WO2014129464A1 - Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body - Google Patents

Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body Download PDF

Info

Publication number
WO2014129464A1
WO2014129464A1 PCT/JP2014/053791 JP2014053791W WO2014129464A1 WO 2014129464 A1 WO2014129464 A1 WO 2014129464A1 JP 2014053791 W JP2014053791 W JP 2014053791W WO 2014129464 A1 WO2014129464 A1 WO 2014129464A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
polyimide
resin
laminate according
Prior art date
Application number
PCT/JP2014/053791
Other languages
French (fr)
Japanese (ja)
Inventor
友貴 須藤
正和 片山
平石 克文
拓平 太田
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2015501462A priority Critical patent/JP6445965B2/en
Publication of WO2014129464A1 publication Critical patent/WO2014129464A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminate, a solar cell member, a solar cell, a display device member, a display device, and a method for manufacturing the laminate.
  • Patent Document 1 discloses that a polyimide resin layer is directly formed on a conductor to be a circuit wiring by coating (hereinafter abbreviated as a coating method) as a method for manufacturing a polyimide laminate, and heat A method of forming a plurality of polyimide resin layers having different expansion coefficients by multilayering is disclosed. According to this method, it is possible to provide a flexible printed board having excellent reliability in terms of dimensional stability with respect to temperature change, adhesive strength, flatness after etching, and the like.
  • the coating method means that after applying a polyimide precursor resin solution or a polyimide resin solution to be a polyimide resin layer to the metal layer, the metal layer and the polyimide resin layer are dried only or by heat treatment for drying and imidization. Is a method of adhering.
  • Patent Document 2 discloses a method of forming a flexible printed circuit board by bonding a conductor layer and a resin substrate by thermocompression bonding, and a copper foil surface as a conductor layer is subjected to a roughening process by plating made of copper-cobalt-nickel. And improving the adhesion by roughening the surface of the copper foil.
  • thermocompression bonding method the method of bonding the conductor layer and the resin substrate by thermocompression bonding.
  • solder material with a melting temperature higher than that of lead solder has been used for environmental considerations.
  • the contacting polyimide resin layer is highly heat resistant.
  • Patent Document 3 discloses a method of controlling the plating layer on the copper foil roughening treatment surface, which is a metal layer, to suppress the roughening treatment height, that is, the degree of roughening treatment.
  • this method has a problem that the peel strength between the copper foil and the polyimide resin layer is lowered.
  • the subject of making adhesiveness and heat resistance in a double-sided metal-clad laminate compatible is left.
  • Patent Document 4 discloses an example in which a metal thin film-resin material laminate is applied as a flexible substrate for a CIS solar cell.
  • polyimide resin is used as a resin material.
  • a molybdenum (Mo) film is sputtered as a back electrode on the polyimide resin surface.
  • a light absorption layer is formed above this Mo film.
  • the film formation of the light absorption layer represented by CIGS or CIS is performed at about 500 ° C.
  • the resin material that is an organic substance is a single material or a high-level design of a laminate. Has been.
  • oxygen resistance / water vapor permeability which is an important characteristic when used as a substrate for a solar cell, is hereinafter referred to as barrier property.
  • the present invention solves the above-described problems, and the resin layer in contact with the barrier protective layer made of an inorganic material such as metal has high heat resistance, and further, peeling occurs between the barrier protective layer and the heat resistant resin layer. It aims at providing the laminated body which suppressed generation
  • the present inventors have solved the above problems with a laminate of a combination of a resin layer having specific heat resistance and adhesiveness and a barrier protective layer made of an inorganic material. As a result, the present invention has been completed.
  • the laminate of the present invention is a laminate in which a second layer made of a resin and a first layer made of an inorganic material are laminated, and the thermal weight loss of the resin at 545 ° C. is 1.0% or less. And the peel strength at the interface between the second layer and the first layer is 100 N / m or more. With such a configuration, preferable heat resistance of the second layer is obtained, and high adhesion (peeling resistance) between the second layer and the first layer is obtained.
  • the thermal weight loss of the resin at 545 ° C. is 0.7% or less.
  • the linear thermal expansion coefficient in the plane direction of the first layer is preferably 15 ppm / K or less.
  • a TFT Thin formed of a lower electrode layer or a power generation layer for a device formed on a substrate, for example, a compound semiconductor solar cell, or polysilicon or an oxide for a display device, etc. This is because the thermal stress generated between the semiconductor layer for driving such as a film transistor is reduced, and the occurrence of warpage and peeling during heat treatment can be suppressed.
  • the second layer is formed of one or more resin materials selected from the group consisting of polyimide and derivatives thereof. According to such a condition, the second layer having a small thermogravimetric decrease, heat resistance, and high adhesion to the first layer can be obtained.
  • the first layer is preferably formed of one or two or more metal materials selected from the group consisting of metals, and the group consisting of ferritic stainless steel and titanium. More preferably, it is formed of one or more inorganic materials selected from the above. According to such conditions, the second layer can be supported and high barrier properties can be ensured.
  • the laminate of the present invention is preferably obtained by applying a heat treatment at 300 ° C. or higher after applying the resin or its precursor to the surface of the first layer. It is preferably obtained by performing a heat treatment at a concentration of 10% or less. According to such conditions, the second layer having a small thermogravimetric decrease and heat resistance can be obtained. In particular, when heat treatment is performed under a condition where the oxygen concentration is 10% or less, the resin-inorganic matter in the laminate is obtained. This is because the adhesive strength of the is increased.
  • the present invention is applicable to a solar cell member or solar cell including the laminate.
  • the present invention is applicable to a display device member or a display device including the laminate.
  • the manufacturing method of the laminated body of this invention is the surface of this 1st layer by the process of apply
  • the step of forming the second layer made of the resin on the side surface is performed by roll-to-roll.
  • the heat treatment is preferably performed at an oxygen concentration of 10% or less.
  • the laminate of the present invention is suitable for various applications that require flexibility and heat resistance. Therefore, it is suitable for flexible substrates such as display members such as organic EL having TFT semiconductors that require high-temperature processing, power semiconductor-mounted inverter members characterized by high-temperature operation, and compound semiconductor solar cells typified by chalcopyrites. Applicable to.
  • the resin layer has high heat resistance and not only exhibits excellent dimensional stability, but also suppresses peeling between the inorganic layer and the resin layer in contact therewith and has high adhesiveness.
  • the method for producing a laminate of the present invention is a laminate in which the resin layer has high heat resistance and not only exhibits excellent dimensional stability but also suppresses peeling between the inorganic layer and the resin layer in contact therewith and has high adhesion.
  • the body can be easily manufactured.
  • FIG. 1 is a cross-sectional view of the laminate according to the embodiment.
  • the laminate 10 of the present embodiment is a polyimide layer-containing flexible substrate, and is a laminate obtained by laminating a second layer 2 made of resin and a first layer 1 made of an inorganic substance.
  • the thermal weight loss at 545 ° C. is 1.0% or less, and the peel strength at the interface between the second layer 2 and the first layer 1 is 100 N / m or more.
  • the thermal weight loss at 545 ° C. is a weight reduction rate when heating is performed at a temperature rising rate of 10 ° C./min under a temperature rising range from room temperature to 545 ° C. in a nitrogen stream.
  • the thermal weight reduction is 1.0% or less, the heat resistance of the second layer 2 is high.
  • a flexible substrate used for a compound semiconductor solar cell including CIGS (CuInGaSe) or CIS (CuInSe) In addition, it can be preferably applied to a flexible substrate used in a display device or the like on which a driving semiconductor layer such as a TFT formed of polysilicon or oxide is mounted.
  • the thermal weight reduction at 545 ° C. is preferably 0.7% or less, more preferably 0.4% or less.
  • the peel strength at the interface between the second layer 2 and the first layer 1 is a test piece having a processing line width suitable for the purpose of measurement by patterning and etching the laminate to a line width of 1 to 10 mm. This is the peel strength when the second layer is peeled off in the 180 ° direction using.
  • the higher peel strength is preferably 300 N / m or more, and more preferably 700 N / m or more.
  • the peel strength after heat treatment at 500 ° C. for 60 minutes is preferably 100 N / m or more, more preferably 300 N / m or more, and even more preferably 700 N / m or more.
  • the thermal weight loss exceeds 1.0 or the peel strength is less than 100 N / m, for example, when forming a CIGS solar cell, which is a kind of compound semiconductor solar cell, or for a display device, the TFT There is a possibility that the high temperature condition during the formation of the driving semiconductor layer cannot be endured, or the handling property during the processing process is not sufficiently ensured, and the resin layer-inorganic layer interface peels off.
  • the laminate When the laminate is commercially produced using a substrate of a specific product, such as a display device or a solar cell, it is accompanied by conveyance before and after various processes and treatments required in the production line.
  • a peel of 100 N / m or more is required. By ensuring the strength, the substrate does not peel off as an interlayer adhesion.
  • the laminated body of this invention may arrange
  • the second layer 2 is arranged on both surfaces of the first layer 1, for example, occurrence of warpage of the laminate due to a difference in linear expansion between the first layer and the second layer due to a change in surrounding environment such as temperature. It can also be a suppression means against
  • the laminate of the present invention has a lower electrode layer or a device formed on a substrate, for example, a compound solar cell.
  • a power generation layer or a display device thermal stress generated between the driving semiconductor layer such as a TFT formed of polysilicon or oxide is reduced.
  • a solar cell member or display during high-temperature heat treatment Since generation
  • the linear thermal expansion coefficient in the surface direction of the first layer 1 is more preferably 13 ppm / K or less.
  • the linear thermal expansion coefficient means that the first layer 1 is removed from the produced laminate and only the second layer 2 is taken out as a measurement specimen, and the measurement specimen is 200 ° C. in a nitrogen stream.
  • the temperature of the test piece (second layer 2) is lowered at a constant rate after the temperature is raised to a high temperature range exceeding 50 ° C., and is obtained from the relationship between the temperature difference at that time and the measurement length of the test piece.
  • the 2nd layer 2 will not have a restriction
  • it is 1 type, or 2 or more types of resin materials selected from the group which consists of a polyimide and those derivatives. Can be formed. These are preferable from the viewpoints of heat resistance and adhesion to the first layer 1.
  • the thickness of the second layer 2 is not particularly limited, but the average film thickness is preferably 1 to 100 ⁇ m, more preferably 2 to 8 ⁇ m, and even more preferably 2 to 4 ⁇ m.
  • the average film thickness is less than 1 ⁇ m, the electric insulation tends to be insufficient, and when the average film thickness exceeds 100 ⁇ m, the productivity tends to be impaired.
  • the surface roughness of the second layer 2 on the opposite side of the interface with the first layer 1 is not particularly limited, but preferably there is a problem with the electrode layer formed on the resin layer, such as a crack.
  • Ra average roughness
  • the polyimide used as the second layer and derivatives thereof are obtained by reacting an aromatic diamino compound represented by NH 2 —Ar 1 —NH 2 with a tetracarboxylic acid compound, and are said to be easy to synthesize.
  • an aromatic diamino compound represented by NH 2 —Ar 1 —NH 2 with a tetracarboxylic acid compound, and are said to be easy to synthesize.
  • the first aryl group Ar 1 substituted with two amino groups can be selected from any one , but because it has both heat resistance and a low linear thermal expansion coefficient, the following formula (1) to It is preferable that it is selected from the group represented by (3).
  • the following formula (1) shows bonds and side chains composed of primary to tertiary carbons that are expected to have low heat resistance, and elements other than carbon and carbon that are also expected to have low heat resistance (BC, O—
  • Examples include fluorene-9,10-bisaniline.
  • the following formula (2) shows an example of Ar 1 constituting a monomer for polyimide in which a halogeno group, a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring.
  • a halogeno group a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring.
  • Specific examples include diaminobistrihalogenomethylbiphenyl. These groups may have a plurality of bonds directly bonded to the aromatic ring.
  • X represents a halogen element, preferably fluorine.
  • the following formula (3) shows an example of Ar 1 constituting a monomer that provides a polyimide that does not contain a structure other than an aromatic ring and an imide ring.
  • terphenyldiamine, diaminodiphenylbiphenyl, and the like Can be mentioned.
  • a structure represented by the formula (3) is more preferred, and a structure constituting a phenylenediamine compound is more preferred.
  • the phenylenediamine compound has a plurality of isomers, and may be the same isomer or a combination of a plurality of isomers.
  • Ar 1 may have a substituent, but preferably has no substituent or is substituted with a halogeno group.
  • One or more of these aromatic diamino compounds may be used.
  • tetracarboxylic acid compound to be reacted with the diamino compound examples include aromatic tetracarboxylic acid and acid anhydrides, esterified products, halides, etc., but aromatic tetracarboxylic acid compounds are preferred and are precursors of polyimide resins. In terms of ease of synthesis of the polyamic acid (polyamic acid), the acid anhydride is preferable.
  • aromatic tetracarboxylic acid compound O (CO) 2 Ar 2 (CO) a compound represented by 2 O is mentioned as suitable.
  • the second aryl group Ar 2 substituted with two (CO) 2 O groups can be selected from any one, but for the reason that it has both heat resistance and a low linear thermal expansion coefficient, the following formula: Preferred are those selected from the groups represented by (4) to (6).
  • the substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but a symmetric position around Ar 2 is preferable.
  • the following formula (4) shows bonds and side chains composed of primary to tertiary carbons that are expected to have low heat resistance, and elements other than carbon and carbon that are also expected to have low heat resistance (BC, O— Constructs a monomer for polyimide as shown in the following formula (7) excluding a monomer that gives a polyimide structure having a bond (excluding an imide ring bond) consisting of C, S—C, N—C, P—C, and Se—C)
  • Ar 2 include fluorene-9,10-bisphthalic anhydride.
  • the following formula (5) shows an example of Ar 2 constituting a monomer for polyimide in which a halogeno group, a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring.
  • a halogeno group a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring.
  • Specific examples include halogenopyromellitic anhydride and 4,4′-hexahalogenoisopropylidenebisphthalic anhydride. These groups may have a plurality of bonds directly bonded to the halogenoaromatic ring.
  • X represents a halogen element, preferably fluorine.
  • Ar 2 constituting a monomer that provides a polyimide that does not contain a structure other than an aromatic ring and an imide ring.
  • pyromellitic anhydride, 1, 6, Examples include 7,12-perylenetetracarboxylic dianhydride.
  • Ar 2 represented by the above formulas (4) to (6) more preferably the structure represented by the formula (6), more preferably a biphenyltetracarboxylic dianhydride or a naphthalenetetracarboxylic dianhydride. It is a structure to do.
  • Biphenyltetracarboxylic dianhydride and naphthalenetetracarboxylic dianhydride each have a plurality of isomers, both of which may be the same isomer or a combination of isomers, biphenyltetracarboxylic dianhydride and A combination of naphthalenetetracarboxylic dianhydrides may be used.
  • Ar 2 may have a substituent, but preferably does not have a substituent or is substituted with a halogeno group.
  • aromatic acid anhydride compounds may be used.
  • a more preferable combination of the aromatic diamino compound and the tetracarboxylic acid compound is a combination of a biphenyltetracarboxylic acid compound and a phenylenediamine compound, or biphenyltetracarboxylic acid.
  • the content of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl is preferably 5% or less with respect to the total amount of the aromatic diamino compound, more preferably 2. 5% or less.
  • the polyimide resin constituting the second layer 2 is prepared by reacting, for example, the aromatic diamino compound and the tetracarboxylic acid compound in an approximately equimolar amount in a solvent, and polyamic acid (polyamic acid) which is a polyimide resin precursor. ) And an imidization reaction.
  • the synthesis of the polyamic acid which is a precursor of the polyimide resin
  • the polyamic-acid solution or polyimide resin solution which is a precursor is apply
  • the coating layers of the polyamic acid solution and the polyimide resin solution, which are precursors are collectively referred to as a pre-polyimide resin layer.
  • the polyimide used as the second layer 2 can be manufactured by the following method, for example. That is, the aromatic diamino compound and tetracarboxylic dianhydride are mixed in a solvent at an approximately equimolar ratio, and reacted in a reaction temperature range of 0 to 200 ° C., preferably in a range of 0 to 100 ° C. There is a method for obtaining a polyimide resin by obtaining a polyamic acid solution as a precursor and imidizing the solution.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • examples include dioxane, tetrahydrofuran, diglyme, and triglyme.
  • imidization may be performed after applying the precursor polyamic acid solution to the first layer 1.
  • the pre-polyimide resin layer applied to the first layer 1 may be either the polyamic acid solution that is the precursor or the polyimide resin solution that has been imidized, but if the polyimide is not solvent-soluble, a viscosity adjustment viewpoint. Therefore, a polyamic acid solution as a precursor is preferable.
  • the first layer 1 is an inorganic substance, and the type of the first layer 1 is not limited as long as the performance as a laminate can be ensured.
  • copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium It is formed of one or more metal materials or glass selected from the group consisting of molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium or alloys thereof. From the viewpoints of heat resistance and adhesiveness to the second layer 2, it is preferable.
  • the base material is difficult to break, and particularly preferably at the time of preparing a laminate or assembling a display device or a solar cell or Austenitic stainless steel, martensitic stainless steel, duplex stainless steel, precipitation hardened stainless steel, ferritic stainless steel and titanium in terms of resistance to rust during use, and more preferably ferritic stainless steel in terms of low linear thermal expansion And titanium.
  • the layer thickness of the first layer 1 is preferably 5 to 300 ⁇ m, more preferably 20 to 200 ⁇ m.
  • the layer thickness exceeds 300 ⁇ m, continuous processes such as roll-to-roll tend to be difficult, and when the layer thickness is less than 20 ⁇ m, the self-supporting property tends to decrease.
  • sizing, chromium plating, nickel plating, chromium ⁇ are applied to the surface for the purpose of adjusting and modifying the suitability of the surface properties and improving the adhesive strength with the second layer 2.
  • the laminate manufacturing method of the present invention will be described below by taking a laminate in which the second layer is polyimide as an example of the embodiment, but the present invention is not limited to the embodiment.
  • FIG. 2 is a flowchart showing the method for manufacturing the laminate according to the present embodiment.
  • a polyamic acid solution or a polyimide resin solution that is a precursor to be the second layer 2 is applied to an inorganic material to be the first layer 1, and a pre-polyimide resin is then applied.
  • a layer is formed (S1).
  • the polyamic acid solution and the polyimide resin solution which are precursors are collectively referred to as a pre-polyimide resin layer.
  • the second layer 2 and the pre-polyimide resin layer are bonded together by drying [heat removal of the solvent] (S2) and imidization [heat curing treatment] (S3), and the second layer 2 is formed.
  • Polyimide is formed on the inorganic material.
  • drying and imidization are performed when a polyamic acid solution as a precursor is applied, and only drying is performed when a polyimide resin solution is applied.
  • a laminate made of polyimide and an inorganic material is formed. A detailed manufacturing method will be described later.
  • Step (S1) of continuously applying a resin or a precursor thereof to the surface of the first layer made of an inorganic substance, and a second step made of the resin on the surface of the first layer by heat treatment at 300 ° C. or higher.
  • Steps (S2, S3) for forming the layer can be performed roll-to-roll.
  • a pre-polyimide resin layer is applied to the first layer 1.
  • the pre-polyimide resin layer applied to the first layer 1 becomes the second layer 2.
  • an arbitrary method can be selected as a coating method for forming a plurality of pre-polyimide resin layers on the first layer 1, but the following three methods are preferable from the viewpoint of coating accuracy.
  • pre-polyimide resin layers are simultaneously coated on a conductor by a multilayer die.
  • another pre-polyimide resin layer is applied onto the undried application surface by a knife coating method, a die method, or the like.
  • a pre-polyimide resin layer is applied by an arbitrary method and dried, and then another pre-polyimide resin layer is applied to the dry coated surface by an arbitrary method.
  • the knife coating method described here is a method in which a resin solution is leveled and applied with a bar, squeegee, knife or the like.
  • any method can be utilized. After the pre-polyimide resin layer is applied and formed, a laminate including a pre-dried uncured pre-polyimide resin layer, Heat treatment at a high temperature (200 ° C. or higher) by allowing it to stand for a certain period of time in a hot air drying furnace that can be set to a predetermined temperature, or by continuously moving within the drying furnace area range to ensure a predetermined drying and curing time ), A stacked body having one or more second layers can be formed.
  • a high temperature 200 ° C. or higher
  • the pre-polyimide resin layer is applied, and then the pre-dried uncured laminate is wound into a roll and then dried at a high temperature and heat-cured. Processing methods are also possible.
  • the solvent is removed from the pre-polyimide resin layer by heat treatment, and when the polyimide precursor resin solution is used, the imide ring is further closed.
  • a final heat treatment temperature for making an imidized (cured) polyimide resin layer and for volatilizing an adsorbed component derived from atmospheric components and moisture distributed on the surface of the first inorganic material Is preferably 300 ° C. or higher. More preferably, it is 370 degreeC or more, More preferably, it is 430 degreeC or more.
  • the heat treatment can be performed under any conditions in an inert gas such as nitrogen or argon and in the air. Moreover, it can carry out under any conditions of normal pressure, reduced pressure, increased pressure and vacuum. Among these, it is preferable to perform the heat treatment under the condition that the oxygen concentration is 10% or less because the adhesive force between the laminate and the inorganic substance including the resin-metal is increased. In nitrogen or argon, the oxygen concentration of 5% or less is more preferable because the adhesive strength between the laminate and the resin-metal-containing inorganic substance is further increased. The lower the oxygen concentration, the higher the adhesive strength between the laminate and the resin-metal-containing inorganic substance, and the oxygen concentration is more preferably 1% or less, and most preferably 0.5% or less.
  • the heat treatment in a control condition range where the oxygen concentration is 10% or less because it becomes possible to appropriately manage the adhesive force expression between the resin-metal-containing inorganic substance in the laminate.
  • the inorganic layer of the laminate is copper
  • copper is a highly active metal species, so it is easy to form an oxide by reaction with oxygen, and the oxide suppresses or attenuates further reaction with oxygen.
  • the oxygen in the surrounding atmosphere is small, that is, the oxygen concentration is close to 0%.
  • the oxide film produced by reacting with oxygen in the surrounding atmosphere exerts an action of suppressing or attenuating further reaction with oxygen. Therefore, it is possible to prevent the occurrence of corrosion and rust.
  • the resin solution concentration when using the precursor polyamic acid solution as the pre-polyimide resin layer is a polyimide precursor and depends on the degree of polymerization of the polyamic acid which is a polymer, but is usually 5 to 30% by weight, preferably Is 10 to 20% by weight. If the polymer concentration is higher than 5% by weight, a sufficient film thickness can be obtained by one application. If the polymer concentration is lower than 30% by weight, the viscosity of the resin solution does not become too high, and it is good in terms of uniformity and smoothness. It is because it can apply
  • a single polyimide layer is formed as the second layer on the surface.
  • An inorganic material may be bonded.
  • thermocompression bonding when the polyimide layer and the inorganic material are bonded together. That is, a hydro press, a vacuum type hydro press, an autoclave pressurizing vacuum press, a continuous thermal laminator, or the like can be used.
  • the vacuum hydropress is a preferable thermocompression bonding method because a sufficient pressing pressure can be obtained and oxidation of the conductor when a metal foil is used as the first layer can be prevented.
  • the hot press temperature at the time of thermocompression bonding is not particularly limited, but it is preferably higher than the glass transition temperature of the polyimide resin used.
  • the hot press pressure is suitably 0.1 to 50 MPa (1 to 500 kg / cm 2), although it depends on the type of press equipment used. If the press temperature during thermocompression bonding becomes too high, there is a concern that problems such as deterioration of the inorganic layer and the polyimide resin layer may occur.
  • the resin layer has a thermal weight reduction at 545 ° C. of 1.0% or less, and the peel strength at the interface between the inorganic material and the resin layer is 100 N / m or more. Bond strength is very good. In other words, the compatibility with high heat resistance is achieved. For this reason, display members such as organic EL having TFT (Thin Film Transistor) semiconductors that require high temperature processing, inverter members equipped with power semiconductors characterized by high temperature operation, compound semiconductor solar cell substrates represented by chalcopyrite systems, etc. It can be suitably used for various materials that require heat resistance and flexibility.
  • TFT Thin Film Transistor
  • the above-mentioned display member requires different heat resistance levels depending on the type of TFT material used. For example, when the material type is LTPS [Low Temperature Polysilicon], heat resistance of about 450 to 460 ° C. is required.
  • IGZO semiconductor oxide which is an oxide of indium (In), gallium (Ga) and zinc (Zn)
  • the required laminated body of this embodiment can be used suitably as said display member.
  • FIG. 3 is a cross-sectional view of an example of the flexible solar cell of the present embodiment, and is formed using the laminate 10 that is the polyimide layer-containing flexible substrate described with reference to FIG.
  • the solar cell 20 includes a lower electrode (back electrode) 6 on the second layer 2 which is a polyimide layer (insulating layer) of the laminate 10 which is a polyimide layer-containing flexible substrate, and a photoelectric conversion layer (light) on the lower electrode 6.
  • the structure has a transparent electrode (upper electrode) 8, and a lower electrode 6 and a takeout electrode 9 connected to the transparent electrode 8 on the absorption layer 7 and the photoelectric conversion layer 7.
  • the lower electrode 6 is not particularly limited as long as it is a conductive material.
  • a metal or semiconductor having a volume resistivity of 6 ⁇ 10 6 ⁇ ⁇ cm or less can be used.
  • molybdenum (Mo) can be used.
  • the thickness of the lower electrode 6 is preferably 0.1 to 1 ⁇ m from the viewpoint of flexibility.
  • the photoelectric conversion layer 7 preferably has a good light absorption, that is, a large light absorption coefficient.
  • a compound semiconductor is preferable, and a chalcopyrite-based I-III-VI group compound composed of Cu, In, Ga, Al, Se, S or the like is used.
  • the thickness of the photoelectric conversion layer 7 is preferably 0.1 to 4 ⁇ m from the viewpoint of achieving both power generation efficiency and flexibility.
  • the transparent electrode 8 is an electrode on the light incident side, a material having high transparency is used so that the light can be efficiently collected.
  • a material having high transparency is used so that the light can be efficiently collected.
  • zinc oxide (ZnO) or indium tin oxide (ITO) is used.
  • the thickness of the transparent electrode 8 is 0.1 to 0.3 ⁇ m from the viewpoint of flexibility.
  • an antireflection film may be formed in contact with the transparent electrode 8.
  • the extraction electrode 9 for example, metals and alloys such as Ni, Al, Ag, Au, and NiCr can be used as materials.
  • a Cd-based material such as CdS, ZnS, ZnO, ZnO 1-X S X , Zn (S, O, OH) X , Zn 1-X Mg X O, etc.
  • An In-based buffer layer (not shown) such as Zn-based, InS, In (S, OH) X may be provided.
  • FIG. 4 is a flowchart showing a method for manufacturing the flexible solar cell of the present embodiment.
  • an electrode material for example, molybdenum is laminated on the second layer 2 that is a polyimide layer of the laminate 10 that is a polyimide layer-containing flexible substrate to form the lower electrode 6 (S11).
  • molybdenum is stacked on the second layer 2 by sputtering or vapor deposition.
  • the compound semiconductor material is laminated on the lower electrode 6 by any method such as sintering, chemical precipitation, sputtering, proximity sublimation, multi-source deposition, and selenization.
  • a method of forming a thin film by sequentially applying a CdS paste and a CdTe paste and sintering at 600 ° C. or lower can be exemplified. Further, instead of this method, a method of forming a CdTe film by proximity sublimation after forming a CdS film by chemical precipitation or sputtering can be employed.
  • zinc (Zn) may be mixed into the compound semiconductor film.
  • zinc By mixing zinc, the photoelectric conversion efficiency can be improved.
  • a method of applying an aqueous solution such as zinc sulfate, zinc chloride, or zinc iodide to the compound semiconductor film can be used. Or you may immerse the laminated body which formed even the photoelectric converting layer 7 in these aqueous solution.
  • a transparent electrode 8 of zinc oxide (ZnO) or indium tin oxide (ITO) doped with aluminum is laminated thereon by a sputtering method or the like (S13). Then, it connects with each of the lower electrode 6 and the transparent electrode 8, and each taking-out electrode 9 is formed (S14).
  • Aluminum or nickel can be used as the material for the extraction electrode.
  • an alkali metal supply layer may be formed between the second layer 2 and the lower electrode 6.
  • the effect of improving the photoelectric conversion efficiency can be expected when a part of the alkali metal permeates and diffuses into the photoelectric conversion layer 7 from the alkali metal supply layer.
  • the thickness of the stainless steel foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd. is 30 ⁇ m
  • the coefficient of thermal expansion is 11 ppm / K
  • the surface roughness on the side in contact with the first layer (Ra ) was 0.08 ⁇ m ferritic stainless steel foil.
  • peel strength The adhesive force between the inorganic layer and the polyimide resin layer is such that the laminate is subjected to a pattern etching process with a line width of 1 mm, and the resin layer is applied using a tensile tester (Strograph-M1) manufactured by Toyo Seiki Co., Ltd.
  • the peel strength was measured by peeling off in the 180 ° direction.
  • attachment between a process fine wire and a resin interface and being difficult to peel was made impossible to peel.
  • the surface roughness of the stainless steel layer was measured using a laser microscope (VK-8710) manufactured by Keyence Corporation on a stainless steel foil cut to 2 cm ⁇ 2 cm.
  • the surface roughness (Ra) on the side in contact with the first layer of the stainless steel foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd. used as the first layer was 0.08 ⁇ m.
  • Performance evaluation Example 1 Prepare the ferritic stainless steel foil having a thickness of 30 ⁇ m described above, and apply the polyamic acid a solution prepared in advance in Synthesis Example 1 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate having a polyimide layer a having a film thickness of about 8 ⁇ m was obtained.
  • Example 2 Prepare the 30 ⁇ m-thick ferritic stainless steel foil described above, and apply the polyamic acid b solution prepared in advance in Synthesis Example 2 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate comprising a polyimide layer b having a film thickness of about 8 ⁇ m was obtained.
  • Example 3 Prepare the 30 ⁇ m-thick ferritic stainless steel foil described above, and apply the polyamic acid c solution prepared in advance in Synthesis Example 2 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate having a polyimide layer c having a film thickness of about 8 ⁇ m was obtained.
  • Example 4 A laminate including the polyimide layer d was obtained in the same manner as in Example 1 except that the polyamic acid d solution prepared in advance in Synthesis Example 4 was used.
  • Example 5 Prepare the ferritic stainless steel foil having a thickness of 30 ⁇ m described above, and apply the polyamic acid e solution prepared in advance in Synthesis Example 5 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. A laminated body having a polyimide layer e having a film thickness of about 8 ⁇ m after curing was obtained.
  • Comparative Example 1 A laminate including the polyimide layer f was obtained in the same manner as in Example 1 except that the polyamic acid f solution prepared in advance in Synthesis Example 6 was used.
  • Comparative Example 2 A laminate including the polyimide layer g was obtained in the same manner as in Example 1 except that the polyamic acid g solution prepared in advance in Synthesis Example 7 was used.
  • Comparative Example 3 A laminate including the polyimide layer h was obtained in the same manner as in Example 1 except that the polyamic acid h solution prepared in advance in Synthesis Example 8 was used.
  • Comparative Example 4 A laminate was obtained in the same manner as in Example 1 except that the heating condition was changed from the nitrogen atmosphere to the atmosphere.
  • the thermal weight reduction shown in Table 1 is a case where the resin layer thickness is about 8 ⁇ m.
  • the thermal weight reduction is further reduced. Reduce and improve.
  • the thermal weight loss at 545 ° C. is 1.0% or less, and the peel strength at the interface between the second layer and the first layer is 100 N / m. Strong adhesion was exhibited, and in the measurement of peel strength, it was a strong adhesion state that could not be peeled off. Further, as shown in Table 1 above, in Examples 1, 3 and 4, the thermal weight loss at 545 ° C. is 0.7% or less, and the peel strength at the interface between the second layer and the first layer is Strong adhesion was developed exceeding 100 N / m, and in the measurement of peel strength, it was in a strong adhesion state that could not be peeled off.
  • Comparative Example 1 has a thermal weight reduction of 10.1%, and Comparative Examples 2 and 3 also have a thermal weight reduction greatly exceeding 1.0%, which is insufficient in heat resistance. Further, the resin layer was broken during the peel strength measurement, and the peel strength at the interface could not be measured. Comparative Example 4 has a peel strength of 10 N / m, less than 100 N / m, and is inferior in adhesion performance with peeling.
  • Applications include display substrate materials such as liquid crystal and organic EL that involve TFT fabrication, SiC power device substrate materials that are subject to high-temperature use, organic EL lighting substrate materials that continue for long periods of time, and compounds that require high-temperature conditions in the manufacturing process Examples include products, parts, members, and the like, such as semiconductor-based solar cell substrate materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

