CN105553310B - 一种模块化多电平换流器的低调制度控制方法 - Google Patents

一种模块化多电平换流器的低调制度控制方法 Download PDF

Info

Publication number
CN105553310B
CN105553310B CN201511022485.5A CN201511022485A CN105553310B CN 105553310 B CN105553310 B CN 105553310B CN 201511022485 A CN201511022485 A CN 201511022485A CN 105553310 B CN105553310 B CN 105553310B
Authority
CN
China
Prior art keywords
submodule
bridge arm
voltage
key system
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511022485.5A
Other languages
English (en)
Other versions
CN105553310A (zh
Inventor
罗安
周发云
徐千鸣
马伏军
曹小辉
贺加贝
岳雨霏
黄旭成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201511022485.5A priority Critical patent/CN105553310B/zh
Publication of CN105553310A publication Critical patent/CN105553310A/zh
Application granted granted Critical
Publication of CN105553310B publication Critical patent/CN105553310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Abstract

本发明公开了一种模块化多电平换流器的低调制度控制方法,将调制度划分为高调制度和低调制度两个区间,在不同的区间,载波的幅值、角频率和交叠比例不同。根据上桥臂和下桥臂参考电压判断其所在调制度区间,得到载波的幅值、角频率和交叠比例,进一步得到上桥臂和下桥臂需要投入的子模块数,然后根据电容电压平衡控制方法,实现电容电压的平衡控制。无需对桥臂子模块进行排序,仅需得到投运或未投运子模块电容电压的最大值或最小值,减少了计算量。本发明的方法低调制度下线电压谐波特性优于载波同相层叠调制,在高调制度时与载波同相层叠调制相同,实现了模块化多电平换流器的线电压在整个调制区间谐波特性最优化,提升了系统性能。

Description

一种模块化多电平换流器的低调制度控制方法
技术领域
本发明涉及模块化多电平换流器,特别是一种模块化多电平换流器的低调制度控制方法。
背景技术
模块化多电平换流器(Modular Multilevel Converters,MMC)具有高度模块化、易拓展、谐波性能好、效率高和具有公共直流侧等特点,目前已成为最具应用前景的多电平拓扑结构之一,在柔性直流输电工程领域得到了推广应用,同时在中高压电机驱动、电能质量控制等领域具有良好的应用前景。
MMC应用于柔性直流输电、电机驱动、静止无功发生器和有源电力滤波器等场合时,在一些工况下,MMC会工作于低调制度区域,例如,当MMC应用于输送风力发电和光伏发电的柔性直流输电工程时,由于风力和光伏发电具有不稳定性和间歇性,MMC在一些工况下会工作于低调制度下;当MMC应用于电机驱动时,在一些工况下其负载仅为额定功率的一部分;当MMC应用于静止无功发生器和统一潮流控制器等场合,也会存在低调制度的工况。
现有的模块化多电平换流器调制技术主要包括最近电平逼近调制、载波移相调制和载波同相层叠调制方法等,当MMC工作于低调制度工况下时,这三种调制方法均存在一个问题:输出电平数减少,谐波特性较差,难以保证MMC在低调制度工况下保持高效和稳定地运行。
发明内容
针对现有技术存在的缺陷,本发明提供一种模块化多电平换流器的低调制度控制方法包括以下步骤:
1)根据模块化多电平换流器上桥臂和下桥臂参考电压,分别判断上桥臂和下桥臂参考电压所在的调制区间,得到三角载波之间的交叠比例、开关频率和幅值,通过优化的脉宽调制方法分别得到上桥臂和下桥臂需要投入的子模块数;
2)根据三相上桥臂和下桥臂需投入的子模块数、桥臂电流、子模块电容电压和开关状态,通过电容电压平衡控制方法,实现电容电压平衡控制。
所述步骤1)的具体实现过程包括以下步骤:
1)将x相上桥臂和下桥臂的参考电压除以直流侧额定电压Udc,分别得到上桥臂和下桥臂参考电压的调制度Mux和Mlx,然后根据上桥臂和下桥臂参考电压所在的调制区间,得到三角载波的幅值A、角频率ωc和载波之间的交叠比例p;x∈(a,b,c),表示a,b,c三相;
2)将上桥臂和下桥臂的参考电压分别与上桥臂和下桥臂的N个三角载波进行比较,若参考电压大于一个三角载波,则输出一个高电平,否则输出0电平,并将N个输出的电平相加,得到当前控制周期上桥臂和下桥臂需投入的子模块数nux和nlx
当上桥臂和下桥臂参考电压均处于高调制度时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
否则,当任一桥臂参考电压处于低调制度时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
其中N表示单个桥臂子模块个数,UC表示子模块电容的额定值,函数floor()表示向下取整运算,ω表示低调制度时三角载波的角频率,k的取值根据子模块电容电压额定值与子模块数N而定,k∈[1,2,…,10]。
高调制度即Mux>0.5并且Mlx>0.5;低调制度包括三种情况:Mux≤0.5并且Mlx≤0.5、Mux≤0.5并且Mlx>0.5、Mux>0.5并且Mlx≤0.5;下标中u、l分别表示上桥臂和下桥臂。
设上桥臂和下桥臂三角载波之间的移相角为π,上桥臂和下桥臂第n个三角载波的计算公式分别为:
上式中n∈[1,…,N];m=0,1,2,…,表示第m个三角载波周期。
三相上桥臂和下桥臂的电容电压平衡控制方法相同,单个桥臂电容电压平衡控制方法的具体实现过程包括以下步骤:
1)检测桥臂各个子模块电压瞬时值,依次存入数组UC[N],检测桥臂电流im,将各个子模块的开关状态存入数组K[N],将各个子模块的编号存入数组B[N];
第i个子模块的开关状态如下式所示:
其中i=1,2,…,N;
Son表示已投运的子模块数:Son=K[1]+K[2]+…+K[N];Soff表示桥臂未投运的子模块数:Soff=N-Son;将Son个已投运子模块的电容电压和编号分别存入数组Uon[N]和Ron[N]的前Son个元素,将Soff个未投运子模块的电容电压和编号分别存入数组Uoff[N]和Roff[N]的前Soff个元素;
2)判断桥臂需要投入的子模块数non与已投运子模块数Son的大小,若non>Son,则当im>0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压的最小值及其对应的编号将编号为的子模块投入运行,并将该子模块开关状态置1,然后将已投运子模块数Son加1,未投运子模块数Soff减1;当im<0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压最大值及其对应的子模块的编号将编号为的子模块投入运行,将其开关状态置1,并将已投运子模块数Son加1,未投运子模块数Soff减1;
若non<Son,则当im>0时,依次比较Son个已投运子模块的电容电压,得到已投运子模块电容电压最大值及其对应的子模块的编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;当im<0时,依次比较Son个已投运子模块的电容电压,得到已投运子模块电容电压最小值及其对应的子模块编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;
若non=Son时,保持当前开关状态不变。
与现有技术相比,本发明所具有的有益效果为:本发明应用于模块化多电平换流器时,在开关频率相同的条件下,在低调制度下谐波性能优于载波同相层叠调制,在高调制度时谐波特性与载波同相层叠谐波特性相同,实现了模块化多电平换流器在整个调制区间谐波特性最优化,提升了系统性能。电容电压平衡控制无需排序,仅需得到未投运或已投运子模块电容电压最大值或最小值,减少了计算量,实现了电容电压的平衡控制。
附图说明
图1是模块化多电平换流器的主电路结构图;
图2是半H桥型子模块的电路结构图;
图3是模块化多电平换流器的低调制度控制方法示意图;
图4是优化脉宽调制方法示意图;
图5是单个桥臂的电容电压平衡控制示意图。
具体实施方式
图1为模块化多电平换流器的主电路结构图,MMC由三相六桥臂组成,每一相包括上桥臂和下桥臂,每个桥臂包括串联的N个半H桥型子模块和连接电抗L。图2为半H桥型子模块的电路结构图,包括一个开关臂和一个与开关臂并联的电容,开关臂包括两个串联的开关管;
图3为模块化多电平换流器的低调制度控制方法示意图,包括优化脉宽调制方法和电容电压平衡控制方法,包括以下步骤:
1)根据上桥臂和下桥臂参考电压,分别判断其所在的调制区间,得到三角载波之间的交叠比例、开关频率和幅值,通过优化脉宽调制方法分别得到上桥臂和下桥臂需要投入的子模块数;
2)根据上桥臂和下桥臂需投入的子模块数、桥臂电流、子模块电容电压和开关状态,通过电容电压平衡控制方法,实现电容电压平衡控制;
数组uux[i]表示检测得到的x相上桥臂第i个子模块的电容电压,数组ulx[i]表示检测得到的x相下桥臂第i个子模块的电容电压,iux表示x相上桥臂电流,ilx表示x相下桥臂电流,其中i表示子模块编号,i∈[1,2,…,N];x∈[a,b,c],表示a,b,c三相。
图4为优化脉宽调制方法的示意图,其具体实现过程包括以下步骤:
1)将x相上桥臂和下桥臂的参考电压除以直流侧额定电压Udc,分别得到其调制度Mux和Mlx,然后根据其所在的调制度区间,得到三角载波的幅值A、角频率ωc和载波之间的交叠比例p。
当三相上桥臂和下桥臂参考电压均处于高调制度时(Mux>0.5并且Mlx>0.5)时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
否则,当三相任一桥臂参考电压处于低调制度(低调制度包括三种情况:Mux≤0.5并且Mlx≤0.5、Mux≤0.5并且Mlx>0.5、Mux>0.5并且Mlx≤0.5)时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
其中N表示单个桥臂子模块个数,UC表示子模块电容的额定值,下标中u、l分别表示上桥臂和下桥臂,x∈(a,b,c),表示a,b,c三相,函数floor()表示向下取整运算,k∈[1,2,…,10],k的取值可根据子模块电容电压额定值与子模块数N而定。
2)将上桥臂和下桥臂的参考电压分别与上桥臂和下桥臂的N个三角载波进行比较,若参考电压大于一个三角载波,则输出一个高电平,否则输出0电平,并将N个输出的电平相加,得到当前控制周期上桥臂和下桥臂需投入的子模块数nux和nlx
上桥臂和下桥臂三角载波之间的移相角为π,上桥臂和下桥臂第n个三角载波的计算公式分别为:
上式中n∈[1,…,N],m=0,1,2,…,表示第m个三角载波周期。
图5为单个桥臂的电容电压平衡控制方法示意图。三相上桥臂和下桥臂的电容电压平衡控制方法相同,单个桥臂电容电压平衡控制方法的具体实现过程包括以下步骤:
1)检测桥臂各个子模块电压瞬时值,依次存入数组UC[N],检测桥臂电流im,将各个子模块的开关状态存入数组K[N],将各个子模块的编号存入数组B[N];
第i个子模块的开关状态如下式所示:
其中i=1,2,…,N;
Son表示已投运的子模块数:Son=K[1]+K[2]+…+K[N];Soff表示桥臂未投运的子模块数:Soff=N-Son;将Son个已投运子模块的电容电压和编号分别存入数组Uon[N]和Ron[N]的前Son个元素,将Soff个未投运子模块的电容电压和编号分别存入数组Uoff[N]和Roff[N]的前Soff个元素;
2)判断桥臂需要投入的子模块数non与已投运子模块数Son的大小,若non>Son,则当im>0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压的最小值及其对应的编号将编号为的子模块投入运行,并将该子模块开关状态置1,然后将已投运子模块数Son加1,未投运子模块数Soff减1;当im<0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压最大值及其对应的子模块的编号将编号为的子模块投入运行,将其开关状态置1,并将已投运子模块数Son加1,未投运子模块数Soff减1;
若non<Son,则当im>0时,依次比较Son个已投运子模块的电容电压,得到已投运子模块电容电压最大值及其对应的子模块的编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;当im<0时,依次比较Son个投运子模块的电容电压,得到已投运子模块电容电压最小值及其对应的子模块编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;
若non=Son时,保持当前开关状态不变。

Claims (5)

1.一种模块化多电平换流器的低调制度控制方法,其特征在于,包括以下步骤:
1)根据模块化多电平换流器上桥臂和下桥臂参考电压,分别判断上桥臂和下桥臂参考电压所在的调制区间,得到三角载波之间的交叠比例、开关频率和幅值,通过优化的脉宽调制方法分别得到上桥臂和下桥臂需要投入的子模块数;
2)根据三相上桥臂和下桥臂需投入的子模块数、桥臂电流、子模块电容电压和开关状态,通过电容电压平衡控制方法,实现电容电压平衡控制;
所述步骤1)的具体实现过程包括以下步骤:
a)将x相上桥臂和下桥臂的参考电压除以直流侧额定电压Udc,分别得到上桥臂和下桥臂参考电压的调制度Mux和Mlx,然后根据上桥臂和下桥臂参考电压所在的调制区间,得到三角载波的幅值A、角频率ωc和载波之间的交叠比例p;x∈(a,b,c),表示a,b,c三相;下标中u、l分别表示上桥臂和下桥臂;
b)将上桥臂和下桥臂的参考电压分别与上桥臂和下桥臂的N个三角载波进行比较,若参考电压大于一个三角载波,则输出一个高电平,否则输出0电平,并将N个输出的电平相加,得到当前控制周期上桥臂和下桥臂需投入的子模块数nux和nlx;其中N表示单个桥臂子模块数。
2.根据权利要求1所述的模块化多电平换流器低调制度控制方法,其特征在于,当上桥臂和下桥臂参考电压均处于高调制度时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
否则,当任一桥臂参考电压处于低调制度时,三角载波的幅值A、角频率ωc和载波之间的交叠比例p如下式所示:
UC表示子模块电容的额定值,函数floor()表示向下取整运算,ω表示低调制度时三角载波的角频率,k的取值根据子模块电容电压额定值与子模块数N而定,k∈[1,2,…,10]。
3.根据权利要求2所述的模块化多电平换流器的低调制度控制方法,其特征在于,所述高调制度即Mux>0.5并且Mlx>0.5;低调制度包括三种情况:Mux≤0.5并且Mlx≤0.5、Mux≤0.5并且Mlx>0.5、Mux>0.5并且Mlx≤0.5。
4.根据权利要求2所述的模块化多电平换流器的低调制度控制方法,其特征在于,设上桥臂和下桥臂三角载波之间的移相角为π,上桥臂和下桥臂第n个三角载波的计算公式分别为:
上式中n∈[1,…,N];m=0,1,2,…,表示第m个三角载波周期。
5.根据权利要求2所述的模块化多电平换流器低调制度控制方法,其特征在于,三相上桥臂和下桥臂的电容电压平衡控制方法相同,单个桥臂电容电压平衡控制方法的具体实现过程包括以下步骤:
1)检测桥臂各个子模块电压瞬时值,依次存入数组UC[N],检测桥臂电流im,将各个子模块的开关状态存入数组K[N],将各个子模块的编号存入数组B[N];
第i个子模块的开关状态如下式所示:
其中i=1,2,…,N;
Son表示已投运的子模块数:Son=K[1]+K[2]+…+K[N];Soff表示桥臂未投运的子模块数:Soff=N-Son;将Son个已投运子模块的电容电压和编号分别存入数组Uon[N]和Ron[N]的 前Son个元素,将Soff个未投运子模块的电容电压和编号分别存入数组Uoff[N]和Roff[N]的前Soff个元素;
2)判断桥臂需要投入的子模块数non与已投运子模块数Son的大小,若non>Son,则当im>0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压的最小值 及其对应的编号将编号为的子模块投入运行,并将该子模块开关状态置1,然后将已投运子模块数Son加1,未投运子模块数Soff减1;当im<0时,依次比较未投运的Soff个子模块电容电压,得到未投运子模块电容电压最大值及其对应的子模块的编号 将编号为的子模块投入运行,将其开关状态置1,并将已投运子模块数Son加1,未投运子模块数Soff减1;
若non<Son,则当im>0时,依次比较Son个已投运子模块的电容电压,得到已投运子模块电容电压最大值及其对应的子模块的编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;当im<0时,依次比较Son个已投运子模块的电容电压,得到已投运子模块电容电压最小值及其对应的子模块编号将编号为的子模块切除,将其开关状态清零,并将已投运子模块数Son减1,将未投运的子模块数Soff加1;
若non=Son时,保持当前开关状态不变。
CN201511022485.5A 2015-12-31 2015-12-31 一种模块化多电平换流器的低调制度控制方法 Active CN105553310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511022485.5A CN105553310B (zh) 2015-12-31 2015-12-31 一种模块化多电平换流器的低调制度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511022485.5A CN105553310B (zh) 2015-12-31 2015-12-31 一种模块化多电平换流器的低调制度控制方法

Publications (2)

Publication Number Publication Date
CN105553310A CN105553310A (zh) 2016-05-04
CN105553310B true CN105553310B (zh) 2017-11-21

Family

ID=55832294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511022485.5A Active CN105553310B (zh) 2015-12-31 2015-12-31 一种模块化多电平换流器的低调制度控制方法

Country Status (1)

Country Link
CN (1) CN105553310B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059355B (zh) * 2016-05-31 2018-09-21 上海电力学院 一种mmc-hvdc低频模型预测控制方法
CN108152623B (zh) * 2017-12-18 2020-03-17 西安交通大学 一种模块化多电平换流器子模块电容器的在线监测方法
CN108521146B (zh) * 2018-06-15 2023-09-01 贵州电网有限责任公司 一种交直流配电网区域稳定控制装置及控制方法
CN109490656B (zh) * 2018-09-12 2022-10-04 国网江苏省电力有限公司南京供电分公司 基于关断感应电压负峰值的upfc功率模块评估方法
CN109347349B (zh) * 2018-11-13 2020-07-03 北京金自天正智能控制股份有限公司 一种三电平载波调制方法
CN114063694B (zh) * 2021-10-27 2023-10-20 广东电网有限责任公司广州供电局 电压调制方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577073A (zh) * 2009-09-04 2012-07-11 Abb技术有限公司 计算用于模块化多电平转换器的插入指数的方法和装置
CN103929084A (zh) * 2014-05-06 2014-07-16 湖南大学 一种基于谐振滤波电路的模块化多电平换流器低频控制方法
CN104065295A (zh) * 2014-06-16 2014-09-24 南京航空航天大学 适用于电压比为1:2的h桥混合级联逆变器的控制方法
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248252B (zh) * 2013-03-07 2015-02-11 中国矿业大学 一种模块化多电平变换器的调制策略

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577073A (zh) * 2009-09-04 2012-07-11 Abb技术有限公司 计算用于模块化多电平转换器的插入指数的方法和装置
CN103929084A (zh) * 2014-05-06 2014-07-16 湖南大学 一种基于谐振滤波电路的模块化多电平换流器低频控制方法
CN104065295A (zh) * 2014-06-16 2014-09-24 南京航空航天大学 适用于电压比为1:2的h桥混合级联逆变器的控制方法
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器

Also Published As

Publication number Publication date
CN105553310A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105553310B (zh) 一种模块化多电平换流器的低调制度控制方法
Nami et al. Multi-output DC–DC converters based on diode-clamped converters configuration: topology and control strategy
CN104092239B (zh) 一种基于模块化多电平换流器的光伏并网控制方法
EP2443468B1 (en) An arrangement for testing a switching cell
CN104104247B (zh) 叠接桥式直流/交流电力转换方法及其装置
CN107505524B (zh) 换流阀例行试验电路及试验方法
Rajasekar et al. Solar photovoltaic power conversion using modular multilevel converter
CN106451544B (zh) 一种光储联合的三电平并网系统控制方法
Albert et al. A symmetric solar photovoltaic inverter to improve power quality using digital pulsewidth modulation approach
CN106877371A (zh) 一种具有储能功能的模块化多电平变流器的控制方法
Parimalasundar et al. Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches
Hasanzadeh et al. Reduced switch NPC-based transformerless PV inverter by developed switching pattern
Feloups et al. Single-phase seven-level PWM inverter for PV systems employing multi-level boost converter
CN110858754A (zh) 一种mmc型能量路由器的两级控制方法及系统
CN105337520A (zh) 光伏并网变换器、光伏供电系统和电器
Kurdkandi et al. A new five-level switched capacitor-based grid-connected inverter with common grounded feature
CN105024578A (zh) 一种三相模块化多电平变换器并联系统及其控制方法
Behera et al. Hybrid modular multilevel converter based single-phase Grid connected photovoltaic system
CN202183738U (zh) 自生成级联电源的级联型多电平逆变电路
Hao et al. A new interleaved three-level boost converter and neutral-point potential balancing
Islam et al. Power converter topologies for grid-integrated medium-voltage applications
Hang et al. 5L full‐scale converter with a dc‐link flying‐capacitor auxiliary bridge leg for large direct‐drive wind turbines
CN103915858B (zh) 基于多绕组高频磁耦合系统的光伏微逆发电系统
CN102664549A (zh) 一种基于功率器件开关分配的级联型逆变器电压平衡控制方法
CN112653133A (zh) 一种基于九开关变流器的电网模拟器及其应用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant