WO2014136826A1 - 加熱媒体発生装置及び該加熱媒体発生装置を含む加熱処理装置 - Google Patents
加熱媒体発生装置及び該加熱媒体発生装置を含む加熱処理装置 Download PDFInfo
- Publication number
- WO2014136826A1 WO2014136826A1 PCT/JP2014/055594 JP2014055594W WO2014136826A1 WO 2014136826 A1 WO2014136826 A1 WO 2014136826A1 JP 2014055594 W JP2014055594 W JP 2014055594W WO 2014136826 A1 WO2014136826 A1 WO 2014136826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating medium
- heat
- exchange pipe
- heat treatment
- heat exchange
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/12—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
- F24H1/14—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
- F24H1/16—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled
- F24H1/162—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled using electrical energy supply
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J27/00—Cooking-vessels
- A47J27/04—Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B3/00—Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J27/00—Cooking-vessels
- A47J27/04—Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels
- A47J2027/043—Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels for cooking food in steam
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/032—Heaters specially adapted for heating by radiation heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
Definitions
- the present invention is, for example, a heating medium generator capable of generating a heating medium capable of heat-processing food with high quality, and a processing object such as food can be heated with high quality using the heating medium generator.
- the present invention relates to a heat treatment apparatus.
- the present inventors have boiled water at a predetermined temperature and a predetermined pressure, and a heating medium ( A gas-liquid mixture) is generated, and the heating medium (gas-liquid mixture) is sprayed into a heat-treatment chamber heated to a predetermined temperature, whereby the heating medium (gas-liquid mixture) is mixed.
- Development and patenting of a novel heat treatment method and heat treatment apparatus that adjust to the above have been attempted (see Patent Document 1).
- Patent Document a method and a generator for generating saturated steam and superheated steam in the same apparatus have been developed and patent applications have been filed (Patent Document) 2).
- Patent Document 4 a new heating medium generator that is unitized and can be connected to various devices has been developed and applied for a patent.
- the heating medium generator and the heat treatment apparatus previously developed by the present inventors can sufficiently achieve the original problem, recently, there is a demand for downsizing and cost reduction of the entire apparatus.
- the inventors have developed the present invention to meet the demand for compactness and low price.
- the price of the heating wire and the heat transfer cement is expensive, and the heat transfer cement is filled and cured in the housing. It takes time for the manufacturing process. As a result, it has been difficult to reduce the product price of the heating medium generator and the heat treatment apparatus using the heating medium generator. In addition, since the heat transfer cement is filled, the weight of the entire apparatus is bulky, and the request for downsizing has not been met.
- the present invention has been made to solve such a problem, and an object of the present invention is to provide a heating medium generator and a heat treatment apparatus that can meet the demand for cost reduction. Another object of the invention is to save energy, reduce weight, and shorten the device manufacturing process and time.
- the first invention includes an exterior body having heat insulating properties, A far-infrared radiation heater placed in the exterior body, A heat exchange pipe provided with a water supply portion and a water discharge portion and disposed from one end side to the other end side of the exterior body, through which the heating medium supply water passes through the internal space,
- This is a heating medium generator characterized by comprising a first reflecting member that reflects far-infrared radiation emitted from a far-infrared radiation heater and can radiate again to a heat exchange pipe.
- the heat exchange method of the heating medium is a radiant heat transfer method using a far-infrared heater, instead of a conductive heat transfer method using a conventional heating wire / heat transfer cement,
- the configuration is such that the radiation heat can be reflected and repeatedly emitted.
- the manufacturing cost can be kept low, and the apparatus manufacturing process has been simplified, resulting in a significant cost reduction.
- the far-infrared radiant heat is not only radiated to the heat exchange pipe in one way, but the far-infrared radiant heat is reflected by the first reflecting member. Since the heat transfer efficiency can be increased and energy can be saved as a whole, and the heat transfer cement is not used as in the past, the overall weight of the device is reduced. And shortened the device manufacturing time.
- the far-infrared radiation heater is formed in a rod shape, and is disposed at the center position of the internal space from one end to the other end of the exterior body
- the heat exchange pipe is formed in a coil shape, and is arranged in a wound shape in the length direction of the far-infrared radiation heater, with a predetermined interval between it and the far-infrared radiation heater
- the first reflecting member is formed in an overall cylindrical shape covering the entire length direction of the heat exchange pipe, and is arranged with a predetermined interval between the heat exchange pipe. It is that.
- a heat exchange pipe formed in a coil shape is disposed around a rod-shaped far-infrared radiation heater disposed in the center of the exterior body, and the cylinder is provided with a predetermined interval between the heat exchange pipe. Therefore, the heat radiated from the far infrared radiation heater passes through the heat exchange pipe and is transferred to the heating medium in the pipe. The radiant heat that has passed through the heat exchange pipe is reflected by the first reflecting member, passes through the heat exchange pipe again, and is transferred to the heating medium in the pipe.
- emission heater passes through the inside of a heat exchange pipe repeatedly, and is transmitted to a heating medium, Therefore An efficient heat-transfer effect is exhibited.
- the exterior body is formed in an overall cylindrical shape including an outer cylinder and a heat insulating material provided on the inner surface side of the outer cylinder, the inside being a sealed space. It is a heating medium generator characterized by
- the exterior body can be a sealed space having heat insulation properties, it is possible to improve the heat transfer efficiency by effectively utilizing the radiant heat from the far-infrared radiation heater without escaping to the outside.
- the fourth invention is the heating medium generator according to the third invention, wherein the first reflecting member is formed in a cylindrical shape and disposed on the inner surface of the heat insulating material.
- the first reflecting member is formed in a cylindrical shape, the radiant heat from the far-infrared radiant heater is reflected by the cylindrical surface portion and returns to the heat exchange pipe again, so the heat transfer effect is high. .
- the fifth invention is the heating medium generator according to the fourth invention, wherein the inner surface of the first reflecting member is mirror-finished.
- the reflection efficiency of the radiant heat with respect to the first reflecting member is high.
- the sixth invention is a heating medium generator characterized in that, in any one of the first to fifth inventions, a single far infrared radiation heater is provided.
- the entire apparatus can be made compact.
- a seventh aspect of the present invention is the heating medium generator according to any one of the first to fifth aspects, wherein a plurality of far infrared radiation heaters are provided.
- the heat transfer efficiency in the apparatus is improved.
- the central region of the heat exchange pipe disposed in the internal space over the length direction of the exterior body includes the first to nth regions extending in the length direction of the internal space. Multiple areas are juxtaposed, Far-infrared radiant heaters are arranged independently in each of these multiple areas, Each area where each far infrared radiation heater is disposed is partitioned by a second reflecting member that reflects the far infrared radiation emitted from the far infrared radiation heater and radiates again to the heat exchange pipe.
- the heating medium generator is characterized in that
- the far-infrared radiant heat is radiated to the heat exchange pipe in one way, but also the far-infrared radiant heat is reflected by the first reflecting member and radiated again to the heat exchange pipe. Then, it can be reflected again by the second reflecting member and radiated to the heat exchange pipe. Therefore, since heat transfer is repeatedly performed by radiant heat, the heat transfer efficiency is improved, and high energy saving can be achieved as a whole.
- the ninth invention is the heating medium generator according to the eighth invention, wherein the surface of the second reflecting member is mirror-finished.
- the reflection efficiency of the radiant heat is increased and the heat transfer efficiency is also increased.
- a tenth aspect of the present invention is a heat treatment apparatus having the heating medium generator of any one of the first to ninth aspects as a constituent element.
- a heating medium spray nozzle for spraying the heating medium generated by the heating medium generator is connected to the water discharger, The heating medium is controlled in the range of 0.01 MPa to 0.30 MPa and 105 ° C. to 150 ° C.
- the heating medium is a gas-liquid mixture composed of water vapor and hot water generated in the heat exchange pipe by boiling the supply water supplied in the heat exchange pipe at a predetermined temperature and a predetermined pressure
- the heat treatment is characterized in that the heat treatment chamber is adjusted to a heat treatment atmosphere in which superheated steam and high-temperature fine water droplets are mixed by injecting the heat medium into the heat treatment chamber through the heating medium injection nozzle. It is a device.
- the heating medium generator of the present invention by using the heating medium generator of the present invention, it is possible to meet the demand for downsizing and cost reduction of the entire heat treatment apparatus.
- the present invention it is possible to provide a heating medium generator and a heat treatment apparatus that can meet the demands for compactness and low price. Further, according to the present invention, energy saving, weight reduction, and shortening of the device manufacturing process and time can be achieved.
- FIG. 1 is a schematic front view showing a partial cross section of a first embodiment of a heating medium generator of the present invention.
- FIG. 2 is a schematic side view showing a first embodiment of the heating medium generator of the present invention in partial cross section.
- FIG. 6 is a schematic front view showing a second embodiment of the heating medium generator of the present invention in partial cross section.
- FIG. 5 is a schematic side view showing a second embodiment of the heating medium generator of the present invention in a partial cross section.
- FIG. 7 is a schematic front view showing a third embodiment of the heating medium generator of the present invention in a partial cross section.
- FIG. 1 is a schematic front view showing a partial cross section of a first embodiment of a heating medium generator of the present invention.
- FIG. 2 is a schematic side view showing a first embodiment of the heating medium generator of the present invention in partial cross section.
- FIG. 6 is a schematic front view showing a second embodiment of the heating medium generator of the present invention in partial cross section.
- FIG. 5 is
- FIG. 6 is a schematic side view showing a third embodiment of a third embodiment of the heating medium generator of the present invention. It is a figure which shows the relationship between the internal pressure in the nozzle connected to the heating-medium generator of this invention, and a water vapor
- FIG. 1 is a schematic view showing an example of the heat treatment apparatus of the present invention using the heating medium generation apparatus of the present invention
- FIGS. 2 to 7 are schematic views showing an example of the heating medium generation apparatus of the present invention.
- the heat treatment apparatus is provided in the heat treatment chamber 1 and the heat treatment chamber 1.
- the heat treatment chamber heating mechanism 2 for heating the inside of the heat treatment chamber 1 to a predetermined temperature, and heating for injecting a heating medium into the heat treatment chamber 1. It is comprised with the medium generator 3 (refer FIG. 1).
- the heat treatment chamber 1 is formed in, for example, a non-sealed rectangular shape having a predetermined length with a not-illustrated inlet for introducing a processing object (see FIG. 1).
- the overall length, overall shape, structure, etc. of the heat treatment chamber 1 can be changed within the scope of the present invention.
- the heat treatment chamber 1 is formed by selecting a material having a heat insulation property (a material capable of keeping heat) in order to control the indoor space to be heated to a predetermined temperature or higher as described later.
- the heat processing chamber 1 is provided with the structure which can heat-process an indoor space more than predetermined temperature, for example, while being equipped with the inlet in one side of the processing chamber 1 and the outlet in the other, It is within the scope of the present invention to have a transport mechanism such as a chain conveyor capable of transporting the object to be processed from the mouth to the discharge port so that the object can be continuously processed.
- a transport mechanism such as a chain conveyor capable of transporting the object to be processed from the mouth to the discharge port so that the object can be continuously processed.
- the processing chamber heating mechanism 3 for example, a well-known indoor heater is assumed.
- the entire inside of the heat treatment chamber 1 is controlled to be heated to about 105 ° C. to 150 ° C. (preferably about 115 ° C.) at normal pressure by the processing chamber heating mechanism (indoor heater) 3.
- the processing chamber heating mechanism indoor heater 3.
- a design change is possible suitably, and it is not limitedly interpreted to a present Example at all.
- the heating medium generator 3 employs the following configuration in this embodiment.
- the heating medium generating device 3 includes a heat-insulating outer body 5, a far-infrared radiation heater 11 that is arranged in the outer body 5 and transfers heat to heating medium supply water that is supplied into a heat exchange pipe 13 described later.
- the far-infrared radiation radiated from the far-infrared radiation heater 11 is reflected, the first reflecting member 23 that can be radiated again to the heat exchange pipe 13, and the water supply portion 18 is exteriorized on the side surface one end side 5 a of the exterior body 5.
- the water discharge portion 19 is externally mounted on the other side surface side 5b of the body 5, and is continuously disposed across the water supply portion 18 and the water discharge portion 19 from the one end side 5a to the other end side 5b.
- the heating medium supply water supplied to is heated to a radiant heat (predetermined temperature) from the far-infrared radiation heater 11 and a predetermined pressure, and the heat exchange pipe 13 generates a heating medium (FIGS. 1 to 3). (See FIG. 3).
- the exterior body 5 is hermetically sealed with, for example, an outer cylinder 7 formed in a cylindrical shape having a predetermined length and a predetermined diameter (outer diameter / inner diameter) and a heat insulating material 9 provided in a cylindrical shape on the inner surface side of the outer cylinder 7. It is formed in the whole cylinder shape which has the heat insulation used as space.
- an outer cylinder 7 formed in a cylindrical shape having a predetermined length and a predetermined diameter (outer diameter / inner diameter) and a heat insulating material 9 provided in a cylindrical shape on the inner surface side of the outer cylinder 7. It is formed in the whole cylinder shape which has the heat insulation used as space.
- the outer cylinder 7 is formed in a cylindrical shape with both ends not opened with a predetermined metal material.
- the cylindrical body 7a having both ends open and the left and right disc-shaped lids 7b, 7b closing both ends of the cylinder body 7a are formed into a cylindrical shape with both ends not opened.
- the overall length, overall shape, cylinder outer diameter, cylinder inner diameter, etc. of the outer cylinder 7 can be changed within the scope of the present invention. Also, the material can be changed in design within the scope of the present invention, and is not construed as being limited.
- the heat insulating material 9 is made of glass wool, urethane foam, or the like, and is formed in a cylindrical shape having a predetermined inner diameter provided in close contact with the inner surface of the outer cylinder 7.
- the heat insulating material 9 well-known materials are used within the scope of the present invention, and the design of the material and the cylindrical thickness (thickness between the outer diameter 9a and the inner diameter 9b) can be changed within the scope of the present invention. is there.
- the heat insulating material 9 needs to be disposed with a thickness enough to have a predetermined heat insulating property as the exterior body 5, but the far-infrared radiation heater 11, the heat exchange pipe 13, and the first reflector 23 are disposed inside the hollow. It is necessary to be configured so that it can be disposed.
- the far-infrared radiation heater 11 is formed in a single straight rod shape having a predetermined length and a predetermined diameter, and is disposed at the center position of the internal space of the exterior body 5 from one end side 5a to the other end side 5b of the exterior body 5. (See FIGS. 2 and 3). In this embodiment, an embodiment in which a single far infrared radiation heater 11 is disposed is assumed.
- the far-infrared radiation heater 11 is assumed to be an electric far-infrared radiation heater 11 in the present embodiment. However, the far-infrared radiation heater 11 may be an electric type or a gas type. A well-known thing can be adopted within the range of.
- the heat exchange pipe 13 is formed of a hollow metal pipe having a predetermined inner diameter through which the heating medium supply water passes, and is formed in a coil shape with a predetermined pitch and a predetermined number of turns.
- the far-infrared radiation heater 11 is arranged in a winding shape in the length direction of the far-infrared radiation heater 11 with a predetermined interval 15 between the outer circumference (outer diameter 11a) of the far-infrared radiation heater 11 (see FIG. 2 and FIG. 3).
- the heat exchange pipe 13 is arrange
- the distance between the center point of the far infrared radiation heater 11 and the center point of the heat exchange pipe 13 is about 1 to 20 mm, preferably 10 to 13 mm.
- the distance between the center point of the heat exchange pipe 13 and the inner surface of the first reflecting member 23 is about 1 to 18 mm, preferably 2 to 5 mm. That is, the relationship is such that the outer diameter 11a of the far-infrared radiation heater 11 ⁇ the coil inner diameter 13b of the heat exchange pipe 13, the coil outer diameter 13a of the heat exchange pipe 13 ⁇ the inner diameter 23b of the first reflecting member 23 (see FIG. 3). .)
- the material of the heat exchange pipe 13 is not specifically limited, It is preferable to employ
- the heat exchange pipe 13 is provided with a black heat-resistant coating, which increases the heat absorption rate.
- a heat supply pipe (water supply port) 18 that connects a water supply source (not shown) and the heat exchange pipe is provided on one end side of the heat exchange pipe 13, and a water discharge section (water discharge port) 19 is provided on the other end side.
- the water discharge unit 19 is connected to a heating medium injection nozzle 21 that injects the heating medium generated by the heat exchange pipe 13 from the heat exchange pipe 13 to the heat treatment chamber 1 (see FIGS. 1 and 2).
- the heating medium spray nozzle 21 has, for example, a nozzle inner diameter of 0.1 mm to 10 mm (preferably 0.5 mm to 5 mm).
- the first reflecting member (reflecting cylinder) 23 is a hollow metallic cylinder member having a predetermined outer diameter 23a disposed in close contact with the inner surface (inner diameter 9b) of the heat insulating material 9, and the heat exchange pipe. 13 is formed in an overall cylindrical shape covering the entire region in the length direction. Moreover, it has the internal diameter 23b which can be arrange
- the feed water is boiled in the heat exchange pipe 13 having a predetermined diameter by heat radiated from the far-infrared radiation heater 11 and a predetermined pressure.
- the amount of water supplied into the heat exchange pipe 13 is adjusted according to the pipe diameter and the pipe length, but in this embodiment, for example, 0.7 gr / sec or more, preferably 0.7 gr / sec to 25 gr / sec. .
- the heating medium supply water is heated in a state where a predetermined pressure is applied.
- supply water for heating medium is supplied at a rate of 0.7 gr / sec into the heat exchange pipe 13 of the heating medium generator 3 from the water supply source through the water supply unit 18 by a metering pump.
- Radiant heat from the far-infrared radiant heater 11 is transferred to the heat exchange pipe 13 to heat the heat exchange pipe 13 itself, and passes through the heat exchange pipe 13 to be supplied into the heat exchange pipe 13. Is transmitted to the supply water.
- the radiant heat passes through the heat exchange pipe 13, is reflected by the first reflecting member 23, and again passes through the heat exchange pipe 13, thereby transferring heat again to the supply water.
- the feed water is heated by boiling at a predetermined temperature, for example, 120 ° C. (preferably 105 ° C.
- a gas-liquid mixture (heating medium) composed of water vapor 50 and hot water 52 is generated in the exchange pipe 13 (see FIG. 1).
- the heat treatment is performed by ejecting the gas-liquid mixture (water vapor 50 and hot water 52) into the heat treatment chamber 1 controlled to be heated to about 115 ° C. as described above through the heating medium injection nozzle 21.
- the inside of the chamber 1 is adjusted to a heat treatment atmosphere 70 filled with a heating medium in which superheated steam 60 and high-temperature fine water droplets 62 are mixed (see FIG. 1).
- the gas-liquid mixture (water vapor 50 and hot water 52) may be ejected continuously or intermittently during the heat treatment of the object to be treated.
- the heat radiated from the far-infrared radiation heater 11 passes through the heat exchange pipe 13 that has been subjected to black heat-resistant coating to enhance the heat absorption efficiency, and is transmitted to the heating medium in the heat exchange pipe 13.
- the radiant heat that has been heated and further passed through the heat exchange pipe 13 is reflected by the mirror-finished first reflecting member 23, passes through the heat exchange pipe 13 again, and is transferred to the heating medium supply water in the heat exchange pipe 13. heat.
- the arrows in the figure show an example of the radiation direction of radiant heat.
- the heat radiated from the far-infrared radiation heater 11 repeatedly passes through the heat exchange pipe 13 and is transferred to the heating medium supply water, an efficient heat transfer effect is exhibited and heating is performed in a short time.
- the medium feed water is heated to produce a heating medium.
- the discs 47 and 47 having the same diameter as the lid portions 7b and 7b are arranged so as to face the outside of the lid portions 7b and 7b of the outer cylinder 7 (outside in the cylinder length direction), respectively. I have. Ends of the far-infrared radiation heater 11 are fixed to the discs 47, respectively. Then, predetermined gaps 48 and 48 are formed between the lid portion 7b and the disc 47 and between the lid portion 7b and the disc 47 for the purpose of exhausting heat from the far infrared radiation heater 11, respectively. Yes.
- the temperature in the heating medium injection nozzle 21 connected to the heat exchange pipe 13 is set to 110 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C.
- the relationship between the internal pressure (MPa) of the heating medium injection nozzle 21 and the supply water amount (g / min) when the supply water amount is changed to about 14 g to 140 g per minute is shown.
- “ ⁇ ” marks indicate the relationship between the internal pressure (MPa) of the heating medium spray nozzle 21 and the amount of supplied water (g / min) when the temperature in the heating medium spray nozzle 21 is 110 ° C.
- “ ⁇ ” marks indicate the heating medium spray nozzle.
- the relationship between (g / min) and the asterisk (*) indicate the relationship between the internal pressure (MPa) of the heating medium injection nozzle 21 and the amount of supplied water (g / min) when the temperature in the heating medium injection nozzle 21 is 150 ° C.
- MPa internal pressure
- g / min the amount of supplied water
- a heating medium a gas-liquid mixture composed of water vapor 50 and hot water 52
- the amount of generated heating medium can be obtained at the temperature in the nozzle 21 of 110 ° C. to 150 ° C., but a wide range of temperatures (105 ° C. to 150 ° C.) It was found that the generation amount of the heating medium can be obtained.
- FIG. 9 is a diagram showing the temperature rise rate and control stability in the heating medium injection nozzle 21.
- FIG. 9A is a heat treatment apparatus using a conventional heating medium generator, and FIG. Each data of the heat processing apparatus using the heating-medium generator 3 of an Example is represented.
- the conventional heating medium generator in FIG. 9 (a) has a maximum output of 4.96kw
- the heating medium generator 3 of the present embodiment in FIG. 9 (b) has a maximum output of 2.0kw. Equivalent performance was confirmed at the rising speed. Furthermore, it has been proved that the temperature control with high accuracy can be stably obtained when the heating medium generator 3 of the present embodiment is used as compared with the case where the conventional heating medium generator is used.
- Example 2 is a diagram showing the temperature rise rate and control stability in the heating medium injection nozzle 21.
- FIGS. 4 and 5 show a second embodiment of the heating medium generator of the present invention.
- three far-infrared radiation heaters 11, 11, 11 are arranged in a single heating medium generator 3.
- An example of implementation is assumed.
- a first region 25 to a third region 27 extending in the length direction of the coil-shaped internal space are arranged in parallel in the center region of the coil shape of the heat exchange pipe 13 arranged over the length direction in the exterior body 5.
- the infrared radiation heaters 11, 11, 11 are independently arranged in these regions 25 to 27.
- the first region 25 to the third region 27 are configured by reflecting far infrared rays radiated from the far infrared radiation heater 11 and partitioned by second reflecting members 28 that can radiate again to the heat exchange pipe 13. ing.
- the second reflecting member 28 is provided with partition plates 30, 31, and 32 so that the first region 25, the second region 26, and the third region 27 are equally divided every 120 degrees.
- the partition plates 30, 31, and 32 are formed so as to be aligned so that the base end sides thereof are aligned and the regions are equally divided every 60 degrees. That is, the outer cylinder 7 is formed with a length substantially the same as that of the outer cylinder 7 and a predetermined height.
- the upper end (free end) 30a, 31a, 32a of each partition plate 30, 31, 32 is set to a height that is in contact with the inner surface (inner diameter 13b) of the heat exchange pipe 13 having a coil shape. Yes.
- the surface of the second reflecting member 28, that is, the surfaces of the partition plates 30, 31, 32 are each mirror-finished.
- the second reflecting member 28, the first region 25 to the third region 27, the far infrared radiation heaters 11, 11, 11, the heat exchange pipe 13, the first reflecting member 23, and the heat insulating material 9 are centered in the center.
- the outer cylinder 7 is arranged in the order from the inside to the outside.
- the radiant heat from the far-infrared radiation heaters 11, 11, 11 passes through the heat exchange pipe 13 and is transferred to the supply water that circulates inside the heat exchange pipe 13.
- the radiant heat which passed the heat exchange pipe 13 is reflected by the 1st reflection member 23, passes through the inside of the heat exchange pipe 13 again, and is heat-transferred to supply water.
- the radiant heat that has passed through the heat exchange pipe 13 is reflected by the partition plates 30, 31, 32 of the second reflecting member 28, passes through the heat exchange pipe 13 again, and is transferred to the supply water.
- each far-infrared radiation heater 11 is surrounded by the first reflecting member 23 and the second reflecting member 28, and the heat exchange pipe 13 passes through the enclosed region. Such an action is repeated, and the heat transfer efficiency is extremely high, and the heating medium can be generated in a short time.
- the arrows in the figure show an example of the radiation direction of radiant heat.
- the upper ends (free ends) 30a, 31a, 32a of the partition plates 30, 31, 32 are in contact with the inner surface (inner diameter 13b) of the heat exchange pipe 13 having a coil shape. It is possible to make it non-contact and is within the scope of the present invention.
- the thickness of the partition plates 30, 31, and 32 is not particularly limited, and the design can be changed within the scope of the present invention.
- each of the partition plates 30, 31, and 32 is a single continuous plate member. However, the partition plates 30, 31, and 32 may be divided into a plurality of portions in the length direction and intermittently disposed.
- This embodiment is characterized in that the first region 25 to the third region 27 are formed by including the second reflecting member 28, and the far infrared radiation heater 11 is disposed in each of the regions 25 to 27, respectively.
- the configuration since the other configurations and functions and effects are the same as those of the first embodiment, detailed description thereof is omitted.
- FIG. 6 and 7 show a third embodiment of the heating medium generator 3 according to the present invention.
- this embodiment six far infrared radiation heaters 11, 11, 11, An implementation example in which 11, 11, and 11 are arranged is assumed.
- a first region 33 to a sixth region 38 extending in the length direction of the coil-shaped internal space are juxtaposed in the central region of the coil shape of the heat exchange pipe 13 disposed over the length direction in the exterior body 5.
- the infrared radiation heaters 11, 11, 11, 11, and 11 are disposed independently in these regions 33 to 38, respectively.
- the first region 33 to the sixth region 38 reflect the far infrared rays radiated from the far infrared radiation heaters 11, 11, 11, 11, 11, respectively, and can be radiated again to the heat exchange pipe 13. It is configured by being partitioned by the reflecting member 39.
- the second reflecting member 39 is partitioned so that the first region 33, the second region 34, the third region 35, the fourth region 36, the fifth region 37, and the sixth region 38 are equally divided every 60 degrees. Plates 40, 41, 42, 43, 44, 45 are provided.
- the pipe 46 having a length extending from the one end 7a to the other end 7b of the outer cylinder 7 is provided at the center, and the partition plates 40, 41, 42,. 43, 44 and 45 are integrally formed to form the second reflecting member 39.
- the partition plates 40, 41, 42, 43, 44, 45 are formed so as to rise from the axial center of the pipe 46 at positions that are equally divided every 60 degrees. That is, the outer diameter of the pipe 46 is formed so as to rise in the length direction of the pipe 46 at the same length as the pipe 46 and at a predetermined height.
- the reason why the pipe 46 is formed in this way is that the far infrared radiation heaters 11 can be disposed in the spaces of the respective regions 33 to 38 in a state where a space is formed around the far infrared radiation heaters 11. This is to form as wide a space as possible.
- the surface of the second reflecting member 39 that is, the surface of each partition plate 40, 41, 42, 43, 44, 45 is mirror-finished.
- the thickness of the partition plates 40, 41, 42, 43, 44, 45 is not particularly limited, and the design can be changed within the scope of the present invention. In the present embodiment, the heights of the partition plates 40, 41, 42, 43, 44, and 45 are all the same, but different heights are also possible.
- each of the partition plates 40, 41, 42, 43, 44, and 45 is a single continuous plate member.
- the partition plates 40, 41, 42, 43, 44, and 45 may be divided into a plurality of portions in the length direction and intermittently disposed. Good.
- the heat exchange pipe 13, the first reflecting member 23, the heat insulating material 9, and the outer cylinder are provided at the center. 7 are arranged from the inside toward the outside.
- the radiant heat which passed the heat exchange pipe 13 is reflected by the 1st reflection member 23, passes through the inside of the heat exchange pipe 13 again, and is heat-transferred to supply water.
- the radiant heat that has passed through the heat exchange pipe 13 is reflected by the partition plates 40, 41, 42, 43, 44, and 45 of the second reflecting member 39, and again passes through the heat exchange pipe 13 to supply water. Heat transfer.
- each far-infrared radiation heater 11 is surrounded by the first reflecting member 23 and the second reflecting member 39, and the heat exchange pipe 13 passes through the enclosed region. Such an action is repeated, and the heat transfer efficiency is extremely high, and the heating medium can be generated in a short time.
- the arrows in the figure show an example of the radiation direction of radiant heat.
- the upper ends (free ends) 40a, 41a, 42a, 43a, 44a, 45a of the respective partition plates 40, 41, 42, 43, 44, 45 have a coil shape.
- the inner surface (inner diameter 13b) of the heat exchange pipe 13 is not in contact with the inner surface (inner diameter 13b), but the inner surface (inner diameter 13b) of the heat exchange pipe 13 may be in contact with the inner surface (inner diameter 13b).
- the present embodiment is characterized in that the first region 33 to the sixth region 38 are formed by including the second reflecting member 39, and the far infrared radiation heater 11 is disposed in each of the regions 33 to 38, respectively.
- the configuration since the other configurations and functions and effects are the same as those of the first embodiment, detailed description thereof is omitted.
- Example 1 to Example 3 are one embodiment of the present invention, and the present invention is not construed as being limited thereto.
- the number of areas partitioned by the reflecting member 28 (39) can be changed within the scope of the present invention.
- Example 2 and Example 3 it demonstrated with the embodiment which has arrange
- a heating medium generator capable of generating a heating medium capable of heat-processing food and the like with high quality, and heating capable of heat-treating a processing object such as food using the heating medium generator.
- the present invention relates to a field in which a processing object is heat-treated using a novel heating medium (gas-liquid mixture) composed of high-temperature fine water droplets (hot water) and superheated steam, such as pharmaceuticals and chemicals. It can also be used in the field of producing granulated products (granulated products).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Resistance Heating (AREA)
Abstract
【課題】高品質で食品等を加熱加工可能な加熱媒体を発生し得る加熱媒体発生装置及び加熱媒体発生装置を含む加熱処理装置の低価格化の要請に対応し得ることである。また、省エネルギ化、軽量化及び装置製造工程・時間の短縮化を図ることである。 【解決手段】断熱性を有する外装体5と、外装体5内に配される遠赤外線放射ヒーター11と、給水部18と吐水部19を備えるとともに外装体5の一端側から他端側に向けて配設され、内部空間を加熱媒体用供給水が通過する熱交換パイプ13と、遠赤外線放射ヒーター11から放射された遠赤外線を反射し、再度熱交換パイプ13へと放射可能な第一反射部材23とで構成する。
Description
本発明は、例えば、高品質で食品等を加熱加工可能な加熱媒体を発生し得る加熱媒体発生装置、及びその加熱媒体発生装置を用いて食品等の処理対象物を高品質で加熱処理可能な加熱処理装置に関する。
従来、本発明者等は、過熱水蒸気加熱技術を応用した高品質調理、食材加工システムとして、所定温度及び所定圧力で水を沸騰させ、高温微細水滴(熱水)と過熱水蒸気からなる加熱媒体(気液混合体)を生成し、その加熱媒体(気液混合体)を所定温度に加熱した加熱処理室内に噴霧することにより、前記加熱媒体(気液混合体)が混在する状態の加熱処理雰囲気に調整する新規な加熱処理方法及び加熱処理装置に関する開発・特許化を図ってきた(特許文献1参照。)。
また、加熱対象・目的に応じた最適加熱処理として新規な加熱媒体以外に、飽和水蒸気、過熱水蒸気を同一の装置にて発生させる方法及び発生装置についても開発し、特許出願している(特許文献2参照。)。
さらに、新規な加熱媒体の発生条件(臨界内部圧力の発見)を明らかにして安定的な制御方法についても開発し、特許出願している(特許文献3参照。)。
また、ユニット化され、様々な機器に接続可能な新規な加熱媒体の発生装置についても開発し、特許出願している(特許文献4参照。)。
本発明者等が先に開発した加熱媒体発生装置及び加熱処理装置は当初の課題を十分に達成し得るものではあるが、昨今、装置全体のコンパクト化及び低価格化の要請があり、本発明者等はこのコンパクト化及び低価格化の要請に応えるべく本発明の開発に至ったものである。
本発明者等が先に提案している特許文献4に開示の加熱媒体発生装置の場合、電熱式発生機又は蒸気式発生機があり、電熱式発生機の場合、装置内部に発熱体として電熱線が用いられていた。
すなわち、コイル形状に形成された熱交換パイプの外周に、熱交換パイプよりも大径のコイル状に形成した電熱ヒーターを密着状態で取り付けて断熱構造のハウジング内に配設するとともに、高熱伝導率を持った熱伝セメント(例えば、米国サーモン・マニュファクチュアリング社製)を、前記ハウジング内に充填して構成していた。
このように、特許文献4では、電熱線と熱交換パイプとの間の伝導電熱によって熱伝達を図っていたものである。
すなわち、コイル形状に形成された熱交換パイプの外周に、熱交換パイプよりも大径のコイル状に形成した電熱ヒーターを密着状態で取り付けて断熱構造のハウジング内に配設するとともに、高熱伝導率を持った熱伝セメント(例えば、米国サーモン・マニュファクチュアリング社製)を、前記ハウジング内に充填して構成していた。
このように、特許文献4では、電熱線と熱交換パイプとの間の伝導電熱によって熱伝達を図っていたものである。
しかし、上述した加熱媒体発生装置及びこの加熱媒体発生装置を用いた加熱処理装置では、電熱線や熱伝セメントの価格が高価であり、さらに熱伝セメントのハウジング内への充填作業及び硬化作業などの製造工程に時間を要していたものである。その結果、加熱媒体発生装置及び加熱媒体発生装置を用いた加熱処理装置の製品価格を抑えることが困難であった。また、熱伝セメントを充填することから装置全体の重量も嵩張りコンパクト化の要請には応えられていなかった。
本発明は、このような課題を解決するためになされており、その目的とするところは、低価格化の要請に対応し得る加熱媒体発生装置及び加熱処理装置を提供することである。また、省エネルギ化、軽量化及び装置製造工程・時間の短縮化を図ることも目的としている。
このような目的を達成するために、第1の発明は、断熱性を有する外装体と、
外装体内に配される遠赤外線放射ヒーターと、
給水部と吐水部を備えるとともに外装体の一端側から他端側に向けて配設され、内部空間を加熱媒体用供給水が通過する熱交換パイプと、
遠赤外線放射ヒーターから放射された遠赤外線を反射し、再度熱交換パイプへと放射可能な第一反射部材とからなることを特徴とする加熱媒体発生装置としたことである。
外装体内に配される遠赤外線放射ヒーターと、
給水部と吐水部を備えるとともに外装体の一端側から他端側に向けて配設され、内部空間を加熱媒体用供給水が通過する熱交換パイプと、
遠赤外線放射ヒーターから放射された遠赤外線を反射し、再度熱交換パイプへと放射可能な第一反射部材とからなることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、加熱媒体の熱交換方式として、従来の電熱線・熱伝セメントを用いた伝導伝熱方式に代えて、遠赤外線ヒーターを用いた放射伝熱方式とするとともに、遠赤外線の放射熱を反射させて繰り返し放射可能な構成とした。これにより、製造コストを低く抑えることが可能であると共に、装置製造工程も簡素化することに成功したため、大幅なコスト低減の実現となった。また、本発明のように第一反射部材を配設したことにより、単に遠赤外線の放射熱を一方通行で熱交換パイプに放射するだけではなく、遠赤外線の放射熱を第一反射部材によって反射させて再び熱交換パイプへと放射させることが可能であるため、伝熱効率も高くなり、全体として省エネルギ化が図れ、かつ従来のように熱伝セメントを採用していないため、装置全体の軽量化及び装置製造時間の短縮化も図れた。
第2の発明は、第1の発明において、遠赤外線放射ヒーターは、棒状に形成され、外装体の一端から他端にわたってその内部空間の中心位置に配設され、
熱交換パイプは、コイル状に形成され、遠赤外線放射ヒーターとの間に所定の間隔をあけるとともに、遠赤外線放射ヒーターの長さ方向に巻回状に配設されており、
第一反射部材は、前記熱交換パイプの長さ方向全域を覆う全体筒状に形成され、熱交換パイプとの間に所定の間隔をあけて配されていることを特徴とする加熱媒体発生装置としたことである。
熱交換パイプは、コイル状に形成され、遠赤外線放射ヒーターとの間に所定の間隔をあけるとともに、遠赤外線放射ヒーターの長さ方向に巻回状に配設されており、
第一反射部材は、前記熱交換パイプの長さ方向全域を覆う全体筒状に形成され、熱交換パイプとの間に所定の間隔をあけて配されていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、外装体内の中心に配された棒状の遠赤外線放射ヒーターの周りにコイル状に形成した熱交換パイプが配され、その熱交換パイプとの間に所定の間隔をあけて筒状の第一反射部材が覆っているため、遠赤外線放射ヒーターから放射された熱は、熱交換パイプ内を通過してパイプ内の加熱媒体に伝熱する。そして、熱交換パイプを通過した放射熱は、第一反射部材で反射して再度熱交換パイプ内を通過してパイプ内の加熱媒体に伝熱する。このように本発明の構成によれば、遠赤外線放射ヒーターから放射された熱は、繰り返し熱交換パイプ内を通過して加熱媒体に伝熱するため、効率的な伝熱効果が発揮される。
第3の発明は、第1の発明又は第2の発明において、外装体は、外筒と、外筒の内面側に備えられる断熱材とで内部を密閉空間とする全体筒状に形成されていることを特徴とする加熱媒体発生装置としたことである
本発明によれば、外装体内が断熱性を有する密閉空間とし得るため、遠赤外線放射ヒーターからの放射熱を外部に逃すことなく有効利用して伝熱効率を向上せしめることが可能である。
第4の発明は、第3の発明において、第一反射部材は、筒状に形成され、断熱材の内面に配設されていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、第一反射部材を筒状に形成したため、遠赤外線放射ヒーターからの放射熱は、その筒状の面部に反射して再度熱交換パイプに戻ってくるため伝熱効果が高い。
第5の発明は、第4の発明において、第一反射部材の内面は、鏡面仕上げされていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、第一反射部材の内面が鏡面仕上げされていることから、第一反射部材に対する放射熱の反射効率が高い。
第6の発明は、第1の発明乃至第5の発明のいずれかにおいて、遠赤外線放射ヒーターは単数配設されていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、装置全体のコンパクト化が図れる。
第7の発明は、第1の発明乃至第5の発明のいずれかにおいて、遠赤外線放射ヒーターは複数配設されていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、遠赤外線放射ヒーターが複数本配設されていることから、装置内の伝熱効率が向上する。
第8の発明は、第7の発明において、外装体の長さ方向にわたって内部空間に配される熱交換パイプの中心領域には、前記内部空間の長さ方向にわたる第1領域~第n領域の複数の領域が並設され、
遠赤外線放射ヒーターは、これら複数の領域にそれぞれ独立して配設されており、
それぞれの遠赤外線放射ヒーターが配設されているそれぞれの領域は、遠赤外線放射ヒーターから放射された遠赤外線をそれぞれ反射し、再度熱交換パイプへとそれぞれ放射可能な第二反射部材によって仕切られていることを特徴とする加熱媒体発生装置としたことである。
遠赤外線放射ヒーターは、これら複数の領域にそれぞれ独立して配設されており、
それぞれの遠赤外線放射ヒーターが配設されているそれぞれの領域は、遠赤外線放射ヒーターから放射された遠赤外線をそれぞれ反射し、再度熱交換パイプへとそれぞれ放射可能な第二反射部材によって仕切られていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、単に遠赤外線の放射熱を一方通行で熱交換パイプに放射するだけではなく、遠赤外線の放射熱を第一反射部材によって反射させて再び熱交換パイプへと放射させ、さらに、第二反射部材によって再び反射させて熱交換パイプへと放射可能である。よって、繰り返し放射熱による熱伝達が行なわれることとなるため、伝熱効率も高くなり、全体として高い省エネルギ化が図れた。
第9の発明は、第8の発明において、第二反射部材の表面は、鏡面仕上げされていることを特徴とする加熱媒体発生装置としたことである。
本発明によれば、第二反射部材の表面が鏡面仕上げされていることから放射熱の反射効率が高くなり、伝熱効率も高くなる。
第10の発明は、第1の発明乃至第9の発明のいずれかの加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置としたことである。
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置としたことである。
本発明によれば、本発明の加熱媒体発生装置を用いることで、加熱処理装置全体のコンパクト化及び低価格化の要請に対応し得る。
本発明によれば、コンパクト化及び低価格化の要請に対応し得る加熱媒体発生装置及び加熱処理装置を提供できた。また、本発明によれば、省エネルギ化、軽量化及び装置製造工程・時間の短縮化をも図ることができた。
以下、本発明の加熱媒体発生装置及び加熱媒体発生装置を用いた加熱処理装置に関する一実施形態について説明する。なお、本実施形態は本発明の一例にすぎずなんらこれに限定解釈されるものではなく、本発明の範囲内で設計変更可能である。
図1は本発明の加熱媒体発生装置を用いた本発明の加熱処理装置の一例を示す概略図、図2乃至図7は本発明の加熱媒体発生装置の一例を示す概略図である。
加熱処理装置は、加熱処理室1と、加熱処理室1内に備えられ、加熱処理室1内を所定温度に加熱する処理室内加熱機構2と、加熱処理室1内に加熱媒体を噴射する加熱媒体発生装置3とで構成されている(図1参照。)。
加熱処理室1は、例えば、処理対象物を投入する図示しない投入口を備えた非密閉状でかつ所定長さの矩形状に形成されている(図1参照。)。
加熱処理室1の全体長さ・全体形状・構造などは本発明の範囲内で設計変更可能である。
また、加熱処理室1は、後述するように室内空間を所定温度以上に加熱制御するため、断熱性を有する材質(保温可能な材質)を選定して形成する。なお、加熱処理室1は、室内空間を所定温度以上に加熱制御処理可能な構成を備えているものであれば、例えば、処理室1の一方に投入口、他方に排出口を備えるとともに、投入口から排出口にわたって処理対象物を搬送可能なチェーンコンベアなどの搬送機構を備え、対象物を連続処理可能なように構成するものであっても本発明の範囲内である。
加熱処理室1の全体長さ・全体形状・構造などは本発明の範囲内で設計変更可能である。
また、加熱処理室1は、後述するように室内空間を所定温度以上に加熱制御するため、断熱性を有する材質(保温可能な材質)を選定して形成する。なお、加熱処理室1は、室内空間を所定温度以上に加熱制御処理可能な構成を備えているものであれば、例えば、処理室1の一方に投入口、他方に排出口を備えるとともに、投入口から排出口にわたって処理対象物を搬送可能なチェーンコンベアなどの搬送機構を備え、対象物を連続処理可能なように構成するものであっても本発明の範囲内である。
処理室内加熱機構3は、例えば、周知の室内加熱ヒーターが想定される。本実施例では、この処理室内加熱機構(室内加熱ヒーター)3によって、加熱処理室1内全体を、常圧で、かつ105℃~150℃程度(好ましくは115℃程度)に加熱制御している。
なお、処理室内加熱機構3の形状・構造及び配設数量などについては、適宜設計変更可能であって、何等本実施例に限定解釈されるものではない。
なお、処理室内加熱機構3の形状・構造及び配設数量などについては、適宜設計変更可能であって、何等本実施例に限定解釈されるものではない。
加熱媒体発生装置3は、本実施例では次の構成を採用している。
加熱媒体生成装置3は、断熱性を有する外装体5と、外装体5内に配され、後述する熱交換パイプ13内に供給される加熱媒体用供給水に伝熱する遠赤外線放射ヒーター11と、遠赤外線放射ヒーター11から放射された遠赤外線を反射し、再度熱交換パイプ13へと放射可能な第一反射部材23と、外装体5の側面一端側5aに給水部18を外装し、外装体5の側面他端側5bに吐水部19を外装するとともに、その外装体5の一端側5aから他端側5bに向けて給水部18と吐水部19にわたって連続して配設され、内部空間に供給される加熱媒体用供給水を前記遠赤外線放射ヒーター11からの放射熱(所定温度)及び所定圧力で沸騰させて加熱媒体を生成する熱交換パイプ13とで構成されている(図1乃至図3参照。)。
外装体5は、例えば所定長さ・所定径(外径・内径)の筒状に形成された外筒7と、外筒7の内面側に筒状に備えられる断熱材9とで内部を密閉空間とする断熱性を有する全体筒状に形成されている。
外筒7は、所定の金属材料で両端を非開放とした円筒状に形成されている。本実施例では、両端開放状の筒本体7aと、該筒本体7aの両端を閉鎖する左右の円盤状の蓋部7b,7bとにより、両端を非開放とした円筒状に形成している。
外筒7の全体長さ・全体形状・筒外径・筒内径などは本発明の範囲内で設計変更可能である。また、材質も本発明の範囲内で設計変更可能であって何ら限定解釈されるものではない。
外筒7の全体長さ・全体形状・筒外径・筒内径などは本発明の範囲内で設計変更可能である。また、材質も本発明の範囲内で設計変更可能であって何ら限定解釈されるものではない。
断熱材9は、グラスウール・ウレタンフォームなどからなり、外筒7の内面に密着させて備えられる所定内径を有した円筒状に形成されている。断熱材9は本発明の範囲内で周知のものが用いられ、その材質や筒状の肉厚(外径9aと内径9bとの間の厚み)なども本発明の範囲内で設計変更可能である。なお、断熱材9は、外装体5として所定の断熱性を有する程度に厚みをもって配される必要があるが、その中空の内部に遠赤外線放射ヒーター11と熱交換パイプ13と第一反射板23とを配設可能に構成する必要がある。
遠赤外線放射ヒーター11は、所定長さ・所定径の単一の真直ぐな棒状に形成され、外装体5の一端側5aから他端側5bにわたってその外装体5の内部空間の中心位置に配設されている(図2及び図3参照。)。
なお、本実施例では、遠赤外線放射ヒーター11を単数配設した実施の一形態を想定している。
また、遠赤外線放射ヒーター11は、本実施例では電気式の遠赤外線放射ヒーター11を想定しているが、遠赤外線放射ヒーター11は電機式であってもガス式であってもよく、本発明の範囲内で周知のものが採択可能である。
なお、本実施例では、遠赤外線放射ヒーター11を単数配設した実施の一形態を想定している。
また、遠赤外線放射ヒーター11は、本実施例では電気式の遠赤外線放射ヒーター11を想定しているが、遠赤外線放射ヒーター11は電機式であってもガス式であってもよく、本発明の範囲内で周知のものが採択可能である。
熱交換パイプ13は、内部空間を加熱媒体用供給水が通過する所定内径の中空の金属製パイプからなり、これを所定ピッチで所定の巻回数のコイル状に形成し、外装体5の中心位置に配した前記遠赤外線放射ヒーター11の外周(外径11a)との間に所定の間隔15をあけて、前記遠赤外線放射ヒーター11の長さ方向に巻回状に配設されている(図2及び図3参照。)。
また、熱交換パイプ13は、後述する第一反射部材23との間においても所定の間隔17をあけて配設されている(図2及び図3参照。)。
遠赤外線放射ヒーター11の外周と熱交換パイプ13の間隔15については、遠赤外線放射ヒーター11の中心点と熱交換パイプ13の中心点までの距離が1~20mm程度で、好ましくは10~13mmが効率が良く、熱交換パイプ13の中心点と第一反射部材23の内面までの距離が1~18mm程度で、好ましくは2~5mmが効率が良い。
すなわち、遠赤外線放射ヒーター11の外径11a<熱交換パイプ13のコイル内径13b、熱交換パイプ13のコイル外径13a<第一反射部材23の内径23bの関係を有している(図3参照。)。
なお、熱交換パイプ13の材質は特に限定されないが、熱伝導率に優れた金属材を採択するのが好ましい。
また、熱交換パイプ13は、後述する第一反射部材23との間においても所定の間隔17をあけて配設されている(図2及び図3参照。)。
遠赤外線放射ヒーター11の外周と熱交換パイプ13の間隔15については、遠赤外線放射ヒーター11の中心点と熱交換パイプ13の中心点までの距離が1~20mm程度で、好ましくは10~13mmが効率が良く、熱交換パイプ13の中心点と第一反射部材23の内面までの距離が1~18mm程度で、好ましくは2~5mmが効率が良い。
すなわち、遠赤外線放射ヒーター11の外径11a<熱交換パイプ13のコイル内径13b、熱交換パイプ13のコイル外径13a<第一反射部材23の内径23bの関係を有している(図3参照。)。
なお、熱交換パイプ13の材質は特に限定されないが、熱伝導率に優れた金属材を採択するのが好ましい。
本実施例において熱交換パイプ13は、黒色耐熱塗装が施されており、熱吸収率を高めている。
そして、熱交換パイプ13の一端側には、図示しない給水源と熱交換パイプを接続する給水部(給水ポート)18が備えられ、他端側には、吐水部(吐水ポート)19が備えられ、吐水部19には、熱交換パイプ13によって生成された加熱媒体を、熱交換パイプ13から加熱処理室1へと噴射する加熱媒体噴射ノズル21が接続されている(図1及び図2参照。)。
ちなみに、前記加熱媒体噴射ノズル21は、本実施例では、例えば、ノズル内径を0.1mm~10mm(好ましくは0.5mm~5mm)としている。
そして、熱交換パイプ13の一端側には、図示しない給水源と熱交換パイプを接続する給水部(給水ポート)18が備えられ、他端側には、吐水部(吐水ポート)19が備えられ、吐水部19には、熱交換パイプ13によって生成された加熱媒体を、熱交換パイプ13から加熱処理室1へと噴射する加熱媒体噴射ノズル21が接続されている(図1及び図2参照。)。
ちなみに、前記加熱媒体噴射ノズル21は、本実施例では、例えば、ノズル内径を0.1mm~10mm(好ましくは0.5mm~5mm)としている。
第一反射部材(反射筒)23は、前記断熱材9の内面(内径9b)と密着させて配設される所定の外径23aを有した中空の金属製の筒部材で、前記熱交換パイプ13の長さ方向全域を覆う全体円筒状に形成されている。
また、前記熱交換パイプ13との間に所定の間隔17をあけて配することの可能な内径23bを有している。
すなわち、第一反射部材23の内径23b>熱交換パイプ13のコイル外径13aの関係を有する(図3参照。)。
また、放射熱の反射効率を高めるため、第一反射部材23の内面(内径23b)は、鏡面仕上げされているのが好ましい。
また、前記熱交換パイプ13との間に所定の間隔17をあけて配することの可能な内径23bを有している。
すなわち、第一反射部材23の内径23b>熱交換パイプ13のコイル外径13aの関係を有する(図3参照。)。
また、放射熱の反射効率を高めるため、第一反射部材23の内面(内径23b)は、鏡面仕上げされているのが好ましい。
本実施例によれば、図示しない所定のポンプ(例えば電磁定量ポンプなどを想定)を介して給水源から給水部(給水ポート)18を通過して熱交換パイプ13内に供給された加熱媒体用供給水は、所定径の熱交換パイプ13内で、遠赤外線放射ヒーター11から放射された熱及び所定の圧力によって沸騰させられる。
熱交換パイプ13内に供給される水量は、パイプ径・パイプ長さによって調整されるが、本実施例では、例えば0.7gr/sec以上、好ましくは0.7gr/sec~25gr/secとする。これにより加熱媒体用供給水は所定の圧力が掛かった状態で加熱されることとなる。
熱交換パイプ13内に供給される水量は、パイプ径・パイプ長さによって調整されるが、本実施例では、例えば0.7gr/sec以上、好ましくは0.7gr/sec~25gr/secとする。これにより加熱媒体用供給水は所定の圧力が掛かった状態で加熱されることとなる。
本発明の加熱処理装置の作動について以下に説明する。
まず、給水源から定量ポンプにより給水部18を介して加熱媒体発生装置3の熱交換パイプ13内に、0.7gr/secで加熱媒体用供給水を供給する。
遠赤外線放射ヒーター11からの放射熱は、熱交換パイプ13に伝熱して熱交換パイプ13自体を加熱するとともに、前記熱交換パイプ13内を通過して熱交換パイプ13内に供給される加熱媒体用供給水に伝達される。
さらに、前記放射熱は、熱交換パイプ13を通過し、そして第一反射部材23によって反射して再度熱交換パイプ13内を通過させることによって、再度供給水に伝熱する。
このようにして、前記供給水を所定温度、例えば120℃(好ましくは105℃~150℃)及び所定圧力、例えば0.19MPa(好ましくは、0.01MPa~0.30MPa)で沸騰させることで熱交換パイプ13内には水蒸気50と熱水52からなる気液混合体(加熱媒体)が生成される(図1参照。)。
遠赤外線放射ヒーター11からの放射熱は、熱交換パイプ13に伝熱して熱交換パイプ13自体を加熱するとともに、前記熱交換パイプ13内を通過して熱交換パイプ13内に供給される加熱媒体用供給水に伝達される。
さらに、前記放射熱は、熱交換パイプ13を通過し、そして第一反射部材23によって反射して再度熱交換パイプ13内を通過させることによって、再度供給水に伝熱する。
このようにして、前記供給水を所定温度、例えば120℃(好ましくは105℃~150℃)及び所定圧力、例えば0.19MPa(好ましくは、0.01MPa~0.30MPa)で沸騰させることで熱交換パイプ13内には水蒸気50と熱水52からなる気液混合体(加熱媒体)が生成される(図1参照。)。
そして、加熱媒体噴射ノズル21を介し、前記したように115℃程度に加熱制御された加熱処理室1内に前記気液混合体(水蒸気50と熱水52)を噴出することにより、前記加熱処理室1内が過熱水蒸気60と高温微細水滴62が混在する状態の加熱媒体で満たされた加熱処理雰囲気70に調整される(図1参照。)。
前記気液混合体(水蒸気50と熱水52)は、処理対象物の加熱処理中において、連続して噴射されるものであっても、断続して噴射されるものであってもよい。
本実施例によれば、遠赤外線放射ヒーター11から放射された熱が、黒色耐熱塗装を施して熱吸収効率を高めた熱交換パイプ13内を通過して熱交換パイプ13内の加熱媒体に伝熱し、さらに熱交換パイプ13を通過した放射熱は、鏡面仕上げされた第一反射部材23で反射して再度熱交換パイプ13内を通過して熱交換パイプ13内の加熱媒体用供給水に伝熱する。図中の矢印は放射熱の放射方向の一例を示す。
このように遠赤外線放射ヒーター11から放射された熱は、繰り返し熱交換パイプ13内を通過して加熱媒体用供給水に伝熱するため、効率的な伝熱効果が発揮され、短時間で加熱媒体供給水を加熱して加熱媒体を生成する。
すなわち、単に遠赤外線の放射熱を一方通行で熱交換パイプ13に放射するだけではなく、遠赤外線の放射熱を第一反射部材23によって反射させて再び熱交換パイプ13へと放射させることが可能であるため、伝熱効率も高くなり、短時間で加熱媒体の生成がなし得る。
したがって、全体として省エネルギ化(コスト減)が図れる。また、従来のように熱伝セメントを採用していないため、装置全体の軽量化及び装置製造時間の短縮化も図れる。具体的には、例えば、電熱線を用いた本発明者等の特許文献4に開示の加熱媒体発生装置(従来の加熱媒体発生装置)を用いた加熱処理装置と比した場合、本実施例の加熱媒体発生装置3を用いた加熱処理装置によれば、製造コストが60%以上節減され、40%の省エネルギ化、50%の軽量化も図れた。
また、本実施例では、外筒7の蓋部7b,7bの外方(筒長さ方向の外方)にそれぞれ相対向せしめて、蓋部7b,7bと同一径の円板47,47を備えている。
円板47には、遠赤外線放射ヒーター11の端部をそれぞれ固定している。そして、蓋部7bと円板47との間、及び蓋部7bと円板47との間には、それぞれ所定の間隙48,48を形成し、遠赤外線放射ヒーター11からの排熱を目的としている。
円板47には、遠赤外線放射ヒーター11の端部をそれぞれ固定している。そして、蓋部7bと円板47との間、及び蓋部7bと円板47との間には、それぞれ所定の間隙48,48を形成し、遠赤外線放射ヒーター11からの排熱を目的としている。
図8は、本実施例の加熱媒体発生装置3において、熱交換パイプ13と接続された加熱媒体噴射ノズル21内の温度を110℃、120℃、130℃、140℃、150℃に設定し、供給水量を毎分14g-140g程度まで変化させたときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係を示す。図中「▲」印は加熱媒体噴射ノズル21内の温度110℃のときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係、「●」印は加熱媒体噴射ノズル21内の温度120℃のときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係、「■」印は加熱媒体噴射ノズル21内の温度130℃のときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係、「◆」印は加熱媒体噴射ノズル21内の温度140℃のときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係、「★」印は加熱媒体噴射ノズル21内の温度150℃のときの加熱媒体噴射ノズル21の内圧(MPa)と供給水量(g/min)の関係をそれぞれ示す。
例えば加熱媒体噴射ノズル21内の温度が110℃の場合、供給水量を増加させていき、毎分11.04gとなった段階で加熱媒体噴射ノズル21の内圧が0.142MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が120℃の場合、供給水量を増加させていき、毎分16.53gとなった段階でノズル内圧が0.186MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が150℃の場合、供給水量を増加させていき、毎分36.85gとなった段階でノズル内圧が0.476MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。
なお、図8中に記した「水滴」とは本明細書における「熱水」と同義語である。
本実施例の加熱媒体発生装置3によれば、110℃~150℃のノズル21内の温度において加熱媒体の発生量が得られることが示されているが、幅広い温度(105℃~150℃)において加熱媒体の発生量が得られることが分かった。
例えば加熱媒体噴射ノズル21内の温度が110℃の場合、供給水量を増加させていき、毎分11.04gとなった段階で加熱媒体噴射ノズル21の内圧が0.142MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が120℃の場合、供給水量を増加させていき、毎分16.53gとなった段階でノズル内圧が0.186MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が150℃の場合、供給水量を増加させていき、毎分36.85gとなった段階でノズル内圧が0.476MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。
なお、図8中に記した「水滴」とは本明細書における「熱水」と同義語である。
本実施例の加熱媒体発生装置3によれば、110℃~150℃のノズル21内の温度において加熱媒体の発生量が得られることが示されているが、幅広い温度(105℃~150℃)において加熱媒体の発生量が得られることが分かった。
図9は、加熱媒体噴射ノズル21内の昇温速度と制御安定性を表した図で、図9(a)は従来の加熱媒体発生装置を用いた加熱処理装置、図9(b)は本実施例の加熱媒体発生装置3を用いた加熱処理装置のそれぞれのデータを表している。
図9(a)における従来の加熱媒体発生装置は最大出力4.96kwで、図9(b)の本実施例の加熱媒体発生装置3は最大出力2.0kwで、同量の給水における温度の立ち上がり速度において同等の性能が確認された。
更に、本実施例の加熱媒体発生装置3を用いた場合の方が、従来の加熱媒体発生装置を用いた場合に比して高精度な温度制御が安定して得られることも証明された。
「実施例2」
図9(a)における従来の加熱媒体発生装置は最大出力4.96kwで、図9(b)の本実施例の加熱媒体発生装置3は最大出力2.0kwで、同量の給水における温度の立ち上がり速度において同等の性能が確認された。
更に、本実施例の加熱媒体発生装置3を用いた場合の方が、従来の加熱媒体発生装置を用いた場合に比して高精度な温度制御が安定して得られることも証明された。
「実施例2」
図4及び図5は本発明加熱媒体発生装置の第2の実施例を示し、本実施例では、単一の加熱媒体発生装置3内に3個の遠赤外線放射ヒーター11,11,11を配設した実施の一例を想定している。
外装体5内の長さ方向にわたって配される熱交換パイプ13のコイル形状の中心領域には、コイル形状の内部空間の長さ方向にわたる第1領域25~第3領域27が並設され、遠赤外線放射ヒーター11,11,11は、これらの領域25~27にそれぞれ独立して配設されている。
第1領域25~第3領域27は、遠赤外線放射ヒーター11から放射された遠赤外線をそれぞれ反射し、再度熱交換パイプ13へとそれぞれ放射可能な第二反射部材28で仕切られることによって構成されている。
第二反射部材28は、第1領域25、第2領域26、第3領域27が、120度毎に均等に区切られるように仕切り板30,31,32が備えられている。
仕切り板30,31,32は、それぞれの基端側を合わせるとともに、それぞれ60度毎に均等に領域が区切られるように立ち上げ形成されている。すなわち、外筒7の長さ方向に外筒7と略同一長さで、かつ所定の高さで立ち上げ形成されている。
本実施例では、それぞれの仕切り板30,31,32の上端(遊端)30a,31a,32aがコイル形状を有する熱交換パイプ13の内面(内径13b)に接する程度の高さに設定されている。
第二反射部材28の表面、すなわち、各仕切り板30,31,32の表面は、それぞれ鏡面仕上げされている。
仕切り板30,31,32は、それぞれの基端側を合わせるとともに、それぞれ60度毎に均等に領域が区切られるように立ち上げ形成されている。すなわち、外筒7の長さ方向に外筒7と略同一長さで、かつ所定の高さで立ち上げ形成されている。
本実施例では、それぞれの仕切り板30,31,32の上端(遊端)30a,31a,32aがコイル形状を有する熱交換パイプ13の内面(内径13b)に接する程度の高さに設定されている。
第二反射部材28の表面、すなわち、各仕切り板30,31,32の表面は、それぞれ鏡面仕上げされている。
したがって、本実施形態では、中心に第二反射部材28、第1領域25~第3領域27、各遠赤外線放射ヒーター11,11,11、熱交換パイプ13、第一反射部材23、断熱材9、外筒7の順に内方から外方に向けて配設されている。
本実施例によれば、熱交換パイプ13には、各遠赤外線放射ヒーター11,11,11からの放射熱がそれぞれ通過し、熱交換パイプ13内部を流通する供給水に伝熱する。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材28の各仕切り板30,31,32によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材28によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材28の各仕切り板30,31,32によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材28によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
また、本実施例では、それぞれの仕切り板30,31,32の上端(遊端)30a,31a,32aがコイル形状を有する熱交換パイプ13の内面(内径13b)に接している形態としているが、非接触とすることも可能で本発明の範囲内である。
仕切り板30,31,32の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例において、仕切り板30,31,32は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
仕切り板30,31,32の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例において、仕切り板30,31,32は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
本実施例は、第二反射部材28を備えて第1領域25~第3領域27を形成するとともに、それぞれの領域25~27に、それぞれ遠赤外線放射ヒーター11を配設した点に特徴的な構成を有しているが、それ以外の構成・作用効果については実施例1と同じであるため詳細な説明は省略する。
「実施例3」
「実施例3」
図6及び図7は本発明加熱媒体発生装置3の第3の実施例を示し、本実施例では、単一の加熱媒体発生装置3内に6個の遠赤外線放射ヒーター11,11,11,11,11,11を配設した実施の一例を想定している。
外装体5内の長さ方向にわたって配される熱交換パイプ13のコイル形状の中心領域には、コイル形状の内部空間の長さ方向にわたる第1領域33~第6領域38が並設され、遠赤外線放射ヒーター11,11,11,11,11,11は、これらの領域33~38にそれぞれ独立して一本ずつ配設されている。
第1領域33~第6領域38は、遠赤外線放射ヒーター11,11,11,11,11,11から放射された遠赤外線をそれぞれ反射し、再度熱交換パイプ13へとそれぞれ放射可能な第二反射部材39で仕切られることによって構成されている。
第二反射部材39は、第1領域33、第2領域34、第3領域35、第4領域36、第5領域37、第6領域38が、それぞれ60度毎に均等に区切られるように仕切り板40,41,42,43,44,45が備えられている。
なお、本実施例では、外筒7の一端部7aから他端部7bにわたる長さのパイプ46を中心に設け、そのパイプ46の外径46aから所定間隔おきに仕切り板40,41,42,43,44,45を一体に立ち上げ形成して第二反射部材39を構成している。
仕切り板40,41,42,43,44,45は、パイプ46の軸方向中心からそれぞれ60度毎に均等に区切られる位置で立ち上げ形成されている。すなわち、パイプ46の外径において、パイプ46の長さ方向にパイプ46と同一長さで、かつ所定の高さで立ち上げ形成されている。
なお、本実施例では、外筒7の一端部7aから他端部7bにわたる長さのパイプ46を中心に設け、そのパイプ46の外径46aから所定間隔おきに仕切り板40,41,42,43,44,45を一体に立ち上げ形成して第二反射部材39を構成している。
仕切り板40,41,42,43,44,45は、パイプ46の軸方向中心からそれぞれ60度毎に均等に区切られる位置で立ち上げ形成されている。すなわち、パイプ46の外径において、パイプ46の長さ方向にパイプ46と同一長さで、かつ所定の高さで立ち上げ形成されている。
このようにパイプ46を有する形態とした理由は、それぞれの領域33~38の空間に遠赤外線放射ヒーター11…が、その周囲に空間を形成した状態で配設することが可能なように可能な限り広い空間を形成するためである。
第二反射部材39の表面、すなわち、各仕切り板40,41,42,43,44,45の表面は、それぞれ鏡面仕上げされている。
仕切り板40,41,42,43,44,45の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例では、仕切り板40,41,42,43,44,45の高さは全て同一としているが、異なる高さとすることも可能である。
本実施例において、仕切り板40,41,42,43,44,45は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
第二反射部材39の表面、すなわち、各仕切り板40,41,42,43,44,45の表面は、それぞれ鏡面仕上げされている。
仕切り板40,41,42,43,44,45の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例では、仕切り板40,41,42,43,44,45の高さは全て同一としているが、異なる高さとすることも可能である。
本実施例において、仕切り板40,41,42,43,44,45は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
したがって、本実施形態では、中心に第二反射部材39、第1領域33~第6領域38、各遠赤外線放射ヒーター11…、熱交換パイプ13、第一反射部材23、断熱材9、外筒7の順に内方から外方に向けて配設されている。
本実施例によれば、熱交換パイプ13には、各遠赤外線放射ヒーター11…からの放射熱がそれぞれ通過し、熱交換パイプ13内部を流通する供給水に伝熱する。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材39の各仕切り板40,41,42,43,44,45によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材39によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材39の各仕切り板40,41,42,43,44,45によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材39によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
また、本実施例では、実施例2とは異なり、それぞれの仕切り板40,41,42,43,44,45の上端(遊端)40a,41a,42a,43a,44a,45aがコイル形状を有する熱交換パイプ13の内面(内径13b)と非接触形態としているが、熱交換パイプ13の内面(内径13b)と接触する形態とすることも可能で本発明の範囲内である。
本実施例は、第二反射部材39を備えて第1領域33~第6領域38を形成するとともに、それぞれの領域33~38に、それぞれ遠赤外線放射ヒーター11を配設した点に特徴的な構成を有しているが、それ以外の構成・作用効果については実施例1と同じであるため詳細な説明は省略する。
なお上述の実施例1-実施例3は本発明の一実施の形態であって、本発明は何等これに限定解釈されるものではなく、遠赤外線放射ヒーター11の配設される数量や第二反射部材28(39)によって仕切られる領域の数などは本発明の範囲内において設計変更可能である。
また、実施例2や実施例3では、一つの領域毎に一本の遠赤外線放射ヒーターを配設した実施の形態をもって説明したが、一つの領域毎に複数本の遠赤外線放射ヒーターを配設する形態であってもよく本発明の範囲内である。
さらに、本実施例では、一つの加熱媒体発生装置に対して一本の熱交換パイプを配設する形態をもって説明したが、一つの加熱媒体発生装置に対して複数本の熱交換パイプを配設する形態であってもよく本発明の範囲内である。
また、実施例2や実施例3では、一つの領域毎に一本の遠赤外線放射ヒーターを配設した実施の形態をもって説明したが、一つの領域毎に複数本の遠赤外線放射ヒーターを配設する形態であってもよく本発明の範囲内である。
さらに、本実施例では、一つの加熱媒体発生装置に対して一本の熱交換パイプを配設する形態をもって説明したが、一つの加熱媒体発生装置に対して複数本の熱交換パイプを配設する形態であってもよく本発明の範囲内である。
本明細書では、食品等を高品質で加熱加工可能な加熱媒体を発生し得る加熱媒体発生装置、及びその加熱媒体発生装置を用いて食品等の処理対象物を高品質で加熱処理可能な加熱処理装置について説明したが、本発明は、高温微細水滴(熱水)と過熱水蒸気からなる新規な加熱媒体(気液混合体)を用いて処理対象物を加熱処理する分野、例えば、医薬品や化学品などの造粒物(造粒製品)を生成する分野においても利用可能である。
1 加熱処理室
3 加熱媒体発生装置
5 外装体
11 遠赤外線放射ヒーター
13 熱交換パイプ
18 給水部
19 吐水部
21 加熱媒体噴射ノズル
23 第一反射部材
3 加熱媒体発生装置
5 外装体
11 遠赤外線放射ヒーター
13 熱交換パイプ
18 給水部
19 吐水部
21 加熱媒体噴射ノズル
23 第一反射部材
Claims (16)
- 断熱性を有する外装体と、
外装体内に配される遠赤外線放射ヒーターと、
給水部と吐水部を備えるとともに外装体の一端側から他端側に向けて配設され、内部空間を加熱媒体用供給水が通過する熱交換パイプと、
遠赤外線放射ヒーターから放射された遠赤外線を反射し、再度熱交換パイプへと放射可能な第一反射部材とからなることを特徴とする加熱媒体発生装置。 - 遠赤外線放射ヒーターは、棒状に形成され、外装体の一端から他端にわたってその内部空間の中心位置に配設され、
熱交換パイプは、コイル状に形成され、遠赤外線放射ヒーターとの間に所定の間隔をあけるとともに、遠赤外線放射ヒーターの長さ方向に巻回状に配設されており、
第一反射部材は、前記熱交換パイプの長さ方向全域を覆う全体筒状に形成され、熱交換パイプとの間に所定の間隔をあけて配されていることを特徴とする請求項1に記載の加熱媒体発生装置。 - 外装体は、外筒と、外筒の内面側に備えられる断熱材とで内部を密閉空間とする全体筒状に形成されていることを特徴とする請求項2に記載の加熱媒体発生装置。
- 第一反射部材は、筒状に形成され、断熱材の内面に配設されていることを特徴とする請求項3に記載の加熱媒体発生装置。
- 第一反射部材の内面は、鏡面仕上げされていることを特徴とする請求項4に記載の加熱媒体発生装置。
- 遠赤外線放射ヒーターは単数配設されていることを特徴とする請求項1に記載の加熱媒体発生装置。
- 遠赤外線放射ヒーターは単数配設されていることを特徴とする請求項5に記載の加熱媒体発生装置。
- 遠赤外線放射ヒーターは複数配設されていることを特徴とする請求項1に記載の加熱媒体発生装置。
- 遠赤外線放射ヒーターは複数配設されていることを特徴とする請求項5に記載の加熱媒体発生装置。
- 外装体の長さ方向にわたって内部空間に配される熱交換パイプの中心領域には、前記内部空間の長さ方向にわたる第1領域~第n領域の複数の領域が並設され、
遠赤外線放射ヒーターは、これら複数の領域にそれぞれ独立して配設されており、
それぞれの遠赤外線放射ヒーターが配設されているそれぞれの領域は、遠赤外線放射ヒーターから放射された遠赤外線をそれぞれ反射し、再度熱交換パイプへとそれぞれ放射可能な第二反射部材によって仕切られていることを特徴とする請求項9に記載の加熱媒体発生装置。 - 第二反射部材の表面は、鏡面仕上げされていることを特徴とする請求項10に記載の加熱媒体発生装置。
- 請求項1に記載の加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置。 - 請求項7に記載の加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置。 - 請求項9に記載の加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置。 - 請求項10に記載の加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置。 - 請求項11に記載の加熱媒体発生装置を構成要素とする加熱処理装置であって、
吐水部には加熱媒体発生装置によって発生した加熱媒体を噴射する加熱媒体噴射ノズルが接続されており、
加熱媒体は、噴射ノズル内で、0.01MPa~0.30MPa、105℃~150℃の範囲に制御されており、
加熱媒体は、熱交換パイプ内に供給された供給水を所定温度及び所定圧力で沸騰させることで熱交換パイプ内に生成される水蒸気と熱水からなる気液混合体であって、
前記加熱媒体噴射ノズルを介して前記加熱媒体を加熱処理室内に噴射することにより、加熱処理室内を過熱水蒸気と高温微細水滴が混在する状態の加熱処理雰囲気に調整されることを特徴とする加熱処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/345,732 US20160113431A1 (en) | 2013-03-05 | 2014-03-05 | Heating medium generating apparatus and heating treatment apparatus including the heating medium generating apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-043024 | 2013-03-05 | ||
JP2013043024A JP6244529B2 (ja) | 2013-03-05 | 2013-03-05 | 加熱媒体発生装置及び該加熱媒体発生装置を含む加熱処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014136826A1 true WO2014136826A1 (ja) | 2014-09-12 |
Family
ID=51491336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055594 WO2014136826A1 (ja) | 2013-03-05 | 2014-03-05 | 加熱媒体発生装置及び該加熱媒体発生装置を含む加熱処理装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160113431A1 (ja) |
JP (1) | JP6244529B2 (ja) |
WO (1) | WO2014136826A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016160711A1 (en) * | 2015-03-27 | 2016-10-06 | Gas Technology Institute | High pressure, high temperature, on demand water heater |
CN110339793A (zh) * | 2019-07-12 | 2019-10-18 | 扬中市神洲化工电力设备有限公司 | 一种反应釜用的可靠的远红外辐射电加热装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6961211B2 (ja) * | 2017-07-20 | 2021-11-05 | メトロ電気工業株式会社 | 流体加熱器 |
CN108662755A (zh) * | 2018-06-15 | 2018-10-16 | 郑峰平 | 光源热水器 |
CN108662754A (zh) * | 2018-06-15 | 2018-10-16 | 郑峰平 | 一种光源热水器 |
JP2020064764A (ja) * | 2018-10-17 | 2020-04-23 | シャープ株式会社 | 流体加熱装置、加熱調理器 |
JP7243976B2 (ja) * | 2018-12-13 | 2023-03-22 | 株式会社豊電子工業 | 流体過加熱器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259955A (ja) * | 1997-03-19 | 1998-09-29 | Komatsu Ltd | 流体温度制御装置 |
JP2007017098A (ja) * | 2005-07-08 | 2007-01-25 | Tokyo Electron Ltd | 流体加熱装置 |
JP2007064564A (ja) * | 2005-08-31 | 2007-03-15 | National Agriculture & Food Research Organization | 加熱媒体制御型汎用的加熱装置 |
JP2009091386A (ja) * | 2007-10-03 | 2009-04-30 | National Agriculture & Food Research Organization | 革新的加熱媒体とその発生方法及び装置 |
JP4336244B2 (ja) * | 2003-05-12 | 2009-09-30 | 有限会社梅田事務所 | 被加熱材料の加熱方法及びその装置 |
JP2011106733A (ja) * | 2009-11-17 | 2011-06-02 | National Agriculture & Food Research Organization | 加熱媒体発生方法及びその装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5307780B2 (ja) * | 2010-09-13 | 2013-10-02 | 東京エレクトロン株式会社 | 液体加熱ユニット、これを備える液処理装置、および液処理方法 |
KR101036509B1 (ko) * | 2010-09-30 | 2011-05-24 | 정광호 | 탄소히터를 이용한 온수생성장치 |
-
2013
- 2013-03-05 JP JP2013043024A patent/JP6244529B2/ja active Active
-
2014
- 2014-03-05 WO PCT/JP2014/055594 patent/WO2014136826A1/ja active Application Filing
- 2014-03-05 US US14/345,732 patent/US20160113431A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259955A (ja) * | 1997-03-19 | 1998-09-29 | Komatsu Ltd | 流体温度制御装置 |
JP4336244B2 (ja) * | 2003-05-12 | 2009-09-30 | 有限会社梅田事務所 | 被加熱材料の加熱方法及びその装置 |
JP2007017098A (ja) * | 2005-07-08 | 2007-01-25 | Tokyo Electron Ltd | 流体加熱装置 |
JP2007064564A (ja) * | 2005-08-31 | 2007-03-15 | National Agriculture & Food Research Organization | 加熱媒体制御型汎用的加熱装置 |
JP2009091386A (ja) * | 2007-10-03 | 2009-04-30 | National Agriculture & Food Research Organization | 革新的加熱媒体とその発生方法及び装置 |
JP2011106733A (ja) * | 2009-11-17 | 2011-06-02 | National Agriculture & Food Research Organization | 加熱媒体発生方法及びその装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016160711A1 (en) * | 2015-03-27 | 2016-10-06 | Gas Technology Institute | High pressure, high temperature, on demand water heater |
US10151508B2 (en) | 2015-03-27 | 2018-12-11 | Gas Technology Institute | High pressure, high temperature, on demand water heater |
CN110339793A (zh) * | 2019-07-12 | 2019-10-18 | 扬中市神洲化工电力设备有限公司 | 一种反应釜用的可靠的远红外辐射电加热装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2014169842A (ja) | 2014-09-18 |
JP6244529B2 (ja) | 2017-12-13 |
US20160113431A1 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014136826A1 (ja) | 加熱媒体発生装置及び該加熱媒体発生装置を含む加熱処理装置 | |
US11770878B2 (en) | Tubular concentrator for concentric radiation of electromagnetic waves | |
CN101568209A (zh) | 一种用于液体和/或气体加热的微波加热器 | |
KR20110069570A (ko) | 마이크로파를 이용한 보일러 | |
JP2020017433A (ja) | 赤外線放射装置 | |
KR200439282Y1 (ko) | 근적외선을 이용한 온수기 | |
CN106016432A (zh) | 一种高热防烫电暖器 | |
US11739007B2 (en) | Reactor for proximal and perpendicular radiation of electromagnetic waves on a thin fluid bed | |
JP7190627B2 (ja) | 過熱蒸気発生装置及び調理器 | |
JP2000311768A (ja) | 発熱装置および加熱流体発生装置 | |
TWI667980B (zh) | 一種高溫蒸煮器 | |
KR20110104407A (ko) | 유체 및 기체용 연속히터장치 | |
CN202254229U (zh) | 红外光波流体加热装置 | |
CN205939061U (zh) | 一种石英管即时过热蒸汽发生器 | |
KR20120099906A (ko) | 유체용 연속 히터장치 | |
CN106196244B (zh) | 一种高热电暖器 | |
KR100679679B1 (ko) | 적외선 가열기구 및 기지 가열기 형식의 진공 챔버 | |
JP2012000074A (ja) | 加熱調理方法と装置 | |
JP2000041852A (ja) | 加熱調理装置 | |
KR200428836Y1 (ko) | 진공 겸용 스팀청소기의 히터 | |
CN203880953U (zh) | 高效辐射式防爆电加热器 | |
WO2005079116A2 (en) | Mehod and apparatus for heating a fluidic load using radio frequency energy | |
JPH09135776A (ja) | 湯沸かし器 | |
JPS62228821A (ja) | 遠赤外線発生装置 | |
KR200411222Y1 (ko) | 가열 및 냉각 겸용 믹싱 탱크 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14345732 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14760469 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14760469 Country of ref document: EP Kind code of ref document: A1 |