WO2014129601A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2014129601A1 WO2014129601A1 PCT/JP2014/054235 JP2014054235W WO2014129601A1 WO 2014129601 A1 WO2014129601 A1 WO 2014129601A1 JP 2014054235 W JP2014054235 W JP 2014054235W WO 2014129601 A1 WO2014129601 A1 WO 2014129601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- tire
- pneumatic tire
- groove
- width
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
- B60C3/04—Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0327—Tread patterns characterised by special properties of the tread pattern
- B60C11/033—Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0327—Tread patterns characterised by special properties of the tread pattern
- B60C11/0332—Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0348—Narrow grooves, i.e. having a width of less than 4 mm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0381—Blind or isolated grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0381—Blind or isolated grooves
- B60C2011/0383—Blind or isolated grooves at the centre of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/039—Continuous ribs provided at the shoulder portion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a pneumatic tire with improved fuel efficiency.
- the total width (SW) of the pneumatic tire is reduced and the front projected area (referred to as the projected area when viewed from the rolling direction of the pneumatic tire) is used. It is known to reduce the air resistance around the tire by reducing the size (for example, see Patent Document 1).
- an object of the present invention is to provide a pneumatic tire that can reduce rolling resistance while also reducing noise outside the vehicle.
- a pneumatic tire having a groove in the tread portion, SW / OD which is the ratio of the total width SW of the pneumatic tire to the outer diameter OD, SW / OD ⁇ 0.3
- the filling In the ground contact region of the tread portion, the groove area ratio to the ground contact area is GR, the ground contact width is W, a region having a width of 50% of the ground contact width W around the tire equator line is a center region AC, and the center region
- the groove area ratio in AC is GCR
- the contact area outside the center area AC in the tire width direction is a shoulder area AS
- the groove area ratio in the shoulder area AS is GSR
- the contact area of the tread portion is 10 [%] ⁇ GR ⁇ 25 [%] GCR ⁇ GSR Formed to meet the A pneumatic tire is provided.
- the meridional sectional view of the pneumatic tire according to the embodiment of the present invention The plane development view showing a part of the tread part of the pneumatic tire concerning the embodiment of the present invention.
- FIG. 1 is a meridional sectional view of a pneumatic tire 1 according to an embodiment of the present invention.
- the pneumatic tire 1 of this embodiment has the same meridional cross-sectional shape as the conventional pneumatic tire.
- the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane CL.
- the tire radial direction refers to a direction orthogonal to the rotation axis AX of the pneumatic tire 1.
- the tire circumferential direction refers to a direction rotating around the rotation axis AX (see FIG. 2).
- the tire width direction means a direction parallel to the rotation axis AX.
- the inner side in the tire width direction is the side in the tire width direction toward the tire equator plane (tire equator line) CL, and the outer side in the tire width direction.
- the tire equatorial plane CL is a plane that is orthogonal to the rotation axis AX of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1.
- the tire equator line is a line along the tire circumferential direction of the pneumatic tire 1 on the tire equator plane CL.
- the same sign “CL” as that of the tire equator plane is attached to the tire equator line.
- the pneumatic tire 1 of the present embodiment includes a pair of bead portions 2, sidewall portions 3 connected to the bead portions, and a tread portion 10 that connects the sidewall portions in a tire meridian cross-sectional view.
- the internal structure of the pneumatic tire is not particularly limited.
- the internal structure of the pneumatic tire should be different depending on the performance and design required for the pneumatic tire, and is preferably determined so as to satisfy various requirements by, for example, experiments and simulations.
- the pneumatic tire 1 of the present embodiment has a ratio between the total width SW and the outer diameter OD, SW / OD ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ 1> It is formed to satisfy the relationship.
- the total width SW is the value when the rim of the pneumatic tire 1 is assembled and the internal pressure is filled at 230 [kPa] (an arbitrarily set internal pressure) in order to define the dimensions of the pneumatic tire 1.
- the distance between the sidewalls including the design on the sidewalls in a loaded state, and the outer diameter OD is the outer diameter of the tire at this time.
- the internal pressure of 230 [kPa] is selected in order to define the dimensions of the pneumatic tire. Therefore, the pneumatic tire 1 according to the present invention exhibits the effect of the present invention as long as it is filled with an internal pressure in a range normally used, and is filled with an internal pressure of 230 [kPa]. It should be noted that this is not essential for practicing the present invention.
- the rim used in the present invention has a rim diameter suitable for the inner diameter of the pneumatic tire 1 and is assembled with the nominal section Sn of the tire cross-sectional width in accordance with ISO4000-1: 2001.
- FIG. 2 is a plan development view showing a part of the tread portion 10 of the pneumatic tire 1 according to the embodiment of the present invention.
- the tread portion 10 of the pneumatic tire 1 of the present embodiment three circumferential grooves 12A and 12B extending in the tire circumferential direction and land portions 14A and 14B defined by the circumferential grooves 12A and 12B are formed. ing.
- a plurality of width direction grooves 16A and 16B extending in a direction crossing the tire circumferential direction are formed in the land portions 14A and 14B, respectively.
- the circumferential groove 12 and the width direction groove 16 are collectively referred to as grooves 12 and 16.
- the groove area ratio GR to the ground contact area, the center region AC are formed so as to satisfy the following relationship. 10 [%] ⁇ GR ⁇ 25 [%] ... ⁇ 2> GCR ⁇ GSR ... ⁇ 3>
- the ground contact region G is a structure in which the pneumatic tire 1 is assembled on the rim described above, filled with an internal pressure of 230 [kPa], and applied with a load corresponding to 80% of the load capacity to be grounded on a plane. This is the area of the ground contact surface.
- the contact width W is the maximum width in the tire width direction within the contact area.
- the contact length GL is the maximum length in the tire circumferential direction within the contact region.
- the load capacity is determined based on ISO 4000-1: 1994. However, there is a description that the size for which the load capacity index is not set in the ISO standard is determined individually and calculated in consideration of the consistency with the standards of other countries. It is calculated based on the standard.
- the center region AC is a region having a width of 50% of the ground contact width W around the tire equator line CL in the ground contact region G
- the shoulder region AS is a ground contact region.
- G is an area located outside the center area AC in the tire width direction.
- the groove area ratio GCR in the center area AC is the ratio of the groove area to the sum of the land area and the groove area in the center area AC
- the groove area ratio GSR in the shoulder area AS is the land area ratio in the shoulder area AS. It is the ratio of the groove area to the sum of the part area and the groove area.
- the pneumatic tire 1 according to the present embodiment is formed so that the ratio between the total width SW and the outer diameter OD satisfies the relationship of the above-described formula ⁇ 1>.
- the total width SW becomes smaller with respect to the outer diameter OD.
- the front projected area of the pneumatic tire 1 is small, the air resistance around the tire is reduced, and consequently the rolling resistance of the pneumatic tire 1 can be reduced.
- the load capacity of the pneumatic tire 1 is reduced.
- the outer diameter OD is relatively large with respect to the total width SW by satisfying the formula ⁇ 1>, the load capacity The decrease can be suppressed.
- the pneumatic tire 1 according to the present embodiment is formed such that the groove area ratio GR with respect to the ground contact area takes a value in the range indicated by the above formula ⁇ 2>.
- the range of the groove area ratio GR is set lower than that of a general pneumatic tire.
- the total width SW is relatively narrow, thereby improving drainage performance. Therefore, even if the pneumatic tire 1 of the present embodiment is set to a low groove area ratio GR, the drainage performance is comprehensively compared with a pneumatic tire of a general size as long as it is within the above range. Can be improved or maintained.
- the pneumatic tire 1 according to the present embodiment is formed such that the groove area ratio GCR in the center region AC and the groove area ratio GSR in the shoulder region AS satisfy the relationship of the above-described formula ⁇ 3>. ing.
- the number of grooves provided in the center area AC close to the tire equator line CL is reduced as compared with the shoulder area AS, so that it is possible to reduce vehicle exterior noise, particularly air column resonance noise.
- the pneumatic tire 1 according to this embodiment has a relatively large outer diameter OD and a narrow total width SW as compared with a pneumatic tire of a general size. Therefore, it is possible to expect a space saving of the automobile, an improvement in design, and an improvement in drainage performance due to an increase in the contact length.
- FIG. 2 an example of the configuration of the present invention has been shown by showing the tread pattern formed in the ground contact region G of the tread portion 10 of the pneumatic tire 1 of the present embodiment.
- at least one of the circumferential groove 12 and the width groove 16 may be provided in the ground contact region G of the tread portion 10.
- the arrangement of the grooves 12 and 16 in the tread portion 10, that is, the configuration of the tread pattern should be different depending on the performance and design required for the pneumatic tire. Therefore, in the present invention, it is preferable to determine a tread pattern that satisfies various requirements by, for example, experiments or simulations, while satisfying the relationships of the above-described formulas ⁇ 1> to ⁇ 3>.
- the relationship between the groove area ratio GCR in the center region AC and the groove area ratio GSR in the shoulder region AS is: 1.0 ⁇ GSR / GCR ⁇ 2.0 (4) Preferably 1.3 ⁇ GSR / GCR ⁇ 1.7 It is more preferable to satisfy This is because if “GSR / GCR” is larger than 1.0, the grooves 12 and 16 located in the center area AC are reduced as compared with the shoulder area AS, so that the noise outside the vehicle can be further reduced. If “GSR / GCR” is greater than 2.0, the number of grooves 12 and 16 disposed in the shoulder region AS becomes excessive, and it becomes difficult to maintain steering stability.
- an area AC1 and an area AC2 are defined with reference to FIG.
- the region AC1 is a region having a width corresponding to 25% of the ground contact width W around the tire equatorial plane CL in the center region AC.
- region AC2 is an area
- the relationship between the groove area ratio GCR1 in the region AC1 and the groove area ratio GCR2 in the region AC2 is GCR1 ⁇ GCR2 ... ⁇ 5> It is more preferable to satisfy That is, it is preferable that the contact area G of the tread portion 10 is formed so that the groove area is reduced particularly in the area AC1 near the tire equator line CL in the center area AC. This is because the noise outside the vehicle can be further reduced.
- the groove area ratio GCR1 is preferably 20% or less. That is, it is preferable that the contact area G of the tread portion 10 is formed so that the groove area, particularly the circumferential groove area, is reduced particularly in the area AC1 near the tire equator line CL in the center area AC. This is because the noise outside the vehicle can be further reduced.
- one or more circumferential grooves 12 extending in the tire circumferential direction are provided in the tread portion.
- the groove area ratio of the circumferential groove 12A in the center region AC at this time is A
- the ratio to the groove area ratio GCR in the center region AC is: 0 ⁇ A / GCR ⁇ 1.0 (6) It is preferable to satisfy That is, of the grooves 12 and 16 formed in the ground contact region G of the tread portion 10, the circumferential groove 12 located in the center region AC close to the tire equator line CL has a great influence on the air column resonance sound. Therefore, it is preferable to reduce the groove area ratio A of the circumferential groove 12A located in the center region AC.
- “A / GCR” is larger than 1.0, the ratio of the circumferential groove 12 to the width direction groove 16 increases, and the air column resonance noise increases, thereby effectively reducing the outside noise. It becomes difficult.
- the ground contact region G of the tread portion 10 of the pneumatic tire 1 of the present embodiment includes at least a part of the shoulder region AS and the tire width of the land portions 14A and 14B defined by the circumferential grooves 12A and 12B.
- channel 16B is provided in the land part 14B located in the outermost side of a direction. In such a ground contact region G of the tread portion 10, it is preferable that either the inner end 16Bi or the outer end 16Bo in the tire width direction of the width direction groove 16B terminates in the land portion 14B.
- the inner end 16Bi ends in the land portion 14B, that is, the inner end 16Bi is not connected to the circumferential groove 12B.
- the width direction groove 16B is formed in this way, the emission of the air column resonance sound from the main groove from the width direction groove is suppressed, so that the noise outside the vehicle can be further reduced.
- both the inner end 16Bi and the outer end 16Bo of the width direction groove 16B may not end within the land portion 14B.
- the test tires were assembled on a standard rim and mounted on a passenger car (displacement of 1800cc), and the feeling of driving 3 laps while changing the lane of the 2km test course was evaluated by three specialized drivers.
- the average value of the evaluation points of each test tire when the average value of the feeling evaluation points of Comparative Example 1 was set to 100 was expressed as an index. The larger the index value, the better the steering stability.
- test tires are mounted on a passenger car (displacement 1800 cc), run on a dry road at a speed of 60 km / h, and noisy at a position 7.5 m away from the road. Level [dB] was measured. The evaluation results showed the difference from this reference value with the measured value of the conventional example as the reference value. In other words, if the evaluation result of the test tire is a negative ( ⁇ ) value, the noise level of the test tire has decreased from the reference value, and thus the noise performance of the test tire is excellent. It is.
- the pneumatic tire according to the conventional example has a tire size of 205 / 55R16 and a value of “SW / OD” of 0.32, that is, does not satisfy the formula ⁇ 1>.
- a tread pattern shown in FIG. 3 is provided in a tread portion of a pneumatic tire according to a conventional example.
- Examples 1 to 14 The pneumatic tires according to Examples 1 to 14 have different tire sizes, and “SW / OD” takes a value in the range of 0.30 to 0.21, that is, satisfies the formula ⁇ 1>.
- the tread portion 10 of the pneumatic tire according to each of Examples 1 to 14 is provided with a tread pattern that is modified to fit each tire size based on the tread pattern shown in FIG.
- the test tires according to Examples 1 to 14 satisfying the formula ⁇ 1> are superior in fuel consumption index to the conventional example. From the performance test results, it was confirmed that, among the tire sizes tested, the tire size 165 / 55R20 (Example 11) sufficiently improved the fuel consumption with respect to the tire size 205 / 55R16. Therefore, this tire size is used for subsequent tests on the tread pattern.
- Example 15 to 17 Comparative Examples 1 to 3
- the pneumatic tires according to Examples 15 to 17 and Comparative Examples 1 to 3 are test tires having a tire size of 165 / 55R20 and a groove area ratio GR distributed in a range of 8 to 27%.
- Examples 15 to 17 satisfy all the relationships of the formulas ⁇ 1> to ⁇ 4>, but Comparative Examples 1 to 3 do not satisfy the relationship of the formula ⁇ 2>.
- the tread portion of the pneumatic tire according to the fifteenth embodiment includes a groove area ratio set for each test tire based on the tread pattern of FIG.
- a tread pattern that is modified to fit each dimensional parameter such as GR is provided.
- FIG. 4 shows a tread pattern arranged in a tread portion of a pneumatic tire according to Example 17.
- the grooves of the circumferential groove 12 and the width direction groove 16 are based on the tread pattern of FIG.
- Example 18 to 21, Comparative Example 4 The pneumatic tires according to Examples 18 to 21 and Comparative Example 4 are test tires having a tire size of 165 / 55R20 and a distribution of “GSR / GCR” in the range of 0.8 to 2.2. As described above, the tread portion of the pneumatic tire according to Examples 18 to 21 and Comparative Example 4 is provided with a tread pattern that is modified based on FIG.
- Examples 18 to 21 satisfy the relationships of the formulas ⁇ 1> to ⁇ 3>. Further, Examples 18 to 20 satisfy the relationship of the formula ⁇ 4>, but Example 21 does not satisfy the relationship of the formula ⁇ 4>.
- Performance tests on fuel consumption index, noise performance, steering stability and drainage performance were performed on the pneumatic tires according to the conventional example, Examples 15 to 21 and Comparative Examples 1 to 4.
- Table 4 shows numerical values relating to the dimensions of each test tire and performance test results.
- the test tires according to Examples 15 to 21 that satisfy the relations of the formulas ⁇ 1> to ⁇ 3> exceed the conventional example in terms of the fuel consumption index, and also the noise performance in the conventional example. It exceeds. That is, these test tires can reduce the rolling resistance and simultaneously reduce the outside noise.
- the test tire which concerns on the comparative example 2 exceeds a conventional example about a fuel-consumption index and a noise performance, in a drainage performance, it is far below a conventional example. This is because there are few grooves arranged in the tread portion of the test tire according to Comparative Example 2 that does not satisfy the relationship of the formula ⁇ 2>.
- the test tires according to Examples 15 to 17 are preferable because they have substantially the same drainage performance as the conventional example or exceed the conventional example.
- Example 21 is less than a conventional example in steering stability. This result seems to be due to the fact that more grooves are arranged in the shoulder region AS of the tread portion of the pneumatic tire according to the example 21.
- Example 22 to 25 The pneumatic tires according to Examples 22 to 25 have a tire size of 165 / 55R20. As described above, the tread portion of the pneumatic tire according to Examples 22 to 25 is provided with a tread pattern that is modified based on FIG. Here, Examples 23 to 25 further satisfy the relationship of Formula ⁇ 5>, but Example 22 does not satisfy the relationship of Formula ⁇ 5>. In Examples 22 to 24, the groove area ratio GCR1 is 20% or less, while in Example 25, the groove area ratio GCR1 is 20% or more.
- the pneumatic tires according to Example 23 and Example 24 that satisfy the relationship of the formula ⁇ 5> and the groove area ratio GCR1 is 20% or less are the noise performance examples. 22 and Example 25. That is, the noise outside the vehicle is further reduced.
- Example 26 The pneumatic tires according to Example 26 and Example 27 have a tire size of 165 / 55R20.
- the tread portion of the pneumatic tire according to the example 26 and the example 27 is provided with the tread pattern changed based on FIG.
- the embodiment 26 further satisfies the relationship of the expression ⁇ 6>, but the embodiment 27 does not satisfy the relationship of the expression ⁇ 6>.
- Example 26 that satisfies the relationship of the formula ⁇ 6> exceeds the conventional example and Example 27 that does not satisfy the relationship of the formula ⁇ 6> in noise performance. That is, the noise outside the vehicle is further reduced.
- the present invention is defined as follows.
- a pneumatic tire having a groove in the tread portion, SW / OD which is the ratio of the total width SW of the pneumatic tire to the outer diameter OD, SW / OD ⁇ 0.3
- the filling In the ground contact region of the tread portion, the groove area ratio to the ground contact area is GR, the ground contact width is W, a region having a width of 50% of the ground contact width W around the tire equator line is a center region AC, and the center region
- the groove area ratio in AC is GCR
- the contact area outside the center area AC in the tire width direction is a shoulder area AS
- the groove area ratio in the shoulder area AS is GSR
- the contact area of the tread portion is 10 [%] ⁇ GR ⁇ 25 [%] GCR ⁇ GSR Formed to meet the Pneumatic tire.
- a region having a width corresponding to 25% of the contact width W around the tire equator line is defined as a region AC1
- a groove area ratio in the region AC1 is defined as GCR1
- the region AC1 in the center region AC is more than the region AC1.
- the groove area ratio GCR1 is 20% or less.
- a width direction groove is provided in a land portion that is at least partly included in the shoulder region AS and is located on the outermost side in the tire width direction among the land portions defined by the circumferential groove, Either the inner end or the outer end of the width direction groove in the tire width direction terminates in the land portion.
- the pneumatic tire of the present invention can be suitably used as a pneumatic tire with improved fuel economy for passenger cars.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
トレッド部に溝が設けられている空気入りタイヤであって、
前記空気入りタイヤの総幅SWと外径ODとの比であるSW/ODが、
SW/OD ≦ 0.3
を満たし、
前記トレッド部の接地領域において、接地面積に対する溝面積比率をGRとし、接地幅をWとし、タイヤ赤道線を中心として接地幅Wの50%の幅を有する領域をセンター領域ACとし、前記センター領域ACでの溝面積比率をGCRとし、前記センター領域ACよりもタイヤ幅方向外側の接地領域をショルダー領域ASとし、前記ショルダー領域ASでの溝面積比率をGSRとした場合に、
前記トレッド部の接地領域は、
10[%] ≦ GR ≦ 25[%]
GCR ≦ GSR
を満たして形成されている、
空気入りタイヤが提供される。
SW/OD ≦ 0.3 ・・・<1>
の関係を満たすように形成されている。
10[%] ≦ GR ≦ 25[%] ・・・<2>
GCR ≦ GSR ・・・<3>
X=K×2.735×10-5×P0.585×Sd1.39×(DR-12.7+Sd)
但し、X=負荷能力[kg]
K=1.36
P=230(=空気圧[kPa])
Sd=0.93×S1-0.637d
S1=S×((180°-sin-1(Rm/S))/131.4°)
S=設計断面幅[mm]
Rm=設計断面幅に対応したリム幅[mm]
d=(0.9-偏平比[-])×S1-6.35
DR=リム径の基準値[mm]
1.0 ≦ GSR/GCR ≦ 2.0 ・・・<4>
を満たすと好ましく、
1.3 ≦ GSR/GCR ≦ 1.7
を満たすとさらに好ましい。「GSR/GCR」が1.0よりも大きいと、センター領域ACに位置する溝12、16がショルダー領域ASと比較して少なくなるので、車外音をさらに低減することができるからである。なお、「GSR/GCR」が2.0よりも大きいと、ショルダー領域ASに配置された溝12、16が多くなりすぎてしまい、操縦安定性を維持するのが困難になる。
GCR1 < GCR2・・・<5>
を満たすとさらに好ましい。すなわち、センター領域ACのうちでも特にタイヤ赤道線CLに近い領域AC1において溝面積が少なくなるように、トレッド部10の接地領域Gが形成されると好ましい。車外音をさらに低減することができるからである。
0 ≦ A/GCR ≦ 1.0 ・・・<6>
を満たすと好ましい。すなわち、トレッド部10の接地領域Gに形成されている溝12、16のうち、タイヤ赤道線CLに近いセンター領域ACに位置する周方向溝12が気柱共鳴音に与える影響が大きい。したがって、センター領域ACに位置する周方向溝12Aの溝面積比率Aを小さくすることが好ましい。なお、「A/GCR」が1.0よりも大きいと、幅方向溝16に対する周方向溝12の割合が大きくなり、気柱共鳴音が増大して、車外音を効果的に低減させることが困難になる。
テストタイヤを排気量1800ccの小型前輪駆動車に装着し、全長2kmのテストコースを時速100km/hにて50周走行した。従来例の燃料消費率を100としたときの燃費改善率を測定した。指数が大きいほど燃費が良いことを表している。
テストタイヤを標準リムにリム組みして乗用車(排気量1800cc)に装着し、1周2kmのテストコースをレーンチェンジしながら3周走行したときのフィーリングを3人の専門ドライバーにより評価した。評価結果は、比較例1のフィーリング評価点の平均値を100としたときの、各テストタイヤの評価点の平均値を指数で表示した。この指数値が大きいほど操縦安定性が優れていることを示す。
JASO C-606に規定されている方法に準じて、テストタイヤを乗用車(排気量1800cc)に装着し、乾燥路面において速度60km/hで走行し、その走行路から7.5m離れた位置において騒音レベル[dB]を測定した。評価結果は従来例の測定値を基準値とし、この基準値との差を示した。つまり、テストタイヤの評価結果がマイナス(-)の値である場合は、当該テストタイヤの騒音レベルが基準値よりも減少しており、ひいては、そのテストタイヤの騒音性能が優れていることが示される。
テストタイヤを乗用車(排気量1800cc)に装着し、直線ハイドロプレーニング試験を行い、ハイドロプレーニングが発生した速度を計測して評価した。この直線ハイドロプレーニング試験は、水深10mmのプールを、速度を上げながら進入し、そのときの空気入りタイヤのスリップ率を測定する。このときのスリップ率が10%となったときをハイドロプレーニング発生速度とする。この試験では従来レイでの計測結果を100として他の例の計測結果を指数化した。本実施例では、指数の値が大きいほどハイドロプレーニング性能、ひいては排水性能が優れていることを示す。
従来例に係る空気入りタイヤは、タイヤサイズが205/55R16であり、その「SW/OD」の値が0.32であり、すなわち式<1>を満たさない。従来例に係る空気入りタイヤのトレッド部には、図3に示されているトレッドパターンが設けられている。
実施例1~14に係る空気入りタイヤは、タイヤサイズがそれぞれ異なり、「SW/OD」が0.30~0.21の範囲の値を取り、すなわち式<1>を満たす。実施例1~14に係る空気入りタイヤのトレッド部10には、図3に示されているトレッドパターンを基礎として各タイヤサイズに適合するように変更されたトレッドパターンが設けられている。
実施例15~17及び比較例1~3に係る空気入りタイヤは、タイヤサイズが165/55R20であり、溝面積比率GRが8~27%の範囲で振り分けられたテストタイヤである。ここで、実施例15~17は式<1>~<4>の関係の全てを満たしているが、比較例1~3は式<2>の関係を満たさない。
実施例18~21及び比較例4に係る空気入りタイヤは、タイヤサイズが165/55R20であり、「GSR/GCR」が0.8~2.2の範囲で振り分けられたテストタイヤである。上述のように、実施例18~21及び比較例4に係る空気入りタイヤのトレッド部には、図2を基礎として変更されたトレッドパターンが設けられている。ここで、実施例18~21は式<1>~<3>の関係を満たしている。さらに、実施例18~20は式<4>の関係を満たすが、実施例21は式<4>の関係を満たさない。
実施例22~25に係る空気入りタイヤは、タイヤサイズが165/55R20である。上述のように、実施例22~25に係る空気入りタイヤのトレッド部には、図2を基礎として変更されたトレッドパターンが設けられている。ここで、実施例23~25はさらに式<5>の関係を満たすが、実施例22は式<5>の関係を満たさない。また、実施例22~24はさらに溝面積比率GCR1が20%以下であるが、実施例25は溝面積比率GCR1が20%以上である。
実施例26及び実施例27に係る空気入りタイヤは、タイヤサイズが165/55R20である。上述のように、実施例26及び実施例27に係る空気入りタイヤのトレッド部には、図2を基礎として変更されたトレッドパターンが設けられている。ここで、実施例26はさらに式<6>の関係を満たすが、実施例27は式<6>の関係を満たさない。
前記空気入りタイヤの総幅SWと外径ODとの比であるSW/ODが、
SW/OD ≦ 0.3
を満たし、
前記トレッド部の接地領域において、接地面積に対する溝面積比率をGRとし、接地幅をWとし、タイヤ赤道線を中心として接地幅Wの50%の幅を有する領域をセンター領域ACとし、前記センター領域ACでの溝面積比率をGCRとし、前記センター領域ACよりもタイヤ幅方向外側の接地領域をショルダー領域ASとし、前記ショルダー領域ASでの溝面積比率をGSRとした場合に、
前記トレッド部の接地領域は、
10[%] ≦ GR ≦ 25[%]
GCR ≦ GSR
を満たして形成されている、
空気入りタイヤ。
1.0 ≦ GSR/GCR ≦ 2.0
を満たす、
(1)に記載の空気入りタイヤ。
GCR1 < GCR2
を満たす、
(1)又は(2)に記載の空気入りタイヤ。
(3)に記載の空気入りタイヤ。
前記センター領域ACにおける前記周方向溝の溝面積比率をAとすると、前記溝面積比率GCRに対する比が、
0 ≦ A/GCR ≦ 1.0
を満たす、
(1)~(4)のいずれか1つに記載の空気入りタイヤ。
前記幅方向溝のタイヤ幅方向の内側終端又は外側終端のうちいずれか一方は、前記陸部内で終端する、
(1)~(5)のいずれか1つに記載の空気入りタイヤ。
10 トレッド部
12、12A、12B 周方向溝
14、14A、14B 陸部
16、16A、16B 幅方向溝
SW 総幅
OD 外径
W 接地幅
AC センター領域
AS ショルダー領域
GR 溝面積比率
GCR センター領域での溝面積比率
GSR ショルダー領域での溝面積比率
Claims (7)
- トレッド部に溝が設けられている空気入りタイヤであって、
前記空気入りタイヤの総幅SWと外径ODとの比であるSW/ODが、
SW/OD ≦ 0.3
を満たし、
前記トレッド部の接地領域において、接地面積に対する溝面積比率をGRとし、接地幅をWとし、タイヤ赤道線を中心として接地幅Wの50%の幅を有する領域をセンター領域ACとし、前記センター領域ACでの溝面積比率をGCRとし、前記センター領域ACよりもタイヤ幅方向外側の接地領域をショルダー領域ASとし、前記ショルダー領域ASでの溝面積比率をGSRとした場合に、
前記トレッド部の接地領域は、
10[%] ≦ GR ≦ 25[%]
GCR ≦ GSR
を満たして形成されている、
空気入りタイヤ。 - 前記GCRと前記GSRの関係が、
1.0 ≦ GSR/GCR ≦ 2.0
を満たす、
請求項1に記載の空気入りタイヤ。 - タイヤ赤道線を中心として接地幅Wの25%に相当する幅を有する領域を領域AC1とし、前記領域AC1における溝面積比率をGCR1とし、前記センター領域ACのうちの前記領域AC1よりも幅方向外側に含まれる領域を領域AC2とし、前記領域AC2における溝面積比率をGCR2としたときに、
GCR1 < GCR2
を満たす、
請求項1又は2に記載の空気入りタイヤ。 - 前記溝面積比率GCR1が20%以下である、
請求項3記載の空気入りタイヤ。 - タイヤ赤道線を中心として接地幅Wの25%に相当する幅を有する領域を領域AC1とし、前記領域AC1における溝面積比率をGCR1としたときに、
前記溝面積比率GCR1が20%以下である、
請求項1又は2に記載の空気入りタイヤ。 - タイヤ周方向に延びる周方向溝が、前記トレッド部に1本以上設けられ、
前記センター領域ACにおける前記周方向溝の溝面積比率をAとすると、前記溝面積比率GCRに対する比が、
0 ≦ A/GCR ≦ 1.0
を満たす、
請求項1~5のいずれか1項に記載の空気入りタイヤ。 - 前記ショルダー領域ASに少なくとも一部が含まれると共に前記周方向溝によって区画された陸部のうちのタイヤ幅方向の最も外側に位置する陸部に、幅方向溝が設けられ、
前記幅方向溝のタイヤ幅方向の内側終端又は外側終端のうちいずれか一方は、前記陸部内で終端する、
請求項1~6のいずれか1項に記載の空気入りタイヤ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480008455.6A CN105026179B (zh) | 2013-02-22 | 2014-02-21 | 充气轮胎 |
DE112014000952.0T DE112014000952T9 (de) | 2013-02-22 | 2014-02-21 | Luftreifen |
US14/769,738 US10486470B2 (en) | 2013-02-22 | 2014-02-21 | Pneumatic tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013033487A JP2014162300A (ja) | 2013-02-22 | 2013-02-22 | 空気入りタイヤ |
JP2013-033487 | 2013-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129601A1 true WO2014129601A1 (ja) | 2014-08-28 |
Family
ID=51391381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054235 WO2014129601A1 (ja) | 2013-02-22 | 2014-02-21 | 空気入りタイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10486470B2 (ja) |
JP (1) | JP2014162300A (ja) |
CN (1) | CN105026179B (ja) |
DE (1) | DE112014000952T9 (ja) |
WO (1) | WO2014129601A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101731622B1 (ko) | 2015-10-27 | 2017-04-28 | 넥센타이어 주식회사 | 타이어 접지형상의 수치화 방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6634711B2 (ja) * | 2015-06-08 | 2020-01-22 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7293889B2 (ja) * | 2019-06-07 | 2023-06-20 | 横浜ゴム株式会社 | 空気入りタイヤ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06183214A (ja) * | 1992-12-22 | 1994-07-05 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH06191228A (ja) * | 1992-12-22 | 1994-07-12 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH07172110A (ja) * | 1993-12-22 | 1995-07-11 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2012091736A (ja) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2012162194A (ja) * | 2011-02-08 | 2012-08-30 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013028289A (ja) * | 2011-07-28 | 2013-02-07 | Bridgestone Corp | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT400832B (de) * | 1992-09-15 | 1996-03-25 | Semperit Ag | Fahrzeugreifen |
US6439284B1 (en) * | 1997-10-03 | 2002-08-27 | The Goodyear Tire & Rubber Company | Tread for a pneumatic tire including aquachannel |
JP4407765B1 (ja) * | 2008-09-08 | 2010-02-03 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP4729096B2 (ja) * | 2008-12-05 | 2011-07-20 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2011135774A1 (ja) | 2010-04-30 | 2011-11-03 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
EP2641753B1 (en) | 2010-11-15 | 2019-09-11 | Bridgestone Corporation | Pneumatic radial tire for use on passenger vehicle |
USD665730S1 (en) * | 2011-04-25 | 2012-08-21 | The Goodyear Tire & Rubber Company | Tire for automobile |
WO2013014950A1 (ja) * | 2011-07-28 | 2013-01-31 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
JP5432981B2 (ja) * | 2011-12-29 | 2014-03-05 | 住友ゴム工業株式会社 | 空気入りタイヤ |
-
2013
- 2013-02-22 JP JP2013033487A patent/JP2014162300A/ja active Pending
-
2014
- 2014-02-21 DE DE112014000952.0T patent/DE112014000952T9/de active Active
- 2014-02-21 US US14/769,738 patent/US10486470B2/en active Active
- 2014-02-21 CN CN201480008455.6A patent/CN105026179B/zh active Active
- 2014-02-21 WO PCT/JP2014/054235 patent/WO2014129601A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06183214A (ja) * | 1992-12-22 | 1994-07-05 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH06191228A (ja) * | 1992-12-22 | 1994-07-12 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH07172110A (ja) * | 1993-12-22 | 1995-07-11 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2012091736A (ja) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2012162194A (ja) * | 2011-02-08 | 2012-08-30 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013028289A (ja) * | 2011-07-28 | 2013-02-07 | Bridgestone Corp | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101731622B1 (ko) | 2015-10-27 | 2017-04-28 | 넥센타이어 주식회사 | 타이어 접지형상의 수치화 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP2014162300A (ja) | 2014-09-08 |
DE112014000952T9 (de) | 2016-01-21 |
US10486470B2 (en) | 2019-11-26 |
CN105026179A (zh) | 2015-11-04 |
DE112014000952T5 (de) | 2015-11-05 |
US20160009137A1 (en) | 2016-01-14 |
CN105026179B (zh) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6408520B2 (ja) | 乗用車用空気入りラジアルタイヤ及びその使用方法 | |
JP5667614B2 (ja) | 空気入りタイヤ | |
JP5435175B1 (ja) | 空気入りタイヤ | |
JP5360333B1 (ja) | 空気入りタイヤ | |
JP5896941B2 (ja) | 空気入りタイヤ | |
JP6173291B2 (ja) | 空気入りタイヤ | |
JP6473372B2 (ja) | 空気入りタイヤ | |
JP6314825B2 (ja) | 空気入りタイヤ | |
US9056530B2 (en) | Pneumatic tire | |
JP4915069B2 (ja) | 空気入りタイヤ | |
WO2014129601A1 (ja) | 空気入りタイヤ | |
JP6032343B2 (ja) | 空気入りタイヤ | |
JP6187573B2 (ja) | 空気入りタイヤ | |
JP6249930B2 (ja) | 空気入りタイヤ | |
JP5636758B2 (ja) | 空気入りタイヤ | |
JP6330491B2 (ja) | 空気入りタイヤ | |
JP2018103855A (ja) | 空気入りタイヤ | |
JP2022051885A (ja) | タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480008455.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754424 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14769738 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140009520 Country of ref document: DE Ref document number: 112014000952 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14754424 Country of ref document: EP Kind code of ref document: A1 |