WO2014133158A1 - 蛍光特性を示す新規なポリペプチド、およびその利用 - Google Patents

蛍光特性を示す新規なポリペプチド、およびその利用 Download PDF

Info

Publication number
WO2014133158A1
WO2014133158A1 PCT/JP2014/055160 JP2014055160W WO2014133158A1 WO 2014133158 A1 WO2014133158 A1 WO 2014133158A1 JP 2014055160 W JP2014055160 W JP 2014055160W WO 2014133158 A1 WO2014133158 A1 WO 2014133158A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
bilirubin
polynucleotide
amino acid
unag
Prior art date
Application number
PCT/JP2014/055160
Other languages
English (en)
French (fr)
Inventor
宮脇 敦史
安希子 熊谷
Original Assignee
独立行政法人理化学研究所
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 独立行政法人科学技術振興機構 filed Critical 独立行政法人理化学研究所
Priority to EP14757001.4A priority Critical patent/EP2963115B1/en
Priority to US14/771,060 priority patent/US9957308B2/en
Priority to JP2015503061A priority patent/JP6444856B2/ja
Publication of WO2014133158A1 publication Critical patent/WO2014133158A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/22Haematology

Definitions

  • the present invention relates to a novel polypeptide exhibiting fluorescence characteristics that can be isolated from vertebrates and uses thereof.
  • Fluorescent proteins such as GFP (green fluorescent protein) are indispensable as tools for visualizing cells, tissues, or living organisms.
  • Non-Patent Documents 1 and 2 and Patent Documents 1 and 2 report that vertebrate Anguilla japonica has a fluorescent protein.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2007-254371 (Publication Date: October 4, 2007)”
  • Vertebrate-derived fluorescent proteins may have different properties from invertebrate-derived fluorescent proteins. For this reason, the theme of isolation of vertebrate-derived fluorescent proteins is of great interest.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a novel fluorescent protein that can be isolated from vertebrates and use thereof.
  • the present invention includes one of the following aspects.
  • the polynucleotide according to any one of (1) to (4) below. ( 1) a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1; (2) 1-21 amino acids in the amino acid sequence set forth in SEQ ID NO: 1 are substituted, deleted, inserted, and / or added.
  • the present invention has an effect that it can provide a fluorescent protein useful in fields such as molecular biology and its use.
  • FIG. 1 It is the figure which showed the expression in Escherichia coli and a mammalian cell of the recombinant UnaG protein in the Example of this invention.
  • A is the figure which observed E. coli (2) in which recombinant UnaG protein was expressed by irradiating blue light with a UV transilluminator. The upper left is E. coli (1) transfected with the vector pRSET as a control, and the upper right is E. coli (3) expressing EGFP.
  • (B) is a diagram obtained by staining the gel obtained by electrophoresis of the cell extract of E. coli (1) to (3) shown in (a) by SDS-PAGE electrophoresis by the CBB staining method.
  • (C) is the figure which observed the mammalian cell HEK293T in which recombinant UnaG protein was expressed under the fluorescence microscope.
  • the top is a differential interference image and the bottom is a fluorescence image. It is the figure which showed the fluorescence characteristic of UnaG protein in the Example of this invention. In the Example of this invention, it is the figure which showed the fluorescence characteristic etc. of UnaG protein by the reconstitution with fetal bovine serum (FBS) and a FBS fraction.
  • FBS fetal bovine serum
  • (A) is a diagram showing an excitation spectrum and a fluorescence spectrum of an apo-form UnaG protein (left) and a holo-form UnaG protein (FLAG-UnaG protein derived from a mammalian cell) (right) reconstituted by FBS.
  • (B) shows FBS fractionated by density gradient ultracentrifugation, reconstituted each fraction and Apo UnaG protein and measured fluorescence intensity (solid line) and protein concentration (dashed line) of each serum fraction. It is a figure.
  • the vertical axis represents fluorescence intensity (left axis) and protein concentration (mg / ml) (right axis), and the horizontal axis represents fraction number.
  • the vertical axis represents the fluorescence intensity
  • the horizontal axis represents the concentration ( ⁇ M) of each ligand.
  • the vertical axis indicates the fluorescence intensity
  • the horizontal axis indicates the elapsed time when the apo-form UnaG protein is added to serum as 0 minutes.
  • Example of this invention it is the figure which showed the correlation with the quantity of indirect bilirubin (unconjugated bilirubin), and the fluorescence intensity of UnaG protein.
  • the Example of this invention it is the figure which showed the correlation with the fluorescence intensity ratio with respect to the mCherry protein of the bilirubin density
  • the left figure shows the absorption spectrum of UnaG protein of the A12ES80N variant, the horizontal axis shows the wavelength of the absorbed light, and the vertical axis shows the absorbance.
  • the right figure shows the excitation spectrum and fluorescence spectrum of UnaG protein of the A12ES80N variant, the horizontal axis shows the wavelength of excitation light and fluorescence, and the vertical axis shows the fluorescence intensity.
  • it is the figure which showed the correlation with the quantity of bilirubin, and the fluorescence intensity of wild-type UnaG protein (left) or the A12ES80N variant UnaG protein (right).
  • polynucleotide can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides.
  • the “base sequence” can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and unless otherwise specified, a deoxyribonucleotide sequence or a ribonucleotide sequence is intended.
  • the polynucleotide may be a single strand or a double strand structure. In the case of a single strand, the polynucleotide may be a sense strand or an antisense strand.
  • polypeptide can also be referred to as “protein”.
  • eel is intended for fish included in the genus Anguilla, such as Japanese eel, European eel, American eel, and eel.
  • a and / or B is a concept that includes both A and B and A or B, and can also be referred to as “at least one of A and B”.
  • bilirubin refers to a degradation product of heme, which is a constituent of hemoglobin.
  • one of the preferred embodiments of bilirubin is unconjugated bilirubin.
  • Unconjugated bilirubin is also referred to as indirect bilirubin.
  • the polypeptide according to the present invention is a polypeptide having fluorescence characteristics in the presence of bilirubin (hereinafter referred to as “fluorescent polypeptide”) as shown in any one of (1) to (4) below.
  • fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 1.
  • the number of amino acids substituted, deleted, inserted and / or added is preferably 1 to 21, more preferably 1 to 14, and further preferably 1 to 7. 1 to 5 or 6 is particularly preferable.
  • the sequence identity is preferably 90% or more, more preferably 95% or more, particularly preferably 96% or more, 97% or more, 98% or more, or 99% or more.
  • the fluorescent polypeptide according to the present invention does not exhibit fluorescence characteristics when an environment where the interaction with bilirubin is lost, such as in the absence of bilirubin. It is presumed that the isolation of the present polypeptide was difficult to have such fluorescence characteristics that have never been seen before.
  • the fluorescent polypeptide is not limited to this as long as it is a polypeptide formed by peptide bonding of amino acids, and may include a structure other than the polypeptide. Examples of structures other than the polypeptide herein include sugar chains and isoprenoid groups, but are not particularly limited.
  • the fluorescent polypeptide is a polypeptide having a structure that becomes a binding site to bilirubin.
  • the fluorescent polypeptide according to the present invention may be isolated from a natural source or chemically synthesized. More specifically, the polypeptides are naturally purified products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). Translation products produced by recombinant technology from (including cells) are included in that category. Examples of the fluorescent polypeptide according to the present invention include those derived from eel, more specifically those derived from Japanese eel.
  • UnaG The fluorescent polypeptide (referred to as UnaG) whose amino acid sequence is shown in SEQ ID NO: 1 was originally isolated from Japanese eel, but its origin is not particularly limited.
  • the fluorescent polypeptide according to the present invention emits fluorescence of a predetermined wavelength by being irradiated with excitation light in the presence of bilirubin (in a state where it is bound to bilirubin), but receives the same excitation light in the absence of bilirubin.
  • bilirubin in a state where it is bound to bilirubin
  • the fluorescent polypeptide according to the present invention further exhibits a fluorescent property equivalent to UnaG.
  • equivalent fluorescence characteristics means to have equivalent excitation wavelength and equivalent fluorescence wavelength.
  • UnaG The main fluorescence characteristics of UnaG are as follows. Maximum excitation wavelength (nm): 498-499 Maximum fluorescence wavelength (nm): 525-530 (green) Molar extinction coefficient (M ⁇ 1 cm ⁇ 1 ): 50000-78000 Quantum yield (%): 50-54 Fluorescence lifetime (nanoseconds): 2.2 Note that having an excitation wavelength equivalent to UnaG means that the maximum excitation wavelength is in the range of 480 nm to 520 nm, in the range of 490 nm to 510 nm, or in the range of 494 nm to 504 nm, for example. Means.
  • having the same fluorescence wavelength as UnaG means that, for example, the maximum fluorescence wavelength is in the range of 507 nm to 547 nm, in the range of 517 nm to 537 nm, or in the range of 522 nm to 532 nm. Means.
  • the fluorescent polypeptides shown in (1) to (4) above can be regarded as mutants based on (1).
  • a person skilled in the art can introduce a mutation by any method for the purpose of improving one or more fluorescence properties selected from fluorescence intensity, fluorescence rate, and fluorescence stability.
  • the fluorescence intensity is quantified by using the intensity of light emitting fluorescence as an index, and includes the light absorption efficiency (that is, extinction coefficient) and the conversion efficiency between excitation light and fluorescence (that is, quantum yield). It is proportional to the brightness of the fluorescence.
  • the fluorescence speed means a value obtained by quantifying the speed from receiving excitation light until reaching a certain fluorescence intensity.
  • fluorescence stability means a characteristic of a fluorescent polypeptide that is determined using as an index the time during which a constant fluorescence intensity is maintained. That is, it means that the smaller the degree of fluorescence decay in a certain elapsed time, the higher the fluorescence stability.
  • the nine amino acids at the 12th, 57th, 61st, 77th, 80th, 81st, 112th, 132nd and 134th positions shown in SEQ ID NO: 1 are: It is particularly involved in the ability to bind bilirubin. Therefore, when obtaining a mutant capable of changing the binding ability to bilirubin, mutation (substitution, deletion, insertion and / or addition, preferably substitution with another amino acid) is performed on at least one of the nine amino acids. ) Is preferably generated. On the other hand, when obtaining a mutant capable of maintaining the same ability to bind to bilirubin, it is preferable to cause a mutation in amino acids other than the nine amino acids.
  • At least one selected from amino acids 82 to 85 shown in SEQ ID NO: 1, more preferably at least one selected from amino acids 82 and 84 (preferably substitution with other amino acids) ) can be provided to provide a fluorescent polypeptide with substantially maintained fluorescence properties and improved dispersibility between molecules (see also Examples).
  • the 12th and 80th positions shown in SEQ ID NO: 1. Preferably at least one of the four amino acids at positions 57 and 61, more preferably at least one of the 12th, 80th and 61st positions, More preferably, mutations are caused at the 12th and 80th positions.
  • the above-mentioned amino acids are amino acids involved in binding to bilirubin by hydrogen bonding to bilirubin.
  • the fluorescence property is substantially maintained, and the binding to bilirubin compared to UnaG Fluorescent polypeptides with reduced performance can be provided (see also the examples).
  • a fluorescent polypeptide having a reduced ability to bind to bilirubin compared to UnaG can be suitably used, for example, in the detection of bilirubin in an object.
  • the ability to bind to bilirubin can be evaluated by calculating the dissociation constant (Kd) by curve fitting the correlation between the amount of bilirubin and the fluorescence intensity of the UnaG protein.
  • Kd dissociation constant
  • Kd of UnaG is 98 pM.
  • a fluorescent polypeptide having a reduced ability to bind bilirubin compared to UnaG has a Kd value of 1000 times or more, preferably 100 times or more, more preferably 15 to 20 times or more of Kd of UnaG. .
  • Kd suitable for use in the detection of bilirubin is preferably 0.1 nM to 100 nM, more preferably 0.1 nM to 10 nM, and more preferably 0.1 nM to 2 nM. Is more preferable.
  • a known method can be exemplified, and for example, it can be calculated by the following calculation formula.
  • Y [K d + B t + P t ⁇ ⁇ (K d + B t + P t ) 2 ⁇ 4 ⁇ B t ⁇ P t ⁇ 1/2 ] / (2 ⁇ P t )
  • K d is the dissociation constant
  • B t is bilirubin concentration
  • the P t is UnaG protein concentration of apo body (5 nM).
  • the fluorescent polypeptides shown in (2) to (4) above are, for example, the Kunkel method (Kunkel et al. (1985): Proc. Natl. Acad. Sci. USA, vol. 82.p488-). Site-directed mutagenesis may be used to artificially introduce mutations into the polynucleotide encoding the fluorescent polypeptide shown in (1) above.
  • An example of this fluorescent polypeptide has the amino acid sequences shown in SEQ ID NO: 5 and SEQ ID NO: 29.
  • mutation polypeptide which exists naturally may be used.
  • An example of this fluorescent polypeptide has the amino acid sequence shown in SEQ ID NO: 3.
  • polynucleotide encoding fluorescent polypeptide The polynucleotide according to the present invention encodes any one of the above fluorescent polypeptides. Specifically, this polynucleotide is the polynucleotide described in any of (1) to (4) below.
  • the number of amino acids substituted, deleted, inserted and / or added is preferably 1 to 21, more preferably 1 to 14, and further preferably 1 to 7. 1 to 5 or 6 is particularly preferable.
  • the sequence identity of amino acid sequences is preferably 90% or more, more preferably 95% or more, and particularly preferably 96% or more, 97% or more, 98% or more, or 99% or more. preferable.
  • mutant genes derived from eels or homologous genes derived from organisms other than eels are included in this category.
  • a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising a sequence complementary to the polynucleotide according to (1) above and encodes a polypeptide having fluorescence characteristics in the presence of bilirubin .
  • the stringent conditions include, for example, conditions described in the reference [Molecular cloning-a Laboratory manual 2nd edition (Sambrook et al., 1989)].
  • stringent conditions include, for example, 6 ⁇ SSC (composition of 1 ⁇ SSC: 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0), 0.5% SDS, 5 X Conditions for hybridization with a probe in a solution containing Denhart and 100 mg / mL herring sperm DNA at 65 ° C for 8 to 16 hours and hybridization, and about 0.1 M or lower salt at 65 ° C after hybridization in the conditions.
  • the conditions include washing in the containing solution, preferably 0.2 ⁇ SSC or any other solution having comparable ionic strength.
  • the polynucleotide preferably has a sequence identity of 85% or more with respect to the base sequence of the polynucleotide described in (1) above, more preferably 90% or more. It is more preferable to have sequence identity of% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the polynucleotide according to the present invention may exist in the form of RNA (for example, mRNA) or in the form of DNA (for example, cDNA or genomic DNA).
  • the DNA may be double-stranded or single-stranded.
  • the base sequence shown in SEQ ID NO: 2, which is an example of the polynucleotide according to the present invention, is a cDNA encoding the polypeptide shown in SEQ ID NO: 1.
  • the polynucleotide according to the present invention may contain an additional sequence such as an untranslated region (UTR) sequence.
  • UTR untranslated region
  • the method for obtaining (isolating) the polynucleotide according to the present invention is not particularly limited.
  • a probe that specifically hybridizes with a part of the base sequence of the polynucleotide is prepared, and the genome is prepared.
  • a DNA library or a cDNA library may be screened.
  • the polynucleotide according to the present invention may be synthesized according to a nucleic acid synthesis method such as a phosphoramidite method.
  • examples of a method for obtaining the polynucleotide according to the present invention include a method using an amplification means such as PCR.
  • primers are prepared from 5 ′ and 3 ′ sequences (or their complementary sequences) in the cDNA of the polynucleotide, and genomic DNA (or cDNA) is used as a template using these primers.
  • genomic DNA or cDNA
  • polynucleotide according to the present invention examples include cDNA derived from Japanese eel (SEQ ID NOs: 2 and 4), mutants of the cDNA (SEQ ID NO: 6), and the like.
  • the polynucleotide (for example, DNA) according to the present invention can be used as a recombinant vector inserted into an appropriate vector.
  • the type of the vector may be, for example, a self-replicating vector (for example, a plasmid), or it is integrated into the genome of the host cell when introduced into the host cell and replicated together with the integrated chromosome. It may be.
  • the above vector is preferably an expression vector.
  • the polynucleotide according to the present invention is functionally linked to elements necessary for transcription (for example, a promoter and the like).
  • a promoter is a DNA sequence that exhibits transcriptional activity in a host cell, and can be appropriately determined depending on the type of host.
  • Promoters that can operate in bacterial cells include the Bacillus stearothermophilus maltogenic amylase gene (Bacillus stearothermophilus maltogenic amylase gene), Bacillus licheniformis ⁇ amylase gene (Bacillus licheniformis alpha-amylase gene), and Bacillus amyloliquefatiens.
  • BAN amylase gene Bacillus cilamyloliquefaciens BAN amylase gene
  • Bacillus subtilis alkaline protease gene Bacillus Subtilis alkaline protease gene
  • Bacillus pumilus xylosidase gene Bacillus pumilus xylosldase gene
  • P or L Examples include promoters, E. coli lac, trp or tac promoters.
  • promoters operable in insect cells include polyhedrin promoter, P10 promoter, autographa caliornica polyhedrosic basic protein promoter, baculovirus immediate early gene 1 promoter, or baculovirus 39K delayed early gene. There are promoters.
  • promoters operable in yeast cells include promoters derived from yeast glycolytic genes, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters, and the like.
  • promoters that can operate in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.
  • promoters examples include the SV40 promoter, the MT-1 (metallothionein gene) promoter, and the adenovirus 2 major late promoter.
  • polynucleotide according to the present invention may be operably linked to an appropriate terminator such as TPI1 terminator or ADH3 terminator for human growth hormone terminator or fungal host, if necessary.
  • the recombinant vector according to the present invention may further have elements such as a polyadenylation signal, a transcription enhancer sequence and a translation enhancer sequence.
  • the recombinant vector according to the present invention may further comprise a DNA sequence that enables the vector to replicate in the host cell.
  • a DNA sequence that enables the vector to replicate in the host cell.
  • the SV40 replication origin (when the host cell is a mammalian cell) Can be mentioned.
  • the recombinant vector according to the present invention may further contain a selection marker.
  • selectable markers include drug resistance genes such as ampicillin, kanamycin, tetracycline, chloramphenicol, neomycin or hygromycin.
  • a transformant can be prepared by introducing the polynucleotide according to the present invention or the recombinant vector according to the present invention (collectively referred to as the nucleic acid construct of the present invention) into an appropriate host cell.
  • host cells examples include bacterial cells, yeast cells, fungal cells, and higher eukaryotic cells.
  • the polypeptide according to the present invention can be produced in a state bound to bilirubin, but in a culture condition in which bilirubin is not contained in the cell.
  • Polypeptides that are not bound to bilirubin eg, culture conditions using a medium that does not contain lipoproteins can be produced.
  • bacterial cells examples include Gram positive bacteria such as Bacillus or Streptomyces or Gram negative bacteria such as E. coli. These bacterial cells may be transformed, for example, by a protoplast method or a method using competent cells.
  • yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, and examples thereof include Saccharomyces cerevisiae or Saccharomyces kluyveri.
  • Examples of the method for introducing the nucleic acid construct of the present invention into a yeast host include an electroporation method, a spheroblast method, and a lithium acetate method.
  • fungal cells other than yeast cells are cells belonging to filamentous fungi, such as Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • filamentous fungi such as Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • transformation can be performed by integrating the nucleic acid construct of the present invention into a host chromosome to obtain a recombinant host cell. Integration of the nucleic acid construct into the host chromosome can be performed, for example, by homologous recombination or heterologous recombination.
  • the recombinant gene transfer vector and baculovirus are co-introduced into the insect cells to obtain the recombinant virus in the insect cell culture supernatant, and the recombinant virus is further transferred into the insect cells. Infect and allow protein expression.
  • the co-introduction method include a calcium phosphate method and a lipofection method.
  • mammalian cells examples include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells.
  • an electroporation method, a calcium phosphate method, a lipofection method, or the like can be used.
  • the above transformant is cultured in an appropriate culture medium under conditions that allow expression of the introduced nucleic acid construct.
  • the fluorescent polypeptide according to the present invention is isolated and purified from the culture of the transformant as necessary.
  • transformants are not limited to cells. That is, the transformant may be, for example, a tissue, an organ, or an individual transformed with the nucleic acid construct according to the present invention. However, the transformant other than the cell may be preferably derived from non-human, and the individual is preferably derived from non-human.
  • a complex (holobody) of the fluorescent polypeptide and bilirubin according to the present invention is also within the scope of the present invention.
  • This complex emits fluorescence when irradiated with excitation light having a predetermined wavelength.
  • the fluorescent polypeptide according to the present invention can function as a holding carrier that stably holds bilirubin.
  • This complex may be a complex reconstituted by contacting with bilirubin after isolating and purifying a fluorescent polypeptide (apo-form) that is not bound to bilirubin.
  • a fusion polypeptide comprising the fluorescent polypeptide according to the present invention and another polypeptide (hereinafter referred to as the fusion polypeptide according to the present invention) is also within the scope of the present invention.
  • the fusion polypeptide is, for example, a fusion protein produced by expression of the recombinant vector according to the present invention; a fusion protein in which any protein is labeled with the fluorescent polypeptide according to the present invention; the fluorescent polypeptide according to the present invention, and fluorescence.
  • an antibody that specifically binds to the fluorescent polypeptide according to the present invention is also included in the scope of the present invention.
  • the method for detecting bilirubin according to the present invention includes 1) a contact step of bringing the fluorescent polypeptide according to the present invention or the fusion polypeptide of the present invention into contact with an object to be detected for bilirubin, and 2) after the contact step.
  • the type of the target for detection of bilirubin is not particularly limited as long as it contains or does not contain bilirubin or the target of which the content is to be detected.
  • the object include a biological sample or a non-biological sample.
  • biological samples include, but are not limited to, cells themselves, cell extracts, and body fluid-derived samples (eg, samples derived from blood, saliva, lymph fluid, spinal fluid, urine, etc.), among others, derived from body fluids
  • a sample is preferable, and a sample derived from blood or urine is more preferable.
  • the blood-derived sample include blood itself collected from a living body, serum and plasma.
  • the living body may be a human or a non-human vertebrate, but is preferably a human or a non-human mammal, more preferably a human.
  • Examples of the cell itself or the cell extract include spleen cells (particularly reticulum cells), hepatocytes, and extracts of these cells.
  • Examples of the non-biological sample include a bilirubin standard sample containing bilirubin at a predetermined concentration.
  • the method of bringing the fluorescent polypeptide or fusion polypeptide according to the present invention into contact with the above-mentioned object may be appropriately selected according to the type of the object to be used.
  • the contact may be achieved by introducing a polypeptide encoding the fluorescent polypeptide or fusion polypeptide according to the present invention into the object. What is necessary is just to perform a process.
  • the detection target is other than the cell itself, for example, by contacting the target with the isolated fluorescent polypeptide or fusion polypeptide of the present invention (mixing both), What is necessary is just to perform a contact process.
  • the conditions for performing the contacting step can be performed under conditions that do not cause substantial denaturation of the fluorescent polypeptide or fusion polypeptide of the present invention.
  • the conditions under which no substantial denaturation occurs in these polypeptides are, for example, that the temperature condition is in the range of 4 ° C. to 65 ° C., and preferably 20 ° C. to 37 ° C.
  • the detection step is performed after the contacting step, and detects fluorescence emitted from the polypeptide or fusion polypeptide according to the present invention.
  • the method for detecting fluorescence is not particularly limited.
  • the presence or absence of fluorescence emission or fluorescence intensity is measured using a fluorescence detection means such as UV transilluminator or LED transilluminator, fluorescence microscope, fluorescence detector or flow cytometry. do it.
  • a fluorescence detection means such as UV transilluminator or LED transilluminator, fluorescence microscope, fluorescence detector or flow cytometry.
  • the bilirubin content in the object may be a relative bilirubin content when compared with a reference sample, or may be an absolute bilirubin content (absolute concentration).
  • absolute bilirubin content absolute concentration
  • a calibration curve using a bilirubin standard sample with a known concentration may be created in advance.
  • the method for detecting bilirubin according to the present invention may further include an inspection step for examining the presence or absence of predisposition to liver disease based on the detection result in the detection step, as necessary.
  • bilirubin is one of the degradation products of heme.
  • red blood cells are broken down in the spleen, heme is broken down in splenic reticulum cells to produce bilirubin (unconjugated).
  • the resulting bilirubin is transported to the liver in a form bound to albumin.
  • the blood test evaluates the amount of unconjugated bilirubin in terms of the amount of indirect bilirubin, which measures the total amount of bilirubin and the amount of direct bilirubin (conjugated bilirubin) and subtracts the amount of bilirubin directly from the total amount of bilirubin. It is what I asked for.
  • the amount of indirect bilirubin has been established as one of the indicators of liver function. Therefore, using the method for detecting bilirubin according to the present invention, if the content of bilirubin in an object (particularly in a blood-derived sample) is determined, the presence or absence of a predisposition such as liver disease or hemolytic disease can be determined. It becomes possible to inspect.
  • liver diseases or hemolytic diseases include hepatitis, cirrhosis, liver cancer, biliary tract diseases, hemolytic anemia and constitutional jaundice (Gilbert syndrome and Crigler-Najjar syndrome), etc.
  • diseases in which the amount of unconjugated bilirubin is an index include hemolytic jaundice, fulminant hepatitis, constitutional jaundice, and nuclear jaundice found in newborns.
  • the standard for examining the presence or absence of the predisposition or development of liver disease is, for example, a standard in a conventional blood test (indirect bilirubin amount: 0.8 mg / dl or less) when the object is a blood-derived sample. If there is, the normal range) may be referred to.
  • the method for detecting bilirubin according to the present invention directly measures the amount of unconjugated bilirubin.
  • the result of this direct measurement and the amount of conjugated bilirubin are directly measured (vanadate oxidation method, diazo coupling method).
  • the total bilirubin amount can also be obtained by combining the results obtained by measurement with
  • diagnosis and “diagnosis” refer to identification of a disease or pathological condition based on a patient's sign and symptom made by a doctor.
  • inspection and “examination” in the present specification are livers in humans or non-human animals to be examined (sometimes referred to as “subjects”) without identification (diagnosis) by a doctor.
  • the test result obtained by the detection method according to the present invention can be a material for diagnosis made by a doctor.
  • the detection of bilirubin in an object is performed on a biological substance that is contained in a biological object such as a biological sample and has binding properties to bilirubin.
  • the detection method of a biological material which detects a biological material indirectly by interposing is mentioned.
  • measurement of the amount of HDL cholesterol in an object can be mentioned.
  • HDL cholesterol exhibits specific binding to bilirubin.
  • the detection kit for bilirubin according to the present invention includes 1) a fluorescent polypeptide according to the present invention, 2) a polynucleotide encoding the fluorescent polypeptide according to the present invention, 3) a recombinant vector according to the present invention, and 4) according to the present invention.
  • This detection kit preferably comprises at least one selected from 1) to 3) or 5).
  • the detection kit according to the present invention further comprises, as necessary, various reagents and instruments (buffer solution, pipette, etc.) used for the detection of bilirubin, and various reagents and instruments (tests) for preparing a sample (object to be detected). Tube, buffer solution, etc.), detection kit instruction manual, control sample used at the time of detection, control data used when analyzing the detection result, etc. .
  • the instruction manual for the detection kit includes the above-mentioned [6. The contents of the detection method according to the present invention described in the section “Detection of bilirubin in an object” are recorded.
  • substrate-immobilized polypeptide Moreover, the form fixed to the base
  • the material of the substrate on which the polypeptide is provided and immobilized is not particularly limited. Specifically, for example, polystyrene, magnetic beads, sterile Japanese paper, sterile filter paper, sterile nonwoven fabric, PVDF membrane (polyvinylidene fluoride membrane) or PTFE Hydrophilic membrane such as membrane (polytetrafluoroethylene membrane), flexible polymer material such as silicone rubber, biodegradable polymer such as polyglycolic acid or polylactic acid, agar medium, collagen gel or gelatin gel, etc. Hydrogel and gold thin film.
  • it is suitably used for the above-described detection of bilirubin and the like.
  • the shape of the substrate is not particularly limited, and specific examples include a flat plate shape (that is, a substrate or a sheet shape) or a spherical shape.
  • Specific examples of the product including the substrate on which the polypeptide is immobilized include a sheet, a microchip, a bead, and a sensor chip. Examples of the sheet include a fiber-like, non-woven fabric, or film-like membrane.
  • the method for immobilizing the polypeptide according to the present invention on a substrate may be appropriately selected depending on the material of the substrate. Specifically, for example, biotin-avidin method, antigen-antibody method, His-tag, etc.
  • the affinity tag method using can be used, but the affinity tag method is preferable from the viewpoint of simplicity.
  • a method for immobilizing the polypeptide of the present invention on a sheet-like substrate a method of applying to the sheet-like substrate (for example, coating by dipping, air spraying and ink jetting), dropping and transferring the polypeptide of the present invention on the substrate.
  • a seeding method, a method of dripping, transferring or seeding the polypeptide of the present invention, followed by air drying or freeze drying can be used.
  • the present invention includes any of the following 1) to 11).
  • a polypeptide-bilirubin complex constituted by bringing bilirubin into contact with the polypeptide according to 1), 3) or 6), which is not bound to bilirubin.
  • a method for detecting bilirubin in an object wherein the polypeptide described in 1), the polypeptide described in 3) or the fusion polypeptide described in 5) is contacted with the object.
  • a detection method comprising: a contact step; and a detection step of detecting fluorescence emitted from the polypeptide or the fusion polypeptide after the contact step.
  • the detection method according to 7), wherein the object is a blood-derived or urine-derived sample obtained from a living body.
  • a bilirubin detection kit comprising at least one selected from the fusion polypeptides described in (1).
  • Example 1 Cloning of UnaG gene from Japanese eel] (Materials and methods) ⁇ Experimental material> A glass eel (obtained from Kennis Co., Ltd.) which is a fry of a natural Japanese eel (Anguilla japonica) was used.
  • RNA from glass eel A living glass eel (about 0.2 g) was put into liquid nitrogen and immediately frozen. Thereafter, the glass eel was crushed using a Teflon homogenizer in liquid nitrogen. 3 ml of TRIzol (registered trademark) reagent was added to glass eel in a homogenizer container, and after melting on ice, homogenization was performed in a low temperature chamber. The homogenate was transferred to a conical tube and 0.6 ml of chloroform was added. The above-mentioned homogenate added with chloroform was stirred and allowed to stand at room temperature for 5 minutes. After centrifugation at 7000 rpm and 4 ° C.
  • TRIzol registered trademark
  • aqueous layer was recovered (about 1.5 ml).
  • 1.5 ml of isopropanol was added and stirred, and allowed to stand at room temperature for 10 minutes. Subsequently, centrifugation was performed at 4 ° C. for 10 minutes at a rotational speed of 15,000 rpm. The supernatant was removed, the precipitate was rinsed with 75% ethanol, centrifuged at 10,000 rpm for 5 minutes at 4 ° C., ethanol was removed, and a precipitate was obtained. The resulting precipitate was air-dried and dissolved in 100 ⁇ l of RNase-free water to obtain a Japanese eel total RNA.
  • the absorbance at a wavelength of 260 nm (hereinafter referred to as A 260 and the absorbance at different wavelengths is also expressed in the same manner), and the concentration of RNA was determined (1A 260 ⁇ 40 ng RNA / ⁇ l). As converted).
  • 1st strand cDNA for 3 ′ RACE was prepared using 5 ′ RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (Invitrogen Corporation) according to the procedure attached to the product.
  • PCR was performed using the degenerate primers designed as described above, and adapter primers for 3 ′ RACE and 5 ′ RACE, the amplified product was cloned into pT7Blue T-Vector (Novagen), and Applied Biosystems 3730xl DNA.
  • DNA sequence analysis was performed with Analyzer (Applied Biosystems), and the sequence was determined using DNAdynamo (BlueTractor Software), which is gene analysis software.
  • UnaG protein a deduced amino acid sequence having 139 amino acids shown in SEQ ID NO: 1 was obtained from the cDNA sequence of SEQ ID NO: 2.
  • the polypeptide represented by this amino acid sequence is referred to as UnaG protein.
  • the UnaG protein did not have XYG (X represents an arbitrary amino acid), which is an amino acid sequence included in the amino acid sequences of GFP and GFP-like protein and forming a chromophore.
  • E. coli recombinants in E. coli, culture and protein purification>
  • the constructed expression vector pGEX-2T-UnaG
  • E. coli strain BL21 DE3
  • the transformant was cultured on a plate of LB solid medium to obtain colonies.
  • the obtained colonies were inoculated into 40 ml of LB liquid medium and pre-cultured overnight at 37 ° C.
  • a glycerol stock of the obtained Escherichia coli solution was prepared, and in the experiment described below, when using a recombinant E. coli expression (vector), the glycerol stock was used for inoculation.
  • the LB medium was scaled up to 400 ml and cultured at 37 ° C. for 1 hour (A 600 ⁇ 1.0). Thereafter, IPTG (isopropyl-1-thio- ⁇ -D-galacside) was added to the LB medium to a final concentration of 0.4 mM, and the mixture was shaken at 17 ° C. for 6 hours to induce UnaG protein expression. Centrifugation was performed at a rotational speed of 8000 rpm for 3 minutes to recover E. coli cells.
  • IPTG isopropyl-1-thio- ⁇ -D-galacside
  • the cells recovered by the above operation were suspended in 20 ml of PBS (phosphate buffered saline), 200 ⁇ l of lysozyme (4 mg / ml) was added, the cells were frozen with liquid nitrogen, and then thawed. This freeze-thaw operation was repeated three times, and after ultrasonic treatment for 3 minutes, the mixture was centrifuged at 7000 rpm for 20 minutes at 4 ° C., and the supernatant was recovered to obtain a lysate of bacterial cells. 1 ml of Glutathione Sepharose 4B (GE Healthcare) (GST carrier) and solubilized solution equilibrated with PBS were incubated at 4 ° C.
  • PBS phosphate buffered saline
  • the obtained supernatant was used as a purified product of UnaG protein to obtain 2.0 to 2.5 mg of a purified product of UnaG protein.
  • the purified product of UnaG protein was subjected to electrophoresis by SDS-PAGE electrophoresis, and the degree of purification was confirmed. The results are shown in FIG. 1, and the following items 2-2. Are listed together.
  • UnaG protein in mammalian cells
  • vectors Preparation of recombinant cells (vectors) for mammalian cell expression>
  • the DNA to be inserted into the expression vector for mammalian cells was amplified by PCR using the full-length cDNA of the UnaG gene of SEQ ID NO: 2, the sense primer (SEQ ID NO: 24), and the antisense primer (SEQ ID NO: 25) as the template DNA.
  • HEK293T cells were seeded on 20 dishes with a diameter of 10 cm, and 5% CO in Dulbecco's Modified Eagle Medium (GIBCO) containing 10% fetal bovine serum (GIBCO) and antibiotics (penicillin and streptomycin). The cells were cultured at 2 and 37 ° C. When cells grow to 50-60% confluence, the medium in the dish is replaced with a medium that does not contain antibiotics, and the premixed mammalian cell UnaG expression vector plasmid DNA and transfection reagent (10 cm of DNA per 10 cm dish).
  • GEBCO Dulbecco's Modified Eagle Medium
  • antibiotics penicillin and streptomycin
  • the medium was removed from the dish and the cells were washed with PBS. Subsequently, the cells were detached from the dish by adding PBS to the dish, and the cells were suspended in PBS. Cells were collected as a precipitate by centrifuging the above suspension for 3 minutes with a centrifugal force of 1000 prm.
  • the cells are suspended in 20 ml of lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA and 1% Triton X-100], and the cells are lysed while stirring with a rotator for 15 minutes at room temperature. Dissolved in buffer.
  • the supernatant was collected by centrifugation at 15,000 g for 10 minutes at 4 ° C.
  • the collected supernatant was incubated with 4 ml of ANTI-FLAG ⁇ M2-Agarose Affinity Gel (Sigma Aldrich) equilibrated with TBS buffer [50 mM Tris-HCl (pH 7.4) and 150 mM NaCl] at 4 ° C for 3 hours. . After incubation, the supernatant was removed by centrifugation and the gel was washed with more than 10 times the total volume of TBS buffer.
  • the FLAG-UnaG protein (holobody) was eluted from the gel using a TBS buffer (containing a FLAG peptide (Sigma Aldrich) (100 ⁇ g / ml)) 5 times the total volume of the gel.
  • a TBS buffer containing a FLAG peptide (Sigma Aldrich) (100 ⁇ g / ml)
  • Amicon ⁇ Ultra-15 3000 MWCO, Merck Millipore
  • the eluate was concentrated by ultrafiltration, and then subjected to PD-10 column (GE Healthcare Co., Ltd.) for buffer exchange and surplus It was purified by removing the FLAG peptide to obtain a purified FLAG-UnaG protein.
  • the purified FLAG-UnaG protein (holobody) was irradiated with a UV transilluminator to confirm the presence or absence of fluorescence. Furthermore, electrophoresis by SDS-PAGE electrophoresis was performed to confirm the degree of purification. The results are shown in FIG.
  • FIG. 1 shows the expression of recombinant UnaG protein in E. coli and mammalian cells.
  • A is the figure which observed E. coli (2) in which recombinant UnaG protein was expressed by irradiating blue light with a UV transilluminator. The upper left is E. coli (1) transfected with the vector pRSET as a control, and the upper right is E. coli (3) expressing EGFP.
  • (B) is a diagram obtained by staining the gel obtained by electrophoresis of the cell extract of E. coli (1) to (3) shown in (a) by SDS-PAGE electrophoresis by the CBB staining method.
  • (C) is the figure of the differential interference image and fluorescence image which observed the mammalian cell HEK293T in which recombinant UnaG protein was expressed under the fluorescence microscope.
  • UnaG protein showed a sufficient expression level when expressed in both E. coli and mammalian cells. Further, the impurities could be sufficiently removed by the above purification operation.
  • the photomicrograph of FIG. 1 (a) when the UnaG protein was expressed in E. coli, the UnaG protein did not show fluorescence in the cells of E. coli.
  • FIG. 1 (c) UnaG protein expressed in mammalian cells showed fluorescence.
  • UnaG protein has fluorescence characteristics in the presence of a ligand that is not contained in E. coli but is contained in mammalian cells. It was also speculated that the ligand is common to vertebrates, at least fish and mammals.
  • the quantum yield was measured by an absolute PL quantum yield measuring device Quantaurus-QY (Hamamatsu Photonics Co., Ltd.) (excitation wavelength: 470 nm, 480 nm). Moreover, it measured similarly about EGFP which is a well-known fluorescent protein, and compared with the value of UnaG protein. The results are shown in Table 2.
  • FIG. 2 is a diagram showing the fluorescence characteristics of UnaG protein.
  • apo-form UnaG protein used was prepared by the method of item 2-1 described above. Apo-type UnaG protein was added to a 10% FBS solution to a concentration of 0.5 ⁇ M, and the mixture was incubated at room temperature for 30 minutes for reconstitution.
  • Apo body UnaG protein was added to the FBS fraction diluted 2-fold with PBS to a concentration of 0.5 ⁇ M, and incubated at room temperature for 30 minutes. Subsequently, 200 ⁇ l each was added to a 96-well microplate (greiner bio-one), and the fluorescence intensity at a wavelength of 527 nm was measured with excitation light at a wavelength of 497 nm using an EnSpire multimode plate reader (PerkinElmer). The results are shown in FIG.
  • FIG. 3 is a diagram showing the fluorescence characteristics of the UnaG protein by reconstitution with FBS and FBS fractions.
  • A is a diagram showing an excitation spectrum and a fluorescence spectrum of an apo-form UnaG protein (left) and a holo-form UnaG protein (FLAG-UnaG protein derived from a mammalian cell) (right) reconstituted by FBS.
  • B FBS was fractionated by density gradient ultracentrifugation, and the fluorescence intensity (solid line) and the protein concentration (dashed line) of each serum fraction were reconstituted and measured for each fraction and the Apo UnaG protein.
  • FIG. The vertical axis represents fluorescence intensity (left axis) and protein concentration (mg / ml) (right axis), and the horizontal axis represents fraction number.
  • Ligand extraction was performed according to the Bligh and Dyer method (Bligh, EG & Dyer, WJ Can. J. Biochem. Physiol. 37, 911-917, 1959).
  • Bligh, EG & Dyer WJ Can. J. Biochem. Physiol. 37, 911-917, 1959.
  • a FLAG-UnaG protein (holobody) solution derived from a mammalian cell
  • chloroform and 1 ml of methanol were added and mixed.
  • 0.5 ml of chloroform and 0.5 ml of buffer were added and further mixed, so that the final ratio of aqueous solution: methanol: chloroform was 0.9: 1: 1.
  • FIG. 4 shows absorption spectra of bilirubin (left) and UnaG ligand (right).
  • the horizontal axis represents the wavelength of absorbed light, and the vertical axis represents absorbance.
  • the absorption spectrum of the UnaG ligand coincided with the absorption spectrum of bilirubin. Therefore, it was shown that the ligand of UnaG is bilirubin.
  • the mixed solution was applied to a PD-10 column (GE Healthcare Co., Ltd.), and the excess bilirubin was removed while exchanging the buffer in the mixed solution with PBS. If necessary, the holobody UnaG protein was concentrated by ultrafiltration using Amicon Ultra (3000 MWCO, Merck Millipore).
  • ⁇ Reconstitution of Apo UnaG protein using bilirubin or bilirubin analog bilirubin or bilirubin analogs, biliverdin (Toronto Research Chemicals), urobilin (MP Biomedicals) or ditaurobilirubin (Frontier Scientific) at final concentrations of 0.125 ⁇ M, 0.25 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, and The solution was diluted with PBS to 2.0 ⁇ M, mixed with 0.5 ⁇ M Apo UnaG protein, and allowed to stand at room temperature for 30 minutes.
  • Bilirubin or bilirubin analogs biliverdin (Toronto Research Chemicals), urobilin (MP Biomedicals) or ditaurobilirubin (Frontier Scientific) at final concentrations of 0.125 ⁇ M, 0.25 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, and The solution was diluted with PBS to 2.0 ⁇ M, mixed with 0.5 ⁇ M Ap
  • FIG. 5 shows the fluorescence intensity of UnaG protein reconstituted by adding each concentration of bilirubin or each concentration of bilirubin analog to the Apo UnaG protein solution.
  • the horizontal axis represents the ligand concentration ( ⁇ M), and the vertical axis represents the fluorescence intensity. Even when bilirubin analog was added, UnaG did not fluoresce, indicating that the fluorescence of UnaG is bilirubin specific.
  • a holobody was prepared by reconstitution with bilirubin.
  • the preparation method of the holo body is the above-described 2-2. The same method as described in 1 was used.
  • the deduced amino acid sequence of the R82EK84E variant is shown in SEQ ID NO: 5.
  • FIG. 6 is a graph showing the measurement results of the particle sizes of the wild-type UnaG protein and the R82EK84E-modified UnaG protein.
  • the horizontal axis indicates the particle diameter (nm), and the vertical axis indicates the frequency (%).
  • FIG. 6 in the case of the wild body, two peaks having different particle diameter distribution ranges were observed. Among these, it was estimated that the peak with a small particle size distribution range indicates a monomer, and the peak with a larger particle size distribution range indicates a peak of an aggregate.
  • the modified R82EK84E showed a single peak at a position overlapping with the smaller peak in the particle size distribution range of the two wild-type peaks. That is, the modified R82EK84E has improved dispersibility compared to the wild body and is less likely to aggregate.
  • Bilirubin was titrated in an Apo UnaG protein solution having an Apo body UnaG protein concentration of 5 nM until the bilirubin concentration finally reached 10 nM, and a fluorescence spectrum was measured with a fluorescence spectrophotometer. Using graphing software Origin (OriginLab), the fluorescence intensity at the maximum fluorescence wavelength of 527 nm of each data was graphed, and the dissociation constant was obtained by curve fitting using the following equation.
  • Y [K d + B t + P t ⁇ ⁇ (K d + B t + P t ) 2 ⁇ 4 ⁇ B t ⁇ P t ⁇ 1/2 ] / (2 ⁇ P t )
  • K d is the dissociation constant
  • B t is bilirubin concentration
  • P t is UnaG protein concentration of apo body (5 nM).
  • Apo body UnaG was added to serum diluted 200-fold with PBS to a final concentration of 0.5 ⁇ M, and 200 ⁇ l was added to a 96-well microplate (black, non-adsorbing type, Greiner bio-one). Fluorescence measurement was started immediately after adding the sample to the plate. Using an EnSpire (trademark) multimode plate reader (Perkin Elmer Co., Ltd.), the fluorescence intensity at a fluorescence wavelength of 527 nm (excitation wavelength of 497 nm) was measured every 10 minutes at room temperature for 1 hour. Three wells of each serum were measured, and serum without adding apo-form UnaG protein was also measured as a background.
  • the background value was subtracted from the value obtained by adding the Apo UnaG protein to obtain the net fluorescence intensity.
  • the results are shown in FIG.
  • a biochemical test was requested from Mitsubishi Chemical Courtce Co., Ltd., and total bilirubin and direct bilirubin levels in serum were determined using an enzymatic method (Doumas, BT et al., Clin. Chem .. 33, 1349-1353, 1987; Kurosaka K et al., Clin. Chim. Acta. 269, 125-136, 1998) and the indirect bilirubin value was measured by the calculation method.
  • the calculation method is a method in which the total bilirubin amount and the direct bilirubin amount are measured, and the value obtained by subtracting the direct bilirubin amount from the total bilirubin amount is used as the indirect bilirubin amount.
  • the correlation coefficient between the value of indirect bilirubin and the fluorescence intensity of UnaG in serum was determined. The results are shown in FIG.
  • FIG. 7 is a view showing a fluorescence detection result when UnaG is mixed with human serum.
  • the vertical axis represents the elapsed time when the apo-form UnaG protein was added to serum as 0 minutes, and the horizontal axis represents the fluorescence intensity.
  • the test results of 10 specimens are shown.
  • FIG. 8 is a diagram showing the correlation between the amount of bilirubin and the fluorescence intensity of UnaG.
  • the horizontal axis represents the concentration of indirect bilirubin (unconjugated bilirubin) contained in the serum, and the vertical axis represents the fluorescence intensity. It was shown that there was a strong correlation between the fluorescence intensity of UnaG protein and the concentration of indirect bilirubin in serum.
  • FIG. 9 shows the result of plotting the protein of the UnaG variant, which is a clone that has a low affinity for bilirubin and maintains the same fluorescence intensity as that of the wild type compared to the wild type UnaG protein.
  • clones showing low affinity for bilirubin compared to the wild-type UnaG protein and maintaining the same fluorescence intensity as the wild-type are replicated, and DNA sequence analysis is performed using Applied Biosystems 3730xl DNA Analyzer (Applied Biosystems). The sequence was determined using DNAdynamo (BlueTractorSoftware), which is a gene analysis software.
  • the wild body was a mutant (hereinafter referred to as an A12ES80N variant) having an amino acid sequence in which the 12th A in the wild body was replaced with E and the 80th S was replaced with N.
  • the obtained amino acid sequence is shown in SEQ ID NO: 29.
  • FIG. 9 is a graph showing the correlation between the bilirubin concentration and the fluorescence intensity ratio of wild-type UnaG protein and A12ES80N variant UnaG protein to mCherry protein.
  • the horizontal axis represents the bilirubin concentration, and the vertical axis represents the fluorescence intensity ratio.
  • A12ES80N variant protein which is a bilirubin low affinity variant ⁇ Expression of A12ES80N Modified UnaG Protein (Apo Body) in E. coli>
  • the DNA fragment of the A12ES80N variant was ligated to the restriction enzyme sites of BamHI and EcoRI of the pRSETB-FLAG vector in which the FLAG tag sequence (SEQ ID NO: 26) was inserted into the KpnI / BamHI restriction enzyme site of the E. coli expression vector pcRSETB. It was transformed into DE3) and subcloned.
  • Colonies on the LB plate were inoculated into 50 ml of LB liquid medium and cultured at 17 ° C. for 3 nights to induce UnaG expression. Centrifugation was performed at 8000 rpm for 3 minutes to recover E. coli. The cells were suspended in 5 ml of PBS, 50 ⁇ l of lysozyme (4 mg / ml) was added, the cells were frozen with liquid nitrogen and then thawed. This freeze-thaw operation was repeated three times, and after ultrasonic treatment for 3 minutes, centrifugation was performed at 7000 rpm, 4 ° C. for 20 minutes, and the supernatant was recovered to obtain a solubilized solution.
  • the eluted fraction was collected, concentrated by ultrafiltration using Amicon Ultra-4 (Merck Millipore). To remove imidazole, the concentrated protein solution was added to a desalting column PD-10 (GE Healthcare) equilibrated with PBS, and 500 ⁇ l of PBS was added to elute His-FLAG-UnaG variant protein. The elution fraction was detected using the Ford method. The purified His-FLAG-UnaG variant protein, the protein concentration was determined based on the absorbance of A 280 by the calculation equation shown below. Thereafter, purification was confirmed by SDS-PAGE electrophoresis.
  • a holobody was prepared by reconstitution with bilirubin.
  • the preparation method of the holo body is the above-described 2-2. The same method as described in 1 was used.
  • FIG. 10 is a diagram showing the fluorescence characteristics of the UnaG protein of the A12ES80N variant.
  • the left figure shows the absorption spectrum of UnaG protein of the A12ES80N variant, the horizontal axis shows the wavelength of the absorbed light, and the vertical axis shows the absorbance.
  • the right figure shows the excitation spectrum and fluorescence spectrum of UnaG protein of the A12ES80N variant, the horizontal axis shows the wavelength of excitation light and fluorescence, and the vertical axis shows the fluorescence intensity.
  • a protein having a novel fluorescence characteristic derived from Japanese eel is provided.
  • a novel method for detecting bilirubin using the polypeptide of the present invention as a biomarker can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 新規な蛍光タンパク質、およびその利用を提供するために、本願発明に係るポリペプチドは、ビリルビン存在下において蛍光特性を示し、(1)配列番号1に記載のアミノ酸配列を有する、(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換などしたアミノ酸配列を有する、(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有する、または、(4)(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされるアミノ酸配列を有する。

Description

蛍光特性を示す新規なポリペプチド、およびその利用
 本発明は、脊椎動物から単離されうる、蛍光特性を示す新規なポリペプチドとその利用とに関する。
 GFP(緑色蛍光タンパク質)などの蛍光タンパク質は、細胞、組織、または生物個体などを可視化するツールとして、欠かせないものとなっている。
 これまで、蛍光タンパク質の大部分は、サンゴ、イソギンチャク、節足動物などの無脊椎動物から単離されてきた。しかし、例えば、非特許文献1~2、および特許文献1~2には、脊椎動物であるニホンウナギ(Anguilla japonica)が、蛍光タンパク質を持つことが報告されている。
日本国公開特許公報「特開2007-254371(公開日:2007年10月4日)」 日本国公開特許公報「特開2008-141988(公開日:2008年6月26日)」
本田将雄、岸野仁輔、今村美由紀、林征一:平成16年度日本水産学会大会 講演要旨集(2004年4月2日、p.203、1101) Hayashi et al., Fisheries Science,75,1461-1469,2009
 脊椎動物由来の蛍光タンパク質は、無脊椎動物由来の蛍光タンパク質とは異なる特性を有する可能性がある。そのため、脊椎動物由来の蛍光タンパク質の単離というテーマは、非常に興味が持たれている。
 しかし、上記特許文献1~2および非特許文献1~2での報告から相当に時間が経過したものの、脊椎動物に由来する蛍光タンパク質の全長、および当該蛍光タンパク質をコードする遺伝子の単離は未だに成功していない。
 本願発明は、上記の課題を解決するためになされたものであり、脊椎動物から単離されうる新規な蛍光タンパク質とその利用を提供することを目的とする。
 上記の課題を解決するために、本願発明は以下の何れかの一態様を包含する。
1)以下の(1)~(4)の何れかに示す、ビリルビン存在下において蛍光特性を有するポリペプチド。(
 1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされるアミノ酸配列を有するポリペプチド。
2)以下の(1)~(4)の何れかに記載のポリヌクレオチド。(
 1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズし、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。
 本発明は、分子生物学などの分野で有用な蛍光タンパク質とその利用を提供することができるという効果を奏する。
本発明の実施例における組み換えUnaGタンパク質の大腸菌および哺乳類細胞における発現を示した図である。(a)は、組み換えUnaGタンパク質を発現させた大腸菌(2)をUVトランスイルミネーターによって青色の光を照射して観察した図である。左上は対照としてベクターpRSETをトランスフェクションした大腸菌(1)であり、右上はEGFPを発現させた大腸菌(3)である。(b)は、(a)に示した大腸菌(1)~(3)の細胞抽出液をSDS-PAGE電気泳動により電気泳動したゲルをCBB染色法によって染色した図である。(c)は、組み換えUnaGタンパク質を発現させた哺乳類細胞HEK293Tを蛍光顕微鏡下で観察した図である。上は微分干渉像、下は蛍光像である。 本発明の実施例における、UnaGタンパク質の蛍光特性を示した図である。 本発明の実施例における、ウシ胎児血清(FBS)およびFBS画分との再構成によるUnaGタンパク質の蛍光の特性等を示した図である。(a)は、FBSによって再構成したアポ体のUnaGタンパク質(左)およびホロ体のUnaGタンパク質(哺乳類細胞由来のFLAG-UnaGタンパク質)(右)の励起スペクトルおよび蛍光スペクトルを示した図である。(b)は、FBSを密度勾配超遠心分離により分画し、各画分とアポ体のUnaGタンパク質を再構成し測定した蛍光強度(実線)および各血清画分のタンパク質濃度(破線)を示した図である。縦軸は蛍光強度(左軸)とタンパク質濃度(mg/ml)(右軸)、横軸は画分番号を示す。 本発明の実施例における、ビリルビン(左)と、ホロ体のUnaGから抽出したリガンド(右)の吸収スペクトルを示した図である。横軸は吸収光の波長を示し、縦軸は吸光度を示す。 本発明の実施例におけるUnaGタンパク質の非抱合型ビリルビンに対する特異性を示した図である。アポ体のUnaG(0.5μM)に、リガンドとして様々な濃度のビリルビン(非抱合型)または様々な濃度のビリルビンの類縁体である、ビリベルジン、ウロビリンもしくはジタウロビリルビンと混合し、各濃度における蛍光強度を測定した。縦軸は蛍光強度、横軸は各リガンドの濃度(μM)を示す。 本発明の実施例における、野生体のUnaGタンパク質およびR82EK84E改変体のUnaGタンパク質の、粒子径の測定結果を示した図である。 本発明の実施例における、ヒト血清(200倍希釈)にアポ体のUnaG(2μM)を混合した場合の蛍光検出結果(10検体)を示した図である。縦軸は蛍光強度、横軸は血清にアポ体のUnaGタンパク質を添加したときを0分としたときの経過時間を指す。 本発明の実施例における、間接ビリルビン(非抱合型ビリルビン)の量と、UnaGタンパク質の蛍光強度との相関を示した図である。 本発明の実施例における、ビリルビン濃度と、野生体のUnaGタンパク質およびA12ES80N改変体のUnaGタンパク質のmCherryタンパク質に対する蛍光強度比との相関を示した図である。 本発明の実施例における、A12ES80N改変体のUnaGタンパク質の蛍光の特性を示した図である。左の図はA12ES80N改変体のUnaGタンパク質の吸収スペクトルを示しており、横軸は吸収光の波長を示し、縦軸は吸光度を示す。右の図は、A12ES80N改変体のUnaGタンパク質の励起スペクトルおよび蛍光スペクトルを示しており、横軸は励起光および蛍光の波長を示し、縦軸は蛍光強度を示す。 本発明の実施例における、ビリルビンの量と、野生体のUnaGタンパク質(左)またはA12ES80N改変体のUnaGタンパク質(右)の蛍光強度との相関を示した図である。
 以下、本発明の実施の一形態について詳細に説明する。
 〔用語などの定義〕
 本明細書において、「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言でき、ヌクレオチドの重合体を意図している。また、「塩基配列」は、「核酸配列」または「ヌクレオチド配列」とも換言でき、特に言及のない限り、デオキシリボヌクレオチドの配列またはリボヌクレオチドの配列を意図している。また、ポリヌクレオチドは、一本鎖であっても二本鎖構造であってもよく、一本鎖の場合はセンス鎖であってもアンチセンス鎖であってもよい。
 本明細書において、「ポリペプチド」は、「タンパク質」とも換言できる。
 本明細書において、「ウナギ」は、ニホンウナギ、ヨーロッパウナギ、アメリカウナギ、およびオオウナギなどの、ウナギ科ウナギ属(Anguilla)に含まれる魚類を意図している。
 本明細書において、「Aおよび/またはB」は、AおよびBとAまたはBとの双方を含む概念であり、「AおよびBの少なくとも一方」とも換言できる。
 本明細書において、「ビリルビン」は、ヘモグロビンの構成物であるヘムの分解産物を指す。本発明においてビリルビンの好ましい態様の一つは非抱合型ビリルビンである。非抱合型ビリルビンは、間接ビリルビンとも称される。
 〔1.蛍光特性を有するポリペプチド〕
 本発明に係るポリペプチドは、以下の(1)~(4)の何れかに示す、ビリルビン存在下において蛍光特性を有するポリペプチド(以下、「蛍光ポリペプチド」と称する)である。
(1)配列番号1に記載のアミノ酸配列を有する蛍光ポリペプチド。
(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有する蛍光ポリペプチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~21個であることが好ましく、1~14個であることがより好ましく、1~7個であることがさらに好ましく、1~5または6個であることが特に好ましい。
(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有する蛍光ポリペプチド。なお、配列同一性は、90%以上であることが好ましく、95%以上であることがより好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。
(4)上記(1)に記載の蛍光ポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされるアミノ酸配列を有する蛍光ポリペプチド。なお、ストリンジェントな条件については、本発明に係るポリヌクレオチドの欄で後述する。
 本発明に係る蛍光ポリペプチドは、ビリルビン非存在下など、ビリルビンとの相互作用が失われる環境になると、蛍光特性を示さない。これまでに例を見ない、かかる蛍光特性を有することが、本ポリペプチドの単離が困難であった一因と推定される。
 上記蛍光ポリペプチドは、アミノ酸がペプチド結合してなるポリペプチドであればよいが、これに限定されるものではなく、ポリペプチド以外の構造を含むものであってもよい。ここでいうポリペプチド以外の構造としては、糖鎖やイソプレノイド基などを挙げることができるが、特に限定されるものではない。また、上記蛍光ポリペプチドはビリルビンとの結合部位となる構造を有しているポリペプチドである。
 本発明にかかる蛍光ポリペプチドは、天然供給源より単離されても、化学合成されてもよい。より具体的には、当該ポリペプチドは、天然の精製産物、化学合成手順の産物、および原核生物宿主または真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞、および哺乳動物細胞を含む)から組換え技術によって産生された翻訳産物をその範疇に含む。本発明に係る蛍光ポリペプチドの一例は、ウナギ由来のものが挙げられ、より具体的にはニホンウナギ由来のものが挙げられる。配列番号1にそのアミノ酸配列を示す蛍光ポリペプチド(UnaGと呼ぶ)は、元々はニホンウナギから単離したものであるが、特にその由来は限定されない。
 本発明に係る蛍光ポリペプチドは、ビリルビン存在下(ビリルビンと結合した状態)では、励起光の照射を受けて所定波長の蛍光を発するが、ビリルビンの非存在下では同じ励起光の照射を受けても蛍光を発しないという共通した特性を有するポリペプチド群である。ただし、リガンド存在下で蛍光を発するという特性を満たす限りにおいて、さらに他の化合物(例えば、ビリルビンの類縁化合物)の存在下で蛍光を発するもの(蛍光ポリペプチドの改変体を含む)であってもよい。
 本発明に係る蛍光ポリペプチドは、さらに、UnaGと同等の蛍光特性を示すことが好ましい場合がある。ここで、同等の蛍光特性を示すこととは、同等の励起波長、および同等の蛍光波長を有することを指す。
 なお、UnaGの蛍光特性の主だったものは、以下の通りである。
最大励起波長(nm):498~499
最大蛍光波長(nm):525~530(緑色)
モル吸光係数(M-1cm-1):50000~78000
量子収率(%):50~54
蛍光寿命(ナノ秒):2.2
 なお、UnaGと同等の励起波長を有するとは、例えば、最大励起波長が480nm~520nmの範囲内であり、或いは、490nm~510nmの範囲内であり、或いは、494nm~504nmの範囲内であることを意味している。
また、UnaGと同等の蛍光波長を有するとは、例えば、最大蛍光波長が507nm~547nmの範囲内であり、或いは、517nm~537nmの範囲内であり、或いは、522nm~532nmの範囲内であることを意味している。
 なお、上記の(1)~(4)に示した蛍光ポリペプチドのうち、(2)~(4)は、(1)を基準とした場合に変異体と捉えることができる。例えば、当業者は、蛍光強度、蛍光速度および蛍光の安定性から選択される1つ以上の蛍光特性の向上を目的として、任意の方法で変異を導入することができる。ここで、蛍光強度とは蛍光を発する光の強さを指標として数値化したものであり、光の吸収効率(すなわち吸光係数)と励起光と蛍光との変換効率(すなわち量子収率)とに比例する、蛍光の輝度を意味している。また、蛍光速度とは励起光を受けてから一定の蛍光強度に達するまでの速さを数値化した値を意味している。また、蛍光の安定性とは一定の蛍光強度を維持する時間を指標として判定される、蛍光ポリペプチドの有する特性を意味している。すなわち、一定の経過時間における蛍光の減衰の度合が小さいほど、蛍光の安定性が高いことを意味している。
 (1)に示した蛍光ポリペプチドのうち、配列番号1に示す12番目、57番目、61番目、77番目、80番目、81番目、112番目、132番目および134番目の9個のアミノ酸は、ビリルビンとの結合能に特に関与している。従って、ビリルビンとの結合能が変化しうる変異体を得る場合は、上記9個のアミノ酸の少なくとも一つに変異(置換、欠失、挿入、および/または付加、好ましくは他のアミノ酸への置換)を生じさせることが好ましい。一方、ビリルビンとの結合能が同等に維持されうる変異体を得る場合は、上記9個のアミノ酸以外のアミノ酸に変異を生じさせることが好ましい。例えば、配列番号1に示す82番目~85番目のアミノ酸から選択される少なくとも一つ、より好ましくは82番目および84番目のアミノ酸から選択される少なくとも一つに変異(好ましくは他のアミノ酸への置換)を生じさせることにより、蛍光特性が実質的に維持され、かつ分子同士の分散性が改善された蛍光ポリペプチドを提供することができる(実施例も参照)。
 また、特に、本発明に係るポリペプチドの蛍光特性を維持しながら、ビリルビンとの結合能を低下させる場合、(1)に示した蛍光ポリペプチドのうち、配列番号1に示す12番目、80番目、57番目および61番目の4個のアミノ酸のうちの少なくとも1つに変異を生じさせることが好ましく、12番目、80番目および61番目のうちの少なくとも1つに変異を生じさせることがより好ましく、12番目および80番目に変異を生じさせることがさらに好ましい。上述のアミノ酸は、それぞれビリルビンと水素結合することによって、ビリルビンとの結合性に関与するアミノ酸である。例えば、12番目のアミノ酸と、80番目のアミノ酸とに変異(好ましくは他のアミノ酸への置換)を生じさせることにより、蛍光特性が実質的に維持され、かつUnaGと比較してビリルビンとの結合能が低下した蛍光ポリペプチドを提供することができる(実施例も参照)。
 UnaGと比較してビリルビンとの結合能が低下した蛍光ポリペプチドは、例えば対象物中のビリルビンの検出において、好適に用いることができる。
 なお、対象物中のビリルビンの検出方法については、以下の〔6.対象物中のビリルビンの検出〕において詳細に記載する。
 ビリルビンとの結合能は、ビリルビンの量と、UnaGタンパク質の蛍光強度との相関をカーブフィットすることにより、解離定数(Kd)を算出することによって評価することができる。一例として、UnaGと比較してビリルビンとの結合能が低下しているとは、UnaGと比較して、Kdが大きいことを意味している。
 なお、UnaGのKdは、98pMである。
 一例として、UnaGと比較してビリルビンとの結合能が低下した蛍光ポリペプチドとは、KdがUnaGのKdの1000倍以上、好ましくは100倍以上、より好ましくは15~20倍以上の値である。
 また、ビリルビンの検出に用いられるために好適なKdとしては、0.1nM以上100nM以下であることが好ましく、0.1nM以上10nM以下であることがより好ましく、0.1nM以上2nM以下であることがさらに好ましい。
 解離定数の算出方法としては公知の方法を挙げることができ、例えば以下の計算式によって計算され得る。
Y=[K+B+P-{(K+B+P-4×B×P1/2]/(2×P
 Yはビリルビンの結合度(蛍光強度)、Kは解離定数、Bはビリルビン濃度、Pはアポ体のUnaGタンパク質濃度(5nM)を表す。
 なお、上記(2)~(4)に示した蛍光ポリペプチドは、例えば、Kunkel法(Kunkel et al.(1985):Proc.Natl.Acad.Sci.USA,vol.82.p488-)などの部位特異的突然変異誘発法を用いて、上記(1)に示した蛍光ポリペプチドをコードするポリヌクレオチドに人為的に変異を導入してもよい。この蛍光ポリペプチドの一例は、配列番号5および配列番号29に示すアミノ酸配列を持つものである。また、天然に存在する同様の変異ポリペプチドに由来するものなどであってもよい。この蛍光ポリペプチドの一例は、配列番号3に示すアミノ酸配列を持つものである。
 〔3.蛍光ポリペプチドをコードするポリヌクレオチド〕
 本発明に係るポリヌクレオチドは、上記蛍光ポリペプチドの何れかをコードするものである。このポリヌクレオチドは、具体的には、以下の(1)~(4)の何れかに記載のポリヌクレオチドである。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド。
(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~21個であることが好ましく、1~14個であることがより好ましく、1~7個であることがさらに好ましく、1~5または6個であることが特に好ましい。
(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。なお、アミノ酸配列の配列同一性は、90%以上であることが好ましく、95%以上であることがより好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。例えば、ウナギに由来する変異遺伝子、またはウナギ以外の生物に由来する相同遺伝子がこの範疇に含まれる。
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズし、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。なお、ストリンジェントな条件下とは、例えば、参考文献[Molecular cloning-a Laboratory manual 2nd edition(Sambrookら、1989)]に記載の条件などが挙げられる。ストリンジェントな条件下とは、より具体的には例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハートおよび100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件、および当該条件におけるハイブリダイズ後に65℃で約0.1Mまたはそれより低い塩を含む溶液中、好ましくは0.2×SSCまたは同程度のイオン強度を有する任意の他の溶液において洗浄する条件が挙げられる。なお、このポリヌクレオチドは、上記(1)に記載のポリヌクレオチドの塩基配列に対して85%以上の配列同一性を有することが好ましく、90%以上の配列同一性を有することがより好ましく、95%以上、96%以上、97%以上、98%以上、或いは99%以上の配列同一性を有することがさらに好ましい。
 本発明にかかるポリヌクレオチドは、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖であっても、一本鎖であってもよい。本発明にかかるポリヌクレオチドの一例である、配列番号2に示す塩基配列は、配列番号1に示すポリペプチドをコードするcDNAである。本発明に係るポリヌクレオチドは、非翻訳領域(UTR)の配列などの付加的な配列を含むものであってもよい。
 本発明に係るポリヌクレオチドを取得する(単離する)方法は、特に限定されるものではないが、例えば、上記ポリヌクレオチドの塩基配列の一部と特異的にハイブリダイズするプローブを調製し、ゲノムDNAライブラリーまたはcDNAライブラリーをスクリーニングすればよい。或いは、本発明に係るポリヌクレオチドを、ホスホロアミダイト法などの核酸合成法に従って合成してもよい。
 また、本発明にかかるポリヌクレオチドを取得する方法として、PCRなどの増幅手段を用いる方法を挙げることができる。例えば、当該ポリヌクレオチドのcDNAのうち、5’側および3’側の配列(またはその相補配列)の中からそれぞれプライマーを調製し、これらプライマーを用いてゲノムDNA(またはcDNA)などを鋳型にしてPCRなどを行い、両プライマー間に挟まれるDNA領域を増幅することで、本発明にかかるポリヌクレオチドを含むDNA断片を大量に取得できる。
 本発明に係るポリヌクレオチドとして、例えば、ニホンウナギ由来のcDNA(配列番号2および4)、当該cDNAの変異体(配列番号6)などを挙げることができる。
 〔3.組み換えベクター〕
 本発明に係るポリヌクレオチド(例えばDNA)は、適当なベクター中に挿入された組み換えベクターとして利用に供することもできる。当該ベクターの種類は、例えば、自立的に複製するベクター(例えばプラスミドなど)でもよいし、或いは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。
 上記ベクターは、好ましくは発現ベクターである。発現ベクターにおいて本発明に係るポリヌクレオチドは、転写に必要な要素(例えば、プロモータなど)が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜することができる。
 細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子(Bacillusstearothermophilus maltogenic amylase gene)、バチルス・リケニホルミスαアミラーゼ遺伝子(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus Subtilis alkaline protease gene)もしくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosldase gene)のプロモータ、またはファージ・ラムダのPR若しくはPLプロモータ、大腸菌のlac、trp若しくはtacプロモータなどが挙げられる。
 昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータなどがある。酵母細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータなどが挙げられる。糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたはtpiAプロモータなどがある。
 哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1(メタロチオネイン遺伝子)プロモータ、またはアデノウイルス2主後期プロモータなどがある。
 また、本発明に係るポリヌクレオチドは必要に応じて、例えばヒト成長ホルモンターミネータまたは真菌宿主についてはTPI1ターミネータ若しくはADH3ターミネータのような適切なターミネータに機能的に結合されてもよい。本発明に係る組み換えベクターは更に、ポリアデニレーションシグナル、転写エンハンサ配列および翻訳エンハンサ配列のような要素を有していてもよい。
 本発明に係る組み換えベクターは、さらに、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。
 本発明に係る組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、アンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。
 〔4.形質転換体〕
 本発明に係るポリヌクレオチド、または、本発明に係る組み換えベクター(本発明の核酸構築物と総称する)を適当な宿主細胞に導入することによって形質転換体を作製することができる。
 宿主細胞としては、例えば、細菌細胞、酵母細胞、真菌細胞、および高等真核細胞などが挙げられる。なお、宿主細胞の細胞内にビリルビンが含まれる培養条件において培養した場合は、本発明に係るポリペプチドはビリルビンと結合した状態で産生され得るが、細胞内にビリルビンが含まれない培養条件においては(例えばリポタンパク質を含まない培地を使用する培養条件など)、ビリルビンと結合していない状態のポリペプチドが産生され得る。
 細菌細胞の例としては、バチルスまたはストレプトマイセスなどのグラム陽性菌または大腸菌などのグラム陰性菌が挙げられる。これら細菌細胞の形質転換は、例えば、プロトプラスト法、またはコンピテント細胞を用いる方法などにより行えばよい。
 酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)などが挙げられる。本発明の核酸構築物の酵母宿主への導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法などを挙げることができる。
 酵母細胞以外の真菌細胞の例は、糸状菌、例えば、アスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、本発明の核酸構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。核酸構築物の宿主染色体への組み込みは、例えば、相同組換えまたは異種組換えにより行うことができる。
 昆虫細胞を宿主細胞として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を発現させることができる。共導入方法としては、例えば、リン酸カルシウム法またはリポフェクション法などを挙げることができる。
 哺乳動物細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞などが挙げられる。哺乳動物細胞の形質転換には、例えば、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法などを用いることができる。
 上記の形質転換体は、導入された核酸構築物の発現を可能にする条件下で、適切な培養培地中で培養する。次いで、必要に応じて、形質転換体の培養物から、本発明に係る蛍光ポリペプチドを単離精製する。
 なお、形質転換体は、細胞に限定されない。すなわち、形質転換体は、例えば、本発明に係る核酸構築物で形質転換された組織、器官、および個体であってもよい。ただし、細胞以外の形質転換体は、非ヒト由来のものであることが好ましい場合があり、特に個体は非ヒト由来のものであることが好ましい。
 〔5.蛍光ポリペプチドとビリルビンとの複合体など〕
 本発明に係る蛍光ポリペプチドとビリルビンとの複合体(ホロ体)も本発明の範疇である。この複合体は、所定波長の励起光を照射することによって蛍光を発する。また、ビリルビンを安定的に保持する保持担体として、本発明に係る蛍光ポリペプチドは機能し得る。この複合体は、ビリルビンと結合していない蛍光ポリペプチド(アポ体)を単離精製した後に、ビリルビンと接触させることで再構成した複合体であってもよい。
 本発明に係る蛍光ポリペプチドと他のポリペプチドとからなる融合ポリペプチド(以下、本発明に係る融合ポリペプチドと称する)も本発明の範疇である。融合ポリペプチドは、例えば、本発明に係る組み換えベクターの発現によって産生される融合タンパク質;任意のタンパク質を本発明に係る蛍光ポリペプチドで標識した融合タンパク質;本発明に係る蛍光ポリペプチドと、蛍光を安定化させるための所定のペプチド配列とが融合してなる融合タンパク質;本発明に係る蛍光ポリペプチドと他の蛍光ポリペプチドとを備えたFRET用プローブ;などが挙げられる。すなわち、本発明に係る蛍光ポリペプチドと融合させる他のポリペプチドの種類は特に限定されない。
 また、本発明に係る蛍光ポリペプチドに特異的に結合する抗体も本発明の範疇に含まれる。
 〔6.対象物中のビリルビンの検出〕
 本発明に係るビリルビンの検出方法は、1)本発明に係る蛍光ポリペプチド、または本発明に係る融合ポリペプチドと、ビリルビンの検出の対象物とを接触させる接触工程、および、2)接触工程後に当該ポリペプチドまたは当該融合ポリペプチドから発される蛍光を検出する検出工程、を含む方法である。
 (接触工程)
 ビリルビンの検出の対象物の種類は、ビリルビン含有の有無、またはその含有量を検出したい対象物であれば特に限定されない。対象物としては、例えば、生物系試料、または非生物系試料が挙げられる。生物系試料としては、特に限定されないが、例えば、細胞自身、細胞抽出液および体液由来試料(例えば、血液、唾液、リンパ液、髄液および尿などに由来する試料)などが挙げられ、中でも体液由来試料が好ましく、血液由来または尿由来の試料がより好ましい。血液由来の試料としては、生体から採取した血液自身、血清および血漿などが挙げられる。なお、生体はヒトであっても非ヒト脊椎動物であってもよいが、ヒトまたは非ヒト哺乳動物が好ましく、ヒトがより好ましい。また、細胞自身、または細胞抽出液としては、例えば、脾臓細胞(特に細網細胞)、肝細胞、およびこれら細胞の抽出液が挙げられる。非生物系試料としては、ビリルビンを所定の濃度で含むビリルビン標準サンプルなどが挙げられる。
 本発明に係る蛍光ポリペプチドまたは融合ポリペプチドと、上記対象物とを接触させる方法は、用いる対象物の種類に応じて適宜選択すればよい。例えば、検出の対象物が細胞自身などのように遺伝子の翻訳系を有する場合は、本発明に係る蛍光ポリペプチドまたは融合ポリペプチドをコードするポリペプチドを対象物内に導入することによって、上記接触工程を行えばよい。また、検出の対象物が細胞自身以外である場合は、例えば、単離した本発明に係る蛍光ポリペプチドまたは融合ポリペプチドと、対象物とを直接接触させる(両者を混合する)ことによって、上記接触工程を行えばよい。
 接触工程を行う条件は、本発明に係る蛍光ポリペプチドまたは融合ポリペプチドに実質的な変性が生じない条件で行うことができる。これらポリペプチドに実質的な変性が生じない条件とは、例えば、温度条件が4℃以上で65℃以下の範囲内であり、20℃以上で37℃以下の範囲内であることが好ましい。また、接触工程は、必要に応じて、生理的食塩水中、或いは、リン酸系などの緩衝溶液中で行ってもよい。
 (検出工程)
 上記検出工程は、接触工程後に行われ、本発明に係るポリペプチドまたは融合ポリペプチドから発される蛍光を検出する工程である。蛍光の検出方法は特に限定されないが、例えば、UVトランスイルミネーターもしくはLEDトランスイルミネーター、蛍光顕微鏡、蛍光検出器またはフローサイトメトリーなどの蛍光検出手段を用いて、蛍光発光の有無または蛍光強度を測定すればよい。蛍光発光の有無を測定すれば、対象物中にビリルビンが含まれる(蛍光発光有り)か否か(蛍光発光無し)を検出することができる。また、蛍光強度を測定すれば、対象物中のビリルビンの含有量を検出することができる。
 なお、対象物中のビリルビンの含有量とは、基準となる試料と比較した場合の相対的なビリルビン含有量であってもよく、絶対的なビリルビン含有量(絶対濃度)であってもよい。絶対的なビリルビン含有量を求めるためには、濃度既知のビリルビン標準サンプルを用いた検量線の作成などを予め行ってもよい。
 (検査工程)
 本発明に係るビリルビンの検出方法は、さらに必要に応じて、上記検出工程での検出結果に基づき、肝臓疾患の素因の有無または発症の有無を検査する検査工程をさらに含んでいてもよい。
 脊椎動物において、ビリルビンは、ヘムの分解産物の一つである。赤血球が脾臓で分解される際に、ヘムは脾臓の細網細胞で分解されてビリルビン(非抱合型)が生じる。生じたビリルビンは、アルブミンと結合した形で肝臓へと輸送される。
 血液検査では間接ビリルビン量という項目で非抱合型のビリルビン量を評価しているが、これは総ビリルビン量と直接ビリルビン(抱合型ビリルビン)量とを測定し、総ビリルビン量から直接ビリルビン量を差し引いて求めたものである。
 血液検査では、間接ビリルビン量は肝機能を表す指標の一つとして確立されている。従って、本発明に係るビリルビンの検出方法を用いて、対象物中(特に血液由来の試料中)のビリルビンの含有量を求めれば、肝臓疾患または溶血性疾患などの素因の有無または発症の有無を検査することが可能となる。
 なお、検査対象となる肝臓疾患とは、各種の肝機能障害が挙げられる。肝臓疾患または溶血性疾患として、より具体的には例えば、肝炎、肝硬変、肝がん、胆道系疾患、溶血性貧血および体質性黄疸(Gilbert 症候群およびCrigler-Najjar 症候群)、などが挙げられ、特に非抱合型ビリルビン量が指標になる疾患としては溶血性黄疸、劇症肝炎、体質性黄疸および新生児にみられる核黄疸などが挙げられる。
 肝臓疾患の素因の有無または発症の有無を検査する場合の基準は、対象物が血液由来の試料の場合には、例えば、従来の血液検査における基準(間接ビリルビン量:0.8mg/dl以下であれば正常範囲)を参照すればよい。
 本発明に係るビリルビンの検出方法は、非抱合型のビリルビン量を直接測定するものであるが、この直接測定の結果と、抱合型のビリルビン量を直接測定(バナジン酸酸化法、ジアゾカップリング法などで測定可能)した結果とを合わせて、総ビリルビン量を求めることもできる。
 なお、本明細書中において「診断する」、「診断」とは、医師によってなされる、患者の徴候および症状に基づく疾患または病態の同定を指す。一方、本明細書中の「検査する」、「検査」とは、医師による同定(診断)を伴わない、検査対象のヒトまたは非ヒト動物(「被験体」と称する場合もある)における、肝臓疾患または溶血性疾患などの素因の有無または発症の有無の検査を指す。本発明に係る検出方法によって得られた検査結果は、医師によってなされる診断の一材料になりうる。
 (ビリルビンの検出方法の他の応用例)
 本発明に係るビリルビンの検出方法の他の応用例としては、生物系試料などの生物由来の対象物に含まれており、ビリルビンとの結合性を有する生体物質について、対象物のビリルビンの検出を介することによって、間接的に生体物質を検出する、生体物質の検出方法が挙げられる。例えば、対象物(特に血液由来の試料)中のHDLコレステロール量の測定が挙げられる。HDLコレステロールはビリルビンへの特異的な結合性を示す。
 〔7.ビリルビンの検出キット〕
 本発明に係るビリルビンの検出キットは、1)本発明に係る蛍光ポリペプチド、2)本発明に係る蛍光ポリペプチドをコードするポリヌクレオチド、3)本発明に係る組み換えベクター、4)本発明に係る形質転換体、または5)本発明に係る融合ポリペプチドから選択される少なくとも1種以上を含んでなる。この検出キットは、1)~3)または5)から選択される少なくとも1種を含んでなることが好ましい。
 本発明に係る検出キットは、さらに、必要に応じて、ビリルビンの検出に用いる各種試薬および器具(緩衝溶液、ピペットなど)、試料(検出の対象物)を調製するための各種試薬および器具(試験管、緩衝溶液など)、検出キットの使用説明書、検出の時に用いられる対照用となる試料、検出結果を解析するときに用いられる対照用のデータ、などの少なくとも1つを備えていてもよい。なお、検出キットの使用説明書には、上記〔6.対象物中のビリルビンの検出〕の欄で説明した、本発明に係る検出方法の内容が記録されている。
 〔8.基体固定化ポリペプチド〕
 また、本発明に係るポリペプチドの一態様として、基体に固定された形態が挙げられる。ポリペプチドが供されて固定化される基体の材質は特に限定されず、具体的には例えば、ポリスチレン、マグネティックビーズ、滅菌和紙、滅菌濾紙、滅菌不織布、またはPVDF膜(ポリフッ化ビニリデン膜)もしくはPTFE膜(ポリテトラフルオロエチレン膜)等の親水性膜、またはシリコーンゴムなどの柔軟性のある高分子材料、ポリグリコール酸もしくはポリ乳酸などの生分解性ポリマー、または寒天培地、コラーゲンゲルもしくはゼラチンゲルなどのハイドロゲルならびに金薄膜等が挙げられる。このように基体に固定化されることによって、上述したビリルビンの検出等に好適に用いられる。
 基体の形状も特に限定されず、具体的には例えば、平板形状(すなわち基板またはシート状)または球形状等が挙げられる。ポリペプチドが固定された基体を含む製品としては、具体的には例えば、シート、マイクロチップ、ビーズおよびセンサーチップ等が挙げられる。シートの例としては、繊維状、不織布状またはフィルム状等の膜が挙げられる。
 また、本発明に係るポリペプチドを基体に供して固定化する方法は基体の材質に応じて適宜選択すればよく、具体的には例えば、ビオチン-アビジン法、抗原抗体法、およびHis-tag等を利用したアフィニティタグ法などが利用できるが、簡便性の観点からはアフィニティタグ法が好ましい。また、シート状の基体に本発明のポリペプチドを固定する方法としては、シート状基体に塗布(例えば浸漬、エアースプレーおよびインクジェットによる塗布)する方法、基体上に本発明のポリペプチドを滴下、転写または播種する方法、および本発明のポリペプチドを滴下、転写または播種した後、風乾または凍結乾燥させる方法等が挙げられる。
 〔9.本発明に係る具体的な態様の例示〕
 すなわち、本発明は、以下の1)~11)の何れかを包含する。
1)以下の(1)~(4)の何れかに示す、ビリルビン存在下において蛍光特性を有するポリペプチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされるアミノ酸配列を有するポリペプチド。
2)以下の(1)~(4)の何れかに記載のポリヌクレオチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズし、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。
3)上記ポリペプチドのビリルビンに対する解離定数が、0.1nM以上100nM以下であることを特徴とする、1)に記載のポリペプチド。
4)上記3)に記載のポリヌクレオチドを有する組み換えベクター。
5)上記3)に記載のポリヌクレオチドまたは上記4)に記載の組み換えベクターが導入されている形質転換体。
6)上記1)または3)に記載のポリペプチドと他のポリペプチドとからなる融合ポリペプチド。
7)ビリルビンと結合していない、上記1)、3)または6)に記載のポリペプチドに、ビリルビンを接触させることによって構成されたポリペプチド-ビリルビン複合体。
8)対象物中のビリルビンを検出する方法であって、上記1)に記載のポリペプチド、3)に記載のポリペプチドまたは上記5)に記載の融合ポリペプチドと、上記対象物とを接触させる接触工程、および、上記接触工程後に上記ポリペプチドまたは上記融合ポリペプチドから発される蛍光を検出する検出工程、を含む、検出方法。
9)上記対象物が生体から取得した血液由来または尿由来の試料である、7)に記載の検出方法。
10)上記検出工程での検出結果に基づき、肝臓疾患または溶血性疾患の素因の有無または発症の有無を検査する検査工程をさらに含む、8)または9)に記載の検出方法。
11)上記1)に記載のポリペプチド、上記2)に記載のポリヌクレオチド、3)に記載のポリペプチド、上記4)に記載の組み換えベクター、上記5)に記載の形質転換体、または上記6)に記載の融合ポリペプチドから選択される少なくとも1種以上を含む、ビリルビンの検出キット。
 なお、本出願は日本で出願された特願2013-040097(出願日:2013年2月28日)を基礎としており、その内容は本明細書に全て包含されるものである。
 〔実施例1〕
 〔1.ニホンウナギ由来のUnaG遺伝子のクローニング〕
 (材料および方法)
 <実験材料>
 天然のニホンウナギ(Anguilla japonica)の稚魚であるシラスウナギ(ケニス株式会社より入手)を使用した。
 <シラスウナギからのtotal RNAの調製>
 生体のシラスウナギ(約0.2g前後)を液体窒素に投入し、即時凍結させた。その後、液体窒素中においてテフロンホモゲナイザーを用いて、シラスウナギを破砕した。ホモゲナイザー容器中のシラスウナギにTRIzol(登録商標)試薬3mlを添加し、氷上で溶解後、低温室においてホモジナイズを行った。コニカルチューブにホモジネートを移し、0.6mlのクロロホルムを添加した。上述のクロロホルムを添加したホモジネートを攪拌し室温において5分静置した。7000rpm、4℃で20分間遠心後、水層を回収した(約1.5ml)。回収した水層に、1.5mlのイソプロパノールを添加して攪拌し、室温において10分間静置した。続いて、15,000rpmの回転速度で、4℃において10分間遠心した。上清を除去し、沈殿を75%エタノールでリンスし、10,000rpmの回転速度で4℃において5分間遠心し、エタノールを除去し、沈殿物を得た。得られた沈殿物を風乾させ、100μlのRNaseフリーの水に溶解し、ニホンウナギのtotal RNAを得た。得られたtotal RNAについて、260nmの波長における吸光度(以降A260と表記し、異なる波長における吸光度についても同様の表記方法とする)を測定し、RNAの濃度を求めた(1A260≒40ngRNA/μlとして換算)。
 <5’RACE法および3’RACE法を用いたクローニングによるUnaG遺伝子全長の取得>
 林ら(Hayashi et al., Fish. Sci. 75, 1461-1469, 2009)によって単離および同定されたウナギの蛍光タンパク質の9つのアミノ酸断片配列の情報に基づき、配列番号7~16に示す縮重プライマーを設計した。さらに、配列番号17~23に示すRACE用のアダプタープライマーを設計し、3’RACE法および5’RACE法により、ニホンウナギの蛍光タンパク質をコードする遺伝子のクローニングを行った。以下にクローニングの手順について詳細を記載する。なお、クローニングに用いた、配列番号7~23に示すプライマーは、表1にもその塩基配列を示した。
Figure JPOXMLDOC01-appb-T000001
 Total RNA 5μgに対して、100μMのSpeI-NotI-d(T)15プライマー(配列番号23)を0.5μl、10mMのdNTPmixtureを1μl添加し、水を加えて容量を13μlとした。65℃において15分間加熱後、素早く氷冷し、5× First-Strand Buffer(250mMのTris-HCl(pH 8.3)、375mMのKCl、15mMのMgCl)を4μl、0.1MのDTTを1μl、組換え型RNase インヒビターRNase OUT(商標)(インビトロジェン株式会社)を40ユニット、およびSuperScript III(商標)逆転写酵素(インビトロジェン株式会社)を200ユニット添加し、50℃で60分間加熱後、70℃で15分間さらに加熱した。続いて、リボヌクレアーゼ Hを1μl加え、37℃で20分間インキュベートし、3’RACE用の1st strand cDNAを調製した。一方、5’RACE用の1st strand cDNAは5' RACE System for Rapid Amplification of cDNA Ends, Version 2.0(インビトロジェン株式会社)を用いて、製品に添付されている手順書に従って調製した。上述のように設計した縮重プライマー、ならびに3’ RACE用および5’RACE用のアダプタープライマーを用いてPCRを行い、増幅産物をpT7Blue T-Vector(Novagen社)にクローンニングし、Applied Biosystems 3730xl DNA Analyzer(Applied Biosystems社)によってDNA配列解析を行い、遺伝子解析ソフトウェアであるDNAdynamo(BlueTractorSoftware)を用いて配列の決定を行った。
 (結果)
 上述の方法によって得られた、完全長cDNAの5’側末端、3’側末端、ならびにその他の領域を配列の重複に基づき統合して配列番号2に示す420bpの塩基配列を得て、これをUnaG遺伝子の完全長cDNA配列とした。また、配列番号2の塩基配列の他に、配列番号4で示した塩基配列も配列番号2のバリアントとして得られた。なお、以下の実験は、すべて配列番号2の配列に基づき行った。
 また、配列番号2のcDNA配列から、配列番号1に示す、139個のアミノ酸を有する推定アミノ酸配列を得た。このアミノ酸配列で示されるポリペプチドをUnaGタンパク質と称する。UnaGタンパク質は、GFPおよびGFP様タンパク質のアミノ酸配列に含まれ、発色団を形成しているアミノ酸配列である、X-Y-G(Xは任意のアミノ酸を示す)を有していなかった。
 〔2.組み換えUnaGタンパク質の発現〕
 〔2-1.大腸菌におけるUnaGタンパク質(アポ体)の発現〕
 (材料および方法)
 <大腸菌発現用組み換え体(ベクター)の作製>
 上記のようにして得たUnaG遺伝子全長の配列を有するDNA断片を、GST融合タンパク質を大腸菌において発現可能な、GSTタグ配列を有する大腸菌発現ベクターpGEX-2T(GEヘルスケア)のBamHIおよびEcoRIの制限酵素サイトにライゲーションし、大腸菌株DH5αに形質転換することによってサブクローニングし、大腸菌のUnaG(アポ体)発現ベクター(pGEX-2T-UnaG)を構築した。
 <大腸菌発現用組み換え体(ベクター)の大腸菌における発現、培養およびタンパク質の精製>
 構築した発現ベクター(pGEX-2T-UnaG)を大腸菌株BL21(DE3)に形質転換し、形質転換体をLB固体培地のプレート上で培養してコロニーを得た。得られたコロニーを、LB液体培地40mlに植菌し、37℃において一晩前培養した。ここで、得られた大腸菌液のグリセロールストックを作製し、以下に記載の実験において、大腸菌発現用組み換え体(ベクター)を用いる場合は、上記グリセロールストックを植菌に用いた。前培養液を用いて、LB培地400mlにスケールアップし、37℃において1時間培養した(A600≒1.0)。その後、LB培地に終濃度0.4mMとなるようにIPTG(イソプロピル-1-チオ-β-D-ガラクシド)を加え、17℃において6時間振とうし、UnaGタンパク質の発現を誘導した。8000rpmの回転速度で3分間遠心分離を行い、大腸菌の菌体を回収した。
 上記の操作によって回収した菌体を20mlのPBS(phosphate buffered saline)で懸濁し、リゾチーム(4mg/ml)を200μl添加し、液体窒素によって菌体を凍結させた後、融解させた。この凍結融解の作業を3回繰り返し、3分間超音波処理を行った後、7000rpmの回転速度で、4℃において20分間遠心分離し、上清を回収し菌体の可溶化液を得た。PBSによって平衡化した1mlのGlutathione Sepharose4B(GEヘルスケア株式会社)(GSTの担体)および可溶化液を4℃で1時間インキュベートし、上記の担体にGST融合UnaGタンパク質を結合させた。担体の総容量の10倍以上の容量のPBSによって上記の担体を洗浄した後、80ユニットのThrombin(GEヘルスケア株式会社)を担体に加え、室温において一晩消化反応を行い、担体に結合したGSTからUnaGタンパク質を切断した。さらに、UnaGタンパク質溶液にPBSによって平衡化した1mlのBenzamidine Sepharose 6B(GEヘルスケア株式会社)(Thrombinの担体)を加え、4℃で1時間インキュベートし、Thrombinを担体に結合させることによって回収し、担体を除去して上清を得た。得られた上清をUnaGタンパク質の精製品とし、2.0~2.5mgのUnaGタンパク質の精製品を得た。UnaGタンパク質の精製品について、SDS-PAGE電気泳動による電気泳動を行い、精製度の確認を行った。結果を図1に示し、以下の項目2-2.にまとめて記載する。
 <タンパク質濃度の測定>
 タンパク質濃度は以下のように算出された。なお、〔2.組み換えUnaGタンパク質の発現〕~〔7.ヒト血清中ビリルビンの検出〕に記載されている実験方法のうちタンパク質濃度を測定する場合は、すべて同様の方法により算出された。
 まず、280nmにおけるUnaGタンパク質のモル吸光係数(ε)を算出した(C.N.Pace et al., Protein Sci. 4, 2411-2423, 1995)。次に、得られたε値およびA280の吸光度に基づき、以下に示した計算式によりタンパク質濃度を求めた。
 ε=Trp(2)×5500+Tyr(5)×1490+Cystine(0)×125=18450(A280/mol/cm)
 タンパク質濃度=A280/ε=A280/18450(mol/dm
 〔2-2.哺乳類細胞におけるUnaGタンパク質(ホロ体)の発現〕
 (材料および方法)
 <哺乳類細胞発現用組み換え体(ベクター)の作製>
 鋳型DNAとして配列番号2のUnaG遺伝子の完全長cDNA、センスプライマー(配列番号24)、およびアンチセンスプライマー(配列番号25)を用いたPCRにより哺乳類細胞用発現ベクターに挿入するDNAを増幅した。哺乳類細胞用発現ベクターpcDNA3(インビトロジェン株式会社)のKpnI制限酵素サイトおよびBamHI制限酵素サイトに、FLAGタグ配列(配列番号26)を挿入したpcDNA3-FLAGベクターのBamHI制限酵素サイトおよびEcoRI制限酵素サイトに、増幅したDNA断片をライゲーションした後、大腸菌株DH5αに形質転換することによりクローニングした。大腸菌からベクターを抽出した後にベクターを精製し、DNA配列解析により配列を確認し、哺乳類細胞UnaG発現ベクター(pcDNA3-FLAG-UnaG)を構築した。
 <哺乳類細胞発現用組み換え体(ベクター)の哺乳類細胞における発現、培養、およびタンパク質の精製>
 HEK293T細胞を直径10cmのディッシュ20枚に播種し、10%のウシ胎児血清(GIBCO社製)および抗生物質(ペニシリンおよびストレプトマイシン)を含むDulbecco's Modified Eagle Medium(高グルコース)(GIBCO)で5%のCOおよび37℃の条件下で培養した。50~60%コンフルエントまで細胞が増殖したら、ディッシュ中の培地を抗生物質を含まない培地に交換し、予め混合した哺乳類細胞UnaG発現ベクターのプラスミドDNAおよびトランスフェクション試薬(10cmディッシュ1枚あたり、DNAを10μg、FuGene(登録商標)HDトランスフェクション試薬を40μl、Opti-MEM(登録商標)I Reduced-Serum Medium(GIBCO)を500μl)をディッシュ1枚あたり500μl添加し、トランスフェクションした。トランスフェクション後、細胞を一晩培養し、ディッシュ中の培地を抗生物質を含む培地に交換した。さらに一晩培養し、タンパク質を発現させた。
 タンパク質を発現させた後、培地をディッシュから除去し、PBSによって細胞を洗浄した。つづいて、PBSをディッシュに添加することによって細胞をディッシュから剥がし、細胞をPBSに懸濁させた。上述の懸濁液を、1000prmの遠心力で3分間遠心することによって、細胞を沈殿物として回収した。細胞を溶解バッファー[50mMのTris-HCl(pH 7.4)、150mMのNaCl、1mMのEDTAおよび1%のTriton X-100]20mlに懸濁し、室温において15分間ローテーターで攪拌しながら細胞を溶解バッファー中に溶解させた。15,000gの遠心力で、4℃において10分間遠心し、上清を回収した。回収した上清をTBSバッファー[50mMのTris-HCl(pH 7.4)および150mMのNaCl]によって平衡化したANTI-FLAG M2-Agarose Affinity Gel(シグマ アルドリッチ社)4mlと4℃において3時間インキュベートした。インキュベーションの後、遠心することによって上清を除き、ゲルを総容量の10倍の容量以上のTBSバッファーで洗浄した。その後、上記のゲルの総容量の5倍の容量のTBSバッファー(FLAGペプチド(シグマ アルドリッチ社)(100μg/ml)を含む)を用いてゲルからFLAG-UnaGタンパク質(ホロ体)を溶出させた。溶出カラムとしてAmicon Ultra-15(3000MWCO、メルクミリポア)を用い、限外濾過することによって溶出液の濃縮を行った後、PD-10カラム(GEヘルスケア株式会社)に供してバッファー交換および余剰のFLAGペプチドを除くことにより精製し、FLAG-UnaGタンパク質の精製品とした。精製したFLAG-UnaGタンパク質(ホロ体)について、UVトランスイルミネーターで照射し、蛍光の有無を確認した。さらにSDS-PAGE電気泳動による電気泳動を行い、精製度の確認を行った。結果を図1に示す。
 (結果)
 図1は組み換えUnaGタンパク質の、大腸菌および哺乳類細胞における発現を示した図である。(a)は、組み換えUnaGタンパク質を発現させた大腸菌(2)をUVトランスイルミネーターによって青色の光を照射して観察した図である。左上は対照としてベクターpRSETをトランスフェクションした大腸菌(1)であり、右上はEGFPを発現させた大腸菌(3)である。(b)は、(a)に示した大腸菌(1)~(3)の細胞抽出液をSDS-PAGE電気泳動により電気泳動したゲルをCBB染色法によって染色した図である。(c)は、組み換えUnaGタンパク質を発現させた哺乳類細胞HEK293Tを蛍光顕微鏡下で観察した、微分干渉像および蛍光像の図である。図1の(b)および(c)に示されているように、大腸菌および哺乳類細胞のいずれにおいて発現した場合もUnaGタンパク質は、十分な発現量を示した。また、上述の精製の操作によって、不純物を十分に除去することができた。しかしながら、図1の(a)の顕微鏡写真から明らかなように、大腸菌においてUnaGタンパク質を発現させた場合、大腸菌の細胞内において、UnaGタンパク質は蛍光を示さなかった。一方、図1の(c)の顕微鏡写真から明らかなように哺乳類の細胞において発現させたUnaGタンパク質は蛍光を示した。
 以上のことから、UnaGタンパク質は、大腸菌には含まれていないが哺乳類細胞には含まれているリガンドの存在下において蛍光特性を有することが明らかとなった。また、リガンドは、脊椎動物、すくなくとも魚類および哺乳類が共通に有するものであることが推測された。
 〔3.UnaGタンパク質の蛍光特性の分析〕
 (材料および方法)
 <UnaGタンパク質の蛍光スペクトル、吸収スペクトルおよび量子収率の測定>
 UnaGタンパク質の蛍光特性について分析するため、蛍光スペクトル、吸収スペクトルおよび量子収率の測定を行った。励起スペクトルおよび蛍光スペクトルは分光蛍光光度計RF-5300PC(株式会社島津製作所)によって測定された(励起波長475nm、蛍光波長550nm)。吸収スペクトルは分光光度計 U-2900(株式会社日立ハイテクノロジーズ)によって測定された。量子収率は絶対PL量子収率測定装置Quantaurus-QY(浜松ホトニクス株式会社)によって測定された(励起波長470nm、480nm)。また、公知の蛍光タンパク質であるEGFPについても同様に測定を行い、UnaGタンパク質の値と比較した。結果を表2に示す。
 (結果)
Figure JPOXMLDOC01-appb-T000002
 図2は、UnaGタンパク質の蛍光特性を示した図である。
 〔4.UnaGタンパク質のリガンドの同定〕
 (材料および方法)
 <密度勾配遠心分離法によるウシ胎児血清(FBS)の分画>
 FBS(GIBCO)20mlにKBrを8g(0.4gKBr/ml)加え、0.4g/mlのKBrを含むPBSで36mlにメスアップした。この溶液を遠心チューブ6本に6mlずつ分注し、分注した溶液の上から0.75%食塩水6mlを重層した。遠心管およびSw41Tiローター(ベックマン・コールター社)を用いて170,000g、15℃で20時間超遠心分離(ベックマン・コールター社)を行った。続いて、分画機(エスケーエスバイオインターナショナル社)を用いて、各遠心チューブ中の分画血清の上層から0.33mlずつ分注した。
 <FBSおよびFBS画分によるアポ体のUnaGタンパク質の再構成>
 アポ体のUnaGタンパク質は、上述の項目2-1の方法によって作製したものを用いた。10%FBS溶液に0.5μMとなるようにアポ体のUnaGタンパク質を添加し、室温で30分間インキュベートし再構成した。
 FBSによって再構成したUnaGタンパク質の励起スペクトルおよび蛍光スペクトルを測定した。
 PBSによって2倍に希釈したFBS画分に、0.5μMとなるようにアポ体のUnaGタンパク質を添加し、室温で30分間インキュベートした。続いて96穴マイクロプレート(greiner bio-one)に200μlずつ添加し、EnSpire マルチモードプレートリーダー(PerkinElmer)を用いて波長497nmの励起光で波長527nmの蛍光強度を測定した。結果を図3に示した。
 (結果)
図3は、FBSおよびFBS画分との再構成によるUnaGタンパク質の蛍光特性等を示した図である。(a)は、FBSによって再構成したアポ体のUnaGタンパク質(左)およびホロ体のUnaGタンパク質(哺乳類細胞由来のFLAG-UnaGタンパク質)(右)の励起スペクトルおよび蛍光スペクトルを示した図である。(b)は、FBSを密度勾配超遠心分離により分画し、各画分とアポ体のUnaGタンパク質とを再構成し測定した蛍光強度(実線)および各血清画分のタンパク質濃度(破線)を示した図である。縦軸は蛍光強度(左軸)とタンパク質濃度(mg/ml)(右軸)、横軸は画分番号を示す。
 図3の結果から、FBSに含有される成分がUnaGタンパク質のリガンドとして機能することがわかった。
 <ホロ体のUnaGタンパク質からのリガンドの抽出法>
 リガンドの抽出はBligh and Dyer法(Bligh, E.G. & Dyer, W.J. Can. J. Biochem. Physiol. 37, 911-917, 1959)に従って行った。哺乳類細胞由来のFLAG-UnaGタンパク質(ホロ体)溶液0.4mlに対し、クロロホルム0.5mlおよびメタノール1mlを加えて混合した。上記混合物に対し、クロロホルム0.5mlおよびバッファー0.5mlを加えてさらに混合し、最終的に水溶液:メタノール:クロロホルムの比を0.9:1:1となるようにした。その後、1,500rpmの遠心力で5分間遠心分離を行い、リガンドを含む脂質成分が抽出された有機溶媒層と、水層とに分離させた。このうち、リガンドを含む脂質の抽出液(すなわち有機溶媒層)を回収した。
 <ホロ体のUnaGタンパク質から抽出したリガンドおよびビリルビンの吸収スペクトルの比較>
 上述の方法によって、ホロ体のUnaGタンパク質から抽出されたリガンドおよび血清に含まれている成分の1つであるビリルビンについて、吸収スペクトルを比較し、吸収ス
ペクトルが一致するものを探索した。結果を図4に示す。
 (結果)
 図4は、ビリルビン(左)と、UnaGリガンド(右)の吸収スペクトルを示した図である。横軸は吸収光の波長を示し、縦軸は吸光度を示した。図4に示されているように、UnaGのリガンドの吸収スペクトルは、ビリルビンの吸収スペクトルと一致した。したがって、UnaGのリガンドはビリルビンであることが示された。
 〔5.UnaGタンパク質の非抱合型ビリルビンに対する特性〕
(材料および方法)
 <再構成によるホロ体のUnaGの作製>
 100%DMSOに溶解させたビリルビン(和光純薬)をPBSによって希釈し、ビリルビンの濃度がアポ体のUnaG溶液に対してモル比において2倍の量となるように、アポ体のUnaGタンパク質溶液にビリルビンを添加し、混合した。混合の際、ビリルビン溶液のDMSOの終濃度と、アポ体のUnaGタンパク質溶液のDMSOの終濃度とが同じになるようにした。混合した溶液を入れた容器を遮光し、室温において10分間静置した。その後、PD-10カラム(GEヘルスケア株式会社)に該混合溶液を供して、混合溶液に含まれるバッファーを、PBSへバッファー交換しつつ余剰のビリルビンを除いた。必要に応じて、Amicon Ultra(3000MWCO、メルクミリポア)を用いて限外濾過することによって、ホロ体のUnaGタンパク質の濃縮を行った。
<ビリルビンまたはビリルビン類縁体を用いたアポ体のUnaGタンパク質の再構成>
 ビリルビンまたはビリルビン類縁体である、ビリベルジン(Tronto Research Chemicals)、ウロビリン(MP Biomedicals)もしくはジタウロビリルビン(Frontier Scientific)を終濃度が、0.125μM、0.25μM、0.5μM、1.0μM、および2.0μMとなるようにPBSで希釈し、0.5μMのアポ体のUnaGタンパク質と混合し、室温で30分間静置した。96穴マイクロプレート(greiner bio-one)に200μlずつ添加し、EnSpire マルチモードプレートリーダー(PerkinElmer)を用いて波長497nmの励起光で波長527nmの蛍光強度を測定した。結果を図5に示す。
 (結果)
 図5は、アポ体のUnaGタンパク質溶液に各濃度のビリルビンまたは各濃度のビリルビン類縁体を添加して再構成したUnaGタンパク質の蛍光強度を示す。横軸はリガンド濃度(μM)、縦軸は蛍光強度を示す。ビリルビン類縁体を加えてもUnaGは蛍光を発せず、UnaGの蛍光はビリルビン特異的であることが示された。
 〔6.UnaGタンパク質の凝集性に関与する部位の解析〕
 (材料および方法)
 <変異導入(R82EK84E)によるUnaG改変体の作製方法およびR82EK84E改変体のUnaGタンパク発現>
 GENEART(登録商標) Site-Directed Mutagenesis System(インビトロジェン株式会社)を使用し、製品に添付されている手順書に従って、UnaGのアミノ酸配列に対する部位特異的な変異導入を行った。上述の2-1.に記載の大腸菌発現用組み換え体(ベクター)pGEX-2T-UnaGを鋳型とし、センスプライマー(配列番号27)とアンチセンスプライマー(配列番号28)を用いてPCRにより野生体のUnaGタンパク質の82番目のアミノ酸であるR、および84番目のアミノ酸であるKをそれぞれEに置換した。変異を導入したpGEX-2T-UnaG(R82EK84E)を大腸菌株BL21(DE3)に形質転換し、上述の2-1.に記載の野生体のUnaGタンパク質の発現方法と同様の方法によってタンパク質を発現させた。UnaGタンパク質の精製についても上述の2-1.に記載の方法と同様に行った。ただし、Thrombin消化に用いたThrombinは40ユニットとし、20℃において、3時間の条件により行った。精製後、ビリルビンと再構成させることによりホロ体を調製した。ホロ体の調製方法は、上述の2-2.に記載の方法と同様の方法を用いて行った。R82EK84E改変体の推定アミノ酸配列を配列番号5に示した。
 <タンパク質の凝集性の評価>
 野生体のUnaGタンパク質(10mg/ml)およびR82EK84E改変体のUnaGタンパク質(8.5mg/ml)のタンパク質溶液20μlをマイクロトラック粒度分析計MT3000II(日機装株式会社)に供し、動的光散乱法を用いて粒子径を測定した。粒子径に対する頻度をプロットし、凝集性を評価した。結果を図6に示す。
 <R82EK84E改変体の蛍光特性の分析>
 R82EK84E改変体の蛍光特性について分析するため、蛍光スペクトル、吸収スペクトルおよび量子収率の測定を行った。測定は上述の3.に記載の方法と同様の方法によって行った。蛍光寿命は小型蛍光寿命測定装置Quantaurus-Tau(浜松ホトニクス株式会社)で測定した。また、野生体のUnaGタンパク質の値と比較した。結果を表3に示す。
 (結果)
Figure JPOXMLDOC01-appb-T000003
 図6は、野生体のUnaGタンパク質およびR82EK84E改変体のUnaGタンパク質の、粒子径の測定結果を示した図である。横軸は粒子径(nm)、縦軸は頻度(%)を示す。図6に示されているように、野生体の場合は、粒子径の分布範囲の異なる2つのピークが見られた。このうち、粒子径の分布範囲の小さいピークは単量体を示し、粒子径の分布範囲の大きい方のピークは凝集体のピークを示していると推測された。これに対し、R82EK84E改変体は、野生体の2つのピークのうち、粒子径の分布範囲の小さいほうのピークと重なる位置に単一のピークを示した。すなわち、R82EK84E改変体は、野生体よりも分散性が向上し、凝集しにくくなった。
 〔7.ヒト血清中ビリルビンの検出〕
 (材料および方法)
 <滴定によるアポ体のUnaGタンパク質とビリルビンとの結合>
 アポ体のUnaGタンパク質の濃度が5nMのアポ体のUnaGタンパク質溶液に、ビリルビン濃度が最終的に10nMになるまでビリルビンを滴定し、蛍光分光光度計で蛍光スペクトルを測定した。グラフ作成ソフトウェアOrigin(OriginLab社)を用いて、各データの最大蛍光波長527nmの蛍光強度をグラフにし、下記の式を用いてカーブフィットすることにより解離定数を求めた。
Y=[K+B+P-{(K+B+P-4×B×P1/2]/(2×P
 Yはビリルビンの結合度(蛍光強度)、Kは解離定数、Bはビリルビン濃度、Pはアポ体のUnaGタンパク質濃度(5nM)を表す。
 <ヒト血清中の非抱合型ビリルビンの検出法>
 ヒト検体を用いた実験は、独立行政法人理化学研究所の「人を対象とする研究規定」に従い、承認を得て実施した。
 23Gの注射針(テルモ株式会社)および5mlの注射筒(テルモ株式会社)を用いて、腕の静脈より5mlを真空密封採血管(ネオチューブ、ニプロ株式会社)中に採血した。採取した血液を遮光し、室温において30分間静置した後、3,000rpmの回転速度で、20分間遠心分離(KUBOTA K-80)を行い、血清約2.5mlを回収した。回収した血清は遮光しながら氷冷し、速やかにビリルビン測定に供した。
 PBSで200倍に希釈した血清にアポ体のUnaGを終濃度0.5μMとなるように添加し、96穴のマイクロプレート(ブラック、非吸着型、Greiner bio-one)に200μl加えた。プレートにサンプルを添加した直後から蛍光の測定を開始した。EnSpire(商標)マルチモードプレートリーダー(株式会社パーキンエルマー)を使用し、室温において10分間おきに1時間、蛍光波長527nm(励起波長497nm)における蛍光強度を測定した。各血清3ウェルずつ測定を行い、アポ体のUnaGタンパク質を加えない血清もバックグランドとして測定した。アポ体のUnaGタンパク質を加えた値からバックグランドの値を差し引き、正味の蛍光強度とした。結果を図7に示す。
さらに、三菱化学メディエンス株式会社に生化学検査を依頼し、血清中の総ビリルビン値および直接ビリルビン値を酵素法(Doumas, B.T. et al., Clin. Chem.. 33, 1349-1353, 1987; Kurosaka K et al., Clin. Chim. Acta. 269, 125-136, 1998)により測定し、間接ビリルビン値を計算法により測定した。なお、計算法とは総ビリルビン量と直接ビリルビン量とを測定し、総ビリルビン量から直接ビリルビン量を差し引いた値を間接ビリルビン量とする方法である。間接ビリルビンの値と血清中のUnaGの蛍光強度との相関係数を求めた。結果を図8に示す。
 (結果)
 図7は、ヒト血清にUnaGを混合した場合の蛍光検出結果を示した図である。縦軸は血清にアポ体のUnaGタンパク質を添加したときを0分としたときの経過時間、横軸は蛍光強度を指す。10検体の検査結果を示した。
 図7に示されているように、200倍に希釈した血清を用いた場合でも十分な蛍光強度を得ることができた。したがって、非常に少ない量の血清であってもビリルビンの測定が可能であることが示唆された。約10分後には安定した蛍光が産生しその後も1時間以上持続する。したがって、添加10分後以降の適当な時間に測定することで再現性の高いデータが得られる。
 図8はビリルビンの量と、UnaGの蛍光強度との相関を示した図である。横軸は血清中に含まれる間接ビリルビン(非抱合型ビリルビン)の濃度、縦軸は蛍光強度を示す。UnaGタンパク質の蛍光強度と、血清中の間接ビリルビンの濃度との間には強い相関性があることが示された。
 〔8.ビリルビン低結合性のUnaG改変体の作製〕
 (材料および方法)
 <ランダム変異誘発>
 Diversify(登録商標)PCRランダム突然変異誘発キット(Clonetech)を用いて、PCRで野生体のUnaGにランダムに突然変異を導入した。野生体のUnaGの鋳型DNAをもとにセンスプライマー(配列番号31)、アンチセンスプライマー(配列番号32)を用いて、PCRによりベクターに挿入するDNAを増幅した。大腸菌発現ベクターpRSETBのKpnI/BamHI制限酵素サイトにmCherry配列を挿入したpRSETB-mCherryベクターのBamHI/EcoRI制限酵素サイトに増幅したDNA断片をライゲーションした後、大腸菌株JM109(DE3)に形質転換しクローニングした。mCherryのアミノ酸配列を配列番号33、塩基配列を配列番号34に示す。
 <スクリーニング(コロニータイトレーション)>
 上述の形質転換によって得られた大腸菌コロニーから、ランダムにコロニーをピックアップし、LB培地1mlに植菌し、37℃で1晩培養した。8000rpmの回転速度で1分間遠心後、上清を除いた。回収した菌体に、B-PER Protein Extraction Reagents(Thermo Scientific)を400μl添加し、5分間攪拌した。8000rpmの回転速度で、4℃で3分間遠心し、上清を回収した。96穴マイクロプレート(FIAブラックプレート、greiner bio-one)に各サンプルをそれぞれ50μlずつ4穴に分注した。ビリルビン溶液を150μl添加し、終濃度がそれぞれ0.01、0.1、1.0および10μMとなるようにした。室温で20分間インキュベートし、EnSpire(登録商標)マルチモードプレートリーダー(株式会社パーキンエルマー)を用いて、UnaGの野生体および改変体について、波長497nmの励起光で波長527nmの蛍光強度を測定した。また、mCherryについて、励起波長580nmで波長610nmの蛍光強度を測定した。UnaGタンパク質のmCherryに対する蛍光強度比を求めてプロットした。野生体のUnaGタンパク質と比較して、ビリルビンに低親和性を示し、且つ野生体と同程度の蛍光強度を保つクローンであるUnaG改変体のタンパク質のプロットの結果を図9に示す。
 また、野生体のUnaGタンパク質と比較して、ビリルビンに低親和性を示し、且つ野生体と同程度の蛍光強度を保つクローンを複製し、Applied Biosystems 3730xl DNA Analyzer(Applied Biosystems社)によってDNA配列解析を行い、遺伝子解析ソフトウェアであるDNAdynamo(BlueTractorSoftware)を用いて配列の決定を行った。
 (結果)
 配列解析の結果、野生体の12番目のAがEに、80番目のSがNにそれぞれ置換したアミノ酸配列を有する変異体(以降A12ES80N改変体と称する)であることが分かった。得られたアミノ酸配列を配列番号29に示す。
 図9は、ビリルビン濃度と、野生体のUnaGタンパク質およびA12ES80N改変体のUnaGタンパク質のmCherryタンパク質に対する蛍光強度比との相関を示した図である。横軸はビリルビンの濃度、縦軸は蛍光強度比を示す。
 〔9.ビリルビン低親和性改変体であるA12ES80N改変体タンパク質の解析〕
 <大腸菌におけるA12ES80N改変体UnaGタンパク質(アポ体)の発現>
 A12ES80N改変体のDNA断片を大腸菌発現ベクターpcRSETBのKpnI/BamHI制限酵素サイトにFLAGタグ配列(配列番号26)を挿入したpRSETB-FLAGベクターのBamHIおよびEcoRIの制限酵素サイトにライゲーションし、大腸菌株JM109(DE3)に形質転換しサブクローニングした。
 LBプレート上のコロニーをLB液体培地50mlに植菌し、17℃で3晩培養し、UnaGの発現を誘導した。8000rpmで3分間遠心分離を行い、大腸菌を回収した。
菌体を5mlのPBSで懸濁し、リゾチーム(4mg/ml)を50μl添加し、液体窒素で菌体を凍結させた後融解させた。この凍結融解の作業を3回繰り返し、3分間超音波処理を行った後、7000rpm、4℃で20分間遠心分離し、上清を回収し可溶化液を得た。PBSで平衡化した1mlのNi-NTA Agarose(QIAGEN)と可溶化液を4℃で1時間インキュベートし、担体にHis-FLAG融合UnaGを結合させた。担体の総容量の10倍以上の5mMのイミダゾールを含むPBSで洗浄した後、更に担体の総容量の15倍以上の10mMのイミダゾールを含むPBSで洗浄した。その後、300mMのイミダゾールを含むPBSを500μlずつ担体に添加し、His-FLAG-UnaG改変体タンパク質を溶出し、ブラッドフォード法を用いて溶出画分を検出した。溶出画分を回収し、Amicon Ultra-4(メルクミリポア)を用いて限外濾過を行い、濃縮した。イミダゾールを除去するために、PBSで平衡化した脱塩カラムPD-10(GEヘルスケア)に濃縮したタンパク溶液を添加し、PBSを500μlずつ加えHis-FLAG-UnaG改変体タンパク質を溶出し、ブラッドフォード法を用いて溶出画分を検出した。精製したHis-FLAG-UnaG改変体タンパク質について、以下に示した計算式によりA280の吸光度に基づきタンパク質濃度を求めた。その後SDS-PAGE電気泳動によって精製の確認を行った。
ε=Trp(2)×5500+Tyr(7)×1490+Cystine(0)×125=21430(A280/mol/cm)
タンパク濃度=A280/ε=A280/21430(mol/dm
 精製後、ビリルビンと再構成させることによりホロ体を調製した。ホロ体の調製方法は、上述の2-2.に記載の方法と同様の方法を用いて行った。
 <A12ES80N改変体の蛍光特性の分析>
 ホロ体のA12ES80N改変体タンパク質の蛍光特性について分析するため、蛍光スペクトル、吸収スペクトルおよび量子収率(励起波長470nm)の測定を行った。測定は上述の3.に記載の方法と同様の方法によって行った。また、野生体のUnaGタンパク質の値と比較した。結果を図10および表4に示す。
 (結果)
Figure JPOXMLDOC01-appb-T000004
 図10は、A12ES80N改変体のUnaGタンパク質の蛍光の特性を示した図である。左の図はA12ES80N改変体のUnaGタンパク質の吸収スペクトルを示しており、横軸は吸収光の波長を示し、縦軸は吸光度を示す。右の図は、A12ES80N改変体のUnaGタンパク質の励起スペクトルおよび蛍光スペクトルを示しており、横軸は励起光および蛍光の波長を示し、縦軸は蛍光強度を示す。
 〔9.A12ES80N改変体のビリルビン結合性能の評価〕
 (材料および方法)
 <解離定数測定>
 アポ体のA12ES80N改変体タンパク質にビリルビンを滴定し、分光蛍光光度計F-2500(株式会社日立ハイテクノロジーズ)で蛍光強度を測定した。その結果をプロットし、データ分析およびグラフ作成ソフトウェアOrigin(OriginLab社)によりフィッティングを行い解離定数(Kd)を求めた。ビリルビンの滴定方法および解離定数の測定方法については、7.に記載の方法と同様の方法によって行った。結果を図11に示す。
 (結果)
 図11は、ビリルビンの量と、野生体のUnaGタンパク質(左)またはA12ES80N改変体のUnaGタンパク質(右)の蛍光強度との相関を示した図である。カーブフィッティングの結果、UnaG野生体のK=98pMに対し、A12ES80N改変体はK=1.9nMの親和力でビリルビンに結合することが分かった。
 本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載した参考文献に記載の内容は全て、リファレンスとして本明細書の内容に援用される。
 本発明によれば、ニホンウナギ由来の新規な蛍光特性を有するタンパク質を提供する。また、本発明のポリペプチドをバイオマーカーとした、新規なビリルビンの検出方法を提供することが出来る。

Claims (11)

  1.  以下の(1)~(4)の何れかに示す、ビリルビン存在下において蛍光特性を有するポリペプチド。
    (1)配列番号1に記載のアミノ酸配列を有するポリペプチド、
    (2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、
    (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド、
    (4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされるアミノ酸配列を有するポリペプチド。
  2.  以下の(1)~(4)の何れかに記載のポリヌクレオチド。
    (1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
    (2)配列番号1に記載のアミノ酸配列において1~21個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、
    (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド、
    (4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドに対して、ストリンジェントな条件下においてハイブリダイズし、ビリルビン存在下において蛍光特性を有するポリペプチドをコードするポリヌクレオチド。
  3.  上記ポリペプチドのビリルビンに対する解離定数が、0.1nM以上100nM以下であることを特徴とする、請求項1に記載のポリペプチド。
  4.  請求項2に記載のポリヌクレオチドを有する組み換えベクター。
  5.  請求項2に記載のポリヌクレオチドまたは請求項4に記載の組み換えベクターが導入されている形質転換体。
  6.  請求項1または3に記載のポリペプチドと他のポリペプチドとからなる融合ポリペプチド。
  7.  ビリルビンと結合していない、請求項1、3または6に記載のポリペプチドに、ビリルビンを接触させることによって構成されたポリペプチド-ビリルビン複合体。
  8.  対象物中のビリルビンを検出する方法であって、
     請求項1に記載のポリペプチド、請求項3に記載のポリペプチドまたは請求項6に記載の融合ポリペプチドと、上記対象物とを接触させる接触工程、および
     上記接触工程後に上記ポリペプチドまたは上記融合ポリペプチドから発される蛍光を検出する検出工程、
    を含む、検出方法。
  9.  上記対象物が生体から取得した血液由来または尿由来の試料である、請求項8に記載の検出方法。
  10.  上記検出工程での検出結果に基づき、肝臓疾患または溶血性疾患の素因の有無または発症の有無を検査する検査工程をさらに含む、請求項8または9に記載の検出方法。
  11.  請求項1に記載のポリペプチド、請求項2に記載のポリヌクレオチド、請求項3に記載のポリペプチド、請求項4に記載の組み換えベクター、請求項5に記載の形質転換体、または請求項6に記載の融合ポリペプチドから選択される少なくとも1種以上を含む、ビリルビンの検出キット。
PCT/JP2014/055160 2013-02-28 2014-02-28 蛍光特性を示す新規なポリペプチド、およびその利用 WO2014133158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14757001.4A EP2963115B1 (en) 2013-02-28 2014-02-28 Novel polypeptide exhibiting fluorescent properties and use thereof
US14/771,060 US9957308B2 (en) 2013-02-28 2014-02-28 Method for detecting bilirubin using a fluorescent protein
JP2015503061A JP6444856B2 (ja) 2013-02-28 2014-02-28 蛍光特性を示す新規なポリペプチド、およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040097 2013-02-28
JP2013040097 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133158A1 true WO2014133158A1 (ja) 2014-09-04

Family

ID=51428416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055160 WO2014133158A1 (ja) 2013-02-28 2014-02-28 蛍光特性を示す新規なポリペプチド、およびその利用

Country Status (4)

Country Link
US (1) US9957308B2 (ja)
EP (1) EP2963115B1 (ja)
JP (2) JP6444856B2 (ja)
WO (1) WO2014133158A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159050A1 (ja) * 2015-03-30 2016-10-06 国立大学法人神戸大学 血液試料中のアンバウンドビリルビンの測定方法
KR101824639B1 (ko) * 2016-02-24 2018-02-01 울산과학기술원 UnaG 단백질을 이용한 세포 소기관 내 빌리루빈 검출 방법
WO2018139614A1 (ja) 2017-01-27 2018-08-02 国立大学法人大阪大学 生体物質の検出方法、それに用いる化学発光指示薬
JP2021023208A (ja) * 2019-08-05 2021-02-22 国立研究開発法人理化学研究所 蛍光ポリペプチドの変異体、及びその利用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9952227B2 (en) 2015-11-10 2018-04-24 Research Foundation Of The City University Of New York Method for detecting bilirubin
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
WO2022245753A1 (en) * 2021-05-17 2022-11-24 The Regents Of The University Of California IMPROVED UnaG FLUORESCENT PROTEIN FOR BiFC ASSAYS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254371A (ja) 2006-03-23 2007-10-04 Kagoshima Univ ウナギ蛍光タンパク質
JP2008141988A (ja) 2006-12-07 2008-06-26 Kagoshima Univ ウナギ蛍光タンパク質
JP2013040097A (ja) 2012-09-27 2013-02-28 Fujitsu Ltd グラフェンシート系材料の処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598139A1 (en) * 2011-08-26 2020-01-22 Kleinfeld, Alan M. Development and use of fluorescent probes of unbound bilirubin
US20160146838A1 (en) * 2014-11-20 2016-05-26 Jean Ronald Brisard System and method for ebola detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254371A (ja) 2006-03-23 2007-10-04 Kagoshima Univ ウナギ蛍光タンパク質
JP2008141988A (ja) 2006-12-07 2008-06-26 Kagoshima Univ ウナギ蛍光タンパク質
JP2013040097A (ja) 2012-09-27 2013-02-28 Fujitsu Ltd グラフェンシート系材料の処理方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BLIGH, E.G.; DYER, W.J., CAN. J. BIOCHEM. PHYSIOL., vol. 37, 1959, pages 911 - 917
C. N. PACE ET AL., PROTEIN SCI., vol. 4, 1995, pages 2411 - 2423
DOUMAS, B.T. ET AL., CLIN. CHEM., vol. 33, 1987, pages 1349 - 1353
HAYASHI ET AL., FISH. SCI., vol. 75, 2009, pages 1461 - 1469
HAYASHI ET AL., FISHERIES SCIENCE, vol. 75, 2009, pages 1461 - 1469
HAYASHI S. ET AL.: "A novel fluorescent protein purified from eel muscle", FISHERIES SCIENCE, vol. 75, 1 November 2009 (2009-11-01), pages 1461 - 1469, XP055277411, DOI: 10.1007/S12562-009-0176-Z *
KUMAGAI, A. ET AL.: "A Bilirubin-Inducible Fluorescent Protein from Eel Muscle", CELL, vol. 153, no. 7, 20 June 2013 (2013-06-20), pages 1602 - 1611, XP028572608, DOI: 10.1016/J.CELL.2013.05.038 *
KUNKEL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
KUROSAKA, K. ET AL., CLIN. CHIM. ACTA., vol. 269, 1998, pages 125 - 136
MASAO HONDA ET AL.: "Unagi Kinniku no Ryokushoku Keiko Tanpakushitsu", 2004 NEN (HEISEI 16 NEN)DO ABSTRACTS FOR THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF FISHERIES SCIENCE, 31 March 2004 (2004-03-31), pages 203, 1101, XP008180514 *
MASAO HONDA ET AL.: "Unagi Kinniku-chu no Ryokushoku Keiko Tanpakushitsu no Seisei", 2005 NEN(HEISEI 17 NEN)DO ABSTRACTS FOR THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF FISHERIES SCIENCE, 1 April 2005 (2005-04-01), pages 138, 716, XP008180515 *
MASAO HONDA; JINSUKE KISHINO; MIYUKI IMAMURA; SEIICHI HAYASHI, ABSTRACTS OF THE FISCAL YEAR HEISEI 16 MEETING OF THE JAPANESE SOCIETY OF FISHERIES SCIENCE, 2 April 2004 (2004-04-02), pages 203,1101
NAOTAKA ADACHI ET AL.: "Unagi Kinniku-chu no Keiko Tanpakushitsu", 2003 NEN(HEISEI 15 NEN)DO ABSTRACTS FOR THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF FISHERIES SCIENCE, 1 April 2003 (2003-04-01), pages 228, 1046 *
SAMBROOK ET AL.: "Molecular cloning - a Laboratory manual", 1989

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159050A1 (ja) * 2015-03-30 2016-10-06 国立大学法人神戸大学 血液試料中のアンバウンドビリルビンの測定方法
US10513676B2 (en) 2015-03-30 2019-12-24 National University Corporation Kobe University Measurement method for unbound bilirubin in blood sample
KR101824639B1 (ko) * 2016-02-24 2018-02-01 울산과학기술원 UnaG 단백질을 이용한 세포 소기관 내 빌리루빈 검출 방법
WO2018139614A1 (ja) 2017-01-27 2018-08-02 国立大学法人大阪大学 生体物質の検出方法、それに用いる化学発光指示薬
JPWO2018139614A1 (ja) * 2017-01-27 2019-12-19 国立大学法人大阪大学 生体物質の検出方法、それに用いる化学発光指示薬
JP7014437B2 (ja) 2017-01-27 2022-02-01 国立大学法人大阪大学 生体物質の検出方法、それに用いる化学発光指示薬
US11372007B2 (en) 2017-01-27 2022-06-28 Osaka University Method of detecting biological material, and chemiluminescent indicator used therein
JP2021023208A (ja) * 2019-08-05 2021-02-22 国立研究開発法人理化学研究所 蛍光ポリペプチドの変異体、及びその利用
JP7370568B2 (ja) 2019-08-05 2023-10-30 国立研究開発法人理化学研究所 蛍光ポリペプチドの変異体、及びその利用

Also Published As

Publication number Publication date
JP6674687B2 (ja) 2020-04-01
JP2019065012A (ja) 2019-04-25
US20160009771A1 (en) 2016-01-14
JP6444856B2 (ja) 2018-12-26
EP2963115A4 (en) 2016-08-10
EP2963115A1 (en) 2016-01-06
EP2963115B1 (en) 2020-04-01
JPWO2014133158A1 (ja) 2017-02-09
US9957308B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6674687B2 (ja) 蛍光特性を示す新規なポリペプチド、およびその利用
WO2010119721A1 (ja) 超高輝度で安定な人工生物発光酵素
JP6989528B2 (ja) ロドバクター・スフェロイデス(Rhodobacter sphaeroides)由来の変異型3−ヒドロキシブチレート脱水素酵素及びそれを含む方法
EP3778650A1 (en) Fluorescent probe for branched chain amino acids and use thereof
JP2023503653A (ja) 多分子ルシフェラーゼペプチド及びポリペプチド
CN108350439A (zh) 来自粪产碱菌的突变体3-羟基丁酸脱氢酶及其相关方法和用途
EP2687847B1 (en) Probe for analyzing biological tissue and method for utilizing same
JP2017529840A (ja) 増強された発光を産生するために赤外発光基質を活用するルシフェラーゼ配列
RU2727685C1 (ru) Генетически кодируемые индикаторы ионов калия
WO2014020933A1 (ja) 新規蛍光物質
JP2011067190A (ja) 一分子型プローブ及びその利用
WO2021164665A1 (zh) 一种精氨酸荧光探针及其制备方法和应用
Kuang et al. Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana
JP7370568B2 (ja) 蛍光ポリペプチドの変異体、及びその利用
CN113567402A (zh) 一种cAMP荧光探针G-Flamp1的应用
KR102470653B1 (ko) 특정 단백질의 메티오닌 잔기의 산화정도를 정량적으로 측정할 수 있는 형광단백질 센서 및 이의 용도
EP1772463A1 (en) Pleckstrin-based fusion protein and method for monitoring of enzyme activities by FRET
TWI779550B (zh) 鉛離子的偵測方法及生物感應器
KR102650195B1 (ko) 유리 메티오닌­r­설폭사이드를 정량적으로 측정할 수 있는 형광단백질 센서 및 이의 용도
JP6981979B2 (ja) アルカリゲネス・フェーカリス由来の変異型3−ヒドロキシ酪酸デヒドロゲナーゼ並びにそれに関する方法および使用
Park Engineering a Chlorophyll-binding Protein for Deep-Tissue Bioimaging and New Materials
JP2018174818A (ja) 蛍光カルシウムセンサー蛋白質
NZ614600B2 (en) Probe for analyzing biological tissue and method for utilizing same
TW201118169A (en) Mutant blue fluorescent protein and method of using the same for fluorescence resonance energy transfer and blue fluorescent fish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503061

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771060

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014757001

Country of ref document: EP