In order to provide a laminate body of balanced heat resistance and adhesiveness that has a resin layer and a barrier protective layer comprising an inorganic substance such as a metal, a solar cell member using the laminate body, a solar cell, a display device member, a display device, and a method for manufacturing the laminate body, the present invention is a laminate body in which are layered a first layer comprising an inorganic substance such as a metal, and a second layer comprising a resin, wherein a configuration is adopted in which the thermal weight reduction of the resin at 545°C is no greater than 1.0%, and the peel strength of the boundary between the second layer and the first layer is at least 100 N/m.

Description

積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法LAMINATE, SOLAR CELL MEMBER, SOLAR CELL, DISPLAY DEVICE MEMBER, DISPLAY DEVICE AND LAMINATE MANUFACTURING METHOD
 本発明は、積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法に関するものである。 The present invention relates to a laminate, a solar cell member, a solar cell, a display device member, a display device, and a method for manufacturing the laminate.
 近年、携帯電話やデジタルカメラ、デジタルビデオ、PDA、カーナビゲーター、ハードディスク、その他の各種電子機器の高機能化、小型化および軽量化に伴い、これらの基板材料として、フレキシブル性を有し、機器内の設置の自由度が高く、薄型化が容易なフレキシブル基板が採用されている。
 より高度化していくこれらの電子機器に用いられるフレキシブル基板に関しては、さらなる小型高密度化、多層化、ファイン化および高耐熱性化等の要求が高まってきている。
In recent years, with the increase in functionality, miniaturization, and weight reduction of various electronic devices such as mobile phones, digital cameras, digital video, PDAs, car navigators, hard disks, etc., these substrate materials have flexibility, A flexible substrate that has a high degree of freedom in installation and can be easily thinned is employed.
With respect to flexible substrates used in these increasingly sophisticated electronic devices, there are increasing demands for further miniaturization, higher density, multilayering, finer, and higher heat resistance.
 このような要求に応えるため、特許文献1は、ポリイミド積層体の製造方法として、回路配線となる導体上に直接ポリイミド樹脂層を塗工によって形成し(以後、塗工法と略称する)、かつ熱膨張係数の異なる複数のポリイミド樹脂層を多層化して形成する方法を開示している。この方法によれば、温度変化に対する寸法の安定性、接着力、さらにはエッチング後の平面性等で信頼性に優れたフレキシブルプリント基板を提供することが可能である。 In order to meet such a demand, Patent Document 1 discloses that a polyimide resin layer is directly formed on a conductor to be a circuit wiring by coating (hereinafter abbreviated as a coating method) as a method for manufacturing a polyimide laminate, and heat A method of forming a plurality of polyimide resin layers having different expansion coefficients by multilayering is disclosed. According to this method, it is possible to provide a flexible printed board having excellent reliability in terms of dimensional stability with respect to temperature change, adhesive strength, flatness after etching, and the like.
 なお、ここで塗工法とは、ポリイミド樹脂層となるポリイミド前駆体樹脂溶液またはポリイミド樹脂溶液を金属層に塗布後、乾燥のみ、または乾燥およびイミド化のための加熱処理によって金属層とポリイミド樹脂層を接着させる方法をいうものとする。 Here, the coating method means that after applying a polyimide precursor resin solution or a polyimide resin solution to be a polyimide resin layer to the metal layer, the metal layer and the polyimide resin layer are dried only or by heat treatment for drying and imidization. Is a method of adhering.
 また、特許文献2は、導体層と樹脂基板を加熱圧着により貼り合わせてフレキシブルプリント基板を形成する方法において、導体層である銅箔表面を銅-コバルト-ニッケルからなるめっきによる粗化処理を施して接着性を向上させる方法、すなわち、銅箔表面の粗化による改質を開示している。 Patent Document 2 discloses a method of forming a flexible printed circuit board by bonding a conductor layer and a resin substrate by thermocompression bonding, and a copper foil surface as a conductor layer is subjected to a roughening process by plating made of copper-cobalt-nickel. And improving the adhesion by roughening the surface of the copper foil.
 以後、導体層と樹脂基板を加熱圧着により貼り合わせる方法を「加熱圧着法」と略称する場合がある。 Hereinafter, the method of bonding the conductor layer and the resin substrate by thermocompression bonding may be abbreviated as “thermocompression bonding method”.
 ところで、フレキシブルプリント基板における配線又は半導体素子接続において、環境への配慮から、鉛はんだより溶融温度の高い鉛フリーはんだ材料を用いるようになったため、はんだ接合温度の上昇に対応すべく、金属層に接するポリイミド樹脂層が高耐熱性化している。 By the way, in connection with wiring or semiconductor elements on flexible printed circuit boards, lead-free solder material with a melting temperature higher than that of lead solder has been used for environmental considerations. The contacting polyimide resin layer is highly heat resistant.
 そのため、ポリイミドの金属層への密着性が低下し、加熱圧着法で金属層とポリイミド樹脂層とを貼り合わせるとき、加熱圧着時に金属層とポリイミド樹脂層との間に剥離が発生し易くなるという問題がある。この剥離により、フレキシブルプリント基板に回路を形成する時に酸洗浄液の浸透による配線剥れが発生する等の、金属層とポリイミド樹脂層との接着信頼性が低下するという問題があった。 For this reason, the adhesion of the polyimide to the metal layer is reduced, and when the metal layer and the polyimide resin layer are bonded together by the thermocompression bonding method, peeling between the metal layer and the polyimide resin layer is likely to occur during thermocompression bonding. There's a problem. Due to this peeling, there is a problem that the reliability of adhesion between the metal layer and the polyimide resin layer is lowered, such as wiring peeling due to permeation of the acid cleaning liquid when a circuit is formed on the flexible printed board.
 この問題に対して、特許文献3は、金属層である銅箔粗化処理面のめっき層を制御して、粗化処理高さ、すなわち粗化処理度合いを抑制する方法を開示している。
 しかしながら、この方法では銅箔-ポリイミド樹脂層間の剥離(ピール)強度が低下するという問題がある。このように、両面金属張積層板における接着性と耐熱性を両立させるという課題が残されていた。
In response to this problem, Patent Document 3 discloses a method of controlling the plating layer on the copper foil roughening treatment surface, which is a metal layer, to suppress the roughening treatment height, that is, the degree of roughening treatment.
However, this method has a problem that the peel strength between the copper foil and the polyimide resin layer is lowered. Thus, the subject of making adhesiveness and heat resistance in a double-sided metal-clad laminate compatible is left.
 ところで、太陽電池については、薄膜系Si(アモルファスSiを含む)より変換効率の高い化合物半導体系太陽電池の一種であるCIS(CuInSe)系及びCIGS(CuInGaSe)系太陽電池が注目されている。
 特許文献4は、CIS系太陽電池用のフレキシブル基板として、金属薄膜-樹脂材料積層体を適用した例を開示しており、実施例では、樹脂材料としてポリイミド樹脂が使用されている。このポリイミド樹脂面上に裏面電極としてモリブデン(Mo)膜をスパッタリングしている。通常、電極となるMo膜のスパッタリングで成膜した後に、太陽電池モジュールとして必要なスクライブラインを形成した上で、このMo膜の上側に光吸収層を成膜する。
 CIGSあるいはCISに代表される様な光吸収層の成膜は500℃程度で行われるが、そのような高温領域においては、有機物である樹脂材料について、材料単体または積層体の高度な設計が要望されている。
By the way, for solar cells, CIS (CuInSe) and CIGS (CuInGaSe) solar cells, which are a kind of compound semiconductor solar cells having higher conversion efficiency than thin-film Si (including amorphous Si), are attracting attention.
Patent Document 4 discloses an example in which a metal thin film-resin material laminate is applied as a flexible substrate for a CIS solar cell. In the examples, polyimide resin is used as a resin material. A molybdenum (Mo) film is sputtered as a back electrode on the polyimide resin surface. Usually, after film-forming by sputtering of Mo film used as an electrode, after forming a scribe line required as a solar cell module, a light absorption layer is formed above this Mo film.
The film formation of the light absorption layer represented by CIGS or CIS is performed at about 500 ° C. However, in such a high temperature region, it is desired that the resin material that is an organic substance is a single material or a high-level design of a laminate. Has been.
 しかし、特許文献4に記載の発明によれば、CIGS層等CIS系太陽電池の構成成分を上述の高温で成膜した際に、耐熱性が十分でないため、樹脂材料の劣化や積層体界面の剥離等が起こる可能性がある。 However, according to the invention described in Patent Document 4, when the constituent components of the CIS solar cell such as the CIGS layer are formed at the above-described high temperature, the heat resistance is not sufficient. Peeling may occur.
 上記の積層体において、太陽電池用の基板として用いる際に重要な特性となる耐酸素・水蒸気透過性を、以下においてバリア性と称する。 In the above laminate, oxygen resistance / water vapor permeability, which is an important characteristic when used as a substrate for a solar cell, is hereinafter referred to as barrier property.
特公平6-93537号公報Japanese Patent Publication No. 6-93537 特開平8-335775号公報JP-A-8-335775 WO2010/010892WO2010 / 010892 特開平11-135811号公報Japanese Patent Laid-Open No. 11-135811 特開2000-160246号公報JP 2000-160246 A 特開平9-302415号公報Japanese Patent Laid-Open No. 9-302415
 本発明は、上述した課題を解決し、金属等の無機物からなるバリア性保護層と接する樹脂層が高い耐熱性を有し、さらにバリア性保護層と耐熱性の樹脂層との間に生じる剥離の発生を抑制し、かつ、バリア性保護層と樹脂層との接着性を向上させた積層体を提供することを目的とする。
 すなわち、本発明は、上述した課題を解決して、無機物からなるバリア性保護層-樹脂層の積層体における耐熱性と接着性の両立を図ることを目的とする。
The present invention solves the above-described problems, and the resin layer in contact with the barrier protective layer made of an inorganic material such as metal has high heat resistance, and further, peeling occurs between the barrier protective layer and the heat resistant resin layer. It aims at providing the laminated body which suppressed generation | occurrence | production of this and improved the adhesiveness of a barrier property protective layer and a resin layer.
That is, an object of the present invention is to solve the above-described problems and to achieve both heat resistance and adhesiveness in a laminate of a barrier protective layer-resin layer made of an inorganic material.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の耐熱性と接着性を有する樹脂層及び無機物からなるバリア性保護層の組合せの積層体により、上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have solved the above problems with a laminate of a combination of a resin layer having specific heat resistance and adhesiveness and a barrier protective layer made of an inorganic material. As a result, the present invention has been completed.
 すなわち、本発明の積層体は、樹脂からなる第2の層及び無機物からなる第1の層を積層した積層体であって、前記樹脂の545℃での熱重量減少が1.0%以下であり、かつ前記第2の層及び前記第1の層の界面のピール強度が100N/m以上であることを特徴とする。
 このような構成であると、第2の層の好ましい耐熱性が得られ、第2の層と第1の層の間の高い接着性(耐剥離性)が得られる。
That is, the laminate of the present invention is a laminate in which a second layer made of a resin and a first layer made of an inorganic material are laminated, and the thermal weight loss of the resin at 545 ° C. is 1.0% or less. And the peel strength at the interface between the second layer and the first layer is 100 N / m or more.
With such a configuration, preferable heat resistance of the second layer is obtained, and high adhesion (peeling resistance) between the second layer and the first layer is obtained.
 また、好ましくは、本発明の積層体は、前記樹脂の545℃での熱重量減少が0.7%以下である。 Also preferably, in the laminate of the present invention, the thermal weight loss of the resin at 545 ° C. is 0.7% or less.
 また、本発明の積層体は、前記第1の層の面方向の線熱膨張係数が15ppm/K以下であることが好ましい。
 このような条件によれば、基板上に形成するデバイス、例えば化合物半導体系太陽電池であれば下部電極層や発電層、あるいは表示装置であればポリシリコンや酸化物などで形成されるTFT(Thin Film Transistor)などの駆動用の半導体層との間に発生する熱応力が小さくなり、熱処理時などにおける反りや剥離の発生を抑制できるためである。
In the laminate of the present invention, the linear thermal expansion coefficient in the plane direction of the first layer is preferably 15 ppm / K or less.
According to such conditions, a TFT (Thin formed of a lower electrode layer or a power generation layer for a device formed on a substrate, for example, a compound semiconductor solar cell, or polysilicon or an oxide for a display device, etc. This is because the thermal stress generated between the semiconductor layer for driving such as a film transistor is reduced, and the occurrence of warpage and peeling during heat treatment can be suppressed.
 また、本発明の積層体は、前記第2の層が、ポリイミド及びその誘導体からなる群から選択された1種または2種以上の樹脂材料で形成されてなることが好ましい。
 このような条件によれば、熱重量減少が小さく、耐熱性を有し、第1の層との高い接着性を有する第2の層とすることができる。
In the laminate of the present invention, it is preferable that the second layer is formed of one or more resin materials selected from the group consisting of polyimide and derivatives thereof.
According to such a condition, the second layer having a small thermogravimetric decrease, heat resistance, and high adhesion to the first layer can be obtained.
 また、本発明の積層体は、前記第1の層が、金属からなる群から選択された1種または2種以上の金属材料で形成されてなることが好ましく、フェライト系ステンレス及びチタンからなる群から選択された1種または2種以上の無機物の材料で形成されてなることが更に好ましい。
 このような条件によれば、第2の層を支持し、高いバリア性を確保することができる。
In the laminate of the present invention, the first layer is preferably formed of one or two or more metal materials selected from the group consisting of metals, and the group consisting of ferritic stainless steel and titanium. More preferably, it is formed of one or more inorganic materials selected from the above.
According to such conditions, the second layer can be supported and high barrier properties can be ensured.
 また、本発明の積層体は、前記第1の層の表面に前記樹脂またはその前駆体を塗布した後、300℃以上における加熱処理を施すことによって得られることが好ましく、さらに前記加熱処理として酸素濃度10%以下における加熱処理を施すことによって得られることが好ましい。
 このような条件によれば、熱重量減少が小さく、耐熱性を有する第2の層とすることができ、特に酸素濃度が10%以下の条件で熱処理を行うと、積層体における樹脂-無機物との接着力が高くなるからである。
The laminate of the present invention is preferably obtained by applying a heat treatment at 300 ° C. or higher after applying the resin or its precursor to the surface of the first layer. It is preferably obtained by performing a heat treatment at a concentration of 10% or less.
According to such conditions, the second layer having a small thermogravimetric decrease and heat resistance can be obtained. In particular, when heat treatment is performed under a condition where the oxygen concentration is 10% or less, the resin-inorganic matter in the laminate is obtained. This is because the adhesive strength of the is increased.
 また、本発明は、前記積層体を含む太陽電池用部材または太陽電池に適用可能である。また、本発明は、前記積層体を含む表示装置用部材または表示装置に適用可能である。 Further, the present invention is applicable to a solar cell member or solar cell including the laminate. In addition, the present invention is applicable to a display device member or a display device including the laminate.
 また、本発明の積層体の製造方法は、無機物からなる第1の層の表面に樹脂またはその前駆体を連続的に塗布する工程と、300℃以上における加熱処理によって該第1の層の表面または側面に上記樹脂からなる第2の層を形成する工程とをロール・トゥ・ロールで行うことを特徴とする。
 また、前記加熱処理を、酸素濃度10%以下において行うことが好ましい。
Moreover, the manufacturing method of the laminated body of this invention is the surface of this 1st layer by the process of apply | coating resin or its precursor continuously on the surface of the 1st layer which consists of an inorganic substance, and the heat processing in 300 degreeC or more. Alternatively, the step of forming the second layer made of the resin on the side surface is performed by roll-to-roll.
The heat treatment is preferably performed at an oxygen concentration of 10% or less.
 本発明の積層体は、フレキシブル性及び耐熱性が求められる種々の用途に適している。
 従って、例えば、高温処理を要するTFT半導体を有する有機EL等の表示部材、高温域作動を特徴とするパワー半導体搭載のインバータ部材、カルコパライト系に代表される化合物半導体系太陽電池などのフレキシブル基板に好適に適用できる。
The laminate of the present invention is suitable for various applications that require flexibility and heat resistance.
Therefore, it is suitable for flexible substrates such as display members such as organic EL having TFT semiconductors that require high-temperature processing, power semiconductor-mounted inverter members characterized by high-temperature operation, and compound semiconductor solar cells typified by chalcopyrites. Applicable to.
 従来技術の積層体では、電気絶縁性や耐酸素・水蒸気透過性(以下「バリア性」という)の低下などの不具合が発生し、太陽電池として十分な変換効率または耐久性が得られないという不利益があったが、本発明によれば、実用に耐え得る化合物半導体系太陽電池用のフレキシブル積層体の基板を提供できる。 In the prior art laminates, problems such as a decrease in electrical insulation and oxygen / water vapor permeability (hereinafter referred to as “barrier property”) occur, so that sufficient conversion efficiency or durability as a solar cell cannot be obtained. Although there was a profit, according to the present invention, it is possible to provide a flexible laminate substrate for a compound semiconductor solar cell that can withstand practical use.
 本発明の積層体は、樹脂層が高い耐熱性を有し、優れた寸法安定性を示すだけでなく、無機物層とそれと接する樹脂層間の剥離を抑制し、高い接着性を有する。 In the laminate of the present invention, the resin layer has high heat resistance and not only exhibits excellent dimensional stability, but also suppresses peeling between the inorganic layer and the resin layer in contact therewith and has high adhesiveness.
 本発明の積層体の製造方法は、樹脂層が高い耐熱性を有し、優れた寸法安定性を示すだけでなく、無機物層とそれと接する樹脂層間の剥離を抑制し、高い接着性を有する積層体を、容易に製造することができる。 The method for producing a laminate of the present invention is a laminate in which the resin layer has high heat resistance and not only exhibits excellent dimensional stability but also suppresses peeling between the inorganic layer and the resin layer in contact therewith and has high adhesion. The body can be easily manufactured.
本発明の実施の形態の積層体の断面図である。It is sectional drawing of the laminated body of embodiment of this invention. 本発明の実施の形態の積層体の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the laminated body of embodiment of this invention. 本発明の実施の形態のフレキシブル太陽電池の断面図である。It is sectional drawing of the flexible solar cell of embodiment of this invention. 本発明の実施の形態のフレキシブル太陽電池の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the flexible solar cell of embodiment of this invention.
 以下、本発明の実施の形態について、詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は、実施の形態の積層体の断面図である。
 本実施の形態の積層体10は、ポリイミド層含有フレキシブル基板であり、樹脂からなる第2の層2及び無機物からなる第1の層1を積層してなる積層体であって、例えば、樹脂の545℃での熱重量減少が1.0%以下であり、かつ第2の層2及び第1の層1の界面のピール強度が100N/m以上であることを特徴とする。
FIG. 1 is a cross-sectional view of the laminate according to the embodiment.
The laminate 10 of the present embodiment is a polyimide layer-containing flexible substrate, and is a laminate obtained by laminating a second layer 2 made of resin and a first layer 1 made of an inorganic substance. The thermal weight loss at 545 ° C. is 1.0% or less, and the peel strength at the interface between the second layer 2 and the first layer 1 is 100 N / m or more.
 ここで、545℃における熱重量減少とは、窒素気流下において室温から545℃まで昇温範囲の条件下で、昇温速度10℃/分の加熱を施した際の重量減少率である。熱重量減少が1.0%以下であると、第2の層2の耐熱性が高く、例えば、CIGS(CuInGaSe)あるいはCIS(CuInSe)系を含む化合物半導体系の太陽電池などに用いられるフレキシブル基板や、ポリシリコンや酸化物などで形成されるTFTなどの駆動用の半導体層を搭載する表示装置などに用いられるフレキシブル基板に好ましく適用することができる。より耐熱性を向上させるため、545℃での熱重量減少は、好ましくは、0.7%以下であり、より好ましくは0.4%以下である。 Here, the thermal weight loss at 545 ° C. is a weight reduction rate when heating is performed at a temperature rising rate of 10 ° C./min under a temperature rising range from room temperature to 545 ° C. in a nitrogen stream. When the thermal weight reduction is 1.0% or less, the heat resistance of the second layer 2 is high. For example, a flexible substrate used for a compound semiconductor solar cell including CIGS (CuInGaSe) or CIS (CuInSe) In addition, it can be preferably applied to a flexible substrate used in a display device or the like on which a driving semiconductor layer such as a TFT formed of polysilicon or oxide is mounted. In order to further improve the heat resistance, the thermal weight reduction at 545 ° C. is preferably 0.7% or less, more preferably 0.4% or less.
 また、第2の層2及び第1の層1の界面のピール強度とは、積層体を、線幅1~10mmにパターン・エッチング加工を行い、測定の目的に適切な加工線幅の試験片を用いて第2の層を180°方向に引き剥がした際の引きはがし強度のことである。
 より高いピール強度としては、好ましくは、300N/m以上であり、より好ましくは、700N/m以上である。
 また、500℃、60分の熱処理後のピール強度が100N/m以上であることが好ましく、より好ましくは300N/m以上であり、更により好ましくは700N/m以上である。
The peel strength at the interface between the second layer 2 and the first layer 1 is a test piece having a processing line width suitable for the purpose of measurement by patterning and etching the laminate to a line width of 1 to 10 mm. This is the peel strength when the second layer is peeled off in the 180 ° direction using.
The higher peel strength is preferably 300 N / m or more, and more preferably 700 N / m or more.
Further, the peel strength after heat treatment at 500 ° C. for 60 minutes is preferably 100 N / m or more, more preferably 300 N / m or more, and even more preferably 700 N / m or more.
 熱重量減少が1.0を超えるか、または、ピール強度が100N/m未満であると、例えば化合物半導体系太陽電池の一種であるCIGS太陽電池の成膜時や、表示装置であればTFTの駆動用半導体層の形成時での高温条件に耐えられなかったり、加工プロセス時におけるハンドリング性が十分担保されずに樹脂層-無機物層界面の剥離が起こる可能性がある。 When the thermal weight loss exceeds 1.0 or the peel strength is less than 100 N / m, for example, when forming a CIGS solar cell, which is a kind of compound semiconductor solar cell, or for a display device, the TFT There is a possibility that the high temperature condition during the formation of the driving semiconductor layer cannot be endured, or the handling property during the processing process is not sufficiently ensured, and the resin layer-inorganic layer interface peels off.
 当該積層体を具体的な製品、例えば表示装置や太陽電池など、の基板に用いて商業生産する場合、その生産ラインにおいて必要とされる様々な加工や処理の前後に搬送を伴うが、生産ライン上での実用的な搬送時間に見合った搬送敏捷性が求められ、実生産で量産し製品供給によって産業利用上のメリットを具現化する際、その求めに対応するために100N/m以上のピール強度を確保することでもって基板の層間接着として剥離したりすることがない。 When the laminate is commercially produced using a substrate of a specific product, such as a display device or a solar cell, it is accompanied by conveyance before and after various processes and treatments required in the production line. In order to meet the demand when transport agility that matches the practical transport time above is required, and when mass production is realized in actual production and the merits of industrial use are realized by supplying the product, a peel of 100 N / m or more is required. By ensuring the strength, the substrate does not peel off as an interlayer adhesion.
 また、本発明の積層体は、第1の層1の両面または側面に第2の層2を配置しても良く、第2の層2及び第1の層1が交互に積層した多層構造であっても良い。
 第1の層1の両面に第2の層2を配置した場合、例えば温度などの周囲の環境変化に起因する第1の層と第2の層の線膨張の差による積層体の反りの発生に対する抑制手段ともなりうる。
Moreover, the laminated body of this invention may arrange | position the 2nd layer 2 on both surfaces or side surfaces of the 1st layer 1, and is the multilayered structure by which the 2nd layer 2 and the 1st layer 1 were laminated | stacked alternately. There may be.
When the second layer 2 is arranged on both surfaces of the first layer 1, for example, occurrence of warpage of the laminate due to a difference in linear expansion between the first layer and the second layer due to a change in surrounding environment such as temperature. It can also be a suppression means against
 さらに、本発明の積層体は、第1の層1の面方向の線熱膨張係数が15ppm/K以下であると、基板上に形成するデバイス、例えば化合物系太陽電池であれば下部電極層や発電層、あるいは表示装置であればポリシリコンや酸化物で形成されるTFTなどの駆動用の半導体層との間に発生する熱応力が小さくなり、例えば高温の熱処理時の太陽電池用部材や表示装置用部材での層間の剥離や反りの発生が抑制できるため、好ましい。第1の層1の面方向の線熱膨張係数は、より好ましくは13ppm/K以下である。 Furthermore, if the linear thermal expansion coefficient in the plane direction of the first layer 1 is 15 ppm / K or less, the laminate of the present invention has a lower electrode layer or a device formed on a substrate, for example, a compound solar cell. In the case of a power generation layer or a display device, thermal stress generated between the driving semiconductor layer such as a TFT formed of polysilicon or oxide is reduced. For example, a solar cell member or display during high-temperature heat treatment Since generation | occurrence | production of the peeling and curvature of an interlayer in the apparatus member can be suppressed, it is preferable. The linear thermal expansion coefficient in the surface direction of the first layer 1 is more preferably 13 ppm / K or less.
 ここで、線熱膨張係数とは、作製した積層体から第1の層1を除去して第2の層2のみを取出して測定試験片とし、その測定試験片を窒素気流中にて200℃を越える高温域まで昇温し高温保持した後に、一定速度で試験片(第2の層2)の温度を降下させて、そのときの温度差と試験片の測定長との関係から求められる。 Here, the linear thermal expansion coefficient means that the first layer 1 is removed from the produced laminate and only the second layer 2 is taken out as a measurement specimen, and the measurement specimen is 200 ° C. in a nitrogen stream. The temperature of the test piece (second layer 2) is lowered at a constant rate after the temperature is raised to a high temperature range exceeding 50 ° C., and is obtained from the relationship between the temperature difference at that time and the measurement length of the test piece.
 また、第2の層2は、積層体としての性能を担保できれば、その種類に制限はないが、例えば、ポリイミド及びそれらの誘導体からなる群から選択された1種または2種以上の樹脂材料で形成することができる。これらは、耐熱性や第1の層1との接着性との観点から、好ましい。 Moreover, the 2nd layer 2 will not have a restriction | limiting in the kind, if the performance as a laminated body can be ensured, For example, it is 1 type, or 2 or more types of resin materials selected from the group which consists of a polyimide and those derivatives. Can be formed. These are preferable from the viewpoints of heat resistance and adhesion to the first layer 1.
 また、第2の層2の厚みは、特に制限はないが、好ましくは平均膜厚が1~100μmであり、より好ましくは2~8μmであり、さらにより好ましくは2~4μmである。平均膜厚が1μm未満であると、電気絶縁性が不足する傾向にあり、平均膜厚が100μmを超えると、生産性が損なわれる傾向にある。 The thickness of the second layer 2 is not particularly limited, but the average film thickness is preferably 1 to 100 μm, more preferably 2 to 8 μm, and even more preferably 2 to 4 μm. When the average film thickness is less than 1 μm, the electric insulation tends to be insufficient, and when the average film thickness exceeds 100 μm, the productivity tends to be impaired.
 また、第2の層2における、第1の層1との界面の反対側の表面粗さは、特に制限はないが、好ましくは、樹脂層の上に形成する電極層への不具合、例えば亀裂や断層などによる導通障害を抑えるという理由で、Ra(平均粗さ)は20nm以下であり、より好ましくは10nm以下である。 Further, the surface roughness of the second layer 2 on the opposite side of the interface with the first layer 1 is not particularly limited, but preferably there is a problem with the electrode layer formed on the resin layer, such as a crack. Ra (average roughness) is 20 nm or less, and more preferably 10 nm or less, for the purpose of suppressing conduction failure due to or fault.
 以下に、第2の層2として特に好ましい例であるポリイミド及びそれらの誘導体について、詳しく説明する。 Hereinafter, polyimide and their derivatives which are particularly preferable examples as the second layer 2 will be described in detail.
 第2の層として用いられるポリイミド及びそれらの誘導体は、NH-Ar-NHで表される芳香族ジアミノ化合物をテトラカルボン酸化合物と反応させて得られたものが、合成の容易さという理由から、好ましい。
 ここで、2個のアミノ基で置換された第1のアリール基Arは、任意のものから選択できるが、耐熱性と低線熱膨張係数を兼ね備える、という理由から、下記式(1)~(3)で表される基から選択されるものであることが好ましい。
The polyimide used as the second layer and derivatives thereof are obtained by reacting an aromatic diamino compound represented by NH 2 —Ar 1 —NH 2 with a tetracarboxylic acid compound, and are said to be easy to synthesize. Preferred for reasons.
Here, the first aryl group Ar 1 substituted with two amino groups can be selected from any one , but because it has both heat resistance and a low linear thermal expansion coefficient, the following formula (1) to It is preferable that it is selected from the group represented by (3).
 下記式(1)に示すのは、耐熱性の低いと見込まれる1~3級炭素からなる結合や側鎖や同じく耐熱性が低いと見込まれる炭素と炭素以外の元素(B-C、O-C、S-C、N-C、P-C、Se-C)からなる結合(除くイミド環結合)を有するポリイミド構造をもたらすモノマーを除くポリイミド用モノマーを構成するArの例で、具体的には、フルオレン-9,10-ビスアニリンなどが挙げられる。 The following formula (1) shows bonds and side chains composed of primary to tertiary carbons that are expected to have low heat resistance, and elements other than carbon and carbon that are also expected to have low heat resistance (BC, O— An example of Ar 1 constituting a monomer for polyimide excluding a monomer that yields a polyimide structure having a bond (excluding an imide ring bond) consisting of C, S—C, N—C, P—C, Se—C) Examples include fluorene-9,10-bisaniline.
Figure JPOXMLDOC01-appb-C000001
 (1)     
Figure JPOXMLDOC01-appb-C000001
(1)
 また、下記式(2)に示すのは、ハロゲノ基およびトリハロゲノメチル基やジハロゲノメチレン基やヘキサハロゲノイソプロピリデン基が芳香環に直接結合しているポリイミド用モノマーを構成するArの例で、具体的には、ジアミノビストリハロゲノメチルビフェニルなどが挙げられる。なお、これらの基は芳香環に直接結合する結合数は複数でも良い。ここで、Xはハロゲン元素を表すが、好ましくはフッ素である。 The following formula (2) shows an example of Ar 1 constituting a monomer for polyimide in which a halogeno group, a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring. Specific examples include diaminobistrihalogenomethylbiphenyl. These groups may have a plurality of bonds directly bonded to the aromatic ring. Here, X represents a halogen element, preferably fluorine.
Figure JPOXMLDOC01-appb-C000002
      (Xはハロゲン元素)             
 (2)     
Figure JPOXMLDOC01-appb-C000002
(X is a halogen element)
(2)
 また、下記式(3)に示すのは、芳香環とイミド環以外の構造を含まないポリイミドをもたらすモノマーを構成するArの例で、具体的には、ターフェニルジアミンやジアミノジフェニルビフェニルなどが挙げられる。 Also, the following formula (3) shows an example of Ar 1 constituting a monomer that provides a polyimide that does not contain a structure other than an aromatic ring and an imide ring. Specifically, terphenyldiamine, diaminodiphenylbiphenyl, and the like Can be mentioned.
Figure JPOXMLDOC01-appb-C000003
(3)     
Figure JPOXMLDOC01-appb-C000003
(3)
 上記式(1)~(3)に示すAr1のうち、より好ましくは式(3)に示す構造であり、より好ましくは、フェニレンジアミン化合物を構成する構造である。フェニレンジアミン化合物は複数の異性体が存在するが、同一異性体でも異性体複数の組合せでもよい。 Of the Ar1 represented by the above formulas (1) to (3), a structure represented by the formula (3) is more preferred, and a structure constituting a phenylenediamine compound is more preferred. The phenylenediamine compound has a plurality of isomers, and may be the same isomer or a combination of a plurality of isomers.
 なお、Arは置換基を有することもできるが、好ましくは置換基を有しないか、ハロゲノ基で置換されている。これらの芳香族ジアミノ化合物は1種以上を使用してもよい。 Ar 1 may have a substituent, but preferably has no substituent or is substituted with a halogeno group. One or more of these aromatic diamino compounds may be used.
 ジアミノ化合物と反応させるテトラカルボン酸化合物としては、芳香族テトラカルボン酸およびその酸無水物、エステル化物、ハロゲン化物などが挙げられるが、芳香族テトラカルボン酸化合物が好適であり、ポリイミド樹脂の前駆体であるポリアミド酸(ポリアミック酸)の合成の容易さの点で、その酸無水物が好ましい。なお、芳香族テトラカルボン酸化合物としては、O(CO)Ar(CO)Oで表される化合物が好適なものとして挙げられる。 Examples of the tetracarboxylic acid compound to be reacted with the diamino compound include aromatic tetracarboxylic acid and acid anhydrides, esterified products, halides, etc., but aromatic tetracarboxylic acid compounds are preferred and are precursors of polyimide resins. In terms of ease of synthesis of the polyamic acid (polyamic acid), the acid anhydride is preferable. As the aromatic tetracarboxylic acid compound, O (CO) 2 Ar 2 (CO) a compound represented by 2 O is mentioned as suitable.
 ここで、2個の(CO)O基で置換された第2のアリール基Arは、任意のものから選択できるが、耐熱性と低線熱膨張係数を兼ね備える、という理由から、下記式(4)~(6)で表される基から選択されるものである物が好ましい。酸無水物基[(CO)O]の置換位置は任意であるが、Arを中心として対称の位置が好ましい。 Here, the second aryl group Ar 2 substituted with two (CO) 2 O groups can be selected from any one, but for the reason that it has both heat resistance and a low linear thermal expansion coefficient, the following formula: Preferred are those selected from the groups represented by (4) to (6). The substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but a symmetric position around Ar 2 is preferable.
 下記式(4)に示すのは、耐熱性の低いと見込まれる1~3級炭素からなる結合や側鎖や同じく耐熱性が低いと見込まれる炭素と炭素以外の元素(B-C、O-C、S-C、N-C、P-C、Se-C)からなる結合(除くイミド環結合)を有するポリイミド構造をもたらすモノマーを除く下記式(7)に示す様なポリイミド用モノマーを構成するArの例で、具体的には、フルオレン-9,10-ビスフタル酸無水物などが挙げられる。 The following formula (4) shows bonds and side chains composed of primary to tertiary carbons that are expected to have low heat resistance, and elements other than carbon and carbon that are also expected to have low heat resistance (BC, O— Constructs a monomer for polyimide as shown in the following formula (7) excluding a monomer that gives a polyimide structure having a bond (excluding an imide ring bond) consisting of C, S—C, N—C, P—C, and Se—C) Specific examples of Ar 2 include fluorene-9,10-bisphthalic anhydride.
Figure JPOXMLDOC01-appb-C000004
 (4)
Figure JPOXMLDOC01-appb-C000004
(4)
 また、下記式(5)に示すのは、ハロゲノ基およびトリハロゲノメチル基やジハロゲノメチレン基やヘキサハロゲノイソプロピリデン基が芳香環に直接結合しているポリイミド用モノマーを構成するArの例で、具体的には、ハロゲノ無水ピロメリット酸や4,4’-ヘキサハロゲノイソプロピリデンビスフタル酸無水物などが挙げられる。なお、これらの基はハロゲノ芳香環に直接結合する結合数は複数でも良い。ここで、Xはハロゲン元素を表すが、好ましくはフッ素である。 The following formula (5) shows an example of Ar 2 constituting a monomer for polyimide in which a halogeno group, a trihalogenomethyl group, a dihalogenomethylene group, or a hexahalogenoisopropylidene group is directly bonded to an aromatic ring. Specific examples include halogenopyromellitic anhydride and 4,4′-hexahalogenoisopropylidenebisphthalic anhydride. These groups may have a plurality of bonds directly bonded to the halogenoaromatic ring. Here, X represents a halogen element, preferably fluorine.
Figure JPOXMLDOC01-appb-C000005
      (Xはハロゲン元素)        
 (5)     
Figure JPOXMLDOC01-appb-C000005
(X is a halogen element)
(5)
 また、下記式(6)に示すのは、芳香環とイミド環以外の構造を含まないポリイミドをもたらすモノマーを構成するArの例で、具体的には、無水ピロメリット酸や1,6,7,12-ペリレンテトラカルボン酸二無水物などが挙げられる。 Further, the following formula (6) is an example of Ar 2 constituting a monomer that provides a polyimide that does not contain a structure other than an aromatic ring and an imide ring. Specifically, pyromellitic anhydride, 1, 6, Examples include 7,12-perylenetetracarboxylic dianhydride.
Figure JPOXMLDOC01-appb-C000006
 (6)
Figure JPOXMLDOC01-appb-C000006
(6)
 上記式(4)~(6)に示すArのうち、より好ましくは式(6)に示す構造であり、より好ましくは、ビフェニルテトラカルボン酸二無水物またはナフタレンテトラカルボン酸二無水物を構成する構造である。ビフェニルテトラカルボン酸二無水物及びナフタレンテトラカルボン酸二無水物は、それぞれ複数の異性体が存在するが、両者とも、同一異性体でも異性体複数の組合せでも良く、ビフェニルテトラカルボン酸二無水物及びナフタレンテトラカルボン酸二無水物の組合せでも良い。 Of the Ar 2 represented by the above formulas (4) to (6), more preferably the structure represented by the formula (6), more preferably a biphenyltetracarboxylic dianhydride or a naphthalenetetracarboxylic dianhydride. It is a structure to do. Biphenyltetracarboxylic dianhydride and naphthalenetetracarboxylic dianhydride each have a plurality of isomers, both of which may be the same isomer or a combination of isomers, biphenyltetracarboxylic dianhydride and A combination of naphthalenetetracarboxylic dianhydrides may be used.
 なお、Arは置換基を有することもできるが、好ましくは置換基を有しないか、ハロゲノ基で置換されている。これらの芳香族酸無水物化合物は1種以上を使用してもよい。 Ar 2 may have a substituent, but preferably does not have a substituent or is substituted with a halogeno group. One or more of these aromatic acid anhydride compounds may be used.
 なお、第2の層2として用いられるポリイミド及びその誘導体における、上記芳香族ジアミノ化合物及び上記テトラカルボン酸化合物の、より好適な組み合わせは、ビフェニルテトラカルボン酸化合物及びフェニレンジアミン化合物の組合せ、ビフェニルテトラカルボン酸化合物、フェニレンジアミン化合物及び4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルの組合せ、ビフェニルテトラカルボン酸化合物、ナフタレンテトラカルボン酸化合物及びフェニレンジアミン化合物の組合せ並びにビフェニルテトラカルボン酸化合物、ナフタレンテトラカルボン酸化合物、フェニレンジアミン化合物及び4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルの組合せならびにこれらの共重合体である。
 ここで、上記4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルの含有量は、芳香族ジアミノ化合物の全量に対し5%以下であることが好ましく、より好ましくは2.5%以下である。
In the polyimide used as the second layer 2 and derivatives thereof, a more preferable combination of the aromatic diamino compound and the tetracarboxylic acid compound is a combination of a biphenyltetracarboxylic acid compound and a phenylenediamine compound, or biphenyltetracarboxylic acid. Acid compound, phenylenediamine compound and 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl combination, biphenyltetracarboxylic acid compound, naphthalenetetracarboxylic acid compound and phenylenediamine compound combination and biphenyltetracarboxylic acid A combination of an acid compound, a naphthalenetetracarboxylic acid compound, a phenylenediamine compound and 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, and a copolymer thereof.
Here, the content of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl is preferably 5% or less with respect to the total amount of the aromatic diamino compound, more preferably 2. 5% or less.
 第2の層2を構成するポリイミド樹脂は、例えば、上記芳香族ジアミノ化合物と、ほぼ等モルの上記テトラカルボン酸化合物とを溶媒中で反応させ、ポリイミド樹脂の前駆体であるポリアミド酸(ポリアミック酸)の合成と、イミド化反応の2段階で製造することができる。 The polyimide resin constituting the second layer 2 is prepared by reacting, for example, the aromatic diamino compound and the tetracarboxylic acid compound in an approximately equimolar amount in a solvent, and polyamic acid (polyamic acid) which is a polyimide resin precursor. ) And an imidization reaction.
 ポリイミド樹脂の前駆体であるポリアミド酸の合成までは、第1の層1への塗布前に、反応容器等の中で行われる。あるいは、イミド化までを行い、ポリイミド樹脂溶液としてもよい。そして、前駆体であるポリアミド酸溶液またはポリイミド樹脂溶液を第1の層1に塗布してプレポリイミド樹脂層とする。ここで、前駆体であるポリアミド酸溶液およびポリイミド樹脂溶液の塗布層を総称してプレポリイミド樹脂層と称する。当然、すでに塗布されているプレポリイミド樹脂層あるいはポリイミド樹脂層上にも塗布されてもよい。 Until the synthesis of the polyamic acid, which is a precursor of the polyimide resin, is performed in a reaction vessel or the like before application to the first layer 1. Or it is good also as imidation, and it is good also as a polyimide resin solution. And the polyamic-acid solution or polyimide resin solution which is a precursor is apply | coated to the 1st layer 1, and it is set as a pre polyimide resin layer. Here, the coating layers of the polyamic acid solution and the polyimide resin solution, which are precursors, are collectively referred to as a pre-polyimide resin layer. Of course, it may be applied to the pre-polyimide resin layer or the polyimide resin layer that has already been applied.
 第2の層2として用いられるポリイミドは、例えば次のような方法により製造することができる。すなわち、溶媒中で、上記芳香族ジアミノ化合物およびテトラカルボン酸二無水物をほぼ等モルの割合で混合し、反応温度0~200℃の範囲で、好ましくは0~100℃の範囲で反応させて、前駆体であるポリアミド酸溶液を得て、さらに、これをイミド化することによりポリイミド樹脂を得る方法がある。 The polyimide used as the second layer 2 can be manufactured by the following method, for example. That is, the aromatic diamino compound and tetracarboxylic dianhydride are mixed in a solvent at an approximately equimolar ratio, and reacted in a reaction temperature range of 0 to 200 ° C., preferably in a range of 0 to 100 ° C. There is a method for obtaining a polyimide resin by obtaining a polyamic acid solution as a precursor and imidizing the solution.
 溶媒としては、N-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルフォラン、ブチロラクトン、クレゾール、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライムなどが挙げられる。 As the solvent, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, cyclohexanone, Examples include dioxane, tetrahydrofuran, diglyme, and triglyme.
 上記したように、イミド化は前駆体であるポリアミド酸溶液を第1の層1に塗布した後に行なってもよい。 As described above, imidization may be performed after applying the precursor polyamic acid solution to the first layer 1.
 第1の層1に塗布するプレポリイミド樹脂層は、この前駆体であるポリアミド酸溶液またはイミド化を終了させたポリイミド樹脂溶液のいずれでもよいが、ポリイミドが溶剤可溶性でない場合には粘度調整の観点から、前駆体であるポリアミド酸溶液が好ましい。 The pre-polyimide resin layer applied to the first layer 1 may be either the polyamic acid solution that is the precursor or the polyimide resin solution that has been imidized, but if the polyimide is not solvent-soluble, a viscosity adjustment viewpoint. Therefore, a polyamic acid solution as a precursor is preferable.
 また、第1の層1は、無機物であり、かつ、積層体としての性能を担保できれば、その種類に制限はないが、例えば、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウムもしくはこれらの合金からなる群から選択された1種または2種以上の金属材料またはガラスで形成されてなることが、耐熱性や第2の層2との接着性との観点から、好ましい。より好ましくは、基材が割れにくいという点で、上記の群から選択された1種または2種以上の金属材料であり、特に好ましくは積層体作製時、または表示装置や太陽電池の組み立て時もしくは使用時において錆びにくいという点でオーステナイト系ステンレス、マルテンサイト系ステンレス、二相系ステンレス、析出硬化系ステンレス、フェライト系ステンレス及びチタンであり、さらに好ましくは、線熱膨張が小さいという点でフェライト系ステンレス及びチタンである。 In addition, the first layer 1 is an inorganic substance, and the type of the first layer 1 is not limited as long as the performance as a laminate can be ensured. For example, copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, It is formed of one or more metal materials or glass selected from the group consisting of molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium or alloys thereof. From the viewpoints of heat resistance and adhesiveness to the second layer 2, it is preferable. More preferably, it is one or two or more kinds of metal materials selected from the above group in that the base material is difficult to break, and particularly preferably at the time of preparing a laminate or assembling a display device or a solar cell or Austenitic stainless steel, martensitic stainless steel, duplex stainless steel, precipitation hardened stainless steel, ferritic stainless steel and titanium in terms of resistance to rust during use, and more preferably ferritic stainless steel in terms of low linear thermal expansion And titanium.
 また、第1の層1の層厚は、5~300μmであることが好ましく、20~200μmの層厚がより好適である。層厚が300μmを上回ると、ロール・トゥ・ロールなどの連続プロセスが難しくなる傾向にあり、20μmを下回ると自己支持性が低下する傾向にある。 The layer thickness of the first layer 1 is preferably 5 to 300 μm, more preferably 20 to 200 μm. When the layer thickness exceeds 300 μm, continuous processes such as roll-to-roll tend to be difficult, and when the layer thickness is less than 20 μm, the self-supporting property tends to decrease.
 また、これらの第1の層1については、表面性状の適性化調整及び改変ならびに第2の層2との接着力などの向上を目的として、その表面にサイジング、クロムメッキ、ニッケルメッキ、クロム-ニッケルメッキ、銅-亜鉛合金メッキ、酸化銅析出またはアルミニウムアルコラート、アルミニウムキレート、シランカップリング剤、チタネート系カップリング剤、アルコキシチタンなどのチタン化合物、アルコキシシランなどのシラン化合物、トリアジンチオール類、ベンゾトリアゾール類、アセチレンアルコール類、アセチルアセトン類、カテコール類、o-ベンゾキノン類、タンニン類、キノリノール類などの化学的表面処理、あるいは表層粗化処理などの機械的な表面処理を施してもよい。 In addition, for the first layer 1, sizing, chromium plating, nickel plating, chromium − are applied to the surface for the purpose of adjusting and modifying the suitability of the surface properties and improving the adhesive strength with the second layer 2. Nickel plating, copper-zinc alloy plating, copper oxide deposition or aluminum alcoholate, aluminum chelate, silane coupling agent, titanate coupling agent, titanium compounds such as alkoxy titanium, silane compounds such as alkoxy silane, triazine thiols, benzotriazole , Acetylene alcohols, acetylacetones, catechols, o-benzoquinones, tannins, quinolinols and other chemical surface treatments or mechanical surface treatments such as surface roughening treatments.
 次に、本発明の積層体の製造方法について、第2の層がポリイミドである積層体を実施形態の例として、以下に説明するが、本発明は当該実施の形態に限られるものではない。 Next, the laminate manufacturing method of the present invention will be described below by taking a laminate in which the second layer is polyimide as an example of the embodiment, but the present invention is not limited to the embodiment.
 図2は本実施の形態の積層体の製造方法を示すフロー図である。
 本実施の形態の積層体の製造方法は、まず、第1の層1となる無機物に、第2の層2となる、前駆体であるポリアミド酸溶液またはポリイミド樹脂溶液を塗布し、プレポリイミド樹脂層を形成する(S1)。ここで、前駆体であるポリアミド酸溶液およびポリイミド樹脂溶液を総称してプレポリイミド樹脂層と称する。
FIG. 2 is a flowchart showing the method for manufacturing the laminate according to the present embodiment.
In the manufacturing method of the laminate according to the present embodiment, first, a polyamic acid solution or a polyimide resin solution that is a precursor to be the second layer 2 is applied to an inorganic material to be the first layer 1, and a pre-polyimide resin is then applied. A layer is formed (S1). Here, the polyamic acid solution and the polyimide resin solution which are precursors are collectively referred to as a pre-polyimide resin layer.
 次に、乾燥[溶媒の加熱除去](S2)、およびイミド化[加熱硬化処理](S3)によって、第2の層2とプレポリイミド樹脂層とを接着させると共に、第2の層2である無機物上にポリイミドを形成する。ここで、前駆体であるポリアミド酸溶液を塗布した場合は乾燥およびイミド化を実施し、ポリイミド樹脂溶液を塗布した場合は乾燥のみを実施する。以上のようにして、ポリイミドと無機物からなる積層体を形成する。なお、詳細な製造方法については後述する。
 上記の前駆体であるポリアミド酸溶液またはポリイミド樹脂溶液を塗布し、プレポリイミド樹脂層を形成する工程(S1)と、乾燥[溶媒の加熱除去]工程(S2)およびイミド化工程[加熱硬化処理](S3)を連続的に行うことができる。
 例えば、無機物からなる第1の層の表面に樹脂またはその前駆体を連続的に塗布する工程(S1)と、300℃以上における加熱処理によって該第1の層の表面に該樹脂からなる第2の層を形成する工程(S2,S3)とをロール・トゥ・ロールにて行うことができる。
Next, the second layer 2 and the pre-polyimide resin layer are bonded together by drying [heat removal of the solvent] (S2) and imidization [heat curing treatment] (S3), and the second layer 2 is formed. Polyimide is formed on the inorganic material. Here, drying and imidization are performed when a polyamic acid solution as a precursor is applied, and only drying is performed when a polyimide resin solution is applied. As described above, a laminate made of polyimide and an inorganic material is formed. A detailed manufacturing method will be described later.
Applying the above-mentioned precursor polyamic acid solution or polyimide resin solution to form a pre-polyimide resin layer (S1), drying [solvent heat removal] step (S2) and imidization step [heat curing treatment] (S3) can be performed continuously.
For example, a step (S1) of continuously applying a resin or a precursor thereof to the surface of the first layer made of an inorganic substance, and a second step made of the resin on the surface of the first layer by heat treatment at 300 ° C. or higher. Steps (S2, S3) for forming the layer can be performed roll-to-roll.
 次に、本発明の積層体の製造方法について、ポリイミドを第2の層2としたものを例として詳細に説明する。 Next, the method for producing a laminate of the present invention will be described in detail by taking polyimide as the second layer 2 as an example.
 本発明の積層体を製造するには、まず、第1の層1にプレポリイミド樹脂層を塗布する。このとき、第1の層1に塗布するプレポリイミド樹脂層は、第2の層2となる。また、第1の層1上に複数層のプレポリイミド樹脂層を形成するための塗工方法は任意の方法を選択できるが、好ましくは塗工精度の点により以下の3方法が望ましい。 To manufacture the laminate of the present invention, first, a pre-polyimide resin layer is applied to the first layer 1. At this time, the pre-polyimide resin layer applied to the first layer 1 becomes the second layer 2. In addition, an arbitrary method can be selected as a coating method for forming a plurality of pre-polyimide resin layers on the first layer 1, but the following three methods are preferable from the viewpoint of coating accuracy.
1)多層ダイにより2種以上のプレポリイミド樹脂層を同時に導体上に塗布する。
2)任意の方法でプレポリイミド樹脂層を塗布後、その未乾燥塗布面上にナイフコート方式やダイ方式等によりさらに別のプレポリイミド樹脂層を塗布する。
3)任意の方法でプレポリイミド樹脂層を塗布、乾燥後、さらにその乾燥塗工面に任意の方法で別のプレポリイミド樹脂層を塗布する。
 ここで述べるナイフコート方式とは、バー、スキージ、ナイフなどにより樹脂溶液をならして塗布する方法である。
1) Two or more kinds of pre-polyimide resin layers are simultaneously coated on a conductor by a multilayer die.
2) After applying the pre-polyimide resin layer by an arbitrary method, another pre-polyimide resin layer is applied onto the undried application surface by a knife coating method, a die method, or the like.
3) A pre-polyimide resin layer is applied by an arbitrary method and dried, and then another pre-polyimide resin layer is applied to the dry coated surface by an arbitrary method.
The knife coating method described here is a method in which a resin solution is leveled and applied with a bar, squeegee, knife or the like.
 乾燥およびイミド化(加熱硬化)処理方法としては、任意の方法が活用可能であるが、プレポリイミド樹脂層を塗布形成したのちに、予備乾燥した未硬化のプレポリイミド樹脂層を含む積層体を、所定の温度に設定可能な熱風乾燥炉の中で、一定時間静置させるか、あるいは、乾燥炉エリア範囲内を連続移動させ所定の乾燥硬化時間を確保させることで高温での熱処理(200℃以上)を行う方法によって、単数または複数層の第2の層を有する積層体を形成することができる。 As the drying and imidization (heat curing) treatment method, any method can be utilized. After the pre-polyimide resin layer is applied and formed, a laminate including a pre-dried uncured pre-polyimide resin layer, Heat treatment at a high temperature (200 ° C. or higher) by allowing it to stand for a certain period of time in a hot air drying furnace that can be set to a predetermined temperature, or by continuously moving within the drying furnace area range to ensure a predetermined drying and curing time ), A stacked body having one or more second layers can be formed.
 また、作業の効率化、歩留まりなどを考慮して、プレポリイミド樹脂層を塗布したのちに、予備乾燥した未硬化積層体を、ロール状に巻き取り、さらに高温での乾燥および加熱硬化を行なうバッチ処理方式も可能である。 In consideration of work efficiency and yield, the pre-polyimide resin layer is applied, and then the pre-dried uncured laminate is wound into a roll and then dried at a high temperature and heat-cured. Processing methods are also possible.
 また、乾燥およびイミド化(加熱硬化)処理工程において、プレポリイミド樹脂層は熱処理によって溶媒が除去され、ポリイミド前駆体樹脂溶液を用いた場合には、さらにイミド閉環される。この際、急激に高温で熱処理すると樹脂表面にスキン層が生成して溶媒が蒸発しづらくなったり、発泡したりするので、低温から徐々に高温まで上昇させながら熱処理していくのが望ましい。なお、イミド化(硬化)されたポリイミド樹脂層とするためと、第1の層である無機物の表面に分布する大気成分や水分などに由来する吸着成分を揮散させるための最終的な熱処理温度としては、300℃以上が好ましい。より好ましくは370℃以上、さらにより好ましくは430℃以上である。 Further, in the drying and imidization (heat curing) treatment step, the solvent is removed from the pre-polyimide resin layer by heat treatment, and when the polyimide precursor resin solution is used, the imide ring is further closed. At this time, since a skin layer is formed on the resin surface when the heat treatment is suddenly performed at a high temperature and the solvent is difficult to evaporate or foams, it is desirable to perform the heat treatment while gradually raising the temperature from a low temperature to a high temperature. As a final heat treatment temperature for making an imidized (cured) polyimide resin layer and for volatilizing an adsorbed component derived from atmospheric components and moisture distributed on the surface of the first inorganic material. Is preferably 300 ° C. or higher. More preferably, it is 370 degreeC or more, More preferably, it is 430 degreeC or more.
 ここで、熱処理は、窒素、アルゴン等の不活性ガス中及び空気中のいずれの条件でも行うことができる。また、常圧下、減圧下、加圧下及び真空下のいずれの条件でも行うことができる。このうち、酸素濃度が10%以下の条件で熱処理を行うと、積層体における樹脂-金属を含む無機物との接着力が高くなり、好ましい。窒素またはアルゴン中で、かつ酸素濃度が5%以下の条件であると、積層体における樹脂-金属を含む無機物との接着力がさらに高くなり、より好ましい。酸素濃度が低いほど積層体における樹脂-金属を含む無機物との接着力を高めることができ、酸素濃度はよりさらに好ましくは1%以下、最も好ましくは0.5%以下である。 Here, the heat treatment can be performed under any conditions in an inert gas such as nitrogen or argon and in the air. Moreover, it can carry out under any conditions of normal pressure, reduced pressure, increased pressure and vacuum. Among these, it is preferable to perform the heat treatment under the condition that the oxygen concentration is 10% or less because the adhesive force between the laminate and the inorganic substance including the resin-metal is increased. In nitrogen or argon, the oxygen concentration of 5% or less is more preferable because the adhesive strength between the laminate and the resin-metal-containing inorganic substance is further increased. The lower the oxygen concentration, the higher the adhesive strength between the laminate and the resin-metal-containing inorganic substance, and the oxygen concentration is more preferably 1% or less, and most preferably 0.5% or less.
 このうち、酸素濃度が10%以下の管理条件範囲で熱処理を行うと、積層体における樹脂-金属を含む無機物との接着力発現を適切に管理することが可能となり、好ましい。例えば、積層体の無機物層が銅の場合、銅は活性の高い金属種であるので、酸素との反応で酸化物を形成し易く、その酸化物は更なる酸素との反応を抑制させたり減衰させたりする作用(緻密な酸化物層被膜の遮断作用)に乏しい事から、更なる酸化反応は進行し、酸化物形成はいわゆる腐食や発錆に発展し、寸法変化や導通破断やマイグレーションに接着低下などの様々な不具合の原因となるため、周辺雰囲気における酸素は少ない程、即ち酸素濃度が0%に近いほど好ましい。銅とは異なる事例として積層体の無機物層がステンレスの場合、周辺雰囲気の酸素と反応して生成する酸化物被膜は、更なる酸素との反応を抑制させたり減衰させたりする作用を発揮する事から、腐食や錆の発生を防ぐ事ができるので、周辺雰囲気における酸素は少ない程、即ち皆無に近いほど好ましい事にはならず、腐食や錆の発生を酸化物被膜が防ぐための適切な酸素濃度管理、即ち管理された有酸素雰囲気が好ましい。ステンレスにおいては製造工程や圧延等の形成加工や表面処理等の化成処理など種々のプロセスにおける、酸化物被膜形成と雰囲気酸素との適切な関係性が検討されており、例えば製造プロセスでの溶体化処理時の酸素濃度を8%以下に管理する事により、割れや模様が生成しない様に表面状態を改善でき[特許文献5参照]、また形成加工プロセスの圧延におけるスラブ加熱時の酸素濃度を2~8%範囲に管理する事により、表面疵の発生を防止することができる[特許文献6参照]。ステンレスはプロセス後の酸化物被膜を適切な状態を発現するために、酸素濃度管理を行う事は各々のプロセスに応じた管理条件設定を必要とする。よって、当該積層体にステンレスの様な言わば自己修復的で酸化反応を抑制するタイプの酸化物被膜を有する金属材については、積層体作製以前にどの様なプロセスを経て製造や加工や処理がなされているか分からないとしても、積層体作製時におけるステンレス様金属の酸化被膜を適切な状態で温存する、あるいは適切な状態に導くために酸素濃度管理が、酸素以外の管理項目と同等またはそれ以上に重要であり、積層体作製条件に高温域が含まれる場合は尚更重要との考えに基づく。 Among these, it is preferable to perform the heat treatment in a control condition range where the oxygen concentration is 10% or less because it becomes possible to appropriately manage the adhesive force expression between the resin-metal-containing inorganic substance in the laminate. For example, when the inorganic layer of the laminate is copper, copper is a highly active metal species, so it is easy to form an oxide by reaction with oxygen, and the oxide suppresses or attenuates further reaction with oxygen. Because of its poor action (blocking action on dense oxide layer coating), further oxidation reaction proceeds, oxide formation develops to so-called corrosion and rusting, and adheres to dimensional change, conduction breakage and migration Since it causes various troubles such as a decrease, it is preferable that the oxygen in the surrounding atmosphere is small, that is, the oxygen concentration is close to 0%. As an example different from copper, when the inorganic layer of the laminate is stainless steel, the oxide film produced by reacting with oxygen in the surrounding atmosphere exerts an action of suppressing or attenuating further reaction with oxygen. Therefore, it is possible to prevent the occurrence of corrosion and rust. Therefore, the less oxygen in the surrounding atmosphere, that is, the closer it is to nothing, it is not preferable, and appropriate oxygen for preventing the oxide film from generating corrosion and rust. Concentration management, that is, a controlled aerobic atmosphere is preferred. In stainless steel, the appropriate relationship between oxide film formation and atmospheric oxygen has been studied in various processes such as manufacturing processes, forming processes such as rolling, and chemical conversion treatments such as surface treatment. By controlling the oxygen concentration during the treatment to 8% or less, the surface state can be improved so as not to generate cracks and patterns [see Patent Document 5], and the oxygen concentration during slab heating in rolling in the forming process is 2 By controlling the content within the range of ˜8%, it is possible to prevent surface flaws [see Patent Document 6]. In order for stainless steel to exhibit an appropriate state of the oxide film after the process, management of oxygen concentration requires management condition setting according to each process. Therefore, the metal material having an oxide film of a type that suppresses the oxidation reaction, such as stainless steel, is manufactured, processed, or processed through any process before the laminate is manufactured. Even if you do not know whether to maintain the oxide film of stainless steel metal at the time of laminate production in an appropriate state, or to lead to an appropriate state, oxygen concentration management is equal to or more than the management items other than oxygen It is important, and when the high temperature region is included in the laminate production conditions, it is based on the idea that it is even more important.
 プレポリイミド樹脂層として前駆体であるポリアミド酸溶液を使用する場合の樹脂溶液濃度は、ポリイミドの前駆体であり、ポリマーであるポリアミド酸の重合度にもよるが、通常5~30重量%、好ましくは10~20重量%である。ポリマー濃度が5重量%より高ければ、一回の塗布で充分な膜厚が得られ、30重量%より低ければ、当該樹脂溶液の粘度が高くなりすぎず、均一性および平滑性の点で良好に塗布できるからである。 The resin solution concentration when using the precursor polyamic acid solution as the pre-polyimide resin layer is a polyimide precursor and depends on the degree of polymerization of the polyamic acid which is a polymer, but is usually 5 to 30% by weight, preferably Is 10 to 20% by weight. If the polymer concentration is higher than 5% by weight, a sufficient film thickness can be obtained by one application. If the polymer concentration is lower than 30% by weight, the viscosity of the resin solution does not become too high, and it is good in terms of uniformity and smoothness. It is because it can apply | coat to.
 また、上記のように第2の層上にプレポリイミド樹脂層を塗布し、熱処理することで積層体を形成する方法の他に、単体のポリイミド層を第2の層として形成し、この表面に無機物を貼り合わせても良い。 In addition to the method of applying a pre-polyimide resin layer on the second layer and heat-treating it as described above, a single polyimide layer is formed as the second layer on the surface. An inorganic material may be bonded.
 ポリイミド層と無機物を貼り合わせるときの加熱圧着は、例えば次のような方法をとることができる。すなわち、ハイドロプレス、真空タイプのハイドロプレス、オートクレーブ加圧式真空プレス、連続式熱ラミネータなどを使用することができる。このうち真空ハイドロプレスは、十分なプレス圧力が得られ、また第1の層として金属箔を用いた際の導体の酸化を防止できることから好ましい加熱圧着方法である。 For example, the following method can be used for thermocompression bonding when the polyimide layer and the inorganic material are bonded together. That is, a hydro press, a vacuum type hydro press, an autoclave pressurizing vacuum press, a continuous thermal laminator, or the like can be used. Among these, the vacuum hydropress is a preferable thermocompression bonding method because a sufficient pressing pressure can be obtained and oxidation of the conductor when a metal foil is used as the first layer can be prevented.
 この加熱圧着時の熱プレス温度については、特に限定されるものではないが、使用されるポリイミド樹脂のガラス転移点温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス機器の種類にもよるが、0.1~50MPa(1~500kg/cm2)が適当である。加熱圧着時のプレス温度が高くなりすぎると無機物層およびポリイミド樹脂層の劣化等の不具合が発生する懸念がある。 The hot press temperature at the time of thermocompression bonding is not particularly limited, but it is preferably higher than the glass transition temperature of the polyimide resin used. The hot press pressure is suitably 0.1 to 50 MPa (1 to 500 kg / cm 2), although it depends on the type of press equipment used. If the press temperature during thermocompression bonding becomes too high, there is a concern that problems such as deterioration of the inorganic layer and the polyimide resin layer may occur.
 以上、第2の層としてポリイミドを使用した例について説明したが、ポリイミド以外の樹脂についても同様の条件で適用できる。 As described above, the example in which the polyimide is used as the second layer has been described. However, a resin other than polyimide can be applied under the same conditions.
 以上のようにして製造された積層体は、樹脂層は545℃での熱重量減少が1.0%以下であり、かつ、無機物と樹脂層との界面のピール強度が100N/m以上であり接着強度が非常に優れている。つまり、高耐熱性との両立を達成している。このため、高温処理を要するTFT(Thin Film Transistor)半導体を有する有機EL等の表示部材、高温域作動を特徴とするパワー半導体搭載のインバータ部材、カルコパライト系に代表される化合物半導体系太陽電池基板等の耐熱性とフレキシブル性を必要とする各種材料に好適に使用できる。特に、500℃前後位の耐熱性を要するCIS系のカルコパライト系太陽電池を含む化合物半導体系太陽電池用フレキシブル基板にも好適に使用できる。なお、上記表示部材は、用いるTFT材質種の違いによって、必要とされる耐熱レベルが異なり、例えばその材質種がLTPS[Low Temperature Polysilicon]の場合、450~460℃位の耐熱性が必要とされ、IGZO[インジウム(In)、ガリウム(Ga)、亜鉛(Zn)の酸化物(Oxide)である半導体性酸化物]の場合、TFT形成条件に幅があり、300~400℃位の耐熱性が必要とされている本実施形態の積層体は、上記の表示部材として好適に使用できる。 In the laminate produced as described above, the resin layer has a thermal weight reduction at 545 ° C. of 1.0% or less, and the peel strength at the interface between the inorganic material and the resin layer is 100 N / m or more. Bond strength is very good. In other words, the compatibility with high heat resistance is achieved. For this reason, display members such as organic EL having TFT (Thin Film Transistor) semiconductors that require high temperature processing, inverter members equipped with power semiconductors characterized by high temperature operation, compound semiconductor solar cell substrates represented by chalcopyrite systems, etc. It can be suitably used for various materials that require heat resistance and flexibility. In particular, it can be suitably used for a flexible substrate for a compound semiconductor solar cell including a CIS-based chalcopyrite solar cell requiring heat resistance of about 500 ° C. The above-mentioned display member requires different heat resistance levels depending on the type of TFT material used. For example, when the material type is LTPS [Low Temperature Polysilicon], heat resistance of about 450 to 460 ° C. is required. IGZO [semiconductor oxide which is an oxide of indium (In), gallium (Ga) and zinc (Zn)] has a wide range of TFT formation conditions and has a heat resistance of about 300 to 400 ° C. The required laminated body of this embodiment can be used suitably as said display member.
 太陽電池基板材料としては、以下の化合物半導体系の太陽電池を作製することができる。本発明のフレキシブル太陽電池20の実施の形態について図3を参照して説明する。
 図3は本実施の形態のフレキシブル太陽電池の一例の断面図であり、図1を参照して説明したポリイミド層含有フレキシブル基板である積層体10を使用して形成される。
 この太陽電池20は、ポリイミド層含有フレキシブル基板である積層体10のポリイミド層(絶縁層)である第2の層2上に下部電極(裏面電極)6、下部電極6上に光電変換層(光吸収層)7、光電変換層7上に透明電極(上部電極)8、ならびに下部電極6および透明電極8に接続する取り出し電極9を有する構造である。
As the solar cell substrate material, the following compound semiconductor solar cells can be produced. An embodiment of the flexible solar cell 20 of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view of an example of the flexible solar cell of the present embodiment, and is formed using the laminate 10 that is the polyimide layer-containing flexible substrate described with reference to FIG.
The solar cell 20 includes a lower electrode (back electrode) 6 on the second layer 2 which is a polyimide layer (insulating layer) of the laminate 10 which is a polyimide layer-containing flexible substrate, and a photoelectric conversion layer (light) on the lower electrode 6. The structure has a transparent electrode (upper electrode) 8, and a lower electrode 6 and a takeout electrode 9 connected to the transparent electrode 8 on the absorption layer 7 and the photoelectric conversion layer 7.
 下部電極6としては、導電性を有する材料であれば特に限定されないが、好ましくは、例えば、体積抵抗率が6×106Ω・cm以下の金属、半導体などを用いることができる。具体的には、例えばモリブデン(Mo)を使用することができる。なお、下部電極6の厚さは、フレキシブル性の点で、0.1~1μmが好ましい。 The lower electrode 6 is not particularly limited as long as it is a conductive material. Preferably, for example, a metal or semiconductor having a volume resistivity of 6 × 10 6 Ω · cm or less can be used. Specifically, for example, molybdenum (Mo) can be used. The thickness of the lower electrode 6 is preferably 0.1 to 1 μm from the viewpoint of flexibility.
 光電変換層7は、高い発電効率を得るために、光の吸収性がよいもの、すなわち光吸収係数の大きいものが好ましい。本発明のフレキシブル太陽電池用の光電変換層としては、化合物半導体が好ましく、Cu、In、Ga、Al、Se、Sなどから成るカルコパイライト系と呼ばれるI-III-VI族化合物を用いる。例えば、CdS/CdTe、CIS[CuInS]、CIGS[Cu(In,Ga)Se]、CIGSS[Cu(In,Ga)(Se,S)]、SiGe、CdSe、GaAs、GaN、およびInP等を挙げることができる。光電変換層7の厚さは、発電効率とフレキシブル性の両立の点で、0.1~4μmが好ましい。 In order to obtain high power generation efficiency, the photoelectric conversion layer 7 preferably has a good light absorption, that is, a large light absorption coefficient. As the photoelectric conversion layer for the flexible solar cell of the present invention, a compound semiconductor is preferable, and a chalcopyrite-based I-III-VI group compound composed of Cu, In, Ga, Al, Se, S or the like is used. For example, CdS / CdTe, CIS [CuInS 2 ], CIGS [Cu (In, Ga) Se 2 ], CIGSS [Cu (In, Ga) (Se, S) 2 ], SiGe, CdSe, GaAs, GaN, and InP Etc. The thickness of the photoelectric conversion layer 7 is preferably 0.1 to 4 μm from the viewpoint of achieving both power generation efficiency and flexibility.
 透明電極8は、光が入射する側の電極であるため、効率よく集光できるように、その材料として透明度が高いものを使用する。例えば、アルミニウムをドープした酸化亜鉛(ZnO)やインジウム・スズ酸化物(ITO)を使用する。透明電極8の厚さは、フレキシブル性の点で、0.1~0.3μmである。なお、反射等による入射光の損失を防ぐため、透明電極8に接して反射防止膜を形成してもよい。 Since the transparent electrode 8 is an electrode on the light incident side, a material having high transparency is used so that the light can be efficiently collected. For example, aluminum-doped zinc oxide (ZnO) or indium tin oxide (ITO) is used. The thickness of the transparent electrode 8 is 0.1 to 0.3 μm from the viewpoint of flexibility. In order to prevent loss of incident light due to reflection or the like, an antireflection film may be formed in contact with the transparent electrode 8.
 取り出し電極9としては、例えば、Ni、Al、Ag、AuおよびNiCrなどの金属および合金を材料として使用することができる。 As the extraction electrode 9, for example, metals and alloys such as Ni, Al, Ag, Au, and NiCr can be used as materials.
 また、光電変換層7と透明電極8の間に、CdSなどのCd系、ZnS,ZnO,ZnO1-X,Zn(S,O,OH),Zn1-XMgOなどのZn系、InS,In(S,OH)などのIn系のバッファ層(不図示)を設けてもよい。 Further, between the photoelectric conversion layer 7 and the transparent electrode 8, a Cd-based material such as CdS, ZnS, ZnO, ZnO 1-X S X , Zn (S, O, OH) X , Zn 1-X Mg X O, etc. An In-based buffer layer (not shown) such as Zn-based, InS, In (S, OH) X may be provided.
 つづいて、本実施形態に係るフレキシブル太陽電池の、概略製造方法について図4を参照して説明する。
 図4は本実施の形態のフレキシブル太陽電池の製造方法を示すフロー図である。
 まず、ポリイミド層含有フレキシブル基板である積層体10のポリイミド層である第2の層2上に、電極材料、例えばモリブデンを積層して下部電極6を形成する(S11)。具体的には、例えば、モリブデンをスパッタリング法または蒸着法により第2の層2上に積層する。
It continues and demonstrates the schematic manufacturing method of the flexible solar cell which concerns on this embodiment with reference to FIG.
FIG. 4 is a flowchart showing a method for manufacturing the flexible solar cell of the present embodiment.
First, an electrode material, for example, molybdenum is laminated on the second layer 2 that is a polyimide layer of the laminate 10 that is a polyimide layer-containing flexible substrate to form the lower electrode 6 (S11). Specifically, for example, molybdenum is stacked on the second layer 2 by sputtering or vapor deposition.
 下部電極6の形成後、その上に上記化合物半導体のいずれかを積層して光電変換層7を形成する(S12)。具体的には、例えば、化合物半導体材料を、焼結、化学析出、スパッタ、近接昇華法、多元蒸着法、およびセレン化法等のいずれかの方法によって、下部電極6上に積層させる。 After the formation of the lower electrode 6, one of the above compound semiconductors is laminated thereon to form the photoelectric conversion layer 7 (S12). Specifically, for example, the compound semiconductor material is laminated on the lower electrode 6 by any method such as sintering, chemical precipitation, sputtering, proximity sublimation, multi-source deposition, and selenization.
 光電変換層7としてCdS/CdTe膜を形成する場合は、CdSペーストおよびCdTeペーストを順次塗布して600℃以下で焼結して薄膜を形成する方法を例示することができる。また、当該方法の代わりに、化学析出またはスパッタ等によりCdS膜を形成した後、近接昇華法によりCdTe膜を形成する方法を採用することもできる。 When a CdS / CdTe film is formed as the photoelectric conversion layer 7, a method of forming a thin film by sequentially applying a CdS paste and a CdTe paste and sintering at 600 ° C. or lower can be exemplified. Further, instead of this method, a method of forming a CdTe film by proximity sublimation after forming a CdS film by chemical precipitation or sputtering can be employed.
 光電変換層7としてCIS[CuInS]膜、CIGS[Cu(In,Ga)Se]膜、またはCIGSS[Cu(In,Ga)(Se,S)]膜を形成する場合は、これら化合物をペースト状にして第2の層2上に塗布し、350~550℃で焼結することにより、これら化合物半導体系の光電変換層7を形成する。 When a CIS [CuInS 2 ] film, a CIGS [Cu (In, Ga) Se 2 ] film, or a CIGSS [Cu (In, Ga) (Se, S) 2 ] film is formed as the photoelectric conversion layer 7, these compounds The paste is applied on the second layer 2 and sintered at 350 to 550 ° C. to form the compound semiconductor-based photoelectric conversion layer 7.
 上記のようにして化合物半導体系の光電変換層7を形成する際、化合物半導体膜中に亜鉛(Zn)を混入させてもよい。亜鉛を混入させることにより、光電変換効率を向上させることができる。
 混入方法としては、例えば、硫酸亜鉛、塩化亜鉛、またはヨウ化亜鉛等の水溶液を化合物半導体膜に塗布する方法を用いることができる。あるいは、これらの水溶液中に、光電変換層7までを形成した積層体を浸漬させてもよい。
When forming the compound semiconductor-based photoelectric conversion layer 7 as described above, zinc (Zn) may be mixed into the compound semiconductor film. By mixing zinc, the photoelectric conversion efficiency can be improved.
As the mixing method, for example, a method of applying an aqueous solution such as zinc sulfate, zinc chloride, or zinc iodide to the compound semiconductor film can be used. Or you may immerse the laminated body which formed even the photoelectric converting layer 7 in these aqueous solution.
 光電変換層7の形成後、その上にアルミニウムをドープした酸化亜鉛(ZnO)やインジウム・スズ酸化物(ITO)の透明電極8を、スパッタリング法等により積層させる(S13)。その後、下部電極6および透明電極8のそれぞれに接続させて、各々取り出し電極9を形成させる(S14)。取り出し電極の材料としてはアルミニウムやニッケルを使用することができる。 After the photoelectric conversion layer 7 is formed, a transparent electrode 8 of zinc oxide (ZnO) or indium tin oxide (ITO) doped with aluminum is laminated thereon by a sputtering method or the like (S13). Then, it connects with each of the lower electrode 6 and the transparent electrode 8, and each taking-out electrode 9 is formed (S14). Aluminum or nickel can be used as the material for the extraction electrode.
 なお、第2の層2と下部電極6の間にアルカリ金属供給層を形成してもよい。アルカリ金属供給層からアルカリ金属の一部が光電変換層7に浸透・拡散することにより、光電変換効率が向上する効果を期待できる。 Note that an alkali metal supply layer may be formed between the second layer 2 and the lower electrode 6. The effect of improving the photoelectric conversion efficiency can be expected when a part of the alkali metal permeates and diffuses into the photoelectric conversion layer 7 from the alkali metal supply layer.
 以下、実施例により、本発明の実施の形態についてより具体的に説明する。また、比較例を示すことにより、本実施の形態の優位性を明らかにする。 Hereinafter, the embodiments of the present invention will be described more specifically with reference to examples. Further, the superiority of the present embodiment will be clarified by showing a comparative example.
1.第1の層
 第1の層とする無機物として、新日鉄住金マテリアルズ株式会社製のステンレス箔である膜厚が30μm、熱膨張係数11ppm/Kおよび第1の層と接する側の表面粗さ(Ra)が0.08μmのフェライト系ステンレス箔を使用した。
1. As the inorganic material for the first layer, the thickness of the stainless steel foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd. is 30 μm, the coefficient of thermal expansion is 11 ppm / K, and the surface roughness on the side in contact with the first layer (Ra ) Was 0.08 μm ferritic stainless steel foil.
2.各種物性測定および性能試験方法2. Various physical property measurement and performance test methods
[線熱膨張係数の測定]
 積層体および積層前の無機物層について、3mm×20mmのサイズに切り出した測定用試験片を、ブルカー社製熱機械分析(TMA)装置(4000SA)にて5gの荷重を加えながら一定の昇温速度(20℃/min)で30℃から260℃の温度範囲で引張り試験を行い、その後30℃まで一定の降温速度(5℃/min)で冷却し、縮み量から線熱膨張係数(ppm/K)を測定した。
[Measurement of linear thermal expansion coefficient]
With respect to the laminate and the inorganic layer before lamination, a test piece for measurement cut out to a size of 3 mm × 20 mm was applied with a constant heating rate while applying a load of 5 g with a Bruker thermomechanical analysis (TMA) apparatus (4000SA). A tensile test is performed at a temperature range of 30 ° C. to 260 ° C. at 20 ° C./min, and then cooled to 30 ° C. at a constant rate of temperature decrease (5 ° C./min). ) Was measured.
[熱重量減少率の測定]
 積層体について、無機物層をウェットエッチングによりポリイミド樹脂フィルム化し、20mgをアルミカップに入れ、エスアイアイ・ナノテクノロジー社製熱重量測定装置(TG/DTA6200)を用いて、窒素下(200ml/min)もしくは大気下で30℃から550℃まで10℃/minの昇温速度で昇温を行い、200℃から545℃間の重量減少率を測定した。
[Measurement of thermal weight loss rate]
About a laminated body, an inorganic substance layer is made into a polyimide resin film by wet etching, 20 mg is put into an aluminum cup, and using a thermogravimetric measuring device (TG / DTA6200) manufactured by SII Nanotechnology, under nitrogen (200 ml / min) or The temperature was increased from 30 ° C. to 550 ° C. at a rate of 10 ° C./min in the air, and the weight loss rate between 200 ° C. and 545 ° C. was measured.
[接着力(ピール強度)の測定]
 無機物層とポリイミド樹脂層との間の接着力は、積層体について、線幅1mmにパターン・エッチング加工を行い、東洋精機株式会社製引張試験機(ストログラフ-M1)を用いて、樹脂層を180°方向に引き剥がし、ピール強度を測定した。なお、加工細線と樹脂界面間の接着が強固であり、剥離が困難であるものを剥離不可とした。またポリイミド樹脂層が凝集破壊したものを測定不可とした。
[Measurement of adhesive strength (peel strength)]
The adhesive force between the inorganic layer and the polyimide resin layer is such that the laminate is subjected to a pattern etching process with a line width of 1 mm, and the resin layer is applied using a tensile tester (Strograph-M1) manufactured by Toyo Seiki Co., Ltd. The peel strength was measured by peeling off in the 180 ° direction. In addition, the thing with the strong adhesion | attachment between a process fine wire and a resin interface and being difficult to peel was made impossible to peel. In addition, it was determined that measurement was impossible when the polyimide resin layer was agglomerated.
[表面粗さの測定]
 ステンレス層の表面粗さは、2cm×2cmにカットしたステンレス箔についてキーエンス社製レーザー顕微鏡(VK-8710)を用いて測定した。
 上記装置により、第1の層として使用した新日鉄住金マテリアルズ株式会社製のステンレス箔の第1の層と接する側の表面粗さ(Ra)を測定した結果0.08μmであった。
[Measurement of surface roughness]
The surface roughness of the stainless steel layer was measured using a laser microscope (VK-8710) manufactured by Keyence Corporation on a stainless steel foil cut to 2 cm × 2 cm.
The surface roughness (Ra) on the side in contact with the first layer of the stainless steel foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd. used as the first layer was 0.08 μm.
3.ポリアミド酸(ポリイミド前駆体)溶液の合成
参考例
 以下の合成例や実施例および比較例において取扱われるポリアミド酸(ポリイミド前駆体)溶液の合成に用いた原料、芳香族ジアミノ化合物、芳香族テトラカルボン酸の酸無水物化合物、溶剤を以下に示す。
〔芳香族ジアミノ化合物〕
・1,4-フェニレンジアミン(PPD、大新工業株式会社製)
・4,4’-ジアミノジフェニルエーテル(DAPE、セイカ株式会社製)
・2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル
(TFMB、セイカ株式会社製)
・2,2’-ジメチル-4,4’-ジアミノビフェニル(mTB、セイカ株式会社製)
・1,3-ビス(4-アミノフェノキシ)ベンゼン(TPER、セイカ株式会社製)
・2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP、セイカ株式会社)
〔芳香族テトラカルボン酸の無水物化合物〕
・無水ピロメリット酸(PMDA、ダイセル化学株式会社製)
・2,3,2’,3’-ビフェニルテトラカルボン酸二無水物(BPDA,三菱化学製株式会社)
・2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA、JFEケミカル株式会社製)
〔溶媒〕
・N、N―ジメチルアセトアミド(DMAc、関東化学株式会社製)
3. Synthesis of polyamic acid (polyimide precursor) solution
Reference Examples The raw materials, aromatic diamino compounds, aromatic tetracarboxylic acid anhydride compounds and solvents used in the synthesis of the polyamic acid (polyimide precursor) solutions handled in the following synthesis examples, examples and comparative examples are as follows: Show.
[Aromatic diamino compounds]
・ 1,4-Phenylenediamine (PPD, manufactured by Daishin Kogyo Co., Ltd.)
・ 4,4'-diaminodiphenyl ether (DAPE, manufactured by Seika Corporation)
・ 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB, manufactured by Seika Corporation)
・ 2,2'-dimethyl-4,4'-diaminobiphenyl (mTB, manufactured by Seika Corporation)
・ 1,3-Bis (4-aminophenoxy) benzene (TPER, manufactured by Seika Corporation)
2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP, Seika Corporation)
[Anhydrous compound of aromatic tetracarboxylic acid]
・ Pyromellitic anhydride (PMDA, manufactured by Daicel Chemical Industries)
・ 2,3,2 ′, 3′-biphenyltetracarboxylic dianhydride (BPDA, manufactured by Mitsubishi Chemical Corporation)
・ 2,3,6,7-Naphthalenetetracarboxylic dianhydride (NTCDA, manufactured by JFE Chemical Co., Ltd.)
〔solvent〕
・ N, N-dimethylacetamide (DMAc, manufactured by Kanto Chemical Co., Inc.)
合成例1
 窒素気流下で、PPD(8.002g、0.074mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、BPDA(22.000g、0.075mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸aを得た。なお、このポリアミド酸aを加熱することによりポリイミドaが得られる。
Synthesis example 1
Under a nitrogen stream, PPD (8.002 g, 0.074 mol) was added to 170 g of the solvent DMAc while stirring in a 300 ml separable flask, and dissolved at 50 ° C. BPDA (22.000 g, 0.075 mol) was then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a viscous polyamic acid a. In addition, the polyimide a is obtained by heating this polyamic acid a.
合成例2
 窒素気流下で、PPD(7.4077g、0.06850mol)およびTFMB(1.1545g、0.00361mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、BPDA(21.4378g、0.07286mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸bを得た。なお、このポリアミド酸bを加熱することによりポリイミドbが得られる。
Synthesis example 2
Under a nitrogen stream, PPD (7.4077 g, 0.06850 mol) and TFMB (1.1545 g, 0.00361 mol) were added to 170 g of solvent DMAc with stirring in a 300 ml separable flask and heated at 50 ° C. Dissolved. BPDA (21.4378 g, 0.07286 mol) was then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain viscous polyamic acid b. In addition, the polyimide b is obtained by heating this polyamic acid b.
合成例3
 窒素気流下で、PPD(7.4077g、0.06850mol)およびTFMB(1.1545g、0.00361mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、BPDA(20.9050g、0.07105mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸cを得た。なお、このポリアミド酸cを加熱することによりポリイミドcが得られる。
Synthesis example 3
Under a nitrogen stream, PPD (7.4077 g, 0.06850 mol) and TFMB (1.1545 g, 0.00361 mol) were added to 170 g of solvent DMAc with stirring in a 300 ml separable flask and heated at 50 ° C. Dissolved. BPDA (20.9050 g, 0.07105 mol) was then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a viscous polyamic acid c. In addition, the polyimide c is obtained by heating this polyamic acid c.
合成例4
 窒素気流下で、PPD(8.272g、0.076mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、BPDA(11.372g、0.039mol)とNTCDA(10.356g、0.039mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、淡黄色の粘稠なポリアミド酸dを得た。なお、このポリアミド酸dを加熱することによりポリイミドdが得られる。
Synthesis example 4
Under a nitrogen stream, PPD (8.272 g, 0.076 mol) was added to 170 g of solvent DMAc while stirring in a 300 ml separable flask, and dissolved at 50 ° C. BPDA (11.372 g, 0.039 mol) and NTCDA (10.356 g, 0.039 mol) were then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a pale yellow viscous polyamic acid d. In addition, the polyimide d is obtained by heating this polyamic acid d.
合成例5
 窒素気流下で、PPD(7.0611g、0.06530mol)およびTFMB(2.3233g、0.00726mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、BPDA(10.7851g、0.03666mol)とNTCDA(9.8305g、0.03666mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、淡黄色の粘稠なポリアミド酸eを得た。なお、このポリアミド酸eを加熱することによりポリイミドeが得られる。
Synthesis example 5
Under nitrogen flow, PPD (7.0611 g, 0.06530 mol) and TFMB (2.3233 g, 0.00726 mol) were added to 170 g of solvent DMAc with stirring in a 300 ml separable flask and heated at 50 ° C. Dissolved. BPDA (10.7851 g, 0.03666 mol) and NTCDA (9.8305 g, 0.03666 mol) were then added. Thereafter, the solution was continuously stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a pale yellow viscous polyamic acid e. In addition, the polyimide e is obtained by heating this polyamic acid e.
合成例6
 窒素気流下で、m-TB(2.381g、0.011mol)とTPE-R(13.113g,0.045mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え溶解させた。次いで、PMDA(6.176g、0.028mol)とBPDA(8.331g、0.028mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、淡黄色の粘稠なポリアミド酸fを得た。なお、このポリアミド酸fを加熱することによりポリイミドfが得られる。
Synthesis Example 6
Under a nitrogen stream, m-TB (2.381 g, 0.011 mol) and TPE-R (13.113 g, 0.045 mol) were added and dissolved in 170 g of solvent DMAc with stirring in a 300 ml separable flask. . PMDA (6.176 g, 0.028 mol) and BPDA (8.331 g, 0.028 mol) were then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a pale yellow viscous polyamic acid f. In addition, the polyimide f is obtained by heating this polyamic acid f.
合成例7
 窒素気流下で、m-TB(14.337g、0.068mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え溶解させた。次いで、PMDA(11.714g、0.054mol)とBPDA(3.950g、0.013mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、淡黄色の粘稠なポリアミド酸gを得た。なお、このポリアミド酸gを加熱することによりポリイミドgが得られる。
Synthesis example 7
Under a nitrogen stream, m-TB (14.337 g, 0.068 mol) was dissolved in 170 g of solvent DMAc with stirring in a 300 ml separable flask. PMDA (11.714 g, 0.054 mol) and BPDA (3.950 g, 0.013 mol) were then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a pale yellow viscous polyamic acid g. In addition, the polyimide g is obtained by heating this polyamic acid g.
合成例8
 窒素気流下で、BAPP(19.618g、0.048mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え溶解させた。次いで、PMDA(10.382g、0.048mol)を加えた。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、淡黄色の粘稠なポリアミド酸hを得た。なお、このポリアミド酸hを加熱することによりポリイミドhが得られる。
Synthesis example 8
Under a nitrogen stream, BAPP (19.618 g, 0.048 mol) was dissolved in 170 g of solvent DMAc with stirring in a 300 ml separable flask. PMDA (10.382 g, 0.048 mol) was then added. Thereafter, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a pale yellow viscous polyamic acid h. In addition, the polyimide h is obtained by heating this polyamic acid h.
4.性能評価
実施例1
 先に記した30μm厚のフェライト系ステンレス箔を用意し、その上に、合成例1で予め用意したポリアミド酸aの溶液を塗布し、100~140℃の温度で積算時間5分間加熱し、さらに窒素雰囲気(管理酸素濃度1%以下)下にて370℃まで4℃/分で昇温したのち、500℃まで20℃/分で昇温して40分の温度保持を行い、50~60℃まで徐冷して硬化後膜厚約約8μmのポリイミド層aを備えた積層体を得た。
4). Performance evaluation
Example 1
Prepare the ferritic stainless steel foil having a thickness of 30 μm described above, and apply the polyamic acid a solution prepared in advance in Synthesis Example 1 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate having a polyimide layer a having a film thickness of about 8 μm was obtained.
実施例2
 先に記した30μm厚のフェライト系ステンレス箔を用意し、その上に、合成例2で予め用意したポリアミド酸bの溶液を塗布し、100~140℃の温度で積算時間5分間加熱し、さらに窒素雰囲気(管理酸素濃度1%以下)下にて370℃まで4℃/分で昇温したのち、500℃まで20℃/分で昇温して40分の温度保持を行い、50~60℃まで徐冷して硬化後膜厚約約8μmのポリイミド層bを備えた積層体を得た。
Example 2
Prepare the 30 μm-thick ferritic stainless steel foil described above, and apply the polyamic acid b solution prepared in advance in Synthesis Example 2 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate comprising a polyimide layer b having a film thickness of about 8 μm was obtained.
実施例3
 先に記した30μm厚のフェライト系ステンレス箔を用意し、その上に、合成例2で予め用意したポリアミド酸cの溶液を塗布し、100~140℃の温度で積算時間5分間加熱し、さらに窒素雰囲気(管理酸素濃度1%以下)下にて370℃まで4℃/分で昇温したのち、500℃まで20℃/分で昇温して40分の温度保持を行い、50~60℃まで徐冷して硬化後膜厚約約8μmのポリイミド層cを備えた積層体を得た。
Example 3
Prepare the 30 μm-thick ferritic stainless steel foil described above, and apply the polyamic acid c solution prepared in advance in Synthesis Example 2 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. After cooling, a laminate having a polyimide layer c having a film thickness of about 8 μm was obtained.
実施例4
 合成例で予め用意したポリアミド酸dの溶液を用いること以外は、実施例1と同様にして、ポリイミド層dを備えた積層体を得た。
Example 4
A laminate including the polyimide layer d was obtained in the same manner as in Example 1 except that the polyamic acid d solution prepared in advance in Synthesis Example 4 was used.
実施例5
 先に記した30μm厚のフェライト系ステンレス箔を用意し、その上に、合成例5で予め用意したポリアミド酸eの溶液を塗布し、100~140℃の温度で積算時間5分間加熱し、さらに窒素雰囲気(管理酸素濃度1%以下)下にて370℃まで4℃/分で昇温したのち、500℃まで20℃/分で昇温して40分の温度保持を行い、50~60℃まで徐冷して硬化後膜厚約約8μmのポリイミド層eを備えた積層体を得た。
Example 5
Prepare the ferritic stainless steel foil having a thickness of 30 μm described above, and apply the polyamic acid e solution prepared in advance in Synthesis Example 5 and heat at a temperature of 100 to 140 ° C. for 5 minutes, In a nitrogen atmosphere (controlled oxygen concentration of 1% or less), the temperature was raised to 370 ° C. at 4 ° C./min, then raised to 500 ° C. at 20 ° C./min and held for 40 minutes, 50-60 ° C. A laminated body having a polyimide layer e having a film thickness of about 8 μm after curing was obtained.
比較例1
 合成例6で予め用意したポリアミド酸fの溶液を用いること以外は、実施例1と同様にして、ポリイミド層fを備えた積層体を得た。
Comparative Example 1
A laminate including the polyimide layer f was obtained in the same manner as in Example 1 except that the polyamic acid f solution prepared in advance in Synthesis Example 6 was used.
比較例2
 合成例7で予め用意したポリアミド酸gの溶液を用いること以外は、実施例1と同様にして、ポリイミド層gを備えた積層体を得た。
Comparative Example 2
A laminate including the polyimide layer g was obtained in the same manner as in Example 1 except that the polyamic acid g solution prepared in advance in Synthesis Example 7 was used.
比較例3
 合成例8で予め用意したポリアミド酸hの溶液を用いること以外は、実施例1と同様にして、ポリイミド層hを備えた積層体を得た。
Comparative Example 3
A laminate including the polyimide layer h was obtained in the same manner as in Example 1 except that the polyamic acid h solution prepared in advance in Synthesis Example 8 was used.
比較例4
 加熱条件を窒素雰囲気下から大気下に変更したこと以外は、実施例1と同様に積層体を得た。
Comparative Example 4
A laminate was obtained in the same manner as in Example 1 except that the heating condition was changed from the nitrogen atmosphere to the atmosphere.
  〔表1〕

Figure JPOXMLDOC01-appb-I000007
[Table 1]

Figure JPOXMLDOC01-appb-I000007
 なお、表1にある熱重量減少は樹脂層厚が約8μmのケースであり、塗布などの調節で層厚を薄くすることによって、例えば3μmなど層厚を薄くすることによって、熱重量減少はさらに低減して良好化する。 The thermal weight reduction shown in Table 1 is a case where the resin layer thickness is about 8 μm. By reducing the layer thickness by adjusting the application, etc., for example, by reducing the layer thickness such as 3 μm, the thermal weight reduction is further reduced. Reduce and improve.
 前述の表1の通り、実施例1~5は、545℃での熱重量減少が1.0%以下であり、かつ第2の層及び第1の層の界面のピール強度が100N/mを超えて強い接着を発現し、ピール強度の測定の際は剥離不可の強接着状態であった。また、前述の表1の通り、実施例1と3と4は、545℃での熱重量減少が0.7%以下であり、かつ第2の層及び第1の層の界面のピール強度が100N/mを超えて強い接着を発現し、ピール強度の測定の際は剥離不可の強接着状態であった。
 比較例1は熱重量減少が10.1%であり、比較例2と比較例3も熱重量減少は1.0%を大きく超えており、耐熱性が不足している。また、ピール強度測定時に樹脂層が破壊し、界面のピール強度は測定できなかった。
 比較例4は、ピール強度が10N/mであり、100N/mを下回っており、剥離を伴い接着性能が劣っている。
 実施例に示すように、無機物層によるバリア性と樹脂層による電気絶縁性を併せ持ち、高耐熱性で接着性ともに良好な積層体を得ることにより、様々な用途に使用可能で、樹脂の好ましい特性を活かしつつ、従来に無い高温域でのハンドリングや加工を可能とすることで、従来よりも高性能な製品や部品、部材を提供可能となる。実施例にある様に、500℃レベルまでの高温の熱処理を施して作製した積層体でありながら、無機物層と樹脂層の界面接着が良好であるので、高温プロセスを必要とする多くの用途への適用が見込める。
 また、実施例1に対して、加熱条件を窒素雰囲気で酸素濃度10%以下、5%以下、1%以下として作成した各積層体のピール強度は、実施例1と同様に剥がれず、100N/m以上となった。
As shown in Table 1, in Examples 1 to 5, the thermal weight loss at 545 ° C. is 1.0% or less, and the peel strength at the interface between the second layer and the first layer is 100 N / m. Strong adhesion was exhibited, and in the measurement of peel strength, it was a strong adhesion state that could not be peeled off. Further, as shown in Table 1 above, in Examples 1, 3 and 4, the thermal weight loss at 545 ° C. is 0.7% or less, and the peel strength at the interface between the second layer and the first layer is Strong adhesion was developed exceeding 100 N / m, and in the measurement of peel strength, it was in a strong adhesion state that could not be peeled off.
Comparative Example 1 has a thermal weight reduction of 10.1%, and Comparative Examples 2 and 3 also have a thermal weight reduction greatly exceeding 1.0%, which is insufficient in heat resistance. Further, the resin layer was broken during the peel strength measurement, and the peel strength at the interface could not be measured.
Comparative Example 4 has a peel strength of 10 N / m, less than 100 N / m, and is inferior in adhesion performance with peeling.
As shown in the examples, it is possible to use for various applications by obtaining a laminate having both barrier properties by the inorganic layer and electrical insulation by the resin layer, high heat resistance and good adhesion, and preferable properties of the resin By making use of the above, enabling handling and processing in a high temperature range that has not been possible in the past, it becomes possible to provide products, parts, and members with higher performance than before. As shown in the examples, it is a laminate produced by heat treatment up to a temperature of 500 ° C., but the interface between the inorganic layer and the resin layer is good, so it can be used in many applications that require high-temperature processes. Can be applied.
In addition, the peel strength of each laminate produced in Example 1 with the heating condition set to an oxygen concentration of 10% or less, 5% or less, and 1% or less in a nitrogen atmosphere is not peeled off as in Example 1, and is 100 N / m or more.
 用途としては、TFT作製を伴う液晶や有機ELなどのディスプレイ基板材料、高温使用が課せられるSiCパワーデバイス基板材料、長時間の高温が続く有機EL照明基板材料、製造プロセスに高温条件が求められる化合物半導体系などの太陽電池基板材料などの、製品や部品、部材等があげられる。 Applications include display substrate materials such as liquid crystal and organic EL that involve TFT fabrication, SiC power device substrate materials that are subject to high-temperature use, organic EL lighting substrate materials that continue for long periods of time, and compounds that require high-temperature conditions in the manufacturing process Examples include products, parts, members, and the like, such as semiconductor-based solar cell substrate materials.

Claims (15)

  1.  樹脂からなる第2の層及び無機物からなる第1の層を積層した積層体であって、前記樹脂の545℃での熱重量減少が1.0%以下であり、かつ前記第2の層及び前記第1の層の界面のピール強度が100N/m以上であることを特徴とする積層体。 A laminate in which a second layer made of a resin and a first layer made of an inorganic material are laminated, the thermal weight loss of the resin at 545 ° C. being 1.0% or less, and the second layer and A laminate having a peel strength at an interface of the first layer of 100 N / m or more.
  2.  前記樹脂の545℃での熱重量減少が0.7%以下である請求項1に記載の積層体。 The laminate according to claim 1, wherein a decrease in thermal weight of the resin at 545 ° C is 0.7% or less.
  3.  前記第1の層の面方向の線熱膨張係数が15ppm/K以下であることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the linear thermal expansion coefficient in the plane direction of the first layer is 15 ppm / K or less.
  4.  前記第2の層は、ポリイミド及びその誘導体からなる群から選択された1種または2種以上の樹脂材料で形成されてなることを特徴とする請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the second layer is formed of one or more resin materials selected from the group consisting of polyimide and derivatives thereof. .
  5.  前記第2の層は、ビフェニルテトラカルボン酸化合物及びフェニレンジアミン化合物から合成されて成るポリイミド及びその誘導体、ビフェニルテトラカルボン酸化合物、フェニレンジアミン化合物及び4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルから合成されて成るポリイミド及びその誘導体、ビフェニルテトラカルボン酸化合物、ナフタレンテトラカルボン酸化合物及びフェニレンジアミン化合物から合成されて成るポリイミド及びその誘導体、またはビフェニルテトラカルボン酸化合物、ナフタレンテトラカルボン酸化合物、フェニレンジアミン化合物及び4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルから合成されて成るポリイミド及びその誘導体、あるいはこれらの2種以上のポリイミド及びその誘導体で形成されてなることを特徴とする請求項1~4のいずれかに記載の積層体。 The second layer includes a polyimide synthesized from a biphenyltetracarboxylic acid compound and a phenylenediamine compound and derivatives thereof, a biphenyltetracarboxylic acid compound, a phenylenediamine compound, and 4,4′-diamino-2,2′-bis ( Polyimide and its derivatives synthesized from trifluoromethyl) biphenyl, polyimide and its derivatives synthesized from biphenyltetracarboxylic acid compounds, naphthalenetetracarboxylic acid compounds and phenylenediamine compounds, or biphenyltetracarboxylic acid compounds and naphthalenetetracarboxylic A polyimide synthesized from an acid compound, a phenylenediamine compound and 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, or a derivative thereof, or two or more of these Polyimide and laminate according to any one of claims 1 to 4, characterized by being formed by a derivative thereof.
  6.  前記第1の層が、金属からなる群から選択された1種または2種以上の金属材料で形成されてなることを特徴とする請求項1~5のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the first layer is formed of one or more metal materials selected from the group consisting of metals.
  7.  前記第1の層は、フェライト系ステンレス及びチタンからなる群から選択された1種または2種以上の金属材料で形成されてなることを特徴とする請求項1~6のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the first layer is formed of one or more metal materials selected from the group consisting of ferritic stainless steel and titanium. body.
  8.  前記第1の層の表面に前記樹脂またはその前駆体を塗布した後、300℃以上における加熱処理を施すことによって得られることを特徴とする、請求項1~7のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the laminate is obtained by applying the resin or a precursor thereof to the surface of the first layer and then performing a heat treatment at 300 ° C or higher. .
  9.  前記加熱処理として酸素濃度10%以下における加熱処理を施すことによって得られることを特徴とする、請求項8に記載の積層体。 The laminate according to claim 8, wherein the laminate is obtained by performing a heat treatment at an oxygen concentration of 10% or less as the heat treatment.
  10.  請求項1~9のいずれかに記載の積層体を含む化合物半導体系太陽電池用部材。 A compound semiconductor solar cell member comprising the laminate according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載の積層体を含む化合物半導体系太陽電池。 A compound semiconductor solar cell comprising the laminate according to any one of claims 1 to 9.
  12.  請求項1~9のいずれかに記載の積層体を含む表示装置用部材。 A member for a display device comprising the laminate according to any one of claims 1 to 9.
  13.  請求項1~9のいずれかに記載の積層体を含む表示装置。 A display device comprising the laminate according to any one of claims 1 to 9.
  14.  請求項1~9のいずれかに記載の積層体の製造方法であって、無機物からなる第1の層の表面に樹脂またはその前駆体を連続的に塗布する工程と、300℃以上における加熱処理によって該第1の層の表面に該樹脂からなる第2の層を形成する工程とをロール・トゥ・ロールにて行うことを特徴とする、積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 9, wherein a step of continuously applying a resin or a precursor thereof to the surface of the first layer made of an inorganic material, and a heat treatment at 300 ° C or higher And a step of forming a second layer made of the resin on the surface of the first layer by a roll-to-roll method.
  15.  前記加熱処理を、酸素濃度10%以下において行うことを特徴とする、請求項14に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 14, wherein the heat treatment is performed at an oxygen concentration of 10% or less.
PCT/JP2014/053791 2013-02-19 2014-02-18 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body WO2014129464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501462A JP6445965B2 (en) 2013-02-19 2014-02-18 LAMINATE, SOLAR CELL MEMBER, SOLAR CELL, DISPLAY DEVICE MEMBER, DISPLAY DEVICE AND LAMINATE MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029903 2013-02-19
JP2013029903 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129464A1 true WO2014129464A1 (en) 2014-08-28

Family

ID=51391253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053791 WO2014129464A1 (en) 2013-02-19 2014-02-18 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body

Country Status (3)

Country Link
JP (1) JP6445965B2 (en)
TW (1) TW201500207A (en)
WO (1) WO2014129464A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166961A1 (en) * 2015-04-17 2016-10-20 Jfeケミカル株式会社 Polyamide acid composition and polyimide composition
JP2017165909A (en) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 Polyimide, resin film, and metal clad laminate
WO2017176000A1 (en) * 2016-04-07 2017-10-12 주식회사 엘지화학 Polyimide film having improved heat resistance and method for manufacturing same
WO2020044405A1 (en) * 2018-08-27 2020-03-05 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
CN110959022A (en) * 2017-11-13 2020-04-03 株式会社Lg化学 Display substrate polyimide film
KR20200110729A (en) * 2020-09-17 2020-09-25 주식회사 엘지화학 Method for preparing polyimide film having improved heat resistance
WO2023013401A1 (en) * 2021-08-06 2023-02-09 三井化学株式会社 Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate
WO2023074350A1 (en) * 2021-10-25 2023-05-04 株式会社カネカ Polyamide acid, polyamide acid composition, polyimide, polyimide film, multilayer body, method for producing multilayer body, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176509B (en) * 2019-06-13 2020-12-01 淮北知创风信息科技有限公司 Stainless steel substrate for flexible solar cell

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111181A (en) * 1984-11-07 1986-05-29 Nitto Electric Ind Co Ltd Manufacture of polyimide-metallic foil composite film
JPH05228418A (en) * 1991-12-27 1993-09-07 Mitsui Toatsu Chem Inc Method for producing flexible metal foil laminated sheet and apparatus therefor
JPH06106125A (en) * 1992-09-30 1994-04-19 Mitsui Toatsu Chem Inc Method and apparatus for producing flexible metal foil laminated sheet
JPH09102656A (en) * 1995-04-17 1997-04-15 Nitto Denko Corp Board for making circuit and circuit board
JPH10265572A (en) * 1996-02-13 1998-10-06 Nitto Denko Corp Circuit board, suspension board with circuit and their production
JP2001270036A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2004322636A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Polyimide metal laminate and its production process
JP2006137918A (en) * 2004-11-12 2006-06-01 Chang Chun Plastics Co Ltd New method for producing polyimide
WO2006059692A1 (en) * 2004-12-03 2006-06-08 Mitsui Chemicals, Inc. Polyimide metal laminate and suspension for hard disk using same
JP2006248142A (en) * 2005-03-14 2006-09-21 Amt Kenkyusho:Kk Laminate
JP2006291147A (en) * 2005-04-14 2006-10-26 Nippon Kayaku Co Ltd Polyimide precursor composition
JP2010157571A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminated body for flexible wiring board
JP2011245675A (en) * 2010-05-25 2011-12-08 Toyobo Co Ltd Laminate, laminated sheet with electric circuit, laminate with semiconductor and manufacturing method of the same
JP2012102155A (en) * 2010-11-05 2012-05-31 Kaneka Corp Polyimide film, laminate, and flexible device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383286B2 (en) * 2009-03-31 2014-01-08 新日鉄住金化学株式会社 Method for producing white polyimide
US9187676B2 (en) * 2010-07-22 2015-11-17 Ube Industries, Ltd. Production process of polyimide film laminate, and polyimide film laminate
KR101531737B1 (en) * 2011-06-30 2015-06-25 코오롱인더스트리 주식회사 Polyamic acid and Polyamic acid solution, Polyimide protecive layer, Polyimide film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111181A (en) * 1984-11-07 1986-05-29 Nitto Electric Ind Co Ltd Manufacture of polyimide-metallic foil composite film
JPH05228418A (en) * 1991-12-27 1993-09-07 Mitsui Toatsu Chem Inc Method for producing flexible metal foil laminated sheet and apparatus therefor
JPH06106125A (en) * 1992-09-30 1994-04-19 Mitsui Toatsu Chem Inc Method and apparatus for producing flexible metal foil laminated sheet
JPH09102656A (en) * 1995-04-17 1997-04-15 Nitto Denko Corp Board for making circuit and circuit board
JPH10265572A (en) * 1996-02-13 1998-10-06 Nitto Denko Corp Circuit board, suspension board with circuit and their production
JP2001270036A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2004322636A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Polyimide metal laminate and its production process
JP2006137918A (en) * 2004-11-12 2006-06-01 Chang Chun Plastics Co Ltd New method for producing polyimide
WO2006059692A1 (en) * 2004-12-03 2006-06-08 Mitsui Chemicals, Inc. Polyimide metal laminate and suspension for hard disk using same
JP2006248142A (en) * 2005-03-14 2006-09-21 Amt Kenkyusho:Kk Laminate
JP2006291147A (en) * 2005-04-14 2006-10-26 Nippon Kayaku Co Ltd Polyimide precursor composition
JP2010157571A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminated body for flexible wiring board
JP2011245675A (en) * 2010-05-25 2011-12-08 Toyobo Co Ltd Laminate, laminated sheet with electric circuit, laminate with semiconductor and manufacturing method of the same
JP2012102155A (en) * 2010-11-05 2012-05-31 Kaneka Corp Polyimide film, laminate, and flexible device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604629B2 (en) 2015-04-17 2020-03-31 Jfe Chemical Corporation Polyamide acid composition and polyimide composition
JP2016204457A (en) * 2015-04-17 2016-12-08 Jfeケミカル株式会社 Polyamide acid composition and polyimide composition
US20180105648A1 (en) * 2015-04-17 2018-04-19 Jfe Chemical Corporation Polyamide acid composition and polyimide composition
WO2016166961A1 (en) * 2015-04-17 2016-10-20 Jfeケミカル株式会社 Polyamide acid composition and polyimide composition
JP2017165909A (en) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 Polyimide, resin film, and metal clad laminate
WO2017176000A1 (en) * 2016-04-07 2017-10-12 주식회사 엘지화학 Polyimide film having improved heat resistance and method for manufacturing same
CN108779272A (en) * 2016-04-07 2018-11-09 株式会社Lg化学 Improve the polyimide film and its manufacturing method of heat resistance
JP2019502786A (en) * 2016-04-07 2019-01-31 エルジー・ケム・リミテッド Polyimide film with improved heat resistance and method for producing the same
EP3441420A4 (en) * 2016-04-07 2019-04-17 LG Chem, Ltd. Polyimide film having improved heat resistance and method for manufacturing same
JP2020528947A (en) * 2017-11-13 2020-10-01 エルジー・ケム・リミテッド Polyimide film for display board
CN110959022A (en) * 2017-11-13 2020-04-03 株式会社Lg化学 Display substrate polyimide film
US11466133B2 (en) 2017-11-13 2022-10-11 Lg Chem, Ltd. Display substrate polyimide film
CN110959022B (en) * 2017-11-13 2022-10-21 株式会社Lg化学 Display substrate polyimide film
WO2020044405A1 (en) * 2018-08-27 2020-03-05 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
KR20200110729A (en) * 2020-09-17 2020-09-25 주식회사 엘지화학 Method for preparing polyimide film having improved heat resistance
KR102245672B1 (en) * 2020-09-17 2021-04-27 주식회사 엘지화학 Method for preparing polyimide film having improved heat resistance
WO2023013401A1 (en) * 2021-08-06 2023-02-09 三井化学株式会社 Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate
WO2023074350A1 (en) * 2021-10-25 2023-05-04 株式会社カネカ Polyamide acid, polyamide acid composition, polyimide, polyimide film, multilayer body, method for producing multilayer body, and electronic device

Also Published As

Publication number Publication date
JP6445965B2 (en) 2018-12-26
TW201500207A (en) 2015-01-01
JPWO2014129464A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6445965B2 (en) LAMINATE, SOLAR CELL MEMBER, SOLAR CELL, DISPLAY DEVICE MEMBER, DISPLAY DEVICE AND LAMINATE MANUFACTURING METHOD
JP6247206B2 (en) Polyimide layer-containing flexible substrate, polyimide layer-containing flexible solar cell substrate, flexible solar cell, and production method thereof
KR101258569B1 (en) Flexible laminating board and its manufacture method
JP5304490B2 (en) Laminated body and method for producing the same
US9850401B2 (en) Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
KR20140139588A (en) Method for producing polyimide film, and polyimide film
JP4907580B2 (en) Flexible copper clad laminate
US20090025867A1 (en) Multi-layer laminate substrates useful in electronic type applications
JP5139986B2 (en) POLYIMIDE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND METAL LAMINATE
JP5545032B2 (en) LAMINATE, ELECTRIC CIRCUIT-ADDED LAMINATE, SEMICONDUCTOR-ADDED LAMINATE, AND METHOD FOR PRODUCING THE SAME
JP5545033B2 (en) Laminated body and method for producing the same
KR101606990B1 (en) A laminate and thin film solar cell comprising same
JP2008230096A (en) Laminated film with metallic layer
TW201438891A (en) Multi-layer flexible metal-clad laminate and manufacturing method thereof
TW200930563A (en) Metal laminate
JP5313191B2 (en) Metal-clad laminate and manufacturing method thereof
JP5691679B2 (en) Laminated body and method for producing the same
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP2008168582A (en) Manufacturing method of flexible laminated plate
KR20080041855A (en) Double side conductor laminates
CN106117556B (en) Soluble polyamideimide resin, and flexible metal-clad plate and flexible printed circuit board obtained from the resin
KR102280892B1 (en) Polyimide laminate, method for preparing the same, and solar cell
KR102521460B1 (en) Flexible metal clad laminate and printed circuit board containing the same and polyimide precursor composition
JP2022150086A (en) Resin film, method of manufacturing the same, metal-clad laminated plate, and circuit substrate
KR102160000B1 (en) Thick polyimide metal-clad laminate and manufacturing method for thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754710

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015501462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754710

Country of ref document: EP

Kind code of ref document: A1