WO2014139359A1 - 乙型肝炎疫苗 - Google Patents

乙型肝炎疫苗 Download PDF

Info

Publication number
WO2014139359A1
WO2014139359A1 PCT/CN2014/072570 CN2014072570W WO2014139359A1 WO 2014139359 A1 WO2014139359 A1 WO 2014139359A1 CN 2014072570 W CN2014072570 W CN 2014072570W WO 2014139359 A1 WO2014139359 A1 WO 2014139359A1
Authority
WO
WIPO (PCT)
Prior art keywords
hbsag
cpg
hbcag
odn
hepatitis
Prior art date
Application number
PCT/CN2014/072570
Other languages
English (en)
French (fr)
Inventor
杜笑寒
葛君
庄晓倩
周童
李建强
宋翠灵
孙莹
王美菊
顾月
孙洪林
徐振兴
黄红颖
陈晓晓
Original Assignee
江苏先声药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏先声药业有限公司 filed Critical 江苏先声药业有限公司
Priority to US14/773,829 priority Critical patent/US9878035B2/en
Priority to JP2015561921A priority patent/JP6499592B2/ja
Priority to EP14765662.3A priority patent/EP2974740B1/en
Publication of WO2014139359A1 publication Critical patent/WO2014139359A1/zh
Priority to HK16106930.2A priority patent/HK1218872A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10171Demonstrated in vivo effect

Definitions

  • the present invention relates to a hepatitis B vaccine.
  • the present invention relates to a hepatitis B vaccine comprising a hepatitis B surface antigen, a hepatitis B core antigen, and a thiooligodeoxynucleotide having immunostimulatory activity.
  • HBV infection is one of the world's serious public health problems. HBV infection is an important cause of chronic hepatitis B, cirrhosis and hepatocellular carcinoma (Fattovich G. J Hepatol 2008; 48: 335-352). Clinical treatments Commonly used drugs for chronic HBV infection are mainly nucleoside analogues and interferons. Nucleoside analogues do not completely eliminate cccDNA in hepatocytes, and long-term use can easily lead to the emergence of resistant mutants and rebound after drug withdrawal (Kwon H, Lok AS. Nat Rev Gastroenterol Hepatol. 2011; 8:275-284.) .
  • Interferon is not suitable for asymptomatic HBV carriers.
  • the incidence of HBeAg seroconversion is only 33% after half a year of use, and the side effects of interferon are also limited (Tang SX, Yu GL ⁇ ancet) 1990;335(8684): 302)
  • the currently widely used hepatitis B protein vaccine induces humoral immunity and produces protective antibodies for prevention purposes.
  • protective antibodies can only eliminate extracellular virus particles, while viruses that eliminate intracellular infection mainly rely on specific cellular immune responses, TH types such as IFN- ⁇ produced by helper T cells and CD 4+ T cells.
  • Cytokines especially virus-specific cytotoxic T lymphocytes (CTL), are cleared (Chin R, Lacamini S. Rev Med Viorl. 2003: 13(4): 255-72).
  • CTL cytotoxic T lymphocytes
  • the strength of the cellular immune response directly determines the prognosis of hepatitis B. Therefore, the ideal therapeutic hepatitis B vaccine needs to induce specific humoral and cellular immunity at the same time, breaking through the immune tolerance of hepatitis B.
  • anti-HBsAg antibody subtypes in patients with chronic hepatitis B infection are mainly IgG4, while anti-HBsAg antibody subtypes in patients with hepatitis B infection are IgGl ⁇ IgG4, indicating that Th1 type during hepatitis B infection clearance
  • the antibody subtype IgG1 plays an important role. Evaluating whether a Thl type antibody subtype is higher than or equal to a Th2 type antibody subtype may suggest an effect of hepatitis B treatment (S. Rath, et al. Clin.exp. Immunol.
  • the anti-HBcAg antibody subtype of patients with hepatitis B infection is IgGl > IgG3 > IgG4, and the anti-HBcAg subtype of patients with hepatitis B infection is changed to IgG3>IgGl>IgG4, indicating anti-HBcAg, especially anti-HBcAg
  • the transformation of antibody subtypes may be closely related to the treatment of hepatitis B (Chien-Fu Huang, et al. Cellular & Molecular Immunology. 2006;3(2):97-106.) 0
  • Patent US 4,547,367 utilizes HBcAg particles to treat/prevent HBV infection and HBV-mediated diseases, and HBcAg particle immunization of chimpanzees protects chimpanzees from HBV infection. Moreover, HBcAg particles combined with HBsAg particles immunized newborns born to mothers of hepatitis B carriers, producing high titers of anti-HBsAg and anti-HBcAg antibodies, and no HBV infection was observed during the 18-month monitoring. However, the patent does not explicitly provide evidence for a subtype of anti-HBcAg antibody and there is no direct evidence for treatment of HBV infection and HBV-mediated disease.
  • Patent WO2007/031334 which protects a hepatitis B therapeutic vaccine component comprising HBsAg, HBcAg and a saponin adjuvant, and CpG-ODN can be used as a shared adjuvant, however, the hepatitis B therapeutic vaccine is in clinical use. It is necessary to combine nucleoside analogues for combination therapy in order to break through the immune tolerance of hepatitis B, and e antigen is only negative Summary of the invention
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising: i) hepatitis B surface antigen (HBsAg), ii) hepatitis B core antigen (HBcAg), iii) CpG oligo-oxynucleotide (CpG-ODN) and/or Optionally iv) a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions of the invention are useful as prophylactic or therapeutic vaccines.
  • the pharmaceutical composition consists of the above components i) - iii) and optionally iv).
  • the HBsAg has the sequence set forth in SEQ ID NO: 1.
  • the HBcAg has the sequence set forth in SEQ ID NO:2.
  • the CpG-ODN comprises a phosphorothioate linkage.
  • the CpG-ODN is a thiooligooxydeoxynucleotide, preferably a per-thiooligooxydeoxynucleotide.
  • the CpG-ODN comprises two or more 5,-NTCGTT-3, motifs.
  • the CpG-ODN is 15 to 35 nucleotides in length, preferably 20 to 25 nucleotides.
  • the CpG-ODN has a sequence selected from the group consisting of: 5, -TCG TTC GTT CGT TCG TTC GTT-3' (SEQ ID NO: 3), 5, -TCG TTC GTT CGT TCG TTC GTT CGT T-3' (SEQ ID NO: 4), 5, -TCG TCG TCG TCG TCG TCG-3' (SEQ ID NO: 5) and 5, -TCC ATG ACG TTC CTG ACG TT -3' (SEQ ID NO: 6), preferably the CpG-ODN has the sequence: 5, -TCG TTC GTT CGT TCG TTC GTT-3,.
  • the relative weight ratio between components 0, ii) and iii) in the pharmaceutical composition ranges from 1: 0.2-5: 1-50, preferably 1 : 1-5: 2 ⁇ 15.
  • the present invention also relates to a hepatitis B vaccine comprising: 0 hepatitis B surface antigen (HBsAg), ii) hepatitis B core antigen (HBcAg), iii) CpG oligodeoxygenation Nucleotide (CpG-ODN) and optionally iv) a pharmaceutically acceptable carrier.
  • HBsAg hepatitis B surface antigen
  • HBcAg hepatitis B core antigen
  • CpG-ODN CpG oligodeoxygenation Nucleotide
  • the invention also relates to a kit comprising a pharmaceutical composition or a hepatitis B vaccine according to the invention and optionally instructions for its use.
  • the invention relates to the use of a pharmaceutical composition according to the invention in the manufacture of a medicament for the treatment of a HBV infection and/or an HBV mediated disease in a subject, preferably said HBV infection and/or
  • the HBV-mediated disease is selected from the group consisting of hepatitis B, cirrhosis and liver cancer.
  • the invention relates to the use of a pharmaceutical composition according to the invention for the manufacture of a medicament for the production of an immune response against HBV (preferably, inducing a Thl and Th2 type immune response) in a subject.
  • the invention relates to the use of a pharmaceutical composition according to the invention for the manufacture of a medicament for subtype transformation of an anti-HBcAg antibody in a subject.
  • the invention relates to the use of a pharmaceutical composition according to the invention for the manufacture of a medicament for breaking through hepatitis B virus immune tolerance in a subject.
  • the present invention relates to a pharmaceutical composition according to the present invention for preparing a balance of a Th1/Th2 immune response to a hepatitis B surface antigen in a subject (e.g., substantially equivalently inducing a Th1 and Th2 type immune response) Use in medicine.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising: 0 hepatitis B surface antigen (HBsAg), ii) hepatitis B core antigen (HBcAg), and iii) CpG oligodeoxynucleotide (CpG- ODN).
  • the pharmaceutical composition of the present invention can be used for treating HBV infection and/or HBV-mediated diseases in a subject, for generating an immune response against HBV in a subject (preferably, inducing a Th1 and Th2 type immune response), For subtype transformation of an anti-HBcAg antibody in a subject, for eliciting antigen-specific CTL killing activity in a subject and/or for breaking through hepatitis B virus immune tolerance in a subject.
  • the invention relates to a method of treating a HBV infection and/or a HBV mediated disease in a subject comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition according to the invention.
  • the present invention relates to generating an object for HBV in an object A method of immunizing (preferably, inducing a Th1 and Th2 type immune response) comprising administering to a subject a therapeutically effective amount of a pharmaceutical composition according to the invention.
  • the invention relates to a method of subtype transformation of an anti-HBcAg antibody in a subject, comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition according to the invention.
  • the invention relates to a method of breaking through hepatitis B virus immune tolerance in a subject comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition according to the invention.
  • the invention relates to a method of eliciting antigen-specific CTL killing activity in a subject comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition according to the invention.
  • the present invention relates to a method of achieving a balance of a hepatitis B surface antigen Th1/Th2 immune response (eg, substantially equivalently inducing a Th1 and Th2 type immune response) in a subject, comprising administering to the subject a therapeutically effective amount A pharmaceutical composition according to the invention.
  • a hepatitis B surface antigen Th1/Th2 immune response eg, substantially equivalently inducing a Th1 and Th2 type immune response
  • the pharmaceutical compositions of the invention do not comprise a saponin adjuvant.
  • FIG. 1 shows the compositions of the invention compared with the conventional vaccine components for specific total hepatitis B surface antigen I g G FIG enhanced immune response in mice.
  • Figure 2 shows a graph of the composition of the invention enhancing the immune response of a protective antibody in mice compared to conventional vaccine components.
  • Figure 3 is a graph showing that the composition of the present invention enhances the Th2 immune response of hepatitis B surface antigen at humoral immunity levels compared to conventional vaccine components.
  • Figure 4 is a graph showing that the composition of the present invention enhances the hepatitis B surface antigen Thl immune response in humoral immunity levels compared to conventional vaccine components.
  • Figure 5 shows a graph of the humoral immunity level of the composition of the present invention promoting the balance of the Thl/Th2 immune response of hepatitis B surface antigen compared to conventional vaccine components.
  • Figure 6 shows that the anti-HBcAg antibody subtype produced by the composition of the present invention is Figure of IgG2a > IgGl.
  • Figure 7 is a graph showing that the composition of the present invention promotes HBsAg CTL epitope-specific Thl cell differentiation and inhibits Th2 cell proliferation in cellular immunity as compared with the conventional vaccine component.
  • Figure 8 is a graph showing the synergistic effect of HBcAg in combination with HBsAg + CpG in the composition of the invention on the production of antigen-specific I g G antibody levels.
  • Figure 9 shows the ability of HBsAg to bind to HBsAg + CpG in the composition of the present invention.
  • HBsAg + CpG has the ability to promote HBsAg-specific Thl cell differentiation at the cellular level.
  • FIG. 10 shows the composition of the present invention breaks immune tolerance to FIG HBV transgenic mice and mice immune tolerance in I g G antigen-specific immune response.
  • Figure 11 shows a diagram of the composition of the present invention breaking through the immune tolerance of HBV transgenic mice and immunotolerant mice in generating a neutralizing antibody immune response.
  • Figure 12 shows the composition of the present invention breaks immune tolerance HBV transfected immune tolerance in mice and mice gene, to produce high-titer anti-HBcAg specific antibody I g G of FIG.
  • Figure 13 shows a graph of the anti-HBcAg antibody subtype produced by the composition of the present invention in HBV transgenic mice and immunotolerant mice as IgG2a > IgGl.
  • Figure 14 shows that the composition of the present invention has a greater ability to clear HBsAg antigen in HBV transgenic mice than conventional vaccine components.
  • Figure 15 shows the in vivo killing activity of the composition of the present invention having HBsAg and HBcAg antigen-specific CTLs, demonstrating that the composition of the present invention can be used as a chronic hepatitis B therapeutic vaccine.
  • An object of the present invention is to overcome the problems known in the prior art for the treatment of type B Defects in hepatitis-infected drugs.
  • Another object of the present invention is to provide a use of the composition for the treatment of HBV infection and/or HBV mediated diseases, and a method of treating HBV infection and/or HBV mediated diseases.
  • the present invention provides a pharmaceutical composition comprising:
  • HBsAg a fragment of the antigen, a variant of the antigen, or a mixture of at least two thereof
  • HBcAg a fragment of the antigen, a variant of the antigen or a fragment of the antigen, or a mixture of at least two thereof,
  • the oligonucleotide is a per-thio modification, having two or more copies of 5,-NTCGTT-3 in its sequence, motif, 20 to 25 bases in length base.
  • the oligonucleotide is preferably derived from the following base sequences: 5,-TCG TTC GTT CGT TCG TTC GTT-3,, 5,-TCG TTC GTT CGT TCG TTC GTT CGT T-3,, 5,-TCG TCG TCG TCG TCG TCG TCG TCG-3, or 5,-TCC ATG ACG TTC CTG ACG TT-3,. More preferably, it is 5,-TCG TTC GTT CGT TCG TTC GTT-3.
  • composition of the present invention achieves an unexpected technical effect. Compared with the existing commercially available hepatitis B preventive vaccine, it can mediate a stronger immune response in vivo in mice, including anti-HBsAg antibodies, anti-HBcAg antibodies, anti-ads serotype neutralizing antibodies, and in particular, Thl
  • the cellular immune response produces a cytokine IFN- ⁇ associated with viral clearance, promotes differentiation and maturation of anti-HBs-IgG2a antibody subtypes, and transforms against anti-HBcAg antibody subtypes to achieve a balance between humoral and cellular immunity.
  • composition HBsAg+CpG has been disclosed in the prior art (see patent CN101492672), and the inventors have surprisingly found that the pharmaceutical composition according to the invention (combination of HBcAg, HBsAg and CpG ODN) can produce significantly better
  • the anti-HBsAg-specific antibodies of the HBsAg+CpG composition exhibited an unexpected synergistic effect.
  • composition according to the invention can break through the immune tolerance of transgenic mice, producing high titers of anti-HBsAg antibodies, anti-HBcAg antibodies, neutralizing antibodies, mediated Thl cellular immune response promotes differentiation and maturation of the I g G2a antibody subtype.
  • the multiple immunization of the composition according to the present invention can significantly eliminate the hepatitis B virus in the transgenic mouse and decrease the expression level of the hepatitis B virus.
  • composition of the present invention has also been shown to induce strong antigen-specific cytotoxic T lymphocyte (CTL) in vivo killing activity, particularly HBsAg CTL and HBcAg CTL in vivo killing activity, which further confirms that the composition of the present invention greatly exceeds
  • CTL cytotoxic T lymphocyte
  • both BALB/c mice and model mice can mediate a strong anti-HBcAg immune response, and achieve anti-HBcAg antibody subtype transformation, that is, the anti-HBcAg antibody subtype relationship is expressed as IgG2a antibody.
  • the level is higher than I g Gl , which is consistent with the antibody subtype of Hepatitis B infected patients.
  • polypeptide refers to a polymer of amino acids and has no specific minimum number of amino acids. Therefore, it also includes peptides, oligopeptides, dimers, trimers, oligomers, particles and the like. Further, the term “polypeptide” includes not only a pure amino acid polymer obtained after translation in a ribosome, but also a polypeptide obtained by post-translational modification (e.g., glycosylation, acetylation, phosphorylation, thiolation, etc.).
  • post-translational modification e.g., glycosylation, acetylation, phosphorylation, thiolation, etc.
  • antigenic fragment refers to a fragment of a natural or synthetic polypeptide that retains the antigenic properties of the natural or synthetic polypeptide, i.e., is capable of eliciting an immune response against the natural or synthetic polypeptide.
  • hepatitis B surface antigen (HBsAg, HBs), as used herein, is intended to encompass native HBsA g , HBsAg antigenic fragments, HBsAg functional variants, and any combination thereof.
  • the native HBsAg is contained A natural HBsAg polypeptide of 226 amino acids.
  • the HBsAg is a native HBsAg polypeptide derived from the known HBV standard genotypes A, B, C, D, E, F, G and/or H.
  • the HBsAg has the sequence shown in SEQ ID NO: 1.
  • HBsAg antigenic fragment as used herein is intended to mean a polypeptide having a continuous or discontinuous fragment of less than 226 amino acids in native HBsAg and which retains the antigen of native HBsAg. Sex.
  • a functional variant of HBsAg as used herein is intended to mean a polypeptide having up to 30, up to 25, up to 20, up to 15, at most for a native HBsAg or HBsAg fragment. 10, up to 5, up to 4, up to 3, up to 2, up to 1 dentate acid deletion, insertion, addition or substitution, and the polypeptide retains the function (eg, antigenicity) of native HBsAg.
  • hepatitis B core antigen HBcAg, HBc
  • HBc hepatitis B core antigen
  • the native HBcAg contains 183 Natural aminoccAg polypeptides of amino acids. More particularly, the native HBcAgs are native HBcAgs derived from the known HBV standard genotypes A, B, C, D, E, F, G and/or H. In some embodiments In the above, the HBcAg is selected from the group consisting of HBcAg ⁇ polypeptides, which represent a fragment of 1-X-position acid of natural HBcAg, in particular, X is 149 to 183.
  • the HBcAg is selected from the group consisting of Peptide: 1-149 of SEQ ID NO: 2, ⁇ acid, 1-150 of SEQ ID NO: 2, 1-151 of SEQ ID NO: 2, SEQ ID NO: 1-152 of 2: ⁇ acid, 1-153 of SEQ ID NO: 2, acid of 1-154 of SEQ ID NO: 2, 1-155 of SEQ ID NO: 2 Acid, 1-156 of SEQ ID NO: 2, 1-157 of SEQ ID NO: 2, acid of 1-158 of SEQ ID NO: 2, of SEQ ID NO: 2 -159-position ⁇ 3 ⁇ 4 ⁇ acid, 1-160-position of SEQ ID NO: 2, 1-1-1 of SEQ ID NO: 2 ⁇ Acid, 1-162-position acid of SEQ ID NO: 2, 1-163-position acid of SEQ ID NO: 2, 1-164-position acid of SEQ ID NO: 2, SEQ ID NO: 2 1-165 bit ⁇ ⁇ acid, 1-166 acid of SEQ ID NO: 2, 1-167 of SEQ ID NO: 2, 1-168 of SEQ ID NO: 2,
  • the HBcAg has the sequence set forth in SEQ ID NO:2.
  • HBcAg antigenic fragment is intended to mean a polypeptide having a continuous or discontinuous fragment of less than 183 amino acids in native HBcAg and which retains native HBcAg. Antigenicity.
  • a functional variant of HBcAg as used herein is intended to mean a polypeptide having up to 30, up to 25, up to 20, up to 15, at most for a native HBcAg or HBcAg fragment. 10, up to 5, up to 4, up to 3, up to 2, up to 1 basal acid deletion, insertion, addition or substitution, and the polypeptide retains the function (eg, antigenicity) of native HBcAg.
  • both HBcAg and HBsAg are present in the form of granules in the composition according to the present invention.
  • compositions are used interchangeably and mean at least one drug that is combined together to achieve a particular purpose, and optionally Pharmaceutically acceptable excipients or combinations of excipients.
  • the pharmaceutical compositions include combinations that are separated in time and/or space, as long as they are capable of acting together to achieve the objectives of the present invention.
  • the components contained in the pharmaceutical composition may be administered to the subject as a whole or separately to the subject.
  • the ingredients can be administered to the subject simultaneously or sequentially.
  • CpG oligodeoxynucleotide refers to a short single-stranded synthetic DNA molecule containing one or more "CpG" units, wherein C represents cytosine. , G represents guanine, p represents a phosphodiester bond. In particular, the CpG oligodeoxynucleotide is unmethylated. In some embodiments, the CpG-ODN comprises a phosphorothioate linkage or sulfur Phosphoroester backbone.
  • the CpG-ODN is a phosphorothioate oligodeoxynucleotide (ie, a thiooligooxydeoxynucleotide).
  • the CpG- All internucleotide linkages in the ODN are phosphorothioate linkages, ie, the CpG-ODN is a per-thiooligooxydeoxynucleotide.
  • the CpG-ODN comprises two or more Further, 5,-NTCGTT-3, motif.
  • the CpG-ODN is 15 to 35 nucleotides in length, preferably 20 to 25 nucleotides.
  • the CpG- ODN has a sequence selected from the group consisting of: 5, -TCG TTC GTT CGT TCG TTC GTT-3' (SEQ ID NO: 3), 5, -TCG TTC GTT CGT TCG TTC GTT CGT T-3 ' ( SEQ ID NO: 4 ), 5, -TCG TCG TCG TCG TCG TCG-3' (SEQ ID NO: 5 ) and 5, -TCC ATG ACG TTC CTG ACG TT-3' (SEQ ID NO: 6), more specifically the CpG-ODN has the sequence: 5, -TCG TTC GTT CGT TCG TTC GTT-3,.
  • terapéuticaally effective amount refers to a dose sufficient to demonstrate its benefit to the subject to which it is administered.
  • the actual amount administered, as well as the rate and timing of administration, will depend on the condition and severity of the subject being treated.
  • the prescription for treatment eg, the determination of the dose, etc.
  • the prescription for treatment is ultimately the responsibility of the GP and other physicians and depends on their decision, usually considering the disease being treated, the condition of the individual patient, the site of delivery, the method of administration, and the Other factors known.
  • HBV-mediated disease is intended to mean a disease caused by, induced, aggravated, increased, and/or associated with hepatitis B virus (HBV), such as a hepatitis B virus carrier, Hepatitis B, cirrhosis, liver ascites, liver cancer, etc.
  • HBV hepatitis B virus
  • anti-HBcAg antibody subtype transition is intended to mean that the anti-HBcAg antibody subtype relationship in a subject is converted to an antibody subtype relationship in a hepatitis B cured patient after administration of the pharmaceutical composition of the present invention, ie, It is consistent with the antibody subtypes that healed in patients with hepatitis B infection.
  • anti-HBcAg antibody subtypes are converted from IgG1>IgG2a to IgG2a > IgG2b > IgG1 or IgG2b > IgG2a > IgG1, eg IgG2a>IgGl, in humans, anti-HBc antibody subtypes are from IgGl > IgG3 > IgG4 was converted to IgG3>IgGl>IgG4.
  • subject refers to a mammal, such as a human, but can also be other animals, such as wild animals (such as herons, donkeys, cranes, etc.), livestock (such as ducks, geese, etc.) or Experimental animals (such as raccoon, monkey, rat, mouse, rabbit, guinea pig, groundhog, ground squirrel, etc.).
  • wild animals such as herons, donkeys, cranes, etc.
  • livestock such as ducks, geese, etc.
  • Experimental animals such as raccoon, monkey, rat, mouse, rabbit, guinea pig, groundhog, ground squirrel, etc.
  • composition of the present invention which comprises i) HBsAg or a variant of the antigen, ii) HBcAg 1 183 , and iii ) a 21 base thiooligonucleotide CpG-ODN , 5,-NTCGTT-3, motif with two or more copies in its sequence.
  • the relative weight ratio between components i), ii) and iii) in the pharmaceutical compositions of the invention is in the range of 1: 0.2-5: 1-50, preferably 1: 1-5 : 2-15, more preferably 1:1:2.
  • compositions of the present invention may further comprise additional additives, such as pharmaceutical carriers or additives, especially when it is in the form of a pharmaceutical formulation.
  • compositions of the invention do not comprise a saponin adjuvant.
  • Preferred pharmaceutical carriers are especially water, buffered aqueous solutions, preferably isotonic saline solutions such as PBS (phosphate buffer), dextrose, mannitol, dextrose, lactose, starch, magnesium stearate, cellulose , magnesium carbonate, 0.3% glycerin, hyaluronic acid, ethanol or polyalkylene glycol such as polypropylene glycol, triglyceride and the like.
  • the type of pharmaceutical carrier employed depends inter alia on whether the composition according to the invention is formulated for oral, nasal, intradermal, subcutaneous, intramuscular or intravenous administration.
  • the composition according to the invention may comprise a wetting agent, an emulsifier or a buffer substance as an additive.
  • compositions, vaccine or pharmaceutical preparation according to the present invention can be administered by any suitable route, for example, orally, nasally, intradermally, subcutaneously, intramuscularly or intravenously.
  • suitable route for example, orally, nasally, intradermally, subcutaneously, intramuscularly or intravenously.
  • Example 1 Hepatitis B surface antigen (HBsAg) was combined with hepatitis B core antigen (HBcAg) and CpG-ODN to enhance the immune response of hepatitis B surface antigen-specific total IgG.
  • mice were immunized with HBsAg-specific I g G levels in serum and statistically analyzed to evaluate the combination of HBsAg and Al(OH) 3 with HBsAg, HBcAg and CpG-ODN for HBsAg.
  • the HBsAg antigen used in this example was purchased from Prospec (batch number: 1111 PHADW22, sequence shown as SEQ ID: 1), and was an adw2 subtype expressed by Pichia pastoris, with a purity of 95% or more, 4. Save the spare in the C refrigerator.
  • the HBcAg (sequence shown in SEQ ID NO: 2) antigen used in the present embodiment is prepared by the inventors, and is a natural hepatitis B core protein expressed by Escherichia coli, and the purification preparation process thereof See Li Jilai, Xu Jing, etc. in the Journal of Chinese Journal of Biological Products 2011, Vol.
  • the specific steps are as follows: After collecting the cells, resuspend with 10 mM sodium phosphate buffer, ultrasound The supernatant was collected by centrifugation, and saturated ammonium sulfate was added to make a final concentration of 33%. After thorough mixing, it was allowed to stand overnight at 4 ° C; the next day, centrifugation, the pellet was resuspended in 10 mM sodium phosphate buffer and placed in a dialysis bag.
  • the CpG-ODN sequence used in this example is 5,-TCG TTC GTT CGT TCG TTC GTT-3', which is prepared by the solid phase phosphoramidite triester chemical synthesis method described in the CN200810004736.0 patent, starting from the 3rd end.
  • Deprotection group first remove the protecting group DMT (dimethoxytrityl) of the nucleotide attached to CpG with trichloroacetic acid, and obtain the free 5, hydroxyl group for the next condensation.
  • activation mixing the phosphoramidite-protected nucleomonomer with the tetrazole activator and entering the synthesis column to form a phosphoramidite tetrazole active intermediate, which has been deprotected on CpG The nucleotide undergoes a condensation reaction; 3) linkage: the phosphoramidite tetrazole active intermediate encounters a deprotected nucleotide on CpG, and will affinity with its 5, hydroxyl group, condense and remove the tetrazole.
  • DMT dimethyl methoxytrityl
  • the oligonucleotide chain is extended by one base forward;
  • Oxidation During the condensation reaction, the nucleotide monomer is linked to the oligonucleotide attached to CpG through a phosphorous ester bond, and the phosphorous ester bond Unstable, easily hydrolyzed by acid or alkali.
  • the phosphite is used to oxidize the phosphoramidite to sulfur. Double-bonded phosphotriester to obtain a stable oligonucleotide;
  • Blocking After the condensation reaction, in order to prevent the 5 which is not involved in the reaction on CpG, the hydroxyl group is extended in the subsequent cyclic reaction, often by acetylation.
  • a deoxynucleotide is attached to the nucleotide of CpG; repeat the above deprotection, activation, ligation, oxidation, blocking process to obtain a crude DNA fragment ; ⁇ Cleavage, deprotection, purification, quantification and other synthetic post-treatment to obtain the corresponding CpG-ODN; -20* water tank for storage.
  • HBsAg and HBcAg were released to 10 g/ml with PBS (Invitrogen); CpG-ODN was diluted to 20 g/ml with PBS.
  • ⁇ 1 ( ⁇ ) 3 adjuvant was purchased from Tiantan Biological.
  • BALB/c mice were immunized with left hind limbs and intestinal muscles, each in a volume of 100 ⁇ , with 10 mice per group.
  • HBsAg+ Al(OH) group 3 was injected with lg per mouse Al(OH) 3 adsorbed HBsAg.
  • Each mouse in the HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and 2 g CpG-ODN. Immunize once every three weeks, blood is separated from the blood for ten days after the second exemption, and the serum is diluted 1:30 with 2% skim milk according to the conventional method, and then serially diluted by 3 times for detecting antigen specificity. IgG total antibody.
  • the specific antigen-specific I g G total antibody detection procedure was as follows: 96-well microtiter plate (purchased from Nunc) was coated with HBsAg, 25 ng per well, 4 ° C overnight; 3 ⁇ 4 2 times, 5% degreased The milk was blocked at 37 ° C for 1 hour; after washing the plate twice, the above-mentioned 3 times serial dilution of the test serum was added, 37. C was applied for 1 hour; after washing 3 times, 1:30000 diluted horseradish peroxidase-labeled goat anti-mouse IgG (purchased from SIGMA, USA) was added at 50 ⁇ l, 37 per well.
  • Example 2 Hepatitis B surface antigen (HBsAg) in combination with hepatitis B core antigen (HBcAg) and CpG-ODN enhances the level of protective antibody against hepatitis B surface antigen.
  • the role of hepatitis B virus surface antibody detection is to monitor the success of hepatitis B vaccine vaccination.
  • the hepatitis B vaccine system produces a hepatitis B virus surface antibody equivalent to a neutralizing antibody, and its potency is directly related to the protective ability of the vaccine, and the production of the antibody has a remarkable effect on preventing HBV infection. Therefore, the present inventors selected the internationally accepted ARCHITECT Hepatitis B Virus Surface Antibody International Unit Test System (Chemiluminescence Microparticle Immunoassay, CMIA) to detect hepatitis B virus surface antibody (anti-HBsAg) in the serum of immunized mice. Concentration, and statistical analysis to evaluate the combination of HBsAg+HBcAg+CpG-ODN relative to The protective effect of HBsA g +Al(OH) 3 on enhancing the protective antibody level.
  • mice Female, 6-8 weeks, were purchased from Shanghai Slack Company in this example.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • BALB/c mice were immunized with the left hind limb gastrocnemius muscle, each injection volume was 100 ⁇ , 10 mice per group.
  • Each mouse in HBsAg+Al(OH) group 3 was injected with 1 ⁇ ⁇ ⁇ 1( ⁇ )3 adsorbed HBsAg, and HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and 2 g CpG-ODN.
  • the HBsAg+HBcAg+CpG-ODN group can significantly enhance the protective antibody level, and the specific protective antibody titer can reach 4.3 logarithmic values, which is significant compared with the HBsAg+Al(OH) 3 group.
  • Sexual difference (PO.05), specific protection antibody titer (potency) can be increased by about 5 times.
  • the above results indicate that the HBsAg+HBcAg+CpG-ODN composition vaccine of the present invention can significantly enhance the protective antibody level of hepatitis B surface antigen and enhance the protective ability of the vaccine than the ⁇ 1( ⁇ ) 3 adjuvant hepatitis B vaccine.
  • Example 3 Hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg) and CpG-ODN were combined to enhance the Th2 immune response of hepatitis B surface antigen at the level of humoral immunity.
  • HBsAg hepatitis B surface antigen
  • HBcAg hepatitis B core antigen
  • CpG-ODN CpG-ODN
  • Th1 and Th2 Antigen-specific immune responses are classified into two types, Th1 and Th2, in which Th2 responses correspond to high levels of antigen-specific IgG1 antibody titers.
  • ⁇ 1( ⁇ ) 3 is a highly potent Th2 vaccine adjuvant that inhibits the Th1 immune response and is characterized by high levels of specific IgG1 antibodies induced by immunization.
  • the HBsAg+HBcAg+CpG-ODN composition produced significantly higher levels of IgG1 antibodies than the HBsAg+Al(OH) 3 group (PO.001), and the HBsAg-specific IgG1 antibody titer (potency) was The increase is close to 10 times.
  • the composition of the present invention can produce a HBsAg-specific IgG1 antibody which is stronger than the Al(OH) 3 adjuvant group, and enhances the hepatitis B surface antigen Th2 immune response.
  • Example 4 Hepatitis B surface antigen (1188 8 ), hepatitis B core antigen (1180 2 ) and CpG-ODN were combined to enhance the hepatitis B surface antigen Thl immune response at the level of humoral immunity.
  • Al(OH) 3 is a very strong Th2 type vaccine adjuvant capable of inhibiting the Th1 type immune response, which is shown to induce very low levels of specific IgG2a antibodies after immunization.
  • the specific IgG2a antibody titer induced by Al(OH) 3 as an HBsAg adjuvant was only 2.17 logarithmic values.
  • HBsAg + HBcAg + CpG-ODN composition upon immunization produced HBsAg specific antibody titers increased I g G2a about two pairs of values, i.e., 100 times.
  • the above results indicate that the combination of HBsAg+HBcAg+CpG-ODN of the present invention strongly stimulates the Th1 immune response against hepatitis B surface antigen.
  • Example 5 Hepatitis B surface antigen (1188 8 ), hepatitis B core antigen (1180 2 ) In combination with CpG-ODN, it promotes the balance of Thl/Th2 immune response of hepatitis B surface antigen at the level of humoral immunity.
  • the HBsAg+HBcAg+CpG-ODN composition of the present invention not only produces a higher level of Th2 type immune response in mice, but also produces a very high level of Th1 type immune response.
  • Thl promotes CTL response, the so-called cellular immune tendency, while Th2 promotes antibody production, the so-called humoral immunity.
  • One purpose of therapeutic hepatitis B vaccine is to eliminate HBsAg antigen in serum, which requires the production of effective protective antibodies, mainly Humoral immunity works; another purpose is to kill target cells that are infected with HBV, that is, CTL responses, which require cellular immunity to function, so both Th1 and Th2 immune responses are important.
  • the antigen-specific IgG2a/IgG1 titer ratio (LoglO) will be analyzed. The results are shown in Fig. 5. If the ratio is less than 0, the immune response is biased toward Th2, and greater than 0 indicates that the immune response is biased toward Th1, and close to 0 indicates that the immune response tends to be balanced.
  • Example 6 Anti-HBcAg antibody subtype IgG2a>IgG1 produced by the combination of hepatitis B surface antigen (1188 8 ), hepatitis B core antigen (1180 2 ) and CpG-ODN.
  • the anti-HBcAg antibody subtype of a cured population of hepatitis B infected patients is IgG3>IgG1>IgG4, and its corresponding antibody subtype relationship in mice is IgG2a > IgG2b > IgG1 or IgG2b > IgG2a > IgGl pulp according to Example 3 and The method described in Example 4 was used to determine the titer of the anti-HBcAg antibody subtype IgG2a and IgG1 of the HBsAg+HBcAg+CpG-ODN composition of the present invention, and whether the composition can promote the conversion of the mouse anti-HBcAg antibody subtype to IgG2a>IgGl, except that the coating antigen used in the assay was lg/ml HBcAg.
  • the results are shown in Figure 6.
  • the results in Figure 6 show that the anti-HBcAg antibody produced by the HBsAg+HBcAg+CpG-ODN composition of the present invention Subtype IgG2a>IgGl, and significant Difference (PO.001).
  • This composition is intended to promote the conversion of mouse anti-HBcAg antibody subtype into antibody subtypes in patients with hepatitis B infection.
  • Example 7 Hepatitis B surface antigen, hepatitis B core antigen combined with CpG-ODN significantly promoted HBsAg CTL epitope-specific Thl cell differentiation and inhibited Th2 cell proliferation.
  • mice used in this example female, 6-8 weeks, purchased from Shanghai Slack Company; used HBsAg antigen, HBcAg, CpG-ODN and ⁇ 1 ( ⁇ ) 3 adjuvant As described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • BALB/c mice were immunized with the left hind limb gastrocnemius muscle, each injection volume was 100 ⁇ , 5 mice per group.
  • HBsAg+Al(OH) group 3 was injected with lg via ⁇ 1( ⁇ )3 adsorbed HBsAg, and HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and 2 g CpG-ODN.
  • spleen lymphocytes Immunize once every three weeks, take 10 days after the second excretion, prepare spleen lymphocytes according to the conventional method, as follows: Aseptically take the spleen: Cut the spleen with sterile forceps and scissors, place on a 70 ⁇ nylon mesh screen (purchased from BD), placed in a flat phoenix containing 2 ml of pre-cooled 2% FBS (purchased from GIBCO)-PBS; the spleen was ground with a grinding rod, and the spleen cells were passed through a sieve plate to obtain a cell suspension.
  • Aseptically take the spleen Cut the spleen with sterile forceps and scissors, place on a 70 ⁇ nylon mesh screen (purchased from BD), placed in a flat phoenix containing 2 ml of pre-cooled 2% FBS (purchased from GIBCO)-PBS; the spleen was ground with a grinding rod, and the spleen
  • the suspension was placed in a 50 ml sterile centrifuge tube (purchased from BD) via a 40 ⁇ m nylon mesh using a Pasteur pipette; 300 xg, 4. C centrifuge for 10 minutes; discard the supernatant, add 5 ml of lx redness agent (purchased from BD), resuspend the cells, and let the cells break at room temperature for 5 minutes to break the red blood cells; add 5 ml of 2% FBS-PBS to stop the red-breaking reaction; 300 Xg, 4. C centrifuge for 5 minutes; discard the supernatant and add 2 ml 2% Resuspend the cells in FBS-PBS for use.
  • Antigen-specific IFN- ⁇ and IL-4 secretion was detected using a Mouse IFN- ⁇ /IL-4 ELISPOT kit (BD), and the stimulator was a peptide library of HBsAg. After the test was completed, the number of spots was read on an Immimo SPOT Series 3 automatic plate reader.
  • BD Mouse IFN- ⁇ /IL-4 ELISPOT kit
  • the HBsAg peptide library consists of 54 15-amino acid polypeptide fragments covering the entire HBsAg full-length sequence, with 11 amino acids overlapping each pair of adjacent polypeptides, representing all possible HBsAg CTL epitopes.
  • the peptide design of the HBsAg peptide library is shown as SEQ ID NO: 7 to SEQ ID NO: 60. All peptides were synthesized, purified, dispensed and lyophilized by the Chinese Peptide Company.
  • Specific antigen-specific IFN- ⁇ and IL-4 secretion assays are as follows: PBS # Mouse IFN- ⁇ /IL-4 (1:200 dilution, BD), 100 ⁇ /well to ELISPOT plate , overnight coating at 4 °C; discard the coated antibody, wash the well once with blocking solution (containing 10% FBS RPMI-1640 medium), add blocking solution 200 ⁇ /well, incubate for 2 h at room temperature; use 10% FBS -1640 medium diluted peptide library to 10 g / ml; ConA was diluted to 20 g / ml in 10% FBS-1640 medium as a positive control; discard the blocking solution, lxlO 7 cells / ml of spleen lymphocyte suspension and The configured peptide library or ConA control was added to the 96-well plate at 100 ⁇ /well, and repeated in duplicate; incubated at 37 ° C in a 5% CO 2 incubator for 24 h; discard the cell suspension and wash the plate with dei
  • Thl cells mainly secrete IL-2, IL-12, IFN-y and TNF_p/, which mediate immune responses related to cytotoxicity and local inflammation, and participate in cellular immunity and delayed hypersensitivity inflammation.
  • Th2 cells mainly secrete IL-4, IL-5, IL-6 and IL-10, and their main function is to stimulate B cell proliferation and produce antibodies.
  • IFN- ⁇ can induce Th1 cell differentiation, but inhibits Th2 cell proliferation; IL-4 i leads to Th2 cell differentiation.
  • ELISPOT was used to detect the secretion levels of antigen-specific IFN- ⁇ and IL-4 in spleen cells of immunized mice, and as a result, Al(OH) 3 as HBsAg adjuvant secreted HBsAg-specific IL-4 levels higher than IFN.
  • composition of the invention mainly participates in HBsAg-specific cellular immunity, promotes the differentiation of Th1 cells, and achieves the proliferation balance of Th1/Th2 cells, and thus has the potential to kill liver cells infected with HBV and to clear free HBV virus.
  • Example 8 ⁇ Combination of HBcAg, HBsAg and CpG-ODN has a synergistic effect on the production of antigen-specific I g G antibody levels
  • [113] used in this example is BALB/c mice, female, 6-8 weeks, purchased from Shanghai Slack Company; used HBsAg antigen, HBcAg, CpG-ODN and ⁇ 1 ( ⁇ ) 3 adjuvant As described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • BALB/c mice were immunized with the left hind limb gastrocnemius muscle, each in a volume of 100 ⁇ l, with 10 mice per group.
  • HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and 2 g CpG-ODN. Immunize once every three weeks, and serum is separated from the blood ten days after the second exemption. The serum is diluted 1:30 with 2% skim milk according to the conventional method, and then serially diluted by 3 times for detection. Antigen-specific I g G total antibody. According to the method described in Example 1, the HBsAg-specific antibody titers produced by the HBsAg+HBcAg+CpG-ODN group and the HBsAg+CpG-ODN group of the present invention were determined. The results are shown in Figure 8.
  • HBcAg, HBsAg and CpG-ODN combined with the HBsAg+CpG-ODN group produced higher levels of HBsAg-specific IgG, specific antibody titers up to 4.0 logarithmic values, significant Difference (PO.01), specific antibody titer (potency) can be increased by about 3 times.
  • the above results indicate that the HBsAg+HBcAg+CpG-ODN composition of the present invention produces significantly higher HBsAg-specific IgG antibody levels than HBsAg+CpG-ODN after addition of HBcAg, demonstrating synergy of HBcAg, HBsAg and CpG-ODN. .
  • Example 9 Combination of HBcAg, HBsAg and CpG-ODN Promotes HBsAg-specific Thl cell differentiation in cellular immunity compared to HBsAg+CpG-ODN.
  • Example 8 HBcAg, HBsAg and CpG-ODN were synergistically examined in terms of humoral immunity, and the present inventors also analyzed whether HBcAg, HBsAg and CpG-ODN in combination promote Thl cell differentiation of HBsAg in cellular immunity. To further verify the synergistic effect of HBcAg, HBsAg and CpG-ODN.
  • HBsAg, HBcAg and CpG-ODN, HBsAg and CpG-ODN adjuvant were mixed, and mice were immunized.
  • the levels of IFN- ⁇ and IL-4 secreted by spleen cells of immunized mice were detected by ELISPOT assay.
  • the combination of HBsAg and HBcAg, CpG-ODN in combination with HBsAg+CpG-ODN promoted the differentiation of Th1 cells in HBsAg.
  • mice Female, 6-8 weeks, used in this example were purchased from Shanghai Slack Company; HBsAg, HBcAg and CpG-ODN used were as described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • BALB/c mice were immunized with the left hind limb gastrocnemius, each with a volume of 100 ⁇ l, 10 mice per group.
  • HBsAg+CpG-ODN group Each mouse was injected with lg HBsAg and 2 g CpG-ODN, and each mouse in the HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and 2 g CpG-ODN.
  • the combination of HBcAg and HBsAg+CpG-ODN has higher levels of HBsAg-specific IFN- ⁇ secreted by the HBsAg+CpG-ODN group and lower HBsAg-specific IL-4 levels, indicating that the HBsAg of the present invention is present.
  • the +HBcAg+CpG-ODN composition can promote the differentiation of HBsAg-specific Th1 cells in cellular immunity, indicating that HBcAg, HBsAg and CpG-ODN have synergistic effects.
  • Example 10 ⁇ HBsAg+HBcAg+CpG-ODN composition broke through the immune tolerance of HBV transgenic mice (adr serotype) and immune tolerant mice (B10.M).
  • mice There are two types of immunotolerant mice used in this example: the first one is HBV transgenic mice, the serotype is adr serotype, male, 10-12 weeks, purchased from Shanghai Southern Model Animal Center; The two are B10.M mice, which are histocompatibility mice. Immunologically tolerated, male, 6-8 weeks, purchased from The Jackson Laboratory; HBsAg, HBcAg and, CpG-ODN and ⁇ 1 ( ⁇ ) 3 adjuvants used as described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS. Mice were immunized with the left hind limb gastrocnemius muscle, each in a volume of 100 ⁇ , with 4 mice in each group.
  • HBsAg+Al(OH) group 3 was injected with lg via ⁇ 1( ⁇ ) 3 adsorbed HBsAg, HBsAg+HBcAg+CpG-ODN group was injected with lg HBsAg, lg HBcAg and lO g CpG- ODN. Immunization every three weeks, blood was collected two weeks after each immunization, and a total of 6 times were immunized, and HBsAg-specific I g G total antibody was detected according to the method described in Example 1. The results are shown in Fig. 10, as in Example 2. The method described was used to detect the produced HBsAg antibody, and the results are shown in Fig. 11.
  • the HBsAg+HBcAg+CpG-ODN composition group can break the immune tolerance of the two model mice, and the HBsAg-specific I g G antibody titer can reach 4.0 log or more, with HBsAg+ Compared with the Al(OH) 3 group, there was a significant difference (P ⁇ 0.05), and the HBsAg-specific IgG antibody titer (titer) could be increased by 10-200 times.
  • the protective antibody level can reach 2.5 pairs. Above the value, compared with the HBsAg+Al(OH) 3 group, the level of protective antibody produced can be increased by 5-20 times.
  • HBsAg present invention + HBcAg + CpG-ODN vaccine composition ratio ⁇ 1 ( ⁇ ) 3 adjuvant hepatitis B vaccine in mice immune tolerance can significantly enhance the specificity of the total hepatitis B surface antigen I g G and protective antibodies The immune response is more effective in breaking through immune tolerance.
  • Example 11 ⁇ HBsAg+HBcAg+CpG-ODN composition produced high titer anti-HBcAg specific IgG antibody in HBV transgenic mice (adr serotype) and immune tolerant mice (B10.M).
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • Each mouse was injected with l g HBsAg, l g HBcAg and lO g CpG-ODN through the left hind limb gastrocnemius.
  • the injection volume was ⁇ , 4 mice per group. Immunization every three weeks, blood was collected two weeks after each immunization, and immunization was performed 6 times.
  • the HBcAg antigen-specific IgG total antibody was detected according to the method described in Example 1, except that the coating antigen was lg HBcAg antigen, and the result was Shown in Figure 12.
  • the HBsAg+HBcAg+CpG-ODN composition produced high titers of anti-HBcAg-specific I g G antibodies on both model mice, and the antibody titer was obtained two weeks after the immunization. Up to 2.5 logarithmic values, after which the antibody titer can be above 4.0 logarithmic values. The above results indicate that the HBsAg+HBcAg+CpG-ODN composition of the present invention produces a high titer anti-HBcAg specific IgG antibody.
  • Example 12 ⁇ HBsAg+HBcAg+CpG-ODN composition An anti-HBcAg antibody subtype IgG2a>IgG1 produced in HBV transgenic mice (adr serotype) and immunotolerant mice (B10.M).
  • the present inventors mixed HBsAg, HBcAg and CpG-ODN for the combination of iiHBsAg+HBcAg+CpG-ODN in anti-HBcAg antibody subtype IgG2a>IgGl produced on HBV transgenic model mice and immunotolerant mice.
  • the mice were immunized and the anti-HBcAg antibody subtypes IgG2a and IgG1 titers in the serum were determined.
  • mice There were two types of immunotolerant mice used in this example, as described in Example 10; the HBsAg, HBcAg and CpG-ODN used were as described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml with PBS; CpG-ODN was diluted to 20 g/ml with PBS.
  • Each mouse was injected with 1 ⁇ ⁇ HBsAg, lg HBcAg and 10 g CpG-ODN through the left hind limb gastrocnemius.
  • the injection volume was 100 ⁇ l, with 4 mice per group.
  • Anti-HBcAg antibody was detected according to the method described in Example 6. Subtypes I g G2a and IgG1 titers, the results are shown in Figure 13.
  • Figure 13 shows the anti-HBcAg antibody subtype I produced by the HBsAg+HBcAg+CpG-ODN composition of the present invention in HBV transgenic mice (adr serotype) and immunotolerant mice (B10.M).
  • Example 13 ⁇ HBsAg+HBcAg+CpG-ODN composition has a tendency to clear HBsAg antigen in HBV transgenic mice.
  • HBsAg+HBcAg+CpG-ODN composition breaks through the immune tolerance of HBV transgenic mice, and the mice producing antigen-specific antibodies are analyzed to see if the expression of HBsAg in the body can decline. The clearance of HBsAg antigen.
  • HBV transgenic mice used in this example were serotyped adr serotype (reconstructed from C57 mice), male, 10-12 weeks, purchased from Shanghai Southern Model Animal Center; used HBsAg, HBcAg, CpG-ODN and ⁇ 1 ( ⁇ ) 3 adjuvants were as described in Example 1.
  • HBsAg and HBcAg were diluted to 10 g/ml and 100 g/ml, respectively, with PBS; CpG-ODN was diluted with PBS to 20 g/ml and 200 g/ml, respectively.
  • the mice were immunized with the left hind limb gastrocnemius muscle, each in a volume of 100 ⁇ l, with 8 mice per group.
  • HBsAg+Al(OH) 3 mice were injected with 1 ⁇ 1( ⁇ ) 3 adsorbed HBsAg per mouse; HBsAg+HBcAg+CpG-ODN components, 1 group of mice injected with 1 HBsAg, 1 HBcAg and 10 CpG-ODN, another group of mice injected with 10 HBsAg, 10 HBcAg and 20 CpG-ODN.
  • the serum of pre-immune and six-week two weeks is diluted 1:200 according to the conventional method with 2% skim milk.
  • the HBsAg antigen was used as a standard, and the serum of C57 mice (purchased from Shanghai Slack Company) was 1000 ng/mK 500 ng/mK 250 ng/mK 125 ng/ml, 62.5 ng/ml, 31.25 ng/ml, 15.625 ng/ml, 7.8. Dilute to ng/ml as the starting concentration, then dilute 1:200 with 2% skim milk, then use the HBsAg antigen detection kit for diluted samples and standards (Shanghai Kehua Company) The HBsAg antigen concentration was measured.
  • the concentration of HBsAg antigen contained in the serum of each mouse before immunization and after six weeks of immunization was calculated using the measured standard curve, and the % decrease of HBsAg antigen concentration after six weeks of six weeks was calculated. The results are shown in Figure 14.
  • the specific HBsAg antigen concentration detection procedure is as follows: Take out the pre-coated anti-HBsAg reaction plate, add 75 ⁇ 1 diluted serum and negative, positive control in the reaction well; cover the reaction with cover paper ⁇ , set the reaction plate 37 Incubate for 1 h at °C; remove the reaction plate, tear off the seal, add 50 ⁇ M enzyme conjugate to the sample to be tested and negative, positive control well; shake on microwell shaker for 10 s; cover the reaction with cover paper The reaction plate was incubated at 37 e C for 30 m; the reaction plate was taken out, the sealing plate was removed, and the reaction plate was washed 5 times; immediately after the washing, the developer A and the developer B were added to each well 50 ⁇ 1, and mixed; The microporous oscillator was shaken for 10 s; the reaction was covered with a cover paper, and the reaction plate was incubated at 37 ° C for 30 m; 50 ⁇ l of the stop solution was added to all wells, and the reaction was
  • the HBsAg+HBcAg+CpG-ODN composition group had a lower % HBsAg antigen concentration in HBV transgenic mice than the HBsAg+Al(OH) 3 group, with significant difference (P ⁇ 0.05).
  • the % decrease of HBsAg antigen concentration is more obvious, with an average of more than 90%. This indicates that the composition has a tendency to scavenge HBsAg antigen and turn HBsAg antigen negative, laying a solid foundation for chronic hepatitis B therapeutic vaccine.
  • Example 14 ⁇ The HBsAg+HBcAg+CpG-ODN composition has HBsAg and HBcAg antigen-specific CTL in vivo killing activity.
  • Antigen-specific CTL in vivo killing is the most direct evidence for the efficacy of therapeutic vaccines.
  • the detection of HBsAg and HBcAg antigen-specific CTL in vivo killing activity in mice immunized with HBsAg+HBcAg+CpG-ODN composition is 3 ⁇ 4 ⁇ CTL in vivo killing activity, CTL killing rate was calculated.
  • mice used in this example were female, 6-8 weeks, purchased from Shanghai Slack Company; the HBsAg antigen, HBcAg and CpG-ODN adjuvant used were as in Example 1. Said. [149] HBsAg and HBcAg were diluted to 100 g/ml with PBS; CpG-ODN was diluted to 200 g/ml with PBS. The mice were immunized with the left hind limb gastrocnemius muscle, each in a volume of 100 ⁇ l, with 8 mice per group.
  • Each mouse in the HBsAg+HBcAg+CpG-ODN group was injected with 10 HBsAg, lO g HBcAg and 20 CpG-ODN.
  • the immunization was performed once every two weeks, and three times in total, and the killing activity of HBsAg and HBcAg antigen-specific CTL was measured ten days after the three exemptions, and the results are shown in Fig. 15.
  • Specific antigen-specific CTL in vivo killing activity detection steps are as follows: Aseptically take the spleen of unimmunized mice, slides, 300xg, 4. Centrifuge for 5 min, discard the supernatant; resuspend the cells by adding 5 ml of red blood cell lysate (purchased from BD), lyse the red blood cells at room temperature for 5 min, wash twice with 10 ml PBS (purchased from GIBCO); CFSE with PBS (purified from Molecular Probes) diluted to 4 ⁇ and 0.4 ⁇ , mixed with an equal volume of cell suspension, and allowed to stand at room temperature for 7 min; 300 ⁇ g, 4.
  • the prepared labeled cell mixture was injected into the mice immunized with HBsAg+HBcAg+CpG-ODN by eyelids, 100 ⁇ M per mouse; 15-17 h later, the mouse spleen cell suspension was prepared, using 2% FBS- The cells were resuspended in PBS and detected by flow cytometry; the percentage of antigen-specific CTL killing was calculated.
  • the above HBcAg peptide library consists of 43 peptides of 15 J acid, covering the entire HBcAg full-length sequence, with 11 amino acids overlapping each pair of adjacent polypeptides, representing all possible HBcAg CTL epitopes, eg Fragments 1-9, 5-19, 9-23 of SEQ ID NO: 2, 169-183 acid.
  • the peptides of the above HBcAg peptide library are designed as shown in the sequences SEQ ID NO: 61 to SEQ ID NO: 103. All peptides were synthesized, purified, dispensed and lyophilized by the Chinese Peptide Company.
  • the HBsAg+HBcAg+CpG-ODN composition group has HBsAg and HBcAg antigen-specific CTL bodies on C57BL/6J mice.
  • the internal killing activity has a CTL killing rate of about 30%. This indicates that the composition has HBsAg and HBcAg antigen-specific CTL in vivo killing activity, providing the most direct evidence for chronic hepatitis B therapeutic vaccine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种组合物,包含:i)HBsAg、该抗原的片段、该抗原的变体,或者至少两种的混合物,ii)HBcAgl-X,该抗原的片段、该抗原或者该抗原的片段的变体,或者其至少两种的混合物,其中X是149-183的整数,iii)CpG-ODN,该寡聚核苷酸为全硫代修饰,其序列中具有两个或两个以上拷贝的5'-NTCGTT-3'基序,其长度为21个碱基。本发明还公开了该组合物用于治疗HBV感染和HBV介导的疾病中的用途,以及治疗HBV感染和HBV介导的疾病的方法。

Description

乙型肝炎疫苗 技术领域
[01] 本发明涉及一种乙型肝炎疫苗。特别地,本发明涉及一种乙 型肝炎疫苗,其包含乙肝表面抗原、 乙肝核心抗原和具有免疫刺 激活性的硫代寡聚脱氧核苷酸。 背景技术
[02] 乙型肝炎病毒(HBV )感染是世界范围的严重公共卫生问 题之一。 HBV感染是导致慢性乙型肝炎、 肝硬化和肝细胞癌的 重要原因 ( Fattovich G. J Hepatol 2008;48:335-352 )。 临床治疗 慢性 HBV感染的常用药物主要有核苷类似物和干扰素。 核苷类 似物无法完全清除肝细胞内的 cccDNA, 且长期使用易导致耐药 突变株的出现以及停药后反弹(Kwon H, Lok AS. Nat Rev Gastroenterol Hepatol. 2011; 8:275-284. )。 干扰素不适合用于无 症状的 HBV携带者, 在慢性 HBV患者中, 使用半年后 HBeAg 血清学转换发生率仅 33%, 而且干扰素副作用较大也限制其应 用(Tang SX, Yu GL丄 ancet 1990;335(8684): 302)„
[03] 目前广泛应用的乙肝蛋白疫苗通过诱导体液免疫,产生保护 性抗体, 达到预防的目的。 大量的研究发现保护性抗体仅能够消 除胞外病毒颗粒,而清除胞内感染的病毒则主要依赖特异性的细 胞免疫反应, 辅助性 T细胞、 CD4+T细胞产生的 IFN-γ等 Thl 型细胞因子,尤其是病毒特异性的杀伤性 T淋巴细胞 (cytotoxic T lymphocyte, CTL)来清除( Chin R, Lacamini S. Rev Med Viorl. 2003:13(4):255-72 )。 细胞免疫反应的强弱直接决定着乙肝的预 后。 因此,理想的治疗性乙肝疫苗需要同时诱导特异性的体液免 疫和细胞免疫, 突破乙肝的免疫耐受。
[04] 目前国内大多数乙肝治疗性疫苗的研发思路围绕着 HBsAg, 通过克服免疫耐受, 产生抗 HBsAg的抗体达到免疫清 除的效果,如闻玉梅的 HBsAg-免疫球蛋白复合物( Xu D Z, Zhao K, et al. PLoS CW£,2008,3:e2565 ), 张宜俊的高剂量乙肝表面 抗原疫苗(曾滢, 张宜俊等, 广东医学, 2003年 24卷 07期, 740-706页)等均采用此思路, 从其最新的临床数据来看, 这两 个疫苗的治疗效果还不明朗。
[05] 研究表明, 慢性乙肝感染患者的抗 HBsAg 的抗体亚型以 IgG4为主, 而乙肝感染治愈的患者的抗 HBsAg的抗体亚型为 IgGl≥IgG4 , 说明在乙肝感染的清除过程中 Thl 型抗体亚型 IgGl发挥着重要的作用, 评价 Thl型抗体亚型是否高于或者等 于 Th2 型抗体亚型可能提示乙肝治疗的效果(S. Rath, et al. Clin.exp. Immunol.(19SS)12,164-161 )„ 同时, 乙肝感染患者的抗 HBcAg抗体亚型为 IgGl > IgG3 > IgG4,而乙肝感染治愈的患者 的抗 HBcAg亚型发生转变,为 IgG3>IgGl>IgG4,说明抗 HBcAg 特别是抗 HBcAg的抗体亚型的转变可能与乙肝的治疗息息相关 ( Chien-Fu Huang, et al. Cellular & Molecular Immunology. 2006;3(2):97-106. )0
[06] 此外,还有研究表明,慢性乙肝病毒携带者和慢性乙肝患者 的树突状细胞( pDC )表面受体 TLR9表达下调,从而导致机体 对乙肝表面抗原的免疫耐受,不能产生乙肝表面抗体或对乙肝表 面抗原的细胞免疫 ( Q. Xie et al. Microbes and Infection 11 (2009) 515-523 )„
[07] 专利 US4547367利用 HBcAg颗粒治疗 /预防 HBV感染和 HBV介导的疾病, HBcAg颗粒免疫黑猩猩可保护黑猩猩免于感 染 HBV。 而且 HBcAg颗粒联合 HBsAg颗粒免疫乙肝携带者母 亲生产的新生儿, 产生高滴度的抗 HBsAg和抗 HBcAg抗体, 且在 18个月的监测中均未见 HBV感染。 但是该专利并无明确 提出抗 HBcAg抗体亚型转变的证据,且无治疗 HBV感染和 HBV 介导的疾病的直接证据。
[08] 专利 WO2007/031334, 保护了乙肝治疗性疫苗组分, 其包 含 HBsAg、 HBcAg和一种皂苷佐剂, 而 CpG-ODN可作为共用 佐剂使用,但是,该乙肝治疗性疫苗在临床中需要联合核苷类似 物进行联合治疗才能突破乙肝的免疫耐受, 且 e 抗原转阴仅 发明内容
[09] 本发明涉及一种药物组合物, 其包含: i ) 乙肝表面抗原 ( HBsAg ), ii ) 乙肝核心抗原 ( HBcAg ), iii ) CpG寡 it氧核 苷酸(CpG-ODN )和 /或任选地 iv )可药用载体。 特别地, 本发 明的药物组合物用作预防性或治疗性疫苗。 在某些实施方案中, 所述药物组合物由上述组分 i ) -- iii )和任选地 iv )组成。
[10] 在本发明的一些实施方案中, 所述 HBsAg 具有 SEQ ID ΝΟ:1所示序列。
[11] 在本发明的另一些实施方案中, 所述 HBcAg具有 SEQ ID NO:2所示序列。
[12] 在本发明的又一些实施方案中, 所述 CpG-ODN 包含硫代 磷酸酯连接。 特别地, 所述 CpG-ODN为硫代寡聚脱氧核苷酸, 优选地为全硫代寡聚脱氧核苷酸。
[13] 在本发明的又一些实施方案中, 所述 CpG-ODN 包含两个 或更多的 5,-NTCGTT-3,基序。
[14] 在本发明的又一些实施方案中,所述 CpG-ODN长度为 15 ~ 35个核苷酸, 优选 20~25个核苷酸。
[15] 在本发明的又一些实施方案中, 所述 CpG-ODN具有选自 下列的序列: 5,-TCG TTC GTT CGT TCG TTC GTT-3' ( SEQ ID NO:3 )、 5,-TCG TTC GTT CGT TCG TTC GTT CGT T-3' ( SEQ ID NO:4 )、 5,-TCG TCG TCG TCG TCG TCG TCG-3' ( SEQ ID NO:5 )和 5,-TCC ATG ACG TTC CTG ACG TT-3' ( SEQ ID NO:6 ), 优选地所述 CpG-ODN具有序列: 5,-TCG TTC GTT CGT TCG TTC GTT-3,。
[16] 在本发明的又一些实施方案中, 所述药物组合物中的组分 0, ii ) 以及 iii )之间的相对重量比范围是 1: 0.2-5: 1-50, 优 选为 1: 1-5: 2~15。
[17] 本发明还涉及一种乙型肝炎疫苗, 其包含: 0 乙肝表面抗 原(HBsAg ), ii ) 乙肝核心抗原(HBcAg ), iii ) CpG寡聚脱氧 核苷酸(CpG-ODN )和任选地 iv )可药用载体。
[18] 本发明还涉及一种药盒,其包含根据本发明的药物组合物或 乙型肝炎疫苗以及任选地其使用说明。
[19] 在一个方面,本发明涉及根据本发明的药物组合物在制备用 于在对象中治疗 HBV感染和 /或 HBV介导的疾病之药物中的用 途,优选地所述 HBV感染和 /或 HBV介导的疾病选自乙型肝炎、 肝硬化和肝癌。
[20] 在又一个方面,本发明涉及根据本发明的药物组合物在制备 用于在对象中产生针对 HBV的免疫应答(优选地, 诱导 Thl和 Th2型免疫应答)之药物中的用途。
[21] 在另一个方面,本发明涉及根据本发明的药物组合物在制备 用于在对象中使抗 HBcAg抗体发生亚型转变之药物中的用途。
[22] 在又一个方面,本发明涉及根据本发明的药物组合物在制备 用于在对象中突破乙型肝炎病毒免疫耐受之药物中的用途。
[23] 在又一个方面,本发明涉及根据本发明的药物组合物在制备 用于在对象中实现乙肝表面抗原 Thl/Th2免疫应答平衡 (例如, 大致相当地诱导 Thl和 Th2型免疫应答)之药物中的用途。
[24] 在又一个方面, 本发明涉及一种药物组合物, 其包含: 0 乙肝表面抗原 ( HBsAg ), ii ) 乙肝核心抗原 ( HBcAg ), 和 iii ) CpG寡聚脱氧核苷酸( CpG-ODN )。 特别地, 本发明的药物组 合物可用于在对象中治疗 HBV感染和 /或 HBV介导的疾病、 用 于在对象中产生针对 HBV的免疫应答(优选地, 诱导 Thl和 Th2型免疫应答)、 用于在对象中使抗 HBcAg抗体发生亚型转 变、用于在对象中引发抗原特异性 CTL杀伤活性和 /或用于在对 象中突破乙型肝炎病毒免疫耐受。
[25] 在又一个方面, 本发明涉及一种在对象中治疗 HBV感染和 /或 HBV介导的疾病的方法,其包括向对象施用治疗有效量的根 据本发明的药物组合物。
[26] 在又一个方面, 本发明涉及一种在对象中产生针对 HBV的 免疫应答(优选地, 诱导 Thl和 Th2型免疫应答)的方法, 其 包括向对象施用治疗有效量的根据本发明的药物组合物。
[27] 在又一个方面, 本发明涉及一种在对象中使抗 HBcAg抗体 发生亚型转变的方法,其包括向对象施用治疗有效量的根据本发 明的药物组合物。
[28] 在又一个方面,本发明涉及在对象中突破乙型肝炎病毒免疫 耐受的方法,其包括向对象施用治疗有效量的根据本发明的药物 组合物。
[29] 在又一个方面, 本发明涉及在对象中引发抗原特异性 CTL 杀伤活性的方法,其包括向对象施用治疗有效量的根据本发明的 药物组合物。
[30] 在又一个方面, 本发明涉及在对象中实现乙肝表面抗原 Thl/Th2免疫应答平衡 (例如, 大致相当地诱导 Thl和 Th2型 免疫应答)的方法,其包括向对象施用治疗有效量的根据本发明 的药物组合物。
[31] 在某些实施方案中, 本发明的药物组合物不包含皂苷佐剂。 附图说明
[32] 图 1 显示本发明组合物与传统疫苗组分相比在增强小鼠对 乙肝表面抗原特异性总 IgG免疫应答的图。
[33] 图 2 显示本发明组合物与传统疫苗组分相比在增强小鼠产 生保护性抗体免疫应答的图。
[34] 图 3 显示本发明组合物与传统疫苗组分相比在体液免疫水 平增强乙肝表面抗原 Th2免疫应答的图。
[35] 图 4显示本发明组合物与传统疫苗组分相比在体液免疫水 平增强乙肝表面抗原 Thl免疫应答的图。
[36] 图 5显示本发明组合物与传统疫苗组分相比在体液免疫水 平促进乙肝表面抗原 Thl/Th2免疫应答平衡的图。
[37] 图 6 显示本发明组合物产生的抗 HBcAg 抗体亚型为 IgG2a>IgGl的图。
[38] 图 7显示本发明组合物与传统疫苗组分相比在细胞免疫方 面促进 HBsAg CTL表位特异性 Thl细胞分化抑制 Th2细胞增 殖的图。
[39] 图 8显示本发明组合物中 HBcAg与 HBsAg+CpG联用在产 生抗原特异性 IgG抗体水平上具有协同作用的图。
[40] 图 9显示本发明组合物中 HBcAg与 HBsAg+CpG联用相比 HBsAg+CpG在细胞免疫水平具有促进 HBsAg特异性的 Thl细 胞分化的能力。
[41] 图 10显示本发明组合物在产生抗原特异性 IgG免疫应答上 突破 HBV转基因小鼠和免疫耐受小鼠的免疫耐受的图。
[42] 图 11 显示本发明组合物在产生中和抗体免疫应答上突破 HBV转基因小鼠和免疫耐受小鼠的免疫耐受的图。
[43] 图 12显示本发明组合物突破 HBV转基因小鼠和免疫耐受 小鼠的免疫耐受,产生高滴度抗 HBcAg的特异性 IgG抗体的图。
[44] 图 13显示本发明组合物在 HBV转基因小鼠和免疫耐受小 鼠中产生的抗 HBcAg抗体亚型为 IgG2a>IgGl的图。
[45] 图 14 显示本发明组合物与传统疫苗组分相比更具有清除 HBV转基因小鼠中 HBsAg抗原的能力。
[46] 图 15显示本发明组合物具有 HBsAg和 HBcAg抗原特异性 CTL体内杀伤的活性, 证明本发明的组合物可用作慢性乙肝治 疗性疫苗。 具体实施方式
[47] 以下结合附图通过具体实施方式的描述对本发明作进一步 说明,但这并非是对本发明的限制,本领域技术人员根据本发明 的基本思想,可以作出各种修改或改进,但是只要不脱离本发明 的基本思想, 均在本发明的范围之内。
[48] 本发明的一个目的是克服现有技术中已知的用于治疗乙型 肝炎感染的药物的缺陷。
[49] 特别地,本发明的一个目的是提供一种药物组合物,该组合 物可以在慢性 HBV感染患者中产生强烈的免疫应答, 促进抗 HBsAg-IgG2a抗体亚型的分化,使 IgG2a和 IgGl趋近平衡;诱 导抗 HBcAg抗体亚型发生转变和 /或突破 HBV感染患者的免疫 耐受。
[50] 本发明的另一目的是提供了该组合物用于治疗 HBV感染和 /或 HBV介导疾病的用途, 以及治疗 HBV感染和 /或 HBV介导 的疾病的方法。
[51] 为实现上述目的, 本发明提供了药物组合物, 其包含:
[52] i ) HBsAg、 该抗原的片段、 该抗原的变体, 或者其至少两 种的混合物,
[53] ii ) HBcAg、 该抗原的片段、 该抗原或者该抗原的片段的变 体, 或者其至少两种的混合物,
[54] iii ) CpG-ODN, 该寡聚核苷酸为全硫代修饰, 其序列中具 有两个或两个以上拷贝的 5,-NTCGTT-3,基序, 长度为 20~25个 碱基。 该寡聚核苷酸优选自以下碱基序列: 5,-TCG TTC GTT CGT TCG TTC GTT-3,、 5,-TCG TTC GTT CGT TCG TTC GTT CGT T-3,、 5,-TCG TCG TCG TCG TCG TCG TCG-3,或 5,-TCC ATG ACG TTC CTG ACG TT-3,。 更优选为 5,-TCG TTC GTT CGT TCG TTC GTT-3,。
[55] 本发明的组合物实现了出乎意料的技术效果。与现有的市售 乙肝预防疫苗相比, 在小鼠体内试验中可以介导更强的免疫应 答, 包括抗 HBsAg抗体、 抗 HBcAg抗体, 抗 adr血清型的中 和抗体, 特别是介导 Thl 细胞免疫应答, 产生与病毒清除相关 的细胞因子 IFN-γ, 促进抗 HBs-IgG2a抗体亚型的分化和成熟, 抗 HBcAg抗体亚型转变, 实现体液免疫和细胞免疫的平衡。
[56] 现有技术中 (参见专利 CN101492672 ) 已公开了组合物 HBsAg+CpG, 而本发明人出人意料地发现根据本发明的药物组 合物( HBcAg、 HBsAg和 CpG ODN的组合 )可产生显著优于 HBsAg+CpG组合物的抗 HBsAg特异性抗体, 表现出出人意料 的协同作用。
[57] 更加出人意料地,在转基因小鼠体内实验表明,根据本发明 的组合物可以突破转基因小鼠的免疫耐受, 产生高滴度的抗 HBsAg抗体、 抗 HBcAg抗体、 中和抗体, 介导 Thl细胞免疫 应答, 促进 IgG2a抗体亚型的分化和成熟。 同时通过对其血清 中乙肝表面抗原表达水平的检测显示,根据本发明的组合物多次 免疫可以显著清除转基因小鼠体内的乙肝病毒,使其乙肝病毒表 达水平下降。本发明的组合物还显示出诱导强的抗原特异性细胞 毒性 T淋巴细胞( CTL )体内杀伤活性, 特别地 HBsAg CTL和 HBcAg CTL体内杀伤活性, 此实 据更进一步确证了本发明 的组合物大大超出了现有技术中已有疫苗的水平,能够更加有效 地治疗乙型肝炎(特别是慢性乙型肝炎 )。
[58] 另外, 在 BALB/c小鼠和模型小鼠上均能介导强抗 HBcAg 的免疫应答, 并且实现了抗 HBcAg抗体亚型转变, 即表现出的 抗 HBcAg抗体亚型关系为 IgG2a抗体水平高于 IgGl , 与乙肝 感染患者痊愈的抗体亚型关系一致。这一鼓舞人心的结^ ^明根 据本发明的组合物可用作乙肝治疗性疫苗,从而解决长期以来困 们的这一难题。
定义
[59] 除非另有定义,本文使用的所有科技术语具有本领域普通技 术人员所理解的相同含义。关于本领域的定义及术语, 专业人员 具体可参考 Current Protocols in Molecular Biology ( Ausubel )0 氨基酸残基的缩写是本领域中所用的指代 20个常用 L- ^酸之 一的标准 3字母和 /或 1字母代码。
[60] 尽管本发明的广义范围所示的数字范围和参数近似值,但是 具体实施例中所示的数值尽可能准确的进行记载。然而,任何数 值本来就必然含有一定的误差,其是由它们各自的测量中存在的 标准偏差所致。 另外,本文公开的所有范围应理解为涵盖其中包 含的任何和所有子范围。例如记载的" 1至 10"的范围应认为包含 最小值 1和最大值 10之间 (包含端点)的任何和所有子范围; 也就是说,所有以最小值 1或更 始的子范围,例如 1至 6.1, 以及以最大值 10或更小终止的子范围, 例如 5.5至 10。 另外, 任何称为"并入本文,,的参考文献应理解为以其整体并入。
[61] 另外应注意,如本说明书中所使用的,单数形式包括其所指 对象的复数形式, 除非清楚且明确的限于一个所指对象。 术语 "或,,可与术语"和 /或,,互换使用, 除非上下文另有清楚指明。
[62] 本文中使用的术语 "多肽"是指氨基酸聚合物,并且无具体的 最少氨基酸数目限制。 因此其同样包括肽、 寡肽、 二聚体、 三聚 体、低聚体、 颗粒等。 再者, 术语"多肽"不仅包括在核糖体中翻 译后得到的纯氨基酸聚合物,还包括经过翻译后修饰(例如糖基 化、 乙酰化、 磷酸化、 硫代等)获得的多肽。
[63] 本文使用的术语 "抗原性片段,,是指天然或合成多肽的片段, 其保留了所述天然或合成多肽的抗原特性,即能够引发针对所述 天然或合成多肽的免疫应答。
[64] 本文中使用的术语"乙肝表面抗原(HBsAg、 HBs ),,旨在涵 盖天然 HBsAg、 HBsAg抗原性片段、 HBsAg功能性变体及其任 意组合。 特别地, 所述天然 HBsAg为含有 226个氨基酸的天然 HBsAg多肽。 更特别地, 所述 HBsAg为来源于现今已知 HBV 标准基因型 A、 B、 C、 D、 E、 F、 G和 /或 H的天然 HBsAg多 肽。在某些实施方案中, 所述 HBsAg具有 SEQ ID ΝΟ:1所示的 序列。
[65] 本文中使用的术语" HBsAg 抗原性片段"旨在表示下述多 肽, 即该多肽具有天然 HBsAg中少于 226个氨基酸的连续或不 连续的片段, 并且所述多肽保留天然 HBsAg的抗原性。
[66] 本文中使用的术语" HBsAg 功能性变体"旨在表示下述多 肽, 即该多 目对于天然 HBsAg或 HBsAg片段有至多 30个、 至多 25个、 至多 20个、 至多 15个、 至多 10个、 至多 5个、 至 多 4个、 至多 3个、 至多 2个、 至多 1个處基酸缺失、 插入、 添 加或替换,并且所述多肽保留天然 HBsAg的功能(例如抗原性)。 [67] 本文中使用的术语"乙肝核心抗原(HBcAg、 HBc ),,旨在涵 盖天然 HBcAg、 HBcAg抗原性片段、 HBcAg功能性变体及其任 意组合。 特别地, 所述天然 HBcAg为含有 183个氨基酸的天然 HBcAg多肽。 更特别地, 所述天然 HBcAg为来源于现今已知 HBV标准基因型 A、 B、 C、 D、 E、 F、 G和 /或 H的天然 HBcAg。 在一些实施方案中, 所述 HBcAg选自 HBcAg^多肽,其表示天 然 HBcAg的 1-X位 ^酸的片段, 特别地, X为 149至 183。 在另一些实施方案中, 所述 HBcAg选自具有下述序列的多肽: SEQ ID NO:2的 1-149位 ^| ^酸、 SEQ ID NO:2的 1-150位 ^ 酸、 SEQ ID NO:2的 1-151位 ^¾ ^酸、 SEQ ID NO:2的 1-152 位 ^ ^酸、 SEQ ID NO:2的 1-153位 ^ ^酸、 SEQ ID NO:2的 1-154位^^酸、 SEQ ID NO:2的 1-155位^^酸、 SEQ ID NO:2 的 1-156位 ^ ^酸、 SEQ ID NO:2的 1-157位 ^¾ ^酸、 SEQ ID NO:2的 1-158位 酸、 SEQ ID NO:2的 1-159位 ^¾ ^酸、 SEQ ID NO:2的 1-160位 ^ ^酸、 SEQ ID NO:2的 1-161位 ^ ^酸、 SEQ ID NO:2的 1-162位^^酸、 SEQ ID NO:2的 1-163位^^ 酸、 SEQ ID NO:2的 1-164位^ ^酸、 SEQ ID NO:2的 1-165 位^ ^酸、 SEQ ID NO:2的 1-166位 酸、 SEQ ID NO:2的 1-167位 ^ ^酸、 SEQ ID NO:2的 1-168位 ^ ^酸、 SEQ ID NO:2 的 1-169位氨基酸、 SEQ ID NO:2的 1-170位氨基酸、 SEQ ID NO:2的 1-171位 ^ ^酸、 SEQ ID NO:2的 1-172位^ ^酸、 SEQ ID NO:2的 1-173位^^酸、 SEQ ID NO:2的 1-174位^^酸、 SEQ ID NO:2的 1-175位 ^| ^酸、 SEQ ID NO:2的 1-176位 ^ 酸、 SEQ ID NO:2的 1-177位 ^¾ ^酸、 SEQ ID NO:2的 1-178 位 ^ ^酸、 SEQ ID NO:2的 1-179位 ^ ^酸、 SEQ ID NO:2的 1-180位^^酸、 SEQ ID NO:2的 1-181位^^酸、 SEQ ID NO:2 的 1-182位處基酸和 SEQ ID NO:2的 1-183位氨基酸。在某些实 施方案中, 所述 HBcAg具有 SEQ ID NO:2所示的序列。
[68] 本文中使用的术语" HBcAg 抗原性片段,,旨在表示下述多 肽, 即该多肽具有天然 HBcAg中少于 183个氨基酸的连续或不 连续的片段, 并且所述多肽保留天然 HBcAg的抗原性。 [69] 本文中使用的术语" HBcAg 功能性变体"旨在表示下述多 肽, 即该多 目对于天然 HBcAg或 HBcAg片段有至多 30个、 至多 25个、 至多 20个、 至多 15个、 至多 10个、 至多 5个、 至 多 4个、 至多 3个、 至多 2个、 至多 1个 基酸缺失、 插入、 添 加或替换,并且所述多肽保留天然 HBcAg的功能 (例如抗原性)。
[70] 优选地,在本发明中, HBcAg以及 HBsAg在根据本发明的 组合物中都以颗粒形式存在。
[71] 本文使用的术语"药物组合物"、 "组合药物,,和"药物组合" 可互换地使用,其表示组合在一起以实现某种特定目的的至少一 种药物以及任选地可药用赋形剂或辅料的组合。在某些实施方案 中, 所述药物组合物包括在时间和 /或空间上分开的组合, 只要 其能够共同作用以实现本发明的目的。例如,所述药物组合物中 所含的成分(例如 HBsAg、 HBcAg和 CpG-ODN )可以以整体 施用于对象,或者分开施用于对象。 当所述药物组合物中所含的 成分分开地施用于对象时, 所述成分可以同时或依次施用于对 象。
[72] 本文使用的术语" CpG寡聚脱氧核苷酸,,或" CpG-ODN"是 指短的单链合成 DNA分子, 其含有一个或更多个 "CpG"单元, 其中 C表示胞嘧啶, G表示鸟嘌呤, p表示磷酸二酯键。特别地, 所述 CpG寡聚脱氧核苷酸是非甲基化的。 在一些实施方案中, 所述 CpG-ODN包含硫代磷酸酯连接或硫代磷酸酯骨架。也就是 说,在一些实施方案中,所述 CpG-ODN为硫代磷酸酯寡聚脱氧 核苷酸(即硫代寡聚脱氧核苷酸)。 优选地, 所述 CpG-ODN中 所有核苷酸间连接均为硫代磷酸酯连接,即所述 CpG-ODN为全 硫代寡聚脱氧核苷酸。 在另一些实施方案中, 所述 CpG-ODN 包含两个或更多的 5,-NTCGTT-3,基序。 在又一些实施方案中, 所述 CpG-ODN长度为 15 ~ 35个核苷酸,优选 20~25个核苷酸。 特别地, 所述 CpG-ODN具有选自下列的序列: 5,-TCG TTC GTT CGT TCG TTC GTT-3' ( SEQ ID NO:3 )、 5,-TCG TTC GTT CGT TCG TTC GTT CGT T-3' ( SEQ ID NO:4 )、 5,-TCG TCG TCG TCG TCG TCG TCG-3' ( SEQ ID NO:5 )和 5,-TCC ATG ACG TTC CTG ACG TT-3' ( SEQ ID NO:6 ), 更特别地所 述 CpG-ODN具有序列: 5,-TCG TTC GTT CGT TCG TTC GTT-3,。
[73] 本文使用的"治疗有效量,,或"有效量,,是指足以显示其对于 所施用对象益处的剂量。施用的实际量, 以及施用的速率和时间 过程会取决于所治疗者的自身情况和严重程度。治疗的处方(例 如对剂量的决定等)最终是全科医生及其它医生的责任并依赖其 做决定, 通常考虑所治疗的疾病、 患者个体的情况、 递送部位、 施用方法以及对于医生来说已知的其它因素。
[74] 本文使用的术语" HBV 介导的疾病,,旨在表示乙肝病毒 ( HBV )所导致、 诱发、 加重、 提高其发生风险和 /或与其有关 的疾病,例如乙型肝炎病毒携带者、 乙型肝炎、肝硬化、肝腹水、 肝癌等。
[75] 本文使用的术语"抗 HBcAg抗体亚型转变"旨在表示施用本 发明的药物组合物后, 对象中抗 HBcAg抗体亚型关系转变为与 乙肝治愈患者中的抗体亚型关系一致,即与乙肝感染患者痊愈的 抗体亚型关系一致。 特别地, 在小鼠中, 抗 HBcAg抗体亚型由 IgGl>IgG2a转变为 IgG2a > IgG2b > IgGl或者 IgG2b > IgG2a > IgGl, 例如 IgG2a>IgGl, 在人中, 抗 HBc抗体亚型由 IgGl > IgG3 > IgG4转变为 IgG3>IgGl>IgG4。
[76] 本文所使用的术语"对象,,是指哺乳动物,如人类,但也可以 是其它动物, 如野生动物(如苍鹭、 鹳、 鹤等) , 家畜 (如鸭、 鹅等)或实验动物(如狸猩、 猴子、 大鼠、 小鼠、 兔子、 豚鼠、 土拨鼠、 地松鼠等) 。
[77] 本发明组合物的另一个实施方案, 其包含 i ) HBsAg或该抗 原的变体, ii ) HBcAg1 183, 和 iii )含有 21个碱基的硫代寡聚核 苷酸 CpG-ODN, 其序列中具有两个或两个以上拷贝的 5,-NTCGTT-3,基序。
[78] 在一些实施方案中, 本发明药物组合物中组分 i ), ii ) 以及 iii )之间的相对重量比范围是 1: 0.2-5: 1-50, 优选为 1: 1-5: 2-15, 更优选 1:1:2。
[79] 在另一些实施方案中, 本发明组合物还可包含另外的添加 剂, 如药物载体或添加剂, 尤其是当它以药物制剂形式存在时。
[80] 在某些实施方案中, 本发明的药物组合物不包含皂苷佐剂。
[81] 优选的药物载体尤其是水,緩冲水溶液,优选等渗盐溶液如 PBS (磷酸盐緩冲液)、 葡萄糖、 甘露醇、 右旋葡萄糖、 乳糖、 淀粉、 硬脂酸镁、 纤维素、 碳酸镁、 0.3%甘油、 透明质酸、 乙 醇或聚亚烷基二醇如聚丙二醇、甘油三酯等。所用药物载体的类 型尤其依赖于根据本发明的组合物是否配制为用于口服、鼻、皮 内、皮下、肌内或静脉施用。根据本发明的组合物可包含润湿剂、 乳化剂或緩冲液物质作为添加剂。
[82] 根据本发明的药物组合物、疫苗或者药物制剂可通过任何适 宜的途径施用, 例如可口服、 鼻、 皮内、 皮下、 肌内或静脉内施 用。 实施例
[83] 实施例 1· 乙肝表面抗原(HBsAg )与乙肝核心抗原(HBcAg ) 和 CpG-ODN联用增强乙肝表面抗原特异性总 IgG的免疫应答。
[84] 为了检测 HBsAg+HBcAg+CpG-ODN组合物的乙肝表面抗 原特异性总 IgG免疫应答, 本发明人分别将 HBsAg、 HBcAg与 CpG-ODN, HBsAg与 Al(OH)3佐剂混匀, 用其免疫小鼠, 通过 测定血清中 HBsAg特异性 IgG水平, 并进行统计学分析, 来评 价相对于 HBsAg与 Al(OH)3联用, HBsAg, HBcAg与 CpG-ODN 联用对 HBsAg特异性总 IgG免疫应答的作用。
[85] 本实施例中使用 BALB/c小鼠, 雌性, 6-8周, 购自上海斯 莱克公司。 本实施例所使用的 HBsAg抗原购买自 Prospec公司 (批号: 1111PHADW22, 序列如 SEQ ID ΝΟ:1所示), 为毕赤 酵母表达的 adw2亚型, 纯度 95%以上, 4。C冰箱中保存备用。 本实施例使用的 HBcAg (序列如 SEQ ID NO:2所示)抗原为发 明人制备, 为大肠杆菌表达的天然乙肝核心蛋白, 纯化制备工艺 参见李计来, 徐静等在《中国生物制品学杂志》 2011, 第 24卷 第 1121-1125页中的报道,具体步骤如下: 收集菌体后用 10 mM 磷酸钠緩冲液重悬,超声破碎,离心收集上清,加入饱和硫酸铵, 使其终浓度为 33%, 充分混匀后 4°C过夜; 次日, 离心, 沉淀用 10 mM磷酸钠緩冲液重悬,放入透析袋,在 10 mM磷酸钠緩冲 液中 4Ό透析 24h; 透析后的溶液经羟基磷灰石柱层析, 收集蛋 白峰, 浓缩, 经 Sephacryl S-400 HR ^^过滤层析, 收集目的 蛋白峰; 4。C水箱中保存备用。 本实施例所用的 CpG-ODN序列 为 5,-TCG TTC GTT CGT TCG TTC GTT-3', 参照 CN200810004736.0专利所述的固相亚磷酰胺三酯法化学合成方 法制备, 由 3,端开始, 1 )脱保护基: 先用三氯乙酸脱去连接在 CpG上的核苷酸的保护基团 DMT (二甲氧基三苯甲基), 获得游 离的 5,羟基, 以供下一步缩合反应使用; 2 )活化: 将亚磷酰胺 保护的核苷酸单体与四氮唑活化剂混合并进入合成柱,形成亚磷 酰胺四唑活性中间体, 此中间体与 CpG上已脱保护基的核苷酸 发生缩合反应; 3 )连接: 亚磷酰胺四唑活性中间体遇到 CpG上 已脱保护基的核苷酸时,将与其 5,羟基发生亲和反应,缩合并脱 去四唑, 此时寡核苷酸链向前延长一个碱基; 4 )氧化: 缩合反 应时核苷酸单体是通过亚磷酯键与连在 CpG上的寡核苷酸连 接, 而亚磷酯键不稳定, 易被酸或碱水解, 此时使用硫代试剂将 亚磷酰胺氧化为硫磷双键的磷酸三酯, 从而得到稳定的寡核苷 酸; 5 )封闭: 缩合反应后为了防止连在 CpG上的未参与反应的 5,羟基在随后的循环反应中被延伸,常通过乙酰化来封闭此端羟 基; 经过以上五个步骤后, 一个脱氧核苷酸就连到 CpG的核苷 酸上; 重复以上的脱保护基、 活化、 连接、 氧化、 封闭过程即可 得到一个 DNA片段粗品; ^对其进行切割、脱保护基、纯化、 定量等合成后处理即可得到符合的 CpG-ODN; -20* 水箱中保 存备用。
[86] HBsAg和 HBcAg用 PBS( Invitrogen公司) 释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。 Α1(ΟΗ)3佐剂购自天坛生物。 对 BALB/c小鼠进行左后肢 ^肠肌免疫,每只注射体积为 100 μΐ, 每组 10 只小鼠。 HBsAg+ Al(OH)3组每只小鼠注射 l g 经 Al(OH)3吸附的 HBsAg。 HBsAg+HBcAg+CpG-ODN组每只小鼠 注射 l g HBsAg、 l g HBcAg和 2 g CpG-ODN。每三周免疫一 次, 在二免后十天 血并分离出血清, 按照常规方法用 2%脱脂 奶对该血清以 1:30稀释倍 始, 再进行 3倍系列稀释, 用于 检测抗原特异性 IgG总抗体。
[87] 具体抗原特异性 IgG总抗体的检测步骤如下: 用 HBsAg包 被 96孔酶标板(购自 Nunc公司), 每孔 25ng, 4°C过夜; ¾ 2次后用 5%脱脂奶 37°C封闭 1小时; 洗板 2次后加入上述 3倍 系列稀释的待检血清, 37。C作用 1小时;洗板 3次后加入 1:30000 稀释的辣根过氧化物酶标记的羊抗鼠 IgG (购自美国 SIGMA公 司), 每孔 50μ1, 37。C作用 40分钟; 洗板 3次后用 TMB (购自 美国 Thermo公司)显色, 每孔 ΙΟΟμΙ , 显色 15分钟; 2Μ疏 酸终止反应,每孔 100μ1,用酶标仪测定 450nm处吸光值 OD450nm (以 OD630nm校正), 并确定终点滴度。 结果显示在图 1中。
[88] 由图 1可见, HBsAg+HBcAg+CpG-ODN组的免疫应答显 著增强, HBsAg 特异性抗体滴度可达 4.0 个对数值, 与 HBsAg+Al(OH)3组比较, 具有显著性差异( PO.001 ), 特异性 抗体滴度(效价)可增加 3 倍左右。 上述结果表明, 本发明 HBsAg+HBcAg+CpG-ODN组合物疫苗相比于 Α1(ΟΗ)3佐剂乙 肝疫苗能显著增强乙肝表面抗原特异性总 IgG的免疫应答。
[89] 实施例 2· 乙肝表面抗原(HBsAg )与乙肝核心抗原(HBcAg ) 和 CpG-ODN联用增强乙肝表面抗原保护性抗体水平。
[90] 检测乙型肝炎病毒表面抗体的作用是监测乙肝疫苗的接种 是否成功。乙肝疫苗刺^ ^疫系统产生相当于中和抗体的乙型肝 炎病毒表面抗体,其效价与疫苗的保护力直接相关,所述抗体的 产生对防止 HBV感染具有显著效果。 因此, 本发明人选用了国 际通用的 ARCHITECT乙型肝炎病毒表面抗体国际单位测试系 统(化学发光微粒子免疫测定法, CMIA )来检测免疫小鼠血清 中的乙型肝炎病毒表面抗体(抗 HBsAg ) 的浓度, 并进行统计 学分析, 从而评价 HBsAg+HBcAg+CpG-ODN 的组合相对于 HBsAg+Al(OH)3联用对增强保护性抗体水平的保护力效果。
[91] 本实施例中使用 BALB/c小鼠, 雌性, 6-8周, 购自上海斯 莱克公司。本实施例中所使用的 HBsAg抗原、 HBcAg、 CpG-ODN 和 Α1(ΟΗ)3佐剂如实施例 1中所述。
[92] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。 对 BALB/c小鼠进行左后肢腓肠肌免疫, 每只注射体积为 100 μΐ, 每组 10只小鼠。 HBsAg+Al(OH)3组每 只 小 鼠 注 射 1μδ 经 Α1(ΟΗ)3 吸 附 的 HBsAg , HBsAg+HBcAg+CpG-ODN组每只小鼠注射 l g HBsAg, l g HBcAg和 2 g CpG-ODN。每三周免疫一次,在二免后十天采血 并分离出血清。将血清进行原倍: ¾J6L或个血用 PBS溶液稀释(对 于 250<IU<1000, 500倍稀释个血送样, IU>1000, 5000倍稀释 个血送样) 送至东南大学第二附属医院进行检测, 用 ARCHITECT 乙型肝炎病毒表面抗体国际单位测试系统(化学 发光微粒子免疫测定法, CMIA )检测免疫小鼠血清中的乙型肝 炎病毒表面抗体(ABBOTT公司 ARCHITECT 系统检测), 结 果显示在图 2中。
[93] 由图 2可见, HBsAg+HBcAg+CpG-ODN组可显著增强保 护性抗体水平, 特异性保护抗体滴度可达 4.3 个对数值, 与 HBsAg+Al(OH)3组比较, 具有显著性差异( PO.05 ), 特异性保 护抗体滴度(效价)可增加 5倍左右。 上述结果表明, 本发明 HBsAg+HBcAg+CpG-ODN组合物疫苗比 Α1(ΟΗ)3佐剂乙肝疫 苗能显著增强乙肝表面抗原保护性抗体水平, 增强疫苗保护力。
[94] 实施例 3. 乙肝表面抗原(HBsAg )、乙肝核心抗原(HBcAg ) 和 CpG-ODN联用在体液免疫水平增强乙肝表面抗原 Th2免疫 应答。
[95] 根据 实 施例 1 所 述 的 方 法 , 测 定本发 明 HBsAg+HBcAg+CpG-ODN组合物对小鼠 Th2类免疫应答的影 响,不同之处在于检测时所使用的酶标抗体为辣根过氧化物酶标 记的羊抗鼠 IgGl (购自美国 SouthernBiotech公司), 稀释倍数 为 1:20000。 结果显示在图 3中。
[96] 抗原特异性免疫应答分为 Thl和 Th2两种类型, 其中 Th2 类应答与高水平的抗原特异性 IgGl 抗体滴度相对应。 Α1(ΟΗ)3 是一种极强的 Th2类疫苗佐剂, 能够抑制 Thl类免疫应答, 表 现为免疫后诱生高水平的特异性 IgGl 抗体。 在本实施例中, HBsAg+HBcAg+CpG-ODN 组合物产生的 IgGl 抗体水平比 HBsAg+Al(OH)3组显著更高 ( PO.001 ), HBsAg特异性 IgGl 抗体滴度(效价)可增加接近 10倍。 上述结果表明, 本发明组 合物能产生比 Al(OH)3佐剂组还强的 HBsAg特异性 IgGl抗体, 增强乙肝表面抗原 Th2免疫应答。
[97] 实施例 4· 乙肝表面抗原(1188 8 )、乙肝核心抗原(1180 2 ) 和 CpG-ODN联用在体液免疫水平增强乙肝表面抗原 Thl免疫 应答。
[98] 根据 实 施例 1 所 述 的 方 法 , 测 定本发 明 HBsAg+HBcAg+CpG-ODN组合物对小鼠 Thl类免疫应答的影 响,不同之处在于检测时所使用的酶标抗体为辣根过氧化物酶标 记的羊抗鼠 IgG2a (购自美国 SouthernBiotech公司),稀释倍数 为 1:6000。 结果显示在图 4中。
[99] 实施例 3中提到, Al(OH)3是一种极强的 Th2类疫苗佐剂, 能够抑制 Thl类免疫应答, 表现为免疫后诱生极低水平的特异 性 IgG2a抗体。 在本实施例中, Al(OH)3作为 HBsAg佐剂诱生 的特异性 IgG2a 抗体滴度仅为 2.17 个对数值。 用本发明的 HBsAg+HBcAg+CpG-ODN组合物免疫时, 产生的 HBsAg特异 性 IgG2a抗体滴度增加 2个对数值左右, 即 100倍。 上述结果 表明, 本发明的 HBsAg+HBcAg+CpG-ODN联用极强地刺激针 对乙肝表面抗原的 Thl免疫应答。
[100] 实施例 5· 乙肝表面抗原(1188 8 )、乙肝核心抗原(1180 2 ) 和 CpG-ODN联用在体液免疫水平促进乙肝表面抗原 Thl/Th2 免疫应答平衡。
[101] 根据 实 施例 3 和 实 施例 4 所述 , 本发 明 HBsAg+HBcAg+CpG-ODN组合物不仅对小鼠产生较高水平的 Th2类免疫应答, 同时也产生极高水平的 Thl类免疫应答。 Thl 促进 CTL反应即所谓的细胞免疫倾向, 而 Th2则促进抗体产生 即所谓的体液免疫倾向,而治疗性乙肝疫苗的一个目的是清除血 清中 HBsAg抗原, 这需要产生有效的保护性抗体, 主要是体液 免疫发挥作用; 另一个目的是杀伤感染 HBV的靶细胞, 即 CTL 反应, 需要细胞免疫发挥作用, 所以 Thl和 Th2免疫应答都非 常重要。 为了更直接地说明 HBsAg+HBcAg+CpG-ODN组合物 和 HBsAg+Al(OH)3对照组产生的免疫应答偏向于 T1或 Th2应 答方向, 将分析抗原特异性 IgG2a/IgGl滴度比值(LoglO ), 结 果显示在图 5中,若比值小于 0说明免疫应答偏向于 Th2, 大于 0说明免疫应答偏向于 Thl, 接近 0说明免疫应答趋于平衡。 分 析结果表明, Α1(ΟΗ)3作为 HBsAg佐剂的对照组产生的免疫应 答主要 以 IgGl 为 主 , 偏 向 于 Th2 应 答 ; 而 HBsAg+HBcAg+CpG-ODN组合物产生的特异性 IgGl和 IgG2a 相当, ^^疫应答趋于 Thl/Th2平衡。
[102] 实施例 6· 乙肝表面抗原(1188 8 )、乙肝核心抗原(1180 2 ) 和 CpG-ODN联用产生的抗 HBcAg抗体亚型 IgG2a>IgGl。
[103] 乙肝感染患者治愈人群的抗 HBcAg 抗体亚型为 IgG3>IgGl>IgG4, 其在小鼠中对应的抗体亚型关系为 IgG2a > IgG2b > IgGl或者 IgG2b > IgG2a > IgGl„根据实施例 3和实施 例 4所述的方法, 测定本发明 HBsAg+HBcAg+CpG-ODN组合 物对小鼠抗 HBcAg抗体亚型 IgG2a和 IgGl滴度, 考察本组合 物是否可促进小鼠抗 HBcAg抗体亚型转变为 IgG2a>IgGl, 不 同之处在于检测时所使用的包被抗原为 l g/ml HBcAg。 结果显 示在图 6中。图 6结果表明,本发明 HBsAg+HBcAg+CpG-ODN 组合物产生的抗 HBcAg抗体亚型 IgG2a>IgGl, 且具 显著性 差异( PO.001 )。 说明该组合物可促进小鼠抗 HBcAg抗体亚型 转变为乙肝感染治愈患者的抗体亚型。
[104] 实施例 7· 乙肝表面抗原、 乙肝核心抗原与 CpG-ODN联用 在细胞免疫方面显著促进 HBsAg CTL表位特异性 Thl细胞分化 和抑制 Th2细胞增殖。
[105] 为了阐明 HBsAg+HBcAg+CpG-ODN组合物联用在细胞免 疫方面的作用,本发明人分别将 HBsAg、 HBcAg和 CpG-ODN, HBsAg和 Al(OH)3佐剂混匀,免疫小鼠,通过 ELISPOT实验检 测免疫小鼠脾细胞经 HBsAg CTL表位刺激后特异性分泌 IFN-γ 和 IL-4的水平, 并进行统计学分析, 即可评价 HBsAg HBcAg、 与 CpG-ODN联用相对于 HBsAg与 Α1(ΟΗ)3联用的促抗原特异 性 Thl细胞分化作用。
[106] 本实施例中所使用的为 BALB/c小鼠, 雌性, 6-8周, 购自 上海斯莱克公司; 所使用的 HBsAg抗原、 HBcAg, CpG-ODN 和 Α1(ΟΗ)3佐剂如实施例 1中所述。
[107] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。 对 BALB/c小鼠进行左后肢腓肠肌免疫, 每只注射体积为 100 μΐ, 每组 5只小鼠。 HBsAg+Al(OH)3组每 只 小 鼠 注 射 l g 经 Α1(ΟΗ)3 吸 附 的 HBsAg , HBsAg+HBcAg+CpG-ODN组每只小鼠注射 l g HBsAg, l g HBcAg和 2 g CpG-ODN。每三周免疫一次,在二免后十天取 ^·, 按常规方法制备脾淋巴细胞, 具体如下: 无菌操作取脾脏: 用无 菌镊子及剪刀剪取脾脏, 放于 70 μιη尼龙网筛 (购自 BD公司) 中,置于含有 5 ml预冷处理的 2%FBS(购自 GIBCO公司)- PBS 的平凰中; 用研磨棒研磨脾脏, 脾脏细胞通过筛目 平皿中, 得到细胞悬液, 用巴氏吸管将悬液放入经 40 μιη尼龙网筛过滤 (购自 BD公司)的 50 ml无菌离心管; 300 xg, 4。C离心 10分 钟; 弃去上清, 加入 5 ml lx破红剂 (购自 BD公司)重悬细胞, 室温作用 5分钟, 以破碎红细胞; 加入 5 ml 2% FBS-PBS终止 破红反应; 300 xg, 4。C离心 5分钟; 弃去上清, 加入 2 ml 2% FBS-PBS重悬细胞备用。 用 Mouse IFN-γ /IL-4 ELISPOT试剂 盒( BD公司)检测抗原特异性的 IFN-γ和 IL-4分泌, 刺激物为 HBsAg的肽库。 试驗完成后, 用 ImmimoSPOT Series 3自动读 板机上读取斑点数。
[108] HBsAg肽库, 由 54个 15氨基酸的多肽片段组成, 涵盖整 个 HBsAg全长序列 , 每对相邻多肽有 11个氨基酸的相互重叠, 代表所有可能的 HBsAg CTL表位。 HBsAg肽库的肽段设计如 序列 SEQ ID NO:7~SEQ ID NO:60所示。 所有肽段由 Chinese Peptide Company合成, 纯化, 分装和冻干。
[109] 具体抗原特异性的 IFN-γ和 IL-4分泌的检测步骤如下: 用 PBS # Mouse IFN-γ /IL-4(1: 200稀释, BD公司), 100 μΐ/孔 加至 ELISPOT板, 4°C包被过夜; 弃去包被抗体, 用封闭液(含 10%FBS RPMI-1640培养液) 洗孔 1次, 加入封闭液 200 μΐ/孔, 室温孵育 2 h; 采用 10%FBS-1640培养基稀释肽库至 10 g/ml; 采用 10%FBS-1640培养基稀释 ConA至 20 g/ml作为阳性对照; 弃去封闭液, 将 lxlO7细胞 /ml的脾淋巴细胞悬液与配置好的肽 库或 ConA对照按 100 μΐ/孔分别加入 96孔板中,一式两孔重复; 于 37°C 5%C02培养箱孵育 24 h; 弃去细胞悬液,用去离子水洗 板 2次, 3-5 m/次,用 PBST洗涤 3次, 200 μΐ/孔,加入用 10%FBS PBS稀释的 Mouse IFN-γ /IL-4 ELISPOT detection Antibody(l: 250稀释, BD公司), 100 μΐ/孔, 室温孵育 2 h; 弃去检测抗体, 用 PBST 洗板 4 次, 200 μΐ/孔, 加入用 10%FBS PBS 稀释 Streptavidian-HRP(1: 100 #, BD公司), 100 μΐ/孑 室温孵 育 1 h; 弃去酶结合物, 用 PBST洗 4次, 再用 PBS洗 3次, 加 入 AEC底物 ΙΟΟ μΙ/孔显色, 肉 察斑点形成, 加去离子水终 止反应; 在 ImmimoSPOT Series 3自动读板机上读取斑点数。 结果显示在图 7中。
[110] Thl细胞主要抗原特异性分泌 IL-2、IL-12、IFN-y和 TNF_p/ 等,介导与细胞毒和局部炎症有关的免疫应答,参与细胞免疫及 迟发型超敏性炎症的形成, Th2细胞主要抗原特异性分泌 IL-4、 IL-5、 IL-6和 IL-10,其主要功能为刺激 B细胞增殖并产生抗体, 与体液免疫相关。 IFN-γ可诱导 Thl细胞分化, 但抑制 Th2细 胞增殖; IL-4 i秀导 Th2细胞分化。 本实施例中, 用 ELISPOT 检测免疫小鼠的脾细胞的抗原特异性 IFN-γ和 IL-4的分泌水平, 结果 Al(OH)3作为 HBsAg佐剂分泌 HBsAg特异性 IL-4水平高 于 IFN-γ, 说明 Al(OH)3佐剂主要刺激 B细胞增殖产生抗体, 而 用本发明的 HBsAg+HBcAg+CpG-ODN组合物分泌 HBsAg特异 性 IFN-γ水平远高于 IL-4 水平, 说明本发明组合物主要参与 HBsAg特异性细胞免疫, 促进 Thl细胞分化, 达到 Thl/Th2细 胞增殖平衡, 因此兼具有杀伤感染 HBV 的肝细胞和清除游离 HBV病毒的潜能。
[111] 实施例 8· HBcAg、 HBsAg和 CpG-ODN联用在产生抗原特 异性 IgG抗体水平上具有协同作用
[112] 为了考察 HBcAg、 HBsAg和 CpG-ODN联用是否有协同作 用, 本发明人分别将 HBsAg、 HBcAg和 CpG-ODN, HBsAg和 CpG-ODN混匀, 免疫小鼠, 测定血清中 HBsAg特异性总 IgG, 并进行统计学分析, 即可评价 HBcAg、 HBsAg和 CpG-ODN联 用产生的抗原特异性 IgG抗体水平上具有协同作用。
[113] 本实施例中所使用的为 BALB/c小鼠, 雌性, 6-8周, 购自 上海斯莱克公司; 所使用的 HBsAg抗原、 HBcAg、 CpG-ODN 和 Α1(ΟΗ)3佐剂如实施例 1中所述。
[114] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。 对 BALB/c小鼠进行左后肢腓肠肌免疫, 每只注射体积为 100μ1, 每组 10只小鼠。
[115] HBsAg+CpG-ODN组每只小鼠注射 l g HBsAg和 2
CpG-ODN , HBsAg+HBcAg+CpG-ODN 组每只小鼠注射 l g HBsAg, l g HBcAg和 2 g CpG-ODN。 每三周免疫一次, 在二 免后十天 血并分离出血清, 按照常规方法用 2%脱脂奶对该血 清以 1:30稀幹倍 t ^始, 再进行 3倍系列稀释, 用于检测抗原 特异性 IgG总抗体。 [116] 根据 实 施例 1 所 述 的 方 法 , 测 定本发 明 HBsAg+HBcAg+CpG-ODN组和 HBsAg+CpG-ODN组产生的 HBsAg特异性抗体滴度。 结果显示在图 8中。
[117] 由图 8可见, HBcAg、 HBsAg和 CpG-ODN联用相对于 HBsAg+CpG-ODN组产生的 HBsAg特异性 IgG水平更高, 特 异性抗体滴度可达 4.0个对数值, 具有显著性差异( PO.01 ), 特异性抗体滴度(效价 )可增加 3倍左右。 上述结果表明, 本发 明 HBsAg+HBcAg+CpG-ODN 组合物在加入 HBcAg 后比 HBsAg+CpG-ODN联用产生显著更高的 HBsAg特异性 IgG抗 体水平, 证明 HBcAg、 HBsAg和 CpG-ODN具有协同作用。
[118] 实施例 9. HBcAg、 HBsAg 和 CpG-ODN 联用 比 HBsAg+CpG-ODN在细胞免疫方面促进 HBsAg特异性的 Thl 细胞分化。
[119] 实施例 8 中在体液免疫方面考察了 HBcAg、 HBsAg 和 CpG-ODN 具有协同作用, 本发明人还在细胞免疫方面分析了 HBcAg, HBsAg和 CpG-ODN联用是否促进 HBsAg的 Thl细 胞分化, 从而进一步驗证 HBcAg、 HBsAg和 CpG-ODN的协同 作用。
[120] 分别将 HBsAg、HBcAg和 CpG-ODN, HBsAg与 CpG-ODN 佐剂混匀, 免疫小鼠, 通过 ELISPOT实验检测免疫小鼠脾细胞 分泌 IFN-γ 和 IL-4 的水平, 即可评价 HBsAg 与 HBcAg、 CpG-ODN联用相对于 HBsAg+CpG-ODN联用对促进 HBsAg 的 Thl细胞分化的趋势。
[121] 本实施例中所使用的为 BALB/c小鼠, 雌性, 6-8周, 购自 上海斯莱克公司; 所使用的 HBsAg、 HBcAg和 CpG-ODN同实 施例 1中所述。
[122] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。 对 BALB/c小鼠进行左后肢腓肠肌免疫, 每只注射体积为 100 μ1, 每组 10只小鼠。 HBsAg+CpG-ODN组 每 只 小 鼠 注 射 l g HBsAg 和 2 g CpG-ODN , HBsAg+HBcAg+CpG-ODN组每只小鼠注射 l g HBsAg、 l g HBcAg和 2 g CpG-ODN。每三周免疫一次,在二免后十天取脾, 按常规方法制备^淋巴细胞, 用 Mo se IFN-γ /IL-4 ELISPOT 试剂盒( BD公司)检测 IFN-γ和 IL-4, 刺激物为 HBsAg的肽 库(具体序列如实施例 7所述)。 实验完成后, 用 ImmimoSPOT Series 3自动读板机上读取斑点数。
根据 实 施例 7 所 述 的 方 法 , 测 定本发 明 HBsAg+HBcAg+CpG-ODN组合物和 HBsAg+CpG-ODN组脾细 胞 HBsAg表位特异性 IFN-γ和 IL-4的分泌水平。结果显示在图 9中。
[123] 由图 9 可见, HBcAg 与 HBsAg+CpG-ODN联用相对于 HBsAg+CpG-ODN组分泌的 HBsAg特异性 IFN-γ水平高, 而 HBsAg 特 异 性 IL-4 水 平 低 , 表 明 本 发 明 HBsAg+HBcAg+CpG-ODN组合物相比于 HBsAg+CpG-ODN联 用在细胞免疫方面更能促进 HBsAg特异性的 Thl细胞分化,说 明 HBcAg、 HBsAg和 CpG-ODN具有协同作用。
[124] 实施例 10· HBsAg+HBcAg+CpG-ODN组合物突破 HBV转 基因小鼠( adr血清型)和免疫耐受小鼠( B10.M )的免疫耐受。
[125] 为了 ϋ HBsAg+HBcAg+CpG-ODN联用能否在 HBV转基 因模型小鼠和免疫耐受小鼠上突破免疫耐受, 本发明人分别将 HBsAg, HBcAg和 CpG-ODN, HBsAg和 Α1(ΟΗ)3佐剂混匀, 免疫小鼠, 测定血清 HBsAg特异性总 IgG和保护性抗体 IU 水平, 并进行统计学分析, 从而评价 HBsAg , HBcAg 和 CpG-ODN联用相对于 HBsAg和 Α1(ΟΗ)3联用对突破免疫耐受 的影响。
[126] 本实施例中所使用免疫耐受小鼠有两种: 第一种为 HBV转 基因小鼠, 血清型为 adr血清型, 雄性, 10-12周, 购自上海南 方模式动物中心; 第二种为 B10.M小鼠, 为组织相容性小鼠, 具有免疫耐受, 雄性, 6-8周, 购自 The Jackson Laboratory; 所使用的 HBsAg、 HBcAg和、 CpG-ODN和 Α1(ΟΗ)3佐剂如实 施例 1中所述。
[127] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS稀释至 20 g/ml。对小鼠进行左后肢腓肠肌免疫,每只注射 体积为 100 μΐ, 每组 4只小鼠。
[128] HBsAg+Al(OH)3组每只小鼠注射 l g 经 Α1(ΟΗ)3吸附的 HBsAg , HBsAg+HBcAg+CpG-ODN 组每只小鼠注射 l g HBsAg, l g HBcAg和 lO g CpG-ODN。 每三周免疫一次, 每 次免疫后两周采血,共免疫 6次,按照实施例 1中所述方法检测 HBsAg特异性 IgG总抗体, 结果显示在图 10中, 按照实施例 2 中所述方法检测产生的 HBsAg抗体, 结果显示在图 11中。
[129] 由图 10可见, HBsAg+HBcAg+CpG-ODN组合物组可突破 两种模型小鼠的免疫耐受, HBsAg特异性 IgG抗体滴度可达 4.0 个对数值以上, 与 HBsAg+Al(OH)3组比较, 具有显著性差异 ( P<0.05 ), HBsAg特异性 IgG抗体滴度(效价 )可增加 10-200 倍; 由图 11可见, 保护性抗体水平可达 2.5个对数值以上, 与 HBsAg+Al(OH)3组比较, 产生的保护性抗体水平高可增加 5-20 倍。 上述结果表明, 本发明 HBsAg+HBcAg+CpG-ODN组合物 疫苗比 Α1(ΟΗ)3佐剂乙肝疫苗在免疫耐受小鼠上能显著增强乙 肝表面抗原特异性的总 IgG和保护性抗体的免疫应答, 更能有 效的突破免疫耐受。
[130] 实施例 11· HBsAg+HBcAg+CpG-ODN组合物在 HBV转基 因小鼠(adr血清型)和免疫耐受小鼠( B10.M ), 产生高滴度抗 HBcAg的特异性 IgG抗体。
[131] 为了^ iHBsAg+HBcAg+CpG-ODN联用能否在 HBV转基 因模型小鼠和免疫耐受小鼠上,产生抗 HBcAg的特异性 IgG抗 体,本发明人将 HBsAg, HBcAg和 CpG-ODN混匀,免疫小鼠, 测定血清中 HBcAg特异性总 IgG水平。 [132] 本实施例中所使用免疫耐受小鼠有两种,如实施例 10所述; 所使用的 HBsAg、 HBcAg和 CpG-ODN同实施例 1中所述。
[133] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS 稀释至 20 g/ml。 每只小鼠经左后肢腓肠肌注射 l g HBsAg, l g HBcAg和 lO g CpG-ODN。 每只小鼠, 注射体积 为 ΙΟΟμΙ, 每组 4只小鼠。 每三周免疫一次, 每次免疫后两周采 血, 共免疫 6次, 按照实施例 1中所述方法检测 HBcAg抗原特 异性 IgG总抗体,不同之处在于, 包被抗原为 l g HBcAg抗原, 结果显示在图 12中。
[134] 由图 12可见, HBsAg+HBcAg+CpG-ODN组合物可在两种 模型小鼠上, 产生高滴度的抗 HBcAg特异性 IgG抗体, 在一免 后二周抗体滴度即可达 2.5个对数值以上,此后抗体滴度可达 4.0 个 对 数 值 以 上 。 上 述 结 果 表 明 , 本 发 明 HBsAg+HBcAg+CpG-ODN组合物产生高滴度抗 HBcAg的特异 性 IgG抗体。
[135] 实施例 12· HBsAg+HBcAg+CpG-ODN组合物在 HBV转基 因小鼠(adr血清型)和免疫耐受小鼠(B10.M ) 中产生的抗 HBcAg抗体亚型 IgG2a>IgGl。
[136] 为了 iiHBsAg+HBcAg+CpG-ODN联用在 HBV转基因模 型小鼠和免疫耐受小鼠上产生的抗 HBcAg 抗体亚型 IgG2a>IgGl , 本发明人将 HBsAg、 HBcAg和 CpG-ODN混匀, 免疫小鼠,测定血清中抗 HBcAg抗体亚型 IgG2a和 IgGl滴度。
[137] 本实施例中所使用免疫耐受小鼠有两种,如实施例 10所述; 所使用的 HBsAg、 HBcAg和 CpG-ODN同实施例 1中所述。
[138] HBsAg和 HBcAg用 PBS稀释至 10 g/ml; CpG-ODN用 PBS 稀释至 20 g/ml。 每只小鼠经左后肢腓肠肌注射 1μδ HBsAg, l g HBcAg和 lO g CpG-ODN。 每只小鼠, 注射体积 为 100μ1, 每组 4只小鼠。 每三周免疫一次, 每次免疫后两周采 血, 共免疫 6次, 按照实施例 6中所述方法检测抗 HBcAg抗体 亚型 IgG2a和 IgGl滴度, 结果显示在图 13中。
[139] 图 13结果表明,本发明 HBsAg+HBcAg+CpG-ODN组合物 在 HBV转基因小鼠( adr血清型)和免疫耐受小鼠( B10.M ) 中产生在的抗 HBcAg抗体亚型 IgG2a>IgGl , 且具有显著性差 异( Ρ<0·01 )。
[140] 实施例 13· HBsAg+HBcAg+CpG-ODN组合物有清除 HBV 转基因小鼠中 HBsAg抗原的趋势。
[141] 对 HBsAg+HBcAg+CpG-ODN组合物突破 HBV转基因小鼠 免疫耐受,并产生抗原特异性抗体的小鼠进行分析,研究它们体 内 HBsAg表达量是否可以出现下降趋势, 验证抗体对血清中 HBsAg抗原的清除情况。
[142] 本实施例中所使用的为 HBV转基因小鼠, 血清型为 adr血 清型 (从 C57小鼠改造而来), 雄性, 10-12周, 购自上海南方 模式动物中心;所使用的 HBsAg、 HBcAg、 CpG-ODN和 Α1(ΟΗ)3 佐剂如实施例 1中所述。
[143] HBsAg和 HBcAg用 PBS分别稀释至 10 g/ml和 100 g/ml; CpG-ODN用 PBS分别稀幹至 20 g/ml和 200 g/ml。对小鼠进 行左后肢腓肠肌免疫, 每只注射体积为 100 μ1, 每组 8只小鼠。 HBsAg+Al(OH)3组每只小鼠注射 1 经 Α1(ΟΗ)3吸附的 HBsAg; HBsAg+HBcAg+CpG-ODN组分两组, 一组每只小鼠 注射 1 HBsAg, 1 HBcAg和 10 CpG-ODN, 另外一组 每只小鼠注射 10 HBsAg, 10 HBcAg和 20 CpG-ODN。 每三周免疫一次,每次免疫后两周采血, 共免疫 6次, 按照常规 方法用 2%脱脂奶对免疫前和六免二周后的血清以 1:200稀释, 用实施例 1中所述 HBsAg抗原作为标准品, 用 C57小鼠(购自 上海斯莱克公司)血清按 lOOOng/mK 500ng/mK 250ng/mK 125ng/ml、 62.5ng/ml、 31.25 ng/ml, 15.625 ng/ml, 7.8 ng/ml进 行稀释作为起始浓度, 再用 2%脱脂奶进行 1:200稀释, 然后将 稀释的样品和标准品用 HBsAg抗原检测试剂盒(上海科华公司) 检测 HBsAg抗原浓度。 用测定的标准曲线计算免疫前和六免二 周后个鼠血清中含有的 HBsAg 抗原浓度, 并计算六免二周后 HBsAg抗原浓度下降%。 结果显示在图 14中。
[144] 具体 HBsAg 抗原浓度的检测步骤如下: 取出预包被抗 HBsAg的反应板, 加入 75μ1稀释的血清和阴、 阳性对照于反应 孔中; 用封片纸覆盖反应^, 将反应板置 37°C孵育 1 h; 取出 反应板, 撕去封片, 在已加入待测样本和阴性、 阳性对照孔中加 入 50 μΐ酶结合物; 微孔振荡器上震荡 10 s; 用封片纸覆盖反应 将反应板置 37eC孵育 30 m; 取出反应板, 撕去封片, 洗 涤反应板 5次; 洗涤结束后立即在所有孔内加入显色剂 A、显色 剂 B各 50μ1, 混匀; 微孔振荡器上震荡 10 s; 用封片纸覆盖反 应^ , 将反应板置 37°C孵育 30 m; 在所有孔内加入 50μ1终止 液, 震荡反应 5 s, 使之充分混匀。 酶联仪测定 OD45nm值(以 OD630請校正)。
[145] 由图 14所示, HBsAg+HBcAg+CpG-ODN组合物组在 HBV 转基因小鼠上的 HBsAg抗原浓度下降%高于 HBsAg+Al(OH)3 组,具有显著性差异( P<0.05 );提高 HBsAg、HBcAg和 CpG-ODN 佐剂剂量后, HBsAg抗原浓度下降%更明显, 平均可达 90%以 上。表明该组合物具有清除 HBsAg抗原并使 HBsAg抗原转阴的 趋势, 为慢性乙肝治疗性疫苗打下坚实的基础。
[146] 实施例 14· HBsAg+HBcAg+CpG-ODN组合物具有 HBsAg 和 HBcAg抗原特异性 CTL体内杀伤的活性。
[147] 抗原特异性 CTL体内杀伤是对治疗性疫苗效果的最直接证 据, 对免疫 HBsAg+HBcAg+CpG-ODN 组合物的小鼠进行 HBsAg和 HBcAg抗原特异性 CTL体内杀伤活性的检测, ¾ϋ 其 CTL体内杀伤活性, 计算 CTL杀伤率。
[148] 本实施例中所使用的为 C57BL/6J小鼠, 雌性, 6-8周, 购 自上海斯莱克公司;所使用的 HBsAg抗原、 HBcAg和 CpG-ODN 佐剂如实施例 1中所述。 [149] HBsAg和 HBcAg用 PBS稀释至 100 g/ml; CpG-ODN用 PBS稀释至 200 g/ml。 对小鼠进行左后肢腓肠肌免疫, 每只注 射体积为 100 μ1,每组 8只小鼠。 HBsAg+HBcAg+CpG-ODN组 每只小鼠注射 10 HBsAg、 lO g HBcAg和 20 CpG-ODN。 每两周免疫一次, 共免疫三次, 在三免后十天检测 HBsAg 和 HBcAg抗原特异性 CTL体内杀伤活性, 结果显示在图 15中。
[150] 具体抗原特异性 CTL体内杀伤活性检测步骤如下: 无菌取 未免疫小鼠的脾脏, 玻片研磨, 300xg, 4。C离心 5 min, 弃上清; 加入 5ml红细胞裂解液(购自 BD公司)重悬细胞, 室温静置 5 min裂解红细胞, 用 10 ml PBS (购自 GIBCO公司)洗涤两次; 用 PBS将 CFSE (购自 Molecular Probes公司)稀释到 4 μΜ和 0.4 μΜ,分别与等体积的细胞悬液混匀,室温静置 7 min; 300xg, 4。C离心 5 min弃上清, 用 PBS洗两次; 分别用 RPMI-1640 (购 自 GIBCO公司)完全培养基将细胞重悬, 使细胞浓度为 2xl07 cells/ml, CFSEhigh细胞中分别加入等体积的 HBsAg肽库(见实 施例 7 )和 HBcAg肽库; CFSElow细胞中补加等体积 RPMI-1640 完全培养基, 各转移至细胞培养瓶, 37。C, 5% C02培养箱中静 置 4 h; 用 PBS洗两次; PBS重悬细胞并进行计数, 根据计数结 果用 PBS将细胞调至 2xl07cells/ml, 然后将两群细胞等体积混 合; 将制备好的标记细胞混合液经眼眶注射给免疫 HBsAg+HBcAg+CpG-ODN的小鼠, 每只小鼠 100 μΐ; 15-17 h 后制备小鼠脾细胞悬液, 用 2%FBS-PBS重悬细胞, 用流式细胞 仪进行检测; 计算抗原特异性 CTL杀伤百分率。
[151] 上述 HBcAg肽库由 43个 15 J ^酸的多肽片 且成, 涵盖 整个 HBcAg全长序列,每对相邻多肽有 11个氨基酸的相互重叠, 代表所有可能的 HBcAg CTL表位, 例如 SEQ ID NO:2的 1-15 位、 5-19位、 9-23位…… 169-183位 酸的片段。 上述 HBcAg 肽库的肽段设计如序列 SEQ ID NO:61~SEQ ID NO:103所示。 所有肽段由 Chinese Peptide Company合成,纯化,分装和冻干。
[152] 由图 15 所示, HBsAg+HBcAg+CpG-ODN 组合物组在 C57BL/6J小鼠上, 具有 HBsAg和 HBcAg抗原特异性 CTL体 内杀伤活性, 其 CTL 杀伤率在 30%左右。 表明该组合物具有 HBsAg和 HBcAg抗原特异性 CTL体内杀伤活性, 为慢性乙肝 治疗性疫苗提供最直接的证据。
[153] 在本申请中, 多个出版物在括号中被引用。 由此, 这些出版 物的公开以整体通过引用并入本申请,以更完整的描述与本发明 相关的技术的状态。
[154] 尽管通过公开的实施方案描述了本发明,本领域技术人员应 当容易理解,具体的实施例和上文详述的研究只是对本发明的举 例说明。应当理解在不脱离本发明精神的情况下,可作出各种修 改。 因此, 本发明只受所附权利要求的限制。

Claims

权 利 要 求
1.一种药物组合物, 其包含:
i ) 乙肝表面抗原 ( HBsAg ),
ii ) 乙肝核心抗原 ( HBcAg ),
iii ) CpG寡聚脱氧核苷酸( CpG-ODN ), 和 /或
iv )任选地可药用载体。
2.根据权利要求 1所述的药物组合物, 其用作预防性或治 疗性疫苗。
3. 根据以上任一权利要求所述的药物组合物, 其中所述
HBsAg具有 SEQ ID ΝΟ:1所示序列。
4. 根据以上任一权利要求所述的药物组合物, 其中所述 HBcAg具有 SEQ ID NO:2所示序列。
5. 根据以上任一权利要求所述的药物组合物, 其中所述 CpG-ODN包含硫代磷酸酯连接,优选地所述 CpG-ODN是全硫 代寡聚脱氧核苷酸。
6. 根据以上任一权利要求所述的药物组合物, 其中所述 CpG-ODN包含两个或更多个 5, -NTCGTT-3' 基序。
7. 根据以上任一权利要求所述的药物组合物, 其中所述 CpG-ODN长度为 15 ~ 35个核苷酸, 优选 20~25个核苷酸。
8. 根据以上任一权利要求所述的药物组合物, 其中所述 CpG-ODN具有选自下列的序列: 5, -TCG TTC GTT CGT TCG TTC GTT-3' ( SEQ ID NO:3 ), 5' -TCG TTC GTT CGT TCG TTC GTT CGT T-3' ( SEQ ID NO:4 )、 5, -TCG TCG TCG TCG TCG TCG TCG-3' ( SEQ ID NO:5 )和 5, -TCC ATGACG TTC CTGACG TT-3' ( SEQ ID NO:6 ), 优选地所述 CpG-ODN具有 序列: 5, -TCG TTC GTT CGT TCG TTC GTT-3' ( SEQ ID NO:3 )„
9.根据以上任一权利要求所述的药物组合物, 其中组分 i ), ii ) 以及 iii )之间的相对重量比范围是 1: 0.2-5: 1-50, 优选为 1: 1-5: 2~15。
10.—种药盒, 其包含权利要求 1-9任一项的药物组合物以 及其使用说明。
11.根据权利要求 1至 9中任一项所述的药物组合物在制备 用于在对象中治疗 HBV感染和 /或 HBV介导的疾病之药物中的 用途, 优选地所述 HBV感染和 /或 HBV介导的疾病选自乙型肝 炎、 肝硬化和肝癌。
12.根据权利要求 1至 9中任一项所述的药物组合物在制备 用于在对象中产生针对 HBV的免疫应答之药物中的用途。
13.根据权利要求 1至 9中任一项所述的药物组合物在制备 用于在对象中使抗 HBc抗体发生亚型转变之药物中的用途。
14.根据权利要求 1至 9中任一项所述的药物组合物在制备 用于在对象中突破乙型肝炎病毒免疫耐受之药物中的用途。
PCT/CN2014/072570 2013-03-13 2014-02-26 乙型肝炎疫苗 WO2014139359A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/773,829 US9878035B2 (en) 2013-03-13 2014-02-26 Hepatitis B vaccine
JP2015561921A JP6499592B2 (ja) 2013-03-13 2014-02-26 B型肝炎ワクチン
EP14765662.3A EP2974740B1 (en) 2013-03-13 2014-02-26 Hepatitis b vaccine
HK16106930.2A HK1218872A1 (zh) 2013-03-13 2016-06-16 乙型肝炎疫苗

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310080863.X 2013-03-13
CN201310080863.XA CN104043120B (zh) 2013-03-13 2013-03-13 乙型肝炎疫苗

Publications (1)

Publication Number Publication Date
WO2014139359A1 true WO2014139359A1 (zh) 2014-09-18

Family

ID=51496840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072570 WO2014139359A1 (zh) 2013-03-13 2014-02-26 乙型肝炎疫苗

Country Status (6)

Country Link
US (1) US9878035B2 (zh)
EP (1) EP2974740B1 (zh)
JP (1) JP6499592B2 (zh)
CN (1) CN104043120B (zh)
HK (1) HK1218872A1 (zh)
WO (1) WO2014139359A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058033A (zh) * 2019-12-16 2021-07-02 远大赛威信生命科学(南京)有限公司 一种用于预防和治疗乙型肝炎的药物组合物及其用途
CN114409802A (zh) * 2020-12-31 2022-04-29 中国科学院微生物研究所 禽流感病毒三聚体亚单位疫苗及其应用
CN114437185A (zh) * 2020-12-31 2022-05-06 中国科学院微生物研究所 冠状病毒三聚体亚单位疫苗及其应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104873969B (zh) * 2015-04-16 2018-06-19 南京赛威信生物医药有限公司 基于HBV PreS-S、C抗原及新型佐剂CpG的治疗性乙型肝炎疫苗
CA3023022A1 (en) * 2016-05-04 2017-11-09 Transgene Sa Combination therapy with cpg tlr9 ligand
CN107693788B (zh) * 2017-08-21 2022-10-11 远大赛威信生命科学(南京)有限公司 一种用于预防或治疗乙型肝炎的药物组合物及其用途
GB201721069D0 (en) * 2017-12-15 2018-01-31 Glaxosmithkline Biologicals Sa Hepatitis B Immunisation regimen and compositions
WO2020134682A1 (zh) 2018-12-24 2020-07-02 南京远大赛威信生物医药有限公司 用于治疗乙型肝炎的药物制剂及其制备方法和用途
CR20220129A (es) 2019-09-30 2022-05-06 Gilead Sciences Inc Vacunas para vhb y métodos de tratamiento de vhb
JP2023506440A (ja) 2019-12-13 2023-02-16 遠大賽威信生命科学(南京)有限公司 免疫刺激性組成物及びその用途
CN111728955A (zh) * 2020-06-19 2020-10-02 中山大学 一种用于乙肝治疗的纳米颗粒及其制备方法和治疗性疫苗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547367A (en) 1983-12-20 1985-10-15 The United States Of America As Represented By The Department Of Health And Human Services Hepatitis B core antigen vaccine
WO2007031334A2 (en) 2005-09-16 2007-03-22 Rhein Biotech Gesellschaft für neue Biotechnologische Prozesse und Produkte mbH Vaccines comprising truncated hbc core protein plus saponin-based adjuvants
CN101492672A (zh) 2008-01-23 2009-07-29 许洪林 具有免疫刺激活性的硫代寡聚脱氧核苷酸及其应用
CN102612558A (zh) * 2009-09-03 2012-07-25 辉瑞疫苗有限责任公司 Pcsk9疫苗

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689363B1 (en) * 1992-01-29 2004-02-10 Epimmune Inc. Inducing cellular immune responses to hepatitis B virus using peptide and nucleic acid compositions
US7323331B2 (en) * 2000-08-11 2008-01-29 Advanced Life Science Institute, Inc. Method for detecting or assaying HBV
BRPI0610297A2 (pt) * 2005-04-18 2010-06-08 Novartis Vaccines & Diagnostic expressão de antìgeno de superfìcie de vìrus da hepatite b para a preparação de vacina
CN101559224B (zh) * 2008-04-18 2012-07-11 北京生物制品研究所 脊髓灰质炎疫苗
CN101675994B (zh) * 2008-09-19 2012-07-25 齐鲁制药有限公司 治疗性疫苗制剂
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
CU23740A1 (es) 2009-09-29 2011-12-28 Ct Ingenieria Genetica Biotech Método de obtención de una formulación de antígenos del virus de la hepatitis b
CN102462840B (zh) * 2010-11-09 2014-03-19 南通生物科技园开发投资有限公司 乙肝治疗性疫苗

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547367A (en) 1983-12-20 1985-10-15 The United States Of America As Represented By The Department Of Health And Human Services Hepatitis B core antigen vaccine
WO2007031334A2 (en) 2005-09-16 2007-03-22 Rhein Biotech Gesellschaft für neue Biotechnologische Prozesse und Produkte mbH Vaccines comprising truncated hbc core protein plus saponin-based adjuvants
CN101492672A (zh) 2008-01-23 2009-07-29 许洪林 具有免疫刺激活性的硫代寡聚脱氧核苷酸及其应用
CN102612558A (zh) * 2009-09-03 2012-07-25 辉瑞疫苗有限责任公司 Pcsk9疫苗

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CHIEN-FU HUANG ET AL., CELLULAR & MOLECULAR IMMUNOLOGY, vol. 3, no. 2, 2006, pages 97 - 106
CHIN R; LACAMINI S, REV MED VIORL, vol. 13, no. 4, 2003, pages 255 - 72
FATTOVICH G, J HEPATOL, vol. 48, 2008, pages 335 - 352
GONG, MINGQING ET AL.: "Insect cell -expressed hemagglutinin with CpG oligodeoxynucleotides plus alum as an adjuvant is a potential pandemic influenza vaccine candidate", VACCINE, vol. 30, no. 52, 14 December 2012 (2012-12-14), pages 7498 - 7505, XP055277694, DOI: 10.1016/J.VACCINE.2012.10.054 *
KWON H; LOK AS, NAT REV GASTROENTEROL HEPATOL, vol. 8, 2011, pages 275 - 284
LI JILAI; XU JING ET AL., CHINESE JOURNAL OF BIOLOGICALS, vol. 24, 2011, pages 1121 - 1125
Q. XIE ET AL., MICROBES AND INFECTION, vol. 11, 2009, pages 515 - 523
S. RATH ET AL., CLIN.EXP. IMMUNOL., vol. 72, 1988, pages 164 - 167
See also references of EP2974740A4
TANG SX; YU GL, LANCET, vol. 335, no. 8684, 1990, pages 302
XU D Z; ZHAO K, PLOS ONE, vol. 3, 2008, pages E2565
ZENG YING; ZHANG YIJUN ET AL., GUANGDONG MEDICAL JOURNAL,, vol. 24, no. 7, 2003, pages 740 - 706

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058033A (zh) * 2019-12-16 2021-07-02 远大赛威信生命科学(南京)有限公司 一种用于预防和治疗乙型肝炎的药物组合物及其用途
CN114409802A (zh) * 2020-12-31 2022-04-29 中国科学院微生物研究所 禽流感病毒三聚体亚单位疫苗及其应用
CN114437185A (zh) * 2020-12-31 2022-05-06 中国科学院微生物研究所 冠状病毒三聚体亚单位疫苗及其应用
CN114409802B (zh) * 2020-12-31 2023-10-20 中国科学院微生物研究所 禽流感病毒三聚体亚单位疫苗及其应用

Also Published As

Publication number Publication date
US20160136264A1 (en) 2016-05-19
JP6499592B2 (ja) 2019-04-10
CN104043120B (zh) 2017-05-31
US9878035B2 (en) 2018-01-30
EP2974740A1 (en) 2016-01-20
EP2974740B1 (en) 2019-06-19
EP2974740A4 (en) 2016-08-24
HK1218872A1 (zh) 2017-03-17
JP2016512204A (ja) 2016-04-25
CN104043120A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2014139359A1 (zh) 乙型肝炎疫苗
JP2023506439A (ja) 医薬組成物及びその用途
JP6629195B2 (ja) ウイルス免疫療法用の医薬組成物およびその使用
US9872895B2 (en) TLR5 ligands, therapeutic methods, and compositions related thereto
CN104873969A (zh) 基于HBV PreS-S、C抗原及新型佐剂CpG的治疗性乙型肝炎疫苗
CN107693788B (zh) 一种用于预防或治疗乙型肝炎的药物组合物及其用途
JP5102209B2 (ja) 切り詰め型hbcコアタンパク質と、サポニンが主成分の免疫増進剤とを含有するワクチン
JP7271433B2 (ja) 免疫賦活薬、免疫療法用医薬組成物、ならびにその調製および使用
CA3119581A1 (en) Immunogenic compositions for treatment of hepatitis b
TW202034950A (zh) 用於治療b型肝炎的藥物製劑及其製備方法和用途
CA3144319A1 (en) Improved therapeutic composition comprising hepatitis b antigen having s, pre-s1 and pre-s2 protein, aluminium phosphate and interferon-alpha and use thereof for treatment of hepatitis b.
JP2023512526A (ja) B型肝炎およびd型肝炎を治療および予防するための組成物および方法
TW202203970A (zh) 靶向冠狀病毒的IgY免疫球蛋白、其製備方法、及其使用方法
CN113058033A (zh) 一种用于预防和治疗乙型肝炎的药物组合物及其用途
Madaan Heplisav V

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014765662

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015561921

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773829

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE