WO2014129538A1 - α-アミノニトリル化合物の製造方法 - Google Patents

α-アミノニトリル化合物の製造方法 Download PDF

Info

Publication number
WO2014129538A1
WO2014129538A1 PCT/JP2014/054017 JP2014054017W WO2014129538A1 WO 2014129538 A1 WO2014129538 A1 WO 2014129538A1 JP 2014054017 W JP2014054017 W JP 2014054017W WO 2014129538 A1 WO2014129538 A1 WO 2014129538A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid oxidase
mutant
oxidase
acid sequence
Prior art date
Application number
PCT/JP2014/054017
Other languages
English (en)
French (fr)
Inventor
浅野 泰久
和志 安川
Original Assignee
富山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富山県 filed Critical 富山県
Priority to JP2015501494A priority Critical patent/JP6311998B2/ja
Publication of WO2014129538A1 publication Critical patent/WO2014129538A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12N9/0024D-Amino acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03003D-Amino-acid oxidase (1.4.3.3)

Definitions

  • the present invention relates to a method for producing an ⁇ -amino nitrile compound using amino acid oxidase.
  • the ⁇ -amino nitrile compound is useful not only as an ⁇ -amino acid but also as a synthetic intermediate for nitrogen-containing heterocyclic compounds such as thiadiazoles and imidazoles.
  • the Stricker reaction is known.
  • the Strecker reaction is generally a method for producing an ⁇ -amino acid by acid-hydrolyzing a cyano group after reacting an aldehyde compound or a ketone compound with an ammonium ion and a cyanide ion to form an ⁇ -amino nitrile compound. .
  • Non-patent Document 1 A method for producing an active ⁇ -amino nitrile compound is known (Patent Document 1).
  • a method using an enzyme a mutant enzyme in which the 336th asparagine of monoamine oxidase derived from S-stereoselective Aspergillus niger is converted to serine is used, and potassium cyanide is added to the product when pyrrolidine is used as a substrate. It is known to synthesize an amino nitrile compound (Non-patent Document 1).
  • Non-Patent Document 1 a mutant enzyme in which N336 of S-stereoselective monoamine oxidase derived from Aspergillus niger is converted to serine is used, and potassium cyanide is added to the product when pyrrolidine is used as a substrate.
  • a method of synthesizing an aminonitrile compound is known (Non-Patent Document 1).
  • an object of the present invention is to provide a method for efficiently producing an ⁇ -amino nitrile compound from an acyclic amine compound.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it was found that an ⁇ -amino nitrile compound can be efficiently produced from a specific amine compound by using natural or mutant amino acid oxidase instead of amine oxidase, and the present invention was completed.
  • the present invention is shown below.
  • a method for producing an ⁇ -amino nitrile compound comprising: The process which makes the imine compound represented by following formula (II) by making amino acid oxidase act on the amine compound represented by following formula (I):
  • R 1 represents a C 6-12 aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a carboxy group
  • R 2 represents C 1-6 An alkyl group, a C 6-12 aryl-C 1-6 alkyl group optionally having a substituent on a C 6-12 aryl group, or a hetero ring optionally having a substituent on a heteroaryl group
  • An aryl-C 1-6 alkyl group, and the substituent that the C 6-12 aryl group and heteroaryl group may have is a halogen atom
  • a cyanide ion acting on the imine compound (II) is a halogen atom
  • C 6-12 aryl group refers to an aromatic hydrocarbon group having 6 to 12 carbon atoms. Examples thereof include a phenyl group, an indenyl group, a naphthyl group, and a diphenyl group. Of these, a phenyl group is preferred.
  • Heteroaryl group means a 5-membered aromatic heterocyclyl group, 6-membered aromatic heterocyclyl group or condensed ring aromatic heterocyclyl group having at least one heteroatom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • Heteroaryl group includes pyrrolyl group, imidazolyl group, pyrazolyl group, thienyl group, furyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, thiadiazole group and the like; pyridinyl group, pyrazinyl group A 6-membered heteroaryl group such as a group, a pyrimidinyl group, a pyridazinyl group; and a condensed ring heteroaryl group such as a benzofuranyl group, an indolyl group, a chromenyl group, a quinolinyl group, and an isoquinolinyl group.
  • the “C 1-6 alkyl group” refers to a linear or branched monovalent aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. Of these, a C 1-4 alkyl group is preferable, a C 1-2 alkyl group is more preferable, and a methyl group is particularly preferable.
  • C 6-12 aryl-C 1-6 alkyl group means the above C 1-6 alkyl group substituted with one of the above C 6-12 aryl groups, and “heteroaryl-C 1-6 alkyl group” Means the C 1-6 alkyl group substituted by one heteroaryl group.
  • halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, more preferably a fluorine atom or a chlorine atom, and most preferably a fluorine atom.
  • the number of substituents is not particularly limited, but can be, for example, 1 or more and 5 or less, preferably 1 or more and 3 or less, One or two is more preferable. When the number of substituents is 2 or more, the substituents may be the same as or different from each other.
  • R 1 represents an optionally substituted C 6-12 aryl group or an optionally substituted heteroaryl group
  • R 2 represents a C 1-6 alkyl group. [2] or [3].
  • L-amino acid oxidase having the amino acid sequence of SEQ ID NO: 42; (5) A mutant amino acid oxidase having an amino acid sequence in which one or several amino acids are deleted, substituted and / or added in the amino acid sequence defined in (4) above, and having an oxidizing activity for L-amino acids Or (6) a mutant having an amino acid sequence having a sequence identity of 95% or more with respect to the amino acid sequence defined in (4) above and having an oxidative activity for L-amino acid oxidase Amino acid oxidase.
  • an ⁇ -amino nitrile compound can be efficiently produced from a specific amine compound.
  • 3 is a graph showing the results of testing the substrate specificity of (R) - ⁇ -methylbenzylamine of a mutant enzyme having a mutation introduced at a specific position of wild-type amino acid oxidase.
  • 2 is a photograph of SDS-PAGE of purified mutant (R) -amino acid oxidase according to the present invention. It is a graph which shows the relationship between the specific activity of the said mutant
  • FIG. 2 shows an HPLC chromatogram showing production of (RS) -2-amino-2-methylphenylpropanenitrile from (R) - ⁇ -methylbenzylamine using the above mutant amino acid oxidase.
  • (A) is data on a standard product of (R) -methylbenzylamine
  • (B) is data when mutated amino acid oxidase is allowed to act on (R) -methylbenzylamine
  • (C) is (R) -methyl.
  • D shows data of (RS) -2-amino-2-methylphenylpropanenitrile (standard product).
  • FIG. 8A is an HPLC chart of a solution containing D-phenylalanine and KPB
  • FIG. 8B is an HPLC chart of a solution containing D-phenylalanine, KPB and porcine kidney-derived D-amino acid oxidase
  • C is an HPLC chart of the reaction solution after the above reaction. It is the result of having analyzed the peak for 10 minutes in the HPLC chart of FIG. 8 with the mass spectrum.
  • 2 is an HPLC chart of a reaction solution containing L-phenylalanine, potassium phosphate buffer, potassium cyanide, and L-amino acid oxidase derived from Crotalus atox. It is the result of having analyzed the peak for 10 minutes in the HPLC chart of FIG.
  • FIG. 10 is a graph showing the change over time of the concentration of a compound contained in a reaction solution in which 2-amino-2-propanenitrile was produced from (R) - ⁇ -methylbenzylamine by the method of the present invention.
  • represents the concentration of (R) - ⁇ -methylbenzylamine
  • represents the concentration of 2-amino-2-propanenitrile
  • represents the concentration of acetophenone as a by-product.
  • the amine compound (I), which is a raw material compound of the method of the present invention, may be an optical isomer or a mixture of optical isomers such as a racemate.
  • a material that can be easily used as a substrate for an amino acid oxidase used in the subsequent step is used.
  • the above mutant amino acid oxidase it is preferable to use the following R form.
  • L-amino acid oxidase L-amino acid is preferably used
  • D-amino acid oxidase D-amino acid is preferably used.
  • the amine compound (I) can be purchased and used as long as it is commercially available, or may be produced by a method known to those skilled in the art because it has a relatively simple structure.
  • the optical isomer of amine compound (I) can also be produced from its racemate and the like using amino acid oxidase.
  • an amine compound (IS) which is an S form of amine compound (I)
  • IR amine compound
  • IR an R form of amine compound (I)
  • Enzyme reaction step First by reacting an amine compound racemate (racic-I) with an amino acid oxidase using the R isomer as a substrate, the (R) -amine compound contained in the amine compound racemic (racic-I) ( IR) is defined as imine compound (II).
  • imine compound (II) substantially only (S) -amine compound (IS) remains in the reaction solution, and deracemization is achieved.
  • water is mainly used as a solvent for the reaction solution.
  • the water is not particularly limited as long as it does not inhibit the enzyme reaction, such as ultrapure water, pure water, purified water, distilled water, ion exchange water, tap water, and well water.
  • an alcoholic solvent such as methanol or ethanol
  • an etheric solvent such as tetrahydrofuran
  • An appropriate amount of a water-miscible organic solvent such as an amide solvent such as dimethylformamide or dimethylacetamide may be added.
  • the concentration of the mutant amino acid oxidase according to the present invention can be about 0.1 U / mL or more and 30 U / mL or less.
  • the concentration of the amine compound racemate can be 1 mM or more and 50 mM or less.
  • 1U represents 1 ⁇ mol of H 2 O when reacted at 30 ° C. for 1 minute using (R) -phenylalanine ((D) -phenylalanine) or (R) - ⁇ -methylbenzylamine as a substrate. It means the amount of enzyme that produces 2 .
  • the pH of the reaction solution may be adjusted as appropriate, but it is preferably adjusted to about 7.0 or more and 9.0 or less. In order to maintain the pH of the reaction solution in the above range, a buffering agent or a buffer solution may be used.
  • the reaction temperature and reaction time may be adjusted as appropriate. As reaction temperature, it can be set as about 20 degreeC or more and 60 degrees C or less, for example.
  • the reaction time is until the concentration of the (R) -amine compound is sufficiently reduced. Specifically, the reaction time may be determined by a preliminary experiment or the like. For example, the reaction time is about 30 minutes or more and 600 minutes or less. 60 minutes or more is preferable.
  • the (R) -amine compound (IR) contained in the amine compound racemic body (racemic-I) is oxidized by the amino acid oxidase to become the imine compound (II). Therefore, the imine compound (II) and the (S) -amine compound (IS) are separated by, for example, column chromatography to obtain the (S) -amine compound (IR) having high optical purity. it can.
  • the imine compound (II) may be converted into an amine compound racemate (racemic-I) by further acting a reducing agent.
  • (R) -amine compound (IR) is converted to amine compound racemic form (racemic-I) via imine compound (II), and (R) in said amine compound racemic form (racemic-I) -Amine compound (IR) is converted again to imine compound (II) by amino acid oxidase.
  • sodium borohydride lithium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, sodium cyanotrihydroborate, and borane can be used.
  • the amount of the reducing agent used may be adjusted as appropriate, but it is preferable to use an amount that can sufficiently reduce the imine compound (II). For example, it is preferable to use about 1.5 times to 100 times mol of the amine compound racemate (racemic-I) as a raw material.
  • the reduction reaction step is performed after the above enzyme reaction step and in the presence of (S) -amine compound (IS) or after separating (S) -amine compound (IS).
  • the reduction reaction step and the enzyme reaction step may be performed simultaneously. That is, a reducing agent may be added to the reaction solution of the enzyme reaction step, and the produced imine compound (II) may be immediately reduced to an amine compound racemic body (racemic-I) to be subjected to the enzyme reaction.
  • amine compound (IR) which is an R form of amine compound (I), as a substrate
  • amine compound (I--) which is an S form of amine compound (I)
  • a method for producing S) from a racemate has been described as a representative example, but an enzyme capable of catalyzing a reaction of iminization using an amine compound (IS), which is an S form of amine compound (I), as a substrate, Similarly, the amine compound (IR) which is the R form of the amine compound (I) can be produced from the racemate.
  • the amino acid oxidase used in the method of the present invention can be appropriately selected according to the amine compound (I) as a substrate.
  • a general amino acid oxidase may be used.
  • L-amino acid oxidase may be used when amine compound (I) is an L-amino acid
  • D-amino acid oxidase may be used when amine compound (I) is a D-amino acid.
  • R 1 may have a C 6-12 aryl group which may have a substituent or a hetero which may have a substituent. When it is an aryl group and R 2 is a C 1-6 alkyl group, it is preferable to use the mutant amino acid oxidase.
  • the mutant amino acid oxidase (1) is obtained by substituting the 283rd arginine with glycine, alanine or serine in the amino acid sequence (SEQ ID NO: 1) of wild-type (R) -amino acid oxidase isolated from pig kidney, The 228th tyrosine is either left as it is or substituted with leucine.
  • the mutant amino acid oxidase (1) does not use (R) -amino acid (D-amino acid), which is a substrate of wild-type amino acid oxidase, as a specific (R) -amine.
  • D-amino acid which is a substrate of wild-type amino acid oxidase
  • the compound can be used as a substrate with high specificity, can be selectively converted into an imine compound having high optical purity, and has high thermal stability.
  • an enzyme having “(specific) amino acid sequence” means that the amino acid sequence of the enzyme only needs to contain the specified amino acid sequence, and the function of the enzyme is maintained. To do.
  • sequences other than the amino acid sequence specified in the enzyme include a histidine tag, a linker sequence for immobilization, and a cross-linked structure such as an —SS—bond.
  • the “region excluding the 228th and 283rd amino acids” refers to the 1st to 227th and 229th to 282nd positions in the amino acid sequence of the mutant amino acid oxidase (1). And the 284th and subsequent areas.
  • the range of “1 to several” in the “amino acid sequence in which one or several amino acids are deleted, substituted and / or added” indicates that an amino acid oxidase having a deletion or the like is oxidized to (R) -amine compound. It does not specifically limit as long as it has activity.
  • the range of “1 to several” is likely to be an amino acid oxidase having high oxidative activity for (R) -amine compounds, and can be, for example, 1 or more and 30 or less, preferably Is 1 or more, 20 or less, more preferably 1 or more, 10 or less, further preferably 1 or more, 7 or less, more preferably 1 or more, 5 or less, particularly preferably 1 or more, 3 One or less, one or more, two or less, or about one.
  • sequence identity in “amino acid sequence having at least 95% sequence identity to the amino acid sequence defined in (1) above” is the identity of the amino acid sequence.
  • amino acid oxidase having an is an enzyme having an oxidative activity for the (R) -amine compound, it is not particularly limited.
  • sequence identity of the amino acid sequence is not particularly limited as long as it is 95% or more, preferably 96% or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more, and particularly preferably 99%. .5% or more.
  • sequence identity refers to the degree of amino acid identity with respect to each other of two or more amino acid sequences. Therefore, the higher the identity of two amino acid sequences, the higher the identity or similarity of those sequences. Whether or not two kinds of amino acid sequences have identity can be analyzed by direct comparison of the sequences, and specifically, can be analyzed using commercially available sequence analysis software or the like.
  • mutant amino acid oxidase (3) “mutation” in “however, the amino acids corresponding to the 228th and 283rd amino acid sequences in the amino acid sequence of the mutant amino acid oxidase shall not be mutated” Specifically, it means an amino acid deletion or substitution. That is, in the amino acid sequence of the mutant amino acid oxidase (3), the amino acids corresponding to the 228th and 283rd amino acids in the amino acid sequence of the mutant amino acid oxidase of (1), which is a criterion for determining sequence identity, It means that it is the same as the 228th and 283rd amino acids in the amino acid sequence of the mutant amino acid oxidase (1).
  • the amino acids corresponding to the 228th and 283rd amino acids in the amino acid sequence of the mutant amino acid oxidase (1) which is a criterion for determining sequence identity, It can be examined by homology analysis. Specifically, using a commercially available sequence analysis software or the like, if the alignment analysis of the amino acid sequence to be analyzed is performed on the amino acid sequence shown in SEQ ID NO: 1 or the amino acid sequence of the mutant amino acid oxidase (1), It is possible to search for amino acids corresponding to the 228th and 283rd amino acids. Such alignment analysis techniques are widely known to those skilled in the art.
  • “having oxidizing activity for (R) -amine compound” means any (R) -amine compound, particularly (R) -amine compound It means that the target mutant amino acid oxidase exhibits an oxidative activity with respect to at least any one compound included in the range of (I).
  • the specific conditions of the test may refer to examples described later.
  • the origin of the mutant amino acid oxidase is not particularly limited as long as it belongs to the range defined in (1) to (3) above.
  • the mutant amino acid oxidase may be a recombinant protein produced by various genetic engineering techniques, a synthetic protein produced by chemical synthesis, or from the amino acid sequence shown in SEQ ID NO: 1.
  • a mutant capable of producing the mutant enzyme is obtained by giving a mutagen to a specific species (for example, bacteria) having a gene homologue of the mutant amino acid oxidase, and the protein produced by the mutant is extracted. It may also be a protein produced by purification.
  • nucleic acid DNA or RNA
  • mutant amino acid oxidases (1) to (3) is prepared and expressed in various ways.
  • the mutant amino acid oxidase can be expressed.
  • the 228th and 283rd amino acids in the amino acid sequence shown in SEQ ID NO: 1 or the amino acid corresponding to the amino acid is the predetermined amino acid described in (1) above
  • amino acid sequence of the mutant amino acid oxidase (2) amino acid deletion, substitution and / or addition, or in the amino acid sequence of the mutant amino acid oxidase (3)
  • a nucleic acid encoding a protein having a predetermined identity with a sequence for example, deletion, substitution and substitution of any base by error-prone PCR method, DNA shuffling method, various site-directed mutagenesis methods, etc. An insertion can be performed.
  • the mutant amino acid oxidase can be produced by introducing the nucleic acid encoding the mutant amino acid oxidase thus prepared into an appropriate expression system.
  • An expression system that can be used for producing the mutant amino acid oxidase is not particularly limited.
  • an expression vector that enables expression of a recombinant protein in various biological species may be used. it can.
  • expression vectors that can be used it is possible to use various expression vectors that allow protein expression in a host such as microorganisms such as bacteria and fungi (for example, yeasts), plants, insect cells, and mammalian cells.
  • Virus vectors (including phage vectors) or plasmid vectors may be used.
  • the protein may be produced using a cell-free protein expression system using rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate or the like.
  • a nucleic acid encoding the protein is mounted on a vector, and a host cell is transformed with the vector, followed by transformation. It can be prepared by a production method comprising culturing the host cell, accumulating the protein encoded by the gene in the culture, and collecting the accumulated protein.
  • a nucleic acid encoding a protein that can be used in the present invention, a vector containing the nucleic acid, and a transformant transformed with the vector are one embodiment of the present invention.
  • These nucleic acids, vectors and transformants can be prepared by those skilled in the art according to conventional methods once the amino acid sequence of the mutant amino acid oxidase is determined.
  • the method for obtaining a nucleic acid encoding the mutant amino acid oxidase is not particularly limited.
  • the mutated amino acid oxidase or the gene having homology with the amino acid sequence shown in SEQ ID NO: 1 is isolated from various bacteria, nucleic acids encoding the gene are prepared, and the 228th and 283rd amino acids are prepared.
  • a nucleic acid encoding the mutant amino acid oxidase may be produced by substituting an amino acid corresponding to the above.
  • nucleic acid encoding the mutant amino acid oxidase is chemically synthesized based on the amino acid sequence shown in SEQ ID NO: 1 or the known amino acid sequence having a certain identity with the amino acid sequence shown in SEQ ID NO: 1, It can be made by any method known to those skilled in the art, such as genetic engineering techniques or mutagenesis.
  • the nucleic acid encoding the mutant amino acid oxidase is, for example, a method of contacting a DNA encoding the amino acid represented by SEQ ID NO: 1 with a mutagen agent, a method of irradiating ultraviolet light, a genetic engineering This can be done by using a general technique.
  • site-directed mutagenesis which is one of genetic engineering techniques, is a technique that can introduce a specific mutation at a specific position, in producing a nucleic acid encoding the above-mentioned mutant amino acid oxidase, It is useful for introducing site-specific mutations into
  • a material for producing a nucleic acid encoding the mutant amino acid oxidase can be obtained by PCR.
  • PCR is performed using a pair of primers designed to amplify DNA encoding the amino acid sequence of SEQ ID NO: 1 from genomic DNA of pig kidney.
  • PCR reaction conditions can be set as appropriate.
  • the amplified DNA fragment can be used as a material for producing a nucleic acid encoding the mutant amino acid oxidase.
  • a vector obtained by cloning the amplified DNA fragment into an appropriate vector that can be amplified in a host such as E. coli is also used for producing a nucleic acid encoding the mutant amino acid oxidase. It can be used as a material.
  • nucleic acid encoding the mutant amino acid oxidase prepared as described above, various methods for introducing mutation into the base sequence (codon) encoding the amino acid corresponding to the 228th and 283rd amino acids.
  • a nucleic acid encoding the above-mentioned mutant amino acid oxidase or a vector containing the nucleic acid can be produced by performing base substitution using The above-described operations such as preparation of the probe or primer, construction of the genomic library, screening of the genomic library, and cloning of the target gene are known to those skilled in the art.
  • the nucleic acid encoding the above mutant amino acid oxidase can be used in a state inserted in an appropriate vector.
  • the type of vector used in the present invention is not particularly limited.
  • the vector may be a self-replicating vector (for example, a plasmid), or may be integrated into the host cell genome when introduced into the host cell. It may be replicated together with other chromosomes.
  • the vector is an expression vector.
  • elements necessary for transcription for example, a promoter and the like
  • a promoter is a DNA sequence that exhibits transcriptional activity in a host cell, and can be appropriately selected depending on the type of host.
  • the nucleic acid encoding the mutant amino acid oxidase may be operably linked to an appropriate terminator as necessary.
  • the vector containing the nucleic acid encoding the mutant amino acid oxidase may further have elements such as a polyadenylation signal (for example, derived from SV40 or adenovirus 5E1b region) and a transcription enhancer sequence (for example, SV40 enhancer).
  • a recombinant vector containing the gene for L-amino acid oxidase may further comprise a DNA sequence that allows the vector to replicate in the host cell, an example of which is the SV40 origin of replication (host cell is a mammalian cell). ).
  • the vector containing the nucleic acid encoding the mutant amino acid oxidase may further contain a selection marker.
  • Selectable markers include, for example, genes that lack their complement in host cells such as dihydrofolate reductase (DHFR) or Schizosaccharomyces pombe TPI genes, or such as ampicillin, kanamycin, tetracycline, chloramphenicol, Mention may be made of drug resistance genes such as neomycin or hygromycin.
  • DHFR dihydrofolate reductase
  • Schizosaccharomyces pombe TPI genes or such as ampicillin, kanamycin, tetracycline, chloramphenicol, Mention may be made of drug resistance genes such as neomycin or hygromycin.
  • a person skilled in the art knows how to link the nucleic acid encoding the above mutant amino acid oxidase, a promoter, and optionally a terminator and / or a secret
  • a transformant can be prepared by introducing a vector containing a nucleic acid encoding the mutant amino acid oxidase into an appropriate host.
  • the host cell into which the vector is introduced may be any cell as long as the vector is replicated in the cell.
  • it is an arbitrary cell capable of expressing the mutant amino acid oxidase in addition to the replication of the vector. Examples of such host cells include bacteria, yeast, fungi and higher eukaryotic cells.
  • the above transformant is cultured in an appropriate nutrient medium under conditions that allow replication of the vector or conditions that allow expression of the mutant amino acid oxidase.
  • an ordinary protein isolation and purification method is used. May be used.
  • the mutant amino acid oxidase is expressed in a dissolved state in the cell, the cell is collected by centrifugation after culturing, suspended in an aqueous buffer, and then disrupted by an ultrasonic disrupter or the like. A cell-free extract is obtained.
  • an ordinary protein isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent,
  • An anion exchange chromatography method using a resin such as diethylaminoethyl (DEAE) sepharose, a cation exchange chromatography method using a resin such as S-Sepharose FF (Pharmacia), a resin such as butyl sepharose and phenyl sepharose.
  • a resin such as diethylaminoethyl (DEAE) sepharose
  • a cation exchange chromatography method using a resin such as S-Sepharose FF (Pharmacia)
  • a resin such as butyl sepharose and phenyl sepharose.
  • the above-mentioned mutant amino acid oxidase is used alone or in combination with the hydrophobic chromatography method used, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing etc. Can be obtained as a purified sample.
  • amino acid oxidase used in the present invention for example, amino acid oxidase derived from kidney such as pig, amino acid oxidase derived from snake venom, Crotalus atrox, Trichoderma sp. , Pseudomonas sp. Amino acid oxidase derived from bacteria such as
  • amino acid oxidase derived from Crotalus atrox examples include any of the L-amino acid oxidases described in (4) to (6) above.
  • the definitions of the deletion, homology, activity, and preferable numerical range in the above (4) to (6) are the same as the definitions and preferable numerical range in the above (1) to (3).
  • reaction conditions for the imine compound (II) by allowing amino acid oxidase to act on the amine compound (I) can be the same as in the enzyme reaction step of the deracemization method of the above step (A).
  • Cyanide ion may be added to the reaction solution as a salt thereof.
  • sodium cyanide or potassium cyanide can be used.
  • the amount of cyanide ion used may be appropriately adjusted, but it is preferable to use an amount capable of sufficiently cyanating the imine compound (II). For example, it is preferable to use about 2 times mol or more and 100 times mol or less with respect to amine compound (I) which is a raw material.
  • the cyanation step may be performed after the enzyme reaction step, or may be performed simultaneously with the imination step (B). That is, cyanide ions may be added to the reaction solution of the above imination step (B), and the resulting imine compound (II) may be immediately converted to ⁇ -alkylamino nitrile (V).
  • the (R) -amino acid oxidation activity and (R) -amine oxidation activity of the enzyme were measured as follows.
  • Test Example 1 Measurement of enzyme (R) -amino acid oxidation activity and (R) -amine oxidation activity (1) Preparation of reagent for measurement of (R) -amino acid oxidation activity
  • Reference Example 1 Preparation of mutant (R) -amino acid oxidase (1) Preparation of porcine kidney-derived (R) -amino acid oxidase gene A porcine kidney-derived (R) -amino acid oxidase gene was prepared by assembly PCR. The primers used (SEQ ID NOs: 3 to 35) are shown in Table 3.
  • the composition of the assembled PCR reaction solution was 35 ⁇ L of water, 5 ⁇ L of 10 ⁇ Ex Taq buffer, 5 ⁇ L of 2 mM dNTP, 2 ⁇ L of a 100 pmol / ⁇ L mixture of primers shown in Table 3, and Ex Taq 5 unit.
  • the PCR reaction conditions were (i) 96 ° C. for 20 seconds, (ii) 50 ° C. for 30 seconds, (iii) 55 ° C. for 1.5 minutes, and (ii) to (iii) for 35 cycles.
  • Escherichia coli was transformed using the PCR product.
  • the composition of the ligation reaction was 5 ⁇ L of PCR product, 1 ⁇ L of pT7 Blue T-Vector (Novagen), and 6 ⁇ L of ligation mix (Takara Bio), and reacted at 16 ° C. for 30 minutes.
  • the porcine kidney (derived R) -amino acid oxidase gene sequence was sequenced. Specifically, a sequencing reaction was performed using a universal primer T7 promoter primer and a U-19mer primer for sequencing both strands of the gene.
  • the reaction solution composition is 1.6 ⁇ L of any of the above primers, 1.6 ⁇ L of template DNA, 1 ⁇ L of BigDye premix solution, 1.6 ⁇ L of 5 ⁇ BigDye sequencing buffer and 2.8 ⁇ L of sterile water, The total volume was adjusted to 10 ⁇ L.
  • the conditions for the PCR reaction were (i) 96 ° C. for 2 minutes, (ii) 96 ° C. for 10 seconds, (iii) 50 ° C.
  • the obtained sequence data was analyzed by Genetyx, and the fragments amplified with the respective primers were ligated.
  • the amino acid sequence corresponding to the decoded porcine kidney-derived (R) -amino acid oxidase gene sequence is shown in SEQ ID NO: 1.
  • the porcine kidney-derived (R) -amino acid oxidase gene was amplified. Specifically, PCR was performed using the plasmid obtained by the above cloning as a template DNA.
  • Primer 5 and primer 6 were provided with BamHI and HindIII restriction enzyme sites, respectively.
  • the conditions for the PCR reaction were (i) 98 ° C. for 5 minutes, (ii) 96 ° C. for 20 seconds, (iii) 50 ° C. for 30 seconds, (iv) 55 ° C. for 1.5 minutes, and (ii) to (ii) Up to iv) was 28 cycles.
  • the obtained porcine kidney-derived (R) -amino acid oxidase gene was used to transform E. coli. That is, 1 ⁇ L of BamHI and 1 ⁇ L of HindIII were added to 5 ⁇ L of the PCR product obtained by the above PCR reaction, and incubated at 37 ° C. for 1 hour for restriction enzyme treatment. Ligation reaction was 5 ⁇ L of DNA, 1 ⁇ L of pUC18 (treated with the same restriction enzyme as the amplified gene) and 6 ⁇ L of ligation Mix, and incubated at 16 ° C. for 3 hours to prepare plasmid pDAO. The obtained plasmid pDAO was introduced into E. coli by the heat shock method.
  • the (R) -amino acid oxidase gene was expressed in the transformed E. coli and the activity was measured. Inoculate transformed E. coli in 5 mL of LB medium (1.0% polypeptone, 0.5% yeast extract, 1.0% NaCl, pH 7.0) containing 80 ⁇ g / mL ampicillin and 1 mM IPTG. The cells were cultured at 24 ° C. for 24 hours. The cells were collected by centrifugation (15,000 rpm, 5 minutes, 4 ° C.), washed with 10 mM potassium phosphate buffer containing 0.1% 2-mercaptoethanol, and suspended in 1 mL of the same buffer.
  • the obtained bacterial cell solution was sonicated for 15 minutes, and the supernatant obtained by centrifugation (15,000 rpm, 15 minutes, 4 ° C.) was used as a cell-free extract.
  • (R) -Amino acid oxidation activity and (R) -amine oxidation activity were measured by the activity measurement method of Test Example 1 above.
  • the (R) -amine oxidation activity of the cell-free extract was measured according to Test Example 1 above. Further, using the mutant enzyme gene obtained above as a template, saturation mutation was performed on the 228th tyrosine in the same manner, and (R) -amine oxidation activity was measured. The results were obtained when the specific activity 0.11 U / mg when 100% of (R) -phenylalanine ((D) -phenylalanine) was oxidized using porcine kidney-derived (R) -amino acid oxidase (wild type) was determined. The relative activity is shown in FIG. In FIG.
  • the oxidative activity of (R) - ⁇ -methylbenzylamine was confirmed in the mutant enzyme in which the 283rd arginine was substituted with glycine, alanine or serine.
  • the oxidation activity of (R) - ⁇ -methylbenzylamine in the mutant enzyme in which the 228th tyrosine is substituted with leucine An improvement was seen.
  • mutant enzyme in which the 283rd arginine was replaced with glycine and the 228th tyrosine was replaced with leucine showed excellent (R) -amine oxidation activity compared to the wild-type enzyme.
  • Reference Example 2 Purification of Porcine Kidney-Derived Mutant (R) -Amino Acid Oxidase Mutant enzyme obtained by replacing the 283rd arginine obtained in Reference Example 1 above with glycine and the 228th tyrosine with leucine (SEQ ID NO: 2) ) was purified.
  • the potassium phosphate buffer (KPB) used for purification contains 0.1% 2-mercaptoethanol.
  • the obtained mutant (R) -amino acid oxidase has no activity on phenylalanine, which is a substrate of wild-type (R) -amino acid oxidase. Further, it has low activity against (S) - ⁇ -methylbenzylamine derivatives, (R) - ⁇ -methylbenzylamine, cyclohexane compounds and achiral compounds in which a methoxy group or methyl group is introduced as a substituent on the phenyl group. In contrast, the (R) - ⁇ -methylbenzylamine derivative showed extremely high oxidation activity.
  • Reference Example 4 Optimum temperature of porcine kidney-derived mutant (R) -amino acid oxidase Using the measurement method shown in Test Example 1 above, the temperature was changed from 20 ° C. to 60 ° C. in 5 ° C. increments at each temperature. Mutant (R) -amine oxidation activity was measured. The results are shown in FIG.
  • the optimum temperature of the obtained porcine kidney-derived mutant (R) -amino acid oxidase was 45 ° C.
  • Reference Example 5 Thermal stability of porcine kidney-derived mutant (R) -amino acid oxidase After heat treatment of the obtained porcine kidney-derived mutant (R) -amino acid oxidase at each temperature from 20 ° C to 70 ° C for 30 minutes The (R) -amine oxidation activity was measured using the measurement method shown in Test Example 1 above. The results are shown in FIG.
  • the obtained porcine kidney-derived mutant (R) -amino acid oxidase showed 86% residual activity after 45 ° C. heat treatment and 46% residual activity even after 50 ° C. heat treatment. From these results, it was revealed that the obtained porcine kidney-derived mutant (R) -amino acid oxidase is relatively stable to heat.
  • Example 1 Conversion of ⁇ -methylbenzylamine to 2-amino-2-propanenitrile using a mutant amino acid oxidase
  • 2-amino-2-phenylpropanenitrile can be synthesized via an imine intermediate by oxidizing (R) - ⁇ -methylbenzylamine with the enzyme of the present invention in the presence of 30 mM KCN. .
  • the substance was identified by the column retention time by HPLC of the standard product 2-amino-2-phenylpropanenitrile.
  • Example 2 Oxidative cyanation reaction using porcine kidney-derived D-amino acid oxidase
  • An oxidative cyanide addition reaction of D-phenylalanine was performed using porcine kidney-derived D-amino acid oxidase. 1 mL of a reaction solution containing 100 mM potassium phosphate buffer (KPB), 10 mM D-phenylalanine, 100 mM KCN, and 87 mU of porcine kidney-derived D-amino acid oxidase was incubated at 30 ° C. for 90 minutes. A sample was taken during the reaction and analyzed by the following LC-MS.
  • KPB potassium phosphate buffer
  • KPB potassium phosphate buffer
  • 10 mM D-phenylalanine 100 mM KCN
  • 87 mU of porcine kidney-derived D-amino acid oxidase was incubated at 30 ° C. for 90 minutes. A sample was taken during the reaction and analyzed by the following LC-MS.
  • FIG. 8 (A) shows an HPLC chart of a solution containing D-phenylalanine and KPB
  • FIG. 8 (B) Shows an HPLC chart of a solution containing D-phenylalanine, KPB and porcine kidney-derived D-amino acid oxidase
  • FIG. 8C shows an HPLC chart of the reaction solution after the above reaction.
  • the result of having analyzed the peak for 11 minutes in the HPLC chart of FIG. 8 with a mass spectrum in FIG. 9 is shown.
  • Example 3 Oxidative cyanation reaction using L-amino acid oxidase derived from Crotalus atrox
  • An oxidative cyanide addition reaction of L-phenylalanine was performed using L-amino acid oxidase from Crotalus atox. 1 mL of a reaction solution containing 100 mM potassium phosphate buffer (KPB), 10 mM L-phenylalanine, 100 mM KCN, and Crotalus atox-derived L-amino acid oxidase 8U was incubated at 30 ° C. for 90 minutes. A sample was collected during the reaction and analyzed under the analysis conditions shown in Example 2 above.
  • FIG. 10 shows the HPLC chart of the reaction solution
  • FIG. 11 shows the result of analyzing the peak of 10 minutes in the HPLC chart of FIG. 10 by mass spectrum.
  • the amino acid having a substituent different from hydrogen at the ⁇ -position and the ⁇ -amino nitrile compound, which is a derivative thereof, are expected to be used as intermediates for pharmaceuticals and the like, and are expected to be commercialized because they can be efficiently produced by the present invention It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、非環状のアミン化合物からα-アミノニトリル化合物を効率良く製造する方法を提供することを目的とする。本発明に係るα-アルキルアミノニトリル化合物の製造方法は、非環状の特定アミン化合物にアミノ酸オキシダーゼを作用させてイミン化合物とし、さらにシアン化物イオンを作用させることにより、α-アルキルアミノニトリル化合物を得ることを特徴とする。

Description

α-アミノニトリル化合物の製造方法
 本発明は、アミノ酸オキシダーゼを用いたα-アミノニトリル化合物の製造方法に関するものである。
 α-アミノニトリル化合物は、α-アミノ酸だけでなく、チアジアゾール類やイミダゾール類などの含窒素複素環化合物のための合成中間体としても有用なものである。その代表的な製造方法の一つとして、Strecker反応が知られている。
 Strecker反応は、一般的に、アルデヒド化合物やケトン化合物にアンモニウムイオンとシアン化物イオンを反応させてα-アミノニトリル化合物とした後に、シアノ基を酸加水分解してα-アミノ酸を製造する方法である。
 有機化学的なStrecker反応としては、例えば、アルデヒド化合物とアミン化合物ならびにシアン化水素とを、ジルコニウムアルコキシドと光学活性なビナフトール化合物とを混合することにより得られるキラルジルコニウム触媒の存在下に反応させることで、光学活性なα-アミノニトリル化合物を製造する方法が知られている(特許文献1)。酵素を用いた方法としては、S立体選択的Aspergillus niger由来のモノアミンオキシダーゼの第336番目のアスパラギンがセリンに変換された変異型酵素を用い、ピロリジンを基質としたときの生成物にシアン化カリウムを添加することでアミノニトリル化合物を合成することが知られている(非特許文献1)。
 また、酵素を用いたStrecker反応としては、例えば、Aspergillus niger由来のS立体選択的モノアミンオキシダーゼのN336がセリンに変換された変異型酵素を用い、ピロリジンを基質としたときの生成物にシアン化カリウムを添加することでアミノニトリル化合物を合成する方法が知られている(非特許文献1)。
特許第3634207号公報
Angew.Chem.Int.Ed.49:2182-2184(2010)
 上述したように、モノアミンオキシダーゼを用いてアミノニトリル化合物を製造したとの報告はある。
 しかし、アミンオキシダーゼを用いたアミノニトリル化合物の従来の実験例では、基質として環状アミン化合物のみが用いられており、その他の化合物は用いられていない。
 そこで、本発明は、非環状のアミン化合物からα-アミノニトリル化合物を効率良く製造する方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、アミンオキシダーゼではなく天然型または変異型のアミノ酸オキシダーゼを用いれば、特定のアミン化合物からα-アミノニトリル化合物を効率良く製造できることを見出して、本発明を完成した。
 本発明を以下に示す。
 [1] α-アミノニトリル化合物を製造するための方法であって、
 下記式(I)で表されるアミン化合物にアミノ酸オキシダーゼを作用させることにより下記式(II)で表されるイミン化合物とする工程:
Figure JPOXMLDOC01-appb-C000003
[式中、R1は置換基を有していてもよいC6-12アリール基、置換基を有していてもよいヘテロアリール基、または、カルボキシ基を示し、R2はC1-6アルキル基、C6-12アリール基上に置換基を有していてもよいC6-12アリール-C1-6アルキル基、または、ヘテロアリール基上に置換基を有していてもよいヘテロアリール-C1-6アルキル基を示し、C6-12アリール基およびヘテロアリール基が有していてもよい置換基はハロゲン原子である];および
 上記イミン化合物(II)にシアン化物イオンを作用させることにより、下記式(III)で表されるα-アルキルアミノニトリル化合物を得る工程を含むことを特徴とする方法。
Figure JPOXMLDOC01-appb-C000004
[式中、R1とR2は上記と同義を示す]
 本発明において、「C6-12アリール基」とは、炭素数が6以上、12以下の芳香族炭化水素基をいう。例えば、フェニル基、インデニル基、ナフチル基、ジフェニル基を挙げることができる。これらのうち、フェニル基が好ましい。
 「ヘテロアリール基」は、窒素原子、酸素原子または硫黄原子等のヘテロ原子を少なくとも1個有する5員環芳香族ヘテロシクリル基、6員環芳香族ヘテロシクリル基または縮合環芳香族ヘテロシクリル基を意味する。「ヘテロアリール基」としては、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フリル基、オキサゾリル基、イソキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;ベンゾフラニル基、インドリル基、クロメニル基、キノリニル基、イソキノリニル基等の縮合環ヘテロアリール基が含まれる。
 「C1-6アルキル基」とは、炭素数が1以上、6以下の直鎖状または分岐鎖状の一価脂肪族飽和炭化水素基をいう。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等を挙げることができる。これらのうち、C1-4アルキル基が好ましく、C1-2アルキル基がより好ましく、メチル基が特に好ましい。
 「C6-12アリール-C1-6アルキル基」は、1つの上記C6-12アリール基に置換された上記C1-6アルキル基をいい、「ヘテロアリール-C1-6アルキル基」とは、1つの上記ヘテロアリール基に置換された上記C1-6アルキル基をいう。
 「ハロゲン原子」にはフッ素原子、塩素原子、臭素原子およびヨウ素原子が含まれ、より好ましくはフッ素原子または塩素原子、最も好ましくはフッ素原子である。
 C6-12アリール基またはヘテロアリール基が置換基を有する場合、置換基数は特に制限されないが、例えば、1個以上、5個以下とすることができ、1個以上、3個以下が好ましく、1個または2個がより好ましい。また、置換基数が2以上である場合、置換基は互いに同一であってもよく、異なっていてもよい。
 [2] 上記アミノ酸オキシダーゼとして、下記(1)~(3)の何れかの変異型アミノ酸オキシダーゼを用いる上記[1]に記載の方法。
 (1)配列番号1に示されるアミノ酸配列において、第228番目のアミノ酸がチロシンまたはロイシンに置換され、第283番目のアルギニンがグリシン、アラニンまたはセリンに置換されたアミノ酸配列を有する変異型アミノ酸オキシダーゼ;
 (2)上記(1)に規定されるアミノ酸配列において、第228番目および第283番目のアミノ酸を除く領域中で1または数個のアミノ酸が欠損、置換および/または付加されたアミノ酸配列を有する変異型アミノ酸オキシダーゼであり、かつ(R)-アミン化合物に対する酸化活性を有する変異型アミノ酸オキシダーゼ;または
 (3)上記(1)に規定されるアミノ酸配列に対して95%以上の配列同一性を有するアミノ酸配列を有し、かつ(R)-アミン化合物に対する酸化活性を有する変異型アミノ酸オキシダーゼ(ただし、該変異型アミノ酸オキシダーゼのアミノ酸配列において上記第228および283番目のアミノ酸配列に対応するアミノ酸は変異しないものとする)。
 [3] 上記変異型アミノ酸オキシダーゼ(1)において、第228番目のアミノ酸がロイシンであり、第283番目のアルギニンがグリシンである上記[2]に記載の方法。
 [4] R1は置換基を有していてもよいC6-12アリール基または置換基を有していてもよいヘテロアリール基を示し、R2はC1-6アルキル基を示す上記[2]または[3]に記載の方法。
 [5] 上記アミン化合物(I)としてR体を用いる上記[2]~[4]に記載の方法。
 [6] 上記アミノ酸オキシダーゼとして、Crotalus atrox由来L-アミノ酸オキシダーゼを用いる上記[1]に記載の方法。
 [7] 上記アミノ酸オキシダーゼとして、下記(4)~(6)の何れかのL-アミノ酸オキシダーゼを用いる上記[1]に記載の方法。
 (4)配列番号42のアミノ酸配列を有するL-アミノ酸オキシダーゼ;
 (5)上記(4)に規定されるアミノ酸配列において、1または数個のアミノ酸が欠損、置換および/または付加されたアミノ酸配列を有する変異型アミノ酸オキシダーゼであり、かつL-アミノ酸に対する酸化活性を有するL-アミノ酸オキシダーゼ;または
 (6)上記(4)に規定されるアミノ酸配列に対して95%以上の配列同一性を有するアミノ酸配列を有し、かつL-アミノ酸オキシダーゼに対する酸化活性を有する変異型アミノ酸オキシダーゼ。
 天然型または変異型のアミノ酸オキシダーゼを用いれば、特定のアミン化合物からα-アミノニトリル化合物を効率良く製造することができる。
野生型アミノ酸オキシダーゼの特定位置に変異を導入した変異型酵素の(R)-α-メチルベンジルアミンに対する基質特異性を試験した結果を示すグラフである。 本発明に係る変異型(R)-アミノ酸オキシダーゼを精製したもののSDS-PAGEの写真である。 上記変異型アミノ酸オキシダーゼの比活性と温度の関係を示すグラフである。 上記変異型アミノ酸オキシダーゼの熱安定性を試験した結果を示すグラフである。 (RS)-α-メチルベンジルアミンに上記変異型アミノ酸オキシダーゼを作用させた場合の経時的変化を試験した結果である。●は(R)-α-メチルベンジルアミンの濃度を示し、○は(S)-α-メチルベンジルアミンの濃度を示す。 (RS)-α-メチルベンジルアミンに上記変異型アミノ酸オキシダーゼと還元剤を作用させた場合の経時的変化を試験した結果である。●は(R)-α-メチルベンジルアミンの濃度を示し、○は(S)-α-メチルベンジルアミンの濃度を示す。 上記変異型アミノ酸オキシダーゼを用いた(R)-α-メチルベンジルアミンから(RS)-2-アミノ-2-メチルフェニルプロパンニトリル生産を示すHPLCクロマトグラムを示す。(A)は(R)-メチルベンジルアミンの標準品のデータ、(B)は(R)-メチルベンジルアミンに変異型アミノ酸オキシダーゼを作用させた場合のデータ、(C)は(R)-メチルベンジルアミンとKCNを含む反応液に変異型アミノ酸オキシダーゼを加えた場合のデータ、(D)は(RS)-2-アミノ-2-メチルフェニルプロパンニトリル(標準品)のデータを示す。 図8(A)はD-フェニルアラニンとKPBを含む溶液のHPLCチャートであり、図8(B)はD-フェニルアラニン、KPBおよびブタ腎臓由来D-アミノ酸オキシダーゼを含む溶液のHPLCチャートであり、図8(C)は上記反応後の反応溶液のHPLCチャートである。 図8のHPLCチャートにおける10分のピークをマススペクトルで分析した結果である。 L-フェニルアラニン、リン酸カリウム緩衝液、シアン化カリウム、およびCrotalus atrox由来L-アミノ酸オキシダーゼを含む反応溶液のHPLCチャートである。 図10のHPLCチャートにおける10分のピークをマススペクトルで分析した結果である。 本発明方法により、(R)-α-メチルベンジルアミンから2-アミノ-2-プロパンニトリルを製造した反応液中に含まれる化合物の濃度の経時的変化を示すグラフである。図10中、●は(R)-α-メチルベンジルアミンの濃度を示し、○は2-アミノ-2-プロパンニトリルの濃度を示し、▲は副生成物であるアセトフェノンの濃度を示す。
 以下、実施の順番に従って、本発明に係るα-アルキルアミノニトリル化合物の製造方法を説明する。
 (A) 原料化合物の製造
 本発明方法の原料化合物であるアミン化合物(I)は、光学異性体であっても、ラセミ体など光学異性体の混合物であってもよいものとする。好適には、後続工程で用いられるアミノ酸オキシダーゼの基質として利用され易いものを用いる。例えば、上記変異型アミノ酸オキシダーゼを用いる場合には、以下のR体を用いることが好ましい。また、L-アミノ酸オキシダーゼを用いる場合にはL-アミノ酸を用いることが好ましく、D-アミノ酸オキシダーゼを用いる場合にはD-アミノ酸を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 アミン化合物(I)は、市販のものがあれば購入して使用することができるし、或いは、比較的シンプルな構造を有することから、当業者公知の方法により製造してもよい。
 また、アミン化合物(I)の光学異性体は、そのラセミ体などから、アミノ酸オキシダーゼを用いて製造することも可能である。以下、アミン化合物(I)のR体であるアミン化合物(I-R)を基質にしてイミノ化する反応を触媒できる酵素を用い、アミン化合物(I)のS体であるアミン化合物(I-S)をラセミ体から製造する方法を代表例にして説明する。
 ・ 酵素反応工程
 先ず、アミン化合物ラセミ体(racemic-I)に、R体を基質とするアミノ酸オキシダーゼを作用させることにより、アミン化合物ラセミ体(racemic-I)に含まれる(R)-アミン化合物(I-R)をイミン化合物(II)とする。その結果、反応液中には実質的に(S)-アミン化合物(I-S)のみが残留することになり、デラセミ化が達成される。
Figure JPOXMLDOC01-appb-C000006
 反応液の溶媒としては、主に水を用いる。水としては、超純水、純水、精製水、蒸留水、イオン交換水、水道水、井戸水など、上記酵素反応を阻害しないものであれば特に制限されない。また、基質化合物である(R)-アミン化合物が水に溶解し難いような場合には、酵素反応を阻害しない範囲で、メタノールやエタノールなどのアルコール系溶媒;テトラヒドロフランなどのエーテル系溶媒;アセトンなどのケトン系溶媒;ジメチルホルムアミドやジメチルアセトアミドなどのアミド系溶媒などの水混和性有機溶媒を適量添加してもよい。
 アミノ酸オキシダーゼとアミン化合物ラセミ体の反応液における濃度は適宜調整すればよく、予備実験などで決定すればよい。例えば、本発明に係る変異型アミノ酸オキシダーゼの濃度は、0.1U/mL以上、30U/mL以下程度とすることができる。また、アミン化合物ラセミ体の濃度としては、1mM以上、50mM以下とすることができる。なお、本発明において、1Uは、(R)-フェニルアラニン((D)-フェニルアラニン)または(R)-α-メチルベンジルアミンを基質とし、30℃で1分間反応させた場合に1μmolのH22を生成する酵素量をいうものとする。
 反応液のpHも適宜調整すればよいが、7.0以上、9.0以下程度に調整することが好ましい。また、反応液のpHを上記範囲に維持するために、緩衝剤や緩衝液を用いてもよい。
 反応温度と反応時間も適宜調整すればよい。反応温度としては、例えば、20℃以上、60℃以下程度とすることができる。また、反応時間は、(R)-アミン化合物の濃度が十分に低減されるまでとし、具体的には予備実験などで決定すればよいが、例えば、30分間以上、600分間以下程度とすることができ、60分間以上が好ましい。
 当該工程により、アミン化合物ラセミ体(racemic-I)に含まれる(R)-アミン化合物(I-R)がアミノ酸オキシダーゼにより酸化され、イミン化合物(II)となる。よって、当該イミン化合物(II)と(S)-アミン化合物(I-S)とを、例えばカラムクロマトグラフィなどにより分離し、光学純度の高い(S)-アミン化合物(I-R)を得ることができる。
Figure JPOXMLDOC01-appb-C000007
[式中、R1とR2は上記と同義を示す]
 ・ 還元反応工程
 本発明に係るアミン化合物(racemic-I)のデラセミ化方法では、さらに、還元剤を作用させることにより上記イミン化合物(II)をアミン化合物ラセミ体(racemic-I)としてもよい。当該工程により、(R)-アミン化合物(I-R)は、イミン化合物(II)を経てアミン化合物ラセミ体(racemic-I)となり、当該アミン化合物ラセミ体(racemic-I)中の(R)-アミン化合物(I-R)はアミノ酸オキシダーゼにより再びイミン化合物(II)となる。即ち、上記酵素反応工程と還元反応工程が同時または交互に進行することにより、原料であるアミン化合物ラセミ体(racemic-I)に含まれる(S)-アミン化合物(I-S)がそのまま維持されるのみでなく、(R)-アミン化合物(I-R)も(S)-アミン化合物(I-S)に変換されることになり、光学純度の高い(S)-アミン化合物(I-S)が効率良く製造されることになる。
Figure JPOXMLDOC01-appb-C000008
 還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ジイソブチルアルミニウム、水素化アルミニウムリチウム、シアノトリヒドロホウ酸ナトリウム、ボランを用いることができる。
 還元剤の使用量は適宜調整すればよいが、イミン化合物(II)を十分に還元できる量を使用することが好ましい。例えば、原料であるアミン化合物ラセミ体(racemic-I)に対して、1.5倍モル以上、100倍モル以下程度用いることが好ましい。
 なお、還元反応工程は、上記酵素反応工程を行った後、(S)-アミン化合物(I-S)の存在下、或いは(S)-アミン化合物(I-S)を分離してから行ってもよいし、還元反応工程と上記酵素反応工程とを同時に行ってもよい。即ち、上記酵素反応工程の反応液に還元剤を添加し、生成したイミン化合物(II)を直ぐに還元してアミン化合物ラセミ体(racemic-I)とし、酵素反応に付せるようにしてもよい。
 以上では、アミン化合物(I)のR体であるアミン化合物(I-R)を基質にしてイミノ化する反応を触媒できる酵素を用い、アミン化合物(I)のS体であるアミン化合物(I-S)をラセミ体から製造する方法を代表例にして説明したが、アミン化合物(I)のS体であるアミン化合物(I-S)を基質にしてイミノ化する反応を触媒できる酵素を用い、同様にしてアミン化合物(I)のR体であるアミン化合物(I-R)をラセミ体から製造することも可能である。
 (B) イミノ化工程
 本発明方法では、アミン化合物(I)にアミノ酸オキシダーゼを作用させることによりイミン化合物(II)とする。
 本発明方法で用いるアミノ酸オキシダーゼは、基質であるアミン化合物(I)に応じて適宜選択することができる。例えば、アミン化合物(I)がアミノ酸である場合には、一般的なアミノ酸オキシダーゼを用いればよい。例えば、アミン化合物(I)がL-アミノ酸である場合にはL-アミノ酸オキシダーゼを用い、アミン化合物(I)がD-アミノ酸である場合にはD-アミノ酸オキシダーゼを用いればよい。また、アミン化合物(I)がアミノ酸ではない場合、例えば、アミン化合物(I)においてR1が置換基を有していてもよいC6-12アリール基または置換基を有していてもよいヘテロアリール基であり、R2がC1-6アルキル基である場合には、上記変異型アミノ酸オキシダーゼを用いることが好ましい。
 上記変異型アミノ酸オキシダーゼ(1)は、ブタ腎臓から単離された野生型(R)-アミノ酸オキシダーゼのアミノ酸配列(配列番号1)において、第283番目のアルギニンをグリシン、アラニンまたはセリンに置換し、また、第228番目のチロシンはそのままにするか或いはロイシンに置換したものである。
 変異型アミノ酸オキシダーゼ(1)は、実施例において確かめられている通り、野生型アミノ酸オキシダーゼの基質である(R)-アミノ酸(D-アミノ酸)を基質としない一方で、特定の(R)-アミン化合物を高い特異性で基質とすることができ、光学純度の高いイミン化合物へ選択的に変換することができる上に、熱安定性が高い。
 本発明において酵素が「(特定の)アミノ酸配列を有する」とは、その酵素のアミノ酸配列が特定されたアミノ酸配列を含んでいればよく、且つ、その酵素の機能が維持されていることを意味する。その酵素において特定されたアミノ酸配列以外の配列としては、ヒスチジンタグや固定化のためのリンカー配列の他、-S-S-結合などの架橋構造などが挙げられる。
 上記変異型アミノ酸オキシダーゼ(2)において、「第228番目および第283番目のアミノ酸を除く領域」とは、変異型アミノ酸オキシダーゼ(1)のアミノ酸配列中、第1~227番目、第229~282番目および第284番目以降の領域をいう。
 また、「1または数個のアミノ酸が欠損、置換および/または付加されたアミノ酸配列」における「1から数個」の範囲は、欠失等を有するアミノ酸オキシダーゼが、(R)-アミン化合物に対する酸化活性を有する限り特に限定されるものではない。前記「1から数個」の範囲は、(R)-アミン化合物に対する高い酸化活性を有するアミノ酸オキシダーゼである可能性が高いことから、例えば、1個以上、30個以下とすることができ、好ましくは1個以上、20個以下、より好ましくは1個以上、10個以下、さらに好ましくは1個以上、7個以下、一層好ましくは1個以上、5個以下、特に好ましくは1個以上、3個以下、1個以上、2個以下、または1個程度とすることができる。
 上記変異型アミノ酸オキシダーゼ(3)において、「上記(1)に規定されるアミノ酸配列に対して少なくとも95%の配列同一性を有するアミノ酸配列」における「配列同一性」は、当該アミノ酸配列の同一性を有するアミノ酸オキシダーゼが、(R)-アミン化合物に対する酸化活性を有する酵素である限り、特に限定されない。前記アミノ酸配列の配列同一性は95%以上であれば特に限定されないが、好ましくは96%以上、より好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上、特に好ましくは99.5%以上である。本発明において「配列同一性」という語は、2以上のアミノ酸配列の互いに対するアミノ酸の同一性の程度を指す。従って、ある二つのアミノ酸配列の同一性が高い程、それらの配列の同一性ないし類似性は高い。2種類のアミノ酸配列が同一性を有するか否かは、配列の直接の比較によって解析することが可能であり、具体的には、市販の配列解析ソフトウェア等を用いて解析することができる。
 上記変異型アミノ酸オキシダーゼ(3)において、「ただし、該変異型アミノ酸オキシダーゼのアミノ酸配列において上記第228および283番目のアミノ酸配列に対応するアミノ酸は変異しないものとする」における「変異」とは、具体的にはアミノ酸の欠失または置換を意味する。つまり、上記変異型アミノ酸オキシダーゼ(3)のアミノ酸配列において、配列同一性の判断の基準となる上記(1)の変異型アミノ酸オキシダーゼのアミノ酸配列における第228および283番目のアミノ酸に対応するアミノ酸が、上記変異型アミノ酸オキシダーゼ(1)のアミノ酸配列における第228および283番目のアミノ酸と同一であることを意味する。
 上記変異型アミノ酸オキシダーゼ(3)において、配列同一性の判断の基準となる上記変異型アミノ酸オキシダーゼ(1)のアミノ酸配列における第228および283番目のアミノ酸に対応するアミノ酸は、上述した配列同一性ないし相同性の解析により調べることができる。具体的には、市販の配列解析ソフトウェア等を用いて、配列番号1に示されるアミノ酸配列または上記変異型アミノ酸オキシダーゼ(1)のアミノ酸配列に対して解析対象のアミノ酸配列のアライメント解析を行えば、上記第228および283番目のアミノ酸に対応するアミノ酸を検索することが可能である。このようなアライメント解析の手法は当業者に広く知られている。
 上記変異型アミノ酸オキシダーゼ(2)または(3)において、「(R)-アミン化合物に対する酸化活性を有する」とは、何れかの(R)-アミン化合物に対して、特に(R)-アミン化合物(I)の範囲に含まれる少なくとも何れか1つの化合物に対して、対象となる変異型アミノ酸オキシダーゼが酸化活性を示すことをいう。当該試験の具体的な条件は、後記の実施例を参照すればよい。
 上記変異型アミノ酸オキシダーゼは、上記(1)から(3)に規定される範囲に属するものである限りその由来は特に限定されるものではない。例えば、上記変異型アミノ酸オキシダーゼは、各種遺伝子工学的技術により製造した組換えタンパク質であってもよいし、化学合成により製造した合成タンパク質であってもよく、或いは配列番号1に示されるアミノ酸配列からなる変異型アミノ酸オキシダーゼの遺伝子ホモログを有する特定の生物種(例えば、細菌)に変異原を与えることにより上記変異型酵素を産生し得る変異体を獲得して、該変異体が産生するタンパク質を抽出および精製することによって製造したタンパク質であってもよい。
 遺伝子工学技術により本発明方法で用い得る組換えタンパク質を製造する場合には、上記変異型アミノ酸オキシダーゼ(1)~(3)の何れかをコードする核酸(DNAまたはRNA)を作製し、各種発現ベクターに組み込むことにより、上記変異型アミノ酸オキシダーゼを発現させることができる。上記変異型アミノ酸オキシダーゼをコードする核酸を作製するに当たり、配列番号1に示されるアミノ酸配列における第228番目および第283番目のアミノ酸または該アミノ酸に相応するアミノ酸を上記(1)に記載の所定のアミノ酸に置換するため、或いは上記変異型アミノ酸オキシダーゼ(2)のアミノ酸配列においてアミノ酸の欠失、置換および/または付加を施すため、或いは上記変異型アミノ酸オキシダーゼ(3)のアミノ酸配列において配列番号1のアミノ酸配列と所定の同一性を有するタンパク質をコードする核酸を準備するためには、例えば、エラープローンPCR法、DNAシャッフリング法、各種部位特異的変異導入法などにより、任意の塩基の欠失、置換および/または挿入を行うことができる。このようにして作製した上記変異型アミノ酸オキシダーゼをコードする核酸を適当な発現系に導入することにより、上記変異型アミノ酸オキシダーゼを製造することができる。
 上記変異型アミノ酸オキシダーゼを製造するために利用可能な発現系としては、特に限定させるものではないが、例えば各種生物種(ホスト)において組換えタンパク質の発現を可能とする発現ベクターを利用することができる。利用可能な発現ベクターとしては、細菌や真菌類(例えば、酵母類)などの微生物、植物、昆虫細胞、哺乳類細胞などのホストにおいてタンパク質の発現を可能とする各種発現ベクターを用いることが可能であり、ウイルスベクター(ファージベクターを含む)でもプラスミドベクターであってもよい。或いは、ウサギ網状赤血球ライセート、小麦胚芽ライセート、大腸菌ライセート等を用いた無細胞タンパク質発現系を用いてタンパク質を製造してもよい。
 特定の生物種をホストとして用いた発現系で上記変異型アミノ酸オキシダーゼを発現させる場合には、上記タンパク質をコードする核酸をベクター上に搭載し、このベクターによって宿主細胞を形質転換した後、形質転換させた宿主細胞を培養して培養物中に前記遺伝子がコードするタンパク質を蓄積し、蓄積したタンパク質を収集することを含む、製造方法により調製することができる。
 本発明で用い得るタンパク質をコードする核酸、該核酸を含むベクター、該ベクターにより形質転換された形質転換体は本発明の一態様である。これら核酸、ベクターおよび形質転換体は、上記変異型アミノ酸オキシダーゼのアミノ酸配列が決定されれば、当業者であれば常法に従って調製可能である。
 上記変異型アミノ酸オキシダーゼをコードする核酸の取得方法は特に限定されない。例えば、上記変異型アミノ酸オキシダーゼないし配列番号1に記載のアミノ酸配列と相同性を有する遺伝子を各種細菌から単離し、該遺伝子をコードする核酸を調製して、上記第228番目および第283番目のアミノ酸に対応するアミノ酸の置換を行って、上記変異型アミノ酸オキシダーゼをコードする核酸を製造してもよい。また、上記変異型アミノ酸オキシダーゼをコードする核酸は、配列番号1に記載のアミノ酸配列または配列番号1に記載のアミノ酸配列と一定の同一性を有する公知のアミノ酸配列の情報に基づいて、化学合成、遺伝子工学的手法または突然変異誘発などの当業者に既知の任意の方法で作製することができる。
 上記変異型アミノ酸オキシダーゼをコードする核酸は、具体的には、例えば配列番号1に記載のアミノ酸をコードするDNAに対し、変異原となる薬剤と接触作用させる方法、紫外線を照射する方法、遺伝子工学的手法等を用いて行うことができる。また、遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから、上記変異型アミノ酸オキシダーゼをコードする核酸を製造する上で、核酸に部位特異的な変異を導入するために有用である。
 例えば、PCR法により上記変異型アミノ酸オキシダーゼをコードする核酸を製造するための材料を取得することもできる。例えば、ブタ腎臓のゲノムDNAから配列番号1のアミノ酸配列をコードするDNAを増幅できるように設計した1対のプライマーを用いてPCRを行う。PCRの反応条件は適宜設定することができる。増幅されたDNA断片は、上記変異型アミノ酸オキシダーゼをコードする核酸を製造するための材料として用いることができる。さらに、増幅されたDNA断片を、大腸菌(E.coli)等の宿主で増幅可能な適切なベクター中にクローニングすることにより得られたベクターも上記変異型アミノ酸オキシダーゼをコードする核酸を製造するための材料として用いることができる。
 上述の通り準備した、上記変異型アミノ酸オキシダーゼをコードする核酸を製造するための材料において、上記第228番目および第283番目のアミノ酸に対応するアミノ酸をコードする塩基配列(コドン)に各種変異導入法を用いて塩基の置換を施し、上記変異型アミノ酸オキシダーゼをコードする核酸、または該核酸を含むベクターを製造することができる。なお、上記したプローブまたはプライマーの調製、ゲノムライブラリーの構築、ゲノムライブラリーのスクリーニング、並びに目的遺伝子のクローニングなどの操作は当業者に既知である。
 上記変異型アミノ酸オキシダーゼをコードする核酸は適当なベクター中に挿入した状態で使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えばプラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。好ましくは、ベクターは発現ベクターである。発現ベクターにおいて上記核酸には、転写に必要な要素(例えば、プロモータ等)が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜選択することができる。
 また、上記ベクターにおいて、上記変異型アミノ酸オキシダーゼをコードする核酸は、必要に応じて、適切なターミネータに機能的に結合されてもよい。上記変異型アミノ酸オキシダーゼをコードする核酸を含むベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサ配列(例えばSV40エンハンサ)などの要素を有していてもよい。L-アミノ酸オキシダーゼの遺伝子を含む組換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。
 上記変異型アミノ酸オキシダーゼをコードする核酸を含むベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシンもしくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。上記変異型アミノ酸オキシダーゼをコードする核酸、プロモータ、および所望によりターミネータおよび/または分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知である。
 さらに、上記変異型アミノ酸オキシダーゼをコードする核酸を含むベクターを適当な宿主に導入することによって、形質転換体を作製することができる。ベクターを導入される宿主細胞は、細胞内でベクターが複製されるものであれば任意の細胞でもよい。さらに、上記変異型アミノ酸オキシダーゼを発現する形質転換体を作製する場合には、ベクターの複製に加えて、言うまでもなく上記変異型アミノ酸オキシダーゼの発現が可能となる任意の細胞である。このような宿主細胞の例としては、細菌、酵母、真菌および高等真核細胞等が挙げられる。
 上記の形質転換体は、ベクターの複製を可能にする条件下、或いは上記変異型アミノ酸オキシダーゼの発現を可能にする条件下で適切な栄養培地中で培養する。上記変異型アミノ酸オキシダーゼを発現させた場合、形質転換体の培養物(形質転換体および培養培地を含む)から、上記変異型アミノ酸オキシダーゼを単離精製するには、通常のタンパク質の単離精製法を用いればよい。例えば、上記変異型アミノ酸オキシダーゼが、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常のタンパク質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィ一法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、上記変異型アミノ酸オキシダーゼを精製標品として得ることができる。
 本発明で用いるアミノ酸オキシダーゼとしては、上記変異型アミノ酸オキシダーゼの他、例えば、ブタなどの腎臓由来のアミノ酸オキシダーゼ、ヘビ毒由来のアミノ酸オキシダーゼ、また、Crotalus atrox、Trichoderma sp.、Pseudomonas sp.などの細菌に由来するアミノ酸オキシダーゼを挙げることができる。
 Crotalus atrox由来のアミノ酸オキシダーゼとしては、上記(4)~(6)の何れかのL-アミノ酸オキシダーゼをあげることができる。なお、上記(4)~(6)における欠失等や相同性、活性の定義や好適数値範囲などは、上記(1)~(3)での定義や好適数値範囲などと同様である。
 アミン化合物(I)にアミノ酸オキシダーゼを作用させることによりイミン化合物(II)とする反応の条件は、上記工程(A)のデラセミ化方法の酵素反応工程と同様のものとすることができる。
 (C) シアノ化工程
 次に、生成したイミン化合物(II)にシアン化物イオンを作用させることにより、α-アミノニトリル化合物(III)を得る。
 シアン化物イオンは、その塩として反応液に添加すればよい。例えば、シアン化ナトリウムやシアン化カリウムを用いることができる。
 シアン化物イオンの使用量は適宜調整すればよいが、イミン化合物(II)を十分にシアノ化できる量を使用することが好ましい。例えば、原料であるアミン化合物(I)に対して、2倍モル以上、100倍モル以下程度用いることが好ましい。
 当該シアノ化工程は、上記酵素反応工程を行った後に行ってもよいし、上記イミノ化工程(B)と同時に行ってもよい。即ち、上記イミノ化工程(B)の反応液にシアン化物イオンを添加し、生成したイミン化合物(II)を直ぐにα-アルキルアミノニトリル(V)としてもよい。
 本願は、2013年2月22日に出願された日本国特許出願第2013-33707号に基づく優先権の利益を主張するものである。2013年2月22日に出願された日本国特許出願第2013-33707号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 なお、酵素の(R)-アミノ酸酸化活性と(R)-アミン酸化活性は、以下のように測定した。
 試験例1: 酵素の(R)-アミノ酸酸化活性と(R)-アミン酸化活性の測定
 (1) (R)-アミノ酸酸化活性の測定用試薬の調製
 表1の配合に従って調製した。
Figure JPOXMLDOC01-appb-T000009
 (2) (R)-アミン酸化活性の測定用試薬の調製
 表2の配合に従って調製した。
Figure JPOXMLDOC01-appb-T000010
 (3) (R)-アミノ酸酸化活性と(R)-アミン酸化活性の測定条件
 (R)-アミノ酸酸化活性と(R)-アミン酸化活性は、基質の酸化で生成される過酸化水素量を、表1または表2の発色液を用いた比色法で求めた。具体的には、1cm石英セル中、酵素液に対して10倍容量の各測定用試薬を加えて総量を1mLとし、30℃で1時間反応させ、マイクロプレートリーダーで505nmの吸光度を測定した。ブランクでは、基質の代わりに蒸留水を添加した。得られた吸光度変化より、下記計算式に基づいて各酸化活性を算出した。尚、本試験例における1Uは、(R)-フェニルアラニンまたは(R)-α-メチルベンジルアミンを基質とし、1分間に1μmolのH22を生成する酵素量とした。
 (4) (R)-アミノ酸酸化活性と(R)-アミン酸化活性の計算式
 活性値(U/mL)={ΔAbs505/min(ΔAbs505sample-ΔAbs505blank)×1(mL)×希釈倍率}/{4.66×1.0(cm)×0.1(mL)}
  1(mL):全液量
  4.66:ミリモル吸光係数
  1.0cm:セルの光路長
  0.1(mL):酵素サンプル液量
 (5) 比活性の測定
 単位液量あたりの酵素含量を、Bradford法プロテインアッセイキット(Biorad社製)を用いて測定した。上記活性測定法により単位液量あたりの活性値を測定し、単位液量あたりの活性値を単位液量あたりの酵素含量で割ることで、(R)-アミノ酸酸化活性と(R)-アミン酸化活性に関する比活性を求めた。
 参考例1: 変異型(R)-アミノ酸オキシダーゼの調製
 (1) ブタ腎臓由来(R)-アミノ酸オキシダーゼ遺伝子の調製
 アッセンブルPCRによりブタ腎臓由来(R)-アミノ酸オキシダーゼ遺伝子を作製した。用いたプライマー(配列番号3~35)を表3に示す。
Figure JPOXMLDOC01-appb-T000011
 アッセンブルPCR反応液の組成は、水35μL、10× Ex Taq buffer 5μL、2mM dNTP 5μL、表3で示したプライマーの100pmol/μL混合液2μL、およびEx Taq 5unitとした。PCR反応の条件は、(i)96℃で20秒間、(ii)50℃で30秒間、(iii)55℃で1.5分間、および(ii)から(iii)までを35サイクルとした。
 上記PCR産物を用い、大腸菌を形質転換した。ライゲーション反応の組成は、PCR産物5μL、pT7 Blue T-Vecter(Novagen)1μL、ライゲーションミックス(タカラバイオ社製)6μLとし、16℃で30分間反応させた。大腸菌(E.coli JM109)のコンピテントセル100μLに、12μLのライゲーション反応液を加え、ヒートショック法で形質転換した。80μg/mLのアンピシリンを含むLB培地(1.0%ポリペプトン,0.5%イースト抽出物,1.0%NaCl)に生育したコロニーを数株選抜してプラスミド抽出し、0.7%アガロース電気泳動により、インサートの有無の確認を行った。
 別途、ブタ腎臓(由来R)-アミノ酸オキシダーゼ遺伝子配列のシーケンシングを行った。具体的には、遺伝子の両方の鎖についてシーケンシングを行うためユニバーサルプライマーT7プロモータープライマーとU-19merプライマーを用い、シーケンス反応を行った。反応液組成は、1.6μLの上記いずれかのプライマー、1.6μLの鋳型DNA、1μLのBigDyeプレミックスソリューション、1.6μLの5× BigDye シーケンシングバッファーと2.8μLの滅菌水の混合物とし、全量を10μLに調整した。PCR反応の条件は、(i)96℃で2分間、(ii)96℃で10秒間、(iii)50℃で5秒間、(iv)60℃で4分間、(v)(ii)~(iv)を25回、および(vi)72℃で5分間とした。PCR産物に1μLの0.125M EDTAと35μLのエタノールを加え、室温で15分間放置した後、遠心分離(15,000rpm,8分間,4℃)により沈殿させた。上清を廃棄した後、70%エタノールを添加して撹拌後、再度遠心分離した。その後、20μLのHi Di Formamideを加え、100℃で5分間加熱した後に、氷水で急冷したものにつき、Applied Biosystems 3500 Genetic Analyzerで塩基配列の解読をした。得られたシーケンスデータの解析はGenetyxで行い、それぞれのプライマーで増幅した断片を連結した。解読されたブタ腎臓由来(R)-アミノ酸オキシダーゼ遺伝子配列に対応するアミノ酸配列を配列番号1に示す。
 次に、ブタ腎臓由来(R)-アミノ酸オキシダーゼ遺伝子を増幅した。具体的には、上記クローニングで得られたプラスミドを鋳型DNAとし、PCRを行った。PCR反応液の組成は、水35μL、10× Ex Taq buffer 5μL、2mM dNTP 5μL、100pmol/μL プライマー5(5’-tttgaattctaaggaggactagctcatgcgtgtggtggtgatt-3’,配列番号36)1μL、100pmol/μLプライマー6(5’-aataagctttcagaggtgggatggtggcat-3’,配列番号37)1μL、鋳型DNA100ngおよびEx Taq 5unitとした。プライマー5およびプライマー6には、それぞれBamHIおよびHindIIIの制限酵素サイトを設けた。PCR反応の条件は、(i)98℃で5分間、(ii)96℃で20秒間、(iii)50℃で30秒間、(iv)55℃で1.5分間、および(ii)~(iv)までを28サイクルとした。
 得られたブタ腎臓由来(R)-アミノ酸オキシダーゼ遺伝子を用い、大腸菌を形質転換した。即ち、上記PCR反応で得られたPCR産物5μLに、1μL BamHIと1μL HindIIIを加え、37℃で1時間インキュベートし、制限酵素処理を行った。ライゲーション反応は、5μLのDNA、1μLのpUC18(増幅遺伝子と同様の制限酵素処理を行ったもの)、6μLのライゲーションMixとし、16℃で3時間インキュベートしプラスミドpDAOを作製した。得られたプラスミドpDAOを、ヒートショック法により大腸菌に導入した。
 上記形質転換大腸菌で(R)-アミノ酸オキシダーゼ遺伝子を発現させ、その活性を測定した。80μg/mLのアンピシリンと1mMのIPTGを含む5mLのLB培地(1.0%ポリペプトン,0.5%イースト抽出物,1.0%NaCl,pH7.0)に形質転換大腸菌を植菌し、37℃で24時間培養した。遠心分離(15,000rpm,5分間,4℃)により集菌し、0.1% 2-メルカプトエタノールを含む10mMリン酸カリウムバッファーで洗浄した後、1mLの同バッファーに懸濁した。得られた菌体液を15分間超音波処理し、遠心分離(15,000rpm,15分間,4℃)で得られた上清を無細胞抽出液とした。上記試験例1の活性測定法により、(R)-アミノ酸酸化活性と(R)-アミン酸化活性を測定した。
 (2) ブタ腎臓由来(R)-アミノ酸オキシダーゼの基質特異性の改変
 ブタ腎臓由来の野生型(R)-アミノ酸オキシダーゼのアミノ酸配列(配列番号1)の228番目のチロシンおよび283番目のアルギニンに注目し、それぞれのアミノ酸残基に飽和変異を導入した。具体的には、Quikchange Multi site-directed mutagenesis kit(アジレント・テクノロジー社製)を用い、上記参考例1(1)で調製したプラスミドpDAOを鋳型とし、以下のプライマー(配列番号38~41)を用いてPCRを行った。
  5’-agaggcatctacaactctccannnatcattccagggctgc-3’
  5’-gcagccctggaatgatnnntggagagttgtagatgcctct-3’
  5’-tgaatatactggcttcnnnccagtacgccccca-3’
  5’-tgggggcgtactggnnngaagccagtatattca-3’
 得られたPCR産物を用いて、ヒートショック法により大腸菌JM109を形質転換した。96穴プレートを用い、0.5mM IPTGと80μg/mLアンピシリンを含むLB培地で37℃、24時間培養後、遠心分離によって集菌した。回収された大腸菌を、50mM KPB(pH8)で懸濁し、超音波破砕により無細胞抽出液を調製した。
 上記無細胞抽出液につき、上記試験例1に従って、(R)-アミン酸化活性を測定した。また、上記で得られた変異体酵素遺伝子を鋳型とし、228番目のチロシンに対して同様の方法で飽和変異を行い、(R)-アミン酸化活性を測定した。結果を、ブタ腎臓由来(R)-アミノ酸オキシダーゼ(野生型)を用いて(R)-フェニルアラニン((D)-フェニルアラニン)を酸化した場合の比活性0.11U/mgを100%とした場合の相対活性として図1に示す。なお、図1において、黒塗りのカラムは(R)-α-メチルベンジルアミンを基質とした場合ではなく、(R)-フェニルアラニンを基質とした場合の結果である。野生型の(R)-アミノ酸オキシダーゼを用いて(R)-α-メチルベンジルアミンを酸化した場合には、反応の進行は認められず、比活性はほとんど0であった。
 図1のとおり、283番目のアルギニンがグリシン、アラニンまたはセリンに置換された変異体酵素において、(R)-α-メチルベンジルアミンの酸化活性が確認された。また、283番目のアルギニンがグリシン、アラニンまたはセリンに置換された変異体酵素のいずれにおいても、228番目のチロシンがロイシンに置換した変異体酵素において(R)-α-メチルベンジルアミンの酸化活性の向上が見られた。特に283番目のアルギニンがグリシンで且つ228番目のチロシンがロイシンに置換した変異型酵素(配列番号2)が、野生型酵素と比較しても優れた(R)-アミン酸化活性を示した。
 参考例2: ブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの精製
 上記参考例1で得られた283番目のアルギニンがグリシンで且つ228番目のチロシンがロイシンに置換された変異型酵素(配列番号2)を精製した。なお、以下、精製に用いたリン酸カリウムバッファー(KPB)は、0.1% 2-メルカプトエタノールを含むものとする。
 (1) 無細胞抽出液の調製
 5mLの80mMアンピシリンを含むLB培地で、283番目のアルギニンがグリシンで且つ228番目のチロシンがロイシンに置換された変異型酵素をコードする遺伝子により形質転換された大腸菌を、200rpm、37℃で24時間前培養した。前培養液を、80mMアンピシリンと1mM IPTGを含むLB培地500mLに植菌し(全量5L)、2Lバッフルを用いて、300rpm、37℃で1日振とう培養した。大型遠心機を用い、8,000rpm、4℃で5分間遠心分離することにより集菌し、10mM KPB(pH8.0)で洗浄した後、培地5L分の菌体を、80mLの10mM KPBに懸濁した。80mLの菌体液を15分間超音波処理し、8,000rpm、4℃で15分間遠心分離することにより得られた上清を無細胞抽出液とした。
 (2) 硫安分画
 上記無細胞抽出液を氷中にてスターラーで撹拌しながら硫酸アンモニウムを20%飽和になるように添加し、30分間攪伴した後、大型遠心機を用いて8,000rpm、4℃で15分間遠心分離することにより上清を得た。得られた上清液に硫安アンモニウムを35%飽和になるように添加し、上記と同条件で遠心分離し、沈殿を得た。得られた沈殿に10mLの10mM KPB(pH8.0)を加えて懸濁し、5Lの同緩衝液(×2回)で1晩透析した。
 (3) 陰イオン交換カラムクロマトグラフィ
 10mM KPBにより平衡化したDEAE-トヨパール樹脂100mLをカラムに充填し、透析した酵素液を吸着させた。100mLの10mM KPBでカラムを洗浄した後、10mM KPB 100mLおよび50mM NaClを含む10mM KPB 100mLを用いて、グラジエントによりNaCl濃度を徐々に上げ、酵素を溶出させた。フラクションコレクターを用いて、20mLずつ試験管にフラクションを採取し、活性が認められたフラクションを集め、10mM KPBにより1晩透析した。
 (4) 疎水性カラムクロマトグラフィ
 20%硫酸アンモニウムを含む10mM KPBにより平衡化したButyl-トヨパール樹脂10mLをカラムに充填し、20%硫酸アンモニウムを含む酵素液を吸着させた。50mLの硫酸アンモニウムを含む10mM KPBでカラムを洗浄した後、50mLの20%硫酸アンモニウムを含む10mM KPBおよび10mM KPBを用いて、グラジエントにより硫酸アンモニウム濃度を徐々に下げ、酵素を溶出させた。活性が認められたフラクションを集め、10mM KPBにより1晩透析した。各精製段階における酵素量や(R)-アミン酸化活性などを表4に示す。
Figure JPOXMLDOC01-appb-T000012
 (5) SDSポリアクリルアミドゲル電気泳動によるブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの精製度の確認
 泳動ゲルとして、36%アクリルアミド5.25mL、0.68Mトリス-HCl緩衝液(pH8.8)8.25mL、1%SDS 1.58mL、10%TEMED 187μL、2%APS 562μLの組成を有するゲル5μLに、36%ポリアクリルアミド0.5mL、0.179Mトリス-HCl(pH6.8)3.5mL、1%SDS 0.5mL、10%TEMED 125μL、2%APS 375μLの組成を有する濃縮ゲルを重層したものを用い、緩衝液(グリセロール200μL、1Mトリス-HCl(pH8.0)40μL、水360μL、2-メルカプトエタノール200μLおよび10%SDS 200μL)と等量混合した精製酵素サンプル10μLを、ランニング緩衝液(トリス3.0g、グリシン14.1gおよびSDS10g)中、20mAで電気泳動を行った。その後、タンパク染色液(CBB2.5g、メタノール500mL、酢酸50mLおよび水450mL)で1時間染色し、脱色液(メタノール:酢酸:水=3:1:6)でバンドが鮮明になるまで脱色した。分子量マーカーとして、phosphorylase(97,200)、bovine serum albumin (66,409)、Ovalbumin(44,287)、carbonic anhydrase(29,000)、soybean trypsin inhibitor(20,100)およびlysozyme(14,300)を含むもの(タカラバイオ株式会社)を用いた。得られたSDS-PAGEの写真を図2に示す。
 参考例3: ブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの基質特異性
 上記試験例1の(R)-アミン酸化活性の測定条件において、基質化合物として、(R)-α-メチルベンジルアミンの代わりに種々のアミン類またはアミノ酸を用い、酵素活性を測定した。基質としてα-メチルベンジルアミンを用いた時の比活性と、各基質を用いた時の比活性とを比較し、α-メチルベンジルアミンに対する活性を100%としたときの他の基質に対する相対活性を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000013
 表5に示すように、得られた変異型(R)-アミノ酸オキシダーゼは、野生型(R)-アミノ酸オキシダーゼの基質であるフェニルアラニンには全く活性を示さない。また、(S)-α-メチルベンジルアミン誘導体や、フェニル基上に置換基としてメトキシ基やメチル基が導入された(R)-α-メチルベンジルアミン、シクロヘキサン化合物、アキラル化合物に対する活性は低い。それに対して、(R)-α-メチルベンジルアミン誘導体に対しては、極めて高い酸化活性を示した。
 参考例4: ブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの至適温度
 上記試験例1に示した測定法を用いて、20℃から60℃まで5℃刻みに温度を変化させ、各温度における変異型(R)-アミン酸化活性を測定した。結果を図3に示す。
 図3に示すとおり、得られたブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの至適温度は45℃であった。
 参考例5: ブタ腎臓由来変異型(R)-アミノ酸オキシダーゼの熱安定性
 得られたブタ腎臓由来変異型(R)-アミノ酸オキシダーゼを、20℃から70℃までの各温度で30分間熱処理した後、上記試験例1に示した測定法を用いて(R)-アミン酸化活性を測定した。結果を図4に示す。
 図4に示すとおり、得られたブタ腎臓由来変異型(R)-アミノ酸オキシダーゼは、45℃の熱処理で86%の残存活性を示し、50℃の熱処理でも46%の残存活性を示した。かかる結果より、得られたブタ腎臓由来変異型(R)-アミノ酸オキシダーゼは、熱に対して比較的安定であることが明らかとなった。
 参考例6: (RS)-α-メチルベンジルアミンからの(S)-α-メチルベンジルアミンの光学分割
Figure JPOXMLDOC01-appb-C000014
 上記参考例2にて精製した変異型(R)-アミノ酸オキシダーゼを用いて、α-メチルベンジルアミンの光学分割を実施した。50mM KPB(pH8.0)、10mM (RS)-α-メチルベンジルアミン、および上記参考例2で得られた変異型(R)-アミノ酸オキシダーゼ1.5Uを含む反応液1mLを30℃でインキュベートした。反応開始から5,10,15,30,60,90および120分後に反応液試料を採取し、以下のHPLCにより分析した。
  分析条件カラム: CROWNPAK CR(+)(ダイセル社製)
  移動相: 5%メタノールを含む60mM過塩素酸
  流速: 0.8mL/min
  検出波長: 200nm
  カラム温度: 30℃
 (R)-および(S)-α-メチルベンジルアミンの保持時間を下記に記す。
  (S)-α-メチルベンジルアミン: 11.6分
  (R)-α-メチルベンジルアミン: 12.6分
 結果を図5に示す。図5のとおり、得られた変異型アミノ酸オキシダーゼにより(R)-α-メチルベンジルアミン(図5中「●」)は選択的に酸化されてメチルベンジルイミンに変換され、さらに水溶媒中、より安定なアセトフェノンに変換されて、反応開始から60分後にはほぼ0%になっている。それに対して、(S)-α-メチルベンジルアミンの濃度(図5中「〇」)はほぼ5mMのまま維持されている。α-メチルベンジルアミンとメチルベンジルイミンおよびアセトフェノンとは異なる化合物であるので、カラムクロマトグラフィなどで容易に分離できる。かかる結果により、得られた変異型アミノ酸オキシダーゼによって、(RS)-α-メチルベンジルアミンから(S)-α-メチルベンジルアミンが得られることが実証された。
 参考例7: ブタ腎臓由来変異型(R)-アミノ酸オキシダーゼを用いたα-メチルベンジルアミンのデラセミ化法
Figure JPOXMLDOC01-appb-C000015
 上記参考例2にて精製した変異型(R)-アミノ酸オキシダーゼを用いて、α-メチルベンジルアミンのデラセミ化法を実施した。50mM KPB(pH8.0)、5mM (RS)-α-メチルベンジルアミン、250mM水素化ホウ素ナトリウム、および上記参考例2で得られた変異型(R)-アミノ酸オキシダーゼ3Uを含む反応液1mLを30℃でインキュベートした。反応開始から180分後まで適時反応液試料を採取し、上記参考例6で示した条件のHPLCにより分析した。結果を図6に示す。図6のとおり、得られた変異型アミノ酸オキシダーゼにより(R)-α-メチルベンジルアミンは選択的に酸化されてメチルベンジルイミンに変換され、その濃度(図6中「●」)はほぼ0%になった。それに対して、ラセミ体(RS体)中の(S)-α-メチルベンジルアミンは反応せず、また、上記メチルベンジルイミンは還元剤の存在により再び(RS)-α-メチルベンジルアミンに還元されるので、その濃度(図6中「〇」)は、当初のラセミ体の濃度である5mMに近付いていった。かかる結果により、得られた変異型アミノ酸オキシダーゼと還元剤の併用によって、(RS)-α-メチルベンジルアミンから(S)-α-メチルベンジルアミンを効率的に得られることが実証された。
 実施例1: 変異型アミノ酸オキシダーゼを用いたα-メチルベンジルアミンから2-アミノ-2-プロパンニトリルへの変換
   
Figure JPOXMLDOC01-appb-C000016
 上記参考例2にて精製した変異型(R)-アミノ酸オキシダーゼを用いて、α-メチルベンジルアミンの酸化的シアン付加反応を実施した。50mM KPB(pH8.0)、10mM (R)-α-メチルベンジルアミン、30mM KCN、および上記参考例2で得た本発明に係る変異型(R)-アミノ酸オキシダーゼ2Uを含む反応液1mLを、30℃で60分間インキュベートした。反応途中に試料を採取し、上記参考例6で示した条件のHPLCにより分析した。結果を図7(C)に示す。
 図7のとおり、30mMKCN存在下、本発明酵素により(R)-α-メチルベンジルアミンを酸化することによりイミン中間体を経て2-アミノ-2-フェニルプロパンニトリルが合成可能であることを示せた。物質の同定は、標準品2-アミノ-2-フェニルプロパンニトリルのHPLCによるカラム保持時間によって行った。
 実施例2: ブタ腎臓由来D-アミノ酸オキシダーゼを用いた酸化的シアノ化反応
Figure JPOXMLDOC01-appb-C000017
 ブタ腎臓由来D-アミノ酸オキシダーゼを用いて、D-フェニルアラニンの酸化的シアン付加反応を実施した。100mM リン酸カリウムバッファー(KPB)、10mM D-フェニルアラニン、100mM KCN、およびブタ腎臓由来D-アミノ酸オキシダーゼ87mUを含む反応液1mLを、30℃で90分間インキュベートした。反応途中に試料を採取し、以下のLC-MSにより分析した。
 分析条件
  カラム: COSMOSIL 2.5C18-MS-II(Nacalai Tesque製)
  移動相: 0.1%蟻酸を含む5%メタノール水溶液
  流速: 0.2mL/min
  検出波長: 254nm
  カラム温度: 30℃
 D-フェニルアラニンと2-アミノ-2-シアノ-フェニルプロパン酸の保持時間を下記に記す。
  D-フェニルアラニン: 5.5分
  2-アミノ-2-シアノ-フェニルプロパン酸: 11.2分
 図8(A)にD-フェニルアラニンとKPBを含む溶液のHPLCチャートを示し、図8(B)にはD-フェニルアラニン、KPBおよびブタ腎臓由来D-アミノ酸オキシダーゼを含む溶液のHPLCチャートを示し、図8(C)には上記反応後の反応溶液のHPLCチャートを示す。また、図9に、図8のHPLCチャートにおける11分のピークをマススペクトルで分析した結果を示す。
 図9に示されている分子量ピークとMS-MSフラグメントから、上記反応により得られた主生成物は目的化合物であると判断される。よって、本発明方法により、アミン化合物からα-アミノニトリル化合物を効率的に製造できることが明らかとなった。
 実施例3: Crotalus atrox由来L-アミノ酸オキシダーゼを用いた酸化的シアノ化反応
Figure JPOXMLDOC01-appb-C000018
 Crotalus atrox由来L-アミノ酸オキシダーゼを用いて、L-フェニルアラニンの酸化的シアン付加反応を実施した。100mM リン酸カリウムバッファー(KPB)、10mM L-フェニルアラニン、100mM KCN、およびCrotalus atrox由来L-アミノ酸オキシダーゼ8Uを含む反応液1mLを、30℃で90分間インキュベートした。反応途中に試料を採取し、上記実施例2で示した分析条件により分析した。図10に反応液のHPLCチャートを示し、図11に図10のHPLCチャートにおける10分のピークをマススペクトルで分析した結果を示す。
 図10と図11の結果のとおり、L-アミノ酸オキシダーゼとKCNを用いてL-フェニルアラニンを酸化的にシアノ化してα-アミノニトリル化合物が得られることが証明された。
 実施例4: 本発明方法による2-アミノ-2-プロパンの製造
Figure JPOXMLDOC01-appb-C000019
 上記参考例2にて精製した変異型(R)-アミノ酸オキシダーゼを用いて、α-メチルベンジルアミンの酸化的シアン付加反応を実施した。100mM HCl、5mM (R)-α-メチルベンジルアミン、150mM KCN、および上記実施例3で得た本発明に係る変異型(R)-アミノ酸オキシダーゼ8Uを含む反応液1mLを、20℃で90分間インキュベートした。反応途中に試料を経時的に採取し、以下のHPLCにより分析した。結果を図12に示す。
 分析条件
  カラム: CROWNPAK CR(+)(ダイセル社製)
  移動相: 5%メタノールを含む60mM過塩素酸
  流速: 0.8mL/min
  検出波長: 200nm
  カラム温度: 30℃
 (R)-および(S)-α-メチルベンジルアミンの保持時間を下記に記す。
  (S)-α-メチルベンジルアミン: 11.2分
  (R)-α-メチルベンジルアミン: 14.4分
  (S)-2-アミノ-2-プロパンニトリル: 9.0分
  (R)-2-アミノ-2-プロパンニトリル: 9.8分
 図12のとおり、本発明酵素により(R)-α-メチルベンジルアミンは選択的に酸化されてメチルベンジルイミンに変換され、その濃度(図12中「●」)はほぼ0%になった。生成したメチルベンジルイミンに対してKCNが化学的に付加することによって、ラセミ体2-アミノ-2-プロパンニトリルが生成した。その濃度(図12中「〇」)は、4mMに達した。また、副反応として、アセトフェノンが1mM生成した(図12中「▲」)。かかる結果により、本発明酵素とシアン化物の併用によって、(R)-α-メチルベンジルアミンから2-アミノ-2-プロパンニトリルを効率的に得られることが実証された。
 α位に水素とは異なる置換基を有するアミノ酸およびその誘導体であるα-アミノニトリル化合物は、医薬品等の中間体として利用が期待されており、本発明により効率的に製造できることから事業化が見込まれる。

Claims (7)

  1.  α-アミノニトリル化合物を製造するための方法であって、
     下記式(I)で表されるアミン化合物にアミノ酸オキシダーゼを作用させることにより下記式(II)で表されるイミン化合物とする工程:
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は置換基を有していてもよいC6-12アリール基、置換基を有していてもよいヘテロアリール基、または、カルボキシ基を示し、R2はC1-6アルキル基、C6-12アリール基上に置換基を有していてもよいC6-12アリール-C1-6アルキル基、または、ヘテロアリール基上に置換基を有していてもよいヘテロアリール-C1-6アルキル基を示し、C6-12アリール基およびヘテロアリール基が有していてもよい置換基はハロゲン原子である];および
     上記イミン化合物(II)にシアン化物イオンを作用させることにより、下記式(III)で表されるα-アルキルアミノニトリル化合物を得る工程を含むことを特徴とする方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1とR2は上記と同義を示す]
  2.  上記アミノ酸オキシダーゼとして、下記(1)~(3)の何れかの変異型アミノ酸オキシダーゼを用いる請求項1に記載の方法。
     (1)配列番号1に示されるアミノ酸配列において、第228番目のアミノ酸がチロシンまたはロイシンに置換され、第283番目のアルギニンがグリシン、アラニンまたはセリンに置換されたアミノ酸配列を有する変異型アミノ酸オキシダーゼ;
     (2)上記(1)に規定されるアミノ酸配列において、第228番目および第283番目のアミノ酸を除く領域中で1または数個のアミノ酸が欠損、置換および/または付加されたアミノ酸配列を有する変異型アミノ酸オキシダーゼであり、かつ(R)-アミン化合物に対する酸化活性を有する変異型アミノ酸オキシダーゼ;または
     (3)上記(1)に規定されるアミノ酸配列に対して95%以上の配列同一性を有するアミノ酸配列を有し、かつ(R)-アミン化合物に対する酸化活性を有する変異型アミノ酸オキシダーゼ(ただし、該変異型アミノ酸オキシダーゼのアミノ酸配列において上記第228および283番目のアミノ酸配列に対応するアミノ酸は変異しないものとする)。
  3.  上記変異型アミノ酸オキシダーゼ(1)において、第228番目のアミノ酸がロイシンであり、第283番目のアルギニンがグリシンである請求項2に記載の方法。
  4.  R1は置換基を有していてもよいC6-12アリール基または置換基を有していてもよいヘテロアリール基を示し、R2はC1-6アルキル基を示す請求項2または3に記載の方法。
  5.  上記アミン化合物(I)としてR体を用いる請求項2~4に記載の方法。
  6.  上記アミノ酸オキシダーゼとして、Crotalus atrox由来L-アミノ酸オキシダーゼを用いる請求項1に記載の方法。
  7.  上記アミノ酸オキシダーゼとして、下記(4)~(6)の何れかのL-アミノ酸オキシダーゼを用いる請求項1に記載の方法。
     (4)配列番号42のアミノ酸配列を有するL-アミノ酸オキシダーゼ;
     (5)上記(4)に規定されるアミノ酸配列において、1または数個のアミノ酸が欠損、置換および/または付加されたアミノ酸配列を有する変異型アミノ酸オキシダーゼであり、かつL-アミノ酸に対する酸化活性を有するL-アミノ酸オキシダーゼ;または
     (6)上記(4)に規定されるアミノ酸配列に対して95%以上の配列同一性を有するアミノ酸配列を有し、かつL-アミノ酸オキシダーゼに対する酸化活性を有する変異型アミノ酸オキシダーゼ。
PCT/JP2014/054017 2013-02-22 2014-02-20 α-アミノニトリル化合物の製造方法 WO2014129538A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501494A JP6311998B2 (ja) 2013-02-22 2014-02-20 α−アミノニトリル化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-033707 2013-02-22
JP2013033707 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129538A1 true WO2014129538A1 (ja) 2014-08-28

Family

ID=51391321

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/054017 WO2014129538A1 (ja) 2013-02-22 2014-02-20 α-アミノニトリル化合物の製造方法
PCT/JP2014/054016 WO2014129537A1 (ja) 2013-02-22 2014-02-20 変異型アミノ酸オキシダーゼおよびアミン化合物のラセミ体のデラセミ化方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054016 WO2014129537A1 (ja) 2013-02-22 2014-02-20 変異型アミノ酸オキシダーゼおよびアミン化合物のラセミ体のデラセミ化方法

Country Status (2)

Country Link
JP (2) JP6311998B2 (ja)
WO (2) WO2014129538A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051337A1 (en) * 2004-04-09 2006-03-09 Johnson Paul M Escapin, a broadly antimicrobial compound from ink of the sea hare Aplysia californica, and uses thereof
JP2011501688A (ja) * 2007-09-28 2011-01-13 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ チタン化合物およびイミンの不斉シアノ化方法
JP2012528834A (ja) * 2009-06-05 2012-11-15 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ シアン化塩を用いて化学物質を調製する電気化学的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051337A1 (en) * 2004-04-09 2006-03-09 Johnson Paul M Escapin, a broadly antimicrobial compound from ink of the sea hare Aplysia californica, and uses thereof
JP2011501688A (ja) * 2007-09-28 2011-01-13 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ チタン化合物およびイミンの不斉シアノ化方法
JP2012528834A (ja) * 2009-06-05 2012-11-15 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ シアン化塩を用いて化学物質を調製する電気化学的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
G.E. TRANTER: "The parity-violating energy difference between enantiomeric reactions.", CHEMICAL PHYSICS LETTERS, vol. 115, no. 3, 1985, pages 286 - 290 *
HOPWOOD J. ET AL.: "A fast and sensitive assay for measuring the activity and enantioselectivity of transaminases.", CHEM. COMMUN., vol. 47, no. 2, 2011, pages 773 - 775, XP055212525, DOI: doi:10.1039/C0CC02919J *
MATSUI D. ET AL.: "Mutational and crystallographic analysis of 1-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities.", FEBS OPEN BIO., vol. 4, pages 220 - 228 *
PARK JH. ET AL.: "Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1).", BIOCHEMISTRY, vol. 42, no. 42, 2003, pages 12430 - 12438 *
TORII S. ET AL.: "Apoxin I, a novel apoptosis- inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom.", J. BIOL. CHEM., vol. 272, no. 14, 1997, pages 9539 - 9542 *
YASUKAWA K. ET AL.: "Tailoring D-Amino Acid Oxidase from the Pig Kidney to R- Stereoselective Amine Oxidase and its Use in the Deracemization of alpha-Methylbenzylamine.", ANGEW. CHEM. INT. ED. ENGL., vol. 53, no. 17, April 2014 (2014-04-01), pages 4428 - 4431 *

Also Published As

Publication number Publication date
WO2014129537A1 (ja) 2014-08-28
JPWO2014129537A1 (ja) 2017-02-02
JP6362276B2 (ja) 2018-07-25
JP6311998B2 (ja) 2018-04-25
JPWO2014129538A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
CN102618513B (zh) 一种羰基还原酶、基因和突变体及在不对称还原羰基化合物中的应用
AU2016249780B2 (en) Mutant transaminases as well as methods and uses relating thereto
CN104099305A (zh) 一种羰基还原酶突变体及其基因和应用
EP4008777A1 (en) Transaminases
JP5516664B2 (ja) N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子
CN114317507A (zh) 腈水合酶突变体及其应用
JP3943540B2 (ja) 環状l−アミノ酸の立体選択的製造
JP4172861B2 (ja) カンディダボイジニイからのギ酸デヒドロゲナーゼの新規突然変異体、これをコードする新規遺伝子配列および新規のギ酸デヒドロゲナーゼの使用
US7531330B2 (en) Modified S-hydroxynitrile lyase
JP6311998B2 (ja) α−アミノニトリル化合物の製造方法
KR102051018B1 (ko) 오르니틴 탈탄산 효소의 변이주 개발 방법 및 그의 응용
JP2517861B2 (ja) 固定化酵素の製造方法
CN112779243A (zh) 一种L-天冬氨酸-α-脱羧酶及其应用
JP5119783B2 (ja) N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子
JP2009089649A (ja) クロストリジウム・クルベリのジアホラーゼ遺伝子およびその利用
JP4243685B2 (ja) 耐熱性グルタミン酸デカルボキシラーゼ、そのDNA及び該酵素の製造法、並びに該酵素を用いた物質(γ−アミノ酪酸等)の製造方法
US20020102662A1 (en) Methods for racemizing N-acylamino acids and producing optically active amino acids
JP5138271B2 (ja) 高活性アミダーゼ酵素液およびその調製方法
US20070172933A1 (en) Thermally stable amidases
JP4652915B2 (ja) ノルボルナン誘導体の加水分解に関与するdna
JPH05146291A (ja) 新規なジヒドロ葉酸還元酵素及び改変ジヒドロ葉酸還元酵素遺伝子
EP1944366A1 (en) Novel acid-resistant mutant s-hydroxynitrile lyase
CN116265579A (zh) 环己胺氧化酶突变体及其在制备右美沙芬中间体中的应用
JP5291367B2 (ja) 新規加水分解酵素
JPWO2008129873A1 (ja) S体選択性フェニルアラニンアミノムターゼ、これをコードするDNA及び(S)−β−フェニルアラニンの製造方法並びに(S)−β−フェニルアラニン類似体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753509

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015501494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753509

Country of ref document: EP

Kind code of ref document: A1