WO2014141745A1 - 計測装置および取付けユニット - Google Patents

計測装置および取付けユニット Download PDF

Info

Publication number
WO2014141745A1
WO2014141745A1 PCT/JP2014/051185 JP2014051185W WO2014141745A1 WO 2014141745 A1 WO2014141745 A1 WO 2014141745A1 JP 2014051185 W JP2014051185 W JP 2014051185W WO 2014141745 A1 WO2014141745 A1 WO 2014141745A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
measurement circuit
noise
power line
voltage
Prior art date
Application number
PCT/JP2014/051185
Other languages
English (en)
French (fr)
Inventor
圭記 松浦
紘 今井
裕幸 徳崎
康大 川端
悟郎 川上
篤宏 岡村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US14/776,781 priority Critical patent/US9915689B2/en
Priority to CN201480011698.5A priority patent/CN105026939B/zh
Priority to EP14762987.7A priority patent/EP2975417B1/en
Priority to KR1020157024795A priority patent/KR101704956B1/ko
Publication of WO2014141745A1 publication Critical patent/WO2014141745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/02Constructional details
    • G01R11/04Housings; Supporting racks; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/065Details of electronic electricity meters related to mechanical aspects

Definitions

  • the present invention relates to a measuring device that measures the voltage and power consumption of equipment without contact with a power line, and a mounting unit for mounting the measuring device on an external distribution board or the like.
  • Patent Document 1 describes a non-contact voltage measurement method that eliminates the influence of stray capacitance by making an electric potential difference between a shield and a probe zero using an operational amplifier.
  • Patent Document 2 describes a non-contact voltage measuring apparatus that improves the accuracy by measuring and correcting the phase of a voltage signal of an insulated wire by measuring the phase difference of a voltage signal measured by a non-contact voltage measuring electrode.
  • Patent Document 3 describes a voltage measurement device that calculates a difference value between a detection signal and a reference potential and controls the gain of a feedback loop using a variable capacitance circuit.
  • the external noise source and the signal ground line of the measurement circuit are capacitively coupled, or the capacitance (floating capacitance) between the signal ground line and the ground fluctuates.
  • the sensor output fluctuates and the measurement accuracy is adversely affected.
  • an object of the present invention is to provide a measuring device that does not require wiring work at all and can prevent noise from being mixed in the sensor output, and a mounting unit for mounting the measuring device to an external distribution board or the like.
  • the present invention is a measuring device, a sensor for generating a current by electromagnetic coupling with a power line, and a measurement for measuring either a voltage or a power obtained by a current generated in the sensor according to the voltage of the power line A circuit; a conductive member electrically connected to a signal ground line of the measurement circuit; and an insulating member for bringing the conductive member close to the external conductor and insulating the conductive member from the external conductor.
  • the conductive member forms a capacitance with the external conductor via the insulating member.
  • the noise current flowing in the measurement circuit can be reduced. It is not necessary to perform work to ground the conductive member to the ground, and even those without knowledge of advanced electrical equipment can be easily installed, and the voltage and power can be highly accurately reduced with less noise. Measurement of either of becomes possible.
  • the relative position between the conductive member and the external conductor is fixed.
  • the conductive member is a magnet.
  • the measuring circuit can be fixed to the external conductor by a magnet.
  • Another aspect of the present invention is an attachment unit for attaching a measurement circuit for measuring voltage, current, or power to an external conductor that is grounded to the ground, and is electrically connected to the signal ground of the measurement circuit.
  • this mounting unit By using this mounting unit, it becomes possible to easily attach a commercially available measuring device to an external device, and it is possible to measure the voltage, power, etc. with high accuracy by eliminating the influence of noise.
  • casing are combined with a magnet It is.
  • FIG. 8 is an equivalent circuit diagram of the embodiment shown in FIG. 7. It is a block diagram which shows the measuring device of other embodiment of this invention. It is a block diagram which shows the measuring device of further another embodiment of this invention. It is a block diagram which shows the measuring device of other embodiment of this invention.
  • FIG. 1 is a block diagram of a measuring apparatus according to an embodiment of the present invention.
  • a distribution board housing 1 has a terminal board 11 and the like built therein, and distributes an AC voltage input via a power line 2 to a plurality of power distribution lines 3.
  • the power distribution line 3 is connected to various electric devices (not shown).
  • the distribution board casing 1 is made of a ferromagnetic material such as iron and connected to the ground (GND), and operates as an external conductor.
  • a measurement circuit 4 is provided in the distribution board casing 1 in order to measure the power supplied from the power line 2.
  • the measuring circuit 4 is housed in the sensor housing 5.
  • a probe 6 that operates as an example of a sensor is connected to the measurement circuit 4, and the probe 6 electromagnetically couples with the power line 2 to generate a current.
  • the probe 6 may be electromagnetically coupled to the power distribution line 3 to measure the power consumption of the electric device distributed by the power distribution line 3.
  • the measurement circuit 4 measures the current flowing according to the voltage of the power line 2 taken out by the probe 6.
  • the sensor housing 5 is provided with a metal plate 8 that operates as a conductive member electrically connected to the signal ground line 7 of the measurement circuit 4.
  • the sensor housing 5 is configured by molding a resin that operates as an insulating member, and a magnet 9 is fixed to a side surface or a bottom surface of the sensor housing 5. It is adsorbed by the magnet 9 inside the side wall. Since the distribution board casing 1 is formed of a ferromagnetic material, the distribution board casing 1 can be firmly attracted by the magnet 9, and the sensor casing 5 may be detached from the distribution board casing 1. Less.
  • the metal plate 8 is made of copper and aluminum, and is formed into a plate shape (a number of holes may be punched), a rod shape, or a wire mesh shape, but each is electrically connected even if divided into a plurality of portions. It only has to be. Further, the metal plate 8 can be a magnet made of a material such as iron, cobalt, nickel, or gadolinium. The metal plate 8 is provided so as to face the distribution board casing 1 that operates as an external conductor grounded to the ground, and is connected to the distribution board casing 1 via the sensor casing 5 formed of resin as an insulating member. A capacitance 10 is formed with the metal plate 8. Capacitance 10 serves to reduce noise.
  • FIG. 2 is a circuit diagram for explaining the principle of reducing noise in the measuring apparatus according to the embodiment of the present invention.
  • a detection resistor Rs is connected between the probe 6 and the signal ground line 7, and a voltage generated between the detection resistor Rs and the signal ground line 7 becomes an input signal of the measurement circuit 4.
  • Various external noises are mixed in this input signal, and these external noises are mixed in the measurement circuit 4.
  • the external noise is represented as a mixture of noise of the voltage Vn from the noise source 11 via the stray capacitance Cf1.
  • the noise source 11 and the stray capacitance Cf1 are not shown.
  • the noise current In is the sum of the current In1 that flows from the measurement circuit 4 to the power line 2 and the current In2 that flows to GND via the capacitance 10.
  • the capacitance 10 formed between the power line 2 and the metal plate 8 has a capacitance Cf2.
  • a current In1 flows from the measurement circuit 4 to the power line 2 by the voltage Vn of the noise source 11, and a current In2 flows to the ground (GND) via the capacitance 10 between the metal plate 8 and the power line 2.
  • the current In1 affects the measurement circuit 4, but the current In2 does not flow to the measurement circuit 4, and therefore does not affect the measurement circuit 4. Since the currents In1 and In2 flow from the noise source 11, the current In1 flowing through the measurement circuit 4 can be reduced by increasing the current In2. Therefore, since the current In1 flowing through the measurement circuit 4 can be reduced by increasing the capacitance Cf2 of the capacitance 10 between the metal plate 8 and the distribution board casing 1, the measurement circuit 4 can be reduced from the influence of noise. .
  • FIG. 3 (A) is a diagram showing the amount of noise when the sensor casing and the distribution board casing are coupled with a magnet in one embodiment of the present invention
  • the capacitance Cf2 of the capacitance 10 between the metal plate 8 and the distribution board casing 1 generated by attracting the sensor casing 5 to the distribution board casing 1 with the magnet 9 is obtained. Due to the presence, almost no noise appears with respect to the sensor reference potential of 1.25 V as shown in FIG. On the other hand, when the sensor housing 5 is not attached to the distribution board housing 1, there is no capacitance Cf2, so that the sensor reference potential of 1.25 V is applied as shown in FIG. Noise with a potential of about 0.2V appears. Therefore, it is possible to confirm the effect due to the presence of the capacitance Cf2 of the capacitance 10 between the metal plate 8 and the distribution board casing 1.
  • FIG. 4 is an equivalent circuit diagram for explaining the effect of noise reduction by the measuring apparatus according to the embodiment of the present invention.
  • the impedance Z2 is expressed by the following equation.
  • the impedance Z2 1 / j ⁇ Cf2 If the capacitance Cf2 does not exist, there is usually only a few pF of stray capacitance, so the impedance Z2 is about several G ⁇ , but by providing the capacitance 10, the impedance Z2 Becomes several M ⁇ to several hundred M ⁇ . Since the sensor output is determined by the ratio between the impedances Z1 and Z2, if Z1 >> Z2, the influence of noise on the sensor output can be ignored.
  • FIG. 5 is a diagram showing the relationship between the capacitance 10 shown in FIG. 1 and the level of noise, where the horizontal axis is the time axis and the vertical axis shows the noise potential.
  • FIG. 6 is a diagram showing the relationship between the change in the capacitance value of the capacitance Cf2 of the capacitance 10 and the noise peak voltage. The horizontal axis shows the capacitance value of the capacitance Cf2, and the vertical axis shows the noise peak voltage. Yes.
  • FIG. 7 is a block diagram showing a measuring apparatus according to another embodiment of the present invention.
  • the embodiment shown in FIG. 7 is configured to take out a potential between the power line 2 and the ground (GND) using a pair of probes 6a and 6b.
  • the sensor housing 5 incorporates a measurement circuit 4a having a differential amplifier circuit.
  • Other configurations are the same as those in FIG.
  • FIG. 8 is an equivalent circuit diagram of the embodiment shown in FIG. In FIG. 8, the probe 6 a and the wiring capacitance CL, and the probe 6 b and the wiring capacitance CN shown in FIG. 7 exist in parallel, and between one input end of the differential amplifier circuit and the signal ground line 7.
  • a detection resistor R1 of 100 k ⁇ is connected to, and a detection resistor R2 of 100 k ⁇ , for example, is connected between the other input terminal of the differential amplifier circuit and the sensor ground 7 line.
  • FIG. 9 is a block diagram showing a measuring apparatus according to another embodiment of the present invention.
  • the sensor housing 5 is formed in a rectangular shape, and a metal plate 8 is provided along the longitudinal direction outside the sensor housing 5, and the metal plate 8 and the side surface of the distribution board housing 1.
  • the insulating member 12 made of, for example, resin is provided in close contact with the metal plate 8.
  • the metal plate 8 and the insulating member 12 are fixed between the sensor housing 5 and the side surface of the distribution board housing 1 with an adhesive or the like without using the magnet 9.
  • the capacitance Cf2 between the metal plate 8 and the side surface of the distribution board housing 1 can be increased. Further, the relative position of the metal plate 8 and the sensor housing 5 can be fixed by the insulating member 12. In FIG. 9, the power line 2, the probe 6, the terminal board 11, and the like are not shown.
  • FIG. 10 is a block diagram showing a measuring apparatus according to still another embodiment of the present invention.
  • the insulating members 12 a and 12 b are separated in the length direction so as to sandwich the upper and lower surfaces of the metal plate 8 provided in the sensor housing 5, and the side surfaces of the sensor housing 5 and the distribution board housing 1. Between. A gap 13 is formed on the side surface side of the distribution board housing 1 of the metal plate 8.
  • an electrostatic capacity is formed by the insulating members 12a and 12b existing between the metal plate 8 and the side surface of the distribution board casing 1, and the gap 13 is formed between the metal plate 8 and the distribution board casing. Since the electrostatic capacitance is formed between the one side surface, the electrostatic capacitance can be further increased.
  • an insulating coating or an insulating coating may be applied to this portion.
  • the surface of the conductive member is subjected to insulating coating or insulating coating.
  • the insulating members 12, 12a, 12b can be fixed to the sensor housing 5 and the distribution board housing 1 using, for example, a hook-and-loop fastener, a double-sided tape, an adhesive, a suction cup, an adhesive sheet, and the like.
  • projections may be provided on the distribution board casing 1 and holes provided in the insulating members 12, 12a, 12b may be hooked on the projections.
  • the insulating members 12, 12a, 12b may be screwed to the distribution board casing 1, or may be attached to the distribution board casing 1 with magnets with the insulating members 12, 12a, 12b interposed therebetween.
  • the insulating members 12, 12 a, and 12 b are disposed between the metal plate 8 provided in the sensor housing 5 and the distribution board housing 1, so that the space between the metal plate 8 and the distribution board housing 1 is set.
  • the noise current flowing in the measurement circuit 4 can be reduced by forming a capacitance in the capacitor and flowing the noise current through the capacitance.
  • the sensor housing 5 is arranged inside the side surface of the distribution board housing 1, but may be installed at any position such as the outside of the side surface, the inside of the door portion, or the outside.
  • the measurement circuit 4 is housed in the sensor housing 5, and the signal ground line 7 of the measurement circuit 4 is electrically connected to the metal plate 8.
  • an electrostatic capacity is formed between the measurement circuit 4 and the external conductor.
  • the insulating member and the metal plate 8 are unitized, and a commercially available measuring device is mounted on the mounting unit, and even if the grounding line of the measuring device is electrically connected to the metal plate 8, noise mixed into the measuring device is generated. Can be reduced.
  • FIG. 11 is a block diagram showing a measuring apparatus according to another embodiment of the present invention.
  • This embodiment is configured to measure the power line 2 by measuring the voltage of the power line 2 and the flowing current.
  • a current detector 14 that operates as another example is electromagnetically coupled to the power line 2.
  • the current detector 14 is configured by, for example, a current transformer (CT), a Hall element, or the like.
  • the output signal of the current detector 14 is given to the measurement circuit 4b via the detection resistor 15.
  • the probe 6 is connected to the measurement circuit 4b, and the measurement circuit 4b measures the power consumption in the power line 2 based on the current detected by the current detector 14 and the voltage obtained from the current generated in the probe 6. To do. Also in this embodiment, power consumption can be measured without being affected by noise mixed in the measurement circuit 4b.
  • the power supplied from the power distribution line 3 can be measured if the probe 6 and the current detector 14 are brought close to the power distribution line 3 in a non-contact manner.
  • the measuring device of the present invention does not require any wiring work and can be used to measure power consumption without contact with the power line while preventing noise from being mixed in the sensor output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Distribution Board (AREA)

Abstract

 電力線(2)の被覆に取付け、電力線(2)の導体と非接触で結合させるためのプローブ(6)に発生する電力線2の電圧に応じた電流により得られる電圧を計測する計測回路(4)をセンサ筐体(5)に設け、計測回路(4)の信号用接地ライン(7)を金属板(8)に接続し、電力線(2)が配線され、絶縁部材である樹脂で形成されたセンサ筐体(5)を介して大地に接地された分電盤筐体(1)と、金属板(8)との間で所定の静電容量を形成し、静電容量を介してノイズ電流を大地に流すことにより計測回路(4)に流れるノイズ電流を低減できる。

Description

計測装置および取付けユニット
 この発明は、電力線に非接触で設備の電圧,消費電力を計測する計測装置および計測装置を外部の分電盤などに取付けるための取付けユニットに関する。
 省エネルギーの観点から、設備の消費電力を個々に細かく計測することが求められている。電力を測定するためには、電圧を計測する必要がある。そのために電力線に直接結線をしようとすると、電気工事が必要になり、装置を停止させなければならない。これを回避するために、電力線の配線被覆の上から電極を押し当てて容量結合を利用して非接触で電圧を計測する方法がある。この方法を用いてセンサを電気工事なしで設置するためには、センサ回路のGNDは大地のGNDと接続することができない。
 電力を計測する方法として、例えば、特許文献1には、オペアンプを用いてシールドとプローブ間の電位差をゼロにして浮遊容量による影響を排除する非接触電圧計測方法について記載されている。特許文献2には、非接触電圧測定電極で測定した電圧信号の位相差を測定して絶縁電線の電圧信号の位相を求めて補正することにより精度を向上させた非接触電圧測定装置について記載されている。特許文献3には、検出信号と参照電位の差分値を算出し、可変容量回路によりフィードバックループの利得を制御する電圧測定装置について記載されている。
 上記のいずれの方法を用いる場合において、外部のノイズ元と計測回路の信号用接地ラインとが容量結合してしまったり、あるいは信号用接地ラインと大地との静電容量(浮遊容量)が変動することによりセンサ出力が変動してしまったり、計測精度に悪影響を及ぼすという問題がある。
特許第3761470号 特許第4251961号 特許第4629625号
 そこで、この発明は、配線工事を全く必要とせず、センサ出力におけるノイズの混入を防止できる計測装置および計測装置を外部の分電盤などに取付けるための取付けユニットを提供することを目的とする。
 この発明は、計測装置であって、電力線と電磁結合により電流を発生させるためのセンサと、電力線の電圧に応じてセンサに発生する電流により得られる電圧,電力のいずれかを計測するための計測回路と、計測回路の信号用接地ラインと電気的に接続された導電部材と、導電部材を外部導電体に近接させ、かつ導電部材を外部導電体と絶縁するための絶縁部材とを備える。
 この発明では、計測回路を外部導電体に取付けて電圧,電力のいずれかの計測が可能になる。
 より好ましくは、導電部材は、絶縁部材を介して外部導電体との間で静電容量を形成する。導電部材により、絶縁部材を介して外部導電体との間で静電容量を形成し、この静電容量を介してノイズ電流を大地に流すことにより計測回路に流れるノイズ電流を低減ができるので、導電部材を大地に接地するための工事をする必要がなく、高度な電気設備の知識を有さないものでも容易に設置することが可能となり、ノイズの影響を少なくして高精度で電圧,電力のいずれかの計測が可能になる。
 より好ましくは、導電部材と外部導電体との相対位置を固定する。
 より好ましくは、導電部材は、磁石である。磁石により計測回路を外部導電体に固定できる。
 この発明の他の局面は、電圧、電流あるいは電力を計測するための計測回路を大地に接地されている外部導電体に取付けるための取付けユニットであって、計測回路の信号用接地と電気的に接続される導電部材と、導電部材と接触して外部導電体との間で静電容量を形成するための絶縁部材とを備える。
 この取付けユニットを用いることにより、市販の計測装置を外部の装置に容易に取付けることが可能になり、ノイズの影響を排除して電圧,電力などを高精度で計測できる。
 この発明によれば、配線工事を全く必要とせず、センサ出力におけるノイズの混入を防止して高精度で電圧、消費電力を計測できる。
この発明の一実施形態の計測装置のブロック図である。 この発明の一実施形態の計測装置におけるノイズを低減する原理を説明するための回路図である。 この発明の一実施形態において、センサ筐体と分電盤筐体とを磁石で結合した場合のノイズ量を示す図およびセンサ筐体を分電盤筐体に取付けない場合のノイズ量を示す図である。 この発明の一実施形態の計測装置によるノイズ低減の効果を説明するための等価回路図である。 図1に示した静電容量とノイズのレベルとの関係を示す図である。 静電容量とノイズピーク電圧との関係を示す図である。 この発明の他の実施形態として2つのセンサを用いて差動計測する例を示す等価回路図である。 図7に示した実施形態の等価回路図である。 この発明の他の実施形態の計測装置を示すブロック図である。 この発明のさらに他の実施形態の計測装置を示すブロック図である。 この発明のその他の実施形態の計測装置を示すブロック図である。
 以下、図面を参照してこの発明の実施例について説明する。なお、以下の説明では、この発明の一実施形態の計測装置で消費電力を計測する例について説明するが、消費電力に限ることなく電圧を計測する場合にも適用できる。
 図1はこの発明の一実施形態の計測装置のブロック図である。図1において、分電盤筐体1は内部に端子盤11などを内蔵しており、電力線2を介して入力される交流電圧を複数の電力分配線3に分配する。電力分配線3は図示しない各種電気機器に接続される。分電盤筐体1は鉄などの強磁性体で形成されて大地(GND)に接続されており、外部導電体として作動する。電力線2から供給される電力を計測するために計測回路4が分電盤筐体1内に設けられる。
 計測回路4はセンサ筐体5に収納されている。計測回路4にはセンサの一例として作動するプローブ6が接続されており、プローブ6は電力線2と電磁結合することにより電流を発生させる。なお、プローブ6は電力分配線3と電磁結合し、電力分配線3で分配される電気機器の消費電力を計測してもよい。
 計測回路4は、プローブ6によって取り出された電力線2の電圧に応じて流れる電流を計測する。センサ筐体5には、計測回路4の信号用接地ライン7に電気的に接続される導電部材として作動する金属板8が設けられている。センサ筐体5は、絶縁部材として作動する樹脂を成型して構成されており、磁石9がセンサ筐体5の側面あるいは底面に固定されており、センサ筐体5は分電盤筐体1の側壁内側に磁石9によって吸着される。分電盤筐体1は強磁性体で形成されているので、磁石9により分電盤筐体1を強固に吸引することができ、センサ筐体5が分電盤筐体1からはずれるおそれを少なくできる。
 金属板8は銅、アルミニウムを材料とし、板状(多数の孔を打ち抜きしてもよい)、棒状、金網状に形成されているが、複数に分割されていてもそれぞれが電気的に接続されていればよい。さらに、金属板8は鉄,コバルト,ニッケル,ガドリニウムなど材料とした磁石とすることも可能である。金属板8は大地に接地された外部導電体として作動する分電盤筐体1と対向して設けられ、絶縁部材である樹脂で形成したセンサ筐体5を介して分電盤筐体1と金属板8との間で静電容量10が形成される。静電容量10は、ノイズを低減する作用をなす。
 図2は、この発明の一実施形態の計測装置におけるノイズを低減する原理を説明するための回路図である。
 図1、図2を参照して、この発明の一実施形態の動作について説明する。プローブ6を分電盤筐体1内で電力線2に接近させると、図2に示すようにプローブ6から電力線2に加えられている電圧VNに応じて流れる電流に比例する出力信号が取り出される。
 プローブ6と信号用接地ライン7との間に検出抵抗Rsが接続されており、検出抵抗Rsと信号用接地ライン7との間に生じる電圧が計測回路4の入力信号になる。この入力信号に種々の外部ノイズが混入しており、この外部ノイズが計測回路4に混入する。図2において、外部ノイズは、ノイズ源11から電圧Vnのノイズが浮遊容量Cf1を介して混入しているものとして表している。なお、図1において、ノイズ源11と浮遊容量Cf1は図示していない。
 ノイズ電流Inは計測回路4から電力線2に流れる電流In1と、静電容量10を介してGNDに流れる電流In2との和である。電力線2と金属板8との間に形成される静電容量10は容量Cf2を有している。ノイズ源11の電圧Vnにより計測回路4から電力線2に電流In1が流れ、金属板8と電力線2との間の静電容量10を介して大地(GND)に電流In2が流れる。
 電流In1は計測回路4には影響を与えるが、電流In2は計測回路4に流れないので、計測回路4に影響を与えることはない。電流In1,In2はノイズ源11から流れるので、電流In2を大きくすれば、計測回路4に流れる電流In1を小さくできる。したがって、金属板8と分電盤筐体1との間の静電容量10の容量Cf2を大きくすることにより計測回路4に流れる電流In1を減少できるので、計測回路4はノイズによる影響から軽減できる。
 図3(A)は、この発明の一実施形態において、センサ筐体と分電盤筐体とを磁石で結合した場合のノイズ量を示す図であり、図3(B)はセンサ筐体を分電盤筐体に取付けない場合のノイズ量を示す図であり、ともに横軸は時間軸であり、縦軸は電位を示している。
 この発明の一実施形態では、磁石9でセンサ筐体5を分電盤筐体1に吸着させることで生じる金属板8と分電盤筐体1との間の静電容量10の容量Cf2が存在することにより、図3(A)に示すように1.25Vのセンサ基準電位に対してほとんどノイズが現れていない。これに対して、センサ筐体5を分電盤筐体1に取付けない場合は、静電容量Cf2が存在しないので、図3(B)に示すように1.25Vのセンサ基準電位に対しておよそ0.2Vの電位のノイズが現れる。したがって、金属板8と分電盤筐体1との間の静電容量10の容量Cf2が存在することによる効果を確認できる。
 図4はこの発明の一実施形態の計測装置によるノイズ低減の効果を説明するための等価回路図である。
 図4に示す等価回路において、電力線2と信号用接地ライン7との間には、プローブ6および配線のおよそ3pF程度の容量Cpと、計測回路4のおよそ470kΩの検出抵抗Rsが存在しているので、電力線2と信号用接地ライン7との間に存在するインピーダンスZ1は次式で表される。
 Z1=Rs+1/jωCp
 検出抵抗Rsは、例えば470kΩであるのに対して、プローブ6および配線の容量Cpは数pFであるので、インピーダンスZ1はほぼプローブ6および配線の容量Cpによって決まり、比較的大きな値になる。
 一方、信号用接地ライン7と大地(GND)との間には、およそ500~1000pFの容量Cf2を有する静電容量10が存在するので、インピーダンスZ2は次式で示される。
 Z2=1/jωCf2
 もし、静電容量Cf2が存在しない場合は、通常数pFの浮遊容量が存在するのみであるので、インピーダンスZ2は数GΩ程度であるのに対して、静電容量10を設けることで、インピーダンスZ2は数MΩ~数百MΩになる。センサ出力は、インピーダンスZ1とZ2の割合で決まるので、Z1>>Z2であれば、ノイズがセンサ出力に与える影響を無視できる。
 図5は、図1に示した静電容量10とノイズのレベルとの関係を示す図であり、横軸は時間軸であり、縦軸はノイズ電位を示している。図6は静電容量10の容量Cf2の容量値の変化とノイズピーク電圧との関係を示す図であり、横軸は静電容量Cf2の容量値を示し、縦軸はノイズピーク電圧を示している。
 図5に示すように、静電容量10の容量Cf2が1pFのように容量値が小さい場合は、およそ90mV程度のノイズが現れるが、容量Cf2が50pFになると5mV程度のノイズレベルに低減し、容量Cf2が1000pFのような大きな値になると、ノイズがほとんど現れなくなった。このことは図6に示す静電容量10の容量Cf2の容量値の変化とノイズピーク電圧との関係からも明らかである。図6に示すように静電容量Cf2が0.1pF程度の小さな値では、0.12V程度のノイズピーク電圧が現れているのに対して、静電容量Cf2が1000pF程度の大きな値になると、ノイズピーク電圧はほとんど0レベルになっている。
 図7は、この発明の他の実施形態の計測装置を示すブロック図である。図7に示した実施形態は1対のプローブ6a,6bを用いて電力線2と、大地(GND)との間の電位を取り出すように構成したものである。センサ筐体5には、差動増幅回路を有する計測回路4aが内蔵されている。それ以外の構成は、図1と同じである。
 図8は図7に示した実施形態の等価回路図である。図8において、図7に示したプローブ6aと配線の容量CLと、プローブ6bと配線の容量CNが並列に存在しており、差動増幅回路の一方入力端と信号用接地ライン7との間には例えば100kΩの検出抵抗R1が接続され、差動増幅回路の他方入力端とセンサ接地7ラインとの間には例えば100kΩの検出抵抗R2が接続されている。プローブ6a,6bと配線の容量CL、CNが並列に存在していて、Z3≠Z4の状態となり、差動回路が不平衡の状態でも、静電容量Cf2の値が大きいので、Z3+Z4>>Z2となる。図7に示した実施形態においても、検出抵抗R1に流れる電流In3と検出抵抗R2に流れる電流In4との合計よりも静電容量Cf2に流れる電流In2の方が大きくなるので、ノイズがセンサ出力に与える影響を無視できる。なお、この構成は電力線2と他の電力線間の差動電圧を計測する場合(例えば三相交流の線間電圧を測定する場合)にも適用できる。
 図9は、この発明の他の実施形態の計測装置を示すブロック図である。
 図9においてセンサ筐体5は長方形状に形成されており、センサ筐体5の外側の長手方向に沿って金属板8が設けられており、この金属板8と分電盤筐体1の側面との間に例えば樹脂からなる絶縁部材12が金属板8に密着して設けられている。図9においては、磁石9を用いることなく、金属板8と絶縁部材12とを接着剤などでセンサ筐体5と分電盤筐体1の側面との間に固定する。
 絶縁部材12を金属板8とほぼ同じ形状に形成することで、金属板8と分電盤筐体1の側面との間の静電容量Cf2を増大できる。また、絶縁部材12により金属板8およびセンサ筐体5の相対位置を固定することができる。なお、図9において、電力線2、プローブ6、端子盤11などは図示を省略している。
 図10は、この発明のさらに他の実施形態の計測装置を示すブロック図である。
 図10において、センサ筐体5に設けられている金属板8の上下の面を挟むように長さ方向に分かれて絶縁部材12a,12bがセンサ筐体5と、分電盤筐体1の側面との間に設けられている。金属板8の分電盤筐体1の側面側にはすき間13が形成されている。この実施形態では、金属板8と分電盤筐体1の側面との間に存在する絶縁部材12a,12bで静電容量が形成されるとともに、すき間13が金属板8と分電盤筐体1の側面との間の静電容量を形成しているので静電容量をさらに増大できる。すき間13に代えて、この部分に絶縁塗装、絶縁コーティングを施してもよい。
 図9,図10に示した絶縁部材12,12a,12bは、例えば導電部材の表面を絶縁塗装あるいは絶縁コーティングしたものなどが使用される。また、絶縁部材12,12a,12bは、例えば面ファスナ、両面テープ、接着剤、吸盤、粘着性のあるシートなどを用いてセンサ筐体5および分電盤筐体1に固定することができる。あるいは、分電盤筐体1に突起(フック)を設けておき、絶縁部材12,12a,12bに設けた穴を突起に引っ掛けるようにしてもよい。さらには、絶縁部材12,12a,12bを分電盤筐体1にネジ止めするか、絶縁部材12,12a,12bを挟んで磁石により分電盤筐体1に取付けてもよい。
 上述のごとく、センサ筐体5に設けた金属板8と分電盤筐体1との間に絶縁部材12,12a,12bを配置することで金属板8と分電盤筐体1との間に静電容量を形成してノイズ電流を静電容量に流すことにより、計測回路4に流れるノイズ電流を低減できる。
 上記各実施形態では、センサ筐体5は、分電盤筐体1の側面内側に配置するようにしているが、側面外側、扉部の内側あるいは外側など任意の位置に設置してもよい。
 また、計測回路4をセンサ筐体5に収納し、計測回路4の信号用接地ライン7を金属板8に電気的に接続するようにしたが、外部導電体との間で静電容量を形成するために絶縁部材と金属板8とをユニット化し、市販の計測装置をこの取付けユニットに装着し、計測装置の接地ラインを金属板8に電気的に接続しても計測装置に混入するノイズを低減できる。
 図11はこの発明のその他の実施形態の計測装置を示すブロック図である。この実施形態は電力線2の電圧と流れる電流とを計測して、消費電力を計測できるように構成したものであり、図1に示した実施形態の構成に加えて、プローブ6と並列的にセンサの他の例として作動する電流検出器14が電力線2に電磁結合される。電流検出器14は、例えば変流器(CT),ホール素子などで構成される。
 電流検出器14の出力信号は検出抵抗15を介して計測回路4bに与えられる。計測回路4bにはプローブ6が接続されており、計測回路4bは電流検出器14で検出された電流と、プローブ6に発生する電流により得られる電圧とに基づいて電力線2での消費電力を計測する。この実施形態においても計測回路4bに混入するノイズの影響を受けることなく、消費電力を計測できる。
 なお、この実施形態においても、プローブ6と電流検出器14とを電力分配線3に非接触で近接させれば電力分配線3から供給される電力を計測できる。
 この発明の計測装置は、配線工事を全く必要とせず、センサ出力におけるノイズの混入を防止しながら、電力線に非接触で消費電力を計測するのに利用できる。
 1 分電盤筐体
 2 電力線
 3 電力分配線
 4,4a,4b 計測回路
 5 センサ筐体
 6,6a、6b プローブ
 7 信号用接地ライン
 8 金属板
 9 磁石
 10 静電容量
 11 ノイズ源
 12,12a,12b 絶縁部材
 13 すき間
 14 電流検出器
 15 検出抵抗

Claims (5)

  1.  電力線と電磁結合により電流を発生させるためのセンサと、
     前記電力線の電圧に応じて前記センサに発生する電流により得られる電圧,電力のいずれかを計測するための計測回路と、
     前記計測回路の信号用接地ラインと電気的に接続された導電部材と、
     前記導電部材を外部導電体に近接させ、かつ前記導電部材を前記外部導電体と絶縁するための絶縁部材とを備える、計測装置。
  2.  前記導電部材は、前記絶縁部材を介して前記外部導電体との間で静電容量を形成する、請求項1に記載の計測装置。
  3.  前記絶縁部材は、前記導電部材と前記外部導電体との相対位置を固定する、請求項1又は2に記載の計測装置。
  4.  前記導電部材は、磁石である、請求項1~3のいずれかに記載の計測装置。
  5.  電圧,電力のいずれかを計測するための計測回路を大地に接地されている外部導電体に取付けるための取付けユニットであって、
     前記計測回路の信号用接地と電気的に接続される導電部材と、
     前記導電部材と接触して外部導電体との間で静電容量を形成するための絶縁部材とを備える、取付けユニット。
PCT/JP2014/051185 2013-03-15 2014-01-22 計測装置および取付けユニット WO2014141745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/776,781 US9915689B2 (en) 2013-03-15 2014-01-22 Measurement device and mounting unit
CN201480011698.5A CN105026939B (zh) 2013-03-15 2014-01-22 计测装置以及安装单元
EP14762987.7A EP2975417B1 (en) 2013-03-15 2014-01-22 Measurement device and mounting unit
KR1020157024795A KR101704956B1 (ko) 2013-03-15 2014-01-22 계측 장치 및 설치 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013053225A JP6065671B2 (ja) 2013-03-15 2013-03-15 計測装置および取付けユニット
JP2013-053225 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141745A1 true WO2014141745A1 (ja) 2014-09-18

Family

ID=51536422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051185 WO2014141745A1 (ja) 2013-03-15 2014-01-22 計測装置および取付けユニット

Country Status (6)

Country Link
US (1) US9915689B2 (ja)
EP (1) EP2975417B1 (ja)
JP (1) JP6065671B2 (ja)
KR (1) KR101704956B1 (ja)
CN (1) CN105026939B (ja)
WO (1) WO2014141745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946343A (zh) * 2021-01-29 2021-06-11 华北电力大学 一种架空线工频电压测量装置及测量方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403743A (zh) * 2015-10-26 2016-03-16 国网山东昌乐县供电公司 一种防静电干扰电力计量装置
FR3047805B1 (fr) * 2016-02-12 2018-03-16 Schneider Electric Industries Sas Dispositif de mesure d'une grandeur electrique d'une phase d'un courant electrique alternatif d'un reseau electrique aerien
US10119998B2 (en) * 2016-11-07 2018-11-06 Fluke Corporation Variable capacitance non-contact AC voltage measurement system
US10352967B2 (en) 2016-11-11 2019-07-16 Fluke Corporation Non-contact electrical parameter measurement systems
JP6926703B2 (ja) * 2017-06-13 2021-08-25 オムロン株式会社 電力量管理システム、電力量モニタ認識プログラム及び記録媒体
CN111487446B (zh) * 2019-01-25 2024-05-17 福禄克公司 电子测量设备
JP7422335B2 (ja) * 2021-05-10 2024-01-26 パナソニックIpマネジメント株式会社 検出システム、遮断器及び分電盤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129580A (ja) * 1984-11-08 1986-06-17 ナイアガラ・モホ−ク・パワ−・コ−ポレ−シヨン 電力線電位測定装置
US4728887A (en) * 1984-06-22 1988-03-01 Davis Murray W System for rating electric power transmission lines and equipment
JP2002340939A (ja) * 2001-05-16 2002-11-27 Hitachi Ltd 被覆電力線用電圧測定装置
JP2002365315A (ja) * 2001-04-04 2002-12-18 Hokuto Denshi Kogyo Kk 非接触電圧計測方法及び装置並びに検出プローブ
JP2005140506A (ja) * 2003-11-04 2005-06-02 Yokogawa Electric Corp 非接触電圧測定装置
JP2008020270A (ja) * 2006-07-12 2008-01-31 Hioki Ee Corp 電圧測定装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3213365A (en) * 1961-09-01 1965-10-19 Gen Electric Multirange hook-on meter using selectively actuated shorted turn for range changing
JPH0738011B2 (ja) 1988-05-16 1995-04-26 株式会社日立製作所 高圧電力機器の異常診断システム
JPH04251961A (ja) 1991-01-09 1992-09-08 Nec Corp Cadによる回路ブロックの配置設計方式
WO2001069272A2 (de) * 2000-03-14 2001-09-20 HSP Hochspannungsgeräte Porz GmbH Vorrichtung und verfahren zur überwachung einer kondensatordurchführung
KR100544727B1 (ko) * 2001-12-26 2006-01-24 주식회사 포스코 노이즈 차폐기능을 개선한 전자기 초음파 센서
US6737978B1 (en) * 2002-11-06 2004-05-18 Bartek Peter M Voltage testing apparatus for electrical railways
US7969159B2 (en) * 2007-07-25 2011-06-28 Power Monitors, Inc. Method and apparatus for an electrical conductor monitoring system
ES2950352T3 (es) * 2008-02-06 2023-10-09 Mitsubishi Electric Corp Sistema de medición de potencia eléctrica y sistema de control de dispositivos
KR101196148B1 (ko) * 2008-05-30 2012-10-30 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 원격 감시 장치
US7622912B1 (en) * 2008-06-10 2009-11-24 Sunpower Corporation Method for enabling monitoring of power consumption
US8248059B2 (en) 2009-01-30 2012-08-21 Elster Solutions, Llc Electronic transformer measuring device having surface mounting assembly
US20110101956A1 (en) * 2009-11-04 2011-05-05 David Wayne Thorn Electricity Usage Monitor System
KR101040591B1 (ko) * 2009-11-16 2011-06-10 한국전기연구원 변압기 진단용 접속 유닛
JP5594517B2 (ja) * 2010-04-09 2014-09-24 株式会社デンソー ノイズフィルタ装置
CN102023244A (zh) * 2010-10-26 2011-04-20 江苏多维科技有限公司 独立封装的电表传感器
US9031800B2 (en) * 2011-07-13 2015-05-12 Schneider Electric USA, Inc. Power determination from separated voltage and current sensors
JP5838768B2 (ja) * 2011-11-30 2016-01-06 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
EP3098609B1 (en) * 2015-05-29 2018-08-22 Thomson Licensing Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728887A (en) * 1984-06-22 1988-03-01 Davis Murray W System for rating electric power transmission lines and equipment
JPS61129580A (ja) * 1984-11-08 1986-06-17 ナイアガラ・モホ−ク・パワ−・コ−ポレ−シヨン 電力線電位測定装置
JP2002365315A (ja) * 2001-04-04 2002-12-18 Hokuto Denshi Kogyo Kk 非接触電圧計測方法及び装置並びに検出プローブ
JP3761470B2 (ja) 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
JP2002340939A (ja) * 2001-05-16 2002-11-27 Hitachi Ltd 被覆電力線用電圧測定装置
JP2005140506A (ja) * 2003-11-04 2005-06-02 Yokogawa Electric Corp 非接触電圧測定装置
JP4251961B2 (ja) 2003-11-04 2009-04-08 横河電機株式会社 非接触電圧測定装置
JP2008020270A (ja) * 2006-07-12 2008-01-31 Hioki Ee Corp 電圧測定装置
JP4629625B2 (ja) 2006-07-12 2011-02-09 日置電機株式会社 電圧測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975417A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946343A (zh) * 2021-01-29 2021-06-11 华北电力大学 一种架空线工频电压测量装置及测量方法

Also Published As

Publication number Publication date
US20160018448A1 (en) 2016-01-21
EP2975417A1 (en) 2016-01-20
KR101704956B1 (ko) 2017-02-08
CN105026939A (zh) 2015-11-04
EP2975417A4 (en) 2016-11-09
CN105026939B (zh) 2017-07-07
EP2975417B1 (en) 2024-06-12
KR20150119157A (ko) 2015-10-23
US9915689B2 (en) 2018-03-13
JP2014178246A (ja) 2014-09-25
JP6065671B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065671B2 (ja) 計測装置および取付けユニット
EP3508863B1 (en) Offset current sensor structure
US7084643B2 (en) Capacitive sensor for non-contacting gap and dielectric medium measurement
US8493053B2 (en) System and device for measuring voltage in a conductor
CN103718049B (zh) 高电压测量系统
US10429221B2 (en) Electromagnetic flowmeter
WO2015083618A1 (ja) 非接触電圧測定装置および非接触電圧測定方法
JP6305639B2 (ja) 電流検出装置
KR20140032373A (ko) 전력계측장치
CN103364612A (zh) 一种双霍尔元件电流传感器
US10545177B2 (en) Non-contact sensor based Rogowski coil
CN103575958A (zh) 用于测量交流电的直流分量的装置
US10240991B2 (en) Vibration and dynamic acceleration sensing using capacitors
US20150042343A1 (en) Object finder
WO2007040058A1 (ja) ホール素子デバイスとそれを用いたホール素子回路
US9547026B1 (en) Plug-through energy monitor
US9372217B2 (en) Cable detector
CN103460057A (zh) 利用可振动运动地构造的电极无接触地确定电势的方法以及设备
JP2015059838A (ja) 配線電流検出構造
JP2018205032A (ja) 帯電プレートモニタ装置
JP7453718B1 (ja) 表面電位測定装置
JP5456591B2 (ja) 通電部の位置測定方法および装置
JP6142865B2 (ja) 通電部の位置測定方法および装置
JP2005049118A (ja) 電流センサ
JP4590983B2 (ja) 配線ダクトの負荷容量検知器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011698.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024795

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014762987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14776781

Country of ref document: US