WO2014135006A1 - 一种模块化多电平变换器的调制策略 - Google Patents
一种模块化多电平变换器的调制策略 Download PDFInfo
- Publication number
- WO2014135006A1 WO2014135006A1 PCT/CN2014/072229 CN2014072229W WO2014135006A1 WO 2014135006 A1 WO2014135006 A1 WO 2014135006A1 CN 2014072229 W CN2014072229 W CN 2014072229W WO 2014135006 A1 WO2014135006 A1 WO 2014135006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pwm
- sub
- module
- arm
- voltage
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 33
- 239000000969 carrier Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000010363 phase shift Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
Definitions
- the present invention relates to modulation techniques in the field of multilevel power electronic converters, and in particular to carrier pulse width modulation strategies for modular multilevel converters. Background technique
- the modular multi-level converter is a new type of voltage source converter with a strict modular design structure, which reduces the production cost in mass production; the series and sub-module, the voltage level and power level of the converter Easy to expand;
- the multi-level output form of the converter reduces the harmonic content and total distortion of the output voltage, thereby reducing or even eliminating large-capacity AC filters; each bridge arm sub-module does not need to be turned on at the same time, reducing The rate of change of the voltage and current of the bridge arm greatly reduces the stress on the switching device.
- the protection circuit of the modular multilevel converter is simple and easy to implement.
- the modulation strategies of multilevel power electronic converters mainly include carrier pulse width modulation strategy and space vector pulse width modulation (SVPWM) strategy. Since the SVPWM strategy increases the number of output levels, the calculation becomes very complicated and the redundancy vector selection is difficult, and it is less used for converters above three levels.
- the carrier pulse width modulation strategy is widely used.
- the carrier pulse width modulation strategy for modular multilevel converters mostly adopts carrier phase shifting technology. When the carrier phase shift pulse width modulation strategy is adopted, each of the upper and lower arms of each phase needs one modulated wave and N successive phase shifted carriers, which greatly reduces the harmonic content of the output voltage without increasing the switching frequency, and is easy to module. The implementation is achieved, and the workload of the switching device is balanced.
- the carrier phase-shifting pulse width modulation strategy increases the workload of the control system.
- the modulation strategy needs to generate a large number of carriers, which requires high software and hardware resources of the system.
- the modular multilevel converter modulation strategy of the present invention and the carrier phase shift pulse width modulation strategy achieve the same output power quality, and do not need to perform phase shift control on the carrier, and only need one modulated wave and N carriers per phase,
- the number of modulated waves and carriers is reduced by half, and there is no need to design a sub-module capacitor voltage equalization closed-loop control algorithm, which greatly saves the system's hardware and software resources, facilitates engineering implementation, and is more suitable for modular multilevel converters with more levels.
- the object of the present invention is to improve the existing carrier modulation strategy for the novel topology of the modular multilevel converter, and to reduce the requirements on the system hardware and software resources while ensuring the output power quality of the converter.
- Each phase of the modular multilevel converter of the present invention is comprised of an upper arm, a lower arm and a reactor.
- the modulation strategy of the modular multilevel converter of the present invention generates PWM pulses of the upper arm and the lower arm according to the carrier layer stack modulation method, and sorts the capacitor voltages of the sub-modules in the bridge arm, and combines the current direction of the bridge arms for each sub-child
- the module assigns a PWM pulse to determine the operating status of the submodule.
- the modulation strategy of a modular multilevel converter of the present invention has the advantages of: only one modulated wave and N carriers per phase (N is a modular multilevel converter
- N is a modular multilevel converter
- the number of sub-modules of the upper or lower arm of the phase) can make the phase voltage of the modular multilevel converter output N+1 without carrier phase shifting.
- the control algorithm has high precision, easy to implement, save software. And hardware resources; can ensure that the number of sub-modules input per phase at any time is N, the sub-module capacitor voltage can realize voltage equalization control without closed-loop control strategy; at the same time, it is convenient for the voltage and power level of the modular multi-level converter Adjustment, not limited by the number of levels.
- Figure 1 is the main circuit topology of a modular multilevel converter
- Figure 2 is a sub-module circuit topology of a modular multilevel converter
- 3 is a schematic diagram of carrier layer modulation modulation.
- a modulation strategy for a modular multilevel converter characterized in that: based on a carrier stacking method, combining the current direction of each bridge arm and the sub-module capacitor voltage sequence, the switching state of each sub-module is determined.
- Figure 1 is a main circuit topology of a modular multilevel converter, each phase consisting of an upper arm, a lower arm and a series reactor, the upper arm comprising N submodules (SM ⁇ -SM ⁇ ), the lower arm includes N submodules (SM dl -SMdN).
- the circuit structure of all submodules is the same, as shown in Figure 2.
- the modular multilevel converter is composed of 2N internal circuit identical submodules, and the submodule circuit structure is shown in FIG. 2.
- VT1 and VT2 represent high-power controllable power electronic switches such as insulated gate bipolar transistors (IGBT) and integrated gate commutated thyristors (IGCT); Dl and D2 represent anti-parallel diodes of VT1 and VT2 respectively; C represents DC capacitors.
- the voltage is ⁇ , each sub-module is a half-bridge structure, and the power switches VT1 and VT2 are connected in series and connected in parallel with the DC capacitor C.
- a and B are the input and output ends of the sub-module. As shown in FIG.
- the upper arm and the lower arm are each connected in series by N sub-modules, that is, the output B of the previous sub-module is connected to the input A of the next sub-module.
- the input end A of the uppermost sub-module SM ul of the upper arm is connected to the positive pole of the DC power supply, and the output end B of the lower sub-module SM dN of the lower arm is connected to the negative pole of the DC power supply.
- the submodules of the modular multilevel converter contain separate control units.
- each sub-module requires only one trigger pulse.
- the trigger pulse is inverted to obtain a complementary trigger pulse, and the dead zone is set as the trigger signal of VT1 and VT2 in the sub-module.
- the modulation strategy of the present invention can be implemented in the following four steps:
- the capacitor voltages of the upper arm and the lower arm submodule measured in step (2) are respectively sorted from small to large, and the sorting result remains unchanged during a voltage equalization control period.
- the sub-module serial number corresponding to the capacitor voltage sequence of the upper arm sub-module is placed in the array t u [i]
- the sub-module serial number corresponding to the capacitor voltage sequence of the lower-arm sub-module is placed in the array t d [i].
- the PWM pulses are assigned to the sub-modules of the upper arm and the lower arm according to the sub-module capacitor voltage sequencing result and the bridge arm current direction.
- the N-way PWM pulse obtained in step (1) is PWM ⁇ PWM 2 , . .., PWMJ times assigned to submodule SM(t u [l]), SM(t u [2]), ..., SM(t u [N]) ; if upper arm current au ⁇ 0, current Discharge the capacitor in the input state sub-module, reduce the capacitor voltage, and assign the N-channel PWM pulses PWM l 7 PWM 2 , ..., PWM N obtained in step (1) to the sub-module SM(t u [N]). SM(t u [Nl]), ..., SM(t u [l]).
- the lower arm For the lower arm, if the lower arm current du > 0, the current is charged in the capacitor of the input state sub-module, the capacitor voltage rises, and the N-way PWM pulse PWM, PWM 2 ' obtained in step (1), ..., PWM N ' is assigned to submodule SM(t d [N]), SM(t d [Nl]), ..., SM(t d [l]) in sequence ; if the lower arm current is du ⁇ 0, the current is discharged in the capacitor of the input state sub-module, the capacitor voltage is lowered, and the N-way PWM pulses PWM, PWM 2 ', ..., PWM N ' obtained in step (1) are sequentially assigned to the sub-module SM (t d [ l]), SM(t d [2]), ..., SM(t d [N]).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/409,231 US9787219B2 (en) | 2013-03-07 | 2014-02-19 | Modulation policy for modular multi-level converter |
AU2014225133A AU2014225133B2 (en) | 2013-03-07 | 2014-02-19 | Modulation policy for modular multi-level convertor |
ZA2014/08361A ZA201408361B (en) | 2013-03-07 | 2014-11-17 | Modulation policy for modular multi-level convertor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310072543.XA CN103248252B (zh) | 2013-03-07 | 2013-03-07 | 一种模块化多电平变换器的调制策略 |
CN201310072543.X | 2013-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014135006A1 true WO2014135006A1 (zh) | 2014-09-12 |
Family
ID=48927518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/072229 WO2014135006A1 (zh) | 2013-03-07 | 2014-02-19 | 一种模块化多电平变换器的调制策略 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9787219B2 (zh) |
CN (1) | CN103248252B (zh) |
AU (1) | AU2014225133B2 (zh) |
WO (1) | WO2014135006A1 (zh) |
ZA (1) | ZA201408361B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113507205A (zh) * | 2021-07-27 | 2021-10-15 | 华中科技大学 | 一种抑制mmc共模传导emi的控制方法、控制器及控制系统 |
CN114865935A (zh) * | 2022-02-25 | 2022-08-05 | 上海电力大学 | 模块化多电平换流器的载波混合脉宽调制策略控制方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248252B (zh) * | 2013-03-07 | 2015-02-11 | 中国矿业大学 | 一种模块化多电平变换器的调制策略 |
CN103633871B (zh) * | 2013-11-20 | 2016-10-05 | 华南理工大学 | 基于全桥与半桥模块的混合型多电平换流器及其控制方法 |
CN103812369B (zh) * | 2014-03-13 | 2016-01-13 | 华北电力大学 | 模块化多电平变换器调制方法及调制控制器 |
CN103956737B (zh) * | 2014-04-22 | 2016-11-23 | 上海交通大学 | 级联h桥拓扑中可滤除高次谐波的载波电平层叠调制方法 |
CN103986358B (zh) * | 2014-04-25 | 2016-06-22 | 哈尔滨工业大学 | 一种模块化多电平换流器拓扑 |
CN104201910A (zh) * | 2014-09-12 | 2014-12-10 | 东南大学 | 适用于vsc-hvdc的三相模块化多电平换流器的子模块电容电压平衡控制方法 |
CN104393779B (zh) * | 2014-11-13 | 2016-12-07 | 西安交通大学 | 一种基于载波层叠调制的模块化多电平变流器控制方法 |
CN104410256A (zh) * | 2014-12-10 | 2015-03-11 | 湖南大学 | 一种含模块化多电平变流器的有源滤波系统及其控制方法 |
CN105356780B (zh) * | 2015-10-23 | 2018-03-30 | 南方电网科学研究院有限责任公司 | 子模块混合型模块化多电平变流器的调制方法及系统 |
CN105337522B (zh) * | 2015-11-03 | 2018-05-25 | 湖南大学 | 一种模块化多电平换流器的双载波调制方法 |
CN105553310B (zh) * | 2015-12-31 | 2017-11-21 | 湖南大学 | 一种模块化多电平换流器的低调制度控制方法 |
CN106026731B (zh) * | 2016-06-30 | 2019-03-12 | 集美大学 | 模块化多电平变换器低频低压下电容电压波动抑制方法 |
CN107769216B (zh) * | 2016-08-18 | 2022-03-08 | 中国电力科学研究院 | 一种用于弱交流电网接入的电压调制方法 |
CN106505844B (zh) * | 2016-12-26 | 2019-02-01 | 中国西电电气股份有限公司 | 一种含冗余控制的全桥mmc换流器及控制方法 |
CN106533235B (zh) * | 2016-12-26 | 2019-02-01 | 中国西电电气股份有限公司 | 一种含冗余控制的半桥mmc换流器及控制方法 |
CN106877712B (zh) * | 2017-03-24 | 2019-02-05 | 燕山大学 | 一种模块组合多电平变换器控制方法 |
CN107276444B (zh) * | 2017-06-09 | 2019-06-04 | 南京理工大学 | 冗余容错pwm调制方法及基于该方法的模块化串联逆变器 |
CN107769597A (zh) * | 2017-10-17 | 2018-03-06 | 清华大学 | 一种减少模块化多电平换流器所用电容量的方法 |
CN108900105B (zh) * | 2018-08-16 | 2020-09-18 | 珠海泰为电子有限公司 | 一种三相三电平逆变电路的载波层叠移相控制方法 |
CN109889052B (zh) * | 2019-01-31 | 2020-08-18 | 南方电网科学研究院有限责任公司 | 一种模块化多电平矩阵换流器电容电压的控制方法及装置 |
CN109946600B (zh) * | 2019-04-03 | 2024-02-13 | 国网冀北电力有限公司电力科学研究院 | 检测换流阀子模块内部电气性能的装置及控制方法 |
CN110707910B (zh) * | 2019-09-12 | 2021-08-03 | 西南交通大学 | 模块化多电平变流器分布式控制系统的断网保护策略 |
CN110880785B (zh) * | 2019-11-12 | 2022-06-17 | 东南大学 | 基于混合调制策略的模块化多电平变换器主动热控制方法 |
CN113765426B (zh) * | 2020-06-01 | 2024-08-20 | 台达电子企业管理(上海)有限公司 | 模块化多电平换流器的控制方法及控制系统与输电系统 |
CN112542950B (zh) * | 2020-11-27 | 2022-03-15 | 株洲中车时代电气股份有限公司 | 一种双向dc/dc变流器、城轨车辆及其牵引系统 |
CN112953275B (zh) * | 2021-02-07 | 2023-11-21 | 浙江大学 | 一种减小模块化多电平变换器子模块电容电压波动的均压控制方法 |
CN113315359B (zh) * | 2021-05-07 | 2022-06-03 | 清华大学 | 一种直流模块化多电平卸荷电路的卸荷方法 |
CN113300626A (zh) * | 2021-05-10 | 2021-08-24 | 华中科技大学 | 一种模块化多电平变换器的控制方法和装置 |
CN113938040B (zh) * | 2021-10-11 | 2023-09-12 | 特变电工西安电气科技有限公司 | 一种多电平变流器控制方法及装置 |
CN114759820A (zh) * | 2022-04-06 | 2022-07-15 | 东南大学 | 一种4n+1电平输出的单相mmc载波移相调制方法 |
CN115411962B (zh) * | 2022-10-12 | 2024-05-28 | 北京理工大学 | 基于优先权适应机制的级联半桥式多电平变换器均衡方法 |
CN116073690B (zh) * | 2023-03-10 | 2023-06-27 | 闽南理工学院 | 一种mmc储能系统混合调制方法 |
CN117155117B (zh) * | 2023-10-31 | 2024-03-22 | 国网浙江省电力有限公司电力科学研究院 | 一种高压大容量直流变压器调控方法及系统 |
CN118367813B (zh) * | 2024-06-20 | 2024-08-30 | 西安理工大学 | 一种模块化多电平变换器的电容均压控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101951162A (zh) * | 2010-09-06 | 2011-01-19 | 东北电力大学 | 一种模块化多电平变流器的脉冲宽度控制方法 |
CN102195508A (zh) * | 2011-06-03 | 2011-09-21 | 中国科学院电工研究所 | 模块化多电平变流器的调制方法 |
US20120300514A1 (en) * | 2011-05-27 | 2012-11-29 | Alstom Technology Ltd | Method and device for determining a control scheme for an active power filter |
CN102843018A (zh) * | 2012-08-09 | 2012-12-26 | 东南大学 | 模块化多电平换流器的可变积分双循环映射脉宽调制法 |
CN103248252A (zh) * | 2013-03-07 | 2013-08-14 | 中国矿业大学 | 一种模块化多电平变换器的调制策略 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638263A (en) * | 1994-03-01 | 1997-06-10 | Halmar Robicon Group | Low and medium voltage PWM AC/DC power conversion method and apparatus |
AU2765599A (en) * | 1998-02-13 | 1999-08-30 | Wisconsin Alumni Research Foundation | Hybrid topology for multilevel power conversion |
US5933339A (en) * | 1998-03-23 | 1999-08-03 | Electric Boat Corporation | Modular static power converter connected in a multi-level, multi-phase, multi-circuit configuration |
US7428158B2 (en) * | 2005-09-09 | 2008-09-23 | Siemens Energy & Automation, Inc. | System and method for reducing harmonic effects on a power delivery system |
US8144491B2 (en) * | 2008-12-31 | 2012-03-27 | Drs Power & Control Technologies, Inc. | Cascaded flying capacitor modular high voltage inverters |
EP2577858B1 (en) * | 2010-06-01 | 2017-08-09 | ABB Schweiz AG | Precision switching for carrier based pwm |
CN102904417A (zh) * | 2011-12-24 | 2013-01-30 | 许继集团有限公司 | 模块化多电平换流装置子模块电容电压自适应调制方法 |
US8619446B2 (en) * | 2012-04-27 | 2013-12-31 | Rockwell Automation Technologies, Inc. | Cascaded H-bridge (CHB) inverter level shift PWM with rotation |
-
2013
- 2013-03-07 CN CN201310072543.XA patent/CN103248252B/zh not_active Expired - Fee Related
-
2014
- 2014-02-19 WO PCT/CN2014/072229 patent/WO2014135006A1/zh active Application Filing
- 2014-02-19 US US14/409,231 patent/US9787219B2/en active Active
- 2014-02-19 AU AU2014225133A patent/AU2014225133B2/en not_active Ceased
- 2014-11-17 ZA ZA2014/08361A patent/ZA201408361B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101951162A (zh) * | 2010-09-06 | 2011-01-19 | 东北电力大学 | 一种模块化多电平变流器的脉冲宽度控制方法 |
US20120300514A1 (en) * | 2011-05-27 | 2012-11-29 | Alstom Technology Ltd | Method and device for determining a control scheme for an active power filter |
CN102195508A (zh) * | 2011-06-03 | 2011-09-21 | 中国科学院电工研究所 | 模块化多电平变流器的调制方法 |
CN102843018A (zh) * | 2012-08-09 | 2012-12-26 | 东南大学 | 模块化多电平换流器的可变积分双循环映射脉宽调制法 |
CN103248252A (zh) * | 2013-03-07 | 2013-08-14 | 中国矿业大学 | 一种模块化多电平变换器的调制策略 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113507205A (zh) * | 2021-07-27 | 2021-10-15 | 华中科技大学 | 一种抑制mmc共模传导emi的控制方法、控制器及控制系统 |
CN114865935A (zh) * | 2022-02-25 | 2022-08-05 | 上海电力大学 | 模块化多电平换流器的载波混合脉宽调制策略控制方法 |
CN114865935B (zh) * | 2022-02-25 | 2024-05-24 | 上海电力大学 | 模块化多电平换流器的载波混合脉宽调制策略控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US9787219B2 (en) | 2017-10-10 |
AU2014225133A1 (en) | 2015-01-22 |
US20150171771A1 (en) | 2015-06-18 |
ZA201408361B (en) | 2016-08-31 |
CN103248252A (zh) | 2013-08-14 |
CN103248252B (zh) | 2015-02-11 |
AU2014225133B2 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014135006A1 (zh) | 一种模块化多电平变换器的调制策略 | |
US9641098B2 (en) | Multi-level inverter apparatus and method | |
GB2034539A (en) | Synthesising ac waveforms | |
US10396681B1 (en) | Multilevel inverters with increased number of output steps | |
CN112152464A (zh) | 具备故障阻断能力的器件串联式直流变压器及其控制方法 | |
WO2012041020A1 (zh) | 单相五电平功率变换器 | |
CN113395007A (zh) | 一种适用于级联h桥多电平逆变器的新型功率均衡调制方法 | |
CN105450063A (zh) | 一种半桥级联型多电平逆变器及控制方法 | |
Kishore et al. | A new reduced switch seven-level triple boost switched capacitor based inverter | |
CN109474197B (zh) | 一种新型的大容量多电平混合箝位型拓扑结构及拓扑方法 | |
CN106787891A (zh) | 一种五电平逆变器 | |
Boora et al. | A new general topology for asymmetrical multilevel inverter with reduced number of switching components | |
CN109039124B (zh) | 基于移相空间矢量调制的mmc电容电压均衡控制方法 | |
SE540483C2 (en) | A hybrid modular multilevel converter | |
CN107968560B (zh) | 一种中高频模块化多电平换流器死区控制方法 | |
Bifaretti et al. | A modulation technique for high power AC/DC multilevel converters for power system integration | |
Wang et al. | Modified carrier phase-shifted SPWM for a hybrid modular multilevel converter with HBSMs and FBSMs | |
CN109004814B (zh) | 一种用于mmc的子模块电容电压均衡控制系统 | |
Geetha et al. | A new reduced switch count three phase multilevel inverter | |
CN105515427A (zh) | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 | |
JP3243978U (ja) | 分散型エネルギーアクセスのための相互接続電力網高利得インバータ | |
Ren et al. | A novel neutral-point-clamped half-bridge eleven-level inverter with high DC voltage utilization ratio and fewer switches | |
CN211701886U (zh) | 一种变流器中i型三电平母线中点电压自动均衡电路 | |
CN113258803B (zh) | 一种模块化多电平变流器的电容电压均衡控制系统、方法 | |
CN206481233U (zh) | 一种新型五电平逆变器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14760307 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409231 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014225133 Country of ref document: AU Date of ref document: 20140219 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14760307 Country of ref document: EP Kind code of ref document: A1 |