WO2014141902A1 - 船舶 - Google Patents

船舶 Download PDF

Info

Publication number
WO2014141902A1
WO2014141902A1 PCT/JP2014/055030 JP2014055030W WO2014141902A1 WO 2014141902 A1 WO2014141902 A1 WO 2014141902A1 JP 2014055030 W JP2014055030 W JP 2014055030W WO 2014141902 A1 WO2014141902 A1 WO 2014141902A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
electric motor
internal combustion
combustion engine
ship
Prior art date
Application number
PCT/JP2014/055030
Other languages
English (en)
French (fr)
Inventor
勝 廣瀬
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201480015455.9A priority Critical patent/CN105189283A/zh
Priority to KR1020157027749A priority patent/KR20150127168A/ko
Publication of WO2014141902A1 publication Critical patent/WO2014141902A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/10Propeller-blade pitch changing characterised by having pitch control conjoint with propulsion plant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/10Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit
    • B63H23/12Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit allowing combined use of the propulsion power units
    • B63H23/14Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit allowing combined use of the propulsion power units with unidirectional drive or where reversal is immaterial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • B63H2021/205Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type the second power unit being of the internal combustion engine type, or the like, e.g. a Diesel engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H2021/216Control means for engine or transmission, specially adapted for use on marine vessels using electric control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Definitions

  • the present invention relates to a ship. Specifically, the present invention relates to a ship having an internal combustion engine and an electric motor as propulsion power.
  • a ship including an internal combustion engine such as a diesel engine and an electric motor as a power source for propulsion is known.
  • the output from the internal combustion engine is transmitted to the propeller.
  • the output from the electric motor is combined with the output from the internal combustion engine and transmitted to the propeller.
  • the present invention has been made to solve such a problem, and protects the electric motor without using a frequency converter, and promotes it by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • the purpose is to provide a ship that can be used. Moreover, it aims at providing the cheap ship which does not use a frequency converter.
  • the target output of the motor is set, and the internal combustion engine is set so as to maintain the output from the motor at the target output.
  • the rotation speed of the engine is controlled, and the load sharing ratio between the internal combustion engine and the electric motor is changed.
  • the target rotational speed of the internal combustion engine is set, the output of the internal combustion engine is controlled so as to maintain the rotational speed of the internal combustion engine at the target rotational speed, and the output from the electric motor is maintained at the target output.
  • the target rotational speed of the internal combustion engine is changed.
  • the output from the motor is a target output, and when the output from the internal combustion engine reaches the rated output of the internal combustion engine, the pitch angle of the variable pitch propeller is controlled to decrease. .
  • the output of the internal combustion engine is controlled so that the rotational speed of the motor is constant in a ship that drives the variable pitch propeller by interlockingly connecting the internal combustion engine and the electric motor by a power transmission device.
  • the output of the internal combustion engine is controlled according to the load from the variable pitch propeller, and the ratio of load sharing between the internal combustion engine and the electric motor is changed.
  • an internal combustion engine whose rotational speed is controlled by a speed control device and an electric motor whose rotational speed is determined by the frequency of supplied electric power are interlocked and connected by a power transmission device to drive a variable pitch propeller.
  • the target rotational speed of the internal combustion engine and the target output of the electric motor are set, the output of the internal combustion engine is controlled by the speed control device so as to maintain the rotational speed of the internal combustion engine at the target rotational speed, and the output from the electric motor Is provided with an output control device for changing the target rotational speed of the internal combustion engine so as to maintain the engine at the target output.
  • the motor since the load fluctuation is borne by the internal combustion engine to balance the load, the motor is not overloaded.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship (hybrid system) that does not use a frequency converter can be provided.
  • the load fluctuation is borne by the internal combustion engine to balance the load, so that the motor is not overloaded and the rotation speed of the motor is kept substantially constant.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship that does not use a frequency converter can be provided.
  • the main engine and the electric motor are protected by forcibly reducing the load even when the fluctuation of the load cannot be borne by the internal combustion engine.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship that does not use a frequency converter can be provided.
  • the power source is changed according to the use of the ship. Therefore, the cheap ship which does not use a frequency converter can be provided.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship that does not use a frequency converter can be provided.
  • the motor since the load fluctuation is borne by the internal combustion engine to balance the load, the motor is not overloaded.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship that does not use a frequency converter can be provided.
  • the motor since the load fluctuation is borne by the internal combustion engine to balance the load, the motor is not overloaded.
  • the electric motor can be protected without using the frequency converter, and can be propelled by a combined output of the output from the internal combustion engine and the output from the electric motor.
  • an inexpensive ship (hybrid system) that does not use a frequency converter can be provided.
  • the ship 1 is a so-called biaxial propulsion type ship.
  • the number of propulsion shafts is not limited to this.
  • a ship 1 includes a main engine 2 that is a propulsion engine, an electric motor 4, a power transmission device 5, a variable pitch propeller 7, an auxiliary machine 8 that is a power generation engine, and a generator 9 as main components on a hull (not shown). .
  • the main machine 2 mainly generates power for propulsion.
  • the main engine 2 is composed of a diesel engine.
  • the main machine 2 is connected to the input side of the power transmission device 5. That is, the output We from the main machine 2 is input to the power transmission device 5.
  • the main machine 2 is configured such that the rotation speed Ve can be arbitrarily changed by the speed control device 3.
  • the speed control device 3 is connected to a rotation speed detection sensor and a fuel injection device (not shown) of the main engine 2.
  • the main engine 2 is configured to be capable of constant speed operation control in which the speed control device 3 maintains the rotational speed Ve at the target rotational speed Vet.
  • the main machine 2 is configured to be able to perform inching control of the rotational speed Ve by the speed control device 3 based on an inching signal (pulse signal) from an output control device 10 (distribution panel) described later.
  • the inching control refers to a control for increasing or decreasing the rotational speed Ve by a preset ⁇ Ve regardless of the input time of the inching signal.
  • the electric motor 4 mainly generates propulsion power.
  • the electric motor 4 is composed of, for example, a synchronous motor.
  • the electric motor 4 is connected to the input side of the power transmission device 5. That is, the output Wm from the electric motor 4 is input to the power transmission device 5.
  • the electric motor 4 outputs power corresponding to the supplied electric power (current).
  • the electric motor 4 is connected to the inboard bus 1a, which is a power supply path, via a breaker 1b (ACB). That is, the start of the electric motor 4 is performed by a direct entry start in a state where it is directly connected to a power supply device (not shown).
  • the electric motor 4 rotates at a speed proportional to the frequency of the supplied electric power. That is, when the frequency of the electric power supplied to the electric motor 4 is constant, the rotational speed Ve of the electric motor 4 is constant.
  • the power transmission device 5 combines and outputs a plurality of input powers.
  • the power transmission device 5 includes a gear mechanism.
  • the main transmission 2 and the electric motor 4 are connected to the input side of the power transmission device 5.
  • the electric motor 4 is connected to the power transmission device 5 without using a clutch or the like.
  • the power transmission device 5 has a variable pitch propeller 7 connected to the output side of the power transmission device 5 via a propulsion shaft 6.
  • the power transmission device 5 is configured to be able to output a combined output of the output We of the main machine 2 and the output Wm of the electric motor 4 input from the input side to the variable pitch propeller 7 via the propulsion shaft 6 from the output side.
  • the power transmission device 5 shifts and outputs the rotational speed Ve of the main engine 2 so as to coincide with the target rotational speed Vpt of the variable pitch propeller 7. .
  • the power transmission device 5 changes the rotational speed Vm of the electric motor 4 so as to coincide with the target rotational speed Vpt of the variable pitch propeller 7 when the input rotational speed Vm of the electric motor 4 is the target rotational speed Vmt. Output. That is, the main machine 2 and the electric motor 4 are configured to synchronize at a predetermined rotation speed ratio according to the gear ratio of the power transmission device 5.
  • variable pitch propeller 7 (CPP) generates propulsive force.
  • the variable pitch propeller 7 is connected to the output shaft side of the power transmission device 5 via the propulsion shaft 6.
  • the variable pitch propeller 7 is connected to the pitch angle control device 11.
  • the pitch angle control device 11 acquires a detection signal for the pitch angle ⁇ of the variable pitch propeller 7, and the pitch angle ⁇ (attack angle) via an actuator (not shown) controlled by the control signal from the pitch angle control device 11. Can be changed.
  • variable pitch propeller 7 can arbitrarily change the drag from the water flow, that is, the propulsive force generated by the rotation of the variable pitch propeller 7 by changing the pitch angle ⁇ even if the rotational speed Vp is constant.
  • the ship 1 provided with the variable pitch propeller 7 can change the speed V of the ship 1 by changing the pitch angle ⁇ while the rotational speed Vp of the variable pitch propeller 7 is constant.
  • the auxiliary machine 8 mainly generates power for power generation.
  • the auxiliary machine 8 is composed of a diesel engine.
  • a generator 9 is connected to the auxiliary machine 8. That is, the output from the auxiliary machine 8 is input to the generator 9.
  • the auxiliary machine 8 is configured to be able to output at a constant rotational speed in order to drive the generator 9.
  • the generator 9 supplies power to the electrical equipment 12 and the motor 4 in the ship 1.
  • the generator 9 generates power using the output from the connected auxiliary machine 8.
  • the generator 9 is connected to the inboard bus 1a, and power is supplied to the electric equipment 12, the electric motor 4, and the like through the inboard bus 1a.
  • the three generators 9 and the auxiliary machine 8 are connected to the inboard bus 1a, but the present invention is not limited to this.
  • the output control device 10 (distribution panel) controls the rotational speed Ve of the main unit 2 by the speed control unit 3 of the main unit 2 based on a signal from a control unit (not shown), and by the pitch angle control unit 11.
  • the pitch angle ⁇ of the variable pitch propeller 7 is controlled.
  • the output control device 10 stores various programs and data for controlling the main machine 2 and the variable pitch propeller 7.
  • the output control device 10 may be configured such that a CPU, ROM, RAM, HDD, or the like is connected by a bus, or may be configured by a one-chip LSI or the like.
  • the output control device 10 is connected to a control device (not shown) and can acquire a control signal from the control device.
  • the output control device 10 is connected to the main unit 2 and can acquire a detection signal for the output We of the main unit 2.
  • the output control device 10 is connected to the speed control device 3 of the main machine 2 and can transmit a control signal (inching signal) for changing the rotation speed Ve of the main machine 2.
  • the output control device 10 is connected to the electric motor 4 and can acquire a detection signal for the output Wm of the electric motor 4.
  • the output control device 10 is connected to the pitch angle control device 11 and can transmit a control signal for the pitch angle ⁇ of the variable pitch propeller 7.
  • the output control device 10 can change the target rotational speed Vet of the main machine 2 set in the speed control device 3 based on the acquired detection signal for the output Wm of the electric motor 4.
  • the output control device 10 changes the pitch angle ⁇ of the variable pitch propeller 7 from the pitch angle control device 11 based on the acquired detection signal for the output We of the main machine 2 and the detection signal for the output Wm of the electric motor 4. Is possible.
  • the marine vessel 1 performs engine independent operation control for transmitting only the output We from the main engine 2 to the variable pitch propeller 7, and parallel transmits the output Wm from the electric motor 4 to the output We from the main engine 2 and transmits it to the variable pitch propeller 7.
  • the operation control can be switched according to the operation state.
  • the engine single operation control is selected when the ship operates on the high seas at a normal speed.
  • the parallel operation control is selected, for example, when an anchor that is a heavy object is pulled up from the seabed in an anchor handling tugboat.
  • the speed of the ship 1 is changed by the rotational speed Ve of the main engine 2.
  • the pitch angle ⁇ of the variable pitch propeller 7 is not changed.
  • the output control device 10 controls the rotational speed Ve of the main engine 2 by the speed control device 3 based on a control signal from a control device (not shown). At this time, the output Wm from the electric motor 4 is not transmitted to the variable pitch propeller 7. That is, the main engine 2 shares all loads from the variable pitch propeller.
  • the speed of the ship 1 is changed by the pitch angle ⁇ of the variable pitch propeller 7.
  • the output control device 10 controls the pitch angle ⁇ of the variable pitch propeller 7 so that the speed V of the ship 1 becomes the target speed Vt by the pitch angle control device 11 based on a control signal from a control device (not shown).
  • the rotational speed Vp of the variable pitch propeller 7 is maintained at the target rotational speed Vpt.
  • the output We from the main machine 2 and the output Wm from the electric motor 4 are transmitted to the variable pitch propeller 7. That is, the load from the variable pitch propeller is shared between the main machine 2 and the electric motor 4.
  • the output control device 10 performs constant speed operation control for controlling the output We from the main machine 2 so that the rotation speed Ve of the main machine 2 becomes the target rotation speed Vet by the speed control device 3.
  • the electric motor 4 is supplied with electric power having a frequency at which the rotational speed Vm matches the target rotational speed Vmt.
  • the output control device 10 changes the target rotational speed Vet of the main engine 2 in order to maintain the output Wm from the electric motor 4 at the target output Wmt set by a steering device (not shown). That is, the rotational speed Ve of the main machine 2 is controlled.
  • the output control device 10 controls the main unit 2 to output the output We1.
  • the boat maneuvering device (not shown) supplies power so that the electric motor 4 outputs the output Wm1 set as the target output Wmt. That is, the load A is shared between the main machine 2 and the electric motor 4 at a ratio of We1 to Wm1.
  • the speed control device 3 increases the output We so that the rotational speed Ve of the main engine 2 maintains the target rotational speed Vet by constant speed operation control.
  • the output Wm of the motor 4 increases.
  • the output control device 10 transmits an inching signal for increasing the target rotational speed Vet of the main machine 2 to the speed control device 3 in order to maintain the output Wm1 from which the output Wm from the electric motor 4 is the target output Wmt.
  • the rotational speed Ve of the main machine 2 increases, and the output We from the main machine 2 also increases from the output We1 to the output We2.
  • the main machine 2 and the electric motor 4 share the load B at a ratio of We2 to Wm1.
  • the main machine 2 and the electric motor 4 share the load B at a ratio of We3 to Wm1.
  • the output Wm from the electric motor 4 increases from the output Wm1 to the output Wm2.
  • the output control device 10 transmits an inching signal for decreasing the target rotational speed Vet of the main engine 2 to the speed control device 3 in order to maintain the output Wm2 from which the output Wm from the electric motor 4 is the target output Wmt. .
  • the rotational speed Ve of the main machine 2 decreases, and the output We from the main machine 2 also decreases from the output We3 to the output We4.
  • the main machine 2 and the electric motor 4 share the load C at a ratio of We4 to Wm2.
  • step S ⁇ b> 110 the output control device 10 obtains an operation mode control signal from a control device (not shown) and the target speed Vt of the ship 1, and the step is step S ⁇ b> 120. To migrate.
  • step S120 the output control device 10 determines whether or not engine single operation control is selected based on the acquired control signal for the operation mode. As a result, when it is determined that the engine independent operation control is selected, the output control device 10 shifts the step to step S130. On the other hand, when it is determined that the engine independent operation control is not selected, that is, when the parallel operation control is selected, the output control device 10 shifts the step to step S200.
  • step S130 the output control device 10 stops the electric motor 4 and shifts the step to step S140.
  • step S140 the output control device 10 starts engine single operation control for transmitting only the output We of the main engine 2 to the variable pitch propeller 7, and returns the step to step S110.
  • step S200 the output control device 10 starts the parallel operation control set A and shifts the step to step S210 (see FIG. 5).
  • step S210 the output control device 10 acquires the target output Wmt of the electric motor 4 from a control device (not shown), and shifts the step to step S220.
  • step S220 the output control device 10 causes the pitch angle control device 11 to change the pitch angle ⁇ of the variable pitch propeller to a target pitch angle ⁇ t corresponding to the target speed Vt of the ship 1 based on a control signal from a control device (not shown). After setting, the process proceeds to step S230.
  • step S230 the output control device 10 performs constant speed operation control by the speed control device 3 so that the rotational speed Ve of the main engine 2 maintains the target rotational speed Vet, and the step proceeds to step S240.
  • electric power is supplied by a power supply device (not shown) so that the rotational speed Vm of the electric motor 4 maintains the target rotational speed Vmt. That is, electric power is supplied so that the rotation speed Vm of the electric motor 4 becomes constant at the target rotation speed Vmt.
  • step S240 the output control apparatus 10 acquires detection signals for the output We of the main machine 2 and the output Wm of the electric motor 4, and shifts the step to step S250.
  • step S250 the output control device 10 determines whether or not the output Wm of the motor 4 is not equal to the target output Wmt of the motor 4 based on the acquired detection signal for the output Wm of the motor 4. As a result, when it is determined that the output Wm of the electric motor 4 is not equal to the target output Wmt of the electric motor 4, the output control device 10 shifts the step to step S260. On the other hand, when it determines with the output Wm of the electric motor 4 being equal to the target output Wmt of the electric motor 4, the parallel operation control set A is complete
  • step S ⁇ b> 260 the output control device 10 determines whether or not the output Wm of the electric motor 4 is greater than the target output Wmt of the electric motor 4 based on the acquired detection signal for the output Wm of the electric motor 4. As a result, when it is determined that the output Wm of the electric motor 4 is higher than the target output Wmt of the electric motor 4, the output control device 10 shifts the step to step S270. On the other hand, when it determines with the output Wm of the electric motor 4 not increasing from the target output Wmt of the electric motor 4, the output control apparatus 10 makes a step transfer to step S261.
  • step S261 the output control device 10 transmits an inching signal to the speed control device 3, decreases the target rotational speed Vet of the main machine 2 by ⁇ Ve, and shifts the load of the main machine 2 to the electric motor 4, and the step proceeds to step S240.
  • the output control device 10 finely adjusts the speed of the main machine 2 to perform load sharing between the main machine 2 and the electric motor 4 and controls the output Wm of the electric motor 4 to be a constant value.
  • step S ⁇ b> 270 the output control device 10 determines whether or not the output We of the main machine 2 is greater than the rated output We of the main machine 2 based on the acquired detection signal for the output We of the main machine 2. As a result, when it is determined that the output We of the main machine 2 is higher than the rated output Wer of the main machine 2, the output control device 10 shifts the step to step S280. On the other hand, if it is determined that the output We of the main machine 2 has not increased from the rated output Wer of the main machine 2, the output control device 10 shifts the step to step S271.
  • step S271 the output control device 10 transmits an inching signal to the speed control device 3, increases the target rotational speed Vet of the main machine 2 by ⁇ Ve, and shifts the load of the electric motor 4 to the main machine 2, and the step proceeds to step S240.
  • the output control device 10 finely adjusts the speed of the main machine 2 to perform load sharing between the main machine 2 and the electric motor 4 and controls the output Wm of the electric motor 4 to be a constant value.
  • step S280 the output control device 10 decreases the target pitch angle ⁇ t of the variable pitch propeller 7 set by the pitch angle control device 11 by ⁇ , and moves the step to step S290. If the main machine 2 is not inching controlled even if the output Wm of the electric motor 4 reaches the target output Wmt of the electric motor 4 due to equipment failure or the like, the output We of the main machine 2 has reached the rated output Wer of the main machine 2. Even if not, the target pitch angle ⁇ t of the variable pitch propeller 7 set by the pitch angle control device 11 is decreased by ⁇ .
  • step S290 the output control device 10 reduces the output We of the main engine 2 to the rated output Wer, the output Wm of the electric motor 4 to the target output Wmt, and the pitch angle ⁇ of the variable pitch propeller by ⁇ .
  • the parallel operation control set A is terminated, and the step returns to step S110 ( (See FIG. 4).
  • the ship 1 according to the present invention is the target output Wmt of the electric motor 4 in the ship 1 in which the output Wm from the electric motor 4 is combined with the output We of the main engine 2 that is an internal combustion engine and transmitted to the variable pitch propeller 7.
  • the target rotational speed Vet of the main machine 2 is controlled so as to maintain the output Wm from the electric motor 4 at the target output Wmt, and the load sharing ratio between the main machine 2 and the electric motor 4 is changed, thereby changing the load. It is intended to balance. With this configuration, the main machine 2 bears the load fluctuation and balances the load, so that the motor 4 is not overloaded.
  • the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4. Moreover, the cheap ship 1 which does not use a frequency converter can be provided.
  • the target rotation speed Vet of the main machine 2 is set, the output We of the main machine 2 is controlled so as to maintain the rotation speed Ve of the main machine 2 at the target rotation speed Vet, and the output Wm from the electric motor 4 is set to the target output Wmt.
  • the target rotational speed Vet of the main engine 2 is changed so as to be maintained.
  • the main machine 2 bears load fluctuations and balances the load, so that the motor 4 is not overloaded and the rotational speed Vm of the motor 4 is kept substantially constant.
  • the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4.
  • the cheap ship 1 which does not use a frequency converter can be provided.
  • the output Wm from the electric motor 4 is the target output Wmt, and when the output We from the main machine 2 reaches the rated output We of the main machine 2, the pitch angle ⁇ of the variable pitch propeller 7 is controlled to decrease. is there.
  • the main machine 2 and the electric motor 4 are protected by forcibly reducing the load even when the main machine 2 cannot bear the load fluctuation.
  • the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4.
  • the cheap ship 1 which does not use a frequency converter can be provided.
  • the main engine 2 and the electric motor 4 are interlocked and connected by the power transmission device 5, and in the ship 1 that drives the variable pitch propeller 7, the output We of the main engine 2 is controlled so that the rotational speed Vm of the electric motor 4 is constant. Is. With this configuration, it is not necessary to control the electric motor 4. As a result, the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4. Moreover, the cheap ship 1 which does not use a frequency converter can be provided.
  • the output We of the main machine 2 is controlled according to the load from the variable pitch propeller 7, and the load sharing ratio between the main machine 2 and the electric motor 4 is changed.
  • the main machine 2 bears the load fluctuation and balances the load, so that the motor 4 is not overloaded.
  • the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4.
  • the cheap ship 1 which does not use a frequency converter can be provided.
  • the main engine 2 which is an internal combustion engine whose rotational speed Ve is controlled by the speed control device 3 and the motor 4 whose rotational speed Vm is determined by the frequency of the supplied electric power are interlocked and connected by a power transmission device 5 so as to have a variable pitch.
  • the target rotational speed Vet of the main engine 2 and the target output Wm of the electric motor 4 are set, and the main engine is controlled by the speed control device 3 so as to maintain the rotational speed Ve of the main engine 2 at the target rotational speed Vet. 2, and an output control device 10 that changes the target rotational speed Vet of the main engine 2 so as to maintain the output Wm from the electric motor 4 at the target output Wmt.
  • the main machine 2 bears load fluctuations and balances the load, so that the motor 4 is not overloaded.
  • the electric motor 4 can be protected without using a frequency converter, and can be propelled by the combined output of the output We from the main machine 2 and the output Wm from the electric motor 4.
  • the cheap ship 1 which does not use a frequency converter can be provided.
  • the present invention can be used in the technology of a ship equipped with an internal combustion engine and an electric motor as propulsion power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる船舶の提供を目的とする。また、周波数変換機を用いない安価な船舶を提供することを目的とする。内燃機関である主機(2)の出力(We)に電動機(4)からの出力(Wm)が合成されて可変ピッチプロペラ(7)に伝達される船舶(1)において、電動機(4)の目標出力(Wmt)が設定され、電動機(4)からの出力(Wm)を目標出力(Wmt)に維持するように主機(2)の回転速度(Ve)の目標回転速度(Vet)が制御されて、主機(2)と電動機(4)との負荷分担の割合が変更されるものとした。

Description

船舶
 本発明は、船舶に関する。詳しくは、推進用の動力として内燃機関と電動機とを具備する船舶に関する。
 従来、ディーゼルエンジン等の内燃機関と電動機とを推進用の動力源として具備する船舶(ハイブリッド船)が知られている。ハイブリッド船は、通常運転を行う場合、内燃機関からの出力がプロペラに伝達される。一方、大きな推進力を必要とする場合、内燃機関からの出力に電動機からの出力が合成されてプロペラに伝達される。
 このような船舶において、電動機に供給される電力は、周波数変換機(インバータ)を介して発電機から供給される。船内の発電機で発電された電力は、周波数変換機によって必要な周波数に変換されて電動機に供給される。内燃機関の回転速度に基づいて電動機の回転速度を制御することで効率的に電動機の出力を伝達できるとともに、過負荷による電動機の破損を回避することができる。例えば、特許文献1に記載の如くである。
 しかし、特許文献1に記載の船舶には、容量が数百kWに及ぶ大型の電動機が用いられる。このような大型の電動機に対応することができるインバータは、大型で非常に高価なものになる。従って、インバータを用いて電動機の回転速度を変更するためには、大型のインバータを設置するスペースが必要になるだけでなく船舶の製造コストの増加を招き問題であった。
特開2010-241160号公報
 本発明は、このような問題を解決すべくなされたものであり、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる船舶の提供を目的とする。また、周波数変換機を用いない安価な船舶を提供することを目的とする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 本発明においては、内燃機関からの出力に電動機からの出力が合成されて可変ピッチプロペラに伝達される船舶において、電動機の目標出力が設定され、電動機からの出力を目標出力に維持するように内燃機関の回転速度が制御されて、内燃機関と電動機との負荷分担の割合が変更されるものである。
 本発明においては、前記内燃機関の目標回転速度が設定され、内燃機関の回転速度を目標回転速度に維持するように内燃機関の出力が制御されるとともに、電動機からの出力を目標出力に維持するように内燃機関の目標回転速度が変更されるものである。
 本発明においては、前記電動機からの出力が目標出力であって、前記内燃機関からの出力が内燃機関の定格出力に到達すると前記可変ピッチプロペラのピッチ角が減少するように制御されるものである。
 本発明においては、前記内燃機関からの出力のみが可変ピッチプロペラに伝達可能に構成されるものである。
 本発明においては、内燃機関と電動機とが動力伝達装置によって連動連結され、可変ピッチプロペラを駆動する船舶において、電動機の回転速度が一定になるように内燃機関の出力が制御されるものである。
 本発明においては、前記可変ピッチプロペラからの負荷に応じて前記内燃機関の出力が制御され内燃機関と前記電動機との負荷分担の割合が変更されるものである。
 本発明においては、速度制御装置によって回転速度が制御される内燃機関と供給される電力の周波数によって回転速度が決定される電動機とが動力伝達装置によって連動連結され、可変ピッチプロペラを駆動する船舶において、前記内燃機関の目標回転速度と前記電動機の目標出力とが設定され、内燃機関の回転速度を目標回転速度に維持するように速度制御装置によって内燃機関の出力を制御するとともに、電動機からの出力を目標出力に維持するように内燃機関の目標回転速度を変更する出力制御装置を具備するものである。
 本発明の効果として、以下に示すような効果を奏する。
 本発明によれば、負荷の変動を内燃機関が負担して負荷の平衡を図るので電動機が過負荷になることがない。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶(ハイブリッドシステム)を提供することができる。
 本発明によれば、負荷の変動を内燃機関が負担して負荷の平衡を図るので電動機が過負荷になることがなく、電動機の回転速度が略一定に保たれる。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶を提供することができる。
 本発明によれば、負荷の変動を内燃機関が負担できない状態になっても負荷を強制的に減少させることで主機と電動機とが保護される。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶を提供することができる。
 本発明によれば、船舶の用途に合わせて動力源が変更される。これにより、周波数変換機を用いない安価な船舶を提供することができる。
 本発明によれば、電動機を制御する必要がない。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶を提供することができる。
 本発明によれば、負荷の変動を内燃機関が負担して負荷の平衡を図るので電動機が過負荷になることがない。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶を提供することができる。
 本発明によれば、負荷の変動を内燃機関が負担して負荷の平衡を図るので電動機が過負荷になることがない。これにより、周波数変換機を用いずに電動機を保護するとともに、内燃機関からの出力と電動機からの出力との合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶(ハイブリッドシステム)を提供することができる。
本発明に係る船舶の構成を示す概略図。 本発明に係る船舶の出力制御装置における制御構成を示す概略図。 本発明に係る船舶の主機と電動機との負荷分担割合の関係を表すグラフを示す図。 本発明に係る船舶の出力制御装置の制御フローを示す図。 本発明に係る船舶の出力制御装置の並列運転制御セットの制御フローを示す図。
 まず、図1及び図2を用いて本発明に係る一実施形態である船舶1の構成について説明する。なお、船舶1は、いわゆる二軸推進方式の船舶を示している。但し、推進軸の数はこれに限定されるものではない。
 図1に示すように、船舶1は、内燃機関である主機2からの出力Weと電動機4からの出力Wmとが合成されて可変ピッチプロペラ7に伝達される。船舶1は、図示しない船体に推進用のエンジンである主機2、電動機4、動力伝達装置5、可変ピッチプロペラ7、発電用のエンジンである補機8、発電機9を主たる構成要素として具備する。
 図2に示すように、主機2は、主に推進用の動力を発生させるものである。主機2は、ディーゼルエンジンから構成される。主機2には、動力伝達装置5の入力側に連結される。つまり、主機2からの出力Weは、動力伝達装置5に入力される。主機2は、速度制御装置3によってその回転速度Veを任意に変更可能に構成される。速度制御装置3は、主機2の図示しない回転速度検出センサや燃料噴射装置に接続される。また、主機2は、速度制御装置3によって回転速度Veを目標回転速度Vetに維持する定速運転制御が可能に構成される。さらに、主機2は、後述の出力制御装置10(配電盤)からのインチング信号(パルス信号)に基づいて速度制御装置3によってその回転速度Veをインチング制御可能に構成される。本実施形態においてインチング制御とは、インチング信号の入力時間に関係なく予め設定されたΔVeだけ回転速度Veを増減する制御をいう。
 図1および図2に示すように、電動機4は、主に推進用の動力を発生させるものである。電動機4は、例えば、同期電動機等から構成される。電動機4は、動力伝達装置5の入力側に連結される。つまり、電動機4からの出力Wmは、動力伝達装置5に入力される。電動機4は、供給される電力(電流)に応じた動力を出力する。電動機4は、電力の供給路である船内母線1aに遮断機1b(ACB)を介して接続される。すなわち、電動機4の始動は、図示しない電力供給装置に直接接続された状態での直入始動で行われる。電動機4は、供給される電力の周波数に比例した速度で回転する。すなわち、電動機4に供給される電力の周波数が一定の場合、電動機4の回転速度Veは一定になる。
 動力伝達装置5は、複数の入力される動力を合成して出力するものである。動力伝達装置5は、ギア機構から構成される。動力伝達装置5は、その入力側に主機2と電動機4とがそれぞれ連結される。本実施形態において、動力伝達装置5には、電動機4がクラッチ等を介さずに接続されている。また、動力伝達装置5は、その出力側に推進軸6を介して可変ピッチプロペラ7が連結される。動力伝達装置5は、入力側から入力される主機2の出力Weと電動機4との出力Wmとの合成出力を出力側から推進軸6を介して可変ピッチプロペラ7に出力可能に構成される。
 動力伝達装置5は、入力される主機2の回転速度Veが目標回転速度Vetであるとき、可変ピッチプロペラ7の目標回転速度Vptに一致するように主機2の回転速度Veを変速して出力する。同様に、動力伝達装置5は、入力される電動機4の回転速度Vmが目標回転速度Vmtであるとき、可変ピッチプロペラ7の目標回転速度Vptに一致するように電動機4の回転速度Vmを変速して出力する。つまり、主機2と電動機4とは、動力伝達装置5のギア比に応じた所定の回転速度比で同期するように構成される。
 可変ピッチプロペラ7(CPP)は、推進力を発生させるものである。可変ピッチプロペラ7は、推進軸6を介して動力伝達装置5の出力軸側に連結される。可変ピッチプロペラ7は、ピッチ角制御装置11に接続される。ピッチ角制御装置11は、可変ピッチプロペラ7のピッチ角θについての検出信号を取得し、ピッチ角制御装置11からの制御信号によって制御される図示しないアクチュエータを介して、ピッチ角θ(迎え角)を変更することができる。
 可変ピッチプロペラ7は、その回転速度Vpが一定であってもピッチ角θを変更することで水流からの抗力、すなわち可変ピッチプロペラ7の回転により生じる推進力を任意に変更することができる。これにより、可変ピッチプロペラ7を備える船舶1は、可変ピッチプロペラ7の回転速度Vpが一定の状態においてピッチ角θを変更することで船舶1の速度Vを変更することができる。
 図1に示すように、補機8は、主に発電用の動力を発生させるものである。補機8は、ディーゼルエンジンから構成される。補機8には、発電機9が連結される。つまり、補機8からの出力は、発電機9に入力される。補機8は、発電機9を駆動するために一定の回転速度で出力可能に構成される。
 発電機9は、船舶1内の電気機器12や電動機4等に電力を供給するものである。発電機9は、連結されている補機8からの出力により発電を行う。発電機9は、船内母線1aに接続され、船内母線1aを介して電気機器12や電動機4等に電力が供給される。本実施形態において、三組の発電機9と補機8とが船内母線1aに接続されているがこれに限定するものではない。
 図2に示すように、出力制御装置10(配電盤)は、図示しない操縦装置からの信号に基づいて主機2の速度制御装置3によって主機2の回転速度Veを制御し、ピッチ角制御装置11によって可変ピッチプロペラ7のピッチ角θ等を制御するものである。出力制御装置10は、主機2、および可変ピッチプロペラ7の制御を行うための種々のプログラムやデータが格納される。出力制御装置10は、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 出力制御装置10は、図示しない操縦装置と接続され、操縦装置からの制御信号を取得することが可能である。
 出力制御装置10は、主機2と接続され、主機2の出力Weについての検出信号を取得することが可能である。
 出力制御装置10は、主機2の速度制御装置3に接続され、主機2の回転速度Veを変更する制御信号(インチング信号)を送信することが可能である。
 出力制御装置10は、電動機4に接続され、電動機4の出力Wmについての検出信号を取得することが可能である。
 出力制御装置10は、ピッチ角制御装置11に接続され、可変ピッチプロペラ7のピッチ角θについての制御信号を送信することが可能である。
 出力制御装置10は、取得した電動機4の出力Wmについての検出信号に基づいて、速度制御装置3に設定されている主機2の目標回転速度Vetを変更することが可能である。
 出力制御装置10は、取得した主機2の出力Weについての検出信号と電動機4の出力Wmについての検出信号とに基づいて、ピッチ角制御装置11より可変ピッチプロペラ7のピッチ角θを変更することが可能である。
 以下では、図2及び図3を用いて本発明に係る船舶の一実施形態である船舶1において、主機2と電動機4とによる負荷分担の制御態様について説明する。
 船舶1は、主機2からの出力Weのみを可変ピッチプロペラ7に伝達するエンジン単独運転制御と、主機2からの出力Weに電動機4からの出力Wmを合成して可変ピッチプロペラ7に伝達する並列運転制御とを運転状態に応じて切り替えることができる。エンジン単独運転制御は、船舶が公海上を通常の速度で運転する場合などに選択される。並列運転制御は、例えば、アンカーハンドリングタグボートにおいて重量物であるアンカーを海底から引き上げる場合などに選択される。
 エンジン単独運転制御の場合、船舶1の速度は、主機2の回転速度Veによって変更される。可変ピッチプロペラ7のピッチ角θは変更されない。出力制御装置10は、図示しない操縦装置からの制御信号に基づいて、速度制御装置3によって主機2の回転速度Veを制御する。この際、電動機4からの出力Wmは、可変ピッチプロペラ7に伝達されていない。つまり、可変ピッチプロペラからの負荷は、すべて主機2が分担する。
 並列運転制御の場合、船舶1の速度は、可変ピッチプロペラ7のピッチ角θによって変更される。出力制御装置10は、図示しない操縦装置からの制御信号に基づいて、ピッチ角制御装置11によって船舶1の速度Vが目標速度Vtになるように可変ピッチプロペラ7のピッチ角θを制御する。可変ピッチプロペラ7の回転速度Vpは、目標回転速度Vptに維持される。この際、主機2からの出力Weと電動機4からの出力Wmとは、可変ピッチプロペラ7に伝達される。つまり、可変ピッチプロペラからの負荷は、主機2と電動機4とで分担される。
 出力制御装置10は、速度制御装置3によって主機2の回転速度Veが目標回転速度Vetになるように主機2からの出力Weを制御する定速運転制御を行う。電動機4には、その回転速度Vmが目標回転速度Vmtに一致する周波数の電力が供給される。さらに、出力制御装置10は、電動機4からの出力Wmを図示しない操縦装置によって設定される目標出力Wmtに維持するために、主機2の目標回転速度Vetを変更する。すなわち、主機2の回転速度Veが制御される。
 具体的には、図3に示すように、並列運転モードにおいて可変ピッチプロペラに負荷Aが加わっているとき、出力制御装置10は、主機2が出力We1を出力するように制御する。一方、図示しない操船装置は、電動機4が目標出力Wmtとして設定された出力Wm1を出力するように電力を供給する。つまり、主機2と電動機4とは、We1対Wm1の割合で負荷Aが分担されている。
 可変ピッチプロペラに加わる負荷が負荷Aから負荷Bまで増加したとき、速度制御装置3は、定速運転制御により主機2の回転速度Veが目標回転速度Vetを維持するように出力Weを増加させる。電動機4は、同期電動機の性質により負荷が増加するとその出力Wmが増加する。この際、出力制御装置10は、電動機4からの出力Wmが目標出力Wmtである出力Wm1を維持するために、主機2の目標回転速度Vetを増加させるインチング信号を速度制御装置3に送信する。これにより、主機2の回転速度Veが増加し、主機2からの出力Weも出力We1から出力We2に増加する。この結果、主機2と電動機4とは、We2対Wm1の割合で負荷Bが分担される。
 可変ピッチプロペラに加わる負荷が負荷Cのとき、主機2と電動機4とには、We3対Wm1の割合で負荷Bが分担されている。電動機4の目標出力Wmtが出力Wm1から出力Wm2に変更された場合、電動機4からの出力Wmは、出力Wm1から出力Wm2まで増加する。これに伴い、出力制御装置10は、電動機4からの出力Wmが目標出力Wmtである出力Wm2を維持するために、主機2の目標回転速度Vetを減少させるインチング信号を速度制御装置3に送信する。これにより、主機2の回転速度Veが減少し、主機2からの出力Weも出力We3から出力We4まで減少する。この結果、主機2と電動機4とは、We4対Wm2の割合で負荷Cが分担される。
 次に、図2、図4および図5を用いて上述の出力制御装置10の制御態様について具体的に説明する。
 図4に示すように、主機2の始動後、ステップS110において、出力制御装置10は、図示しない操縦装置からの運転モードの制御信号および船舶1の目標速度Vtを取得して、ステップをステップS120に移行させる。
 ステップS120において、出力制御装置10は、取得した運転モードの制御信号に基づいてエンジン単独運転制御が選択されているか否かを判定する。
 その結果、エンジン単独運転制御が選択されていると判定した場合、出力制御装置10はステップをステップS130に移行させる。
 一方、エンジン単独運転制御が選択されていないと判定した場合、すなわち、並列運転制御が選択されている場合、出力制御装置10はステップをステップS200に移行させる。
 ステップS130において、出力制御装置10は、電動機4を停止させて、ステップをステップS140に移行させる。
 ステップS140において、出力制御装置10は、主機2の出力Weのみを可変ピッチプロペラ7に伝達させるエンジン単独運転制御を開始して、ステップをステップS110に戻す。
 ステップS200において、出力制御装置10は、並列運転制御セットAを開始し、ステップをステップS210に移行させる(図5参照)。
 ステップS210において、出力制御装置10は、電動機4の目標出力Wmtを図示しない操縦装置から取得して、ステップをステップS220に移行させる。
 ステップS220において、出力制御装置10は、図示しない操縦装置からの制御信号に基づいて、ピッチ角制御装置11によって可変ピッチプロペラのピッチ角θを船舶1の目標速度Vtに対応する目標ピッチ角θtに設定して、ステップをステップS230に移行させる。
 ステップS230において、出力制御装置10は、主機2の回転速度Veが目標回転速度Vetを維持するように速度制御装置3による定速運転制御を行い、ステップをステップS240に移行させる。この際、図示しない電力供給装置によって電動機4の回転速度Vmが目標回転速度Vmtを維持するように電力が供給される。すなわち、電動機4の回転速度Vmが目標回転速度Vmtで一定になるになるように電力が供給される。
 ステップS240において、出力制御装置10は、主機2の出力Weと電動機4の出力Wmとについての検出信号を取得して、ステップをステップS250に移行させる。
 ステップS250において、出力制御装置10は、取得した電動機4の出力Wmについての検出信号に基づいて電動機4の出力Wmが電動機4の目標出力Wmtと等しくないか否かを判定する。
 その結果、電動機4の出力Wmが電動機4の目標出力Wmtと等しくないと判定した場合、出力制御装置10はステップをステップS260に移行させる。
 一方、電動機4の出力Wmが電動機4の目標出力Wmtと等しいと判定した場合、並列運転制御セットAを終了してステップをステップS110に戻す(図4参照)。
 ステップS260において、出力制御装置10は、取得した電動機4の出力Wmについての検出信号に基づいて、電動機4の出力Wmが電動機4の目標出力Wmtよりも増加しているか否かを判定する。
 その結果、電動機4の出力Wmが電動機4の目標出力Wmtよりも増加していると判定した場合、出力制御装置10はステップをステップS270に移行させる。
 一方、電動機4の出力Wmが電動機4の目標出力Wmtよりも増加していないと判定した場合、出力制御装置10はステップをステップS261に移行させる。
 ステップS261において、出力制御装置10は、インチング信号を速度制御装置3に送信して主機2の目標回転速度VetをΔVeだけ減少させて主機2の負荷を電動機4に移行させて、ステップをステップS240に戻す。すなわち、出力制御装置10は、主機2の速度を微調整して主機2と電動機4との負荷分担を行い、電動機4の出力Wmが一定の値になるように制御する。
 ステップS270において、出力制御装置10は、取得した主機2の出力Weについての検出信号に基づいて、主機2の出力Weが主機2の定格出力Werよりも増加しているか否かを判定する。
 その結果、主機2の出力Weが主機2の定格出力Werよりも増加していると判定した場合、出力制御装置10はステップをステップS280に移行させる。
 一方、主機2の出力Weが主機2の定格出力Werよりも増加していないと判定した場合、出力制御装置10はステップをステップS271に移行させる。
 ステップS271において、出力制御装置10は、インチング信号を速度制御装置3に送信して主機2の目標回転速度VetをΔVeだけ増加させて電動機4の負荷を主機2に移行させて、ステップをステップS240に戻す。すなわち、出力制御装置10は、主機2の速度を微調整して主機2と電動機4との負荷分担を行い、電動機4の出力Wmが一定の値になるように制御する。
 ステップS280において、出力制御装置10は、ピッチ角制御装置11によって設定した可変ピッチプロペラ7の目標ピッチ角θtをΔθだけ減少させて、ステップをステップS290に移行させる。なお、機器の故障等により電動機4の出力Wmが電動機4の目標出力Wmtに到達しても主機2がインチング制御されない場合には、主機2の出力Weが主機2の定格出力Werに到達していなくてもピッチ角制御装置11によって設定した可変ピッチプロペラ7の目標ピッチ角θtをΔθだけ減少させる。
 ステップS290において、出力制御装置10は、主機2の出力Weが定格出力Werに到達したこと、電動機4の出力Wmが目標出力Wmtに到達したこと、および可変ピッチプロペラのピッチ角θがΔθだけ減少させたことにより船舶1の速度Vが目標速度Vtよりも低下していることを表示装置13(図2参照)に表示して、並列運転制御セットAを終了し、ステップをステップS110に戻す(図4参照)。
 以上の如く、本発明に係る船舶1は、内燃機関である主機2の出力Weに電動機4からの出力Wmが合成されて可変ピッチプロペラ7に伝達される船舶1において、電動機4の目標出力Wmtが設定され、電動機4からの出力Wmを目標出力Wmtに維持するように主機2の目標回転速度Vetが制御されて、主機2と電動機4との負荷分担の割合が変更されることで負荷の平衡を図るものである。
 このように構成することで、負荷の変動を主機2が負担して負荷の平衡を図るので電動機4が過負荷になることがない。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 また、主機2の目標回転速度Vetが設定され、主機2の回転速度Veを目標回転速度Vetに維持するように主機2の出力Weが制御されるとともに、電動機4からの出力Wmを目標出力Wmtに維持するように主機2の目標回転速度Vetが変更されるものである。
 このように構成することで、負荷の変動を主機2が負担して負荷の平衡を図るので電動機4が過負荷になることがなく、電動機4の回転速度Vmが略一定に保たれる。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 また、電動機4からの出力Wmが目標出力Wmtであって、主機2からの出力Weが主機2の定格出力Werに到達すると可変ピッチプロペラ7のピッチ角θが減少するように制御されるものである。
 このように構成することで、負荷の変動を主機2が負担できない状態になっても負荷を強制的に減少させることで主機2と電動機4とが保護される。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 また、主機2からの出力Weのみが可変ピッチプロペラ7に伝達可能に構成されるものである。
 このように構成することで、船舶1の用途に合わせて動力源が変更される。これにより、周波数変換機を用いない安価な船舶1を提供することができる。
 また、主機2と電動機4とが動力伝達装置5によって連動連結され、可変ピッチプロペラ7を駆動する船舶1において、電動機4の回転速度Vmが一定になるように主機2の出力Weが制御されるものである。
 このように構成することで、電動機4を制御する必要がない。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 また、可変ピッチプロペラ7からの負荷に応じて主機2の出力Weが制御され主機2と電動機4との負荷分担の割合が変更されるものである。
 このように構成することで、負荷の変動を主機2が負担して負荷の平衡を図るので電動機4が過負荷になることがない。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 また、速度制御装置3によって回転速度Veが制御される内燃機関である主機2と供給される電力の周波数によって回転速度Vmが決定される電動機4とが動力伝達装置5によって連動連結され、可変ピッチプロペラ7を駆動する船舶1において、主機2の目標回転速度Vetと電動機4の目標出力Wmとが設定され、主機2の回転速度Veを目標回転速度Vetに維持するように速度制御装置3によって主機2の出力Weを制御するとともに、電動機4からの出力Wmを目標出力Wmtに維持するように主機2の目標回転速度Vetを変更する出力制御装置10を具備するものである。
 このように構成することで、負荷の変動を主機2が負担して負荷の平衡を図るので電動機4が過負荷になることがない。これにより、周波数変換機を用いずに電動機4を保護するとともに、主機2からの出力Weと電動機4からの出力Wmとの合成出力によって推進することができる。また、周波数変換機を用いない安価な船舶1を提供することができる。
 本発明は、推進用の動力として内燃機関と電動機とを具備する船舶の技術に利用することが可能である。
  1   船舶
  2   主機
  4   電動機
  7   可変ピッチプロペラ
  Ve  主機の回転速度
  Vet 主機の目標回転速度
  Wm  電動機の出力
  Wmt 電動機の目標出力

Claims (8)

  1.  内燃機関からの出力に電動機からの出力が合成されて可変ピッチプロペラに伝達される船舶において、
     電動機の目標出力が設定され、
     電動機からの出力を目標出力に維持するように内燃機関の回転速度が制御されて、内燃機関と電動機との負荷分担の割合が変更される船舶。
  2.  前記内燃機関の目標回転速度が設定され、
     内燃機関の回転速度を目標回転速度に維持するように内燃機関の出力が制御されるとともに、前記電動機からの出力を目標出力に維持するように内燃機関の目標回転速度が変更される請求項1に記載の船舶。
  3.  前記電動機からの出力が目標出力であって、前記内燃機関からの出力が内燃機関の定格出力に到達すると前記可変ピッチプロペラのピッチ角が減少するように制御される請求項1に記載の船舶。
  4.  前記電動機からの出力が目標出力であって、前記内燃機関からの出力が内燃機関の定格出力に到達すると前記可変ピッチプロペラのピッチ角が減少するように制御される請求項2に記載の船舶。
  5.  前記内燃機関からの出力のみが前記可変ピッチプロペラに伝達可能に構成される請求項1から請求項4のいずれか一項に記載の船舶。
  6.  内燃機関と電動機とが動力伝達装置によって連動連結され、可変ピッチプロペラを駆動する船舶において、
     電動機の回転速度が一定になるように内燃機関の出力が制御される船舶。
  7.  前記可変ピッチプロペラからの負荷に応じて前記内燃機関の出力が制御され内燃機関と前記電動機との負荷分担の割合が変更される請求項6に記載の船舶。
  8.  速度制御装置によって回転速度が制御される内燃機関と供給される電力の周波数によって回転速度が決定される電動機とが動力伝達装置によって連動連結され、可変ピッチプロペラを駆動する船舶において、
     前記内燃機関の目標回転速度と前記電動機の目標出力とが設定され、
     内燃機関の回転速度を目標回転速度に維持するように速度制御装置によって内燃機関の出力を制御するとともに、電動機からの出力を目標出力に維持するように内燃機関の目標回転速度を変更する出力制御装置を具備する船舶。
PCT/JP2014/055030 2013-03-14 2014-02-28 船舶 WO2014141902A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480015455.9A CN105189283A (zh) 2013-03-14 2014-02-28 船舶
KR1020157027749A KR20150127168A (ko) 2013-03-14 2014-02-28 선박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051920 2013-03-14
JP2013051920A JP6029176B2 (ja) 2013-03-14 2013-03-14 船舶

Publications (1)

Publication Number Publication Date
WO2014141902A1 true WO2014141902A1 (ja) 2014-09-18

Family

ID=51536575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055030 WO2014141902A1 (ja) 2013-03-14 2014-02-28 船舶

Country Status (4)

Country Link
JP (1) JP6029176B2 (ja)
KR (1) KR20150127168A (ja)
CN (1) CN105189283A (ja)
WO (1) WO2014141902A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334934A (zh) * 2018-10-29 2019-02-15 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种节能的船舶可调桨系统机桨匹配控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5951587B2 (ja) * 2013-11-13 2016-07-13 三菱重工業株式会社 制御装置及びこれを備えた船舶、並びに統合制御方法
JP6697218B2 (ja) * 2014-11-11 2020-05-20 川崎重工業株式会社 船舶の推進システム
KR101559316B1 (ko) 2015-04-09 2015-10-20 김한열 연료가스 공급 시스템
CN107922042B (zh) * 2016-02-29 2019-07-05 新泻原动机株式会社 船舶推进方法和船舶推进装置
JP6125124B1 (ja) * 2016-02-29 2017-05-17 新潟原動機株式会社 モータの制御方法及び制御装置
KR101924224B1 (ko) 2016-08-31 2018-12-03 삼성중공업 주식회사 선박
EP3649044B1 (en) * 2017-07-06 2022-12-14 Wärtsilä Finland Oy A method of starting an internal combustion engine of a hybrid propulsion system in a marine vessel and a hybrid propulsion system in a marine vessel
JP7177691B2 (ja) * 2018-12-26 2022-11-24 ナブテスコ株式会社 可変ピッチプロペラ制御システム、可変ピッチプロペラの制御方法
CN112339963B (zh) * 2019-08-08 2022-11-25 株洲中车时代电气股份有限公司 一种直流组网船舶电力推进系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106582A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd 船舶およびその運用方法
JP2008137646A (ja) * 2006-11-10 2008-06-19 Yamaha Motor Co Ltd ハイブリッド型船外機の制御装置、ならびにそれを用いた航走支援システムおよび船舶
JP2010125987A (ja) * 2008-11-27 2010-06-10 Nishishiba Electric Co Ltd 船舶用ハイブリッド推進装置
JP2010235049A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd 舶用動力システム
JP2012087750A (ja) * 2010-10-22 2012-05-10 Ihi Corp 船舶用ハイブリッド推進システム操縦装置
JP2012125012A (ja) * 2010-12-07 2012-06-28 Universal Shipbuilding Corp 船舶発電システムの制御方法、船舶発電システムの制御プログラム、および船舶発電システムの制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20030556A0 (fi) * 2003-04-11 2003-04-11 Abb Oy Menetelmä ja laitteisto laivan ohjaamiseksi
CN201694383U (zh) * 2010-01-11 2011-01-05 浙江欣亚磁电发展有限公司 一种电力推进系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106582A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd 船舶およびその運用方法
JP2008137646A (ja) * 2006-11-10 2008-06-19 Yamaha Motor Co Ltd ハイブリッド型船外機の制御装置、ならびにそれを用いた航走支援システムおよび船舶
JP2010125987A (ja) * 2008-11-27 2010-06-10 Nishishiba Electric Co Ltd 船舶用ハイブリッド推進装置
JP2010235049A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd 舶用動力システム
JP2012087750A (ja) * 2010-10-22 2012-05-10 Ihi Corp 船舶用ハイブリッド推進システム操縦装置
JP2012125012A (ja) * 2010-12-07 2012-06-28 Universal Shipbuilding Corp 船舶発電システムの制御方法、船舶発電システムの制御プログラム、および船舶発電システムの制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334934A (zh) * 2018-10-29 2019-02-15 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种节能的船舶可调桨系统机桨匹配控制方法

Also Published As

Publication number Publication date
JP6029176B2 (ja) 2016-11-24
CN105189283A (zh) 2015-12-23
KR20150127168A (ko) 2015-11-16
JP2014177189A (ja) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6029176B2 (ja) 船舶
KR101287717B1 (ko) 선박 하이브리드 구동 시스템을 작동하기 위한 방법 및 장치
JP5260390B2 (ja) 船舶の推進装置
JP5711108B2 (ja) 舶用推進装置
WO2017141711A1 (ja) 船舶用電気推進装置、船舶用電気推進装置に用いられる推進力制御装置
KR101939931B1 (ko) 선박 추진 시스템, 선박 및 선박 추진 방법
JP2015143097A (ja) 舶用推進装置
JP2007284018A (ja) 船舶用ハイブリッド推進システム
JP6697218B2 (ja) 船舶の推進システム
JP2010125987A (ja) 船舶用ハイブリッド推進装置
CN112752711B (zh) 船舶用混合动力系统以及船舶用混合动力系统的控制方法
EP3067266A1 (en) Engine room arrangement for a marine vessel
WO2018159208A1 (ja) 舶用推進システムおよび船舶
JP2007230510A (ja) 船舶
JP5877916B2 (ja) 舶用推進装置
US10730599B2 (en) Marine vessel power system and method
KR101567880B1 (ko) 선박용 전력 공급 장치
JP5540134B1 (ja) 船舶用電気推進装置
JP2014148265A (ja) 船舶
CN113272221B (zh) 混合动力推进船的航行方法以及混合动力推进船
US20230020778A1 (en) Ship control method, ship control program, and ship control system, and ship
EP2620359B1 (en) System and method for starting an electric motor of a propulsion unit
JP2018090045A (ja) 船外機の制御装置
JP2011160620A (ja) 船舶用電気推進装置のインバータシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015455.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027749

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14762559

Country of ref document: EP

Kind code of ref document: A1