WO2015083618A1 - 非接触電圧測定装置および非接触電圧測定方法 - Google Patents
非接触電圧測定装置および非接触電圧測定方法 Download PDFInfo
- Publication number
- WO2015083618A1 WO2015083618A1 PCT/JP2014/081426 JP2014081426W WO2015083618A1 WO 2015083618 A1 WO2015083618 A1 WO 2015083618A1 JP 2014081426 W JP2014081426 W JP 2014081426W WO 2015083618 A1 WO2015083618 A1 WO 2015083618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- electric field
- detection point
- probe
- electric circuit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/04—Voltage dividers
- G01R15/06—Voltage dividers having reactive components, e.g. capacitive transformer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/16—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
Definitions
- the present invention relates to a non-contact voltage measuring device that measures an AC voltage flowing through a conductor in an insulating-coated wiring without contacting the wiring.
- FIG. 5 is a diagram schematically showing the configuration of the non-contact voltage measuring device 9.
- the non-contact voltage measuring device 9 includes a detection probe 91. Further, in the electric circuit of the non-contact voltage measurement device 9, between the detection probe 91 and the common potential point (GND) is detected impedance Z S is connected. In the non-contact voltage measuring device 9, an alternating voltage V L (measurement target voltage) flowing through a conductor in the wiring is measured by the procedure described below.
- V L measurement target voltage
- the detection probe 91 is arranged so that a coupling capacitor CL is formed between the wiring and the detection probe 91.
- the voltage V L applied to the conductor is divided between the detection impedance Z S and the coupling capacitor C L.
- the value of the voltage applied to the detection impedance Z S is detected as the output value V out (detection point voltage).
- V out detection point voltage
- FIG. 4 is a diagram schematically showing a configuration of a conventional non-contact voltage measuring device 8 (hereinafter abbreviated as a voltage measuring device 8), showing an electric circuit formed in the voltage measuring device 8. is there.
- the voltage measurement device 8 includes capacitors C A and C B , a detection probe 81, an electric field shield 82, and a changeover switch 83.
- the voltage across the capacitor C A, and the voltage applied to the capacitor C B, respectively, are measured as the output value V outA and V outB. Then, the voltage V L is calculated from the measured output values V outA and V outB in the following procedure.
- the detection probe 91 and the electric circuit may be capacitively coupled to a voltage source other than the conductor in the wiring.
- an electric signal generated by capacitive coupling of the voltage source other than the conductor and the detection probe 91 or the electric circuit flows through the electric circuit.
- Such noise causes a decrease in measurement accuracy of the voltage VL by the non-contact voltage measuring device 9. Therefore, in the non-contact voltage measuring device 9, as shown in FIG. 5, it is conceivable to arrange an electric field shield 92 for blocking the electric field of a voltage source other than the conductor around the detection probe 91.
- the present invention has been made in view of the above problems, and its object is to suppress the voltage applied to the conductor by suppressing the leakage current from flowing through the parasitic capacitance between the electric field shield and the detection probe.
- An object of the present invention is to provide a non-contact voltage measuring apparatus and a non-contact voltage measuring method capable of measuring with high accuracy without contact.
- a non-contact voltage measuring apparatus is a non-contact voltage measuring apparatus for measuring a voltage to be measured applied to a conductor in a non-contact manner, the probe, the conductor, and the probe.
- An electric circuit for obtaining a voltage induced in the probe by a coupling capacitance between the electric circuit, an electric field shield for blocking an electric field incident on the electric circuit by covering at least a part of the electric circuit, and the electric Based on the detection point voltage detected at the detection point set on the circuit, the voltage deriving unit for deriving the voltage to be measured, and while maintaining a state in which no current flows from the detection point to the electric field shield, An equipotentializing unit that equalizes the potential of the detection point and the potential of the electric field shield.
- a non-contact voltage measuring method of the present invention is a non-contact voltage measuring method for measuring a voltage to be measured applied to a conductor in a non-contact manner.
- an equipotentialization step, and a voltage derivation step for deriving the measurement target voltage based on the voltage detected at the detection point.
- the voltage induced in the probe by the coupling capacitance is acquired by the electric circuit, and the voltage at the detection point set on the electric circuit is detected. Then, the measurement target voltage is derived from the detected voltage. At this time, the state where the voltage at the detection point is equal to the potential of the electric field shield is maintained.
- the leakage current does not flow through the parasitic capacitance generated between the detection point and the electric field shield. In other words, the parasitic capacitance generated between the detection point and the electric field shield can be ignored.
- the detection point voltage can be detected with high accuracy. Thereby, based on the detection point voltage, the voltage to be measured can be derived with high accuracy.
- the present invention has an effect that the voltage applied to the conductor can be measured with high accuracy without contact.
- Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3.
- FIG. 1 is a schematic diagram showing the configuration of the voltage measuring device 1, and shows an electric circuit EC formed in the voltage measuring device 1.
- the voltage measuring device 1 is a device that measures an AC voltage flowing through a conductor in an insulating-coated wiring without contacting the wiring.
- the voltage measuring apparatus 1 includes a detection probe 11 (probe), an electric circuit EC connected to the detection probe 11, and a derivation unit 15 connected to a detection point set on the electric circuit EC. (Voltage deriving unit).
- the electric circuit EC includes capacitors C 1 and C 2 (impedance setting unit), a detection resistor R 1 (resistor), an electric field shield 12, a changeover switch 13 (impedance setting unit), and an operational amplifier 14 (equal potential setting unit). It has.
- the detection probe 11 includes an electrode that can be attached so as to surround the outer peripheral surface of the insulating coating of the wiring.
- the detection probe 11 may include an insulating member that covers the electrode.
- a coupling capacitance C L having a value corresponding to the voltage VL applied to the conductor in the wiring is between the detection probe 11 and the wiring. Occurs.
- the coupling capacitance C L is proportional to the size (electrode area) of the detection probe 11. Therefore, as the detection probe 11 is small, the value of the coupling capacitance C L is small.
- Value of the coupling capacitance C L is, for example, several pF ⁇ number 10 pF.
- the electric field shield 12 blocks the electric field from the outside that enters the detection probe 11 or the electric circuit EC. Thereby, the electric field shield 12 prevents capacitive coupling between the detection probe 11 or the electric circuit EC and a voltage source other than the conductor in the wiring. In FIG. 1, the electric field shield 12 covers only a part of the electric circuit EC. However, the electric field shield 12 may cover the entire electric circuit EC.
- the capacitors C 1 and C 2 and the changeover switch 13 function as an impedance setting unit that takes one of two different impedance values as the impedance between the detection probe 11 and the detection resistor R 1 .
- the changeover switch 13 the state of the electrical circuit EC of the voltage measuring device 1, (i) a first state in series connected between the capacitor C 1 is the coupling capacitance C L and the detection resistor R 1 When, in which switch between, and a second state connected in series between the detection resistor R 1 and (ii) a capacitor C 1 and capacitor C 2 is coupled capacitance C L.
- Changeover switch 13 when switching an electric circuit EC to the first state, the impedance between the detection resistor R 1 and the detection probe 11 becomes 1 / j [omega] C 1 (first impedance value).
- changeover switch 13 when switching an electric circuit EC to the second state, the impedance between the detection resistor R 1 and the detection probe 11 becomes 1 / j ⁇ C' 2 (second impedance value).
- C ′ 2 C 1 + C 2 .
- the voltage V L applied to the conductor in the wire, the detection resistor R 1, a capacitor C 1, is divided between the coupling capacitance C L.
- the voltage measuring device 1 in the second state the voltage V L applied to the conductor in the wire, the detection resistor R 1, a capacitor C 1 and capacitor C 2, between the coupling capacitance C L
- the pressure is divided by.
- the voltage between the detection probe 11 is induced by the coupling capacitance C L reference potential point and (GND) is by an electrical circuit EC, and the detection resistor R 1, at least one of the capacitors C 1 and C 2 The pressure is divided.
- the deriving unit 15 derives the voltage V L based on the output value V out which is the voltage at the detection point set in the electric circuit EC.
- the detection point is set to a point between the detection resistor R 1 and the capacitors C 1 and C 2 and the changeover switch 13 that function as an impedance setting unit.
- the detection point of the output value V out is across the reference potential point (GND), a point the same potential of the detection resistor R 1 and the opposite side. That is, the output value V out is equal to the value of the voltage applied to the detection resistor R 1.
- the deriving unit 15 calculates the voltage VL according to the above-described equation (1).
- the detection impedance Z S is the detection resistor R 1
- the output value V out is the output value V out1 or the output value V out2
- the coupling capacitance C L Is replaced by the combined capacity (C 1 + C ppL ) C L / (C 1 + C ppL + C L ) or the combined capacity (C ′ 2 + C ppL ) C L / (C ′ 2 + C ppL + C L ).
- Formula (2) showing the voltage VL is shown.
- the value of the detection resistor R 1 (resistance value), so that the output value V out is sufficiently small, i.e., so that the potential at the detection point is sufficiently low, is predetermined.
- the value of the coupling capacitance C L is 10 pF, 470 pF value of the capacitor C 1, C 2, respectively, if it is 47pF, the value of the detection resistor R 1 is determined to be 1 M.OMEGA.
- the operational amplifier 14 makes the detection point of the output value Vout and the electric field shield 12 have the same potential. That is, the drive shield (Driven Shield) circuit technique is applied to the electric circuit EC of the voltage measuring apparatus 1 using the operational amplifier 14 (voltage follower) in which the minus terminal and the output terminal are connected.
- the drive shield Driven Shield circuit technique
- the detection point of the output value V out and the electric field shield 12 are at the same potential by the operational amplifier 14. Therefore, no current flows through the parasitic capacitance C p. Therefore, the possibility that the parasitic capacitance C p affects the output value V out can be eliminated.
- Non-contact voltage measuring method by non-contact voltage measuring device 1 In the non-contact voltage measuring method by the non-contact voltage measuring device 1, first, the detection probe 11 is arranged so that a coupling capacitance is formed between the conductors in the wiring (probe arrangement step).
- the electric field shield 12 covers the electric circuit EC and the detection probe 11 to block the electric field incident on the electric circuit EC (electric field blocking step).
- the electric circuit EC divides the voltage induced in the detection probe 11 by electrostatic induction into the capacitor C 1 or C 2 and the detection resistor R 1 (voltage dividing step).
- the operational amplifier 14 equalizes the potential at the detection point and the potential at the electric field shield 12 while maintaining a state in which no current flows from the detection point of the output value Vout to the electric field shield 12 (equipotential step).
- the deriving unit 15 derives the voltage V L from the output value V out according to the equation (1) (voltage deriving step).
- ground shield is a circuit technique in which the electric field shield has the same potential as the reference point (GND).
- FIG. 2 shows a graph of leakage current obtained as a result of the simulation.
- the vertical axis of the graph is the value of leakage current (unit: nA), and the horizontal axis is time (unit: second).
- the value of the leakage current represents the value of the leakage current through the parasitic capacitance C p.
- the value of the leakage current (“Driven ⁇ ⁇ ⁇ Shield” graph) in the electric circuit EC adopting the driven shield is the value of the leakage current (“GND Shield” graph) in the electric circuit adopting the ground shield. 1/100 or less.
- the electrical circuit adopting the ground shield as compared to the leakage current through the parasitic capacitance C p, the electric circuit EC adopting the driven shield, leakage current flowing the parasitic capacitance C p be very small I understand. Therefore, according to the configuration of the voltage measuring device 1, the adoption of the driven shield circuit technique has the effect of reducing the leakage current.
- FIG. 3 shows a graph of the voltage V L (measurement target voltage) obtained as a result of the simulation.
- the vertical axis of the graph represents the value of the voltage V L; a (unit: Percentage when parasitic capacitance C p is defined as 100% voltage V L when is zero), the horizontal axis represents the value of the parasitic capacitance C p (unit: F).
- the value of the voltage V L (“driven shield” graph) in the electric circuit EC adopting the driven shield is substantially constant regardless of the value of the parasitic capacitance C p .
- the value of the voltage V L (“Grand Shield” graph) in the electric circuit employing the ground shield decreases as the value of the parasitic capacitance C p increases.
- the output values V out1 and V out2 detected by the electric circuit employing the ground shield are affected by the value of the parasitic capacitance C p .
- the voltage V L is derived by a circuit equation that does not consider the parasitic capacitance C p . For this reason, an error occurs in the voltage V L calculated from the output values V out1 and V out2 .
- the conventional voltage measuring device 8 shown in FIG. 4 includes an electric field shield 82 as in the voltage measuring device 1 of the present embodiment. Therefore, a parasitic capacitance C p is generated between the detection point of the output value V out and the electric field shield 82. The flows in the voltage measuring device 8, since the electric field shield 82 is not at the same potential as the detection point, the leakage current is the parasitic capacitance C p. As a result, the measurement accuracy of the output value Vout is deteriorated.
- the voltage measuring device 8 from the time the voltage V out is measured until when the voltage V outB is measured by the temperature or humidity of the environment in which the voltage measurement device 8 is placed changes, the value of the parasitic capacitance C p is may vary. Other, even when changing the length of the cable constituting an electric circuit (current path from the detection probe 81 to the detection point of the output value V out), the value of the parasitic capacitance C p is changed. In these cases, a measurement error occurs in the value of the voltage VL calculated from the values of the voltages VoutA and VoutB .
- the detection point of the output value Vout and the electric field shield 82 have the same potential by adopting the driven shield circuit technique for the electric circuit EC. ing. Therefore, since the leakage current in the parasitic capacitance C p does not flow, as due to leakage current flowing through the parasitic capacitance C p, the measurement accuracy of the output value V out is not degraded. Furthermore, even if the parasitic capacitance Cp is changed, no measurement error occurs in the voltage VL .
- the detection resistor R 1 is provided, a point between the capacitor C 1 or C 2 and the detection resistor R 1 is set as a detection point, and the detection point and the electric field shield 12 are set to the same potential. It was supposed to be.
- the present invention is not limited thereto, as in the configuration shown in FIG. 4, if the detection point a point between the sensing probe 11 and the capacitor C 1 and C 2, the detection point and the electric field The same potential may be obtained by connecting the shield 12 with an operational amplifier configured as a voltage follower.
- the conventional voltage measuring apparatus 8 shown in FIG. 4 in order to coupling capacitance C L is calculated, and the voltage V outA applied to the capacitor C A, the capacitor C There must be a significant difference between the voltage VoutB applied to B. Therefore, the impedance of the coupling capacitor C L and the impedance of the capacitors C A and C B need to be approximately the same (the ratio of the impedance values is on the order of 1/10 to 10 times).
- the capacitors C A and C B have a voltage approximately equal to the voltage applied to the coupling capacitor C L. Will be applied. For example, if the voltage V L to be measured is several hundreds V, the value of the voltage V outA and v outB is applied to the capacitor C A and C B, respectively, reaches several V ⁇ several tens V. With a general voltmeter, it is difficult to measure such a large voltage, and a dedicated voltmeter is required.
- the value of the detection resistor R 1 is determined.
- the value of the detection resistor R 1 the output value V out is determined to be a value such that several hundreds mV several tens mV. Therefore, in the voltage measuring apparatus 1, it is possible to measure the output value Vout using a general voltmeter.
- the impedance elements constituting the impedance setting unit the two capacitors of the capacitor C 1 and C 2 is provided, the switch 13 is assumed to switch the impedance value of the impedance setting unit.
- the present invention is not limited to this form, and can be modified into various forms.
- one variable capacitor may be provided and the capacitance value of the variable capacitor may be switched to one of two different values.
- An inductor may be provided instead of the capacitor.
- a non-contact voltage measuring apparatus is a non-contact voltage measuring apparatus that measures a voltage to be measured applied to a conductor in a non-contact manner, wherein the probe is coupled with a probe and a coupling capacitance between the conductor and the probe.
- An electric circuit for acquiring a voltage induced in the electric circuit; an electric field shield for blocking an electric field incident on the electric circuit by covering at least a part of the electric circuit; and a detection point set on the electric circuit.
- a voltage deriving unit for deriving the voltage to be measured, and while maintaining a state in which no current flows from the detection point to the electric field shield, the electric potential of the detection point and the electric field shield And an equipotentializing section for equalizing the potential.
- the non-contact voltage measuring method of the present invention is a non-contact voltage measuring method for measuring a voltage to be measured applied to a conductor in a non-contact manner, and a probe is formed so that a coupling capacitance is formed between the conductors.
- a probe placement step of placing an electric field and shielding an electric field incident on the electrical circuit by covering at least a part of the electrical circuit that obtains a voltage induced in the probe by the coupling capacitance using an electric field shield An electric field cut-off step, and an equipotentialization step for equalizing the electric potential at the detection point and the electric potential of the electric field shield while maintaining a state where no current flows from the detection point set on the electric circuit to the electric field shield.
- a voltage deriving step for deriving the measurement target voltage based on the voltage detected at the detection point.
- the voltage induced in the probe by the coupling capacitance is acquired by the electric circuit, and the voltage at the detection point set on the electric circuit is detected. Then, the measurement target voltage is derived from the detected voltage. At this time, the state where the voltage at the detection point is equal to the potential of the electric field shield is maintained.
- the leakage current does not flow through the parasitic capacitance generated between the detection point and the electric field shield. In other words, the parasitic capacitance generated between the detection point and the electric field shield can be ignored.
- the detection point voltage can be detected with high accuracy. Thereby, based on the detection point voltage, the voltage to be measured can be derived with high accuracy.
- the electric circuit includes an impedance setting unit that can take the first impedance value or the second impedance value
- the voltage derivation unit includes the impedance setting unit.
- the measurement target voltage may be derived based on the detection point voltage when the impedance value is the first impedance value and the detection point voltage when the impedance setting unit is the second impedance value.
- the detection point voltage is also changed by switching the impedance value of the impedance setting unit included in the electric circuit.
- two detection point voltages are obtained which are the detection point voltage when the impedance setting unit has the first impedance value and the detection point voltage when the impedance setting unit has the second impedance value. Then, the voltage to be measured is derived from the two detection point voltages thus obtained.
- the voltage to be measured can be derived without an additional device such as an oscillator for applying a voltage to the coupling capacitor.
- the electric circuit includes a resistor, the impedance setting unit is disposed between the probe and the resistor, and the detection point is the impedance. It may be a point between the setting unit and the resistor.
- the voltage to be measured is divided by the coupling capacitance, the impedance setting unit, and the resistor, and the voltage acquired by the resistor is measured as the detection point voltage.
- the voltage divided by the resistor changes according to the resistance value of the resistor. Specifically, the detection point voltage can be sufficiently reduced by sufficiently reducing the resistance value of the resistor.
- the detection point voltage can be measured with a general voltmeter by selecting an appropriate value as the resistance value of the resistor.
- the equipotential unit may include an operational amplifier.
- the function of equalizing the potential at the detection point and the potential at the electric field shield can be realized with a simple configuration while maintaining a state in which no current flows from the detection point to the electric field shield.
- the present invention can be used for a non-contact voltage measuring device that measures an AC voltage flowing through a conductor in a wiring without contacting the wiring.
- Non-contact voltage measuring device 11 Detection probe (probe) 12 Electric field shield 13 Changeover switch (impedance setting part) 14 Operational amplifier (equalization unit) 15 Deriving unit (voltage deriving unit) R 1 resistor (resistor) C 1 capacitor (impedance setting unit) C 2 capacitor (impedance setting unit) VL voltage (voltage to be measured) V out output value (detection point voltage) EC electrical circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
電界シールド(12)は、結合容量(CL)に誘起される電圧を取得する電気回路(EC)を被覆することにより、電気回路(EC)に入射する電界を遮断し、オペアンプ(14)は、検出点の電位と電界シールド(12)の電位とを等しくし、導出部(15)は、検出点からの出力値(Vout)に基づき、電圧(VL)を導出する。
Description
本発明は、絶縁被覆された配線内の導体を流れる交流の電圧を、配線に接触することなく測定する非接触電圧測定装置に関する。
従来、絶縁被覆された配線内の導体を流れる交流の電圧を、配線に接触することなく測定する非接触電圧測定装置が開示されている。このような非接触電圧測定装置の一例が、特許文献1に示されている。
図5を用いて、一般的な非接触電圧測定装置9の構成を説明する。図5は、非接触電圧測定装置9の構成を概略的に示す図である。図5に示すように、非接触電圧測定装置9は、検出プローブ91を備えている。また、非接触電圧測定装置9の電気回路において、検出プローブ91と共通電位点(GND)との間には、検出用インピーダンスZSが接続されている。非接触電圧測定装置9では、以下に説明する手順で、配線内の導体を流れる交流の電圧VL(測定対象電圧)が測定される。
まず、配線と検出プローブ91との間に結合容量CLが形成されるように、検出プローブ91が配置される。図5から分かるように、導体に印加される電圧VLは、検出用インピーダンスZSと結合容量CLとの間で分圧されることになる。
次に、検出用インピーダンスZSに印加される電圧の値が、出力値Vout(検出点電圧)として検出される。電圧VLと、交流の角周波数ω、検出用インピーダンスZS、出力値Vout、および結合容量CLとの間には、以下の関係式が成り立つ。
図4は、従来の非接触電圧測定装置8(以下、電圧測定装置8と略称する)の構成を概略的に示す図であり、電圧測定装置8内で形成されている電気回路を示す図である。図4に示すように、電圧測定装置8は、コンデンサCAおよびCB、検出プローブ81、電界シールド82、および切り替えスイッチ83を備えている。
電圧測定装置8では、切り替えスイッチ83を用いて、コンデンサCAに印加される電圧、および、コンデンサCBに印加される電圧が、出力値VoutAおよびVoutBとしてそれぞれ測定される。そして、以下の手順で、測定された出力値VoutAおよびVoutBから電圧VLが算出される。
まず、測定された2つの電圧VoutAおよびVoutBから、以下の関係式が得られる。
式(3)から、結合容量CLが算出される。
ここで、C´A=CA+Cp、C´B=CB+Cpである。
式(4)および回路方程式から、以下の式(5)が導かれる。
上記のような非接触電圧測定装置9では、検出プローブ91や電気回路が、配線内の導体以外の電圧源と容量結合する場合がある。この場合、導体以外の電圧源と検出プローブ91や電気回路とが容量結合することによって生じる電気信号(ノイズ)が、電気回路を流れることになる。このようなノイズは、非接触電圧測定装置9による電圧VLの測定精度が低下する原因となる。そこで、非接触電圧測定装置9において、図5に示されるように、検出プローブ91の周囲に、導体以外の電圧源の電界を遮断するための電界シールド92を配置することが考えられる。
しかしながら、図5に示すように、検出プローブ91の周囲に電界シールド92が配置された場合、電界シールド92と、非接触電圧測定装置9の電気回路との間に、寄生容量Cpが発生する。その結果、電気回路において、寄生容量Cpを含む電流パスが生成され、漏れ電流が寄生容量Cpを流れることになる。これにより、出力値Voutが変化するので、電圧VLの測定精度が悪化するという問題がある。
本発明は、上記の問題に鑑みてなされたものであり、その目的は、電界シールドと検出プローブとの間の寄生容量を漏れ電流が流れることを抑制することにより、導体に印加される電圧を非接触で高精度で測定することができる非接触電圧測定装置および非接触電圧測定方法を提供することにある。
上記の課題を解決するために、本発明の非接触電圧測定装置は、導体に印加される測定対象電圧を非接触で測定する非接触電圧測定装置であって、プローブと、上記導体と上記プローブとの間の結合容量によって上記プローブに誘起される電圧を取得する電気回路と、上記電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界シールドと、上記電気回路上に設定された検出点で検出される検出点電圧に基づいて、上記測定対象電圧を導出する電圧導出部と、上記検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化部と、を備えている。
また、上記の課題を解決するために、本発明の非接触電圧測定方法は、導体に印加される測定対象電圧を非接触で測定する非接触電圧測定方法であって、上記導体との間に結合容量が形成されるようにプローブを配置するプローブ配置ステップと、電界シールドを用いて、上記結合容量によって上記プローブに誘起される電圧を取得する電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界遮断ステップと、上記電気回路上に設定された検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化ステップと、上記検出点で検出される電圧に基づいて、上記測定対象電圧を導出する電圧導出ステップと、を含む。
上記の構成によれば、結合容量によってプローブに誘起される電圧が電気回路によって取得され、電気回路上に設定された検出点の電圧が検出される。そして、検出された電圧から、測定対象電圧が導出される。このとき、検出点の電圧と電界シールドとの電位が等しい状態が維持される。
そのため、検出点と電界シールドとの間に発生する寄生容量を漏れ電流が流れることがない。言い換えれば、検出点と電界シールドとの間に発生する寄生容量を無視することができる。
従って、検出点に流入した電流が寄生容量から流出しないので、検出点電圧を高精度で検出することができる。これにより、検出点電圧に基づいて、測定対象電圧を高精度で導出することができる。
本発明は、導体に印加される電圧を非接触で高精度で測定することができるという効果を奏する。
〔実施形態1〕
以下、本発明の実施の形態について、図1から図3を用いて詳細に説明する。
以下、本発明の実施の形態について、図1から図3を用いて詳細に説明する。
(非接触電圧測定装置1の構成)
図1を用いて、非接触電圧測定装置1(以下、電圧測定装置1と略称する)の構成を説明する。図1は、電圧測定装置1の構成を示す概略図であり、電圧測定装置1内で形成されている電気回路ECを示す図である。電圧測定装置1は、絶縁被覆された配線内の導体を流れる交流の電圧を、配線に接触することなく測定する装置である。
図1を用いて、非接触電圧測定装置1(以下、電圧測定装置1と略称する)の構成を説明する。図1は、電圧測定装置1の構成を示す概略図であり、電圧測定装置1内で形成されている電気回路ECを示す図である。電圧測定装置1は、絶縁被覆された配線内の導体を流れる交流の電圧を、配線に接触することなく測定する装置である。
図1に示すように、電圧測定装置1は、検出プローブ11(プローブ)と、検出プローブ11に接続された電気回路ECと、電気回路EC上に設定された検出点に接続された導出部15(電圧導出部)とを備えている。そして、電気回路ECは、コンデンサC1およびC2(インピーダンス設定部)、検出抵抗R1(抵抗器)、電界シールド12、切り替えスイッチ13(インピーダンス設定部)、およびオペアンプ14(等電位化部)を備えている。
検出プローブ11は、配線の絶縁被覆の外周面を囲うように取り付けることができる電極を備えている。なお、検出プローブ11は、当該電極を被覆する絶縁部材を備えていてもよい。
検出プローブ11が、配線の絶縁被覆に十分に近接しているとき、検出プローブ11と配線との間には、配線内の導体に印加されている電圧VLに応じた値の結合容量CLが生じる。結合容量CLは、検出プローブ11のサイズ(電極面積)に比例する。そのため、検出プローブ11が小さいほど、結合容量CLの値は小さくなる。結合容量CLの値は、例えば、数pF~数10pFである。そして、検出プローブ11には配線内の導体によって静電誘導が生じ、検出プローブ11に接続された電気回路ECは、導体と検出プローブ11との間の結合容量によって検出プローブ11に誘起された電圧を取得する。
電界シールド12は、検出プローブ11または電気回路ECに入射する外界からの電界を遮断するものである。これにより、電界シールド12は、検出プローブ11または電気回路ECと配線内の導体以外の電圧源とが容量結合することを防止する。なお、図1では、電界シールド12は、電気回路ECの一部のみを覆っている。しかしながら、電界シールド12は、電気回路EC全体を覆っていてもよい。
コンデンサC1およびC2、ならびに切り替えスイッチ13は、検出プローブ11と検出抵抗R1との間のインピーダンスとして、互いに異なる2つのインピーダンス値の何れかをとるインピーダンス設定部として機能する。具体的には、切り替えスイッチ13は、電圧測定装置1の電気回路ECの状態を、(i)コンデンサC1が、結合容量CLと検出抵抗R1との間に直列接続した第1の状態と、(ii)コンデンサC1およびコンデンサC2が、結合容量CLと検出抵抗R1との間に直列接続した第2の状態と、の間で切り替えるものである。切り替えスイッチ13が、電気回路ECを第1の状態に切り替えた場合、検出プローブ11と検出抵抗R1との間のインピーダンスは、1/jωC1(第1のインピーダンス値)となる。一方、切り替えスイッチ13が、電気回路ECを第2の状態に切り替えた場合、検出プローブ11と検出抵抗R1との間のインピーダンスは、1/jωC´2(第2のインピーダンス値)となる。ここで、C´2=C1+C2である。
電気回路ECが第1の状態であるとき、配線中の導体に印加される電圧VLは、検出抵抗R1と、コンデンサC1と、結合容量CLとの間で分圧される。一方、電圧測定装置1が第2の状態であるとき、配線中の導体に印加される電圧VLは、検出抵抗R1と、コンデンサC1およびコンデンサC2と、結合容量CLとの間で分圧される。別の見方では、結合容量CLによって誘起された検出プローブ11と基準電位点(GND)との間の電圧が、電気回路ECによって、検出抵抗R1と、コンデンサC1およびC2の少なくとも一方とに分圧される。
導出部15は、電気回路EC内に設定された検出点の電圧である出力値Voutに基づいて電圧VLを導出する。なお、本実施形態では、検出点は、インピーダンス設定部として機能するコンデンサC1、C2および切り替えスイッチ13と、検出抵抗R1との間の点が設定されている。いいかえると、出力値Voutの検出点は、基準電位点(GND)を挟んで、検出抵抗R1と反対側の点と同電位である。すなわち、出力値Voutは、検出抵抗R1に印加される電圧の値に等しい。
導出部15は、上述した式(1)に従って電圧VLを算出する。ただし、式(1)において、(i)検出用インピーダンスZSは検出抵抗R1に、(ii)出力値Voutは出力値Vout1または出力値Vout2に、そして(iii)結合容量CLは合成容量(C1+CppL)CL/(C1+CppL+CL)または合成容量(C´2+CppL)CL/(C´2+CppL+CL)に、それぞれ置換される。以下に、電圧VLを表す式(2)を示す。
ここで、検出抵抗R1の値(抵抗値)は、出力値Voutが十分に小さくなるように、すなわち、検出点の電位が十分に低くなるように、予め決定されている。例えば、結合容量CLの値が10pFであり、コンデンサC1、C2の値がそれぞれ470pF、47pFである場合、検出抵抗R1の値は1MΩに決定される。このとき、出力値Voutは、数十mVから数百mV程度(f=50Hzの場合)になるので、一般的な電圧計を用いて測定することが可能である。
オペアンプ14は、出力値Voutの検出点と、電界シールド12とを同電位にするものである。すなわち、電圧測定装置1の電気回路ECには、マイナス端子と出力端子とが接続されたオペアンプ14(ボルテージフォロワ)を用いて、ドリブンシールド(Driven Shield)の回路技法が適用されている。
このように、電圧測定装置1では、オペアンプ14により、出力値Voutの検出点と、電界シールド12とが同電位になっている。そのため、寄生容量Cpには電流が流れない。従って、寄生容量Cpが、出力値Voutに影響する可能性を排除することができる。
(非接触電圧測定装置1による非接触電圧測定方法)
非接触電圧測定装置1による非接触電圧測定方法では、まず、配線内の導体との間に結合容量が形成されるように、検出プローブ11が配置される(プローブ配置ステップ)。
非接触電圧測定装置1による非接触電圧測定方法では、まず、配線内の導体との間に結合容量が形成されるように、検出プローブ11が配置される(プローブ配置ステップ)。
次に、電界シールド12が、電気回路ECおよび検出プローブ11を被覆することにより、電気回路ECに入射する電界を遮断する(電界遮断ステップ)。
その後、電圧VLが、検出抵抗R1と、コンデンサC1と、結合容量CLとの間で分圧される。別の見方では、電気回路ECが、静電誘導によって検出プローブ11に誘起された電圧を、コンデンサC1またはC2と、検出抵抗R1とに分圧する(分圧ステップ)。
続いて、オペアンプ14が、出力値Voutの検出点から電界シールド12に電流が流れない状態を維持したまま、検出点の電位と電界シールド12の電位とを等しくする(等電位化ステップ)。
最後に、導出部15が、式(1)に従って、出力値Voutから、電圧VLを導出する(電圧導出ステップ)。
(電気回路のシミュレーション1)
上述したように、電圧測定装置1の電気回路ECでは、ドリブンシールドの回路技法が採用されたことによって、出力値Voutの検出点と電界シールド12とが同電位になっている。ここでは、図1を用いて、ドリブンシールドの効果を実証するために実行した電気回路ECのシミュレーションの結果を提示する。本シミュレーションでは、寄生容量CpまたはCppLを流れる漏れ電流の計算、および、電圧VLの計算を行った。以下に、各計算の結果を説明する。
上述したように、電圧測定装置1の電気回路ECでは、ドリブンシールドの回路技法が採用されたことによって、出力値Voutの検出点と電界シールド12とが同電位になっている。ここでは、図1を用いて、ドリブンシールドの効果を実証するために実行した電気回路ECのシミュレーションの結果を提示する。本シミュレーションでは、寄生容量CpまたはCppLを流れる漏れ電流の計算、および、電圧VLの計算を行った。以下に、各計算の結果を説明する。
(1.漏れ電流の計算)
漏れ電流の計算を行うためのシミュレーションでは、電気回路ECの各素子のパラメータを、コンデンサC1=470pF、コンデンサC2=47pF、検出抵抗R1=100kΩ、結合容量CL=10pF、寄生容量Cp=1000pF、寄生容量CppL=3pFに設定した。また、配線内の導体に印加される交流のパラメータを、電圧VL=100Vrms、周波数f=ω/2π=50Hzに設定した。そして、漏れ電流の時間変化を計算した。
漏れ電流の計算を行うためのシミュレーションでは、電気回路ECの各素子のパラメータを、コンデンサC1=470pF、コンデンサC2=47pF、検出抵抗R1=100kΩ、結合容量CL=10pF、寄生容量Cp=1000pF、寄生容量CppL=3pFに設定した。また、配線内の導体に印加される交流のパラメータを、電圧VL=100Vrms、周波数f=ω/2π=50Hzに設定した。そして、漏れ電流の時間変化を計算した。
なお、ドリブンシールドの効果を明確にするため、図1に示す電気回路ECの構成において、ドリブンシールドの代わりに、グランドシールド(GND Shield)を採用した構成を有する電気回路のシミュレーションも行った。そして、グランドシールドが採用された電気回路における漏れ電流も計算した。ここで、グランドシールドとは、電界シールドを基準点(GND)と同電位にする回路技法のことである。
図2に、シミュレーションの結果として得られた漏れ電流のグラフを示す。グラフの縦軸は漏れ電流の値(単位;nA)であり、横軸は時間(単位;秒)である。なお、漏れ電流の値は、寄生容量Cpを流れる漏れ電流の値を表している。
図2に示すように、ドリブンシールドを採用した電気回路ECにおける漏れ電流(”Driven Shield”のグラフ)の値は、グランドシールドを採用した電気回路における漏れ電流(”GND Shield”のグラフ)の値の1/100以下である。
以上の計算結果から、グランドシールドを採用した電気回路において、寄生容量Cpを流れる漏れ電流と比較して、ドリブンシールドを採用した電気回路ECにおいて、寄生容量Cpを流れる漏れ電流はとても小さいことがわかる。従って、電圧測定装置1の構成によれば、ドリブンシールドの回路技法が採用されたことによって、漏れ電流を低減するという効果を奏する。
(2.電圧VLの計算)
電圧VLの計算を行うためのシミュレーションでは、電気回路ECの各素子のパラメータを、コンデンサC1=470pF、コンデンサC2=47pF、検出抵抗R1=100kΩ、結合容量CL=10pF、寄生容量CppL=3pFに設定した。また、配線内の導体に印加される交流のパラメータを、周波数f=50Hzに設定した。そして、寄生容量Cpの値が0pFから3000pFまでの間の値であるときの電圧VLの計算を行った。電圧VLを計算する際、寄生容量CppLを考慮し、寄生容量Cpを考慮しない回路方程式を使用した。
電圧VLの計算を行うためのシミュレーションでは、電気回路ECの各素子のパラメータを、コンデンサC1=470pF、コンデンサC2=47pF、検出抵抗R1=100kΩ、結合容量CL=10pF、寄生容量CppL=3pFに設定した。また、配線内の導体に印加される交流のパラメータを、周波数f=50Hzに設定した。そして、寄生容量Cpの値が0pFから3000pFまでの間の値であるときの電圧VLの計算を行った。電圧VLを計算する際、寄生容量CppLを考慮し、寄生容量Cpを考慮しない回路方程式を使用した。
なお、ドリブンシールドの効果を明確にするため、図1に示す電気回路ECの構成において、ドリブンシールドの代わりに、グランドシールド(GND Shield)を採用した構成を有する電気回路のシミュレーションも行った。そして、グランドシールドが採用された電気回路における電圧VLも計算した。
図3に、シミュレーションの結果として得られた電圧VL(測定対象電圧)のグラフを示す。グラフの縦軸は電圧VLの値(単位;寄生容量Cpがゼロであるときの電圧VLを100%としたときのパーセンテージ)であり、横軸は寄生容量Cpの値(単位;F)である。図3に示すように、ドリブンシールドを採用した電気回路ECにおける電圧VL(”ドリブンシールド”のグラフ)の値は、寄生容量Cpの値によらず、ほぼ一定である。一方、グランドシールドを採用した電気回路における電圧VL(”グランドシールド”のグラフ)の値は、寄生容量Cpの値が大きくなるとともに低下する。
以上の計算結果から、グランドシールドを採用した電気回路における電圧VLは寄生容量Cpの値に依存するが、ドリブンシールドを採用した電気回路ECにおける電圧VLは寄生容量Cpの値にほぼ依存しないことがわかる。従って、電圧測定装置1の構成によれば、ドリブンシールドの回路技法が採用されたことによって、寄生容量Cpの値またはその変化によらず、結合容量CLおよび電圧VLを精度よく導出することができるという効果を奏する。
一方、グランドシールドを採用した電気回路で検出される出力値Vout1およびVout2は、寄生容量Cpの値から影響を受ける。また、電圧VLは、寄生容量Cpを考慮しない回路方程式で導出される。そのため、出力値Vout1およびVout2より計算される電圧VLには、誤差が発生する。
(従来の非接触電圧測定装置の構成との比較)
ここでは、本実施形態の電圧測定装置1の構成による効果をさらに説明するため、電圧測定装置1の構成と、従来の非接触電圧測定装置8の構成とを比較する。
ここでは、本実施形態の電圧測定装置1の構成による効果をさらに説明するため、電圧測定装置1の構成と、従来の非接触電圧測定装置8の構成とを比較する。
図4に示す従来の電圧測定装置8は、本実施形態の電圧測定装置1と同様に、電界シールド82を備えている。そのため、出力値Voutの検出点と電界シールド82との間に、寄生容量Cpが発生する。そして、電圧測定装置8において、電界シールド82と検出点とは同電位ではないため、漏れ電流が寄生容量Cpを流れる。これにより、出力値Voutの測定精度が悪化することになる。
さらに、電圧測定装置8では、電圧Voutが測定された時点から、電圧VoutBが測定される時点までの間に、電圧測定装置8が置かれた環境の温度または湿度が変化することによって、寄生容量Cpの値が変化する場合がある。その他、電気回路を構成するケーブル(検出プローブ81から出力値Voutの検出点までの電流経路)の長さを変更した場合にも、寄生容量Cpの値が変化する。これらの場合、電圧VoutAおよびVoutBの値から算出される電圧VLの値には、測定誤差が発生する。
一方、前述したように、本実施形態の電圧測定装置1では、電気回路ECにドリブンシールドの回路技法が採用されることによって、出力値Voutの検出点と電界シールド82とが同電位になっている。そのため、寄生容量Cpに漏れ電流が流れないので、寄生容量Cpに流れる漏れ電流を原因として、出力値Voutの測定精度が悪化することはない。さらに、寄生容量Cpが変化した場合であっても、電圧VLに測定誤差が発生することはない。
なお、上記の実施形態1では、検出抵抗R1を設け、コンデンサC1またはC2と検出抵抗R1との間の点を検出点とし、当該検出点と電界シールド12とを同電位にするものとした。しかしながら、本発明はこれに限定されるものではなく、図4に示す構成のように、検出プローブ11とコンデンサC1およびC2との間の点を検出点とする場合、当該検出点と電界シールド12とをボルテージフォロワとして構成されたオペアンプで接続することで同電位としてもよい。
ただし、図4に示す従来の電圧測定装置8の場合、式(4)から分かるように、結合容量CLが算出されるためには、コンデンサCAに印加される電圧VoutAと、コンデンサCBに印加される電圧VoutBとの間に、有意差が存在する必要がある。従って、結合容量CLのインピーダンスと、コンデンサCA、CBのインピーダンスとは、同等程度(インピーダンスの値の比が1/10から10倍のオーダー)である必要がある。
ところが、結合容量CLのインピーダンスと、コンデンサCAおよびCBのインピーダンスとが同等程度である場合、コンデンサCAおよびCBには、結合容量CLに印加される電圧と同等程度の電圧が印加されることになる。例えば、測定対象の電圧VLが数百Vである場合、コンデンサCAおよびCBに印加される電圧VoutAおよびvoutBの値は、それぞれ、数V~数十Vに達する。一般的な電圧計では、このように大きな値の電圧を測定することは困難であり、専用の電圧計が必要となる。
そのため、本実施形態の電圧測定装置1のように、出力値Voutの検出点の電位が十分に低くなるように、検出抵抗R1の値が決定されていることが好ましい。例えば、検出抵抗R1の値は、出力値Voutが数十mVから数百mV程度になるような値に決定されている。そのため、電圧測定装置1では、一般的な電圧計を用いて、出力値Voutを測定することが可能である。
(変形例)
上記の実施形態1では、インピーダンス設定部を構成するインピーダンス素子として、コンデンサC1およびC2の2つのコンデンサを設け、切り替えスイッチ13がインピーダンス設定部のインピーダンス値を切り替えるものとした。しかしながら、本発明はこの形態に限定されるものではなく、様々な形態に変形することが可能である。
上記の実施形態1では、インピーダンス設定部を構成するインピーダンス素子として、コンデンサC1およびC2の2つのコンデンサを設け、切り替えスイッチ13がインピーダンス設定部のインピーダンス値を切り替えるものとした。しかしながら、本発明はこの形態に限定されるものではなく、様々な形態に変形することが可能である。
例えば、コンデンサC1およびC2の代わりに、可変コンデンサを一つ設け、可変コンデンサの容量値を異なる2つの値の何れかに切り替えてもよい。また、コンデンサの代わりにインダクタ(コイル)を設けてもよい。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
〔まとめ〕
本発明の非接触電圧測定装置は、導体に印加される測定対象電圧を非接触で測定する非接触電圧測定装置であって、プローブと、上記導体と上記プローブとの間の結合容量によって上記プローブに誘起される電圧を取得する電気回路と、上記電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界シールドと、上記電気回路上に設定された検出点で検出される検出点電圧に基づいて、上記測定対象電圧を導出する電圧導出部と、上記検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化部と、を備えている。
本発明の非接触電圧測定装置は、導体に印加される測定対象電圧を非接触で測定する非接触電圧測定装置であって、プローブと、上記導体と上記プローブとの間の結合容量によって上記プローブに誘起される電圧を取得する電気回路と、上記電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界シールドと、上記電気回路上に設定された検出点で検出される検出点電圧に基づいて、上記測定対象電圧を導出する電圧導出部と、上記検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化部と、を備えている。
また、本発明の非接触電圧測定方法は、導体に印加される測定対象電圧を非接触で測定する非接触電圧測定方法であって、上記導体との間に結合容量が形成されるようにプローブを配置するプローブ配置ステップと、電界シールドを用いて、上記結合容量によって上記プローブに誘起される電圧を取得する電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界遮断ステップと、上記電気回路上に設定された検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化ステップと、上記検出点で検出される電圧に基づいて、上記測定対象電圧を導出する電圧導出ステップと、を含む。
上記の構成によれば、結合容量によってプローブに誘起される電圧が電気回路によって取得され、電気回路上に設定された検出点の電圧が検出される。そして、検出された電圧から、測定対象電圧が導出される。このとき、検出点の電圧と電界シールドとの電位が等しい状態が維持される。
そのため、検出点と電界シールドとの間に発生する寄生容量を漏れ電流が流れることがない。言い換えれば、検出点と電界シールドとの間に発生する寄生容量を無視することができる。
従って、検出点に流入した電流が寄生容量から流出しないので、検出点電圧を高精度で検出することができる。これにより、検出点電圧に基づいて、測定対象電圧を高精度で導出することができる。
また、本発明の非接触電圧測定装置において、上記電気回路は、第1のインピーダンス値または第2のインピーダンス値をとり得るインピーダンス設定部を備えており、上記電圧導出部は、上記インピーダンス設定部が上記第1のインピーダンス値であるときの検出点電圧と、上記インピーダンス設定部が上記第2のインピーダンス値であるときの検出点電圧とに基づいて、上記測定対象電圧を導出してもよい。
上記の構成によれば、電気回路が備えるインピーダンス設定部のインピーダンス値が切り替えられることによって、検出点電圧も変化する。こうして、インピーダンス設定部が第1のインピーダンス値のときの検出点電圧と、第2のインピーダンス値のときの検出点電圧からなる2つの検出点電圧が得られる。そして、こうして得られた2つの検出点電圧から、測定対象電圧が導出される。
以上のように、上記の構成では、結合容量に電圧を印加するための発振器などの追加の装置なしで、測定対象電圧を導出することができる。
また、本発明の非接触電圧測定装置において、上記電気回路は、抵抗器を備え、上記インピーダンス設定部は、上記プローブと上記抵抗器との間に配置されており、上記検出点は、上記インピーダンス設定部と上記抵抗器との間の点であってよい。
上記の構成によれば、測定対象電圧が、結合容量、インピーダンス設定部および抵抗器により分圧され、抵抗器が取得する電圧が検出点電圧として測定される。抵抗器に分圧される電圧は、抵抗器の抵抗値に応じて変化する。具体的には、抵抗器の抵抗値を十分に小さくすることによって、検出点電圧を、十分に小さくすることができる。
従って、抵抗器の抵抗値として適切な値を選択することによって、検出点電圧を、一般的な電圧計で測定することができる。
また、本発明の非接触電圧測定装置において、上記等電位化部は、オペアンプを備えていてもよい。
上記の構成によれば、簡単な構成で、検出点から電界シールドに電流が流れない状態を維持したまま、検出点の電位と電界シールドの電位とを等しくするという機能を実現することができる。
本発明は、配線に接触することなく、該配線内の導体を流れる交流の電圧を測定する非接触電圧測定装置に利用することができる。
1 非接触電圧測定装置
11 検出プローブ(プローブ)
12 電界シールド
13 切り替えスイッチ(インピーダンス設定部)
14 オペアンプ(等電位化部)
15 導出部(電圧導出部)
R1 抵抗(抵抗器)
C1 コンデンサ(インピーダンス設定部)
C2 コンデンサ(インピーダンス設定部)
VL 電圧(測定対象電圧)
Vout 出力値(検出点電圧)
EC 電気回路
11 検出プローブ(プローブ)
12 電界シールド
13 切り替えスイッチ(インピーダンス設定部)
14 オペアンプ(等電位化部)
15 導出部(電圧導出部)
R1 抵抗(抵抗器)
C1 コンデンサ(インピーダンス設定部)
C2 コンデンサ(インピーダンス設定部)
VL 電圧(測定対象電圧)
Vout 出力値(検出点電圧)
EC 電気回路
Claims (5)
- 導体に印加される測定対象電圧を非接触で測定する非接触電圧測定装置であって、
プローブと、
上記導体と上記プローブとの間の結合容量によって上記プローブに誘起される電圧を取得する電気回路と、
上記電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界シールドと、
上記電気回路上に設定された検出点で検出される検出点電圧に基づいて、上記測定対象電圧を導出する電圧導出部と、
上記検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化部と、
を備えたことを特徴とする非接触電圧測定装置。 - 上記電気回路は、第1のインピーダンス値または第2のインピーダンス値をとり得るインピーダンス設定部を備えており、
上記電圧導出部は、上記インピーダンス設定部が上記第1のインピーダンス値であるときの検出点電圧と、上記インピーダンス設定部が上記第2のインピーダンス値であるときの検出点電圧とに基づいて、上記測定対象電圧を導出する
ことを特徴とする請求項1に記載の非接触電圧測定装置。 - 上記電気回路は、抵抗器を備え、
上記インピーダンス設定部は、上記プローブと上記抵抗器との間に配置されており、
上記検出点は、上記インピーダンス設定部と上記抵抗器との間の点である
ことを特徴とする請求項2に記載の非接触電圧測定装置。 - 上記等電位化部は、オペアンプを備える
ことを特徴とする請求項1~3のいずれか1項に記載の非接触電圧測定装置。 - 導体に印加される測定対象電圧を非接触で測定する非接触電圧測定方法であって、
上記導体との間に結合容量が形成されるようにプローブを配置するプローブ配置ステップと、
電界シールドを用いて、上記結合容量によって上記プローブに誘起される電圧を取得する電気回路の少なくとも一部を被覆することにより、上記電気回路に入射する電界を遮断する電界遮断ステップと、
上記電気回路上に設定された検出点から上記電界シールドに電流が流れない状態を維持したまま、上記検出点の電位と上記電界シールドの電位とを等しくする等電位化ステップと、
上記検出点で検出される電圧に基づいて、上記測定対象電圧を導出する電圧導出ステップと、を含む
ことを特徴とする非接触電圧測定方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253590A JP2015111087A (ja) | 2013-12-06 | 2013-12-06 | 非接触電圧測定装置および非接触電圧測定方法 |
JP2013-253590 | 2013-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083618A1 true WO2015083618A1 (ja) | 2015-06-11 |
Family
ID=53273381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081426 WO2015083618A1 (ja) | 2013-12-06 | 2014-11-27 | 非接触電圧測定装置および非接触電圧測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015111087A (ja) |
WO (1) | WO2015083618A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189864A1 (ja) * | 2015-05-27 | 2016-12-01 | パナソニックIpマネジメント株式会社 | プローブ及びそれを用いた電圧測定装置 |
DE102016124164A1 (de) * | 2016-12-13 | 2018-06-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Vorrichtung und Verfahren zum Messen eines elektrischen Stroms in einem elektrischen Leiter |
CN111562427A (zh) * | 2020-05-25 | 2020-08-21 | 北京全路通信信号研究设计院集团有限公司 | 一种非接触式任意波形交变电压测量装置 |
WO2022172312A1 (ja) * | 2021-02-09 | 2022-08-18 | 三菱電機株式会社 | 非接触電圧測定装置および非接触電圧測定方法 |
CN115524533A (zh) * | 2022-10-25 | 2022-12-27 | 南方电网数字电网研究院有限公司 | 电气量集成测量设备和方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10359494B2 (en) | 2016-11-11 | 2019-07-23 | Fluke Corporation | Proving unit for non-contact voltage measurement systems |
US10352967B2 (en) | 2016-11-11 | 2019-07-16 | Fluke Corporation | Non-contact electrical parameter measurement systems |
US10139435B2 (en) | 2016-11-11 | 2018-11-27 | Fluke Corporation | Non-contact voltage measurement system using reference signal |
US10254375B2 (en) | 2016-11-11 | 2019-04-09 | Fluke Corporation | Proving unit for voltage measurement systems |
US10120021B1 (en) | 2017-06-16 | 2018-11-06 | Fluke Corporation | Thermal non-contact voltage and non-contact current devices |
US10539643B2 (en) | 2017-09-01 | 2020-01-21 | Fluke Corporation | Proving unit for use with electrical test tools |
JP6989346B2 (ja) * | 2017-10-26 | 2022-01-05 | 大崎電気工業株式会社 | 電圧測定装置 |
US10509063B2 (en) | 2017-11-28 | 2019-12-17 | Fluke Corporation | Electrical signal measurement device using reference signal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6319281U (ja) * | 1986-07-21 | 1988-02-08 | ||
JP2003028900A (ja) * | 2001-07-11 | 2003-01-29 | Yokogawa Electric Corp | 非接触電圧測定方法およびその装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001255342A (ja) * | 2000-03-08 | 2001-09-21 | Hitachi Ltd | 電圧センサ |
PT2608338E (pt) * | 2011-12-21 | 2014-02-21 | 3M Innovative Properties Co | Dispositivo de ligação de terminais para um cabo de alimentação |
-
2013
- 2013-12-06 JP JP2013253590A patent/JP2015111087A/ja active Pending
-
2014
- 2014-11-27 WO PCT/JP2014/081426 patent/WO2015083618A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6319281U (ja) * | 1986-07-21 | 1988-02-08 | ||
JP2003028900A (ja) * | 2001-07-11 | 2003-01-29 | Yokogawa Electric Corp | 非接触電圧測定方法およびその装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189864A1 (ja) * | 2015-05-27 | 2016-12-01 | パナソニックIpマネジメント株式会社 | プローブ及びそれを用いた電圧測定装置 |
DE102016124164A1 (de) * | 2016-12-13 | 2018-06-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Vorrichtung und Verfahren zum Messen eines elektrischen Stroms in einem elektrischen Leiter |
US20180164347A1 (en) * | 2016-12-13 | 2018-06-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Apparatus and method for measuring an electric current in an electrical conductor |
CN108226603A (zh) * | 2016-12-13 | 2018-06-29 | 保时捷股份公司 | 用于测量电导体中的电流的装置和方法 |
US10416197B2 (en) * | 2016-12-13 | 2019-09-17 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Apparatus and method for measuring an electric current in an electrical conductor |
CN111562427A (zh) * | 2020-05-25 | 2020-08-21 | 北京全路通信信号研究设计院集团有限公司 | 一种非接触式任意波形交变电压测量装置 |
CN111562427B (zh) * | 2020-05-25 | 2022-09-09 | 北京全路通信信号研究设计院集团有限公司 | 一种非接触式任意波形交变电压测量装置 |
WO2022172312A1 (ja) * | 2021-02-09 | 2022-08-18 | 三菱電機株式会社 | 非接触電圧測定装置および非接触電圧測定方法 |
JP7237264B1 (ja) * | 2021-02-09 | 2023-03-10 | 三菱電機株式会社 | 非接触電圧測定装置および非接触電圧測定方法 |
CN115524533A (zh) * | 2022-10-25 | 2022-12-27 | 南方电网数字电网研究院有限公司 | 电气量集成测量设备和方法 |
CN115524533B (zh) * | 2022-10-25 | 2023-06-27 | 南方电网数字电网研究院有限公司 | 电气量集成测量设备和方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015111087A (ja) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015083618A1 (ja) | 非接触電圧測定装置および非接触電圧測定方法 | |
JP6343984B2 (ja) | 非接触電圧計測装置 | |
JP3761470B2 (ja) | 非接触電圧計測方法及び装置並びに検出プローブ | |
TWI779190B (zh) | 具有振盪感測器之非接觸式dc電壓測量裝置 | |
JP5951005B2 (ja) | 電束に関する異なる二つの値によって対象物の電位を非接触式に検出するための方法並びに装置 | |
US9778294B2 (en) | Non-contact AC voltage measurement device | |
JP6459188B2 (ja) | 非接触電圧計測装置 | |
JP6372164B2 (ja) | 電圧計測装置および電圧計測方法 | |
JP5864721B2 (ja) | オブジェクトの電位を非接触で求めるための装置およびクランプメータ | |
JP5777600B2 (ja) | 非接触電圧測定プローブ | |
US10460893B2 (en) | Embedded pole part for medium or high voltage use, with a vacuum interrupter which is embedded into an insulating resin | |
WO2015133212A1 (ja) | 電圧測定装置および電圧測定方法 | |
JP6989346B2 (ja) | 電圧測定装置 | |
JP3815771B2 (ja) | 静電容量式ギャップセンサ、及びその信号検出方法 | |
JP6128921B2 (ja) | 非停電絶縁診断装置及び非停電絶縁診断方法 | |
JP2014510928A (ja) | 振動可能に構成された電極により電位を無接触で求める方法及び装置 | |
JP6320077B2 (ja) | 分圧誤差測定方法 | |
JP5972600B2 (ja) | コンデンサ校正用回路およびコンデンサ校正方法 | |
KR102014511B1 (ko) | 커패시터의 손실 계수 측정 장치 및 방법 | |
JP6625422B2 (ja) | 測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14866950 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14866950 Country of ref document: EP Kind code of ref document: A1 |