WO2020044405A1 - Method for manufacturing display device, and apparatus for manufacturing display device - Google Patents

Method for manufacturing display device, and apparatus for manufacturing display device Download PDF

Info

Publication number
WO2020044405A1
WO2020044405A1 PCT/JP2018/031581 JP2018031581W WO2020044405A1 WO 2020044405 A1 WO2020044405 A1 WO 2020044405A1 JP 2018031581 W JP2018031581 W JP 2018031581W WO 2020044405 A1 WO2020044405 A1 WO 2020044405A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
organic solvent
manufacturing
baking
mixture
Prior art date
Application number
PCT/JP2018/031581
Other languages
French (fr)
Japanese (ja)
Inventor
伸裕 近藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/031581 priority Critical patent/WO2020044405A1/en
Publication of WO2020044405A1 publication Critical patent/WO2020044405A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a display device provided with a resin layer containing polyimide.
  • Patent Document 1 describes a method of obtaining a polyimide resin by imidizing a raw material monomer of polyimide.
  • a method for manufacturing a display device of the present invention is a method for manufacturing a display device including a resin layer containing polyimide, wherein a mixture of a precursor of the polyimide and an organic solvent is formed on a supporting substrate.
  • the display device manufacturing apparatus of the present invention is a display device manufacturing apparatus provided with a resin layer containing polyimide, the polyimide precursor and an organic solvent on a support substrate And a coating apparatus for applying the mixture of the above, the mixture is baked at a first baking temperature under an atmosphere of the saturated organic solvent, thereby promoting the imidation treatment of the precursor, and then A baking device for baking at a second bake temperature higher than the first bake temperature in an atmosphere of an inert gas to perform imidation treatment of the remaining precursor.
  • the residue of moisture that is a product of an imidization reaction at an interface between a resin layer containing polyimide and a supporting substrate that is a base on which the resin layer is formed is reduced, and adhesion at the interface is improved.
  • a method for manufacturing a display device is provided.
  • FIG. 3 is a flowchart illustrating a method for manufacturing a resin layer according to the first embodiment of the present invention.
  • 1 is a schematic top view of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic sectional view in a display area of the display device according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating a method for manufacturing a display device according to the first embodiment of the present invention. It is a schematic diagram of a baking device concerning Embodiment 1 of the present invention. It is a flowchart for demonstrating the manufacturing method of the resin layer which concerns on Embodiment 2 of this invention. It is a block diagram of a manufacturing device of a display device concerning each embodiment of the present invention.
  • “same layer” means being formed in the same process
  • “lower layer” means being formed in a process earlier than the layer to be compared
  • the “upper layer” means that it is formed in a process subsequent to the layer to be compared.
  • FIG. 2 is a top view of the display device 2 according to the present embodiment.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the display device 2 according to the present embodiment includes a display area DA and a frame area NA adjacent to the periphery of the display area DA.
  • a terminal portion T is formed at one end of the frame region NA.
  • a driver or the like (not shown) that supplies a signal for driving each light emitting element in the display area DA via a connection line CL from the display area DA is mounted on the terminal portion T.
  • the display device 2 includes, in order from the lower layer, a lower film 10, an adhesive layer 11, a resin layer 12, a barrier layer 3, a TFT layer 4, a light emitting element layer 5, And a sealing layer 6.
  • the display device 2 may include a functional film 39 having an optical compensation function, a touch sensor function, a protection function, and the like, further above the sealing layer 6.
  • the lower film 10 is a base film of the display device 2 and may include, for example, an organic resin material.
  • the adhesive layer 11 is a layer for bonding the lower film 10 and the resin layer 12, and may be formed using a conventionally known adhesive.
  • the resin layer 12 contains polyimide as a material.
  • the barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from penetrating into the TFT layer 4 and the light emitting element layer 5 when the display device 2 is used.
  • the barrier layer 3 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by CVD, or a stacked film thereof.
  • the TFT layer 4 includes, in order from the lower layer, a semiconductor film 15, a first inorganic insulating film 16 (gate insulating film), a gate electrode GE, a second inorganic insulating film 18, a capacitor electrode CE, and a third inorganic insulating film. 20, a source wiring SH (metal wiring layer), and a planarizing film 21 (interlayer insulating film).
  • a thin-film transistor (TFT) Tr is configured to include the semiconductor film 15, the first inorganic insulating film 16, and the gate electrode GE.
  • the semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor. Note that in FIG. 2, a TFT having the semiconductor film 15 as a channel is illustrated as having a top gate structure; however, a TFT having a bottom gate structure may be employed (for example, a case where the channel of the TFT is an oxide semiconductor).
  • LTPS low-temperature polysilicon
  • the gate electrode GE, the capacitor electrode CE, or the source wiring SH are used for the gate electrode GE, the capacitor electrode CE, or the source wiring SH. May be included. That is, the gate electrode GE, the capacitor electrode CE, or the source wiring SH is formed of a single-layer film or a stacked film of the above-described metal.
  • the first inorganic insulating film 16, the second inorganic insulating film 18, and the third inorganic insulating film 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • the flattening film 21 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
  • the light-emitting element layer 5 (for example, an organic light-emitting diode layer) includes, in order from the lower layer, a pixel electrode 22 (a first electrode, for example, an anode), a cover film (edge cover) 23 covering the edge of the pixel electrode 22, and a light-emitting layer 24. And an upper electrode (a second electrode, for example, a cathode) 25.
  • the light-emitting element layer 5 includes, for each sub-pixel SP (pixel), a light-emitting element (for example, an OLED: organic light-emitting diode) including an island-shaped pixel electrode 22, an island-shaped light-emitting layer 24, and an upper electrode 25; And a driving sub-pixel circuit.
  • a transistor Tr is formed for each sub-pixel circuit, and the sub-pixel circuit is controlled by controlling the transistor Tr.
  • the pixel electrode 22 is provided at a position overlapping the planarization film 21 and a contact hole that is an opening of the planarization film 21 in a plan view.
  • the pixel electrode 22 is electrically connected to the source wiring SH via a contact hole. Therefore, a signal in the TFT layer 4 is supplied to the pixel electrode 22 via the source wiring SH.
  • the thickness of the pixel electrode 22 may be, for example, 100 nm.
  • the pixel electrode 22 is formed in an island shape for each of the plurality of sub-pixels SP, is made of, for example, a stack of an alloy containing ITO (Indium Tin In Oxide) and Ag, and has light reflectivity.
  • the upper electrode 25 is formed as a solid layer as a common layer of the plurality of sub-pixels SP, and can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the cover film 23 is an organic insulating film, is formed at a position covering the edge of the pixel electrode 22, has an opening 23c for each of the plurality of sub-pixels SP, and partially exposes the pixel electrode 22.
  • the cover film 23 can be made of, for example, a coatable material such as polyimide.
  • the light emitting layer 24 is formed by, for example, stacking a hole transport layer, a light emitting layer, and an electron transport layer in this order from the lower layer side.
  • at least one layer of the light emitting layer 24 is formed by an evaporation method.
  • each layer of the light emitting layer 24 may be formed in an island shape for each sub-pixel SP, or may be formed in a solid shape as a common layer of a plurality of sub-pixels SP.
  • the light emitting element layer 5 is an OLED layer
  • holes and electrons are recombined in the light emitting layer 24 by a driving current between the pixel electrode 22 and the upper electrode 25, and the excitons generated by the recombination fall to the ground state.
  • Light is emitted. Since the upper electrode 25 has a light-transmitting property and the pixel electrode 22 has a light-reflecting property, light emitted from the light-emitting layer 24 goes upward, and becomes top emission.
  • the sealing layer 6 includes a first inorganic sealing film 26 above the upper electrode 25, an organic sealing film 27 above the first inorganic sealing film 26, and a first inorganic sealing film 27 above the organic sealing film 27. 2 and an inorganic sealing film 28 to prevent foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 can be formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof formed by CVD. .
  • the organic sealing film 27 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
  • step S1 the resin layer 12 is formed on the support substrate S, which is a translucent mother glass substrate.
  • step S1 will be described in detail with reference to the flowchart of FIG.
  • FIG. 1 is a flowchart illustrating an example of a method of manufacturing the resin layer 12 by applying and baking a mixture 12A containing a polyimide precursor in the present embodiment.
  • the mixture 12A is applied onto the support substrate S (Step S21).
  • the application of the mixture 12A onto the support substrate S can be performed by a conventionally known method such as an inkjet method.
  • the mixture 12A is a mixture containing a polyimide precursor and an organic solvent.
  • the precursor of the polyimide contains polyamic acid
  • the organic solvent contains NMP (N-methyl-2-pyrrolidene).
  • FIG. 5 is a schematic view of the baking device 46 as viewed from the side, and shows the inside of a curing oven 48 and a heating furnace 50 which will be described in detail later.
  • FIG. 5 illustrates a state in which the supporting substrate S to which the mixture 12A has been applied is placed inside the heating furnace 50 as an example.
  • the baking device 46 includes a cure oven 48.
  • the cure oven 48 includes a heating furnace 50 and a heater 52 therein.
  • the heating furnace 50 includes a mounting portion 54 and an evaporating dish 56 therein. Further, the heating furnace 50 includes a thermometer and a pressure gauge (not shown), and the temperature and the pressure inside the heating furnace 50 are monitored.
  • a heater 52 is arranged around the heating furnace 50.
  • the heater 52 can raise the internal temperature of the heating furnace 50 by heating the heating furnace 50.
  • the mounting portion 54 can mount the support substrate S on the upper portion thereof. In the baking process, the processing on the mixture 12A is performed in a state where the support substrate S is placed on the placement unit 54.
  • the evaporating dish 56 generates steam in the heating furnace 50 by evaporating the liquid inside.
  • the organic solvent may be supplied to the evaporating dish 56 via an organic solvent supply pipe 58 that connects the outside of the cure oven 48 and the inside of the heating furnace 50.
  • the organic solvent supplied to the evaporating dish 56 is the same as the organic solvent contained in the mixture 12A.
  • the heating furnace 50 may be supplied with an inert gas via an inert gas supply pipe 60 that communicates the outside of the curing oven 48 with the inside of the heating furnace 50.
  • nitrogen may be used as the inert gas.
  • the gas inside the heating furnace 50 may be exhausted to the outside of the cure oven 48 via the exhaust pipe 62.
  • the baking device 46 further includes a chiller 64 outside the cure oven 48. Gas exhausted from the inside of the heating furnace 50 to the outside of the cure oven 48 via the exhaust pipe 62 is collected inside the chiller 64.
  • a cooling pipe 66 is disposed inside the chiller 64. The inside of the chiller 64 is cooled by the refrigerant circulating through the cooling pipe 66.
  • Part of the gas inside the cooled chiller 64 may be exhausted to the outside of the chiller 64 via the exhaust pipe 68. Further, the liquid generated by cooling the gas inside the chiller 64 may be discharged to the outside of the chiller 64 via the collection pipe 70 and collected. Further, a part of the gas inside the chiller 64 may be supplied to the heating furnace 50 again via the recirculation pipe 72 that communicates the inside of the heating furnace 50 with the inside of the chiller 64.
  • the flow rate of the fluid passing through the inert gas supply pipe 60, the exhaust pipe 62, the exhaust pipe 68, and the recirculation pipe 72 may be adjusted by the valve 74. Further, the fluid passing through the exhaust pipe 68 and the recirculation pipe 72 may be sent out by the fan 76.
  • the pressure inside the heating furnace 50 may be controlled by controlling the amount of gas supplied to the heating furnace 50 and the amount of gas exhausted from the heating furnace 50. For example, by making the amount of gas supplied to the heating furnace 50 slightly larger than the amount of gas exhausted from the heating furnace 50, the pressure inside the heating furnace 50 can be maintained substantially constant.
  • the inside of the heating furnace 50 is controlled to be slightly pressurized in order to maintain the oxygen concentration inside the heating furnace 50 at zero.
  • the air pressure inside the heating furnace 50 may be higher than the air pressure outside the cure oven 48 by about several Pa to 10 Pa.
  • the gas supplied to the heating furnace 50 includes a gas generated from the mixture 12A during the baking process and a gas vaporized by the evaporating dish 56.
  • step S21 the support substrate S on which the mixture 12A has been applied is placed on the placement section 54 inside the heating furnace 50, and the mixture 12A Prebake is performed (Step S22).
  • the pre-bake in step S22 is performed in a reduced pressure state by setting the furnace temperature of the heating furnace 50 to 80 ° C. or lower, which is the third bake temperature.
  • the depressurized state refers to a state in which the furnace pressure of the heating furnace 50 is lower than the pressure outside the cure oven 48.
  • an inert gas may be supplied into the heating furnace 50 during the pre-bake, and the pre-bake may be performed for 30 minutes.
  • the oxygen concentration in the heating furnace 50 approaches 0, and the inside of the heating furnace 50 is filled with an inert gas.
  • a configuration in which the above-described pre-bake is performed using a pre-bake furnace provided separately from the heating furnace 50 may be used.
  • the pre-bake since the pre-bake is performed in the pre-bake furnace, the content of the organic solvent in the mixture 12A can be reduced to, for example, about 10%, and the fluidity of the mixture 12A is significantly reduced.
  • the above configuration is preferable in that the transfer of the support substrate S and the mixture 12A between the apparatuses can be easily performed.
  • Step S23 vapor of the organic solvent is generated inside the heating furnace 50 (Step S23).
  • Step S23 is executed by supplying the organic solvent from the organic solvent supply pipe 58 to the evaporating dish 56 and evaporating the organic solvent in the evaporating dish 56. Therefore, during step S23, the atmosphere inside the heating furnace 50 is a mixed gas of the inert gas and the vapor of the organic solvent.
  • step S23 the pressure inside the heating furnace 50 is reduced by adjusting the supply amount of the inert gas, the generation amount of the vapor of the organic solvent, and the exhaust amount from the heating furnace 50.
  • the pressure is adjusted to be substantially the same as the outside pressure of the oven 48.
  • step S23 may be performed for 30 minutes. Step S23 may be completed when the gas inside the heating furnace 50 becomes an inert gas in which the organic solvent is saturated.
  • Step S24 under an atmosphere of an inert gas saturated with an organic solvent, a cure bake of the mixture 12A is performed (Step S24).
  • the cure bake in step S24 is performed with the furnace temperature of the heating furnace 50 set to the first bake temperature of 200 degrees Celsius.
  • the first baking temperature is set near the boiling point of NMP, which is an organic solvent.
  • the gas inside the heating furnace 50 is saturated with the vapor of the organic solvent. Therefore, the vaporization of the organic solvent remaining in the formed polyimide thin film and the liquefaction of the vapor of the organic solvent in the heating furnace 50 are in an equilibrium state. Therefore, evaporation of the organic solvent contained in the formed polyimide thin film is suppressed, and moisture is diffused into the organic solvent in the polyimide thin film.
  • the amount of water contained in the organic solvent in the polyimide thin film is averaged with the amount of water contained in the organic solvent vaporized inside the heating furnace 50. Therefore, the moisture of the organic solvent in the polyimide thin film moves to the vaporized organic solvent via the organic solvent.
  • step S24 imidation of the precursor is promoted.
  • step S24 may be performed for 15 minutes.
  • the vapor of the organic solvent containing water is collected by the chiller 64 through the exhaust pipe 62 and is cooled inside the chiller 64. Thereby, the water contained in the vapor of the organic solvent is liquefied and collected through the collection pipe 70. Further, the vapor of the cooled organic solvent may be exhausted to the outside of the chiller 64 through the exhaust pipe 68, or may be supplied again into the heating furnace 50 through the recirculation pipe 72.
  • Step S25 is executed, for example, by stopping the supply of the organic solvent to the evaporating dish 56 and exhausting the vapor of the organic solvent to the outside of the heating furnace 50 through the exhaust pipe 62.
  • step S25 may be performed at the first bake temperature, or step S25 may be performed for 30 minutes.
  • Step S26 the imidation treatment of the precursor remaining in the mixture 12A is performed (Step S26).
  • Step S26 is performed, for example, by baking the mixture 12A at a second bake temperature higher than the first bake temperature. That is, the second bake temperature is higher than 200 degrees Celsius.
  • the second baking temperature may be near the heat resistance limit of the polyimide, and may be set to, for example, 500 degrees Celsius or less. In this embodiment, step S26 may be performed for 30 minutes.
  • Step S26 is completed by imidizing the precursor remaining in the mixture 12A, and the resin layer 12 is formed.
  • the heating furnace 50 and the supporting substrate S are cooled by cooling the heating furnace 50 over, for example, 60 minutes. May be taken out.
  • the inside of the heating furnace 50 may be cooled by exhausting the heated gas in the heating furnace 50 and introducing a gas having a predetermined temperature from outside the cure oven 48.
  • step S2 the barrier layer 3 is formed (Step S2).
  • the TFT layer 4 is formed on the barrier layer 3 (Step S3).
  • the terminal portion T and the connection wiring CL may be formed.
  • step S26 by baking the mixture 12A at a temperature higher than the processing temperature in step S3, the degas in step S3 can be reduced.
  • a top emission type light emitting element layer (for example, an OLED element layer) 5 is formed (Step S4).
  • each layer of the light emitting element layer 5 may be formed by a conventionally known method, and in particular, the light emitting layer 24 may be formed by a vapor deposition method or the like.
  • the sealing layer 6 is formed (Step S5).
  • a top film is attached to the top surface of the sealing layer 6 (Step S6).
  • the upper surface film is attached to the upper surface of the sealing layer 6 and may be made of the same material as the lower film 10.
  • the upper surface film may be affixed to the sealing layer 6 via an adhesive layer, similarly to the lower surface film 10.
  • Step S7 the support substrate S is separated from the resin layer 12 (Step S7).
  • the separation of the support substrate S is performed, for example, by irradiating the lower surface of the resin layer 12 with a laser beam over the support substrate S to reduce the bonding force between the support substrate S and the resin layer 12, and to separate the support substrate S from the resin layer 12. It may be executed by a method of peeling.
  • Step S8 the lower film 10 is attached to the lower surface of each structure via the adhesive layer 11
  • Step S9 the laminate from the lower film 10 to the upper film is cut and singulated
  • Step S10 the functional film 39 is attached to the upper surface of each of the singulated laminates.
  • an electronic circuit board (for example, an IC chip) is mounted on the terminal portion T to form the display device 2 (Step S11).
  • the gas inside the heating furnace 50 is saturated by the organic solvent described above. For this reason, the water which is an imidation product is effectively removed from the mixture 12A via the organic solvent remaining in the generated polyimide thin film.
  • the present embodiment it is possible to efficiently promote the imidation of the polyimide precursor contained in the mixture 12A and efficiently prevent water from remaining between the resin layer 12 and the hydrophilic support substrate S. Can be reduced to Therefore, the adhesion between the resin layer 12 and the support substrate S is improved, and the possibility that the resin layer 12 is peeled off from the support substrate S and becomes defective is reduced, so that the yield in manufacturing the display device 2 is improved.
  • step S23 and step S24 which is the step of generating the vapor of the organic solvent by the evaporating dish 56, is 45 minutes. This is longer than the processing time of step S26 in which the generation of the vapor of the organic solvent by the evaporating dish 56 is stopped, that is, 30 minutes.
  • the processing time when the organic solvent vapor is generated in the furnace is longer than the processing time when the organic solvent vapor is not generated in the furnace. Therefore, in the present embodiment, it is possible to efficiently remove water as an imidation product more efficiently and perform imidization.
  • the display device 2 according to the present embodiment has the same configuration as the display device 2 according to the previous embodiment. Further, the display device 2 according to the present embodiment is obtained by the same manufacturing method as each of the steps shown in FIG. 4, except for a part of the step S1. Step S1 in the method for manufacturing the display device 2 according to the present embodiment will be described in detail with reference to the flowchart in FIG.
  • FIG. 6 is a flowchart for explaining in more detail the step of forming the resin layer 12 of the display device 2 according to the present embodiment.
  • the process of forming the resin layer 12 in this embodiment is the same as the process shown in FIG. 1 except for steps S23 to S25.
  • step S1 in the present embodiment first, step S21 is executed to apply the mixture 12A onto the support substrate S.
  • step S21 is executed to apply the mixture 12A onto the support substrate S.
  • step S21 is executed to apply the mixture 12A onto the support substrate S.
  • step S21 is executed to apply the mixture 12A onto the support substrate S.
  • step S21 is executed to apply the mixture 12A onto the support substrate S.
  • a baking step of the mixture 12A using the baking device 46 is performed.
  • the baking device 46 has the same configuration as the baking device 46 in the previous embodiment.
  • Step S22 is executed to pre-bake the mixture 12A.
  • pressurization inside the heating furnace 50 is performed simultaneously with generation of the vapor of the organic solvent inside the heating furnace 50 (step S27).
  • Pressurization inside the heating furnace 50 may be performed by increasing the amount of gas supplied to the heating furnace 50 more than the amount of gas exhausted from the heating furnace 50.
  • the amount of gas exhausted from the heating furnace 50 indicates the amount of gas exhausted from the heating furnace 50 via the exhaust pipe 62.
  • the amount of gas supplied to the heating furnace 50 depends on the amount of gas introduced into the heating furnace 50 via the inert gas supply pipe 60 and the recirculation pipe 72 and the amount of the organic solvent generated in the evaporating dish 56. It refers to the sum of the amount of steam and the amount of gas generated from the mixture 12A.
  • step S27 may be executed for 30 minutes, similarly to step S23.
  • Step S27 may be completed when the gas inside the heating furnace 50 becomes an inert gas in which the organic solvent is saturated.
  • step S28 cure baking of the mixture 12A is performed in the heating furnace 50 in a pressurized state (step S28).
  • the first bake temperature is set higher by the amount of the increase in the boiling point of the organic solvent in accordance with the pressurized state of the heating furnace 50 than in step S24.
  • the first bake temperature may be increased by 13 degrees Celsius in step S28 compared to step S24.
  • step S28 may be executed under the same conditions as in step S24 except for the above-described pressure and temperature inside the heating furnace 50 as compared with step S24. Step S28 may be performed, for example, for 15 minutes.
  • step S29 the pressure inside the heating furnace 50 is reduced to normal pressure while removing the vapor of the organic solvent inside the heating furnace 50 (step S29).
  • the decompression inside the heating furnace 50 may be performed by increasing the amount of gas exhausted from the heating furnace 50 more than the amount of gas supplied to the heating furnace 50.
  • Step S29 may be executed at a temperature obtained by subtracting the temperature increased according to the pressurized state of the heating furnace 50 from the first baking temperature described above. Further, step S29 may be executed for 30 minutes.
  • step S26 is executed, and the precursor remaining in the mixture 12A is subjected to an imidization treatment, whereby the step of forming the resin layer 12, that is, step S1 is completed.
  • steps S2 to S11 in FIG. 4 are sequentially executed to obtain the display device 2 according to the present embodiment.
  • the inside of the heating furnace 50 is in a pressurized state.
  • the boiling point of the organic solvent in the heating furnace 50 in this step is higher than when the inside of the heating furnace 50 is not pressurized. Therefore, the first baking temperature can be set higher in accordance with the rise in the boiling point of the organic solvent in the heating furnace 50.
  • the step of promoting the imidization of the mixture 12A can be performed at a higher temperature. Therefore, the removal of water from the mixture 12A can be performed more efficiently. Therefore, moisture remaining between the resin layer 12 and the support substrate S can be more efficiently reduced.
  • FIG. 7 is a block diagram showing a display device manufacturing apparatus 40 used in the manufacturing process of the display device 2 in each of the above-described embodiments.
  • the display device manufacturing apparatus 40 includes a controller 42, a coating apparatus 44, and the above-described baking apparatus 46.
  • the controller 42 may control the coating device 44 and the baking device 46.
  • the application device 44 may apply the mixture 12A onto the support substrate S in step S21 described above.
  • the display device manufacturing apparatus 40 may further include a film forming apparatus 78, and the controller 42 may further control the film forming apparatus 78.
  • the film forming apparatus 78 may execute film formation of each layer of the display device 2 except for the resin layer 12.
  • the display device 2 may include a display panel having a flexible and bendable display element.
  • the display elements include a display element whose luminance and transmittance are controlled by a current, and a display element whose luminance and transmittance are controlled by a voltage.
  • the display device 2 according to each of the above embodiments may include an OLED (Organic Light Emitting Diode) as a current control display element.
  • the display device according to the present embodiment may be an organic EL (Electro Luminescence) display.
  • the display device 2 according to each of the above embodiments may include an inorganic light emitting diode as a current control display element.
  • the display device according to the present embodiment may be a QLED display including an EL display QLED (quantum dot light emitting diode) such as an inorganic EL display.
  • a display element for voltage control there is a liquid crystal display element or the like.
  • the method for manufacturing a display device is a method for manufacturing a display device including a resin layer containing polyimide, wherein a coating step of coating a mixture of a precursor of the polyimide and an organic solvent on a supporting substrate, Baking the mixture under an atmosphere of the saturated organic solvent at a first baking temperature, thereby promoting an imidation treatment of the precursor; Baking at a second bake temperature higher than the first bake temperature in a gas atmosphere to perform an imidization treatment of the remaining precursor.
  • Mode 2 further includes a generation step of generating a vapor of the organic solvent between the application step and the promotion step.
  • the total processing time of the generation step and the promotion step is longer than the processing time of the residual imidization step.
  • a pre-bake step of baking the mixture at a third bake temperature lower than the first bake temperature in a reduced pressure state is further provided between the applying step and the accelerating step.
  • the promoting step is performed in a pressurized state.
  • the first baking temperature is set in accordance with an increase in the boiling point of the organic solvent in accordance with the pressurized state.
  • the promoting step is performed in an atmosphere of the organic solvent and the inert gas.
  • Mode 8 further includes a removing step of removing the vapor of the organic solvent at the first baking temperature, following the promoting step.
  • the organic solvent contains NMP.
  • An apparatus for manufacturing a display device which is an apparatus for manufacturing a display device provided with a resin layer containing polyimide, comprising: a coating apparatus for coating a mixture of a precursor of the polyimide and an organic solvent on a supporting substrate; The mixture is baked at a first baking temperature under an atmosphere of the saturated organic solvent to promote the imidation treatment of the precursor, and then the mixture is heated under an inert gas atmosphere.
  • the baking device includes a cure oven including an evaporating dish that generates vapor of the organic solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A method for manufacturing a display device is provided with a coating step (S21) for coating the mixture of a polyimide precursor and an organic solvent on a support substrate, and a promotion step (S24) for baking the mixture at a first bake temperature under an atmosphere of the saturated vapor pressure of the organic solvent and thereby promoting the imidization process of the precursor. A method for manufacturing the display device is further provided with a residual imidization step (S26) for baking the mixture at a second bake temperature higher than the first bake temperature under an inert gas atmosphere and thereby performing the imidizaton process of a residue of the precursor.

