面)に、図4に示すように、接合材27及び金属層13となるアルミニウム板23を順に積層する(第二積層工程S02)。すなわち、セラミックス基板11と銅板22の間において、セラミックス基板11側に溶加材25を配置し、銅板22側に活性金属材26を配置しており、セラミックス基板11とアルミニウム板23の間において、接合材27を配置している。
 ここで、溶加材25は、融点が660℃以下のCu-P-Sn-Ni系ろう材、Cu-Sn系ろう材、又はCu-Al系ろう材、Cu-P-Sn-Ni系はんだ材又はCu-Sn系はんだ材とされている。また、望ましくは、融点が600℃以下とされているとよい。本実施形態では、溶加材25としてCu-P-Sn-Ni系ろう材箔(Cu-7mass%P-15mass%Sn-10mass%Ni)を用いている。溶加材25の厚みは、5μm以上150μm以下の範囲とされている。
 活性金属材26は、例えばTi、Zr、Nb、Hfといった活性元素のいずれか1種又は2種以上を含有するものとされており、本実施形態では、活性金属材26としてTi箔を用いている。活性金属材26の厚みは、1μm以上20μm以下の範囲とされている。
 接合材27は、本実施形態では、融点降下元素であるSiを含有したAl-Si系ろう材とされており、具体的には、Al-7.5mass%Siろう材を用いている。
 次に、セラミックス基板11、溶加材25、活性金属材26、銅板22、接合材27、及びアルミニウム板23を積層方向に1~35kgf/cm(98~3430kPa)で加圧した状態で、真空加熱炉内に装入して加熱する(加熱処理工程S03)。ここで、本実施形態では、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内に、加熱温度は600℃以上650℃以下の範囲内に、加熱時間は30分以上360分以下の範囲に設定している。
 この加熱処理工程S03においては、活性金属材26(Ti箔)と銅板22とが固相拡散接合によって接合されるとともに、溶加材25が溶融して液相を形成し、この液相が凝固することにより、溶加材25を介して、セラミックス基板11と活性金属材26とが接合されることになる。また、加熱処理工程S03においては、接合材27が溶融して液相を形成し、この液相が凝固することにより、接合材27を介してセラミックス基板11とアルミニウム板23とが接合される。
 なお、固相拡散接合によって接合される活性金属材26と銅板22との接合面は、予め平滑な面とされている。
 これにより、セラミックス基板11の一方の面に回路層12が形成されるとともに、セラミックス基板11の他方の面に金属層13が形成され、本実施形態であるパワーモジュール用基板10が製造される。
 次いで、パワーモジュール用基板10の金属層13の下面に、Al-Si系ろう材を介してヒートシンク30を接合する(ヒートシンク接合工程S04)。
 次に、パワーモジュール用基板10の回路層12の上面に、はんだ材を介して半導体素子3を接合する(半導体素子接合工程S05)。
 このようにして、本実施形態に係るパワーモジュール1が製造される。
 本実施形態のパワーモジュール用基板の製造方法によれば、セラミックス基板11と銅板22との間において、セラミックス基板11側に融点が660℃以下の溶加材25を配置し、銅板22側に活性金属材26(本実施形態においてはTi箔)を配置した状態で加熱処理を行うので、加熱時、溶融した液相の溶加材25にTiが溶け込み、液相の溶加材25のセラミックス基板11に対する濡れ性が高まり、溶加材25が凝固した後には銅板22が溶加材25を介してセラミックス基板11に接合され、高い接合信頼性を有することとなる。
 また、本実施形態においては、活性金属材26と銅板22とを積層し、加圧した状態で、温度600℃以上650℃以下に加熱し保持するので、活性金属材26に含まれるTi原子を銅板22中に拡散させ、銅板22に含まれる銅原子を活性金属材26中に拡散させ、活性金属材26と銅板22とを固相拡散接合することができる。
 加熱温度が600℃以上の場合、活性金属材26に含まれるTi原子と銅板22に含まれる銅原子との拡散が促進され、短時間で十分に固相拡散させることができる。また、加熱温度が650℃以下の場合、活性金属材26と銅板22との間に液相が生じて接合界面にコブが生じたり、厚みが変動したりすることを抑制できる。そのため、加熱温度は、上記の範囲に設定されている。
 また、加熱処理工程S03において、積層方向に加圧される圧力が1kgf/cm(98kPa)以上の場合は、活性金属材26と銅板22とを十分に接合させることができ、活性金属材26と銅板22との間に隙間が生じることを抑制できる。また、加圧される圧力が35kgf/cm(3430kPa)以下の場合は、セラミックス基板11に割れが発生することを抑制できる。そのため、加圧される圧力は上記の範囲に設定されている。
 また、溶加材25の融点が660℃以下とされているので、Ag-Cu-Ti系ろう材を用いた場合よりも低い温度で溶加材の液相を形成することができる。
 また、溶加材25と銅板22との間に活性金属材26が介在されているので、溶加材25の液相と銅板22とが直接接触することがなく、接合界面にコブが生じたり、厚みが変動したりすることを抑制できる。
 さらに、活性金属材26と銅板22との接合される面は、予め平滑な面とされているので、接合界面に隙間が生じることを抑制でき、活性金属材26と銅板22とを確実に接合することができる。
 上述のように、溶加材25がセラミックス基板11と良好に接合されるとともに、活性金属材26と銅板22とが固相拡散接合によって接合されるので、セラミックス基板11と銅板22とを良好に接合でき、セラミックス基板11と回路層12との接合信頼性を向上させることができる。
 さらに、Agを含有しない溶加材25を用いてセラミックス基板11と銅板22とを接合するので、Ag-Cu-Ti系ろう材を用いた場合よりも製造コストを低減できる。
 さらに、上述したようにセラミックス基板11の一方の面に銅板22を低温で接合することができるので、セラミックス基板11の一方の面に銅板22を、他方の面にアルミニウム板23を同時に接合することができる。
このように、セラミックス基板11の一方の面及び他方の面に、銅板22及びアルミニウム板23を同時に接合することで、製造工程を簡略化するとともに製造に要する時間を短縮し、製造コストを低減できる。さらに、一回の加熱処理で銅板22とアルミニウム板23を接合できるので、銅板22とアルミニウム板23を別々に接合する場合と比較して、セラミックス基板11にかかる熱負荷を低減でき、セラミックス基板11の反りを小さくしたり、セラミックス基板11の割れの発生を抑制したりすることが可能となる。
 また、本実施形態に係るパワーモジュール用基板10、パワーモジュール1によれば、セラミックス基板11の一方の面に銅板22からなる回路層12が形成されているので、半導体素子3からの熱を拡げてセラミックス基板11側に放散することができる。また、銅板22は変形抵抗が大きいので、ヒートサイクルが負荷された際に、回路層12の変形が抑制され、半導体素子3と回路層12とを接合する接合層2の変形を抑制し、接合信頼性を向上できる。
 また、セラミックス基板11の他方の面にアルミニウム板23からなる金属層13が形成されているので、ヒートサイクル負荷時にパワーモジュール用基板10とヒートシンク30との間に生じる熱応力を金属層13によって吸収し、セラミックス基板11に割れが発生することを抑制できる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 なお、上記実施の形態では、接合材としてAl-Si系ろう材を介してセラミックス基板とアルミニウム板を接合する場合について説明したが、これに限定されるものではなく、例えば、過渡液相接合法(Transient Liquid Phase Bonding、TLP)を適用して接合しても良い。過渡液相接合法では、図5に示すように、アルミニウム板23のうちセラミックス基板11との接合面に、スパッタリング法などによってSi、Cu等の添加元素を固着して固着層127を形成した後に、セラミックス基板11とアルミニウム板23を積層し、積層方向に加圧し、加熱処理を行うことでセラミックス基板11とアルミニウム板23を接合することができる。すなわち、過渡液相接合法では、接合材として固着層127を介してセラミックス基板11とアルミニウム板23を積層し、銅板22とアルミニウム板23とを同時に接合することができる。
 過渡液相接合法において、積層方向に加圧する際の圧力は、1kgf/cm(98kPa)以上35kgf/cm(3430kPa)以下とされている。また、加熱処理における加熱温度及び加熱時間は、600℃以上650℃以下、30分以上360分以下とされている。
 なお、固着層の添加元素として、Si、Cuの他に、Zn、Ge、Ag、Mg、Ca、Ga、又はLi等の添加元素を用いても良い。
 また、接合材として金属粒子と有機物とを有する金属ペーストを用いることでセラミックス基板とアルミニウム板を接合することもできる。金属ペーストとしては、例えばAg粒子と有機物とを有するAgペーストが挙げられる。具体的には、図6に示すように、セラミックス基板11の他方の面に、スクリーン印刷などによってAgペースト227を塗布し、Agペースト227を介してセラミックス基板11とアルミニウム板23を積層し加熱処理を行うことで、銅板22とアルミニウム板23をセラミックス基板11に同時に接合できる。Agペースト227を用いて接合する場合、積層方向に加圧する際の圧力は、1kgf/cm(98kPa)以上35kgf/cm(3430kPa)以下とされている。また、加熱処理における加熱温度及び加熱時間は、600℃以上650℃以下、30分以上360分以下とされている。
 また、上記の実施形態では、パワーモジュール用基板とヒートシンクとをAl-Si系ろう材を介して接合する場合について説明したが、これに限定されるものではなく、例えば上述した過渡液相接合法(TLP)を適用し、固着層を介してパワーモジュール用基板とヒートシンクとを接合しても良い。また、Ag粒子と有機物とを有するAgペーストを介してパワーモジュール用基板とヒートシンクとを接合しても良い。
 さらに、ヒートシンクとして冷却用の流路を有するもので説明したが、ヒートシンクの構造に特に限定はなく、例えば空冷方式のヒートシンクであってもよい。また、ヒートシンクは、放熱フィンを有していても良い。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、AlNからなるセラミックス基板(40mm×40mm×0.635mmt(厚さ))の一方の面に表1に示す溶加材、活性金属材、純度99.99%の銅からなる銅板(37mm×37mm×0.3mmt)を積層し、他方の面に表1に示す接合材を介してアルミニウム板(37mm×37mm×1.6mmt)を積層する。
 なお、活性金属の位置が銅板側とされた本発明例1~12については、セラミックス基板/溶加材/活性金属材/銅板の順に積層し、セラミックス基板側とされた本発明例13についてはセラミックス基板/活性金属材/溶加材/銅板の順に積層した。
 なお、表1に示す接合材として、「Al-Si」は、Al-7.5mass%Siろう材とした。「Cu(TLP)」は、固着層としてCuを用いた。「Agペースト」は、Ag粒子と有機物とを含むAgペーストとした。
 そして、積層方向に圧力12kgf/cm(1176kPa)で加圧した状態で真空加熱炉内に装入し、加熱することによってセラミックス基板の一方の面に銅板を接合し、他方の面にアルミニウム板を接合し、セラミックス基板の一方の面及び他方の面に回路層及び金属層を形成した。ここで、真空加熱炉内の圧力を10-6Pa以上、10-3Pa以下の範囲内に設定し、加熱温度及び加熱時間は表1に示す条件とした。このようにしてパワーモジュール用基板を得た。
 次いで、上述のパワーモジュール用基板の金属層の他方の面側にヒートシンクを接合した。ヒートシンクは、A6063からなるアルミニウム板(50mm×60mm×5mmt)とし、ヒートシンクの接合は表1に示す方法で行った。表1のヒートシンクの接合方法に示す「Al-Si」では、Al-10.5mass%Siろう材を用い、「Cu(TLP)」では、Cuの固着層を用い、「Agペースト」では、Ag粒子と有機物とを含むAgペーストを用いて接合を行った。パワーモジュール用基板とセラミックス基板の接合時の圧力は12kgf/cm(1176kPa)、加熱温度は610℃、加熱時間は60分とし、真空雰囲気で行った。
 このようにして、本発明例1~13のヒートシンク付パワーモジュール用基板を作製した。
 上述のようにして得られた本発明例のヒートシンク付パワーモジュール用基板に対して、回路層とセラミックス基板との接合率、及び金属層とセラミックス基板との接合率を評価した。さらに、ヒートシンク付パワーモジュール用基板に対して、冷熱サイクル試験を行い、試験後の回路層とセラミックス基板との接合率、及び金属層とセラミックス基板との接合率を評価した。
 冷熱サイクルの試験方法と、接合率の評価方法を以下に説明する。
(冷熱サイクル試験)
 冷熱サイクル試験は、冷熱衝撃試験機エスペック社製TSB-51を使用し、液相(フロリナート)中で、ヒートシンク付パワーモジュール用基板を-40℃の温度環境下に5分維持した後、125℃まで加温して同温度環境下に5分維持し、再び-40℃の温度環境下に戻すプロセスを1サイクルとして、この温度変化のプロセスを3000サイクル実施した。
(接合率評価)
 ヒートシンク付パワーモジュール用基板に対し、セラミックス基板と回路層との界面の接合率、及びセラミックス基板と金属層との界面の接合率について超音波探傷装置を用いて評価し、以下の式から算出した。
 ここで、初期接合面積とは、接合前における接合すべき面積、すなわち本実施例では回路層及び金属層の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。なお、セラミックス基板、回路層、及び金属層にクラックが生じた場合、このクラックは超音波探傷像において白色部で示され、クラックも剥離面積として評価されることになる。
Figure JPOXMLDOC01-appb-M000001
 以上の評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 融点が660℃以下の溶加材を用い、セラミックス基板の一方の面及び他方の面に回路層及び金属層を同時に形成した本発明例1~13においては、初期の接合率は高く、冷熱サイクルが負荷された後も高い接合率を維持できるヒートシンク付パワーモジュール用基板が得られることが確認された。
10 パワーモジュール用基板
11 セラミックス基板
12 回路層
13 金属層
22 銅板
23 アルミニウム板
25 溶加材
26 活性金属材
27、127、227 接合材
 本発明は、セラミックス基板の一方の面に銅板を、他方の面にアルミニウム板を、それぞれ同時かつ低温で接合でき、しかも製造コストが低いパワーモジュール用基板の製造方法に関する。

Claims (7)

  1.  セラミックス基板と、このセラミックス基板の一方の面に銅板が接合されてなる回路層と、前記セラミックス基板の他方の面にアルミニウム板が接合されてなる金属層と、を備えたパワーモジュール用基板の製造方法であって、
     前記セラミックス基板の一方の面側において、活性金属材及び融点が660℃以下の溶加材を介して、前記セラミックス基板と前記銅板とを積層する第一積層工程と、
     前記セラミックス基板の他方の面側において、接合材を介して前記セラミックス基板と前記アルミニウム板とを積層する第二積層工程と、
     積層された前記セラミックス基板、前記銅板、及び前記アルミニウム板を加熱処理する加熱処理工程と、を備え、
     前記セラミックス基板と前記銅板、及び前記セラミックス基板と前記アルミニウム板を同時に接合するパワーモジュール用基板の製造方法。
  2.  前記第一積層工程において、前記セラミックス基板側に前記溶加材を配置し、前記銅板側に前記活性金属材を配置する請求項1記載のパワーモジュール用基板の製造方法。
  3.  前記溶加材が液相線温度450℃以上のろう材である請求項1又は請求項2に記載のパワーモジュール用基板の製造方法。
  4.  前記ろう材は、Cu-P-Sn-Ni系ろう材、Cu-Sn系ろう材、及びCu-Al系ろう材の中から選択されるいずれか一種である請求項3に記載のパワーモジュール用基板の製造方法。
  5.  前記溶加材が液相線温度450℃未満のはんだ材である請求項1又は請求項2に記載のパワーモジュール用基板の製造方法。
  6.  前記はんだ材は、Cu-P-Sn-Ni系はんだ材又はCu-Sn系はんだ材である請求項5に記載のパワーモジュール用基板の製造方法。
  7.  前記活性金属材は、Ti材である請求項1から請求項6のいずれか一項に記載のパワーモジュール用基板の製造方法。
PCT/JP2014/057098 2013-03-18 2014-03-17 パワーモジュール用基板の製造方法 WO2014148420A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157025159A KR102224535B1 (ko) 2013-03-18 2014-03-17 파워 모듈용 기판의 제조 방법
CN201480012586.1A CN105027277B (zh) 2013-03-18 2014-03-17 功率模块用基板的制造方法
EP14767678.7A EP2978018B1 (en) 2013-03-18 2014-03-17 Method for manufacturing power-module substrate
US14/772,913 US9833855B2 (en) 2013-03-18 2014-03-17 Method for manufacturing power module substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-055518 2013-03-18
JP2013055518A JP6111764B2 (ja) 2013-03-18 2013-03-18 パワーモジュール用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2014148420A1 true WO2014148420A1 (ja) 2014-09-25

Family

ID=51580099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057098 WO2014148420A1 (ja) 2013-03-18 2014-03-17 パワーモジュール用基板の製造方法

Country Status (7)

Country Link
US (1) US9833855B2 (ja)
EP (1) EP2978018B1 (ja)
JP (1) JP6111764B2 (ja)
KR (1) KR102224535B1 (ja)
CN (1) CN105027277B (ja)
TW (1) TWI614845B (ja)
WO (1) WO2014148420A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121157A4 (en) * 2014-03-20 2017-11-08 Mitsubishi Materials Corporation Bonded body, substrate for power modules, power module and method for producing bonded body
EP3355372A4 (en) * 2015-09-25 2019-05-08 Mitsubishi Materials Corporation LUMINESCENT MODULE WITH COOLER, AND METHOD OF MANUFACTURING THE SAME
WO2021106097A1 (ja) * 2019-11-27 2021-06-03 日本碍子株式会社 接合基板の製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672324B2 (ja) * 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
EP3041045B1 (en) * 2013-08-26 2019-09-18 Mitsubishi Materials Corporation Bonded body and power module substrate
JP5720839B2 (ja) * 2013-08-26 2015-05-20 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
JP6127833B2 (ja) * 2013-08-26 2017-05-17 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6079505B2 (ja) 2013-08-26 2017-02-15 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
US9969654B2 (en) 2014-01-24 2018-05-15 United Technologies Corporation Method of bonding a metallic component to a non-metallic component using a compliant material
JP6256176B2 (ja) 2014-04-25 2018-01-10 三菱マテリアル株式会社 接合体の製造方法、パワーモジュール用基板の製造方法
JP6471465B2 (ja) * 2014-11-11 2019-02-20 三菱マテリアル株式会社 冷却器付パワーモジュール用基板
JP2016184602A (ja) * 2015-03-25 2016-10-20 京セラ株式会社 回路基板
DE102015224464A1 (de) * 2015-12-07 2017-06-08 Aurubis Stolberg Gmbh & Co. Kg Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats
CN106328543A (zh) * 2016-08-24 2017-01-11 浙江德汇电子陶瓷有限公司 金属‑陶瓷复合衬底的制造方法及其制造的复合衬底
JP7052374B2 (ja) 2017-02-06 2022-04-12 三菱マテリアル株式会社 セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法
JP6965768B2 (ja) * 2017-02-28 2021-11-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
DE102017205813A1 (de) * 2017-04-05 2018-10-11 Mahle International Gmbh Verfahren zum Herstellen einer Kühlvorrichtung, eine Kühlvorrichtung und eine Kühlanordnung
JP7124633B2 (ja) * 2017-10-27 2022-08-24 三菱マテリアル株式会社 接合体、及び、絶縁回路基板
JP7230432B2 (ja) 2017-11-02 2023-03-01 三菱マテリアル株式会社 接合体、及び、絶縁回路基板
JP7192451B2 (ja) * 2018-01-25 2022-12-20 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021039816A1 (ja) * 2019-08-29 2021-03-04 京セラ株式会社 電気回路基板及びパワーモジュール
CN115989579A (zh) * 2020-10-07 2023-04-18 株式会社东芝 接合体、陶瓷电路基板及半导体装置
TWI795199B (zh) * 2022-01-28 2023-03-01 奇鋐科技股份有限公司 散熱模組製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2003197826A (ja) 2001-12-26 2003-07-11 Toshiba Corp セラミックス回路基板およびそれを用いた半導体モジュール
JP2005035874A (ja) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP2005050919A (ja) * 2003-07-30 2005-02-24 Ngk Spark Plug Co Ltd 回路基板および半導体装置
JP2011155227A (ja) * 2010-01-28 2011-08-11 Honda Motor Co Ltd 半導体装置及びその製造方法
JP2012136378A (ja) * 2010-12-25 2012-07-19 Kyocera Corp 回路基板およびこれを用いた電子装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561321A (en) * 1992-07-03 1996-10-01 Noritake Co., Ltd. Ceramic-metal composite structure and process of producing same
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
JP3933287B2 (ja) * 1998-01-30 2007-06-20 電気化学工業株式会社 ヒートシンク付き回路基板
JP2001148451A (ja) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp パワーモジュール用基板
JP2000349400A (ja) 1999-06-04 2000-12-15 Denki Kagaku Kogyo Kk 回路基板
DE60107670T2 (de) * 2001-02-27 2005-10-06 Sumida Corp. Bleifreie lötlegierung und deren verwendung in elektronischen bauelementen
US9533379B2 (en) * 2002-08-23 2017-01-03 Lincoln Global, Inc. Phosphorous-copper base brazing alloy
JP4206915B2 (ja) * 2002-12-27 2009-01-14 三菱マテリアル株式会社 パワーモジュール用基板
WO2005005092A2 (en) * 2003-05-13 2005-01-20 Reactive Nanotechnologies, Inc. Method of controlling thermal waves in reactive multilayer joining and resulting product
JP4362597B2 (ja) * 2003-05-30 2009-11-11 Dowaメタルテック株式会社 金属−セラミックス回路基板およびその製造方法
JP2005052869A (ja) * 2003-08-06 2005-03-03 Sumitomo Metal Mining Co Ltd 高温はんだ付用ろう材とそれを用いた半導体装置
JP4207896B2 (ja) * 2005-01-19 2009-01-14 富士電機デバイステクノロジー株式会社 半導体装置
JP4913605B2 (ja) * 2005-01-20 2012-04-11 株式会社アライドマテリアル 半導体装置用部材の製造方法
DE102005032076B3 (de) * 2005-07-08 2007-02-08 Infineon Technologies Ag Verfahren zum Herstellen eines Schaltungsmoduls
DE102005061049A1 (de) * 2005-12-19 2007-06-21 Curamik Electronics Gmbh Metall-Keramik-Substrat
US8164176B2 (en) * 2006-10-20 2012-04-24 Infineon Technologies Ag Semiconductor module arrangement
JP2008198706A (ja) * 2007-02-09 2008-08-28 Hitachi Metals Ltd 回路基板、その製造方法およびそれを用いた半導体モジュール
CN101687717A (zh) * 2007-04-24 2010-03-31 陶瓷技术股份公司 具有一种金属化陶瓷体的构件
US7821130B2 (en) * 2008-03-31 2010-10-26 Infineon Technologies Ag Module including a rough solder joint
KR20110033117A (ko) * 2008-06-06 2011-03-30 미쓰비시 마테리알 가부시키가이샤 파워 모듈용 기판, 파워 모듈, 및 파워 모듈용 기판의 제조 방법
US20100175756A1 (en) * 2009-01-15 2010-07-15 Weihs Timothy P Method For Bonding Of Concentrating Photovoltaic Receiver Module To Heat Sink Using Foil And Solder
GB2479844B (en) * 2009-01-29 2013-06-19 Smith International Brazing methods for PDC cutters
JP5504842B2 (ja) * 2009-11-20 2014-05-28 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5577980B2 (ja) * 2010-09-16 2014-08-27 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法
JP5736807B2 (ja) * 2011-02-02 2015-06-17 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール
JP2012178513A (ja) 2011-02-28 2012-09-13 Mitsubishi Materials Corp パワーモジュールユニット及びパワーモジュールユニットの製造方法
US20130022836A1 (en) * 2011-07-20 2013-01-24 Diamond Innovations, Inc. Brazed coated diamond-containing materials
CN103703560B (zh) * 2011-08-04 2016-07-20 三菱电机株式会社 半导体装置及其制造方法
US9504144B2 (en) * 2012-02-01 2016-11-22 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
JP5910166B2 (ja) 2012-02-29 2016-04-27 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP6044097B2 (ja) * 2012-03-30 2016-12-14 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、冷却器付パワーモジュール用基板及びパワーモジュール
JP2013229579A (ja) * 2012-03-30 2013-11-07 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
TWI600126B (zh) * 2012-10-16 2017-09-21 三菱綜合材料股份有限公司 附散熱座功率模組用基板,附散熱座功率模組,及附散熱座功率模組用基板之製造方法
CN102922828B (zh) 2012-10-24 2015-04-22 浙江工贸职业技术学院 铜箔键合陶瓷基板的复合板及其制备方法
JP6056432B2 (ja) * 2012-12-06 2017-01-11 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法
JP5664679B2 (ja) * 2013-03-07 2015-02-04 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
TWI604574B (zh) * 2013-03-14 2017-11-01 三菱綜合材料股份有限公司 接合體、電源模組用基板及附散熱片之電源模組用基板
JP5672324B2 (ja) * 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP3211856U (ja) 2017-05-09 2017-08-10 株式会社アイエスピー メジャー付きタオル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2003197826A (ja) 2001-12-26 2003-07-11 Toshiba Corp セラミックス回路基板およびそれを用いた半導体モジュール
JP2005035874A (ja) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP2005050919A (ja) * 2003-07-30 2005-02-24 Ngk Spark Plug Co Ltd 回路基板および半導体装置
JP2011155227A (ja) * 2010-01-28 2011-08-11 Honda Motor Co Ltd 半導体装置及びその製造方法
JP2012136378A (ja) * 2010-12-25 2012-07-19 Kyocera Corp 回路基板およびこれを用いた電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2978018A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121157A4 (en) * 2014-03-20 2017-11-08 Mitsubishi Materials Corporation Bonded body, substrate for power modules, power module and method for producing bonded body
EP3355372A4 (en) * 2015-09-25 2019-05-08 Mitsubishi Materials Corporation LUMINESCENT MODULE WITH COOLER, AND METHOD OF MANUFACTURING THE SAME
WO2021106097A1 (ja) * 2019-11-27 2021-06-03 日本碍子株式会社 接合基板の製造方法

Also Published As

Publication number Publication date
TWI614845B (zh) 2018-02-11
US9833855B2 (en) 2017-12-05
CN105027277B (zh) 2018-04-20
US20160016245A1 (en) 2016-01-21
JP6111764B2 (ja) 2017-04-12
KR20150133191A (ko) 2015-11-27
KR102224535B1 (ko) 2021-03-05
EP2978018A4 (en) 2016-11-02
EP2978018A1 (en) 2016-01-27
TW201508871A (zh) 2015-03-01
JP2014183119A (ja) 2014-09-29
CN105027277A (zh) 2015-11-04
EP2978018B1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP6111764B2 (ja) パワーモジュール用基板の製造方法
WO2014148425A1 (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
TWI641300B (zh) 接合體及功率模組用基板
KR102122625B1 (ko) 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈
JP5403129B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
KR102154889B1 (ko) 접합체의 제조 방법 및 파워 모듈용 기판의 제조 방법
TWI637466B (zh) 接合體及功率模組用基板
JP5720839B2 (ja) 接合体及びパワーモジュール用基板
KR20140147090A (ko) 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈용 기판 및 파워 모듈
WO2015163232A1 (ja) 接合体の製造方法、パワーモジュール用基板の製造方法
JP5725061B2 (ja) パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板
JP6432208B2 (ja) パワーモジュール用基板の製造方法、及び、ヒートシンク付パワーモジュール用基板の製造方法
JP5904257B2 (ja) パワーモジュール用基板の製造方法
JP2014039062A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
KR20180104659A (ko) 접합체, 파워 모듈용 기판, 접합체의 제조 방법 및 파워 모듈용 기판의 제조 방법
WO2016002609A1 (ja) セラミックス/アルミニウム接合体の製造方法、パワーモジュール用基板の製造方法、及び、セラミックス/アルミニウム接合体、パワーモジュール用基板
TWI708754B (zh) 接合體,電源模組用基板,電源模組,接合體的製造方法及電源模組用基板的製造方法
WO2016060079A1 (ja) 冷却器付パワーモジュール用基板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012586.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772913

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014767678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157025159

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE