WO2014147821A1 - 波長多重光受信器 - Google Patents

波長多重光受信器 Download PDF

Info

Publication number
WO2014147821A1
WO2014147821A1 PCT/JP2013/058299 JP2013058299W WO2014147821A1 WO 2014147821 A1 WO2014147821 A1 WO 2014147821A1 JP 2013058299 W JP2013058299 W JP 2013058299W WO 2014147821 A1 WO2014147821 A1 WO 2014147821A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
light receiving
polarization
light
division multiplexing
Prior art date
Application number
PCT/JP2013/058299
Other languages
English (en)
French (fr)
Inventor
鄭錫煥
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015506512A priority Critical patent/JP6123883B2/ja
Priority to PCT/JP2013/058299 priority patent/WO2014147821A1/ja
Publication of WO2014147821A1 publication Critical patent/WO2014147821A1/ja
Priority to US14/844,432 priority patent/US9584246B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29302Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on birefringence or polarisation, e.g. wavelength dependent birefringence, polarisation interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • G02B6/29343Cascade of loop resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29386Interleaving or deinterleaving, i.e. separating or mixing subsets of optical signals, e.g. combining even and odd channels into a single optical signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29397Polarisation insensitivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Definitions

  • the present invention relates to a wavelength division multiplexing optical receiver, for example, a wavelength division multiplexing optical receiver using a silicon fine wire waveguide used in optical communication and optical interconnection.
  • MUX multiplex
  • DeMUX demultiplex
  • the WDM optical signal As necessary using a wavelength multiplexer / demultiplexer.
  • a Si wire waveguide has a very large structural anisotropy (Structural Birefringence). Therefore, the transmission characteristics of MUX / DeMUX composed of Si wire waveguides are significantly different depending on the polarization state of the optical signal. That is, it operates normally only in the polarization state of either the TE mode or the TM mode.
  • the polarization state is not kept constant. Therefore, the polarization component of the optical signal incident on the optical receiving unit composed of the Si thin line type DeMUX and the light receiver (PD: PhotoDiode) is random, and the reception characteristics are inevitably deteriorated depending on the polarization state.
  • PD PhotoDiode
  • FIG. 12 is a conceptual plan view of a conventional wavelength multi-polymerization demultiplexer, in which a WDM optical signal incident on an input waveguide 71 made of a silicon fine wire waveguide is of a directional coupler type made of a silicon fine wire waveguide.
  • a polarization beam splitting element (PBS) 72 separates TE light and TM light whose polarization planes are orthogonal to each other and outputs the light to a loop-shaped waveguide 73 made of a silicon thin wire waveguide.
  • PBS polarization beam splitting element
  • the TM light has its polarization plane rotated by 90 ° by an eccentric double core type polarization rotation element (PR: Polarization Rotator) 74 composed of a silicon fine wire waveguide inserted into the loop-shaped waveguide 73 . Output as light.
  • PR Polarization Rotator
  • the TE light separated by the polarization separation element 72 is guided through the loop waveguide 73 while maintaining the plane of polarization.
  • the add-drop-type ring resonator having an optical path length different from each other (AD-MRR: Add-Drop MicroRing Resonator) 75 1, 75 2 by minute
  • AD-MRR Add-Drop MicroRing Resonator
  • Each wavelength is demultiplexed by wave action.
  • the demultiplexed TE lights are output to loop waveguides 76 1 and 76 2 including polarization rotation elements 77 1 and 77 2 and optical path length compensation waveguides 78 1 and 78 2 .
  • TE light Of outputted TE light, it is a loop-shaped waveguides 76 1, 76 2 TE * light guided clockwise rotates 90 ° the plane of polarization by the polarization rotation element 77 1, 77 2 in FIG TM It is output as light and input to the polarization beam combiners 79 1 and 79 2 .
  • the TE light guided in the loop-shaped waveguides 76 1 and 76 2 in the counterclockwise direction is aligned with the TM light by the optical path length compensation waveguides 78 1 and 78 2 , so that it is a directional coupler type.
  • the polarization combining element 79 1, 79 multiplexed is input to 2 (MUX), the output waveguide 80 1, 80 is 2 from being separated for each wavelength output light receiver (not shown) is received by the The
  • MDW light incident on the AD-MRR is constant polarization state, i.e., because the TE mode or the TE * mode, it is possible to prevent deterioration of the characteristics of the demultiplexing (DeMUX). Therefore, the WDM optical signal can be multiplexed / demultiplexed without being affected by the polarization state of the incident WDM optical signal.
  • an input waveguide composed of a silicon fine wire waveguide and light input from the input waveguide to the first signal and the second signal are connected to the input waveguide according to the polarization plane.
  • a plurality of ring waveguides an output waveguide comprising a silicon wire waveguide optically coupled to each ring waveguide on the drop port side and having two output ports, and the polarization sp And a light receiver connected to the output waveguide so that an optical distance from the first light receiving surface to the second light receiving surface is equal to each other.
  • the disclosed wavelength multiplexed optical receiver it is possible to eliminate the excessive loss of one polarization component and to eliminate the polarization independent operation of the light receiver.
  • FIG. 1 is an explanatory diagram of a wavelength division multiplexing optical receiver according to an embodiment of the present invention
  • FIG. 1 (a) is a conceptual plan view
  • FIG. 1 (b) is an enlarged view of a main part showing a light propagation state.
  • FIG. A polarization splitter 12 that separates the wavelength multiplexed light input from the input waveguide 11 into a first signal and a second signal according to the polarization plane is connected to the input waveguide 11 formed of a silicon fine wire waveguide.
  • the output end of the polarization splitter 12 is connected to a loop-shaped waveguide 13 made of a silicon fine wire waveguide in which the first signal and the second signal propagate in opposite directions.
  • a polarization rotator is connected to the loop-shaped waveguide 13. 14 is connected.
  • the polarization splitter 12 and the polarization rotator 14 may be appropriately selected from known polarization splitters and polarization rotators based on various operating principles.
  • a plurality of ring waveguides 15 1 to 15 4 composed of silicon thin wire waveguides having different optical path lengths constituting the loop waveguide 13 and the add / drop type ring resonator array 17 are optically coupled.
  • the output waveguides 16 1 to 16 4 to the drop port side of each ring waveguide 15 1 to 15 4 made of a silicon wire waveguide having two output ports optically coupled.
  • This add / drop ring resonator array is a duplexer (DeMUX).
  • the number of ring-shaped waveguides is four. However, in reality, about four or more according to the wavelength band of WDM light, that is, eight or sixteen. It can also be set.
  • a light receiver For each of the output waveguides 16 1 to 16 4 extending from the two output ports, a light receiver (illustrated) so that the optical distances from the polarization splitter 12 to the first light receiving surface and the second light receiving surface are equal. Is omitted).
  • FIG. 2 is an explanatory diagram of the dependence of skew on the optical path length in the wavelength division multiplexing optical receiver according to the embodiment of the present invention
  • FIG. 2 (a) is a schematic cross-sectional view of a silicon wire waveguide
  • (B) is a simulation result of Skew-optical path length difference characteristics.
  • a simulation was performed on a silicon fine wire waveguide 3 formed of a rectangular core layer having a width of 480 nm and a height of 250 nm.
  • the time difference (Skew) between signals input to the first light receiving surface and the second light receiving surface For example, assuming a modulation frequency of 25 GHz (1 bit ⁇ 40 ps), a low skew of at least 2 ps or less is desired. Therefore, as shown in FIG. 2B, it is necessary to make the optical path length difference as equal as possible within the range of 145 ⁇ m or less, but it is within the range that can be easily achieved by the current fabrication technique. This means that even if the modulation frequency is 50 GHz (1 bit ⁇ 20 ps), it can be handled.
  • the group refractive index is set to 4.1 as the dispersion relation of the silicon fine wire waveguide 3.
  • the WDM optical signal input to the input waveguide 11 is separated into a TM optical signal and a TE optical signal according to the polarization plane by the polarization splitter 12, and the loop waveguide 13 is reversed.
  • the TM optical signal is converted by the polarization rotator 14 into a TE * optical signal having a plane of polarization rotated by 90 °.
  • the TE optical signal and the TE * optical signal guided through the loop waveguide 13 are demultiplexed for each wavelength ( ⁇ 1 to ⁇ 4 ) by the ring waveguides 15 1 to 15 4 constituting the add / drop type ring resonator. Is done.
  • the demultiplexed optical signal is input to the light receiver as a TE optical signal or a TE * optical signal in the same polarization state, the light receiving characteristics are not affected by the polarization state. There are no restrictions on polarization independence.
  • the TE optical signal and the TE * optical signal propagate as shown in FIG. 1B, as described above, the first light receiving surface and the first light receiving surface from the polarization splitter 12 are increased in order to increase the light receiving efficiency. It is necessary to make the optical distances to the two light receiving surfaces equal. To that end, it may be inserted a delay line to the output waveguides 16 1 to 16 4.
  • the light receiver may have a structure having a single light receiving portion, and optical signals may be input from opposite directions to the first light receiving surface and the second light receiving surface facing each other.
  • a structure having two first light receiving portions and a second light receiving portion arranged in parallel is provided, and the first light receiving surface provided in the first light receiving portion and the second light receiving portion are provided.
  • Optical signals may be input to the second light receiving surface from opposite directions.
  • the light receiving unit for each polarization component can be optimized independently, and deterioration due to leakage light from the end of the light receiving unit can be prevented. That is, in the case of a single light receiving portion, the light component that has not been absorbed by the light receiving portion leaks out into the loop waveguide 13 through the add / drop ring resonator array 17 and becomes noise.
  • a structure having a single light receiving portion as a light receiver, and a 3 dB optical coupler having an input port and an output port of 2: 2 are input to the first light receiving surface and the second light receiving surface from the same direction. You may do it.
  • a 3 dB optical coupler By using a 3 dB optical coupler, a bimodal intensity distribution can be obtained regardless of the relative intensity relationship between the TE optical signal and the TE * optical signal, thereby reducing the photocarrier density generated inside the light receiver. This makes it possible to achieve both low power and high speed of the photoreceiver.
  • Ge has a high absorptance with respect to light propagating through the silicon fine wire waveguide. Therefore, it is desirable to use a light receiver that uses single crystal germanium grown on the silicon fine wire waveguide as a light absorption layer. .
  • each of the ring waveguides 15 1 to 15 4 may be provided with heating means such as a micro heater for adjusting the optical path length so that the wavelength transmitted through the ring waveguides 15 1 to 15 4 can be finely adjusted.
  • heating means such as a micro heater may be provided in each of the output waveguides 16 1 to 16 4 in order to finely adjust the optical path length.
  • the second-stage polarization rotator and the polarization splitter (polarization combining element) as in the conventional example shown in FIG. 12 are not required. Therefore, the occurrence of excessive loss can be suppressed. Also, since the light incident on the light receiver is only TE mode light and the polarization state is constant, the light receiver does not require a polarization-independent operation.
  • FIG. 3 is a conceptual plan view of the wavelength division multiplexing optical receiver according to the first embodiment of the present invention.
  • a polarization splitter 22 that separates the wavelength multiplexed light input from the input waveguide 21 into TE signal light and TM signal light according to the polarization plane is connected to the input waveguide 21 formed of a silicon fine wire waveguide.
  • the output end of the polarization splitter 22 is connected to a loop-shaped waveguide 23 made of a silicon thin wire waveguide in which TE signal light and TM signal light propagate in opposite directions, and a polarization rotator 24 is connected to the loop-shaped waveguide 23.
  • the polarization splitter 22 is a directional coupler type polarization splitter made of a silicon fine wire waveguide
  • the polarization rotator 24 is an eccentric double core type polarization rotator made of a silicon fine wire waveguide. It is.
  • a plurality of ring waveguides 25 1 to 25 4 made of silicon thin wire waveguides having different optical path lengths constituting the loop-shaped waveguide 23 and the add / drop type ring resonator array are optically coupled.
  • This add / drop ring resonator array is a duplexer (DeMUX).
  • the demultiplexing wavelength can be controlled by optimizing the radius of curvature R of the ring waveguides 25 1 to 25 4 .
  • R 1 8 ⁇ m
  • R 2 R 1 - ⁇ R
  • R 3 R 2 ⁇ ⁇ R
  • ⁇ R may be adjusted. For example, when realizing four waves with a channel interval of 400 GHz, ⁇ R may be set to 16 nm.
  • the delay lines 27 1 to 27 are used so that the optical distances from the polarization splitter 22 to the first light receiving surface and the second light receiving surface are equal. 27 4 by inserting the connecting photodiodes 28 1 to 28 4.
  • FIG. 4 is a conceptual configuration diagram of a photodiode used in the wavelength division multiplexing optical receiver according to the first embodiment of the present invention
  • FIG. 4A is a plan view
  • FIG. 4B is a plan view of FIG. Is a cross-sectional view taken along the alternate long and short dash line connecting AA ′ of FIG.
  • an SOI substrate is used in which a single crystal Si layer having a thickness of 250 nm is provided on a Si substrate 31 via a BOX layer 32 made of SiO 2 which also serves as a lower cladding layer.
  • the silicon thin wire waveguide pattern shown in FIG. 3 is formed on the single-crystal Si layer by a light exposure process using normal lithography and etching.
  • Lithography in this case may be either light exposure or electron beam exposure, and as an etching method, for example, dry etching is used by a method such as reactive ion etching.
  • etching is performed so that the height of the slab portion 34 is 50 nm, thereby forming a single crystal Si core layer 33 having a width of 480 nm and a height of 200 nm.
  • a non-doped Ge layer that becomes the i-type Ge light absorption layer 35 is selectively epitaxially grown, and then n-type impurity P is ion-implanted into the surface to form an n + -type Ge contact layer 36.
  • a p + -type Si contact layer 37 is formed by ion-implanting B, which is a p-type impurity, into the slab portions 34 on both sides of one single crystal Si core layer 33.
  • the side electrode 40 By forming the side electrode 40, the photodiode is completed.
  • the first embodiment of the present invention does not require the second-stage polarization rotator and the polarization combiner as in the conventional example, so that the loss caused by the polarization conversion can be suppressed and the configuration is simplified. Is done. In addition, since only TE light is incident on the photodiode, the polarization-independent operation characteristic is not required.
  • FIGS. 5 and 6 are schematic plan views of a wavelength-multiplexed optical receiver of the second embodiment of the present invention, where, as a photodiode, a photodiode 29 1-29 4 two light receiving areas are arranged in parallel ing.
  • FIG. 6 is a conceptual configuration diagram of a photodiode used in the wavelength division multiplexing optical receiver according to the second embodiment of the present invention
  • FIG. 6A is a plan view
  • FIG. 6B is a plan view of FIG. Is a cross-sectional view taken along the alternate long and short dash line connecting AA ′ of FIG.
  • two PIN type photodiodes shown in FIG. 4B are provided in parallel, and B ions are implanted into the slab portion 34 therebetween to form a p + -type Si contact layer 37. Is.
  • two photodiodes having the same structure are arranged in parallel and the sum of currents flowing from both photodiodes is taken, so that the characteristics of the photodiodes for each polarization component are independently optimized. it can.
  • FIG. 7 is a conceptual plan view of the wavelength division multiplexing optical receiver according to the third embodiment of the present invention.
  • a microheater 50 that effectively adjusts the optical path length is provided above each of the ring waveguides 25 1 to 25 4. it is provided with a 1-50 4.
  • micro heaters 50 1 to 50 4 are provided above the ring waveguides 25 1 to 25 4 , and the transmission wavelength is controlled by changing the refractive index by heat. Note that when the temperature rises due to heating, the refractive index of the single crystal Si core layer increases and the wavelength shifts to the longer wavelength side.
  • FIG. 8 is an explanatory diagram of the microheater in the wavelength division multiplexing optical receiver according to the third embodiment
  • FIG. 8A is a schematic plan view
  • FIG. 8B is an AA diagram in FIG. It is a schematic sectional drawing along the dashed-dotted line which connects ′.
  • a Ti pattern 51 is formed on an upper clad layer 38 that covers a single crystal Si core layer 33 that becomes the ring waveguide 25.
  • a protective insulating film 52 made of a SiO 2 film
  • an Al contact electrode 53 is provided at the end of the Ti pattern 51 to form the microheater 50.
  • the transmission wavelength of the add / drop type ring resonator can be arbitrarily finely adjusted. Even if variations occur in the case, demultiplexing as designed is possible.
  • FIG. 9 is a conceptual plan view of the wavelength division multiplexing optical receiver according to the fourth embodiment of the present invention.
  • light from the two output ports of the output waveguides 26 1 to 26 4 is converted into 3 dB optical couplers 61 1 to 61. 61 4 through the incident from the same light-receiving surface side to the photodiode 62 1-62 4.
  • FIG. 10 is an explanatory diagram of the light intensity distribution of the 3 dB optical coupler
  • FIG. 10A is a schematic diagram of the complex electric field display of the two input components and the periphery of the 3 dB optical coupler photodiode
  • FIG. It is a calculation example of the light intensity distribution in the 3 dB optical coupler with respect to two inputs.
  • P is the intensity of each signal
  • is the propagation constant of each signal
  • is the phase of each input signal
  • L is the distance from the polarization splitter 22. Represented by (P TE ) 1/2 ⁇ Exp ⁇ (j ⁇ L + ⁇ 1 ) ⁇ and (P TE * ) 1/2 ⁇ Exp ⁇ (j ⁇ * L + ⁇ 2 ) ⁇ , respectively.
  • the photo carrier density generated inside the photodiode 62 can be reduced, and both reduction in power and speed of the photodiode 62 can be achieved.
  • This ⁇ is caused by Skew, but the magnitude of ⁇ does not depend on the modulation frequency (for example, several tens of GHz), but depends on the optical frequency ( ⁇ 193 THz ⁇ 5.1 fs) itself. Therefore, conditions that do not significantly affect the reception efficiency degradation, for example, ⁇ ⁇ 0.1 ⁇ ⁇ rad.
  • the skew for obtaining is ⁇ 0.25 fs, and highly accurate skew control is required.
  • CMOS 130 nm node process CMOS 65 nm process
  • L to 750 ⁇ m L> 2000 ⁇ m
  • FIG. 11 is a conceptual plan view of the wavelength division multiplexing optical receiver according to the fifth embodiment of the present invention.
  • micro heaters 63 1 to 63 4 are provided on partial regions of the output waveguides 26 1 to 26 4. It is a thing.
  • the microheaters 63 1 to 63 4 may be formed of a Ti pattern and provided with an Al contact at the end, similarly to the microheater shown in FIG.
  • a micro heater may be provided on the ring waveguide.
  • the micro heater is provided only on the waveguide on one output port side, but may be provided on the waveguide on both output ports.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)
  • Theoretical Computer Science (AREA)

Abstract

 波長多重光受信器に関し、片方の偏光成分の過剰損をなくすとともに、受光器の偏波無依存性動作を不要にする。シリコン細線導波路からなる入力導波路を偏波スプリッタを介して偏波ローテータを備えたループ状導波路に接続し、このループ状導波路にアド・ドロップ型リング共振器アレイを構成する出力導波路を備えたリング導波路を光学的に結合させ、出力導波路の両側のポートからの出力光を受光器の第1の受光面及び第2の受光面へ光学的距離が等しくなるよう入射させる。

Description

波長多重光受信器
 本発明は、波長多重光受信器に関するものであり、例えば、光通信や光インターコネクトで用いるシリコン細線導波路を用いた波長多重光受信器に関するものである。
 近年、大容量インターコネクトに向けた有望な技術として、シリコンフォトニクスが注目を集め、Siチップ内で波長多重(WDM:Wavelengh Division Multiplexing)により、光配線1本当りの伝送容量向上が期待されている。
 Siチップ内でWDM光信号を送受信するためには、波長合分波器を用いてWDM光信号を必要に応じて合波(MUX)・分波(DeMUX)させる必要がある。通常、Si細線導波路は、構造的異方性(Structural Birefringence)が非常に大きい。そのため、Si細線導波路で構成されるMUX/DeMUXは、光信号の偏光状態により、その透過特性が著しく異なる。つまり、TEモード或いはTMモードのいずれかの偏光状態でのみ正常に動作する。
 一方、光信号の伝送路においては、その偏光状態が一定に保たれない。よって、Si細線型DeMUXと受光器(PD:PhotoDiode)で構成される光受信部に入射する光信号の偏光成分はランダムとなり、偏波状態に応じて、受信特性の劣化が避けられない。
 このような課題を克服するために、Si細線導波路を含むWDM偏波ダイバシティ構成が提案されている、ここで、図12を参照して従来の波長多重合分波器を説明する。図12は、従来の波長多重合分波器の概念的平面図であり、シリコン細線導波路よりなる入力導波路71に入射したWDM光信号が、シリコン細線導波路からなる方向性結合器型の偏波分離素子(PBS:Polarization Beam Splitter)72により偏波面が直交するTE光とTM光に分離されてシリコン細線導波路よりなるループ状導波路73に出力される。TM光は、ループ状導波路73中に挿入されたシリコン細線導波路よりなる偏芯二重コア型の偏波回転素子(PR:Polarization Rotator)74により偏波面を90°回転させられてTE光として出力される。これに対し、偏波分離素子72で分離されたTE光は偏波面を保ったままループ状導波路73中を導波する。
 ループ状導波路73中を互いに逆回りに導波するTE光は、互いに異なった光路長を有するアド・ドロップ型リング共振器(AD-MRR:Add-Drop MicroRing Resonator)75,75による分波作用により波長ごとに分波される。分波された各TE光は、偏波回転素子77,77及び光路長補償導波路78,78を備えたループ状導波路76,76に出力される。
 出力されたTE光の内、図においてループ状導波路76,76を時計回りに導波するTE光は偏波回転素子77,77により偏波面を90°回転させられてTM光として出力され偏波合成素子79,79に入力する。この時、図においてループ状導波路76,76を半時計回りに導波するTE光は光路長補償導波路78,78によりTM光とタイミングが合うようにして方向性結合器型の偏波合成素子79,79に入力して合波(MUX)されて、出力導波路80,80から波長毎に分離されて出力されて受光器(図示は省略)で受光される。
 この場合、AD-MRRに入射するMDW光は、偏光状態が一定、即ち、TEモード或いはTEモードなので、分波(DeMUX)の特性劣化を防ぐことができる。従って、入射するWDM光信号の偏光状態の影響を受けずに、WDM光信号を合分波することができる。
特開2009-244326号公報
 しかし、上記の波長多重合分波器の場合、両偏波成分を分離して信号処理する際、片方の偏波成分(図12の場合にはTM光)が大きな過剰損を被るという問題がある。また、受光器を接続して検波する場合、両偏波成分が入射するため受光器の偏波無依存動作が必要不可欠となり、受光器の構造に制限が加わるため受信動作の高効率化が困難である。また、2段目以降において偏波回転素子と偏波合成素子が2つずつ必要となるため、構造が複雑化するという問題もある。
 したがって、波長多重光受信器において、片方の偏光成分の過剰損をなくすとともに、受光器の偏波無依存性動作を不要にすることを目的とする。
 開示する一観点からは、シリコン細線導波路からなる入力導波路と、前記入力導波路に接続され、前記入力導波路から入力した光を偏波面に応じて第1の信号と第2の信号に分離する偏波スプリッタと、前記偏波スプリッタの出力端に接続され、前記第1の信号と前記第2の信号が互いに反対側で伝播するシリコン細線導波路からなるループ状導波路と、前記ループ状導波路に挿入されて前記第2の信号の偏波面を90°回転させる偏波ローテータと、前記ループ状導波路とアドポート側で光学的に結合する互いに異なった光路長のシリコン細線導波路からなる複数のリング導波路と、前記各リング導波路とドロップポート側で光学的に結合するとともに2つの出力ポートを有するシリコン細線導波路からなる出力導波路と、前記偏波スプリッタから第1の受光面及び第2の受光面への光学的距離が等しくなるように前記出力導波路に接続された受光器とを有することを特徴とする波長多重光受信器が提供される。
 開示の波長多重光受信器によれば、片方の偏光成分の過剰損をなくすとともに、受光器の偏波無依存性動作を不要にすることが可能になる。
本発明の実施の形態の波長多重光受信器の説明図である。 本発明の実施の形態の波長多重光受信器におけるSkewの光路長差依存性の説明図である。 本発明の実施例1の波長多重光受信器の概念的平面図である。 本発明の実施例1の波長多重光受信器に用いるフォトダイオードの概念的構成図である。 本発明の実施例2の波長多重光受信器の概念的平面図である。 本発明の実施例2の波長多重光受信器に用いるフォトダイオードの概念的構成図である。 本発明の実施例3の波長多重光受信器の概念的平面図である。 本発明の実施例3の波長多重光受信器におけるマイクロヒータの説明図である。 本発明の実施例4の波長多重光受信器の概念的平面図である。 3dB光カプラの光強度分布の説明図である。 本発明の実施例5の波長多重光受信器の概念的平面図である。 従来の波長多重合分波器の概念的平面図である。
 ここで、図1及び図2を参照して、本発明の実施の形態の波長多重光受信器を説明する。図1は本発明の実施の形態の波長多重光受信器の説明図であり、図1(a)は概念的平面図であり、図1(b)は、光の伝播状態を示す要部拡大図である。シリコン細線導波路からなる入力導波路11に、入力導波路11から入力した波長多重光を偏波面に応じて第1の信号と第2の信号に分離する偏波スプリッタ12が接続される。この偏波スプリッタ12の出力端に第1の信号と第2の信号が互いに反対回りで伝播するシリコン細線導波路からなるループ状導波路13が接続され、このループ状導波路13に偏波ローテータ14が接続される。なお、偏波スプリッタ12及び偏波ローテータ14としては、各種の動作原理に基づく公知の偏波スプリッタ及び偏波ローテータから適宜選択すれば良い。
 また、ループ状導波路13とアド・ドロップ型リング共振器アレイ17を構成する互いに異なった光路長のシリコン細線導波路からなる複数のリング導波路15~15が光学的に結合される。また、この各リング導波路15~15のドロップポート側に2つの出力ポートを有するシリコン細線導波路からなる出力導波路16~16を光学的に結合させる。このアド・ドロップ型リング共振器アレイが分波器(DeMUX)となる。なお、ここでは、図示を簡単にするために、リング状導波路は4個にしているが、実際には、WDM光の波長帯に応じて4個程以上、即ち、8個や16個に設定することもできる。
 この2つの出力ポートから伸びる各出力導波路16~16に対して、偏波スプリッタ12から第1の受光面及び第2の受光面への光学的距離が等しくなるように受光器(図示は省略)を接続する。
 図2は、本発明の実施の形態の波長多重光受信器におけるSkewの光路長差依存性の説明図であり、図2(a)はシリコン細線導波路の概略的断面図であり、図2(b)はSkew-光路長差特性のシミュレーション結果である。ここでは、図2(a)に示すように、幅が480nmで高さが250nmの矩形のコア層からなるシリコン細線導波路3についてシミュレーションを行った。なお、図における符号1,2,4は、それぞれ、シリコン基板、下部クラッド層となるSiO層、上部クラッド層となるSiO層である。
 受信効率の観点から、第1の受光面及び第2の受光面へ入力される信号同士の時間差(Skew)は最低限に抑えることが必要となる。例えば、25GHzの変調周波数(1bit≒40ps)を想定した際、少なくとも2ps以下の低Skewが望まれる。したがって、図2(b)に示すように、光路長差は145μm以下の範囲でできるかぎり等しくなるようにする必要があるが、現状の作製技術により、容易に達成できる範囲にある。これはたとえ変調周波数が50GHz(1bit≒20ps)になっても対応できることを意味する。なお、ここでは、シリコン細線導波路3の分散関係として、群屈折率を4.1と設定している。
 図1に示すように、入力導波路11に入力されたWDM光信号は、偏波スプリッタ12により偏波面に応じてTM光信号とTE光信号とに分離されてループ状導波路13を互いに逆回りに導波する。TM光信号は偏波ローテータ14により偏波面が90°回転したTE光信号に変換される。ループ状導波路13を導波するTE光信号及びTE光信号はアド・ドロップ型リング共振器を構成するリング導波路15~15によって、波長毎(λ~λ)に分波される。
 分波された光信号は、同じ偏光状態のTE光信号或いはTE光信号として受光器に入力されるので、受光特性が偏波状態の影響を受けることがなく、したがって、受光器の構造が偏波無依存性の制約を受けることがない。この時、TE光信号及びTE光信号は図1(b)に示すように伝播するので、受光効率を高めるためには、上述のように、偏波スプリッタ12から第1の受光面及び第2の受光面への光学的距離が等しくなるようにする必要がある。そのためには、出力導波路16~16に遅延線を挿入すれば良い。
 受光器としては単一の受光部を有する構造とし、互いに対向する第1の受光面と第2の受光面に互いに反対方向から光信号を入力するようにしても良い。或いは、受光器として2つの並列配置された第1の受光部と第2の受光部を有する構造とし、第1の受光部に設けた第1の受光面と、第2の受光部に設けた第2の受光面に互いに反対方向から光信号を入力するようにしても良い。この構成の場合、各偏光成分に対する受光部を独立に最適化できるほか、受光部終端からの洩れ光による劣化も防ぐことができる。即ち、単一の受光部の場合には、受光部で吸収されなかった光成分がアド・ドロップ型リング共振器アレイ17を介してループ状導波路13に漏れ出してノイズになる。
 或いは、受光器として単一の受光部を有する構造とし、入力ポートと出力ポートが2:2の3dB光カプラを第1の受光面と第2の受光面に互いに同じ方向から光信号を入力するようにしても良い。3dB光カプラを用いることにより、TE光信号とTE光信号の相対強度関係によらず、双峰性の強度分布を得ることができ、これにより、受光器内部にて生じるフォトキャリア密度を低減できるので、受光器の低電力化・高速化の両立が可能になる。
 また、受光器としては、Geはシリコン細線導波路を伝播する光に対して吸収率が大きいので、シリコン細線導波路上に成長した単結晶ゲルマニウムを光吸収層とした受光器を用いることが望ましい。
 また、各リング導波路15~15には、光路長を調整するマイクロヒータ等の加熱手段を設けて、リング導波路15~15を透過する波長を微調整するようにしても良い。さらには、各出力導波路16~16に光路長を微調整するためにマイクロヒータ等の加熱手段を設けても良い。
 このように、本発明の実施の形態の波長多重光受信器においては、図12に示した従来例のような2段目の偏波ローテータや偏波スプリッタ(偏波合成素子)が不要になるので、過剰損失の発生を抑制することができる。また、受光器に入射する光はTEモード光のみで偏光状態が一定であるので、受光器に偏波無依存性動作が不要になる。
 次に、図3及び図4を参照して、本発明の実施例1の波長多重光受信器を説明する。図3は、本発明の実施例1の波長多重光受信器の概念的平面図である。シリコン細線導波路からなる入力導波路21に、入力導波路21から入力した波長多重光を偏波面に応じてTE信号光とTM信号光に分離する偏波スプリッタ22が接続される。この偏波スプリッタ22の出力端にTE信号光とTM信号光が互いに反対回りで伝播するシリコン細線導波路からなるループ状導波路23が接続され、このループ状導波路23に偏波ローテータ24が接続される。なお、偏波スプリッタ22は、シリコン細線導波路からなる方向性結合器型の偏波スプリッタであり、また、偏波ローテータ24は、シリコン細線導波路よりなる偏芯二重コア型の偏波ローテータである。
 また、ループ状導波路23とアド・ドロップ型リング共振器アレイを構成する互いに異なった光路長のシリコン細線導波路からなる複数のリング導波路25~25が光学的に結合される。また、この各リング導波路25~25のドロップポート側に2つの出力ポートを有するシリコン細線導波路からなる出力導波路26~26を光学的に結合させる。このアド・ドロップ型リング共振器アレイが分波器(DeMUX)となる。
 この場合、リング導波路25~25の曲率半径Rを適正化して分波波長を制御することができる。例えば、チャネル間隔200GHzの4波を実現する場合、それぞれのリング導波路25~25におけるR~Rの相対関係はR=8μm、R=R―δR,R=R―δR,R=R―δにすれば良く、δRは約8nmである。一方、チャネル間隔を変えるためにはδRを調整すれば良く、例えば、チャネル間隔400GHzの4波を実現する場合はδR~16nmに設定すれば良い。
 この2つの出力ポートから伸びる各出力導波路26~26に対して、偏波スプリッタ22から第1の受光面及び第2の受光面への光学的距離が等しくなるよう遅延線27~27を挿入してフォトダイオード28~28を接続する。
 図4は、本発明の実施例1の波長多重光受信器に用いるフォトダイオードの概念的構成図であり、図4(a)は平面図であり、図4(b)は、図4(a)のA-A′を結ぶ一点鎖線に沿った断面図である。図4に示すように、Si基板31上に下部クラッド層を兼ねるSiOからなるBOX層32を介して厚さが250nmの単結晶Si層を設けたSOI基板を用いる。
 単結晶Si層を通常のリソグラフィーとエッチングにより光露光プロセスによって図3に示したシリコン細線導波路パターンを形成する。この場合のリソグラフィーは光露光でも電子ビーム露光のいずれでも良く、エッチング法としては、例えば反応性イオンエッチングなどの方法でドライエッチングを用いる。この時、図4(b)に示すようにスラブ部34の高さが50nmになるようにエッチングを行って幅が480nmで高さが200nmの単結晶Siコア層33を形成する。
 また、フォトダイオード形成領域においては、i型Ge光吸収層35となるノンドープGe層を選択的にエピタキシャル成長させたのち、n型不純物のPを表面にイオン注入してn型Geコンタクト層36を形成する。一方の単結晶Siコア層33の両脇のスラブ部34にp型不純物であるBをイオン注入してp型Siコンタクト層37を形成する。
 次いで、SiO膜を全面に堆積させて上部クラッド層38を形成したのち、n型Geコンタクト層36に達するAlからなるn側電極39とp型Siコンタクト層37に達するAlからなるp側電極40を形成することによりフォトダイオードが完成する。
 本発明の実施例1においては、従来例のように2段目の偏波ローテータ及び偏波合成素子を必要としないので、偏波の変換に伴う損失の発生が抑えられるとともに、構成が簡素化される。また、フォトダイオードにはTE光のみが入射するので偏波無依存動作特性が不要になる。
 次に、図5及び図6を参照して、本発明の実施例2の波長多重光受信器を説明するが、フォトダイオードの構造が異なるだけで、他の構造は上記の実施例1と全く同様であるので、異なった部分のみを説明する。図5は、本発明の実施例2の波長多重光受信器の概念的平面図であり、ここでは、フォトダイオードとして、2つの受光領域が並列に配置されたフォトダイオード29~29を用いている。
 図6は、本発明の実施例2の波長多重光受信器に用いるフォトダイオードの概念的構成図であり、図6(a)は平面図であり、図6(b)は、図6(a)のA-A′を結ぶ一点鎖線に沿った断面図である。図6に示すように、図4(b)に示したPIN型のフォトダイオードを2つ並列に設けて、その間のスラブ部34にBをイオン注入してp型Siコンタクト層37を形成したものである。
 この実施例2の波長多重光受信器においては、同一構造のフォトダイオードを二つ並列し、両方のフォトダイオードから流れる電流の和をとるので、各偏光成分に対するフォトダイオードの特性を独立に最適化できる。また、各フォトダイオードの終端からの洩れ出した光は、出力導波路26~26を逆回りして、リング共振器を介してループ状導波路23に侵入することがないので、ノイズの発生を抑制することができる。
 次に、図7及び図8を参照して、本発明の実施例3の波長多重光受信器を説明するが、リング導波路の上部にマイクロヒータを設けた以外は上記の実施例1と全く同様であるので、異なった部分のみ説明する。図7は、本発明の実施例3の波長多重光受信器の概念的平面図であり、ここでは、各リング導波路25~25の上部に実効的に光路長を調整するマイクロヒータ50~50を設けたものである。
 即ち、CMOS作製工程において、アド・ドロップ型リング共振器の透過波長にバラツキが生じる場合があり、その場合には、WDM信号を設計通りに分波することができなくなる。そこで、各リング導波路25~25の上部にマイクロヒータ50~50を設けて、熱により屈折率を変化させて透過波長を制御する。なお、加熱により温度が上昇すると単結晶Siコア層の屈折率が高くなり、波長が長波長側にシフトする。
 図8は、実施例3の波長多重光受信器におけるマイクロヒータの説明図であり、図8(a)は概略的平面図であり、図8(b)は図8(a)におけるA-A′を結ぶ一点鎖線に沿った概略的断面図である。図に示すように、リング導波路25となる単結晶Siコア層33を覆う上部クラッド層38の上にTiパターン51を形成する。次いで、全面を再びSiO膜からなる保護絶縁膜52で覆ったのち、Tiパターン51の端部にAlコンタクト電極53を設けてマイクロヒータ50とする。
 このように、本発明の実施例3においては、リング導波路の上にマイクロヒータを設けているので、アド・ドロップ型リング共振器の透過波長を任意に微調整することができ、CMOS作製工程においてバラツキが生じても設計通りの分波が可能になる。
 次に、図9及び図10を参照して、本発明の実施例4の波長多重光受信器を説明するが、3dB光カプラを介して受光する以外は上記の実施例1と全く同様であるので、異なった部分のみ説明する。図9は、本発明の実施例4の波長多重光受信器の概念的平面図であり、ここでは、出力導波路26~26の2つの出力ポートからの光を3dB光カプラ61~61を介して、フォトダイオード62~62に同じ受光面側から入射する。
 この場合、フォトダイオード62~62に対しては、同方向入力となるため、フォトダイオードの終端からの洩れ光による劣化は生じない。但し同方向入力のため、2つの入力信号間の光干渉作用が生じるので、その事情を図10を参照して説明する。
 図10は3dB光カプラの光強度分布の説明図であり、図10(a)は2つの入力成分の複素電界表示および3dB光カプラ・フォトダイオード周辺の概略図であり、図10(b)は、2つの入力に対する3dB光カプラでの光強度分布の計算例である。2つの入力成分TEとTEはPを各信号の強度、βを各信号の伝播定数、θを各入力信号の位相、Lを偏波スプリッタ22からの距離とすると、複素電界表表示としてはそれぞれ、(PTE1/2・Exp{-(jβL+θ)}及び(PTE*1/2・Exp{-(jβL+θ)}で表される。
 偏波ダイバシティの場合、2つの入力の強度Pは互いにランダムとなるが、3dB光カプラ61を介して結合させ、信号間の初期位相差Δθ=θ-θがなければ、相対強度関係によらず、双峰性の強度分布を得ることができる。つまり、これにより、光信号のパワーを分散して受光することができるので、フォトダイオード62の内部にて生じるフォトキャリア密度を低減でき、フォトダイオード62の低電力化・高速化の両立が可能になる。
 但し、図10(a)に示す双峰性ピーク同士の強度バランスは、Δθ=0であることが大前提である。このΔθはSkewにより生じるが、Δθの大きさは、変調周波数(例えば、数十GHz)に依存するのではなく、光周波数(~193THz≒5.1fs)そのものに依存する。したがって、受信効率劣化にさほど影響しない条件、例えば、Δθ<0.1π・rad.を得るためのSkewは図10(b)に示すように~0.25fsとなり、高精度のSkew制御が求められる。
 この3dB光カプラ61~61における光干渉作用はSkewに大きく依存する。Skewの制御はCMOS工程のノードに大きく依存し、工程ノードを下げるほど、即ち、配線幅を微細化するほど改善することになる。例えば、CMOS 130nmノード工程(CMOS 65nm工程)ならば、光路長L~750μm(L>2000μm)の範囲で、図9に示す導波路パターンを形成すれば0.25fsのSkewを十分実現することができる。
 本発明の実施例4においては、3dB光カプラを介してフォトダイオードに同じ方向から入力しているので、漏れ出し光によるノイズが発生することがない。
 次に、図11を参照して、本発明の実施例5の波長多重光受信器を説明するが、出力導波路の光路長を微調整するマイクロヒータを設けた以外は、上記の実施例4の構成と全く同じであるので、異なった部分のみ説明する。図11は本発明の実施例5の波長多重光受信器の概念的平面図であり、ここでは、出力導波路26~26の一部領域の上にマイクロヒータ63~63を設けたものである。この場合のマイクロヒータ63~63は、図8に示したマイクロヒータと同様に、Tiパターンで形成してその端部にAlコンタクトを設ければ良い。
 即ち、CMOS作製工程におけるバラツキで、Skewが所定値内に収まらない場合が生ずることがあるが、その場合には、図に示すようにマイクロヒータ63~63により位相制御を行えば、容易にSKewを調整することができる。
 以上、各実施例を説明してきたが、各実施例に記載した構成・条件に限られるものではなく、各種の変更が可能である。例えば、実施例2、実施例4及び実施例5においても、実施例3と同様に、リング導波路上にマイクロヒータを設けても良い。また、実施例5においては、マイクロヒータを一方の出力ポート側の導波路上にしか設けていないが、両方の出力ポート側の導波路上に設けても良い。
1 シリコン基板
2 SiO
3 シリコン細線導波路
4 SiO
11,21 入力導波路
12,22 偏波スプリッタ
13,23 ループ状導波路
14,24 偏波ローテータ
15~15,25~25 リング導波路
16~16,26~26 出力導波路
17 アド・ドロップ型リング共振器アレイ
27~27 遅延線
28~28,29~29 フォトダイオード
31 Si基板
32 BOX層
33 単結晶Siコア層
34 スラブ部
35 i型Ge光吸収層
36 n型Geコンタクト層
37 p型Siコンタクト層
38 上部クラッド層
39 n側電極
40 p側電極
50,50~50 マイクロヒータ
51 Tiパターン
52 保護絶縁膜
53 Alコンタクト電極
61,61~61 3dB光カプラ
62,62~62 フォトダイオード
63~63 マイクロヒータ
71 入力導波路
72 偏波分離素子
73 ループ状導波路
74 偏波回転素子
75,75 アド・ドロップ型リング共振器
76,76 ループ状導波路
77,77 偏波回転素子
78,78 光路長補償導波路
79,79 偏波合成素子
80,80 出力導波路

Claims (8)

  1.  シリコン細線導波路からなる入力導波路と、
     前記入力導波路に接続され、前記入力導波路から入力した光を偏波面に応じて第1の信号と第2の信号に分離する偏波スプリッタと、
     前記偏波スプリッタの出力端に接続され、前記第1の信号と前記第2の信号が互いに反対回りで伝播するシリコン細線導波路からなるループ状導波路と、
     前記ループ状導波路に挿入されて前記第2の信号の偏波面を90°回転させる偏波ローテータと、
     前記ループ状導波路とアドポート側で光学的に結合する互いに異なった光路長のシリコン細線導波路からなる複数のリング導波路と、
     前記各リング導波路とドロップポート側で光学的に結合するとともに2つの出力ポートを有するシリコン細線導波路からなる出力導波路と、
     前記偏波スプリッタから第1の受光面及び第2の受光面への光学的距離が等しくなるように前記出力導波路に接続された受光器と
    を有することを特徴とする波長多重光受信器。
  2.  前記各受光器が、単一の受光部を有し、前記第1の受光面と前記第2の受光面に互いに反対方向から光信号を入力することを特徴とする請求項1に記載の波長多重光受信器。
  3.  前記各受光器が、2つの並列配置された第1の受光部と第2の受光部を有し、前記第1の受光部に設けた前記第1の受光面と、前記第2の受光部に設けた前記第2の受光面に互いに反対方向から光信号を入力することを特徴とする請求項1に記載の波長多重光受信器。
  4.  前記各受光器が、単一の受光部を有し、3dB光カプラを介して前記出力導波路に接続されるとともに、前記第1の受光面と前記第2の受光面に互いに同じ方向から光信号を入力することを特徴とする請求項1に記載の波長多重光受信器。
  5.  前記受光部が、シリコン細線導波路上に成長した単結晶ゲルマニウムを含むことを特徴とする請求項2乃至請求項4のいずれか1項に記載の波長多重光受信器。
  6.  前記各出力導波路に、前記偏波スプリッタから第1の受光面及び第2の受光面への光学的距離が等しくなるように遅延線を挿入したことを特徴とする請求項1乃至請求項5のいずれか1項に記載の波長多重光受信器。
  7.  前記各リング導波路に、光路長を調整する加熱手段を設けたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の波長多重光受信器。
  8.  前記各出力導波路に、光路長を調整する加熱手段を設けたことを特徴とする請求項1乃至請求項7のいずれか1項に記載の波長多重光受信器。
PCT/JP2013/058299 2013-03-22 2013-03-22 波長多重光受信器 WO2014147821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015506512A JP6123883B2 (ja) 2013-03-22 2013-03-22 波長多重光受信器
PCT/JP2013/058299 WO2014147821A1 (ja) 2013-03-22 2013-03-22 波長多重光受信器
US14/844,432 US9584246B2 (en) 2013-03-22 2015-09-03 Wavelength division multiplexing optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058299 WO2014147821A1 (ja) 2013-03-22 2013-03-22 波長多重光受信器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/844,432 Continuation US9584246B2 (en) 2013-03-22 2015-09-03 Wavelength division multiplexing optical receiver

Publications (1)

Publication Number Publication Date
WO2014147821A1 true WO2014147821A1 (ja) 2014-09-25

Family

ID=51579550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058299 WO2014147821A1 (ja) 2013-03-22 2013-03-22 波長多重光受信器

Country Status (3)

Country Link
US (1) US9584246B2 (ja)
JP (1) JP6123883B2 (ja)
WO (1) WO2014147821A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227260A (zh) * 2015-08-31 2016-01-06 浙江大学 微环谐振腔谐振器型的双偏振多波长的相干探测接收器
JP6379245B1 (ja) * 2017-03-16 2018-08-22 沖電気工業株式会社 光導波路素子及び受信回路
JP2020086128A (ja) * 2018-11-26 2020-06-04 沖電気工業株式会社 光導波路回路
US10677990B2 (en) 2015-12-11 2020-06-09 Hewlett Packard Enterprise Development Lp Polarization diverse ring resonator receivers
WO2024057980A1 (ja) * 2022-09-16 2024-03-21 京セラ株式会社 光集積回路及び光トランシーバ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132008A1 (en) * 2013-11-11 2015-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Via-less multi-layer integrated circuit with inter-layer interconnection
EP3146655B1 (en) * 2014-05-23 2018-12-05 Telefonaktiebolaget LM Ericsson (publ) An optical switch, an optical switching apparatus, an optical communications network node and an optical communications network
JP6274322B2 (ja) * 2014-09-19 2018-02-07 富士通株式会社 レーザ装置及びレーザ装置の制御方法
US10009135B2 (en) * 2015-02-06 2018-06-26 The Trustees Of Princeton University System and method for photonic processing
US9891425B2 (en) * 2016-06-20 2018-02-13 Harris Corporation Communications system including an optical filter device and related methods
WO2018039971A1 (zh) * 2016-08-31 2018-03-08 华为技术有限公司 光信号处理方法及光器件
US9812845B1 (en) * 2016-11-21 2017-11-07 Oracle International Corporation Fast wavelength-tunable hybrid optical transmitter
CN108802907B (zh) * 2017-04-26 2020-03-10 华为技术有限公司 一种可重构光分插复用器
CN108873174B (zh) * 2017-05-11 2019-11-29 华为技术有限公司 一种偏振无关的光器件
GB2594664B (en) * 2018-12-28 2022-08-24 Rockley Photonics Ltd WDM receiver and method of operation thereof
US20200257066A1 (en) * 2019-02-11 2020-08-13 Hewlett Packard Enterprise Development Lp Optical interconnect topology
WO2021148637A1 (en) * 2020-01-22 2021-07-29 Rockley Photonics Limited Demultiplexer
US11561347B2 (en) 2020-06-24 2023-01-24 Ayar Labs, Inc. Optical input polarization management device and associated methods
US20210149115A1 (en) * 2020-12-23 2021-05-20 Duanni Huang Photonic wavelength division multiplexing (wdm) receiver with polarization diversity and/or low reflectance
CN113783653B (zh) * 2021-08-19 2022-07-08 中国科学院西安光学精密机械研究所 一种基于微环谐振器的波分复用光接收机系统
TW202346978A (zh) 2022-02-07 2023-12-01 美商爾雅實驗室公司 具有延遲的極化分集式接收器
CN115542461B (zh) * 2022-11-11 2023-05-26 之江实验室 一种基于逆向设计的超高集成度硅基光接收芯片

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244326A (ja) * 2008-03-28 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 光波長フィルタ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008958A (en) * 1988-01-19 1991-04-16 At&T Bell Laboratories Polarization-insensitive technique for coherent optical communication
JP2776124B2 (ja) * 1992-03-23 1998-07-16 日本電気株式会社 直接検波光受信装置
US5809184A (en) * 1996-10-15 1998-09-15 Doerr; Christopher Richard Polarization diversity waveguide grating receiver
US5837995A (en) * 1996-11-25 1998-11-17 Alan Y. Chow Wavelength-controllable voltage-phase photodiode optoelectronic switch ("opsistor")
AU1795201A (en) * 1999-11-23 2001-06-04 Nanovation Technologies, Inc. Localized thermal tuning of ring resonators
US6574022B2 (en) * 2001-03-19 2003-06-03 Alan Y. Chow Integral differential optical signal receiver
JP2003337236A (ja) * 2002-05-17 2003-11-28 Nec Corp 光リング共振器、光導波路デバイスならびに光リング共振器の製造方法
JP4436323B2 (ja) * 2003-07-16 2010-03-24 日本電信電話株式会社 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置
JP3829198B2 (ja) * 2003-12-01 2006-10-04 独立行政法人情報通信研究機構 光伝送方法及びシステム
US7650081B2 (en) * 2004-05-26 2010-01-19 Alcatel-Lucent Usa Inc. Method and apparatus for receiving frequency modulated signals on an intensity modulated optical carrier
JP4440855B2 (ja) * 2005-08-25 2010-03-24 富士通株式会社 Rz−dpsk光受信回路
US8494318B2 (en) * 2006-11-09 2013-07-23 Google Inc. Method and device for hitless tunable optical filtering
US7505648B2 (en) * 2006-11-29 2009-03-17 Universiteit Twente Device comprising a polarization-independent micro-resonator
US7657131B2 (en) * 2007-06-28 2010-02-02 Intel Corporation Systems and methods for integrated optical circuitry for high data rate optical transmission and reception
US8538277B2 (en) * 2009-06-23 2013-09-17 Infinera Corporation Coherent optical receiver
US9285539B2 (en) * 2012-08-17 2016-03-15 Oracle International Corporation Polarization-insensitive silicon-phototonic optical receiver
US9134479B2 (en) * 2012-09-05 2015-09-15 International Business Machines Corporation Polarization diverse demultiplexing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244326A (ja) * 2008-03-28 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 光波長フィルタ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227260A (zh) * 2015-08-31 2016-01-06 浙江大学 微环谐振腔谐振器型的双偏振多波长的相干探测接收器
CN105227260B (zh) * 2015-08-31 2017-09-01 浙江大学 微环谐振腔谐振器型的双偏振多波长的相干探测接收器
US10677990B2 (en) 2015-12-11 2020-06-09 Hewlett Packard Enterprise Development Lp Polarization diverse ring resonator receivers
JP6379245B1 (ja) * 2017-03-16 2018-08-22 沖電気工業株式会社 光導波路素子及び受信回路
US10088628B1 (en) 2017-03-16 2018-10-02 Oki Electric Industry Co., Ltd. Optical waveguide element and receiving circuit
JP2018155863A (ja) * 2017-03-16 2018-10-04 沖電気工業株式会社 光導波路素子及び受信回路
JP2020086128A (ja) * 2018-11-26 2020-06-04 沖電気工業株式会社 光導波路回路
WO2024057980A1 (ja) * 2022-09-16 2024-03-21 京セラ株式会社 光集積回路及び光トランシーバ

Also Published As

Publication number Publication date
JP6123883B2 (ja) 2017-05-10
JPWO2014147821A1 (ja) 2017-02-16
US20150381301A1 (en) 2015-12-31
US9584246B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
JP6123883B2 (ja) 波長多重光受信器
US9615152B2 (en) Optical element and light receiving device
Mizuno et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber
US7492983B2 (en) Optical circuit device
US9374185B2 (en) Dual-polarization multi-wavelength coherent receiver frontend
US11899253B2 (en) Polarization splitter and rotator
US10367598B2 (en) Device, system and method for processing an optical signal
Jeong et al. Polarization diversified 16λ demultiplexer based on silicon wire delayed interferometers and arrayed waveguide gratings
WO2023061025A1 (zh) 片上集成波分复用器及芯片
US8477409B2 (en) PLC-type delay demodulation circuit and PLC-type optical interferometer
JP6509626B2 (ja) 波長合分波素子、光受信器及び光送信器
Doerr et al. Planar lightwave circuits in fiber-optic communications
US11206085B2 (en) Chromatic dispersion compensation
WO2020196216A1 (ja) 偏波多重光送受信回路
JP6351114B2 (ja) モード合分波器及びモード合分波器の設計方法
Jeong et al. Silicon photonics based 16λ-WDM demultiplexers for operating in C-band and O-band spectral regimes
CN113783653A (zh) 一种基于微环谐振器的波分复用光接收机系统
Nasu et al. Asymmetric half-wave plate configuration of PLC Mach–Zehnder interferometer for polarization insensitive DQPSK demodulator
TWI838821B (zh) 片上集成波分複用器及晶片
Milanizadeh et al. Polarization-transparent FSR-free microring resonator filter with wide hitless tunability
US20230163858A1 (en) Dual-mode receiver integrated with dispersion compensator
Guan et al. Polarization-Insensitive Four-Channel Wavelength-Division (de) Multiplexer Based on Cascaded Mach-Zehnder Interferometers with Adiabatic Couplers
JP2002303745A (ja) 光回路およびそのトリミング方法
Peng et al. 1 Tbps on-Chip Multi-dimensional Receiver
Allahverdyan et al. Carrying data on the orbital angular momentum of light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878979

Country of ref document: EP

Kind code of ref document: A1