Description

表示デバイスの製造方法、表示デバイスの製造装置Display device manufacturing method and display device manufacturing apparatus
 本発明は、ポリイミドを含む樹脂層を備えた表示デバイスに関する。 << The present invention relates to a display device provided with a resin layer containing polyimide.
 特許文献1には、ポリイミドの原料モノマーをイミド化して、ポリイミド樹脂を得る方法が記載されている。 Patent Document 1 describes a method of obtaining a polyimide resin by imidizing a raw material monomer of polyimide.
日本国再公表特許公報「国際公開番号WO01/025313」Japanese republished patent gazette "International publication number WO01 / 025313"
 特許文献1に記載の製造方法によって、ポリイミドの前駆体を成膜してイミド化した場合、形成されたポリイミドの膜の水分浸透性が低いために、イミド化反応の生成物である水分が、ポリイミドと当該ポリイミドが形成される下地との界面に残留する。このため、ポリイミドと下地との界面における接着力が低下する問題がある。 According to the production method described in Patent Document 1, when a polyimide precursor is formed into a film and imidized, the water permeability of the formed polyimide film is low. It remains at the interface between the polyimide and the base on which the polyimide is formed. For this reason, there is a problem that the adhesive strength at the interface between the polyimide and the base decreases.
 上記課題を解決するために、本発明の表示デバイスの製造方法は、ポリイミドを含む樹脂層を備えた表示デバイスの製造方法であって、支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布工程と、前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進する促進工程と、前記促進工程に次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行う残留イミド化工程とを備える。 In order to solve the above problems, a method for manufacturing a display device of the present invention is a method for manufacturing a display device including a resin layer containing polyimide, wherein a mixture of a precursor of the polyimide and an organic solvent is formed on a supporting substrate. A coating step of applying the mixture, baking the mixture under an atmosphere of the saturated organic solvent at a first baking temperature, thereby promoting an imidation treatment of the precursor; and Then, the mixture is baked at a second bake temperature higher than the first bake temperature under an atmosphere of an inert gas, thereby performing an imidization treatment of the remaining precursor. Is provided.
 また、上記課題を解決するために、本発明の表示デバイスの製造装置は、ポリイミドを含む樹脂層を備えた表示デバイスの製造装置であって、支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布装置と、前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進し、次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行うベーク装置とを備える。 Further, in order to solve the above problems, the display device manufacturing apparatus of the present invention is a display device manufacturing apparatus provided with a resin layer containing polyimide, the polyimide precursor and an organic solvent on a support substrate And a coating apparatus for applying the mixture of the above, the mixture is baked at a first baking temperature under an atmosphere of the saturated organic solvent, thereby promoting the imidation treatment of the precursor, and then A baking device for baking at a second bake temperature higher than the first bake temperature in an atmosphere of an inert gas to perform imidation treatment of the remaining precursor.
 本発明により、ポリイミドを含む樹脂層と、当該樹脂層が形成される下地である支持基板との界面におけるイミド化反応の生成物である水分の残留を低減し、当該界面における密着性を向上させた表示デバイスの製造方法が提供される。 According to the present invention, the residue of moisture that is a product of an imidization reaction at an interface between a resin layer containing polyimide and a supporting substrate that is a base on which the resin layer is formed is reduced, and adhesion at the interface is improved. A method for manufacturing a display device is provided.
本発明の実施形態1に係る樹脂層の製造方法を説明するためのフローチャートである。3 is a flowchart illustrating a method for manufacturing a resin layer according to the first embodiment of the present invention. 本発明の実施形態1に係る表示デバイスの概略上面図である。1 is a schematic top view of a display device according to Embodiment 1 of the present invention. 本発明の実施形態1に係る表示デバイスの表示領域における概略断面図である。FIG. 2 is a schematic sectional view in a display area of the display device according to the first embodiment of the present invention. 本発明の実施形態1に係る表示デバイスの製造方法を説明するためのフローチャートである。5 is a flowchart illustrating a method for manufacturing a display device according to the first embodiment of the present invention. 本発明の実施形態1に係るベーク装置の概略図である。It is a schematic diagram of a baking device concerning Embodiment 1 of the present invention. 本発明の実施形態2に係る樹脂層の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the resin layer which concerns on Embodiment 2 of this invention. 本発明の各実施形態に係る表示デバイスの製造装置のブロック図である。It is a block diagram of a manufacturing device of a display device concerning each embodiment of the present invention.
 〔実施形態1〕
 以下においては、「同層」とは同一のプロセスにて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
[Embodiment 1]
In the following, “same layer” means being formed in the same process, “lower layer” means being formed in a process earlier than the layer to be compared, The “upper layer” means that it is formed in a process subsequent to the layer to be compared.
 図2は、本実施形態に係る表示デバイス2の上面図である。図3は、図2におけるB-B線矢視断面図である。本実施形態に係る表示デバイス2は、図2に示すように、表示領域DAと、当該表示領域DAの周囲に隣接する額縁領域NAとを有する。額縁領域NAの一端部には、図2に示すように、端子部Tが形成される。端子部Tには、表示領域DAからの接続配線CLを介して表示領域DAにおける各発光素子を駆動するための信号を供給する、図示しないドライバ等が実装される。 FIG. 2 is a top view of the display device 2 according to the present embodiment. FIG. 3 is a sectional view taken along line BB in FIG. As shown in FIG. 2, the display device 2 according to the present embodiment includes a display area DA and a frame area NA adjacent to the periphery of the display area DA. As shown in FIG. 2, a terminal portion T is formed at one end of the frame region NA. A driver or the like (not shown) that supplies a signal for driving each light emitting element in the display area DA via a connection line CL from the display area DA is mounted on the terminal portion T.
 ここで、図3を参照して、本実施形態に係る表示デバイス2の、表示領域DAにおける各層の構成を詳細に説明する。 Here, the configuration of each layer in the display area DA of the display device 2 according to the present embodiment will be described in detail with reference to FIG.
 図3に示すように、本実施形態に係る表示デバイス2は、下層から順に、下面フィルム10と、接着層11と、樹脂層12と、バリア層3と、TFT層4と、発光素子層5と、封止層6とを備える。表示デバイス2は、封止層6のさらに上層に、光学補償機能、タッチセンサ機能、保護機能等を有する機能フィルム39を備えていてもよい。 As shown in FIG. 3, the display device 2 according to the present embodiment includes, in order from the lower layer, a lower film 10, an adhesive layer 11, a resin layer 12, a barrier layer 3, a TFT layer 4, a light emitting element layer 5, And a sealing layer 6. The display device 2 may include a functional film 39 having an optical compensation function, a touch sensor function, a protection function, and the like, further above the sealing layer 6.
 下面フィルム10は、表示デバイス2の基材フィルムであり、例えば、有機樹脂材料を含んでいてもよい。接着層11は、下面フィルム10と樹脂層12とを接着する層であり、従来公知の接着剤を使用して形成してもよい。樹脂層12は、材料としてポリイミドを含む。 The lower film 10 is a base film of the display device 2 and may include, for example, an organic resin material. The adhesive layer 11 is a layer for bonding the lower film 10 and the resin layer 12, and may be formed using a conventionally known adhesive. The resin layer 12 contains polyimide as a material.
 バリア層3は、表示デバイス2の使用時に、水、酸素等の異物がTFT層4、発光素子層5に浸透することを防ぐ層である。バリア層3は、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from penetrating into the TFT layer 4 and the light emitting element layer 5 when the display device 2 is used. The barrier layer 3 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by CVD, or a stacked film thereof.
 TFT層4は、下層から順に、半導体膜15と、第1無機絶縁膜16(ゲート絶縁膜)と、ゲート電極GEと、第2無機絶縁膜18と、容量電極CEと、第3無機絶縁膜20と、ソース配線SH(金属配線層)と、平坦化膜21(層間絶縁膜)とを含む。半導体膜15と、第1無機絶縁膜16と、ゲート電極GEとを含むように、薄層トランジスタ(TFT)Trが構成される。 The TFT layer 4 includes, in order from the lower layer, a semiconductor film 15, a first inorganic insulating film 16 (gate insulating film), a gate electrode GE, a second inorganic insulating film 18, a capacitor electrode CE, and a third inorganic insulating film. 20, a source wiring SH (metal wiring layer), and a planarizing film 21 (interlayer insulating film). A thin-film transistor (TFT) Tr is configured to include the semiconductor film 15, the first inorganic insulating film 16, and the gate electrode GE.
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2においては、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造であってもよい(例えば、TFTのチャネルが酸化物半導体の場合)。 The semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor. Note that in FIG. 2, a TFT having the semiconductor film 15 as a channel is illustrated as having a top gate structure; however, a TFT having a bottom gate structure may be employed (for example, a case where the channel of the TFT is an oxide semiconductor).
 ゲート電極GE、容量電極CE、またはソース配線SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含んでいてもよい。すなわち、ゲート電極GE、容量電極CE、またはソース配線SHは、上述の金属の単層膜あるいは積層膜によって構成される。 For example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu) are used for the gate electrode GE, the capacitor electrode CE, or the source wiring SH. May be included. That is, the gate electrode GE, the capacitor electrode CE, or the source wiring SH is formed of a single-layer film or a stacked film of the above-described metal.
 第1無機絶縁膜16、第2無機絶縁膜18、および第3無機絶縁膜20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。 The first inorganic insulating film 16, the second inorganic insulating film 18, and the third inorganic insulating film 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method. Can be configured by
 平坦化膜21は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。 (4) The flattening film 21 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
 発光素子層5(例えば、有機発光ダイオード層)は、下層から順に、画素電極22(第1電極、例えばアノード)と、画素電極22のエッジを覆うカバー膜(エッジカバー)23と、発光層24と、上部電極(第2電極、例えばカソード)25とを含む。発光素子層5は、サブピクセルSP(画素)ごとに、島状の画素電極22、島状の発光層24、および上部電極25を含む発光素子(例えば、OLED:有機発光ダイオード)と、これを駆動するサブ画素回路とが設けられる。また、TFT層4において、当該サブ画素回路ごとにトランジスタTrが形成され、トランジスタTrの制御をもって、サブ画素回路が制御される。 The light-emitting element layer 5 (for example, an organic light-emitting diode layer) includes, in order from the lower layer, a pixel electrode 22 (a first electrode, for example, an anode), a cover film (edge cover) 23 covering the edge of the pixel electrode 22, and a light-emitting layer 24. And an upper electrode (a second electrode, for example, a cathode) 25. The light-emitting element layer 5 includes, for each sub-pixel SP (pixel), a light-emitting element (for example, an OLED: organic light-emitting diode) including an island-shaped pixel electrode 22, an island-shaped light-emitting layer 24, and an upper electrode 25; And a driving sub-pixel circuit. In the TFT layer 4, a transistor Tr is formed for each sub-pixel circuit, and the sub-pixel circuit is controlled by controlling the transistor Tr.
 画素電極22は、平面視において、平坦化膜21と当該平坦化膜21の開口であるコンタクトホールとに重畳する位置に設けられる。画素電極22は、コンタクトホールを介してソース配線SHと電気的に接続される。このため、TFT層4における信号が、ソース配線SHを介して画素電極22に供給される。なお、画素電極22の厚みは、例えば、100nmであってもよい。 (4) The pixel electrode 22 is provided at a position overlapping the planarization film 21 and a contact hole that is an opening of the planarization film 21 in a plan view. The pixel electrode 22 is electrically connected to the source wiring SH via a contact hole. Therefore, a signal in the TFT layer 4 is supplied to the pixel electrode 22 via the source wiring SH. Note that the thickness of the pixel electrode 22 may be, for example, 100 nm.
 画素電極22は、複数のサブピクセルSPごとに島状に形成され、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。上部電極25は、複数のサブピクセルSPの共通層としてベタ状に形成され、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透光性の導電材によって構成することができる。 The pixel electrode 22 is formed in an island shape for each of the plurality of sub-pixels SP, is made of, for example, a stack of an alloy containing ITO (Indium Tin In Oxide) and Ag, and has light reflectivity. The upper electrode 25 is formed as a solid layer as a common layer of the plurality of sub-pixels SP, and can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
 カバー膜23は有機絶縁膜であり、画素電極22のエッジを覆う位置に形成され、複数のサブピクセルSPごとに開口23cを備え、画素電極22の一部が露出する。カバー膜23は、例えば、ポリイミド等の塗布可能な材料によって構成することができる。 The cover film 23 is an organic insulating film, is formed at a position covering the edge of the pixel electrode 22, has an opening 23c for each of the plurality of sub-pixels SP, and partially exposes the pixel electrode 22. The cover film 23 can be made of, for example, a coatable material such as polyimide.
 発光層24は、例えば、下層側から順に、正孔輸送層、発光層、電子輸送層を積層することで構成される。本実施形態においては、発光層24の少なくとも1層は、蒸着法によって形成される。また、本実施形態においては、発光層24の各層は、サブピクセルSPごとに島状に形成されていてもよく、複数のサブピクセルSPの共通層としてベタ状に形成されていてもよい。 The light emitting layer 24 is formed by, for example, stacking a hole transport layer, a light emitting layer, and an electron transport layer in this order from the lower layer side. In the present embodiment, at least one layer of the light emitting layer 24 is formed by an evaporation method. In the present embodiment, each layer of the light emitting layer 24 may be formed in an island shape for each sub-pixel SP, or may be formed in a solid shape as a common layer of a plurality of sub-pixels SP.
 発光素子層5がOLED層である場合、画素電極22および上部電極25間の駆動電流によって正孔と電子が発光層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。上部電極25が透光性を有し、画素電極22が光反射性を有するため、発光層24から放出された光は上方に向かい、トップエミッションとなる。 When the light emitting element layer 5 is an OLED layer, holes and electrons are recombined in the light emitting layer 24 by a driving current between the pixel electrode 22 and the upper electrode 25, and the excitons generated by the recombination fall to the ground state. Light is emitted. Since the upper electrode 25 has a light-transmitting property and the pixel electrode 22 has a light-reflecting property, light emitted from the light-emitting layer 24 goes upward, and becomes top emission.
 封止層6は、上部電極25よりも上層の第1無機封止膜26と、第1無機封止膜26よりも上層の有機封止膜27と、有機封止膜27よりも上層の第2無機封止膜28とを含み、水、酸素等の異物の発光素子層5への浸透を防ぐ。第1無機封止膜26および第2無機封止膜28は、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。 The sealing layer 6 includes a first inorganic sealing film 26 above the upper electrode 25, an organic sealing film 27 above the first inorganic sealing film 26, and a first inorganic sealing film 27 above the organic sealing film 27. 2 and an inorganic sealing film 28 to prevent foreign substances such as water and oxygen from penetrating into the light emitting element layer 5. The first inorganic sealing film 26 and the second inorganic sealing film 28 can be formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof formed by CVD. . The organic sealing film 27 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
 本実施形態に係る表示デバイスの製造方法について、図4のフローチャートを参照して詳細に説明する。はじめに、例えば、透光性のマザーガラス基板である、支持基板S上に、樹脂層12を形成する(ステップS1)。ステップS1について、図1のフローチャートを参照して詳細に説明する。図1は、本実施形態において、ポリイミドの前駆体を含む混合物12Aを塗布、およびベークすることにより、樹脂層12を製造する方法の一例を示すフローチャートである。 (4) The method for manufacturing the display device according to the present embodiment will be described in detail with reference to the flowchart in FIG. First, the resin layer 12 is formed on the support substrate S, which is a translucent mother glass substrate (step S1). Step S1 will be described in detail with reference to the flowchart of FIG. FIG. 1 is a flowchart illustrating an example of a method of manufacturing the resin layer 12 by applying and baking a mixture 12A containing a polyimide precursor in the present embodiment.
 はじめに、支持基板S上に、混合物12Aを塗布する(ステップS21)。混合物12Aの支持基板S上への塗布は、インクジェット法等、従来公知の手法を採用できる。ここで、混合物12Aは、ポリイミドの前駆体と、有機溶媒とを含む混合物である。本実施形態においては、ポリイミドの前駆体はポリアミック酸を含み、有機溶媒はNMP(N-メチル-2-ピロリデン)を含む。 First, the mixture 12A is applied onto the support substrate S (Step S21). The application of the mixture 12A onto the support substrate S can be performed by a conventionally known method such as an inkjet method. Here, the mixture 12A is a mixture containing a polyimide precursor and an organic solvent. In this embodiment, the precursor of the polyimide contains polyamic acid, and the organic solvent contains NMP (N-methyl-2-pyrrolidene).
 次いで、混合物12Aをベークし、樹脂層12を形成するベーク工程を実行する。ここで、ベーク工程において、混合物12Aをベークためのベーク装置46について図5を参照して詳細に説明する。図5は、ベーク装置46を側面からみた概略図であり、後に詳述するキュアオーブン48、および加熱炉50の内部を透過して示す。また、図5においては、例として、加熱炉50の内部に、混合物12Aを塗布された支持基板Sが載置された状態を図示している。 Next, a baking step of baking the mixture 12A to form the resin layer 12 is performed. Here, the baking device 46 for baking the mixture 12A in the baking step will be described in detail with reference to FIG. FIG. 5 is a schematic view of the baking device 46 as viewed from the side, and shows the inside of a curing oven 48 and a heating furnace 50 which will be described in detail later. In addition, FIG. 5 illustrates a state in which the supporting substrate S to which the mixture 12A has been applied is placed inside the heating furnace 50 as an example.
 ベーク装置46は、キュアオーブン48を備える。キュアオーブン48は、その内部に、加熱炉50とヒータ52とを備える。加熱炉50は、その内部に、載置部54と蒸発皿56とを備える。また、加熱炉50は、図示しない温度計および圧力計を備え、加熱炉50の内部の温度および圧力が監視される。 The baking device 46 includes a cure oven 48. The cure oven 48 includes a heating furnace 50 and a heater 52 therein. The heating furnace 50 includes a mounting portion 54 and an evaporating dish 56 therein. Further, the heating furnace 50 includes a thermometer and a pressure gauge (not shown), and the temperature and the pressure inside the heating furnace 50 are monitored.
 加熱炉50の周囲には、ヒータ52が配置される。ヒータ52は、加熱炉50を加熱することにより、加熱炉50の内部温度を上昇させることができる。 ヒ ー タ Around the heating furnace 50, a heater 52 is arranged. The heater 52 can raise the internal temperature of the heating furnace 50 by heating the heating furnace 50.
 載置部54は、その上部に、支持基板Sを載置することができる。ベーク工程においては、載置部54に支持基板Sを載置した状態において、混合物12Aに対する処理が実行される。 The mounting portion 54 can mount the support substrate S on the upper portion thereof. In the baking process, the processing on the mixture 12A is performed in a state where the support substrate S is placed on the placement unit 54.
 蒸発皿56は、内部の液体を蒸発させることにより、加熱炉50内に蒸気を発生させる。本実施形態においては、キュアオーブン48の外部と加熱炉50の内部とを連通する、有機溶媒供給管58を介して、蒸発皿56に有機溶媒が供給されてもよい。蒸発皿56に供給される有機溶媒は、混合物12Aに含まれる有機溶媒と同一である。 (4) The evaporating dish 56 generates steam in the heating furnace 50 by evaporating the liquid inside. In the present embodiment, the organic solvent may be supplied to the evaporating dish 56 via an organic solvent supply pipe 58 that connects the outside of the cure oven 48 and the inside of the heating furnace 50. The organic solvent supplied to the evaporating dish 56 is the same as the organic solvent contained in the mixture 12A.
 加熱炉50には、キュアオーブン48の外部と加熱炉50の内部とを連通する、不活性ガス供給管60を介して、不活性ガスが供給されてもよい。本実施形態においては、不活性ガスとして、窒素を採用してもよい。また、加熱炉50内部の気体は、排気管62を介して、キュアオーブン48の外部に排気されてもよい。 The heating furnace 50 may be supplied with an inert gas via an inert gas supply pipe 60 that communicates the outside of the curing oven 48 with the inside of the heating furnace 50. In the present embodiment, nitrogen may be used as the inert gas. Further, the gas inside the heating furnace 50 may be exhausted to the outside of the cure oven 48 via the exhaust pipe 62.
 本実施形態において、ベーク装置46は、キュアオーブン48の外部に、チラー64をさらに備える。排気管62を介して、加熱炉50の内部からキュアオーブン48の外部に排気された気体は、チラー64の内部に収集される。チラー64の内部には、冷却管66が配置されている。冷却管66を循環する冷媒によって、チラー64の内部は冷却されている。 In the present embodiment, the baking device 46 further includes a chiller 64 outside the cure oven 48. Gas exhausted from the inside of the heating furnace 50 to the outside of the cure oven 48 via the exhaust pipe 62 is collected inside the chiller 64. A cooling pipe 66 is disposed inside the chiller 64. The inside of the chiller 64 is cooled by the refrigerant circulating through the cooling pipe 66.
 冷却されたチラー64の内部の気体の一部は、排気管68を介して、チラー64の外部に排気されてもよい。また、チラー64の内部の気体が冷却されることにより生じる液体は、回収管70を介して、チラー64の外部に排出され、回収されてもよい。さらに、チラー64の内部の気体の一部は、加熱炉50の内部とチラー64の内部とを連通する、再循環管72を介して、再度加熱炉50に供給されてもよい。 一部 Part of the gas inside the cooled chiller 64 may be exhausted to the outside of the chiller 64 via the exhaust pipe 68. Further, the liquid generated by cooling the gas inside the chiller 64 may be discharged to the outside of the chiller 64 via the collection pipe 70 and collected. Further, a part of the gas inside the chiller 64 may be supplied to the heating furnace 50 again via the recirculation pipe 72 that communicates the inside of the heating furnace 50 with the inside of the chiller 64.
 不活性ガス供給管60、排気管62、排気管68、および再循環管72は、バルブ74によって、内部を通過する流体の流量を調節されてもよい。また、排気管68および再循環管72を通過する流体は、ファン76によって送り出されてもよい。 The flow rate of the fluid passing through the inert gas supply pipe 60, the exhaust pipe 62, the exhaust pipe 68, and the recirculation pipe 72 may be adjusted by the valve 74. Further, the fluid passing through the exhaust pipe 68 and the recirculation pipe 72 may be sent out by the fan 76.
 本実施形態においては、加熱炉50に供給される気体の量と、加熱炉50から排気される気体の量とを制御することにより、加熱炉50内部の圧力を制御してもよい。例えば、加熱炉50に供給される気体の量を、加熱炉50から排気される気体の量よりも若干大きくすることにより、加熱炉50内部の圧力を略一定に維持することができる。 In the present embodiment, the pressure inside the heating furnace 50 may be controlled by controlling the amount of gas supplied to the heating furnace 50 and the amount of gas exhausted from the heating furnace 50. For example, by making the amount of gas supplied to the heating furnace 50 slightly larger than the amount of gas exhausted from the heating furnace 50, the pressure inside the heating furnace 50 can be maintained substantially constant.
 すなわち、ベーク工程中においては、加熱炉50の内部の酸素濃度を0に維持するために、当該加熱炉50の内部を、若干の与圧状態になるように制御する。例えば、ベーク工程中において、加熱炉50の内部の気圧を、キュアオーブン48の外部の気圧よりも、数Pa~10Pa程度高くしてもよい。 That is, during the baking process, the inside of the heating furnace 50 is controlled to be slightly pressurized in order to maintain the oxygen concentration inside the heating furnace 50 at zero. For example, during the baking process, the air pressure inside the heating furnace 50 may be higher than the air pressure outside the cure oven 48 by about several Pa to 10 Pa.
 なお、加熱炉50に供給される気体は、ベーク工程中に混合物12Aから発生する気体、および、蒸発皿56によって気化された気体を含む。 The gas supplied to the heating furnace 50 includes a gas generated from the mixture 12A during the baking process and a gas vaporized by the evaporating dish 56.
 再び図1を参照した樹脂層12の製造方法の説明に戻ると、ステップS21に次いで、混合物12Aを塗布された支持基板Sを加熱炉50内部の載置部54に載置し、混合物12Aのプリベークが実行される(ステップS22)。 Returning to the description of the method for manufacturing the resin layer 12 again with reference to FIG. 1, after step S21, the support substrate S on which the mixture 12A has been applied is placed on the placement section 54 inside the heating furnace 50, and the mixture 12A Prebake is performed (Step S22).
 ここで、ステップS22のプリベークは、加熱炉50の炉内温度を第3ベーク温度である摂氏80度以下として、減圧状態において実行される。減圧状態とは、加熱炉50の炉内圧力が、キュアオーブン48の外部の気圧よりも低い状態を指す。 Here, the pre-bake in step S22 is performed in a reduced pressure state by setting the furnace temperature of the heating furnace 50 to 80 ° C. or lower, which is the third bake temperature. The depressurized state refers to a state in which the furnace pressure of the heating furnace 50 is lower than the pressure outside the cure oven 48.
 本実施形態においては、プリベークの間に、加熱炉50の内部に不活性ガスが供給されてもよく、プリベークは30分間実行してもよい。当該プリベークの工程中に、加熱炉50の炉内酸素濃度は0に近づき、加熱炉50の内部は不活性ガスによって充填される。 In the present embodiment, an inert gas may be supplied into the heating furnace 50 during the pre-bake, and the pre-bake may be performed for 30 minutes. During the pre-baking process, the oxygen concentration in the heating furnace 50 approaches 0, and the inside of the heating furnace 50 is filled with an inert gas.
 なお、上記の説明以外に、加熱炉50とは別個に設けたプリベーク炉を用いて、上述のプリベークを実施する構成でもよい。この場合、プリベーク炉にてプリベークが行われるため、混合物12A内の有機溶媒含有率を、例えば、10%程度まで小さくすることができ、混合物12Aの流動性を著しく低下させられる。このことから、上記構成は、装置間における支持基板Sおよび混合物12Aの搬送が容易に行える点において好ましい。 In addition to the above description, a configuration in which the above-described pre-bake is performed using a pre-bake furnace provided separately from the heating furnace 50 may be used. In this case, since the pre-bake is performed in the pre-bake furnace, the content of the organic solvent in the mixture 12A can be reduced to, for example, about 10%, and the fluidity of the mixture 12A is significantly reduced. For this reason, the above configuration is preferable in that the transfer of the support substrate S and the mixture 12A between the apparatuses can be easily performed.
 次いで、加熱炉50の内部に有機溶媒の蒸気を発生させる(ステップS23)。ステップS23は、有機溶媒供給管58から蒸発皿56に有機溶媒を供給し、蒸発皿56において有機溶媒を蒸発させることにより実行される。このため、ステップS23の間、加熱炉50の内部の雰囲気は、不活性ガスと有機溶媒の蒸気との混合気体となる。 Next, vapor of the organic solvent is generated inside the heating furnace 50 (Step S23). Step S23 is executed by supplying the organic solvent from the organic solvent supply pipe 58 to the evaporating dish 56 and evaporating the organic solvent in the evaporating dish 56. Therefore, during step S23, the atmosphere inside the heating furnace 50 is a mixed gas of the inert gas and the vapor of the organic solvent.
 なお、本実施形態においては、ステップS23において、不活性ガスの供給量、有機溶媒の蒸気の発生量、および加熱炉50からの排気量を調節して、加熱炉50の内部の圧力が、キュアオーブン48の外部の気圧と略同一となるように調節する。また、本実施形態においては、ステップS23を30分間実行してもよい。また、加熱炉50内部の気体が、有機溶媒が飽和した不活性ガスとなった時点において、ステップS23を完了してもよい。 In the present embodiment, in step S23, the pressure inside the heating furnace 50 is reduced by adjusting the supply amount of the inert gas, the generation amount of the vapor of the organic solvent, and the exhaust amount from the heating furnace 50. The pressure is adjusted to be substantially the same as the outside pressure of the oven 48. In the present embodiment, step S23 may be performed for 30 minutes. Step S23 may be completed when the gas inside the heating furnace 50 becomes an inert gas in which the organic solvent is saturated.
 次いで、有機溶媒が飽和した不活性ガスの雰囲気下において、混合物12Aのキュアベークを実行する(ステップS24)。ここで、ステップS24のキュアベークは、加熱炉50の炉内温度を第1ベーク温度である摂氏200度として実行される。なお、第1ベーク温度は、有機溶媒である、NMPの沸点近くに設定されている。 Next, under an atmosphere of an inert gas saturated with an organic solvent, a cure bake of the mixture 12A is performed (Step S24). Here, the cure bake in step S24 is performed with the furnace temperature of the heating furnace 50 set to the first bake temperature of 200 degrees Celsius. The first baking temperature is set near the boiling point of NMP, which is an organic solvent.
 混合物12Aがベークされることにより、混合物12A中の前駆体の一部がイミド化され、ポリイミドの薄膜が成膜される。この際、前駆体のイミド化と同時に、イミド化反応生成物である水分が、混合物12A中に生じる。当該水分が、混合物12Aから除去されることにより、混合物12A中の前駆体のイミド化が促進される。しかしながら、成膜されたポリイミドの薄膜は、単体では、水分透過性が低いため、成膜されたポリイミドの薄膜が有機溶媒を含まない場合は、水分を混合物12Aから除去しにくくなる。 By baking the mixture 12A, a part of the precursor in the mixture 12A is imidized, and a polyimide thin film is formed. At this time, at the same time as the imidation of the precursor, water as an imidation reaction product is generated in the mixture 12A. By removing the water from the mixture 12A, imidation of the precursor in the mixture 12A is promoted. However, since the formed polyimide thin film has low moisture permeability by itself, it is difficult to remove moisture from the mixture 12A when the formed polyimide thin film does not contain an organic solvent.
 ここで、本実施形態においては、加熱炉50内部の気体が有機溶媒の蒸気によって飽和している。このため、成膜されたポリイミドの薄膜内に残存する有機溶媒の気化と、加熱炉50内の有機溶媒の蒸気の液化とが、平衡状態となる。このため成膜されたポリイミドの薄膜に含まれる有機溶媒の蒸発が抑えられ、ポリイミドの薄膜内の有機溶媒へ水分が拡散する。ポリイミドの薄膜内の有機溶媒に含まれる水分量は、加熱炉50の内部にて気化した有機溶媒に含まれる水分量との間において平均化される。したがって、ポリイミドの薄膜内の有機溶媒の水分が、当該有機溶媒を経由して、気化した有機溶媒に移る。 Here, in the present embodiment, the gas inside the heating furnace 50 is saturated with the vapor of the organic solvent. Therefore, the vaporization of the organic solvent remaining in the formed polyimide thin film and the liquefaction of the vapor of the organic solvent in the heating furnace 50 are in an equilibrium state. Therefore, evaporation of the organic solvent contained in the formed polyimide thin film is suppressed, and moisture is diffused into the organic solvent in the polyimide thin film. The amount of water contained in the organic solvent in the polyimide thin film is averaged with the amount of water contained in the organic solvent vaporized inside the heating furnace 50. Therefore, the moisture of the organic solvent in the polyimide thin film moves to the vaporized organic solvent via the organic solvent.
 ゆえに、混合物12A中に発生した水分は、有機溶媒を介して、外部に速やかに除去される。このため、ステップS24においては、前駆体のイミド化が促進される。なお、本実施形態においては、ステップS24を15分間実行してもよい。 Therefore, the water generated in the mixture 12A is quickly removed to the outside via the organic solvent. Therefore, in step S24, imidation of the precursor is promoted. In this embodiment, step S24 may be performed for 15 minutes.
 なお、水分を含んだ有機溶媒の蒸気は、排気管62を介してチラー64に回収され、チラー64の内部において冷却される。これにより、有機溶媒の蒸気に含まれる水分は液化され、回収管70を介して回収される。また、冷却後の有機溶媒の蒸気は、排気管68を介してチラー64の外部に排気されてもよく、再循環管72を介して再び加熱炉50の内部に供給されてもよい。 蒸 気 The vapor of the organic solvent containing water is collected by the chiller 64 through the exhaust pipe 62 and is cooled inside the chiller 64. Thereby, the water contained in the vapor of the organic solvent is liquefied and collected through the collection pipe 70. Further, the vapor of the cooled organic solvent may be exhausted to the outside of the chiller 64 through the exhaust pipe 68, or may be supplied again into the heating furnace 50 through the recirculation pipe 72.
 次いで、加熱炉50の内部における有機溶媒の蒸気を除去する(ステップS25)。ステップS25は、例えば、蒸発皿56への有機溶媒の供給を停止し、排気管62を介して有機溶媒の蒸気を加熱炉50の外部に排気することにより実行される。なお、本実施形態においては、ステップS25を第1ベーク温度において実行してもよく、また、ステップS25を30分間実行してもよい。 Next, the vapor of the organic solvent inside the heating furnace 50 is removed (Step S25). Step S25 is executed, for example, by stopping the supply of the organic solvent to the evaporating dish 56 and exhausting the vapor of the organic solvent to the outside of the heating furnace 50 through the exhaust pipe 62. In the present embodiment, step S25 may be performed at the first bake temperature, or step S25 may be performed for 30 minutes.
 次いで、有機溶媒の蒸気が十分に除去された加熱炉50内において、混合物12A中に残留している前駆体のイミド化処理を行う(ステップS26)。ステップS26は、例えば、第1ベーク温度よりも高温の第2ベーク温度において、混合物12Aをベークすることにより実行される。すなわち、第2ベーク温度は、摂氏200度よりも高い。なお、第2ベーク温度は、ポリイミドの耐熱限界付近であってもよく、例えば、摂氏500度以下に設定してもよい。なお、本実施形態においては、ステップS26を30分間実行してもよい。 Next, in the heating furnace 50 from which the vapor of the organic solvent has been sufficiently removed, the imidation treatment of the precursor remaining in the mixture 12A is performed (Step S26). Step S26 is performed, for example, by baking the mixture 12A at a second bake temperature higher than the first bake temperature. That is, the second bake temperature is higher than 200 degrees Celsius. The second baking temperature may be near the heat resistance limit of the polyimide, and may be set to, for example, 500 degrees Celsius or less. In this embodiment, step S26 may be performed for 30 minutes.
 混合物12Aに残留した前駆体がイミド化することにより、ステップS26が完了し、樹脂層12が形成される。なお、ステップS26に次いで、ステップS2に移行する前に、加熱炉50を、例えば、60分間かけて冷却することにより、加熱炉50および支持基板Sを冷却し、その後、キュアオーブン48から支持基板を取り出してもよい。加熱炉50の内部の冷却は、加熱された加熱炉50内の気体を排気し、キュアオーブン48外から、予め定められた温度の気体を導入することにより実行してもよい。 (4) Step S26 is completed by imidizing the precursor remaining in the mixture 12A, and the resin layer 12 is formed. After the step S26, before moving to the step S2, the heating furnace 50 and the supporting substrate S are cooled by cooling the heating furnace 50 over, for example, 60 minutes. May be taken out. The inside of the heating furnace 50 may be cooled by exhausting the heated gas in the heating furnace 50 and introducing a gas having a predetermined temperature from outside the cure oven 48.
 次いで、バリア層3の形成を行う(ステップS2)。次いで、バリア層3の上層にTFT層4を形成する(ステップS3)。この際、端子部Tおよび接続配線CLを形成してもよい。なお、ステップS26において、ステップS3における処理温度より高い温度にて混合物12Aをベークすることにより、当該ステップS3におけるデガスが低減できる。 Next, the barrier layer 3 is formed (Step S2). Next, the TFT layer 4 is formed on the barrier layer 3 (Step S3). At this time, the terminal portion T and the connection wiring CL may be formed. In step S26, by baking the mixture 12A at a temperature higher than the processing temperature in step S3, the degas in step S3 can be reduced.
 次いで、トップエミッション型の発光素子層(例えば、OLED素子層)5を形成する(ステップS4)。ステップS4においては、発光素子層5の各層を従来公知の手法により形成してもよく、特に、発光層24を、蒸着法等により形成してもよい。次いで、封止層6を形成する(ステップS5)。 Next, a top emission type light emitting element layer (for example, an OLED element layer) 5 is formed (Step S4). In step S4, each layer of the light emitting element layer 5 may be formed by a conventionally known method, and in particular, the light emitting layer 24 may be formed by a vapor deposition method or the like. Next, the sealing layer 6 is formed (Step S5).
 次いで、封止層6の上面に、上面フィルムを貼り付ける(ステップS6)。上面フィルムは、封止層6の上面に貼り付けられ、下面フィルム10と同一の材料からなっていてもよい。上面フィルムは、下面フィルム10と同様に、接着層を介して封止層6に貼り付けられていてもよい。 Next, a top film is attached to the top surface of the sealing layer 6 (Step S6). The upper surface film is attached to the upper surface of the sealing layer 6 and may be made of the same material as the lower film 10. The upper surface film may be affixed to the sealing layer 6 via an adhesive layer, similarly to the lower surface film 10.
 次いで、支持基板Sを樹脂層12から剥離する(ステップS7)。支持基板Sの剥離は、例えば、支持基板S越しに樹脂層12の下面にレーザ光を照射して、支持基板Sと樹脂層12との結合力を低下させ、支持基板Sを樹脂層12から剥離する手法により実行してもよい。 Next, the support substrate S is separated from the resin layer 12 (Step S7). The separation of the support substrate S is performed, for example, by irradiating the lower surface of the resin layer 12 with a laser beam over the support substrate S to reduce the bonding force between the support substrate S and the resin layer 12, and to separate the support substrate S from the resin layer 12. It may be executed by a method of peeling.
 次いで、下面フィルム10を、接着層11を介して、各構造体の下面に貼り付ける(ステップS8)。次いで、下面フィルム10から上面フィルムまでの積層体を分断し、個片化する(ステップS9)。次いで、上面フィルムを封止層6から剥離した後、機能フィルム39を、個片化した各積層体の上面に貼り付ける(ステップS10)。次いで、端子部Tに電子回路基板(例えば、ICチップ)をマウントし、表示デバイス2とする(ステップS11)。 Next, the lower film 10 is attached to the lower surface of each structure via the adhesive layer 11 (Step S8). Next, the laminate from the lower film 10 to the upper film is cut and singulated (Step S9). Next, after the upper surface film is peeled off from the sealing layer 6, the functional film 39 is attached to the upper surface of each of the singulated laminates (Step S10). Next, an electronic circuit board (for example, an IC chip) is mounted on the terminal portion T to form the display device 2 (Step S11).
 本実施形態においては、混合物12Aをベークし、混合物12Aが含むポリイミドの前駆体のイミド化を促進させる工程において、加熱炉50内部の気体が、有機溶媒の上記によって飽和している。このため、生成されたポリイミドの薄膜に残留する有機溶媒を介して、イミド化生成物である水分が、効果的に混合物12Aから除去される。 In the present embodiment, in the step of baking the mixture 12A and promoting the imidation of the polyimide precursor contained in the mixture 12A, the gas inside the heating furnace 50 is saturated by the organic solvent described above. For this reason, the water which is an imidation product is effectively removed from the mixture 12A via the organic solvent remaining in the generated polyimide thin film.
 このため、本実施形態においては、効率的に混合物12Aが含むポリイミドの前駆体のイミド化を促進させ、樹脂層12と親水性である支持基板Sとの間に水分が残留することを効率的に低減できる。ゆえに、樹脂層12と支持基板Sとの密着性が向上し、樹脂層12が支持基板Sから剥がれて不良になることが低減されるため、表示デバイス2の製造における歩留まりが向上する。 For this reason, in the present embodiment, it is possible to efficiently promote the imidation of the polyimide precursor contained in the mixture 12A and efficiently prevent water from remaining between the resin layer 12 and the hydrophilic support substrate S. Can be reduced to Therefore, the adhesion between the resin layer 12 and the support substrate S is improved, and the possibility that the resin layer 12 is peeled off from the support substrate S and becomes defective is reduced, so that the yield in manufacturing the display device 2 is improved.
 また、本実施形態においては、蒸発皿56によって有機溶媒の蒸気を発生させている工程である、ステップS23およびステップS24の合計の処理時間は45分間である。これは、蒸発皿56による有機溶媒の蒸気の発生を停止させた、ステップS26の処理時間、すなわち30分間よりも長い。 In addition, in the present embodiment, the total processing time of step S23 and step S24, which is the step of generating the vapor of the organic solvent by the evaporating dish 56, is 45 minutes. This is longer than the processing time of step S26 in which the generation of the vapor of the organic solvent by the evaporating dish 56 is stopped, that is, 30 minutes.
 すなわち、炉内に有機溶媒の蒸気を発生させている状態における処理時間の方が、炉内に有機溶媒の蒸気を発生させていない状態における処理時間よりも長い。ゆえに、本実施形態においては、効率的にイミド化生成物である水分を、より効率的に除去し、イミド化を行うことができる。 That is, the processing time when the organic solvent vapor is generated in the furnace is longer than the processing time when the organic solvent vapor is not generated in the furnace. Therefore, in the present embodiment, it is possible to efficiently remove water as an imidation product more efficiently and perform imidization.
 〔実施形態2〕
 本実施形態に係る表示デバイス2は、前実施形態に係る表示デバイス2と同一の構成を備える。また、本実施形態に係る表示デバイス2は、ステップS1の一部工程を除いて、図4に示す各工程と同一の製造方法によって得られる。本実施形態に係る表示デバイス2の製造方法におけるステップS1について、図6のフローチャートを参照して詳細に説明する。
[Embodiment 2]
The display device 2 according to the present embodiment has the same configuration as the display device 2 according to the previous embodiment. Further, the display device 2 according to the present embodiment is obtained by the same manufacturing method as each of the steps shown in FIG. 4, except for a part of the step S1. Step S1 in the method for manufacturing the display device 2 according to the present embodiment will be described in detail with reference to the flowchart in FIG.
 図6は、本実施形態に係る表示デバイス2の樹脂層12の形成工程をより詳細に説明するためのフローチャートである。本実施形態における樹脂層12の形成工程は、ステップS23からステップS25を除いて、図1に示す工程と同一である。 FIG. 6 is a flowchart for explaining in more detail the step of forming the resin layer 12 of the display device 2 according to the present embodiment. The process of forming the resin layer 12 in this embodiment is the same as the process shown in FIG. 1 except for steps S23 to S25.
 本実施形態におけるステップS1においては、始めに、ステップS21を実行し、支持基板S上に混合物12Aを塗布する。次いで、前実施形態と同様に、ベーク装置46を用いた、混合物12Aのベーク工程を実施する。本実施形態において、ベーク装置46は、前実施形態におけるベーク装置46と同一の構成を備える。 In step S1 in the present embodiment, first, step S21 is executed to apply the mixture 12A onto the support substrate S. Next, as in the previous embodiment, a baking step of the mixture 12A using the baking device 46 is performed. In the present embodiment, the baking device 46 has the same configuration as the baking device 46 in the previous embodiment.
 混合物12Aのベーク工程においては、始めに、ステップS22を実行して、混合物12Aのプリベークを行う。次いで、本実施形態においては、加熱炉50内部において、有機溶媒の蒸気の生成と同時に、加熱炉50内部の加圧を実行する(ステップS27)。 In the baking step of the mixture 12A, first, Step S22 is executed to pre-bake the mixture 12A. Next, in the present embodiment, pressurization inside the heating furnace 50 is performed simultaneously with generation of the vapor of the organic solvent inside the heating furnace 50 (step S27).
 加熱炉50内部の加圧は、加熱炉50に供給される気体の量を、加熱炉50から排気される気体の量よりも増大させることにより実行してもよい。ここで、加熱炉50から排気される気体の量は、排気管62を介して加熱炉50から排気される気体の量を指す。また、加熱炉50に供給される気体の量は、不活性ガス供給管60および再循環管72を介して加熱炉50に導入される気体の量と、蒸発皿56において生成される有機溶媒の蒸気の量と、混合物12Aから発生する気体の量の合計を指す。 (4) Pressurization inside the heating furnace 50 may be performed by increasing the amount of gas supplied to the heating furnace 50 more than the amount of gas exhausted from the heating furnace 50. Here, the amount of gas exhausted from the heating furnace 50 indicates the amount of gas exhausted from the heating furnace 50 via the exhaust pipe 62. The amount of gas supplied to the heating furnace 50 depends on the amount of gas introduced into the heating furnace 50 via the inert gas supply pipe 60 and the recirculation pipe 72 and the amount of the organic solvent generated in the evaporating dish 56. It refers to the sum of the amount of steam and the amount of gas generated from the mixture 12A.
 本実施形態においては、ステップS27を、ステップS23と同様に、30分間実行してもよい。また、加熱炉50内部の気体が、有機溶媒が飽和した不活性ガスとなった時点において、ステップS27を完了してもよい。 In the present embodiment, step S27 may be executed for 30 minutes, similarly to step S23. Step S27 may be completed when the gas inside the heating furnace 50 becomes an inert gas in which the organic solvent is saturated.
 次いで、加圧状態の加熱炉50において、混合物12Aのキュアベークを実行する(ステップS28)。ステップS28においては、ステップS24と比較して、第1ベーク温度を、加熱炉50の加圧状態に応じて、有機溶媒の沸点上昇分だけ高く設定する。 Next, cure baking of the mixture 12A is performed in the heating furnace 50 in a pressurized state (step S28). In step S28, the first bake temperature is set higher by the amount of the increase in the boiling point of the organic solvent in accordance with the pressurized state of the heating furnace 50 than in step S24.
 例えば、キュアオーブン48の外部の気圧が760mmHgであり、加熱炉50の内部の気圧が1000mmHgに加圧されているとする。この場合、加熱炉50の内部の有機溶媒の沸点は、キュアオーブン48の外部にある場合よりも、約摂氏13度高くなる。したがって、上述した条件の場合、ステップS28においては、ステップS24と比較して、第1ベーク温度を、摂氏13度だけ上昇させてもよい。 For example, it is assumed that the pressure outside the cure oven 48 is 760 mmHg, and the pressure inside the heating furnace 50 is 1000 mmHg. In this case, the boiling point of the organic solvent inside the heating furnace 50 is higher by about 13 degrees Celsius than when the organic solvent is outside the curing oven 48. Therefore, in the case of the above-described conditions, the first bake temperature may be increased by 13 degrees Celsius in step S28 compared to step S24.
 なお、ステップS28は、ステップS24と比較して、上述した加熱炉50内の気圧および温度を除いて、同一の条件下にて実行されてもよい。ステップS28は、例えば、15分間実行してもよい。 Note that step S28 may be executed under the same conditions as in step S24 except for the above-described pressure and temperature inside the heating furnace 50 as compared with step S24. Step S28 may be performed, for example, for 15 minutes.
 次いで、加熱炉50の内部における有機溶媒の蒸気を除去しつつ、加熱炉50内の気圧を、常圧となるまで減圧する(ステップS29)。加熱炉50内部の減圧は、加熱炉50から排気される気体の量を、加熱炉50に供給される気体の量よりも増大させることにより実行してもよい。ステップS29は、上述の第1ベーク温度から、加熱炉50の加圧状態に応じて上昇させた温度分を減じた温度において実行してもよい。さらに、ステップS29は30分間実行してもよい。 Next, the pressure inside the heating furnace 50 is reduced to normal pressure while removing the vapor of the organic solvent inside the heating furnace 50 (step S29). The decompression inside the heating furnace 50 may be performed by increasing the amount of gas exhausted from the heating furnace 50 more than the amount of gas supplied to the heating furnace 50. Step S29 may be executed at a temperature obtained by subtracting the temperature increased according to the pressurized state of the heating furnace 50 from the first baking temperature described above. Further, step S29 may be executed for 30 minutes.
 次いで、ステップS26を実行し、混合物12A中に残留している前駆体のイミド化処理を行うことにより、樹脂層12の形成工程、すなわちステップS1が完了する。ステップS1に次いで、図4のステップS2からステップS11を順次実行することにより、本実施形態に係る表示デバイス2が得られる。 Next, step S26 is executed, and the precursor remaining in the mixture 12A is subjected to an imidization treatment, whereby the step of forming the resin layer 12, that is, step S1 is completed. After step S1, steps S2 to S11 in FIG. 4 are sequentially executed to obtain the display device 2 according to the present embodiment.
 本実施形態においては、混合物12Aのイミド化を促進させる工程において、加熱炉50内が加圧状態となっている。このため、当該工程における加熱炉50内の有機溶媒の沸点が、加熱炉50内を加圧しない場合と比較して上昇している。ゆえに、第1ベーク温度を、加熱炉50内の有機溶媒の沸点の上昇に合わせて高く設定できる。 In the present embodiment, in the step of promoting the imidization of the mixture 12A, the inside of the heating furnace 50 is in a pressurized state. For this reason, the boiling point of the organic solvent in the heating furnace 50 in this step is higher than when the inside of the heating furnace 50 is not pressurized. Therefore, the first baking temperature can be set higher in accordance with the rise in the boiling point of the organic solvent in the heating furnace 50.
 したがって、混合物12Aのイミド化を促進させる工程を、より高温において実行することができる。このため、混合物12Aからの水分の除去を、より効率的に実行できる。ゆえに、樹脂層12と支持基板Sとの間に水分が残留することを、より効率的に低減できる。 Therefore, the step of promoting the imidization of the mixture 12A can be performed at a higher temperature. Therefore, the removal of water from the mixture 12A can be performed more efficiently. Therefore, moisture remaining between the resin layer 12 and the support substrate S can be more efficiently reduced.
 図7は、上述の各実施形態における表示デバイス2の製造工程において使用される、表示デバイスの製造装置40を示すブロック図である。表示デバイスの製造装置40は、コントローラ42と、塗布装置44と、上述したベーク装置46とを備える。コントローラ42は、塗布装置44と、ベーク装置46とを制御してもよい。塗布装置44は、上述したステップS21において、支持基板S上に混合物12Aを塗布してもよい。 FIG. 7 is a block diagram showing a display device manufacturing apparatus 40 used in the manufacturing process of the display device 2 in each of the above-described embodiments. The display device manufacturing apparatus 40 includes a controller 42, a coating apparatus 44, and the above-described baking apparatus 46. The controller 42 may control the coating device 44 and the baking device 46. The application device 44 may apply the mixture 12A onto the support substrate S in step S21 described above.
 さらに、表示デバイスの製造装置40は、成膜装置78を備えていてもよく、コントローラ42は、さらに、成膜装置78を制御してもよい。成膜装置78は、樹脂層12を除く、表示デバイス2の各層の成膜を実行してもよい。 The display device manufacturing apparatus 40 may further include a film forming apparatus 78, and the controller 42 may further control the film forming apparatus 78. The film forming apparatus 78 may execute film formation of each layer of the display device 2 except for the resin layer 12.
 上述の各実施形態に係る表示デバイス2は、柔軟性を有し、屈曲可能な表示素子を備えた表示パネルを備えていてもよい。上記表示素子は、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。 The display device 2 according to each of the above-described embodiments may include a display panel having a flexible and bendable display element. The display elements include a display element whose luminance and transmittance are controlled by a current, and a display element whose luminance and transmittance are controlled by a voltage.
 例えば、上述の各実施形態に係る表示デバイス2は、電流制御の表示素子として、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えていてもよい。この場合、本実施形態に係る表示デバイスは、有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイであってもよい。 For example, the display device 2 according to each of the above embodiments may include an OLED (Organic Light Emitting Diode) as a current control display element. In this case, the display device according to the present embodiment may be an organic EL (Electro Luminescence) display.
 または、上述の各実施形態に係る表示デバイス2は、電流制御の表示素子として、無機発光ダイオードを備えていてもよい。この場合、本実施形態に係る表示デバイスは、無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた、QLEDディスプレイであってもよい。 Alternatively, the display device 2 according to each of the above embodiments may include an inorganic light emitting diode as a current control display element. In this case, the display device according to the present embodiment may be a QLED display including an EL display QLED (quantum dot light emitting diode) such as an inorganic EL display.
 また、電圧制御の表示素子としては、液晶表示素子等がある。 表示 Further, as a display element for voltage control, there is a liquid crystal display element or the like.
 〔まとめ〕
 様態1の表示デバイスの製造方法は、ポリイミドを含む樹脂層を備えた表示デバイスの製造方法であって、支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布工程と、前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進する促進工程と、前記促進工程に次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行う残留イミド化工程とを備える。
[Summary]
The method for manufacturing a display device according to the first aspect is a method for manufacturing a display device including a resin layer containing polyimide, wherein a coating step of coating a mixture of a precursor of the polyimide and an organic solvent on a supporting substrate, Baking the mixture under an atmosphere of the saturated organic solvent at a first baking temperature, thereby promoting an imidation treatment of the precursor; Baking at a second bake temperature higher than the first bake temperature in a gas atmosphere to perform an imidization treatment of the remaining precursor.
 様態2においては、前記塗布工程と前記促進工程との間に、前記有機溶媒の蒸気を生成する生成工程をさらに備える。 Mode 2 further includes a generation step of generating a vapor of the organic solvent between the application step and the promotion step.
 様態3においては、前記生成工程と前記促進工程との処理時間の合計が、前記残留イミド化工程の処理時間よりも長い。 In mode 3, the total processing time of the generation step and the promotion step is longer than the processing time of the residual imidization step.
 様態4においては、前記塗布工程と前記促進工程との間に、減圧状態において、前記混合物を前記第1ベーク温度よりも低い第3ベーク温度にてベークするプリベーク工程をさらに備える。 In the fourth aspect, a pre-bake step of baking the mixture at a third bake temperature lower than the first bake temperature in a reduced pressure state is further provided between the applying step and the accelerating step.
 様態5においては、前記促進工程が、加圧状態において実行される。 In the fifth mode, the promoting step is performed in a pressurized state.
 様態6においては、前記第1ベーク温度を、前記加圧状態に応じた前記有機溶媒の沸点上昇に応じて設定する。 In the sixth embodiment, the first baking temperature is set in accordance with an increase in the boiling point of the organic solvent in accordance with the pressurized state.
 様態7においては、前記促進工程を、前記有機溶媒と前記不活性ガスとの雰囲気下において実行する。 In mode 7, the promoting step is performed in an atmosphere of the organic solvent and the inert gas.
 様態8においては、前記促進工程に次いで、前記第1ベーク温度にて、前記有機溶媒の蒸気を除去する除去工程をさらに備える。 Mode 8 further includes a removing step of removing the vapor of the organic solvent at the first baking temperature, following the promoting step.
 様態9においては、前記有機溶媒が、NMPを含む。 In the ninth embodiment, the organic solvent contains NMP.
 様態10の表示デバイスの製造装置は、ポリイミドを含む樹脂層を備えた表示デバイスの製造装置であって、支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布装置と、前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進し、次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行うベーク装置とを備える。 An apparatus for manufacturing a display device according to aspect 10, which is an apparatus for manufacturing a display device provided with a resin layer containing polyimide, comprising: a coating apparatus for coating a mixture of a precursor of the polyimide and an organic solvent on a supporting substrate; The mixture is baked at a first baking temperature under an atmosphere of the saturated organic solvent to promote the imidation treatment of the precursor, and then the mixture is heated under an inert gas atmosphere. A baking device for performing baking at a second baking temperature higher than the first baking temperature to imidize the remaining precursor.
 様態11においては、前記ベーク装置が、前記有機溶媒の蒸気を生成する蒸発皿を含むキュアオーブンを備える。 In the eleventh mode, the baking device includes a cure oven including an evaporating dish that generates vapor of the organic solvent.
2   表示デバイス
12  樹脂層
12A 混合物
40  表示デバイスの製造装置
44  塗布装置
46  ベーク装置
48  キュアオーブン
56  蒸発皿
S   支持基板
2 display device 12 resin layer 12A mixture 40 display device manufacturing device 44 coating device 46 baking device 48 cure oven 56 evaporating dish S support substrate

Claims (11)

  1.  ポリイミドを含む樹脂層を備えた表示デバイスの製造方法であって、
     支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布工程と、
     前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進する促進工程と、
     前記促進工程に次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行う残留イミド化工程とを備えた表示デバイスの製造方法。
    A method for manufacturing a display device including a resin layer containing polyimide,
    A coating step of coating a mixture of the polyimide precursor and an organic solvent on a supporting substrate,
    A step of baking the mixture under an atmosphere of the saturated organic solvent at a first baking temperature to promote an imidization treatment of the precursor;
    Subsequent to the accelerating step, the mixture is baked at a second bake temperature higher than the first bake temperature in an atmosphere of an inert gas to perform an imidization treatment of the remaining precursor. A method for manufacturing a display device comprising an imidization step.
  2.  前記塗布工程と前記促進工程との間に、前記有機溶媒の蒸気を生成する生成工程をさらに備えた請求項1に記載の表示デバイスの製造方法。 2. The method for manufacturing a display device according to claim 1, further comprising a generating step of generating a vapor of the organic solvent between the applying step and the accelerating step.
  3.  前記生成工程と前記促進工程との処理時間の合計が、前記残留イミド化工程の処理時間よりも長い請求項2に記載の表示デバイスの製造方法。 3. The method for manufacturing a display device according to claim 2, wherein a total of processing times of the generation step and the promotion step is longer than a processing time of the residual imidization step.
  4.  前記塗布工程と前記促進工程との間に、減圧状態において、前記混合物を前記第1ベーク温度よりも低い第3ベーク温度にてベークするプリベーク工程をさらに備えた請求項1から3の何れか1項に記載の表示デバイスの製造方法。 4. The method according to claim 1, further comprising a pre-bake step of baking the mixture at a third bake temperature lower than the first bake temperature in a reduced pressure state between the applying step and the accelerating step. 13. The method for manufacturing a display device according to item 13.
  5.  前記促進工程が、加圧状態において実行される請求項1から4の何れか1項に記載の表示デバイスの製造方法。 The method according to any one of claims 1 to 4, wherein the accelerating step is performed in a pressurized state.
  6.  前記第1ベーク温度を、前記加圧状態に応じた前記有機溶媒の沸点上昇に応じて設定する請求項5に記載の表示デバイスの製造方法。 6. The method for manufacturing a display device according to claim 5, wherein the first baking temperature is set in accordance with a rise in the boiling point of the organic solvent in accordance with the pressurized state.
  7.  前記促進工程を、前記有機溶媒と前記不活性ガスとの雰囲気下において実行する請求項1から6の何れか1項に記載の表示デバイスの製造方法。 7. The method of manufacturing a display device according to claim 1, wherein the promoting step is performed in an atmosphere of the organic solvent and the inert gas.
  8.  前記促進工程に次いで、前記第1ベーク温度にて、前記有機溶媒の蒸気を除去する除去工程をさらに備えた請求項1から7の何れか1項に記載の表示デバイスの製造方法。 The method of manufacturing a display device according to any one of claims 1 to 7, further comprising a removing step of removing the vapor of the organic solvent at the first baking temperature, following the promoting step.
  9.  前記有機溶媒が、NMPを含む請求項1から8の何れか1項に記載の表示デバイスの製造方法。 方法 The method for manufacturing a display device according to claim 1, wherein the organic solvent includes NMP.
  10.  ポリイミドを含む樹脂層を備えた表示デバイスの製造装置であって、
     支持基板上に前記ポリイミドの前駆体と有機溶媒との混合物を塗布する塗布装置と、
     前記混合物を、飽和した前記有機溶媒の雰囲気下において、第1ベーク温度にてベークすることにより、前記前駆体のイミド化処理を促進し、次いで、前記混合物を、不活性ガスの雰囲気下において、前記第1ベーク温度よりも高温の第2ベーク温度にてベークすることにより、残留した前記前駆体のイミド化処理を行うベーク装置とを備えた表示デバイスの製造装置。
    An apparatus for manufacturing a display device including a resin layer containing polyimide,
    A coating apparatus for coating a mixture of the polyimide precursor and an organic solvent on a supporting substrate,
    The mixture is baked at a first baking temperature under an atmosphere of the saturated organic solvent to promote the imidation treatment of the precursor, and then, under an atmosphere of an inert gas, An apparatus for manufacturing a display device, comprising: a baking device that performs an imidation treatment of the remaining precursor by baking at a second baking temperature higher than the first baking temperature.
  11.  前記ベーク装置が、前記有機溶媒の蒸気を生成する蒸発皿を含むキュアオーブンを備えた請求項10に記載の表示デバイスの製造装置。 11. The apparatus for manufacturing a display device according to claim 10, wherein the baking device includes a cure oven including an evaporating dish that generates vapor of the organic solvent.
PCT/JP2018/031581 2018-08-27 2018-08-27 Method for manufacturing display device, and apparatus for manufacturing display device WO2020044405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031581 WO2020044405A1 (en) 2018-08-27 2018-08-27 Method for manufacturing display device, and apparatus for manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031581 WO2020044405A1 (en) 2018-08-27 2018-08-27 Method for manufacturing display device, and apparatus for manufacturing display device

Publications (1)

Publication Number Publication Date
WO2020044405A1 true WO2020044405A1 (en) 2020-03-05

Family

ID=69644844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031581 WO2020044405A1 (en) 2018-08-27 2018-08-27 Method for manufacturing display device, and apparatus for manufacturing display device

Country Status (1)

Country Link
WO (1) WO2020044405A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129464A1 (en) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body
JP2014183167A (en) * 2013-03-19 2014-09-29 Nippon Zeon Co Ltd Method for manufacturing semiconductor device
JP2016035832A (en) * 2014-08-01 2016-03-17 旭硝子株式会社 Method of manufacturing electronic device, method of manufacturing glass laminate
JP2016152906A (en) * 2015-02-18 2016-08-25 ソニー株式会社 Medical support arm device and medical observation device
WO2016152459A1 (en) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 Polyimide-based optical film, process for producing same, and organic electroluminescent display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129464A1 (en) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body
JP2014183167A (en) * 2013-03-19 2014-09-29 Nippon Zeon Co Ltd Method for manufacturing semiconductor device
JP2016035832A (en) * 2014-08-01 2016-03-17 旭硝子株式会社 Method of manufacturing electronic device, method of manufacturing glass laminate
JP2016152906A (en) * 2015-02-18 2016-08-25 ソニー株式会社 Medical support arm device and medical observation device
WO2016152459A1 (en) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 Polyimide-based optical film, process for producing same, and organic electroluminescent display

Similar Documents

Publication Publication Date Title
KR101267529B1 (en) Method of fabricating flexible organic electro luminescent device
KR101774278B1 (en) Manufacturing method of flexible display device
JP6843710B2 (en) Display device and manufacturing method of display device
KR101635914B1 (en) Method of fabricating flexible display device
US8518285B2 (en) Substrate section for flexible display device, method of manufacturing the substrate section, and method of manufacturing organic light emitting display device including the substrate
KR102280959B1 (en) Display device and method for manufacturing the same
KR101747264B1 (en) Display device and fabricating method thereof
US8801485B2 (en) Frit sealing system and method of manufacturing organic light-emitting display (OLED) apparatus using the same
KR20150052645A (en) Flexible display and manufacturing method thereof
US9385171B2 (en) Active matrix organic light-emitting diode array substrate, manufacturing method thereof and display device including the same
US10854817B2 (en) Display device and method of manufacturing display device
US10573205B2 (en) Flexible display device and method for manufacturing flexible display device
TW201413932A (en) Display device and method for manufacturing same
US10862075B2 (en) Manufacturing method for EL device
WO2020044405A1 (en) Method for manufacturing display device, and apparatus for manufacturing display device
WO2013108326A1 (en) Thin film transistor array apparatus and el display apparatus using same
JP5318182B2 (en) Manufacturing method of organic EL element
JP2009064631A (en) Manufacturing apparatus of display device
KR20130018007A (en) Method of fabricating organic light emitting diodes
US11114522B2 (en) Display device, manufacturing method of display device, and exposure device
WO2019207736A1 (en) Organic el device and method for manufacturing same
CN110383434B (en) Method for manufacturing active matrix substrate, method for manufacturing organic EL display device, and active matrix substrate
WO2020065765A1 (en) Heating device
US20200091269A1 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
TW201924107A (en) Organic Electroluminescence device and optical printing head capable of inhibiting the infiltration of water vapor into the EL elements without using metal mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP