WO2016152459A1 - Polyimide-based optical film, process for producing same, and organic electroluminescent display - Google Patents

Polyimide-based optical film, process for producing same, and organic electroluminescent display Download PDF

Info

Publication number
WO2016152459A1
WO2016152459A1 PCT/JP2016/056756 JP2016056756W WO2016152459A1 WO 2016152459 A1 WO2016152459 A1 WO 2016152459A1 JP 2016056756 W JP2016056756 W JP 2016056756W WO 2016152459 A1 WO2016152459 A1 WO 2016152459A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
group
optical film
formula
Prior art date
Application number
PCT/JP2016/056756
Other languages
French (fr)
Japanese (ja)
Inventor
健太 間島
梅田 博紀
康敏 伊藤
直矢 岩上
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56978015&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016152459(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020177024910A priority Critical patent/KR102046699B1/en
Priority to JP2017508162A priority patent/JP6635110B2/en
Publication of WO2016152459A1 publication Critical patent/WO2016152459A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a polyimide-based optical film, a method for producing the same, and an organic electroluminescence display. More specifically, the present invention relates to a polyimide-based optical film that has improved planarity, and when used on the surface of an organic electroluminescence display device, the unevenness of the film when viewed through polarized sunglasses is not noticeable and is excellent in visibility. .
  • glass has been used for the outermost surface of an organic electroluminescence display, but in recent years, a material having both folding resistance and transparency has been demanded as a substitute for glass as it becomes flexible.
  • One of the materials is a compound having an imide structure, and a polyimide-based optical film as disclosed in Patent Document 1 is known, but a solution casting using a high-boiling solvent such as dimethylacetamide is known.
  • the polyimide optical film formed by the film method has poor flatness, and organic electroluminescence displays using this optical film as the outermost surface show that the unevenness of the film becomes noticeable when viewed through polarized sunglasses. It was.
  • the present invention has been made in view of the above-mentioned problems and situations, and its solution is to improve the flatness and to prevent unevenness of the film when viewed through polarized sunglasses when used on the surface of an organic electroluminescence display. Is an inconspicuous and excellent visibility of a polyimide optical film, a method for producing the same, and an organic electroluminescence display using the same.
  • the present inventor in the process of examining the cause of the above problems, in the rectangular area cut out from the projected image of the optical film, the grayscale standard deviation ⁇ and the binarized image of the rectangular area is improved by the polyimide-based optical film adjusted to a specific range, and when used on the surface of an organic electroluminescence display device, the film is viewed through polarized sunglasses. It has been found that a polyimide-based optical film in which unevenness is not noticeable can be obtained.
  • a polyimide optical film containing a transparent heat resistant resin having an imide structure In a predetermined rectangular area cut out from the projected image of the polyimide optical film, the standard deviation ⁇ of the gray scale is in the range of 0.50 to 1.10, and the black portion in the binarized image of the rectangular area
  • the polyimide-based optical film is characterized in that the area occupied by is adjusted to 50% or less.
  • the transparent heat resistant resin having the imide structure is a polyimide having a structure represented by the following formula (1), a polyimide having a structure represented by the following formula (2) or the following formula (3), a polyesterimide, a polyamideimide. And a polyimide-based optical film according to item 1, wherein the polyimide-based optical film is selected from polyetherimide and polyetherimide.
  • X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms.
  • At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group.
  • a method for producing a polyimide-based optical film for producing the polyimide-based optical film according to item 1 or 2, wherein a dope containing the transparent heat-resistant resin having the imide structure and dichloromethane is prepared, and the solution flow A method for producing a polyimide-based optical film, wherein the film is formed by a film-forming method.
  • the film is stretched at a magnification of 1.05 times or more in at least one direction of the longitudinal direction or the width direction, and then the (glass transition temperature Tg-150) to (glass transition temperature Tg-30) of the film.
  • An organic electroluminescence display comprising the polyimide-based optical film according to item 1 or 2.
  • the planarity is improved, and when used on the surface of an organic electroluminescence display, the unevenness of the film when viewed through polarized sunglasses is not noticeable, and the polyimide optical film having excellent visibility, and its production
  • a method and an organic electroluminescent display using the method can be provided.
  • a polyimide-based optical film that is commercially available or disclosed in Patent Document 1 has poor flatness, and an organic electroluminescence display (hereinafter referred to as organic) using the optical film as the outermost surface.
  • organic organic electroluminescence display
  • a compound having an imide structure is cast by solution casting using a low boiling point solvent (for example, dichloromethane or the like), and further bent by a predetermined number of times while being conveyed by a roller.
  • a low boiling point solvent for example, dichloromethane or the like
  • the gray scale standard deviation ⁇ and the area of the black portion when binarized can be reduced.
  • the flatness of the polyimide optical film is improved, and the film is used as the outermost surface. It has been found that unevenness can be made inconspicuous even when the organic EL display is viewed through polarized sunglasses.
  • Schematic diagram for analyzing a film projection image according to the present invention Schematic diagram of a bending processing apparatus preferably applicable to the present invention
  • Schematic diagram of organic EL display Projected image of the polyimide-based optical film of the present invention
  • Binary image of polyimide optical film of the present invention Gray scale standard deviation of the polyimide-based optical film of the present invention
  • Projected image of comparative example polyimide optical film Binarized image of comparative polyimide-based optical film Gray scale standard deviation of polyimide optical film of comparative example Projected image of comparative example polyimide optical film
  • Binarized image of comparative polyimide-based optical film Gray scale standard deviation of polyimide optical film of comparative example Projected image of comparative example polyimide optical film
  • Binarized image of comparative polyimide-based optical film Gray scale standard deviation of polyimide optical film of comparative example Projected image of comparative example polyimide optical film
  • Binarized image of comparative polyimide-based optical film Gray scale standard deviation of
  • the polyimide-based optical film of the present invention is a polyimide-based optical film containing a transparent heat-resistant resin having an imide structure, and has a grayscale standard deviation ⁇ in a rectangular area cut out from the projected image of the polyimide-based optical film. , 0.50 to 1.10, and the area occupied by the black portion in the binarized image of the rectangular area is adjusted to 50% or less.
  • This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the transparent heat-resistant resin having the imide structure is a polyimide having a structure represented by the formula (1), the formula (2) or the formula ( From the viewpoint of obtaining a polyimide-based optical film excellent in smoothness, heat resistance, and transparency, it is preferable to select from polyimide, polyesterimide, polyamideimide and polyetherimide having the repeating unit represented by 3).
  • the method for producing a polyimide-based optical film of the present invention is preferably prepared by preparing a dope containing the transparent heat-resistant resin having the imide structure and dichloromethane and forming the dope by a solution casting film forming method.
  • the film is stretched at a magnification of 1.05 times or more in at least one direction of the longitudinal direction or the width direction, and then the (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film.
  • Performing the bending process 150 times or more while transporting the roller at a drying temperature within the range improves the smoothness, and when used on the surface of the organic electroluminescence display, unevenness of the film when viewed through polarized sunglasses is observed. From the viewpoint of obtaining a polyimide-based optical film that is not conspicuous and has excellent visibility, this is a preferred production method.
  • the polyimide optical film of the present invention is a preferred embodiment from the viewpoint of obtaining an optical film having a thin film and good flatness by adjusting the film thickness within a range of 25 to 100 ⁇ m.
  • the polyimide-based optical film of the present invention is preferably provided in an electroluminescence display, and is preferable from the viewpoint of excellent visibility when viewed through sunglasses.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polyimide-based optical film of the present invention (hereinafter sometimes referred to as polyimide film) is a polyimide-based optical film containing a transparent heat-resistant resin having an imide structure, and was cut out from the projected image of the polyimide-based optical film.
  • the grayscale standard deviation ⁇ is in the range of 0.50 to 1.10, and the area occupied by the black portion in the binarized image of the rectangular area is adjusted to 50% or less. It is characterized by that.
  • FIG. 1 is a schematic diagram for analyzing a film projection image according to the present invention.
  • the white light source 2 (S-light, manufactured by Japan Technical Center Co., Ltd.) is irradiated at an angle of 45 ° with respect to the film sample 1 while adjusting the distance between the film sample 1 and the white light source 2 to 60 cm.
  • the distance to the surface 3 is projected as 70 cm.
  • the projection image is photographed by manual setting) to obtain a photographed image.
  • a rectangular evaluation area that is 1 cm ⁇ 5 cm in an actual captured image is set. At that time, the long side of the rectangle is set to be in the transport direction of the film sample.
  • the rectangular evaluation area is binarized using the average value m as a threshold.
  • the black portion area ratio K (%) is calculated by dividing the area of the black portion (dark portion) obtained by the binarization by the entire area.
  • free software ImageJ refers to ImageJ1.32S created by Wayne Rasband.
  • the background correction is output as different brightness even when the right half area and the left half area of the image have the same brightness, or as the image moves from the left side to the right side of the image.
  • background correction is performed, histogram calculation, average gradation calculation, and binarization processing are performed to obtain the area ratio K (%) of the black part (dark part) Is preferred.
  • the standard deviation ⁇ of gray value in gray scale is calculated by the method shown below.
  • Gray data N pieces of data x1, x2,... XN is a population, and an arithmetic mean (population average) m of the population is obtained by the following formula 1.
  • an arithmetic mean (population average) m of the population is obtained by the following formula 1.
  • the variance is obtained by the following formula 2.
  • the positive square root ⁇ of this variance ( ⁇ 2 ) is taken as the standard deviation ⁇ .
  • the standard deviation ⁇ of the gray value in the gray scale of the polyimide-based optical film of the present invention is in the range of 0.50 to 1.10, but considering the range that is not visually recognized as unevenness and the productivity, 0.70. More preferably, it is in the range of ⁇ 1.05.
  • the area occupied by the black portion in the binarized image of the rectangular area of the polyimide-based optical film of the present invention is adjusted to 50% or less. A range of 50% is preferable, and a range of 40 to 45% is more preferable.
  • the polyimide-based optical film of the present invention contains a compound having an imide structure, and the transparent heat-resistant resin having the imide structure has a structure represented by the following formula (1), the following formula (2) or It is preferably selected from polyimide, polyesterimide, polyamideimide, and polyetherimide having a structure represented by the following formula (3).
  • Transparent heat-resistant resin having an imide structure [1.1] Polyimide having a structure represented by the formula (1)
  • the transparent heat-resistant resin having an imide structure according to the present invention (hereinafter also referred to as polyimide resin). It is preferable that it is a polyimide resin represented by following formula (1) obtained by chemically imidizing a polyimide precursor.
  • TFMB 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
  • TFMB 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
  • 6FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride
  • the number of moles of diamine and the number of moles of tetracarboxylic dianhydride are charged at substantially equal moles.
  • the total monomer concentration during the polymerization is 5 to 40% by mass, preferably 10 to 30% by mass.
  • the polymerization solvent is not particularly limited, but N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethylsulfoxide, ⁇ - Butyrolactone, 1,3-dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, terahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, Aprotic solvents such as xylene and protic solvents such as phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, and p-chlorophenol can be used. These solvents may be used alone or in combination of two or more.
  • the polyimide resin represented by the formula (1) can be produced by a dehydration ring-closing reaction (imidation reaction) of the polyimide precursor obtained by the above method.
  • imidation reaction chemical imidization is used in which the resulting polyimide resin exhibits better dimensional stability.
  • Chemical imidization can be performed using a dehydrating cyclization agent (chemical imidization agent) comprising an acid anhydride of an organic acid and an organic tertiary amine.
  • a dehydration cyclization reagent is added thereto and stirred at 0 to 100 ° C., preferably 20 to 60 ° C. for 0.5 to 48 hours. It can be easily imidized.
  • the acid anhydride of the organic acid used at that time is not particularly limited, and acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride, etc. can be used, but the cost and ease of post-treatment are not limited. In view of the above, acetic anhydride is preferably used.
  • the organic tertiary amine is not particularly limited, and pyridine, 1,5-dimethylpyridine, ⁇ -picoline, ⁇ -picoline, lutidine, isoquinoline, triethylamine, N, N-dimethylaniline and the like can be used.
  • the amount of the acid anhydride used in the dehydration cyclization reagent is preferably in the range of 1 to 10 times mol of the theoretical dehydration amount of the polyimide precursor.
  • the amount of catalyst used is preferably in the range of 0.1 to 2 moles relative to the acid anhydride. If the chemical imidization is carried out outside these ranges, the imidation reaction may not be completed, or the imidization may not be completed in the reaction solution and the imidization may be insufficient. After completion of imidation, the reaction solution can be used for coating as it is, or the reaction solution is dropped into a large amount of poor solvent, or a poor solvent is added to the reaction solution, and the polyimide resin is precipitated and washed.
  • a solvent or chemical imidization an excess chemical imidizing agent is removed, and then dried under reduced pressure to obtain a polyimide resin powder.
  • the poor solvent that can be used is not particularly limited as long as it does not dissolve the polyimide resin, but water, methanol, ethanol, from the viewpoint of affinity with the reaction solvent and chemical imidizing agent and ease of removal by drying. n-propanol, isopropanol and the like are preferably used.
  • the weight average molecular weight of the polyimide resin is not particularly limited, but is preferably from 5,000 to 2,000,000, more preferably from 10,000 to 1,000,000, and further preferably from 50,000 to 500,000.
  • the weight average molecular weight is 5000 or more, sufficient strength can be obtained in the case of a film, and dimensional stability tends to be improved, so that sufficient dimensional stability can be obtained.
  • the said weight average molecular weight means the value of polyethyleneglycol conversion by size exclusion chromatography (SEC).
  • Polyimide having structure represented by formula (2) or formula (3) The transparent heat resistant resin according to the present invention is a polyimide having a repeating unit represented by the following formula (2) (hereinafter, polyimide). P)) or a polyimide composed of a repeating unit represented by the formula (2) and a repeating unit represented by the following formula (3) is preferable.
  • X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms.
  • At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group.
  • the polyimide resin is composed of a repeating unit represented by the formula (2), or a repeating unit represented by the formula (2) and a repeating unit represented by the formula (3).
  • the ratio of the repeating units to be used is more than 50 mol% of all repeating units, preferably 70 mol% or more, more preferably 80 mol% or more (each including 100 mol%).
  • the proportion of the repeating unit represented by the formula (2) exceeds 50 mol% of all the repeating units, low water absorption can be achieved. Get higher.
  • the polyimide P may be either a block copolymer or a random copolymer.
  • X in the above formula (3) is the following formula (4); 2 is composed of a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof. Is a valent group.
  • the main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O—, and —S. At least one linking group selected from the group consisting of — may intervene.
  • X may have at least one functional group selected from the group consisting of a carboxy group, a hydroxy group, and a carbonyl group (included in the main chain of X).
  • Specific examples of X include polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted divalent aliphatic groups; cyclohexane, dicyclohexylmethane, dimethylcyclohexane, Divalent alicyclic groups derived from isophorone, norbornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenyl, diphenylmethane, diphenyl ether, diphenylsulfone, benzo
  • polyimide P When polyimide P is used as a solution, its molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity.
  • the logarithmic viscosity ⁇ (measured at 30 ° C. using a 0.5 g / dL N-methyl-2-pyrrolidone solution) of the polyimide P is preferably 0.3 to 2 dL / g. If it is less than 0.3 dL / g, the strength of the polyimide resin itself is weak, and an optical film having sufficient peel strength cannot be obtained. If it exceeds 2.0 dL / g, the solution will become highly viscous and difficult to cast, requiring significant dilution, making handling difficult.
  • the molecular end of polyimide P is an amino group, a carboxy group, or a carboxylic anhydride group.
  • the functional group at the molecular end is reduced as much as possible, or an intentionally functional group such as an amino group or a carboxy group is present at the molecular end.
  • Groups and other substituents can be introduced.
  • a substituent having a small polarity substituted at the molecular end.
  • the water absorption of the polyimide P measured by the method described later is preferably 2.5% or less.
  • the minimum value of water absorption that can be achieved industrially is usually about 1%.
  • Polyimide P consists of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) and 1,2,4,5-cyclohexanetetracarboxylic acid esters. It is obtained by reacting at least one tetracarboxylic acid component (Y) selected from reactive derivatives such as diamine and at least one diamine component (Z) selected from diamines and reactive derivatives thereof. As the tetracarboxylic acid component (Y), HPMDA is preferable. In addition, the tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.
  • diamine component (Z) examples include diamine, diisocyanate, and diaminodisilane, and diamine is preferred.
  • the diamine component (diamine component (Z1)) for forming the repeating unit of the above formula (1) is 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) and a reactive derivative thereof.
  • the diamine component (diamine component (Z2)) for forming the repeating unit (3) is NH 2 —X—NH 2 (X is the same as described above) and reactive derivatives thereof.
  • the diamine component (Z2) may be an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the above diamine, or a mixture thereof, including a carboxy group, a hydroxy group, and a carbonyl group (in the main chain of X). It may have at least one functional group selected from the group consisting of:
  • aromatic diamine means a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, an alicyclic group, an aromatic group, other It may contain a substituent.
  • “Aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and the structure includes an aliphatic group, an alicyclic group, an aromatic group, and other substituents. May be. “Alicyclic diamine” refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, an alicyclic group, an aromatic group, and other substituents are partly included in the structure. It may be included.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • MXDA m-xylyl Range amine
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride
  • a polyamic acid and a salt having a relatively weak bond between an amino group derived from an aliphatic diamine or an alicyclic diamine are used as the tetracarboxylic dianhydride.
  • the imidization reaction proceeds relatively easily and can be easily increased in molecular weight.
  • aliphatic diamine examples include ethylene diamine, hexamethylene diamine, polyethylene glycol-bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, , 4-bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, siloxane diamines and the like.
  • alicyclic diamine examples include 4,4′-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine, and the like.
  • aromatic diamine examples include 1,4-phenylene diamine, 1,3-phenylene diamine, 2,4-toluene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'- Diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, ⁇ , ⁇ '-bis (4 -Aminophenyl) -1,4-diisopropylbenzene, ⁇ , ⁇ '-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl
  • Examples of the diamine having a functional group include 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2,4-diaminophenol, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, and in particular, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane (MBAA), 3,5 -Diaminobenzoic acid (DBA), 3,3'-dihydroxy-4,4'-diaminobiphenyl (HAB), 4,4'-diaminobenzophenone (4,4'-DBP) are preferred.
  • 3,3′-dicarboxy-4,4′-diaminodiphenylmethane 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4'-
  • the polyimide P contains the tetracarboxylic acid component (Y) with respect to 1 mol of the diamine component (Z) (diamine component (Z1) or diamine component (Z1) + diamine component (Z2)), preferably 0.00. It is produced by reacting 66 to 1.5 mol, more preferably 0.9 to 1.1 mol, and still more preferably 0.97 to 1.03 mol.
  • a polyimide P having a logarithmic viscosity ⁇ within the above range is produced by adjusting at least one of the conditions such as the use ratio of raw materials, reaction temperature and time, presence / absence and use of a terminal terminator, and the amount of catalyst. can do.
  • the conditions such as the use ratio of raw materials, reaction temperature and time, presence / absence and use of a terminal terminator, and the amount of catalyst. can do.
  • Those skilled in the art can easily adjust the conditions by performing a preliminary reaction or the like. For example, when the logarithmic viscosity ⁇ is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time, The logarithmic viscosity ⁇ increases within the above range.
  • the logarithmic viscosity ⁇ is smaller in the range.
  • the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the logarithmic viscosity corresponding thereto is obtained in advance, and the end point of the reaction is determined based on this relationship.
  • a polyimide P having a logarithmic viscosity ⁇ can be produced.
  • the reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.
  • the polyimide P is usually produced as an organic solvent solution.
  • the organic solvent is not particularly limited.
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl Caprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ - Butyrolactone, dioxolane, cyclohexanone, cyclopentanone and the like can be used, and two or more kinds may be used in combination.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • GBL ⁇ -butyrolactone
  • the organic solvent is used in such an amount that the polyimide P concentration in the obtained organic solvent solution is preferably 1 to 50% by mass, more preferably 5 to 40% by mass.
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene and the like can be used together with the above solvent to such an extent that the polymer does not precipitate.
  • Polyimide P is obtained by (1) solution polymerization method, (2) preparing a polyamic acid solution, forming a film and imidizing it, and (3) obtaining a salt or imide oligomer such as HPMDA half ester salt, It can be produced by a method of performing phase polymerization, (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, or other conventionally known methods. You may use each method together.
  • the reaction between the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.
  • an organic solvent solution of polyimide P can be obtained directly, the following solution polymerization methods (1) to (3) are preferable.
  • a mixture containing a diamine component (Z), an organic solvent and, if necessary, a catalyst is stirred at 10 to 600 rpm to obtain a homogeneous solution, which is maintained at a temperature of 30 to 90 ° C., and the tetracarboxylic acid component (Y) And if necessary, a catalyst is added.
  • Solution polymerization for producing polyimide P includes trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-
  • the reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline and isoquinoline.
  • the catalyst is preferably used in an amount of 0.1 to 100 mol%, more preferably 1 to 10 mol% of the tetracarboxylic acid component (Y).
  • polyesterimide is preferably a compound having a structure represented by the following formula (6).
  • the polyesterimide resin which concerns on this invention contains the structure represented by Formula (6) in a structural unit.
  • R1 is a compound having a structure represented by Formula (7), a compound having a structure represented by Formula (8), or a compound having a structure represented by Formula (9).
  • R represents a chain aliphatic group, a cycloaliphatic group or an aromatic group, and a plurality of R may be the same as or different from each other.
  • These chain aliphatic groups, cycloaliphatic groups or aromatic groups can be used alone or in combination of two or more.
  • M is a positive integer of 1 or more, preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more.
  • the upper limit of m is not specifically limited, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 10 or less. When it exceeds 25, the heat resistance tends to decrease.
  • the chain aliphatic group, cycloaliphatic group or aromatic group is “chain aliphatic compound having a divalent hydroxy group”, “cycloaliphatic compound having a divalent hydroxy group” or “2
  • a residue derived from a “diol compound” such as an “aromatic compound having a valent hydroxy group” is desirable. Further, it may be a residue derived from the above “diol compound” and “polycarbonate diol compound” which can be polymerized from carbonates, phosgene and the like.
  • chain aliphatic compound having a divalent hydroxy group a branched or linear diol compound having two hydroxy groups can be used. Examples thereof include an alkylene diol compound, a polyoxyalkylene diol compound, a polyester diol compound, and a polycaprolactone diol compound. Examples of branched or linear diol compounds having two hydroxy groups that can be used as the “chain aliphatic compound having a divalent hydroxy group” are given below.
  • alkylene diol compound examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 3-methyl-1,5-pentanediol. 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, 1,4 -Cyclohexanedimethanol and the like.
  • polyoxyalkylenediol compounds examples include dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid), dimethylolbutanoic acid (2,2-bis (hydroxymethyl) butanoic acid), polyethylene glycol, polypropylene glycol , Polytetramethylene glycol, polyoxytetramethylene glycol, random copolymers of tetramethylene glycol and neopentyl glycol, and the like. Polyoxytetramethylene glycol is preferable.
  • polyester diol compounds examples include polyester diol compounds obtained by reacting polyhydric alcohols and polybasic acids exemplified below.
  • any “polyhydric alcohol” can be used as the “polyhydric alcohol component” used in the polyester diol compound.
  • any of various polybasic acids can be used.
  • terephthalic acid isophthalic acid, orthophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, 4,4'-diphenyldicarboxylic acid, 2,2'-diphenyldicarboxylic acid, 4,4'-diphenylether dicarboxylic acid Acids, adipic acid, sebacic acid, azelaic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, etc.
  • Aliphatic and alicyclic dibasic acids can be used.
  • polyester diol compound that can be used in the present invention, specifically, OD-X-688 (aliphatic polyester diol manufactured by DIC Corporation: adipic acid / neopentyl glycol / 1,6-hexanediol, number average Molecular weight of about 2000), Byron (registered trademark) 220 (manufactured by Toyobo Co., Ltd., polyester diol, number average molecular weight of about 2000), and the like.
  • OD-X-688 aliphatic polyester diol manufactured by DIC Corporation: adipic acid / neopentyl glycol / 1,6-hexanediol, number average Molecular weight of about 2000
  • Byron registered trademark 220 (manufactured by Toyobo Co., Ltd., polyester diol, number average molecular weight of about 2000), and the like.
  • polycaprolactone diol compound examples include polycaprolactone diol compounds obtained by ring-opening addition reaction of lactones such as ⁇ -butyllactone, ⁇ -caprolactone, and ⁇ -valerolactone.
  • chain aliphatic compound having a divalent hydroxy group can be used alone or in combination of two or more.
  • Cycloaliphatic compound having a divalent hydroxy group” or “aromatic compound having a divalent hydroxy group” includes “a compound having two hydroxy groups in an aromatic ring or cyclohexane ring”, “two "Compounds in which phenol or alicyclic alcohol is bonded with a divalent functional group”, “Compounds having one hydroxy group in both nuclei of the biphenyl structure”, “Compounds having two hydroxy groups in the naphthalene skeleton”, etc. Is used.
  • Examples of the “compound having two hydroxy groups in the aromatic ring or cyclohexane ring” include hydroquinone, 2-methylhydroquinone, resorcinol, catechol, 2-phenylhydroquinone, cyclohexanedimethanol, tricyclodecanemethanol, 1,4-dihydroxycyclohexane, , 3-dihydroxycyclohexane, 1,2-dihydroxycyclohexane, 1,3-adamantanediol, dicyclopentadiene dihydrate, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxy Carboxy group-containing diol compounds such as benzoic acid, 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and 3,5-dihydroxybenzoic acid can be used.
  • two phenols or “a compound in which an alicyclic alcohol is bonded with a divalent functional group”
  • 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylsulfone, 4, 4 '-(9-fluorenylidene) diphenol, 4,4'-dihydroxydicyclohexyl ether, 4,4'-dihydroxydicyclohexyl sulfone, bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F, and the like can be used.
  • Examples of “compound having one hydroxy group in both nuclei of biphenyl structure” include 4,4′-biphenol, 3,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5. 5,5'-tetramethyl-4,4'-biphenol and the like can be used.
  • the number average molecular weight of the diol compound is preferably 100 or more and 30000 or less, more preferably 150 or more and 20000 or less, and further preferably 200 or more and 10,000 or less. When the number average molecular weight is less than 100, low hygroscopicity and flexibility cannot be sufficiently exhibited. When the number average molecular weight is more than 30000, the composition and structure of the “diol compound”, and the composition and structure of the diamine component (or isocyanate component) described later. Depending on the case, phase separation may occur and the mechanical properties may not be sufficiently exhibited.
  • the polycarbonate diol compound may be a polycarbonate diol (copolymerized polycarbonate diol) having a plurality of types of alkylene groups as described above in its skeleton.
  • a combination of 2-methyl-1,8-octanediol and 1,9-nonanediol, a combination of 3-methyl-1,5-pentanediol and 1,6-hexanediol, 1,5-pentanediol and 1 , 6-hexanediol, and the like can be synthesized as a copolymerized polycarbonate diol.
  • a copolymer polycarbonate diol that can be synthesized from a combination of 2-methyl-1,8-octanediol and 1,9-nonanediol is preferable. Two or more of these polycarbonate diol compounds can be used in combination.
  • Examples of commercially available polycarbonate diol compounds that can be used in the present invention include Kuraray Kuraray Polyol C series manufactured by Kuraray Co., Ltd., Asahi Kasei Chemicals Co., Ltd. Duranol (registered trademark) series, and the like.
  • Kuraray polyol C-1015N Kuraray polyol C-1065N (Kuraray Co., Ltd. carbonate diol: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 1,000
  • Kuraray Polyol C-2015N Kuraray polyol C2065N (Kuraray Co., Ltd.
  • polycarbonate diol 1,5-pentanediol / 1,6-hexanediol, number average molecular weight About 1,000
  • DURANOL registered trademark
  • -T5652 polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight about 2,000
  • Kuraray polyol C-1015N is used.
  • Examples of the method for producing the polycarbonate diol include transesterification between the raw diol and carbonates, and dehydrochlorination reaction between the raw diol and phosgene.
  • Examples of the carbonic acid ester as a raw material include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; diaryl carbonates such as diphenyl carbonate; and alkylene carbonates such as ethylene carbonate and propylene carbonate.
  • R3 is a direct bond (bond) (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester Bond (—COO—), carbonyl group (—CO—), sulfonyl group (—S ( ⁇ O) 2 —), sulfinyl group (—SO—), sulfenyl group (—S—), carbonate group (—OCOO) -), Or a fluorenylidene group.
  • n is a positive integer of 1 or more.
  • n is not particularly limited, but is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less.
  • X1 to X8 may be the same or different and each represents hydrogen, a halogen or an alkyl group.
  • Specific examples of the compound having the structure represented by the formula (8) are not particularly limited, but include diphenyl ether skeleton, diphenyl sulfone skeleton, 9-fluorenylidene diphenol skeleton, bisphenol A skeleton, bisphenol F skeleton, and bisphenol A. Examples thereof include an ethylene oxide adduct skeleton, a propylene oxide adduct skeleton of bisphenol A, a biphenyl skeleton, and a naphthalene skeleton.
  • the skeleton is preferably a residue derived from a compound having one hydroxy group on each of the benzene rings in the formula (8).
  • the raw materials for the compound having the structure represented by the formula (8) include 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfone, 4,4 ′-(9-fluorenylidene) diphenol, bisphenol A, Bisphenol F, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, 4,4'-biphenol, 3,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'- Tetramethyl-4,4′-biphenol, 2,6-naphthalenediol, 1,4-naphthalenediol, 1,5-naphthalenediol, 1,8-naphthalenediol, and the like can be used.
  • 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfone, 4,4 ′-(9-fluorenylidene) diphenol or bisphenol A ethylene oxide adduct is preferred. More preferably, 4,4′-dihydroxydiphenyl ether or ethylene oxide adduct of bisphenol A is used.
  • diphenyl ether skeleton or the like can be introduced at the R1 position of the formula (6).
  • R4 ′ is a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond ( —COO—), carbonyl group (—CO—), sulfonyl group (—S ( ⁇ O) 2 —), sulfinyl group (—SO—), sulfenyl group (—S—), carbonate group (—OCOO—) Or a fluorenylidene group.
  • n is a positive integer of 1 or more.
  • n is not particularly limited, but is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less.
  • X1 ′ to X8 ′ may be the same or different and each represents hydrogen, a halogen or an alkyl group.
  • Specific examples of the compound having the structure represented by the formula (9) are not particularly limited, but include dicyclohexyl ether skeleton, dicyclohexyl sulfone skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, and hydrogenated bisphenol A ethylene oxide. Examples include an adduct skeleton or a propylene oxide adduct skeleton of hydrogenated bisphenol A.
  • the skeleton is preferably a residue derived from a compound having one hydroxy group in each of the cyclohexane rings of the formula (9).
  • the raw material for the compound having the structure represented by the formula (9) include 4,4′-dihydroxydicyclohexyl ether, 4,4′-dihydroxydicyclohexylsulfone, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol A.
  • An ethylene oxide adduct or a propylene oxide adduct of hydrogenated bisphenol A can be used.
  • 4,4′-dihydroxydicyclohexyl ether or 4,4′-dihydroxydicyclohexyl sulfone is used.
  • dicyclohexyl ether skeleton or the like can be introduced at the R1 position of the formula (6).
  • the structure of formula (6) is obtained by reacting a halide of trimellitic anhydride with diols to obtain an ester group-containing tetracarboxylic dianhydride, and then the ester group-containing tetracarboxylic acid. It can be obtained by condensation reaction (polyimidation) of dianhydride and diamine or diisocyanate.
  • the polyesterimide resin according to the present invention preferably further contains the structure represented by the formula (10) in the structural unit.
  • R2 and R2 ′ are not particularly limited as long as they are independently a divalent chain aliphatic group, a divalent cycloaliphatic group, or a divalent aromatic group. These “divalent chain aliphatic group”, “divalent cycloaliphatic group”, and “divalent aromatic group” can be used alone or in combination of two or more.
  • R2 is a compound having a structure represented by the following formula (11), and R2 ′ is a compound having a structure represented by the following formula (12).
  • R2 in Formula (6) is preferably a compound having a structure represented by Formula (11) from the viewpoint of balance between heat resistance, flexibility, low hygroscopicity, and the like.
  • R5 represents a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond (— COO—), a carbonyl group (—CO—), a sulfonyl group (—S ( ⁇ O) 2 —), a sulfinyl group (—SO—) or a sulfenyl group (—S—).
  • n is preferably a positive integer of 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.
  • X9 to 16 may be the same or different and each represents hydrogen, a halogen or an alkyl group.
  • R2 ′ in the formula (10) is preferably a compound having a structure represented by the formula (12) from the balance of heat resistance, flexibility, low hygroscopicity, and the like.
  • R5 ′ is a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond ( And represents a carbonyl group (—CO—), a sulfonyl group (—S ( ⁇ O) 2 —), a sulfinyl group (—SO—) or a sulfenyl group (—S—).
  • n is preferably a positive integer of 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.
  • X9 ′ to 16 ′ may be the same or different and each represents a hydrogen, halogen or alkyl group.
  • a divalent chain aliphatic group is represented by the R2 position in the formula (6) and
  • a divalent aromatic group is represented by the R2 position in the formula (6) and
  • a corresponding diamine component or diisocyanate component respectively. That is, “aromatic diamine or the corresponding aromatic diisocyanate”, “cycloaliphatic diamine or the corresponding cycloaliphatic diisocyanate”, “chain aliphatic diamine or the corresponding chain aliphatic diisocyanate” are appropriately used.
  • a polyesterimide resin excellent in heat resistance, flexibility and low hygroscopicity can be obtained.
  • R2 in formula (6) and R2 ′ ⁇ ⁇ ⁇ ⁇ in formula (10) or the corresponding diisocyanate component may be the same or different. If based on the preferable manufacturing method mentioned later, it is preferable that it is the same.
  • a diamine component having R2 and R2 ′ as a basic skeleton or a diisocyanate component corresponding thereto will be described.
  • aromatic diamine or the corresponding aromatic diisocyanate examples include 2,2′-bis (trifluoromethyl) benzidine, p-phenylenediamine, m-phenylenediamine, , 4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4, 4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4 -Diaminodiphenyl ether, 4,4'-
  • cycloaliphatic diamine or the corresponding cycloaliphatic diisocyanate examples include trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-diamino, as diamine compounds.
  • Cyclohexane (trans / cis mixture), 1,3-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine) (tonthus, cis, trans / cis mixture), isophoronediamine, 1,4-cyclohexanebis (methylamine) ), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 4,4'-methyl Bis (2-methylcyclohexylamine), 4,4'-methylenebis (2-ethylcyclohexylamine), 4,4'-methylenebis (2,6-dimethylcyclohexylamine), 4,4'-methylenebis (2,6- Diethyl cyclohexylamine), 2,2-
  • chain aliphatic diamine or the corresponding chain aliphatic diisocyanate examples include 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1, Examples include 6-hexamethylene diamine, 1,7-heptamethylene diamine, 1,8-octamethylene diamine, and 1,9-nonamethylene diamine. These can be used in combination of two or more.
  • the preferred component as the diamine component of R2 ′ in formula (6) and R2 ′ in formula (12) or the corresponding diisocyanate component is exemplified as the diamine compound.
  • the diamine compound p-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 1,5-naphthalenediamine, o-tolidine, diaminoterphenyl, 4,4'-methylenebis ( Cyclohexylamine), isophoronediamine and the like.
  • 4,4′-diaminodiphenylmethane 4,4′-diaminodiphenyl ether, 1,5-naphthalenediamine, o-tolidine
  • 4,4′-diaminodiphenylmethane 4,4 ′.
  • -Diaminodiphenyl ether o-tolidine
  • Most preferred is a residue derived from 4,4'-diaminodiphenylmethane, o-tolidine.
  • the structure represented by the formula (6) When all the structural units constituting the polyesterimide resin are 100 mol%, the structure represented by the formula (6), or the sum of the structure represented by the formula (6) and the structure represented by the formula (10) Is preferably contained in an amount of 20 mol% or more, more preferably 50 mol% or more, and even more preferably 70 mol% or more. Resin composition having both flexibility and low hygroscopicity when the structure represented by formula (6) and formula (10) is less than 20 mol% when the total constitutional units constituting the polyesterimide resin are 100 mol% Manufacture of things may be difficult.
  • the structure represented by formula (6) is within 99, depending on the chemical structure of the R1 component, heat resistance and thermal dimensional accuracy are good.
  • the molar ratio of the structure represented by the formula (10) is within 99, depending on the R2 component and / or the R2 ′ component, low hygroscopicity and flexibility are generally improved. It also has good solubility.
  • a trimellitic anhydride halide and a diol are reacted to obtain an ester group-containing tetracarboxylic dianhydride, and then the ester group-containing tetracarboxylic acid dianhydride. It can be obtained by condensation reaction (polyimidation) of an anhydride with diamine or diisocyanate.
  • the molecular weight of the polyesterimide resin used in the present invention corresponds to a logarithmic viscosity at 30 ° C. in 0.1-2.5 dL / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dL). Those having a molecular weight are preferred, more preferably those having a molecular weight corresponding to 0.3 to 1.5 dL / g. If it is in the said range, mechanical characteristics will be enough, and the shaping
  • the polyamideimide according to the present invention is an acid component, a) Tricarboxylic acid; diphenyl ether-3,3 ', 4'-tricarboxylic acid, diphenylsulfone-3,3', 4'-tricarboxylic acid, benzophenone-3,3 ', 4'-tricarboxylic acid, naphthalene-1,2 , 4-tricarboxylic acid, butan-1,2,4-tricarboxylic acid and other tricarboxylic acid monoanhydrides, esterified products and the like, or a mixture of two or more.
  • Tetracarboxylic acid diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Naphthalene-1,4,5,8-tetracarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid monoanhydride, dianhydride , Esterified compounds alone, or a mixture of two or more.
  • amine component d) Amine component 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, p-phenylenediamine, m -Phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3 ' -Diamin
  • trimellitic anhydride TMA
  • BTDA 3,3,4', 4'-biphenyltetracarboxylic acid
  • BPDA raw material containing dianhydride
  • NDI 1,5-naphthalene diisocyanate
  • the molar ratio between the imide bond and the amide bond of the polyamideimide is preferably 99/1 to 60/40, more preferably 99/1 to 75/25, and even more preferably 90/10 to 80/20. is there.
  • the molar ratio of the imide bond to the amide bond is 60/40 or more, the heat resistance, moisture resistance reliability, and heat resistance reliability are improved.
  • it is 99/1 or less, the elastic modulus tends to be low, and the folding resistance and bending characteristics tend to be improved.
  • the unit represented by the formula (13) is an essential component, and at least one selected from the group represented by the formula (14), the formula (15), and the formula (16) is used.
  • X represents an oxygen atom, CO, SO 2 , or a bond, and n represents 0 or 1.
  • Y represents an oxygen atom, CO, or OOC—R—COO, n represents 0 or 1, and R represents a divalent organic group.
  • Y is preferably a benzophenone type (CO) or a bond type (biphenyl bond).
  • formula (13) is a repeating unit from trimellitic anhydride and 1,5-naphthalene diisocyanate
  • formula (14) is a repeating unit from terephthalic acid and 1,5-naphthalene diisocyanate
  • the imide bond of the polyamide-imide resin preferably has an imidation ratio of 50% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the polyamideimide resin can be synthesized by a usual method. For example, the isocyanate method, amine method (acid chloride method, low temperature solution polymerization method, room temperature solution polymerization method, etc.), etc., but the polyamideimide resin used in the present invention is preferably soluble in an organic solvent. For reasons such as ensuring the reliability of strength (adhesive strength), production by the isocyanate method is preferred. Also, industrially, it is preferable because the solution at the time of polymerization can be applied as it is.
  • the molecular weight of the polyamideimide resin of the present invention is a molecular weight corresponding to 0.3 to 2.5 dL / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dL) and logarithmic viscosity at 30 ° C. Those having a molecular weight corresponding to 0.5 to 2.0 dL / g are more preferable.
  • the logarithmic viscosity is 0.3 dL / g or more, mechanical properties are sufficient when formed into a molded product such as a film.
  • it is 2.0 dL / g or less, the solution viscosity does not become too high, and the molding process becomes easy.
  • polyetherimide according to the present invention is a thermoplastic resin containing an aromatic nucleus bond and an imide bond in its structural unit, and is not particularly limited. It is a polyetherimide having a repeating unit represented by (17) or the following formula (18).
  • Polyetherimides having a repeating unit represented by the above formula (17) are trade names “Ultem 1000” (glass transition temperature: 216 ° C.) and “Ultem 1010” (glass transition temperature: 216 ° C.) manufactured by General Electric Co., Ltd. ],
  • a polyetherimide having a repeating unit represented by the above formula (18) is “Ultem CRS5001” (glass transition temperature Tg 226 ° C.)], and other specific examples include products manufactured by Mitsui Chemicals, Inc.
  • the name “Aurum PL500AM” glass transition temperature 258 ° C.) and the like.
  • the method for producing the polyetherimide is not particularly limited.
  • the amorphous polyetherimide having the above formula (17) is 4,4 ′-[isopropylidenebis (p-phenyleneoxy) diphthalate.
  • 4,4 ′-[isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride It is synthesized by a known method as a polycondensate of benzene and p-phenylenediamine.
  • polyetherimide used in the present invention may contain other monomer units capable of copolymerization such as amide group, ester group and sulfonyl group within the range not exceeding the gist of the present invention.
  • polyetherimide can be used individually by 1 type or in combination of 2 or more types.
  • additives can be added to the dope containing the transparent heat-resistant resin having the imide structure according to the present invention. Additives that can be used are described below.
  • a heat conductive filler may be added to the dope containing the transparent heat resistant resin as long as the effect of the present invention is not impaired. Thereby, the thermal conductivity of a polyimide-type optical film can be raised.
  • the thermally conductive filler is preferably a highly thermally conductive filler, and specifically includes aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, and silicon carbide.
  • the filler shape is not particularly limited to a spherical or plate-like material, or a needle shape. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable.
  • a dehydrating agent may be added to the dope containing the transparent heat resistant resin according to the present invention.
  • the dehydrating agent include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride, but acetic anhydride and / or anhydrous Benzoic acid is preferred.
  • the content of the dehydrating agent relative to the polyamic acid or polyimide is preferably in the range where the dehydrating agent content (mole) / polyamic acid or polyimide content (mole) is 0.1 to 5.0.
  • a gelation retarder such as acetylacetone may be used in combination.
  • a fluorine-based or polysiloxane-based surfactant may be added to the dope containing the transparent heat-resistant resin according to the present invention.
  • a surfactant When a surfactant is added, a film with good surface smoothness can be easily obtained.
  • a commercially available product may be used as the surfactant, and examples of the fluorosurfactant include a mega-fac (registered trademark) series manufactured by DIC Corporation and a footer such as Neos Corporation's Footgent (registered trademark) series.
  • GENT registered trademark
  • polysiloxane surfactant examples include BYK-307, BYK-315, BYK-320, BYK-325, BYK-330, BYK-331, BYK-332, BYK-333, BYK manufactured by BYK-Chemie Japan Co., Ltd. -344 and the like.
  • a phenol-based, sulfur-based, phosphoric acid-based or phosphorous acid-based antioxidant may be added to the dope containing the transparent heat-resistant resin according to the present invention.
  • Various other functional materials may be added to the dope containing the transparent heat-resistant resin according to the present invention.
  • Various functional materials include, for example, conductive materials such as carbon nanotubes and nano metal materials, ferroelectric materials such as barium titanate, and phosphors such as ZnS: Ag, ZnS: Cu, and Y 2 O 2 S: Eu. UV absorbers and the like.
  • a phosphorus flame retardant may be added to the dope containing the transparent heat resistant resin according to the present invention.
  • a flame retardance can be provided to a polyimide-type optical film.
  • the phosphorus-based flame retardant include ammonium polyphosphate, phosphate ester, condensed phosphate ester, phenoxyphosphazene compound, phosphate ester amide, and the like.
  • phosphorus flame retardants it is preferable to use a phenoxyphosphazene compound.
  • the phenoxyphosphazene compound for example, SPS-100 manufactured by Otsuka Chemical Co., Ltd. can be used.
  • a flame retardant can be imparted by mixing a halogen type flame retardant, it is preferable to use a phosphorus-based flame retardant.
  • the film When the film is subjected to appropriate heat treatment, imidization in the polymer chain molecules and between the polymer chain molecules proceeds to improve the mechanical properties.
  • the optical film using polyimide changes in the absorption wavelength. The color changes with color.
  • the higher the L * value the lighter the color, so that the horizontal unevenness due to thickness unevenness is less visible and the appearance is better. Since the progress of imidization is not sufficient, mechanical properties such as flex resistance and breaking strength of the polyimide film are deteriorated.
  • an L * value of 30 to 55 is good for maintaining good mechanical properties, and more preferably, the L * value is 38 to 54 is preferable.
  • the L * value of the film was measured using SM-7-CH manufactured by Suga Test Instruments. About each sample divided into 5 in the film width direction, the range of 30 mm x 30 mm centering on the center position of the width direction was cut out and measured, and it was set as the 5-point average value.
  • the L * value is one for a film having a thickness of 50 ⁇ m or more, and 50 ⁇ m or more for a film having a thickness of less than 50 ⁇ m. It is a value measured by overlapping the minimum number of sheets.
  • a method of adjusting the heat treatment amount using a known means such as hot air or an electric heater (for example, an infrared heater). Can be mentioned.
  • a solution of a polyamic acid not containing a ring-closing catalyst and a dehydrating agent is cast, formed into a film, heated and dried on the support, and then from the support.
  • a thermal ring closure method in which the film is peeled and further imidized by a drying heat treatment at a high temperature can be used.
  • a solution of a polyamic acid containing a ring-closing catalyst and a dehydrating agent is cast to form a film, and after partially imidizing on the support to form a film, the film is peeled off from the support.
  • a chemical ring closure method in which heat drying / imidization and heat treatment are performed can also be used.
  • the ring-closing catalyst the above-mentioned tertiary amine or the like can be used.
  • heat treatment can be performed by using, for example, an infrared heater.
  • the infrared heater for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube.
  • the filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 ⁇ m.
  • the inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m.
  • Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 ⁇ m or less through an inner tube or an outer tube when infrared light having a peak near 3 ⁇ m is emitted from the filament.
  • the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized.
  • the inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
  • any of the above ring closure methods may be adopted, but the chemical ring closure method requires equipment for containing a ring closure catalyst and a dehydrating agent in the polyamic acid solution. However, it can be said to be a more preferable method in that a film having self-supporting properties can be obtained in a short time.
  • a step of preparing a dope by dissolving the transparent heat-resistant resin having an imide structure according to the present invention in a mixed solvent containing 50% by mass or more of dichloromethane described later (dope preparation step), and flowing the dope onto a support.
  • Extending the casting film to form a casting film (casting process), evaporating the solvent from the casting film on the support (solvent evaporation process), and peeling the casting film from the support (peeling process)
  • a step of drying the obtained film (first drying step), a step of stretching the film (stretching step), a step of performing a bending treatment while further drying the stretched film (second drying step), and It is preferably performed by a step of winding a polyimide film (winding step), a step of heating the film to imidize (heating step), or the like.
  • Dope preparation step In the dope preparation step, the transparent heat-resistant resin having an imide structure according to the present invention is dissolved in dichloromethane as a main solvent, preferably a mixed solvent containing dichloromethane at 50% by mass or more of the solvent. It is preferable to prepare a new dope.
  • the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
  • a preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
  • a solvent containing 50% by mass or more of dichloromethane from the viewpoint of improving the smoothness of the optical film.
  • the solvent contained together with dichloromethane may be any solvent that can dissolve the transparent heat-resistant resin having an imide structure according to the present invention, such as ethanol, butanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, Phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone, 1,4-dioxane, epsilon caprol Tam, chloroform and the like can be used, and may be used in combination
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene may be used to the extent that polyamic acid or polyimide does not precipitate.
  • the solvent contained in the mixed solvent together with the dichloromethane is preferably a solvent having a boiling point higher than that of dichloromethane.
  • Casting film forming step An endless support such as a stainless steel belt or a rotating metal that feeds the prepared dope to a die through a feed pump (for example, a pressurized metering gear pump) and transfers it infinitely A dope is cast from a die at a casting position on a metal support such as a drum.
  • a feed pump for example, a pressurized metering gear pump
  • the metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. Note that the support may not be made of metal.
  • the traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
  • the traveling speed of the metal support is the moving speed of the outer surface of the metal support.
  • the surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
  • the die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction.
  • the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces.
  • a die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
  • a pressure die that can adjust the slit shape of the die portion of the die and easily make the film thickness uniform.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • Discharge rate of the dope from the die is preferably 200 ⁇ 720g / m 2, more preferably 400 ⁇ 650g / m 2.
  • the dope discharge amount from the die is maintained at a substantially constant value within the above range.
  • the discharge amount is 200 g / m 2 or more, the cast film is not easily affected by disturbances such as vibration and wind, so that the film thickness unevenness can be sufficiently prevented.
  • the discharge amount is 720 g / m 2 or less, the shrinkage does not occur excessively and the film thickness unevenness due to the contraction does not occur, and thus the film thickness unevenness can be sufficiently prevented.
  • solvent evaporation process is a preliminary drying process in which a cast film (also referred to as a web) is heated on a metal support to evaporate the solvent.
  • a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc.
  • a method of appropriately selecting and combining them is also preferable.
  • the surface temperature of the metal support may be the same as a whole or may vary depending on the position.
  • the temperature of the heating air is preferably 10 to 80 ° C.
  • a higher temperature is preferable because the drying speed of the cast film can be increased.
  • the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferably performed at 10 to 30 ° C.
  • the solvent evaporation step it is preferable to dry the cast film until the residual solvent amount is 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
  • the residual solvent amount can be expressed by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass at a predetermined point of the casting membrane (film)
  • N is the mass when M is dried at 200 ° C. for 3 hours.
  • M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
  • the peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
  • the peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount.
  • the film is sequentially sent to the first drying step and the stretching step after the peeling step.
  • the first drying step is a drying step in which the film is heated and the solvent is further evaporated.
  • the drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during transportation.
  • the stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • the residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass.
  • the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the unevenness of the surface is reduced and the flatness is improved.
  • the film may be stretched in the longitudinal direction and / or the lateral direction, preferably in the lateral direction so that the film thickness after stretching is in a desired range.
  • the film is preferably stretched in a temperature range of (TgL ⁇ 200) to (TgH + 50) ° C., where TgL is the lowest Tg of the glass transition point (Tg) and TgH is the highest Tg. If it extends in the said temperature range, since a extending
  • the stretching temperature is more preferably in the range of (TgL ⁇ 150) to (TgH + 40) ° C.
  • the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
  • the draw ratio in the longitudinal direction is preferably 1.05 to 1.90 times, more preferably 1.10 to 1.60 times, still more preferably 1.10 to 1.50 times in a temperature range of 30 to 250 ° C. is there.
  • the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625.
  • a method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
  • the film stretched in the longitudinal direction is preferably introduced into the tenter in a state where both ends in the width direction are gripped by the clip, and stretched in the width direction while running with the tenter clip.
  • the draw ratio in the width direction is not particularly limited, but is preferably 1.05 to 1.90 times, more preferably 1.10 to 1.60 times, and still more preferably 1.10 to 1.000 in the temperature range of 30 to 300 ° C. 1.50 times.
  • stretching in the width direction stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
  • the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
  • More preferable stretching speed is in the range of 100 to 500% / min.
  • the stretching speed is defined by the following formula.
  • Stretching speed (% / min) [(d 1 / d 2 ) ⁇ 1] ⁇ 100 (%) / t
  • d 1 is the width dimension in the stretching direction of the resin film after stretching
  • d 2 is the width dimension in the stretching direction of the resin film before stretching
  • t is the time (min) required for stretching. .
  • the stretching step usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • Second drying step Subsequently, the stretched film is heated and dried.
  • a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used.
  • the hot air temperature is more preferably in the range of 40 to 350 ° C.
  • the drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
  • heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used.
  • the drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
  • the second drying step it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
  • the dryer zone has a drying temperature within the range of (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film. If the bending process is performed 150 times or more while transporting the roller, the standard deviation ⁇ of the gray scale is adjusted within a predetermined range, and the area occupied by the black portion in the binarized image is within the range of 10 to 50%. It is a preferable production method from the viewpoint of adjusting and improving the smoothness of the film.
  • the bending process is a B surface (for example, a casting support) that is opposed to the A surface (for example, the air surface side of the web on the casting support) of the web by a conveying roller while being held at a predetermined drying temperature.
  • This is a process in which the belt is bent by a roller in the conveying process so that the belt surface side of the upper web is alternately inside.
  • the bending process when the radius when bending the web was a (mm), the value of 1 / a is in the range of 0.035 mm -1 ⁇ 0.050 mm -1, and 150 times the bending It is preferable that the drying is carried out by repeating the steps less than 500 times.
  • the number is in the range of 200 to 400 times in order to satisfy the effect of improving smoothness and productivity.
  • the film folding interval is preferably in the range of 1 second to 1 minute, and more preferably in the range of 2 to 30 seconds.
  • FIG. 2 is a schematic diagram of a bending processing apparatus that can be preferably applied to the present invention.
  • a dope solution is cast from a die 101 onto a metal support 102 and continuously dried on the metal support by a driving roller 103 to obtain a web (referred to as a dope film after casting on the metal support. Form).
  • the web is dried so that the residual solvent amount becomes a desired value, peeled into a film at the peeling point 104, subjected to preliminary drying and stretching treatment (not shown), conveyed to the bending zone 106,
  • the transport roller 105 continuously conveys the A surface (the surface opposite to the surface where the web contacts the metal support) and the B surface (the surface where the web contacts the metal support) alternately inside the transport roller 105. The bending process is repeated.
  • the bending process is performed in a bending zone 106 having an intake port 107 and an exhaust port 108, and is adjusted so that the film is bent at a desired atmospheric temperature.
  • a cooling zone 109 for cooling the film to a predetermined temperature may be provided after the bending zone 106.
  • the diameter of the transport roller is preferably in the range of 90 to 108 mm, and the distance between the rollers is preferably about 1800 mm.
  • the roller diameter may be determined so that the value of 1 / a is in the range of 0.035 to 0.050 mm ⁇ 1 when the radius when the film is bent is a (mm).
  • hot air whose temperature has been adjusted is introduced from the intake port 107, and the inside of the bending zone 106 is maintained at a constant atmospheric temperature and is exhausted from the exhaust port 108.
  • the atmospheric temperature in the bending zone 106 it may be performed by infrared rays, a heating roller, or the like, but it is preferably performed by hot air in terms of simplicity.
  • the atmosphere in the drying apparatus may be air, but may be performed in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or argon.
  • the atmospheric temperature during the bending treatment of the polyimide film of the present invention is preferably carried out at a drying temperature within the range of (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film.
  • a range of 180 to 250 ° C. is more preferable for obtaining the effects of the present invention.
  • the conveyance speed of the polyimide film of the present invention in the bending zone is preferably 10 to 150 m / min, more preferably 15 to 100 m / min in terms of productivity and breakage.
  • the winding step is a step of winding the obtained film and cooling it to room temperature.
  • the winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
  • the thickness of the film is not particularly limited, and is preferably 5 to 200 ⁇ m, particularly 5 to 100 ⁇ m.
  • both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit.
  • the slit end is preferably reused as a return material.
  • the recycled material refers to a portion that is formed into a film and is reused as a raw material for some reason, and the slit end (also referred to as an ear), or the feeding / termination of production.
  • a film that is not suitable as a product due to an appearance problem such as a scratch or a streak is exemplified.
  • the slit film edge is finely cut to a width of 1 to 30 mm, then dissolved in a solvent and reused.
  • the ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • the input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass.
  • the mixing ratio of the recycled materials is preferably as constant as possible for production stability.
  • Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
  • the film dried in the second drying step is further heat-treated in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. It is preferable to perform the heating process.
  • the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film For the purpose of relaxing, it is preferable to perform a heating step.
  • the said 2nd drying process may serve as a heating process.
  • the heating means is performed using a known means such as hot air, an electric heater, or a microwave.
  • a known means such as hot air, an electric heater, or a microwave.
  • the electric heater the above-described infrared heater can be used.
  • the heat treatment conditions are such that the heater output and hot air temperature are adjusted so that the film L * value is 30 to 55, and the final treatment condition is within the temperature range of 200 to 450 ° C., and the range of 30 seconds to 1 hour. It is preferable to carry out as appropriate. Thereby, the dimensional stability of a polyimide film can be improved.
  • the heating step if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select the heating method as appropriate.
  • the heating step is preferably performed in a low oxygen atmosphere.
  • the heating temperature in the second drying step and the heating step exceeds 450 ° C.
  • the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load.
  • the following is preferable.
  • the polyimide film of the present invention preferably has a haze of less than 1%, more preferably less than 0.5%. More preferably, it is less than 0.3%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
  • a film sample was conditioned for 24 hours at 23 ° C and 55RH air conditioning quality. The light transmittance is measured.
  • the total light transmittance is preferably 50% or more, more preferably 70% or more, and particularly preferably 85% or more from the viewpoint of providing the organic EL display with the optical film of the present invention. .
  • the polyimide film according to the present invention is preferably long, specifically, preferably has a length of about 100 to 10,000 m and wound in a roll shape. Taken.
  • the width of the polyimide film according to the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the film thickness is preferably in the range of 5 to 200 ⁇ m from the viewpoint of strength and transparency, and more preferably in the range of 25 to 100 ⁇ m from the viewpoint of providing a thin film device. If the film thickness is 5 ⁇ m or more, a certain level of film strength can be developed. If the film thickness is 200 ⁇ m or less, flexibility can be exhibited.
  • Organic electroluminescence display The organic EL display of the present invention preferably includes the polyimide optical film of the present invention.
  • the polyimide optical film of the present invention has improved planarity, and When used on the surface, it is possible to provide an organic EL display that is not noticeably uneven when viewed through polarized sunglasses and has excellent visibility.
  • JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A JP, 2013-191644, JP 2013-191804, JP 2013-225678, JP 2013-235994, JP 2013-243234, JP 2013-243236, JP 2013-242366 A, JP 2013-243371 A, JP 2013-245179 A, JP 2014-003249 A, JP 2014-003299 A, JP 2014-013910 A, JP Japanese Patent Application Laid-Open No. 2014-017493, JP 20 It can be mentioned arrangement described in 4-017494 Patent Publication.
  • Example 1 First, a method for producing the polyimide resin used in the examples will be described.
  • Polyimide resin A polyimide having a structure represented by the formula (1)
  • Polymerization of polyimide precursor Using a reactor equipped with a stainless separable flask as a reaction vessel, two paddle blades as a stirring device in the separable flask, and a device having a cooling capacity of 20.9 kJ / min as a cooling device A polyamic acid was produced. During the polymerization reaction, in order to prevent moisture from being mixed, the polymerization reaction was carried out by flowing nitrogen gas dehydrated by passing through silica gel at 0.05 L / min.
  • the viscosity of the polyamic acid solution was kept for 1 hour in an aqueous solution kept at 23 ° C., and the viscosity at that time was measured with a B-type viscometer. 7 was measured at a rotational speed of 4 rpm.
  • concentration of the aromatic diamine compound and aromatic tetracarboxylic dianhydride in this reaction solution is 30 mass% with respect to all the reaction liquids.
  • the polyimide resin solution was placed in a funnel having a hole diameter of about 5 mm and extracted by dropping in 5 L of methanol. At the time of extraction, extraction was performed while stirring methanol at high speed with a stirring blade rotated at 1500 rpm or more.
  • the polyimide in the solution was hung in the methanol solution so that the diameter of the dripped polyimide solution was 1 mm or less near the methanol interface while adjusting the height between the funnel and the liquid surface of the methanol so as to form a fiber.
  • the resin may be in a fibrous form, but by continuing stirring, what once becomes a fibrous form in the solution is decomposed and divided into fibers of 5 mm or less in the solution.
  • the reaction system was stirred for about 30 minutes at a temperature in the vicinity of 130 ° C. to obtain a uniform solution.
  • the obtained polyimide solution was allowed to cool and then poured into methanol to precipitate a polyimide, and the precipitate was further washed and dried to obtain a polyimide resin solid.
  • polyesterimide solution was allowed to cool and then poured into methanol to precipitate the polyesterimide. This was again washed and dried to obtain a solid content of polyesterimide.
  • polyamideimide solution was allowed to cool and then poured into methanol to precipitate polyamideimide. This was again washed and dried to obtain a solid content of polyamideimide.
  • polyimide resin E polyetherimide
  • the product name “Ultem 1000” manufactured by General Electric Co., Ltd. was used as the polyetherimide.
  • a polyimide film was prepared by the following method using the above polyimide resin.
  • ⁇ Preparation of polyimide film 101> ⁇ Preparation of dope> A main dope having the following composition was prepared. First, dichloromethane (MC) and ethanol (EtOH) were added to the pressure dissolution tank. The prepared polyimide resin A was added to a pressure dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. After filtration using 244, the remaining components were added and stirred to dissolve to prepare the main dope.
  • MC dichloromethane
  • EtOH ethanol
  • the peeled polyimide film is 1.1 times in the MD direction (longitudinal direction) using the peripheral speed difference of the transport roller while applying heat at 200 ° C., and 1 in the TD direction (width direction) using a clip type tenter. The film was stretched 1 time. The residual solvent amount at the start of stretching was 20% by mass.
  • the stretched film was subjected to bending processing 400 times by a large number of conveying rollers at a drying temperature of 220 ° C. in the bending zone 106 shown in FIG.
  • the film was dried at a conveyance tension of 100 N / m and a drying time of 20 minutes so that the amount of residual solvent was less than 0.1% by mass to obtain a film having a dry film thickness of 80 ⁇ m.
  • the obtained film was wound up to obtain a polyimide film 101.
  • polyimide films 102 to 105 were produced in the same manner except that the polyimide resins B to E were used instead of the polyimide resin A and the bending temperature was changed as shown in Table 1. did.
  • the white light source 2 is irradiated with the distance from the film sample 1 to the white light source 2 adjusted to 60 cm from an oblique 45 ° direction with respect to the film sample 1, and the distance from the film sample 1 to the projection plane 3 is projected to 70 cm.
  • the photographed image was read into a personal computer using free software ImageJ.
  • a rectangular evaluation area was set to be 1 cm ⁇ 5 cm in the actual captured image. At that time, the long side of the rectangle was set to be the film sample transport direction.
  • the rectangular evaluation area was binarized using the average value m as a threshold.
  • the area of the black part (dark part) obtained by the binarization was divided by the total area to calculate the black part area ratio K (%).
  • the free software ImageJ is ImageJ1.32S created by Wayne Rasband.
  • FIG. 4 shows a projected image, a binarized image, and a gray scale standard deviation of the polyimide optical film of the present invention for the polyimide film of the example. Further, projection images, binarized images, and gray scale standard deviations of the polyimide film of the comparative example are shown in FIGS.
  • organic EL displays 101 to 109 were produced with the following configuration.
  • a PET film is used as the transparent substrate 11, a reflective electrode made of chromium is formed thereon, a metal electrode 12 is formed on the reflective electrode using ITO as a metal electrode (anode), and the organic light emitting layer 13 is formed.
  • a hole transport layer poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed with a thickness of 80 nm on the anode by a sputtering method, and then a shadow mask is formed on the hole transport layer.
  • PEDOT poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • RGB light emitting layers 13R, 13G, and 13B (all not shown) were formed to a thickness of 100 nm.
  • red light emitting layer 13R tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • the green light emitting layer 13G Alq 3 as a host and the light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) are co-evaporated (mass ratio 99: 1) to a thickness of 100 nm. Formed.
  • the blue light emitting layer 13B was formed with a thickness of 100 nm by co-evaporating BAlq and a light emitting compound Perylene as a host (mass ratio 90:10).
  • calcium is deposited in a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer, and a second cathode is formed on the first cathode.
  • aluminum was formed to a thickness of 2 nm.
  • the aluminum used as the second cathode has a role to prevent calcium as the first cathode from being chemically altered when the transparent conductive film formed thereon is formed by sputtering. .
  • an organic light emitting layer was obtained.
  • a transparent conductive film was formed to a thickness of 80 nm on the cathode by sputtering to form a transparent electrode 14.
  • ITO was used as the transparent conductive film.
  • 200 nm of silicon nitride was deposited on the transparent electrode 14 by the CVD method to form the insulating film 15 and an organic EL element unit was fabricated.
  • a polyethylene terephthalate film with a gas barrier layer having a thickness of 20 ⁇ m is used as the gas barrier film 17, and a thermosetting liquid adhesive (epoxy resin) is used as the sealing layer 16 on one side of the gas barrier film 17.
  • a sealing unit having a thickness of 25 ⁇ m was produced.
  • the organic EL element unit formed from the transparent substrate 11 to the insulating layer 15 and the sealing unit were pressed and held for 5 minutes under a reduced pressure of 0.1 MPa at 90 ° C. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, whereby an organic EL display device B was produced.
  • the light-emitting area of the produced organic EL display device B was 1296 mm ⁇ 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL display device B was 1200 cd / m 2 .
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Co., Ltd., with the front luminance at 2 ° viewing angle and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface.
  • the range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
  • the polyimide films 101 to 105 made of polyimide resin by the preferred production method of the present invention have the gray scale standard deviation ⁇ and the area ratio of the black portion of the binarized image within the range defined by the present invention.
  • the organic EL display using the same was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
  • Example 2 ⁇ Preparation of polyimide films 201-204>
  • polyimide films 201 to 204 were produced in the same manner except that the number of bending treatments was changed as shown in Table 2.
  • Example 2 The same evaluation as in Example 1 was performed using the produced polyimide films 201 to 204.
  • the grayscale standard deviation ⁇ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention, and It was found that when the organic EL display using was observed with polarized sunglasses, display unevenness was not noticeable and visibility was good.
  • Example 3 Preparation of polyimide films 301 to 304> Polyimide films 301 to 304 were produced in the same manner as in the production of the polyimide film 101 of Example 1, except that the draw ratio was changed as shown in Table 3.
  • Example 2 The same evaluation as in Example 1 was performed using the produced polyimide films 301 to 305.
  • the grayscale standard deviation ⁇ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention and used.
  • the organic EL display was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
  • Example 4 Preparation of polyimide films 401-404> Polyimide films 401 to 404 were produced in the same manner as in the production of the polyimide film 101 of Example 1, except that the film thickness was changed as shown in Table 4.
  • Example 2 The same evaluation as in Example 1 was performed using the produced polyimide films 401 to 404.
  • the grayscale standard deviation ⁇ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention and used.
  • the organic EL display was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
  • the polyimide-based optical film of the present invention has improved flatness, and when used on the surface of an organic electroluminescence display, the unevenness of the film when viewed through polarized sunglasses is not noticeable and has excellent visibility. It can be suitably used as a display application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention addresses the problem of providing a polyimide-based optical film which has improved flatness. When this optical film is used in a surface of an organic electroluminescent display and viewed through polarizing sunglasses, film unevenness is less conspicuous and excellent image visibility is attained. The polyimide-based optical film according to the present invention includes a transparent heat-resistant resin having an imide structure, and is characterized in that a rectangular area cut out of a projected image of the polyimide-based optical film has a standard deviation σ of gray-scale values of 0.50-1.10 and that a binarization image of the rectangular area has black portions in an areal proportion regulated to a value in the range of 10-50%.

Description

ポリイミド系光学フィルム、その製造方法及び有機エレクトロルミネッセンスディスプレイPOLYIMIDE OPTICAL FILM, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTROLUMINESCENT DISPLAY
 本発明は、ポリイミド系光学フィルム、その製造方法及び有機エレクトロルミネッセンスディスプレイに関する。より詳しくは、本発明は、平面性が改善され、有機エレクトロルミネッセンス表示装置の表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れるポリイミド系光学フィルムに関する。 The present invention relates to a polyimide-based optical film, a method for producing the same, and an organic electroluminescence display. More specifically, the present invention relates to a polyimide-based optical film that has improved planarity, and when used on the surface of an organic electroluminescence display device, the unevenness of the film when viewed through polarized sunglasses is not noticeable and is excellent in visibility. .
 従来、有機エレクトロルミネッセンスディスプレイの最表面にはガラスが用いられてきたが、近年フレキシブル化にともないガラス代替として耐折性、透明性を併せ持つ素材が求められている。 Conventionally, glass has been used for the outermost surface of an organic electroluminescence display, but in recent years, a material having both folding resistance and transparency has been demanded as a substitute for glass as it becomes flexible.
 その素材の一つとしてイミド構造を有する化合物が挙げられ、特許文献1に開示されているようなポリイミド系光学フィルムが知られているが、ジメチルアセトアミド等の高沸点溶剤を用いて溶液流延製膜法にて製膜した当該ポリイミド系光学フィルムは平面性が悪く、この光学フィルムを最表面に用いた有機エレクトロルミネッセンスディスプレイは、偏光サングラス越しに覗くと、フィルムのムラが目立ってしまうことが分かった。 One of the materials is a compound having an imide structure, and a polyimide-based optical film as disclosed in Patent Document 1 is known, but a solution casting using a high-boiling solvent such as dimethylacetamide is known. The polyimide optical film formed by the film method has poor flatness, and organic electroluminescence displays using this optical film as the outermost surface show that the unevenness of the film becomes noticeable when viewed through polarized sunglasses. It was.
特許第5589384号公報Japanese Patent No. 5589384
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、平面性が改善され、有機エレクトロルミネッセンスディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れるポリイミド系光学フィルム、その製造方法及びそれを用いた有機エレクトロルミネッセンスディスプレイを提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and its solution is to improve the flatness and to prevent unevenness of the film when viewed through polarized sunglasses when used on the surface of an organic electroluminescence display. Is an inconspicuous and excellent visibility of a polyimide optical film, a method for producing the same, and an organic electroluminescence display using the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、光学フィルムの投影画像から切り取った矩形エリアにおいて、グレースケールの標準偏差σ及び前記矩形エリアの二値化画像における黒部分の占める面積が、特定の範囲内に調整されたポリイミド系光学フィルムによって、平面性が改善され、有機エレクトロルミネッセンス表示装置の表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たないポリイミド系光学フィルムが得られることを見出した。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, in the rectangular area cut out from the projected image of the optical film, the grayscale standard deviation σ and the binarized image of the rectangular area The area occupied by the black portion of the film is improved by the polyimide-based optical film adjusted to a specific range, and when used on the surface of an organic electroluminescence display device, the film is viewed through polarized sunglasses. It has been found that a polyimide-based optical film in which unevenness is not noticeable can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.イミド構造を有する透明耐熱性樹脂を含有するポリイミド系光学フィルムであって、
 前記ポリイミド系光学フィルムの投影画像から切り取った所定の矩形エリアにおいて、グレースケールの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下に調整されたことを特徴とするポリイミド系光学フィルム。
1. A polyimide optical film containing a transparent heat resistant resin having an imide structure,
In a predetermined rectangular area cut out from the projected image of the polyimide optical film, the standard deviation σ of the gray scale is in the range of 0.50 to 1.10, and the black portion in the binarized image of the rectangular area The polyimide-based optical film is characterized in that the area occupied by is adjusted to 50% or less.
 2.前記イミド構造を有する透明耐熱性樹脂が、下記式(1)で表される構造を有するポリイミド、下記式(2)又は下記式(3)で表される構造を有するポリイミド、ポリエステルイミド、ポリアミドイミド及びポリエーテルイミドから選択されることを特徴とする第1項に記載のポリイミド系光学フィルム。 2. The transparent heat resistant resin having the imide structure is a polyimide having a structure represented by the following formula (1), a polyimide having a structure represented by the following formula (2) or the following formula (3), a polyesterimide, a polyamideimide. And a polyimide-based optical film according to item 1, wherein the polyimide-based optical film is selected from polyetherimide and polyetherimide.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式(3)中、Xは炭素数が2~39の2価の脂肪族基、炭素数が3~39の2価の脂環族基、炭素数が6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基であり、Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれた少なくとも1種の結合基が介在していてもよく、Xはカルボキシ基、ヒドロキシ基又はカルボニル基からなる群から選ばれた少なくとも1種の官能基を有していてもよい。)
 3.第1項又は第2項に記載のポリイミド系光学フィルムを製造するポリイミド系光学フィルムの製造方法であって、前記イミド構造を有する透明耐熱性樹脂とジクロロメタンとを含有するドープを調製し、溶液流延製膜法によって製膜することを特徴とするポリイミド系光学フィルムの製造方法。
Figure JPOXMLDOC01-appb-C000004
(In the formula (3), X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms. A divalent group consisting of a group or a combination thereof, and the main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group. And may have at least one functional group.)
3. A method for producing a polyimide-based optical film for producing the polyimide-based optical film according to item 1 or 2, wherein a dope containing the transparent heat-resistant resin having the imide structure and dichloromethane is prepared, and the solution flow A method for producing a polyimide-based optical film, wherein the film is formed by a film-forming method.
 4.前記製膜する過程において、フィルムを長手方向又は幅手方向の少なくとも一方向に1.05倍以上の倍率で延伸し、次いでフィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で、ローラー搬送しながらベンディング処理を150回以上行うことを特徴とする第3項に記載のポリイミド系光学フィルムの製造方法。 4. In the film forming process, the film is stretched at a magnification of 1.05 times or more in at least one direction of the longitudinal direction or the width direction, and then the (glass transition temperature Tg-150) to (glass transition temperature Tg-30) of the film. The method for producing a polyimide-based optical film according to item 3, wherein the bending treatment is performed 150 times or more while being conveyed by a roller at a drying temperature in the range of ° C.
 5.膜厚を、25~100μmの範囲内に調整することを特徴とする第3項又は第4項に記載のポリイミド系光学フィルムの製造方法。 5. 5. The method for producing a polyimide-based optical film according to item 3 or 4, wherein the film thickness is adjusted within a range of 25 to 100 μm.
 6.第1項又は第2項に記載のポリイミド系光学フィルムを具備することを特徴とする有機エレクトロルミネッセンスディスプレイ。 6. An organic electroluminescence display comprising the polyimide-based optical film according to item 1 or 2.
 本発明の上記手段により、平面性が改善され、有機エレクトロルミネッセンスディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れるポリイミド系光学フィルム、その製造方法及びそれを用いた有機エレクトロルミネッセンスディスプレイを提供することができる。 By the above means of the present invention, the planarity is improved, and when used on the surface of an organic electroluminescence display, the unevenness of the film when viewed through polarized sunglasses is not noticeable, and the polyimide optical film having excellent visibility, and its production A method and an organic electroluminescent display using the method can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明者らの検討によれば、市販又は前記特許文献1に開示されているようなポリイミド系光学フィルムは平面性が悪く、当該光学フィルムを最表面に用いた有機エレクトロルミネッセンスディスプレイ(以下、有機ELディスプレイともいう。)を、偏光サングラス越しに覗くと、フィルムのムラが目立ってしまい、他の材質の光学フィルムに対して視認性が劣ることが分かった。 According to the study by the present inventors, a polyimide-based optical film that is commercially available or disclosed in Patent Document 1 has poor flatness, and an organic electroluminescence display (hereinafter referred to as organic) using the optical film as the outermost surface. When it was viewed through polarized sunglasses, it was found that the unevenness of the film was conspicuous, and the visibility was inferior to optical films of other materials.
 前記視認性の解析において、白色光源を用いて当該ポリイミド系光学フィルムを投影し画像を観察したところ、例えば汎用のトリアセチルセルロース(TAC)フィルムに比べて、横段や斑点などのムラが多いことが分かった。すなわち、ムラの多いポリイミド系光学フィルムは、前記投影画像を所定の矩形エリアに切り取り、当該エリアのグレースケールの標準偏差σをとると、当該σ値が大きく、かつ当該エリアの画像を二値化したときの黒部分の面積が大きいことが分かった。 In the visibility analysis, when the polyimide-based optical film was projected using a white light source and the image was observed, for example, there were more unevenness such as horizontal rows and spots than a general-purpose triacetyl cellulose (TAC) film. I understood. That is, a polyimide-based optical film with a lot of unevenness cuts the projected image into a predetermined rectangular area and takes the standard deviation σ of the gray scale of the area, and the σ value is large, and the image in the area is binarized. It was found that the area of the black part was large.
 本発明では、ポリイミド系光学フィルムを作製する際に、イミド構造を有する化合物を低沸点溶剤(例えば、ジクロロメタン等)を用いて溶液流延製膜し、さらにローラー搬送しながら所定の回数でベンディング処理を施すことによって、前記グレースケールの標準偏差σ及び二値化したときの黒部分の面積を小さくすることができ、その結果ポリイミド系光学フィルムの平面性が改善され、当該フィルムを最表面に用いた有機ELディスプレイを偏光サングラス越しで見てもムラが目立たなくできることを見出したものである。 In the present invention, when producing a polyimide-based optical film, a compound having an imide structure is cast by solution casting using a low boiling point solvent (for example, dichloromethane or the like), and further bent by a predetermined number of times while being conveyed by a roller. By applying the above, the gray scale standard deviation σ and the area of the black portion when binarized can be reduced. As a result, the flatness of the polyimide optical film is improved, and the film is used as the outermost surface. It has been found that unevenness can be made inconspicuous even when the organic EL display is viewed through polarized sunglasses.
本発明に係るフィルム投影画像の解析を行う模式図Schematic diagram for analyzing a film projection image according to the present invention 本発明に好ましく適用できるベンディング処理装置の模式図Schematic diagram of a bending processing apparatus preferably applicable to the present invention 有機ELディスプレイの模式図Schematic diagram of organic EL display 本発明のポリイミド系光学フィルムの投影画像Projected image of the polyimide-based optical film of the present invention 本発明のポリイミド系光学フィルムの二値化画像Binary image of polyimide optical film of the present invention 本発明のポリイミド系光学フィルムのグレースケール標準偏差Gray scale standard deviation of the polyimide-based optical film of the present invention 比較例のポリイミド系光学フィルムの投影画像Projected image of comparative example polyimide optical film 比較例のポリイミド系光学フィルムの二値化画像Binarized image of comparative polyimide-based optical film 比較例のポリイミド系光学フィルムのグレースケール標準偏差Gray scale standard deviation of polyimide optical film of comparative example 比較例のポリイミド系光学フィルムの投影画像Projected image of comparative example polyimide optical film 比較例のポリイミド系光学フィルムの二値化画像Binarized image of comparative polyimide-based optical film 比較例のポリイミド系光学フィルムのびグレースケール標準偏差Gray scale standard deviation of polyimide optical film of comparative example 比較例のポリイミド系光学フィルムの投影画像Projected image of comparative example polyimide optical film 比較例のポリイミド系光学フィルムの二値化画像Binarized image of comparative polyimide-based optical film 比較例のポリイミド系光学フィルムのグレースケール標準偏差Gray scale standard deviation of polyimide optical film of comparative example
 本発明のポリイミド系光学フィルムは、イミド構造を有する透明耐熱性樹脂を含有するポリイミド系光学フィルムであって、前記ポリイミド系光学フィルムの投影画像から切り取った矩形エリアにおいて、グレースケールの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下に調整されたことを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。 The polyimide-based optical film of the present invention is a polyimide-based optical film containing a transparent heat-resistant resin having an imide structure, and has a grayscale standard deviation σ in a rectangular area cut out from the projected image of the polyimide-based optical film. , 0.50 to 1.10, and the area occupied by the black portion in the binarized image of the rectangular area is adjusted to 50% or less. This feature is a technical feature common to the inventions according to claims 1 to 6.
 本発明の実施態様としては、本発明の効果発現の観点から、前記イミド構造を有する透明耐熱性樹脂が、前記式(1)で表される構造を有するポリイミド、前記式(2)又は式(3)で表される繰り返し単位を有するポリイミド、ポリエステルイミド、ポリアミドイミド及びポリエーテルイミドから選択されることが、平滑性、耐熱性、透明性に優れたポリイミド系光学フィルムを得る観点から、好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the transparent heat-resistant resin having the imide structure is a polyimide having a structure represented by the formula (1), the formula (2) or the formula ( From the viewpoint of obtaining a polyimide-based optical film excellent in smoothness, heat resistance, and transparency, it is preferable to select from polyimide, polyesterimide, polyamideimide and polyetherimide having the repeating unit represented by 3).
 本発明のポリイミド系光学フィルムの製造方法は、前記イミド構造を有する透明耐熱性樹脂とジクロロメタンとを含有するドープを調製し、溶液流延製膜法によって製膜することが好ましく、また前記製膜する過程において、フィルムを長手方向又は幅手方向の少なくとも一方向に1.05倍以上の倍率で延伸し、次いでフィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で、ローラー搬送しながらベンディング処理を150回以上行うことが、平滑性を向上し、有機エレクトロルミネッセンスディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れるポリイミド系光学フィルムを得る観点で、好ましい製造方法である。 The method for producing a polyimide-based optical film of the present invention is preferably prepared by preparing a dope containing the transparent heat-resistant resin having the imide structure and dichloromethane and forming the dope by a solution casting film forming method. In the process, the film is stretched at a magnification of 1.05 times or more in at least one direction of the longitudinal direction or the width direction, and then the (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film. Performing the bending process 150 times or more while transporting the roller at a drying temperature within the range improves the smoothness, and when used on the surface of the organic electroluminescence display, unevenness of the film when viewed through polarized sunglasses is observed. From the viewpoint of obtaining a polyimide-based optical film that is not conspicuous and has excellent visibility, this is a preferred production method.
 また、本発明のポリイミド系光学フィルムは、膜厚を25~100μmの範囲内に調整することによって、薄膜でありかつ平面性の良い光学フィルムを得る観点から、好ましい実施態様である。 The polyimide optical film of the present invention is a preferred embodiment from the viewpoint of obtaining an optical film having a thin film and good flatness by adjusting the film thickness within a range of 25 to 100 μm.
 本発明のポリイミド系光学フィルムは、エレクトロルミネッセンスディスプレイに好適に具備され、サングラス越しに見たときの視認性に優れる観点から好ましい。 The polyimide-based optical film of the present invention is preferably provided in an electroluminescence display, and is preferable from the viewpoint of excellent visibility when viewed through sunglasses.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明のポリイミド系光学フィルムの概要≫
 本発明のポリイミド系光学フィルム(以下、ポリイミドフィルムという場合がある。)は、イミド構造を有する透明耐熱性樹脂を含有するポリイミド系光学フィルムであって、前記ポリイミド系光学フィルムの投影画像から切り取った所定の矩形エリアにおいて、グレースケールの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下に調整されたことを特徴とする。
<< Outline of Polyimide Optical Film of the Present Invention >>
The polyimide-based optical film of the present invention (hereinafter sometimes referred to as polyimide film) is a polyimide-based optical film containing a transparent heat-resistant resin having an imide structure, and was cut out from the projected image of the polyimide-based optical film. In a predetermined rectangular area, the grayscale standard deviation σ is in the range of 0.50 to 1.10, and the area occupied by the black portion in the binarized image of the rectangular area is adjusted to 50% or less. It is characterized by that.
 ここで、本発明に係るフィルム投影画像の解析手法について述べる。 Here, a method for analyzing a film projection image according to the present invention will be described.
 図1に本発明に係るフィルム投影画像の解析を行う模式図を示す。 FIG. 1 is a schematic diagram for analyzing a film projection image according to the present invention.
 白色光源2(株式会社日本技術センター製 S-light)をフィルム試料1に対して斜め45°方向から、フィルム試料1と白色光源2の距離を60cmに調整して照射し、フィルム試料1から投影面3までの距離を70cmとして投影する。投影面3から90°の方向に80cmの距離で、カメラ4(例えば、Canon製EOS KISS50、レンズEF-S 18=55mm、ISO感度100、絞り5.6、シャッター速度1/10秒、ホワイトバランス マニュアル設定)にて投影画像を撮影し撮影画像を得る。 The white light source 2 (S-light, manufactured by Japan Technical Center Co., Ltd.) is irradiated at an angle of 45 ° with respect to the film sample 1 while adjusting the distance between the film sample 1 and the white light source 2 to 60 cm. The distance to the surface 3 is projected as 70 cm. Camera 4 (for example, Canon EOS KISS50, lens EF-S 18 = 55 mm, ISO sensitivity 100, aperture 5.6, shutter speed 1/10 second, white balance at a distance of 80 cm in the direction of 90 ° from the projection plane 3 The projection image is photographed by manual setting) to obtain a photographed image.
 次いで、撮影画像について以下の手順にて解析を行う。 Next, the photographed image is analyzed according to the following procedure.
 [平滑性のためのムラ数値化手順]
 1.撮影した画像をフリーソフトImageJを用いてパソコンに読み込む。
[Mura numerical procedure for smoothness]
1. The captured image is read into a personal computer using the free software ImageJ.
 2.実際の撮影画像において1cm×5cmとなるような矩形の評価エリアを設定する。そのとき前記矩形の長辺がフィルム試料の搬送方向になるようにする。 2. A rectangular evaluation area that is 1 cm × 5 cm in an actual captured image is set. At that time, the long side of the rectangle is set to be in the transport direction of the film sample.
 3.フリーソフトImageJによって、8bit化(グレースケール化)を行う。 3. Using free software ImageJ, 8-bit conversion (gray scale) is performed.
 4.フリーソフトImageJによってバックグラウンド補正を行う。 4. Background correction is performed by the free software ImageJ.
 5.グレースケールにおけるグレーバリューの標準偏差σ、平均値mを算出する。 5. The standard deviation σ and the average value m of the gray value in the gray scale are calculated.
 6.平均値mを閾値として前記矩形の評価エリアの二値化を行う。 6. The rectangular evaluation area is binarized using the average value m as a threshold.
 7.前記二値化によって得られる黒部分(暗部)の面積を全体の面積で除して、黒部分面積率K(%)を算出する。 7. The black portion area ratio K (%) is calculated by dividing the area of the black portion (dark portion) obtained by the binarization by the entire area.
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sをいう。 Here, free software ImageJ refers to ImageJ1.32S created by Wayne Rasband.
 また、前記バックグラウンド補正は、例えば画像の右半分と左半分の領域で同一の明るさを有しているにもかかわらず、異なる明るさとして出力されたり、画像の左側から右側にいくにしたがって徐々に明るくなる結果として出力されたりする場合に、バックグラウンド補正を行い、ヒストグラム化、平均階調算出、及び二値化処理をして黒部分(暗部)の面積率K(%)を求めることが好ましい。 In addition, the background correction is output as different brightness even when the right half area and the left half area of the image have the same brightness, or as the image moves from the left side to the right side of the image. When it is output as a result of gradually brightening, background correction is performed, histogram calculation, average gradation calculation, and binarization processing are performed to obtain the area ratio K (%) of the black part (dark part) Is preferred.
 グレースケールにおけるグレーバリュ―の標準偏差σは、下記に示す方法で算出する。 The standard deviation σ of gray value in gray scale is calculated by the method shown below.
 グレーバリューのN個のデータ x1, x2, ・・・・ xNを母集団とし、その母集団の相加平均(母平均)mを下記数式1によって求める:
Figure JPOXMLDOC01-appb-M000005
 次に、上で求めた母平均 mを使って下記数式2で分散を求める。
Gray data N pieces of data x1, x2,... XN is a population, and an arithmetic mean (population average) m of the population is obtained by the following formula 1.
Figure JPOXMLDOC01-appb-M000005
Next, using the population average m obtained above, the variance is obtained by the following formula 2.
Figure JPOXMLDOC01-appb-M000006
 この分散(σ)の正の平方根σを、標準偏差σとする。
 本発明のポリイミド系光学フィルムの前記グレースケールにおけるグレーバリューの標準偏差σは、0.50~1.10の範囲内であるが、ムラとして視認されない範囲と生産性とを考慮すると、0.70~1.05の範囲であることがより好ましい。
Figure JPOXMLDOC01-appb-M000006
The positive square root σ of this variance (σ 2 ) is taken as the standard deviation σ.
The standard deviation σ of the gray value in the gray scale of the polyimide-based optical film of the present invention is in the range of 0.50 to 1.10, but considering the range that is not visually recognized as unevenness and the productivity, 0.70. More preferably, it is in the range of ˜1.05.
 また、本発明のポリイミド系光学フィルムの前記矩形エリアの二値化画像における黒部分の占める面積は50%以下に調整されているが、ムラとして視認されない範囲と生産性とを考慮すると、40~50%の範囲であることが好ましく、40~45%の範囲であることがより好ましい。 In addition, the area occupied by the black portion in the binarized image of the rectangular area of the polyimide-based optical film of the present invention is adjusted to 50% or less. A range of 50% is preferable, and a range of 40 to 45% is more preferable.
 <本発明のポリイミド系光学フィルムの構成>
 本発明のポリイミド系光学フィルムは、イミド構造を有する化合物を含有し、当該イミド構造を有する透明耐熱性樹脂が、下記式(1)で表される構造を有するポリイミド、下記式式(2)又は下記式(3)で表される構造を有するポリイミド、ポリエステルイミド、ポリアミドイミド及びポリエーテルイミドから選択されることが好ましい。
<Configuration of polyimide optical film of the present invention>
The polyimide-based optical film of the present invention contains a compound having an imide structure, and the transparent heat-resistant resin having the imide structure has a structure represented by the following formula (1), the following formula (2) or It is preferably selected from polyimide, polyesterimide, polyamideimide, and polyetherimide having a structure represented by the following formula (3).
 〔1〕イミド構造を有する透明耐熱性樹脂
 〔1.1〕式(1)で表される構造を有するポリイミド
 本発明に係るイミド構造を有する透明耐熱性樹脂(以下、ポリイミド樹脂ともいう。)は、ポリイミド前駆体を化学イミド化することにより得られる下記式(1)で表されるポリイミド樹脂であることが好ましい。
[1] Transparent heat-resistant resin having an imide structure [1.1] Polyimide having a structure represented by the formula (1) The transparent heat-resistant resin having an imide structure according to the present invention (hereinafter also referred to as polyimide resin). It is preferable that it is a polyimide resin represented by following formula (1) obtained by chemically imidizing a polyimide precursor.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 [ポリイミド前駆体の重合]
 本発明で用いる式(1)で表される構造を有するポリイミド前駆体の製造方法の製造方法の一例について以下に示す。
[Polymerization of polyimide precursor]
An example of the manufacturing method of the manufacturing method of the polyimide precursor which has a structure represented by Formula (1) used by this invention is shown below.
 まず、重合容器中にジアミンである2,2′―ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル(TFMB)を重合溶媒に溶解する。このジアミン溶液に対して、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(6FDA)の粉末を徐々に添加し、メカニカルスターラーを用い、-20~100℃の範囲で、好ましくは20~60℃の範囲で1~72時間撹拌する。TFMB、6FDAを用いることで可視光の透過性、溶解性が向上する。ジアミンのモル数とテトラカルボン酸二無水物のモル数は実質的に等モルで仕込まれる。また重合の際の全モノマー濃度は5~40質量%、好ましくは10~30質量%である。このモノマー濃度範囲で重合を行うことにより均一で高重合度のポリイミド前駆体溶液を得ることができる。 上記モノマー濃度範囲よりも低濃度で重合を行うと、ポリイミド前駆体の重合度が十分高くならず、最終的に得られるポリイミド樹脂膜が脆弱になる恐れがあり、好ましくない。 First, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFMB), which is a diamine, is dissolved in a polymerization solvent in a polymerization vessel. To this diamine solution, a powder of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride (6FDA) was gradually added, and the temperature was −20 to 100 ° C. using a mechanical stirrer. The mixture is stirred in the range, preferably in the range of 20 to 60 ° C. for 1 to 72 hours. By using TFMB and 6FDA, visible light permeability and solubility are improved. The number of moles of diamine and the number of moles of tetracarboxylic dianhydride are charged at substantially equal moles. The total monomer concentration during the polymerization is 5 to 40% by mass, preferably 10 to 30% by mass. By carrying out polymerization in this monomer concentration range, a polyimide precursor solution having a uniform and high degree of polymerization can be obtained.重合 If the polymerization is carried out at a concentration lower than the above monomer concentration range, the degree of polymerization of the polyimide precursor is not sufficiently high, and the finally obtained polyimide resin film may be brittle, which is not preferable.
 重合溶媒としては特に限定されないが、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホオキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、1,2-ジメトキシエタン-ビス(2-メトキシエチル)エーテル、テロラヒドロフラン、1,4-ジオキサン、ピコリン、ピリジン、アセトン、クロロホルム、トルエン、キシレン等の非プロトン性溶媒及び、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール等のプロトン性溶媒が使用可能である。またこれらの溶媒は単独でも、2種類以上混合して用いてもよい。 The polymerization solvent is not particularly limited, but N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethylsulfoxide, γ- Butyrolactone, 1,3-dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, terahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, Aprotic solvents such as xylene and protic solvents such as phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, and p-chlorophenol can be used. These solvents may be used alone or in combination of two or more.
 [ポリイミド樹脂の製造方法]
 式(1)で表されるポリイミド樹脂は、上記の方法で得られたポリイミド前駆体の脱水閉環反応(イミド化反応)により製造することができる。イミド化反応には、得られるポリイミド樹脂がより優れた寸法安定性を示す化学イミド化を用いる。化学イミド化は、有機酸の酸無水物と有機3級アミンからなる脱水環化剤(化学イミド化剤)を用いて行うことができる。例えば、ポリイミド前駆体ワニスをそのまま用いるか若しくは溶媒で適度に希釈後、これに脱水環化試剤を投入し、0~100℃、好ましくは20~60℃で0.5~48時間撹拌することで容易にイミド化することができる。
[Production method of polyimide resin]
The polyimide resin represented by the formula (1) can be produced by a dehydration ring-closing reaction (imidation reaction) of the polyimide precursor obtained by the above method. For the imidization reaction, chemical imidization is used in which the resulting polyimide resin exhibits better dimensional stability. Chemical imidization can be performed using a dehydrating cyclization agent (chemical imidization agent) comprising an acid anhydride of an organic acid and an organic tertiary amine. For example, by using the polyimide precursor varnish as it is or after appropriately diluting with a solvent, a dehydration cyclization reagent is added thereto and stirred at 0 to 100 ° C., preferably 20 to 60 ° C. for 0.5 to 48 hours. It can be easily imidized.
 その際に使用される有機酸の酸無水物としては、特に限定されず、無水酢酸、無水プロピオン酸、無水マレイン酸、無水フタル酸等が使用可能であるが、コスト及び後処理のしやすさの観点から無水酢酸が好適に用いられる。また有機3級アミンとしては特に限定されず、ピリジン、1,5-ジメチルピリジン、β-ピコリン、γ-ピコリン、ルチジン、イソキノリン、トリエチルアミン、N,N-ジメチルアニリン等が使用可能である。 The acid anhydride of the organic acid used at that time is not particularly limited, and acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride, etc. can be used, but the cost and ease of post-treatment are not limited. In view of the above, acetic anhydride is preferably used. The organic tertiary amine is not particularly limited, and pyridine, 1,5-dimethylpyridine, β-picoline, γ-picoline, lutidine, isoquinoline, triethylamine, N, N-dimethylaniline and the like can be used.
 化学イミド化反応の際、脱水環化試薬中の酸無水物の使用量は、ポリイミド前駆体の理論脱水量の1~10倍モルの範囲であることが好ましく、脱水環化試薬中の塩基性触媒の使用量は酸無水物に対して0.1~2倍モルの範囲であることが好ましい。これらの範囲外で化学イミド化を行うとイミド化反応が完結しなかったり、反応溶液中にイミド化が未完結のポリイミド樹脂が析出してやはりイミド化が不十分となる恐れがある。
 イミド化完了後、反応溶液をそのままコーティングに用いることができ、又は、反応溶液を大量の貧溶媒中に滴下、又は、貧溶媒を反応溶液に添加して、ポリイミド樹脂を析出・洗浄して反応溶媒や、化学イミド化の場合は過剰な化学イミド化剤を除去した後、減圧乾燥してポリイミド樹脂の粉末を得ることができる。使用可能な貧溶媒としては、ポリイミド樹脂を溶解しなければよく、特に限定されないが、反応溶媒や化学イミド化剤との親和性及び乾燥による除去のしやすさの観点から水、メタノール、エタノール、n-プロパノール、イソプロパノール等が好適に用いられる。
In the chemical imidation reaction, the amount of the acid anhydride used in the dehydration cyclization reagent is preferably in the range of 1 to 10 times mol of the theoretical dehydration amount of the polyimide precursor. The amount of catalyst used is preferably in the range of 0.1 to 2 moles relative to the acid anhydride. If the chemical imidization is carried out outside these ranges, the imidation reaction may not be completed, or the imidization may not be completed in the reaction solution and the imidization may be insufficient.
After completion of imidation, the reaction solution can be used for coating as it is, or the reaction solution is dropped into a large amount of poor solvent, or a poor solvent is added to the reaction solution, and the polyimide resin is precipitated and washed. In the case of a solvent or chemical imidization, an excess chemical imidizing agent is removed, and then dried under reduced pressure to obtain a polyimide resin powder. The poor solvent that can be used is not particularly limited as long as it does not dissolve the polyimide resin, but water, methanol, ethanol, from the viewpoint of affinity with the reaction solvent and chemical imidizing agent and ease of removal by drying. n-propanol, isopropanol and the like are preferably used.
 ポリイミド樹脂の重量平均分子量は、特に制限されるものではないが、5000~2000000であることが好ましく、10000~1000000であることがさらに好ましく、50000~500000であることがさらに好ましい。重量平均分子量が5000以上であると、フィルムとした場合に十分な強度が得られ、また寸法安定性が向上する傾向があるため、十分な寸法安定性が得られる。一方、2000000以下であると溶液粘度が高くなりすぎず、取扱いやすい。なお、上記重量平均分子量は、サイズ排除クロマトグラフィー(SEC)によるポリエチレングリコール換算の値のことをいう。 The weight average molecular weight of the polyimide resin is not particularly limited, but is preferably from 5,000 to 2,000,000, more preferably from 10,000 to 1,000,000, and further preferably from 50,000 to 500,000. When the weight average molecular weight is 5000 or more, sufficient strength can be obtained in the case of a film, and dimensional stability tends to be improved, so that sufficient dimensional stability can be obtained. On the other hand, if it is 2000000 or less, the solution viscosity does not become too high and it is easy to handle. In addition, the said weight average molecular weight means the value of polyethyleneglycol conversion by size exclusion chromatography (SEC).
 〔1.2〕式(2)又は式(3)で表される構造を有するポリイミド
 本発明に係る透明耐熱性樹脂は、下記式(2)で表される繰り返し単位を有するポリイミド(以下、ポリイミドPと称する。)又は当該式(2)で表される繰り返し単位と下記式(3)で表される繰り返し単位とからなるポリイミドが好ましい。
[1.2] Polyimide having structure represented by formula (2) or formula (3) The transparent heat resistant resin according to the present invention is a polyimide having a repeating unit represented by the following formula (2) (hereinafter, polyimide). P)) or a polyimide composed of a repeating unit represented by the formula (2) and a repeating unit represented by the following formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000008
(式(3)中、Xは炭素数が2~39の2価の脂肪族基、炭素数が3~39の2価の脂環族基、炭素数が6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基であり、Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれた少なくとも1種の結合基が介在していてもよく、Xはカルボキシ基、ヒドロキシ基又はカルボニル基からなる群から選ばれた少なくとも1種の官能基を有していてもよい。)
 前記ポリイミド樹脂は、前記式(2)で表される繰り返し単位、又は前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位からなり、式(2)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超え、好ましくは70モル%以上、より好ましくは80モル%以上(それぞれ100モル%を含む)である。式(2)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超えると低吸水性を達成できるが、50モル%以下であると、式(3)の構造によっては吸水率が高くなる。前記ポリイミドPは、ブロックコポリマー又はランダムコポリマーのどちらでも良い。
Figure JPOXMLDOC01-appb-C000008
(In the formula (3), X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms. A divalent group consisting of a group or a combination thereof, and the main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group. And may have at least one functional group.)
The polyimide resin is composed of a repeating unit represented by the formula (2), or a repeating unit represented by the formula (2) and a repeating unit represented by the formula (3). The ratio of the repeating units to be used is more than 50 mol% of all repeating units, preferably 70 mol% or more, more preferably 80 mol% or more (each including 100 mol%). When the proportion of the repeating unit represented by the formula (2) exceeds 50 mol% of all the repeating units, low water absorption can be achieved. Get higher. The polyimide P may be either a block copolymer or a random copolymer.
 上記式(3)中のXは下記式(4);
Figure JPOXMLDOC01-appb-C000009
とは異なり、炭素数2~39の2価の脂肪族基、炭素数3~39の2価の脂環族基、炭素数6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基である。Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-、及び-S-からなる群から選ばれた少なくとも1の結合基が介在していてもよい。また、Xはカルボキシ基、ヒドロキシ基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。Xの具体例としては、ポリアルキレン、ポリオキシアルキレン、キシリレン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体などの2価の脂肪族基;シクロヘキサン、ジシクロヘキシルメタン、ジメチルシクロヘキサン、イソフォロン、ノルボルナン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の脂環族基;及び、ベンゼン、ナフタレン、ビフェニル、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン、ベンゾフェノン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の芳香族基が挙げられる。また、式(4)で表される構造は、樹脂強度の観点から、下記式(5)で表される構造であるのが好ましい。
X in the above formula (3) is the following formula (4);
Figure JPOXMLDOC01-appb-C000009
2 is composed of a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof. Is a valent group. The main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O—, and —S. At least one linking group selected from the group consisting of — may intervene. X may have at least one functional group selected from the group consisting of a carboxy group, a hydroxy group, and a carbonyl group (included in the main chain of X). Specific examples of X include polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted divalent aliphatic groups; cyclohexane, dicyclohexylmethane, dimethylcyclohexane, Divalent alicyclic groups derived from isophorone, norbornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenyl, diphenylmethane, diphenyl ether, diphenylsulfone, benzophenone And divalent aromatic groups derived from these alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted and the like. Moreover, it is preferable that the structure represented by Formula (4) is a structure represented by following formula (5) from a viewpoint of resin strength.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ポリイミドPは溶液として使用される場合は、その分子量は粘度、特に対数粘度で表すことが好ましい。ポリイミドPの対数粘度η(0.5g/dLのN-メチル-2-ピロリドン溶液を用いて30℃で測定)は、0.3~2dL/gであることが好ましい。0.3dL/g未満であると、ポリイミド樹脂自体の強度が弱く、充分な剥離強度を有する光学フィルムが得られない。2.0dL/gを超えるとその溶液が高粘度になり流延し難く、大幅な希釈が必要となり、取り扱いが難しくなる。 When polyimide P is used as a solution, its molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity. The logarithmic viscosity η (measured at 30 ° C. using a 0.5 g / dL N-methyl-2-pyrrolidone solution) of the polyimide P is preferably 0.3 to 2 dL / g. If it is less than 0.3 dL / g, the strength of the polyimide resin itself is weak, and an optical film having sufficient peel strength cannot be obtained. If it exceeds 2.0 dL / g, the solution will become highly viscous and difficult to cast, requiring significant dilution, making handling difficult.
 通常、ポリイミドPの分子末端は、アミノ基、カルボキシ基、又はカルボン酸無水物基である。これらの分子末端にカルボン酸無水物基やアミノ基を有する化合物を反応させることにより、分子末端の官能基を可能な限り減らすこと、又は、意図的に分子末端にアミノ基、カルボキシ基などの官能基やこれ以外の置換基を導入することができる。吸水率を低下させるために、分子末端に極性の小さい置換基(官能性のない置換基)を導入してもよい。後述する方法で測定したポリイミドPの吸水率は、2.5%以下が好ましい。工業的に達成できる吸水率の最小値は通常約1%である。 Usually, the molecular end of polyimide P is an amino group, a carboxy group, or a carboxylic anhydride group. By reacting a compound having a carboxylic acid anhydride group or an amino group at the molecular end, the functional group at the molecular end is reduced as much as possible, or an intentionally functional group such as an amino group or a carboxy group is present at the molecular end. Groups and other substituents can be introduced. In order to reduce the water absorption rate, a substituent having a small polarity (substituent having no functionality) may be introduced at the molecular end. The water absorption of the polyimide P measured by the method described later is preferably 2.5% or less. The minimum value of water absorption that can be achieved industrially is usually about 1%.
 ポリイミドPは、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)及び1,2,4,5-シクロヘキサンテトラカルボン酸エステル類などの反応性誘導体から選ばれる少なくとも1種のテトラカルボン酸成分(Y)と、ジアミン及びその反応性誘導体から選ばれる少なくとも1種のジアミン成分(Z)とを反応させることにより得られる。テトラカルボン酸成分(Y)としては、HPMDAが好ましい。なお、テトラカルボン酸成分(Y)及びジアミン成分(Z)は異性体を含む。 Polyimide P consists of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) and 1,2,4,5-cyclohexanetetracarboxylic acid esters. It is obtained by reacting at least one tetracarboxylic acid component (Y) selected from reactive derivatives such as diamine and at least one diamine component (Z) selected from diamines and reactive derivatives thereof. As the tetracarboxylic acid component (Y), HPMDA is preferable. In addition, the tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.
 ジアミン成分(Z)としては、ジアミン、ジイソシアネート、ジアミノジシランなどが挙げられるが、ジアミンが好ましい。上記式(1)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z1))は、4,4′-ビス(4-アミノフェノキシ)ビフェニル(BAPB)及びその反応性誘導体であり、上記式(3)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z2))はNH-X-NH(Xは前記と同様)及びその反応性誘導体である。 Examples of the diamine component (Z) include diamine, diisocyanate, and diaminodisilane, and diamine is preferred. The diamine component (diamine component (Z1)) for forming the repeating unit of the above formula (1) is 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) and a reactive derivative thereof. The diamine component (diamine component (Z2)) for forming the repeating unit (3) is NH 2 —X—NH 2 (X is the same as described above) and reactive derivatives thereof.
 ジアミン成分(Z2)は、芳香族ジアミン、脂肪族ジアミン、脂環族ジアミン、前記ジアミンの反応性誘導体、及びこれらの混合物のいずれでも良く、カルボキシ基、ヒドロキシ基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。なお、本発明において“芳香族ジアミン”とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。“脂肪族ジアミン”とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。“脂環族ジアミン”とは、アミノ基が脂環族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。例えば、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(BAPP)は、アミノ基が芳香族環(ベンゼン環)に直接結合しているので芳香族ジアミンであり、m-キシリレンジアミン(MXDA)はアミノ基が脂肪族基(メチレン基)に直接結合しているので脂肪族ジアミンである。 The diamine component (Z2) may be an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the above diamine, or a mixture thereof, including a carboxy group, a hydroxy group, and a carbonyl group (in the main chain of X). It may have at least one functional group selected from the group consisting of: In the present invention, “aromatic diamine” means a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, an alicyclic group, an aromatic group, other It may contain a substituent. “Aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and the structure includes an aliphatic group, an alicyclic group, an aromatic group, and other substituents. May be. “Alicyclic diamine” refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, an alicyclic group, an aromatic group, and other substituents are partly included in the structure. It may be included. For example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is an aromatic diamine because an amino group is directly bonded to an aromatic ring (benzene ring), and m-xylyl Range amine (MXDA) is an aliphatic diamine because the amino group is directly bonded to an aliphatic group (methylene group).
 一般に、テトラカルボン酸二無水物と脂肪族ジアミン又は脂環族ジアミンを反応させると、中間生成物であるポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が強固な塩を形成するために、高分子量ポリイミドが得られにくい。そのため、塩の溶解性が比較的高い溶剤、例えばクレゾールを用いるなどの工夫が必要になる。しかし、テトラカルボン酸二無水物として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を用いると、ポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が比較的弱い結合の塩を形成するに留まるので、イミド化反応が比較的容易に進行し、容易に高分子量化できる。 In general, when tetracarboxylic dianhydride is reacted with an aliphatic diamine or alicyclic diamine, the polyamic acid as an intermediate product and the amino group derived from the aliphatic diamine or alicyclic diamine form a strong salt. In addition, it is difficult to obtain a high molecular weight polyimide. Therefore, it is necessary to devise such as using a solvent having a relatively high salt solubility, such as cresol. However, when 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride, a polyamic acid and a salt having a relatively weak bond between an amino group derived from an aliphatic diamine or an alicyclic diamine. Thus, the imidization reaction proceeds relatively easily and can be easily increased in molecular weight.
 脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコール-ビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3--ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、p-キシリレンジアミン、m-キシリレンジアミン、シロキサンジアミン類等が挙げられる。 Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycol-bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, , 4-bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, siloxane diamines and the like.
 脂環族ジアミンとしては、例えば、4,4′-ジアミノジシクロヘキシルメタン、イソホロンジアミン、ノルボルナンジアミンなどが挙げられる。 Examples of the alicyclic diamine include 4,4′-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine, and the like.
 芳香族ジアミンとしては、例えば、1,4-フェニレンジアミン、1,3-フェニレンジアミン、2,4-トルエンジアミン、4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、α,α′-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4′-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。 Examples of the aromatic diamine include 1,4-phenylene diamine, 1,3-phenylene diamine, 2,4-toluene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'- Diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, α, α'-bis (4 -Aminophenyl) -1,4-diisopropylbenzene, α, α'-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- ( - aminophenoxy) phenyl] sulfone, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like.
 上記官能基を有するジアミンとしては、例えば、3,3′-ジカルボキシ-4,4′-ジアミノジフェニルメタン、3,5-ジアミノ安息香酸、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル、2,4-ジアミノフェノール、4,4′-ジアミノベンゾフェノン、3,3′-ジアミノベンゾフェノンが挙げられ、特に、3,3′-ジカルボキシ-4,4′-ジアミノジフェニルメタン(MBAA)、3,5-ジアミノ安息香酸(DBA)、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル(HAB)、4,4′-ジアミノベンゾフェノン(4,4′-DBP)が好ましい。 Examples of the diamine having a functional group include 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2,4-diaminophenol, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, and in particular, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane (MBAA), 3,5 -Diaminobenzoic acid (DBA), 3,3'-dihydroxy-4,4'-diaminobiphenyl (HAB), 4,4'-diaminobenzophenone (4,4'-DBP) are preferred.
 ジアミン成分(Z2)として、MXDA、BAPPを使用することが好ましい。 It is preferable to use MXDA or BAPP as the diamine component (Z2).
 ポリイミドPは、前記ジアミン成分(Z)(ジアミン成分(Z1)、又は、ジアミン成分(Z1)+ジアミン成分(Z2))1モルに対して前記テトラカルボン酸成分(Y)を、好ましくは0.66~1.5モル、より好ましくは0.9~1.1モル、さらに好ましくは0.97~1.03モル反応させることにより製造される。 The polyimide P contains the tetracarboxylic acid component (Y) with respect to 1 mol of the diamine component (Z) (diamine component (Z1) or diamine component (Z1) + diamine component (Z2)), preferably 0.00. It is produced by reacting 66 to 1.5 mol, more preferably 0.9 to 1.1 mol, and still more preferably 0.97 to 1.03 mol.
 例えば、原料の使用割合、反応温度と時間、末端停止剤の使用の有無と使用量、触媒量などの少なくとも一つの条件を調整することにより、前記範囲内の対数粘度ηを有するポリイミドPを製造することができる。前記条件の調整は、予備反応などを行うことにより、当業者であれば容易に行うことができる。例えば、対数粘度ηを前記テトラカルボン酸成分(Y)と前記ジアミン成分(Z)とのモル比及び反応時間によって調整する場合、前記モル比が1に近い程、また、反応時間が長い程、対数粘度ηが前記範囲内で大きくなる。前記モル比が0.66~1.5の範囲内で1から遠く離れる程、また、反応時間が短い程、対数粘度ηは前記範囲内で小さくなる。溶液重合法では、反応溶液の粘度、反応時間その他の反応条件などと、これに対応した対数粘度との関係をあらかじめ求めておき、この関係に基づいて反応の終了時点を決定することにより、所定対数粘度ηのポリイミドPを製造することができる。反応時間は2~12時間、反応温度は180~205℃であるのが好ましい。 For example, a polyimide P having a logarithmic viscosity η within the above range is produced by adjusting at least one of the conditions such as the use ratio of raw materials, reaction temperature and time, presence / absence and use of a terminal terminator, and the amount of catalyst. can do. Those skilled in the art can easily adjust the conditions by performing a preliminary reaction or the like. For example, when the logarithmic viscosity η is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time, The logarithmic viscosity η increases within the above range. As the molar ratio is far from 1 in the range of 0.66 to 1.5 and the reaction time is shorter, the logarithmic viscosity η is smaller in the range. In the solution polymerization method, the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the logarithmic viscosity corresponding thereto is obtained in advance, and the end point of the reaction is determined based on this relationship. A polyimide P having a logarithmic viscosity η can be produced. The reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.
 ポリイミドPは、通常、有機溶剤溶液として製造される。
 有機溶剤としては特に限定されないが、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾ-ル、フェノ-ル、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノンなどが使用可能であり、2種以上を併用しても良い。しかし、ポリイミドPと溶剤からなるポリイミドワニスの性能を考慮すると、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、γ-ブチロラクトン(GBL)を単独又は併用するのが好ましい。有機溶剤は、得られる有機溶剤溶液中のポリイミドP濃度が、好ましくは1~50質量%、より好ましくは5~40質量%になるような量用いる。また、溶液重合による製造の場合、上記溶剤と併せてヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、重合体が析出しない程度に使用することができる。
The polyimide P is usually produced as an organic solvent solution.
The organic solvent is not particularly limited. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl Caprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ- Butyrolactone, dioxolane, cyclohexanone, cyclopentanone and the like can be used, and two or more kinds may be used in combination. However, considering the performance of polyimide varnish composed of polyimide P and solvent, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), and γ-butyrolactone (GBL) may be used alone or in combination. preferable. The organic solvent is used in such an amount that the polyimide P concentration in the obtained organic solvent solution is preferably 1 to 50% by mass, more preferably 5 to 40% by mass. In the case of production by solution polymerization, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene and the like can be used together with the above solvent to such an extent that the polymer does not precipitate.
 ポリイミドPは、(1)溶液重合法、(2)ポリアミック酸溶液を調製し、これを製膜し、イミド化する方法、(3)HPMDAのハーフエステル塩などの塩又はイミドオリゴマーを得、固相重合を行なう方法、(4)テトラカルボン酸二無水物とジイソシアネートを反応させる方法、その他従来公知の方法で製造することができる。それぞれの方法を併用しても良い。テトラカルボン酸成分(Y)とジアミン成分(Z)との反応は、酸、三級アミン類、無水物などの従来公知の触媒の存在下で行ってもよい。 Polyimide P is obtained by (1) solution polymerization method, (2) preparing a polyamic acid solution, forming a film and imidizing it, and (3) obtaining a salt or imide oligomer such as HPMDA half ester salt, It can be produced by a method of performing phase polymerization, (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, or other conventionally known methods. You may use each method together. The reaction between the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.
 これらの方法の中で、ポリイミドPの有機溶剤溶液が直接得られるので、下記(1)~(3)の溶液重合法が好ましい。
(1)ジアミン成分(Z)、有機溶剤、及び必要に応じて触媒を含む混合物を10~600rpmで撹拌して均一溶液とし、これを温度30~90℃に保ち、テトラカルボン酸成分(Y)及び必要に応じて触媒を添加する。
(2)テトラカルボン酸成分(Y)、有機溶剤、及び必要に応じて触媒を含む混合物を10~600rpmで撹拌して均一溶液とし、これを温度30~90℃に保ち、ジアミン成分(Z)及び必要に応じて触媒を添加する。
(3)(1)又は(2)の方法の後に、0.1~6時間かけて160~230℃、好ましくは180~205℃まで昇温する。この温度は使用する有機溶剤の沸点によって左右される。反応系外に除去される成分を捕集しつつ、温度を0.5~24時間、好ましくは2~12時間ほぼ一定に保つ。その後必要ならば有機溶剤を更に添加し、適温まで冷却する。
Among these methods, since an organic solvent solution of polyimide P can be obtained directly, the following solution polymerization methods (1) to (3) are preferable.
(1) A mixture containing a diamine component (Z), an organic solvent and, if necessary, a catalyst is stirred at 10 to 600 rpm to obtain a homogeneous solution, which is maintained at a temperature of 30 to 90 ° C., and the tetracarboxylic acid component (Y) And if necessary, a catalyst is added.
(2) A mixture containing a tetracarboxylic acid component (Y), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 600 rpm to obtain a homogeneous solution, which is kept at a temperature of 30 to 90 ° C., and a diamine component (Z) And if necessary, a catalyst is added.
(3) After the method (1) or (2), the temperature is raised to 160 to 230 ° C., preferably 180 to 205 ° C. over 0.1 to 6 hours. This temperature depends on the boiling point of the organic solvent used. While collecting the components to be removed outside the reaction system, the temperature is kept substantially constant for 0.5 to 24 hours, preferably 2 to 12 hours. Thereafter, if necessary, an organic solvent is further added and cooled to an appropriate temperature.
 ポリイミドPを製造するための溶液重合は、トリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどの3級アミン化合物から選ばれる少なくとも1種の触媒の存在下で行ってもよい。使用する場合、触媒の使用量は、テトラカルボン酸成分(Y)の0.1~100モル%が好ましく、1~10モル%がより好ましい。 Solution polymerization for producing polyimide P includes trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N- The reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline and isoquinoline. When used, the catalyst is preferably used in an amount of 0.1 to 100 mol%, more preferably 1 to 10 mol% of the tetracarboxylic acid component (Y).
 〔1.3〕ポリエステルイミド
 本発明に係るポリエステルイミドは、下記式(6)で表される構造を有する化合物であることが好ましい。
[1.3] Polyesterimide The polyesterimide according to the present invention is preferably a compound having a structure represented by the following formula (6).
 〔式(6)で表される構造を有する化合物〕
 本発明に係るポリエステルイミド樹脂は、式(6)で表される構造を構成単位中に含有する。
[Compound having structure represented by formula (6)]
The polyesterimide resin which concerns on this invention contains the structure represented by Formula (6) in a structural unit.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(6)中、R1は式(7)で表される構造を有する化合物、式(8)で表される構造を有する化合物又は式(9)で表される構造を有する化合物である。 In Formula (6), R1 is a compound having a structure represented by Formula (7), a compound having a structure represented by Formula (8), or a compound having a structure represented by Formula (9).
 式(7)で表される構造を有する化合物について説明する。
Figure JPOXMLDOC01-appb-C000012
The compound having the structure represented by formula (7) will be described.
Figure JPOXMLDOC01-appb-C000012
 式(7)中、Rは鎖式脂肪族基、環式脂肪族基又は芳香族基を表し、複数個のRは、互いに同一であっても、異なっていてもよい。これらの鎖式脂肪族基、環式脂肪族基又は芳香族基を、単独、又は2種類以上を組み合わせて使用することもできる。 In the formula (7), R represents a chain aliphatic group, a cycloaliphatic group or an aromatic group, and a plurality of R may be the same as or different from each other. These chain aliphatic groups, cycloaliphatic groups or aromatic groups can be used alone or in combination of two or more.
 mは1以上の正の整数であり、2以上が好ましく、3以上がより好ましく、4以上がさらに好ましい。また、mの上限は特に限定されないが、好ましくは25以下、より好ましくは20以下、更に好ましくは10以下である。25を超える場合では耐熱性が低下する傾向にある。 M is a positive integer of 1 or more, preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more. Moreover, although the upper limit of m is not specifically limited, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 10 or less. When it exceeds 25, the heat resistance tends to decrease.
 前記鎖式脂肪族基、環式脂肪族基又は芳香族基は、「2価のヒドロキシ基を有する鎖式脂肪族化合物」、「2価のヒドロキシ基を有する環式脂肪族化合物」又は「2価のヒドロキシ基を有する芳香族化合物」等の「ジオール化合物」から誘導される残基であることが望ましい。また、前記「ジオール化合物」と炭酸エステル類やホスゲン等から重合され得る「ポリカーボネートジオール化合物」から誘導される残基であってもよい。 The chain aliphatic group, cycloaliphatic group or aromatic group is “chain aliphatic compound having a divalent hydroxy group”, “cycloaliphatic compound having a divalent hydroxy group” or “2 A residue derived from a “diol compound” such as an “aromatic compound having a valent hydroxy group” is desirable. Further, it may be a residue derived from the above “diol compound” and “polycarbonate diol compound” which can be polymerized from carbonates, phosgene and the like.
 「2価のヒドロキシ基を有する鎖式脂肪族化合物」としては、二つのヒドロキシ基を有する分岐状、又は直鎖状のジオール化合物を用いることができる。例えば、アルキレンジオール化合物、ポリオキシアルキレンジオール化合物、ポリエステルジオール化合物、ポリカプロラクトンジオール化合物等が挙げられる。「2価のヒドロキシ基を有する鎖式脂肪族化合物」として使用できる二つのヒドロキシ基を有する分岐状又は直鎖状のジオール化合物を以下に挙げる。 As the “chain aliphatic compound having a divalent hydroxy group”, a branched or linear diol compound having two hydroxy groups can be used. Examples thereof include an alkylene diol compound, a polyoxyalkylene diol compound, a polyester diol compound, and a polycaprolactone diol compound. Examples of branched or linear diol compounds having two hydroxy groups that can be used as the “chain aliphatic compound having a divalent hydroxy group” are given below.
 アルキレンジオール化合物として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。 Examples of the alkylene diol compound include ethylene glycol, diethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 3-methyl-1,5-pentanediol. 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, 1,4 -Cyclohexanedimethanol and the like.
 ポリオキシアルキレンジオール化合物として、例えば、ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリオキシテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのランダム共重合体等が挙げられる。好ましくは、ポリオキシテトラメチレングリコールがよい。 Examples of polyoxyalkylenediol compounds include dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid), dimethylolbutanoic acid (2,2-bis (hydroxymethyl) butanoic acid), polyethylene glycol, polypropylene glycol , Polytetramethylene glycol, polyoxytetramethylene glycol, random copolymers of tetramethylene glycol and neopentyl glycol, and the like. Polyoxytetramethylene glycol is preferable.
 ポリエステルジオール化合物としては、例えば、以下に例示される多価アルコールと多塩基酸とを反応させて得られる、ポリエステルジオール化合物等が挙げられる。 Examples of polyester diol compounds include polyester diol compounds obtained by reacting polyhydric alcohols and polybasic acids exemplified below.
 ポリエステルジオール化合物に用いる「多価アルコール成分」としては、任意の各種多価アルコールが使用可能である。例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、シクロヘキサンメタノール、ネオペンチルヒドロキシピパリン酸エステル、ビスフェノールAのエチレンオキサイド付加物及びプロピレンオキサイド付加物、水添加ビスフェノールAのエチレンオキサイド付加物及びプロピレンオキサイド付加物、1,9-ノナンジオール、2-メチルオクタンジオール、1,10-ドデカンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、トリシクロデカンメタノール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール等を使用できる。 Any “polyhydric alcohol” can be used as the “polyhydric alcohol component” used in the polyester diol compound. For example, ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, cyclohexanemethanol, Neopentylhydroxypiparic acid ester, ethylene oxide adduct and propylene oxide adduct of bisphenol A, ethylene oxide adduct and propylene oxide adduct of water-added bisphenol A, 1,9-nonanediol, 2-methyloctanediol , 1,10-dodecane diol, 2-butyl-2-ethyl-1,3-propanediol, tricyclodecane methanol, polyethylene glycol, polypropylene glycol, polyether polyol such as polytetramethylene glycol or the like can be used.
 ポリエステルジオール化合物に用いる「多塩基酸成分」としては、任意の各種多塩基酸を使用することができる。例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、4,4′-ジフェニルジカルボン酸、2,2′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸などの脂肪族や脂環族二塩基酸が使用できる。 As the “polybasic acid component” used in the polyester diol compound, any of various polybasic acids can be used. For example, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, 4,4'-diphenyldicarboxylic acid, 2,2'-diphenyldicarboxylic acid, 4,4'-diphenylether dicarboxylic acid Acids, adipic acid, sebacic acid, azelaic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, etc. Aliphatic and alicyclic dibasic acids can be used.
 本発明に使用できるポリエステルジオール化合物の市販品として、具体的には、OD-X-688(DIC(株)製脂肪族ポリエステルジオール:アジピン酸/ネオペンチルグリコール/1,6-ヘキサンジオール、数平均分子量約2000)、バイロン(登録商標)220(東洋紡(株)製 ポリエステルジオール、数平均分子量約2000)などを挙げることができる。 As a commercially available polyester diol compound that can be used in the present invention, specifically, OD-X-688 (aliphatic polyester diol manufactured by DIC Corporation: adipic acid / neopentyl glycol / 1,6-hexanediol, number average Molecular weight of about 2000), Byron (registered trademark) 220 (manufactured by Toyobo Co., Ltd., polyester diol, number average molecular weight of about 2000), and the like.
 ポリカプロラクトンジオール化合物として、例えば、γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール化合物等が挙げられる。 Examples of the polycaprolactone diol compound include polycaprolactone diol compounds obtained by ring-opening addition reaction of lactones such as γ-butyllactone, ε-caprolactone, and δ-valerolactone.
 上述の「2価のヒドロキシ基を有する鎖式脂肪族化合物」を、単独、又は2種類以上を組み合わせて使用することができる。 The above-mentioned “chain aliphatic compound having a divalent hydroxy group” can be used alone or in combination of two or more.
 「2価のヒドロキシ基を有する環式脂肪族化合物」又は「2価のヒドロキシ基を有する芳香族化合物」としては、「芳香環やシクロヘキサン環に二つのヒドロキシ基を有する化合物」、「2個のフェノール若しくは脂環式アルコールが2価の官能基で結合された化合物」、「ビフェニル構造の両方の核にヒドロキシ基を一つずつ有する化合物」、「ナフタレン骨格に二つのヒドロキシ基を有する化合物」などが用いられる。 “Cycloaliphatic compound having a divalent hydroxy group” or “aromatic compound having a divalent hydroxy group” includes “a compound having two hydroxy groups in an aromatic ring or cyclohexane ring”, “two "Compounds in which phenol or alicyclic alcohol is bonded with a divalent functional group", "Compounds having one hydroxy group in both nuclei of the biphenyl structure", "Compounds having two hydroxy groups in the naphthalene skeleton", etc. Is used.
 「芳香環やシクロヘキサン環に二つのヒドロキシ基を有する化合物」として、ヒドロキノン、2-メチルヒドロキノン、レゾルシノール、カテコール、2-フェニルヒドロキノン、シクロヘキサンジメタノール、トリシクロデカンメタノール、1,4-ジヒドロキシシクロヘキサン、1,3-ジヒドロキシシクロヘキサン、1,2-ジヒドロキシシクロヘキサン、1,3-アダマンタンジオール、ジシクロペンタジエンの2水和物、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等のカルボキシ基含有ジオール化合物等が使用できる。 Examples of the “compound having two hydroxy groups in the aromatic ring or cyclohexane ring” include hydroquinone, 2-methylhydroquinone, resorcinol, catechol, 2-phenylhydroquinone, cyclohexanedimethanol, tricyclodecanemethanol, 1,4-dihydroxycyclohexane, , 3-dihydroxycyclohexane, 1,2-dihydroxycyclohexane, 1,3-adamantanediol, dicyclopentadiene dihydrate, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxy Carboxy group-containing diol compounds such as benzoic acid, 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and 3,5-dihydroxybenzoic acid can be used.
 「2個のフェノール」、若しくは、「脂環式アルコールが2価の官能基で結合された化合物」の例としては、4,4′-ジヒドロキシジフェニルエーテル、4,4′-ジヒドロキシジフェニルスルホン、4,4′-(9-フルオレニリデン)ジフェノール、4,4′-ジヒドロキシジシクロヘキシルエーテル、4,4′-ジヒドロキシジシクロヘキシルスルホン、ビスフェノールA、ビスフェノールF、水添ビスフェノールA、水添ビスフェノールF等が使用できる。 Examples of “two phenols” or “a compound in which an alicyclic alcohol is bonded with a divalent functional group” include 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylsulfone, 4, 4 '-(9-fluorenylidene) diphenol, 4,4'-dihydroxydicyclohexyl ether, 4,4'-dihydroxydicyclohexyl sulfone, bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F, and the like can be used.
 また、「ビフェニル構造の両方の核にヒドロキシ基を一つずつ有する化合物」の例として、4,4′-ビフェノール、3,4′-ビフェノール、2,2′-ビフェノール、3,3′,5,5′-テトラメチル-4,4′-ビフェノールなどが使用できる。 Examples of “compound having one hydroxy group in both nuclei of biphenyl structure” include 4,4′-biphenol, 3,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5. 5,5'-tetramethyl-4,4'-biphenol and the like can be used.
 「ナフタレン骨格に二つのヒドロキシ基を有する化合物」の例としては2,6-ナフタレンジオール、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,8-ナフタレンジオール等が使用できる。 As examples of “compounds having two hydroxy groups in the naphthalene skeleton”, 2,6-naphthalenediol, 1,4-naphthalenediol, 1,5-naphthalenediol, 1,8-naphthalenediol, and the like can be used.
 前記ジオール化合物の数平均分子量は、100以上30000以下であることが好ましく、より好ましくは150以上20000以下であり、さらに好ましくは200以上10000以下である。数平均分子量が100未満では、低吸湿性、柔軟性が十分発揮できず、又、30000より大きいと、「ジオール化合物」の組成、構造、後に説明するジアミン成分(またはイソシアネート成分)の組成、構造によっては、相分離し、機械的特性を十分発揮できない場合がある。 The number average molecular weight of the diol compound is preferably 100 or more and 30000 or less, more preferably 150 or more and 20000 or less, and further preferably 200 or more and 10,000 or less. When the number average molecular weight is less than 100, low hygroscopicity and flexibility cannot be sufficiently exhibited. When the number average molecular weight is more than 30000, the composition and structure of the “diol compound”, and the composition and structure of the diamine component (or isocyanate component) described later. Depending on the case, phase separation may occur and the mechanical properties may not be sufficiently exhibited.
 ポリカーボネートジオール化合物としては、その骨格中上述した複数種のアルキレン基を有するポリカーボネートジオール(共重合ポリカーボネートジオール)であってもよい。例えば、2-メチル-1,8-オクタンジオールと1,9-ノナンジオールの組み合わせ、3-メチル-1,5-ペンタンジオールと1,6-ヘキサンジオールの組み合わせ、1,5-ペンタンジオールと1,6-ヘキサンジオールの組み合わせなどにより合成され得る共重合ポリカーボネートジオールなどを挙げることができる。好ましくは、2-メチル-1,8-オクタンジオールと1,9-ノナンジオールの組み合わせより合成され得る共重合ポリカーボネートジオールである。これらのポリカーボネートジオール化合物を2種以上併用することもできる。 The polycarbonate diol compound may be a polycarbonate diol (copolymerized polycarbonate diol) having a plurality of types of alkylene groups as described above in its skeleton. For example, a combination of 2-methyl-1,8-octanediol and 1,9-nonanediol, a combination of 3-methyl-1,5-pentanediol and 1,6-hexanediol, 1,5-pentanediol and 1 , 6-hexanediol, and the like can be synthesized as a copolymerized polycarbonate diol. A copolymer polycarbonate diol that can be synthesized from a combination of 2-methyl-1,8-octanediol and 1,9-nonanediol is preferable. Two or more of these polycarbonate diol compounds can be used in combination.
 本発明に使用できるポリカーボネートジオール化合物の市販品として(株)クラレ製クラレポリオールCシリーズ、旭化成ケミカルズ(株)デュラノール(登録商標)シリーズなどが挙げられる。例えば、クラレポリオールC-1015N、クラレポリオールC-1065N((株)クラレ製カーボネートジオール:2-メチル-1,8-オクタンジオール/1,9-ノナンジオール、数平均分子量約1,000)、クラレポリオールC-2015N、クラレポリオールC2065N((株)クラレ製カーボネートジオール:2-メチル-1,8-オクタンジオール/1,9-ノナンジオール、数平均分子量約2,000)、クラレポリオールC-1050、クラレポリオールC-1090((株)クラレ製カーボネートジオール:3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)、クラレポリオールC-2050、クラレポリオールC-2090((株)クラレ製カーボネートジオール:3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)、DURANOL(登録商標)-T5650E(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約500)、DURANOL(登録商標)-T5651(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)、DURANOL(登録商標)-T5652(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)などを挙げることができる。好ましくは、クラレポリオールC-1015N等が挙げられる。 Examples of commercially available polycarbonate diol compounds that can be used in the present invention include Kuraray Kuraray Polyol C series manufactured by Kuraray Co., Ltd., Asahi Kasei Chemicals Co., Ltd. Duranol (registered trademark) series, and the like. For example, Kuraray polyol C-1015N, Kuraray polyol C-1065N (Kuraray Co., Ltd. carbonate diol: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 1,000), Kuraray Polyol C-2015N, Kuraray polyol C2065N (Kuraray Co., Ltd. carbonate diol: 2-methyl-1,8-octanediol / 1,9-nonanediol, number average molecular weight about 2,000), Kuraray polyol C-1050, Kuraray polyol C-1090 (Kuraray Co., Ltd. carbonate diol: 3-methyl-1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 1,000), Kuraray polyol C-2050, Kuraray polyol C -2090 (Kuraray Co., Ltd.) : 3-methyl-1,5-pentanediol / 1,6-hexanediol, number average molecular weight of about 2,000), DURANOL (registered trademark) -T5650E (polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation): 1,5-pentane Diol / 1,6-hexanediol, number average molecular weight of about 500), DURANOL (registered trademark) -T5651 (Asahi Kasei Chemicals Co., Ltd. polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight About 1,000), DURANOL (registered trademark) -T5652 (polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight about 2,000), and the like. it can. Preferably, Kuraray polyol C-1015N is used.
 ポリカーボネートジオールの製造方法としては、原料ジオールと炭酸エステル類とのエステル交換、原料ジオールとホスゲンとの脱塩化水素反応を挙げることができる。原料である炭酸エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネート;ジフェニルカーボネートなどのジアリールカーボネート;及びエチレンカーボネート、プロピレンカーボネートなどのアルキレンカーボネートが挙げられる。 Examples of the method for producing the polycarbonate diol include transesterification between the raw diol and carbonates, and dehydrochlorination reaction between the raw diol and phosgene. Examples of the carbonic acid ester as a raw material include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; diaryl carbonates such as diphenyl carbonate; and alkylene carbonates such as ethylene carbonate and propylene carbonate.
 〔式(8)で表される構造を有する化合物〕
 式(8)で表される構造を有する化合物について説明する。
Figure JPOXMLDOC01-appb-C000013
[Compound having structure represented by formula (8)]
The compound having the structure represented by formula (8) will be described.
Figure JPOXMLDOC01-appb-C000013
 式(8)中、R3は、直結(結合)(結合)、アルキレン基(-C2n-)、パーフルオロアルキレン基(-C2n-)、エーテル結合(-O-)、エステル結合(-COO-)、カルボニル基(-CO-)、スルホニル基(-S(=O)-)、スルフィニル基(-SO-)、スルフェニル基(-S-)、カーボネート基(-OCOO-)、又はフルオレニリデン基を表す。nは1以上の正の整数である。nの上限は特に限定されないが、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下である。X1~X8は、それぞれが同じであっても、異なっていても良く、それぞれ水素、ハロゲン又はアルキル基を表す。 In the formula (8), R3 is a direct bond (bond) (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester Bond (—COO—), carbonyl group (—CO—), sulfonyl group (—S (═O) 2 —), sulfinyl group (—SO—), sulfenyl group (—S—), carbonate group (—OCOO) -), Or a fluorenylidene group. n is a positive integer of 1 or more. The upper limit of n is not particularly limited, but is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less. X1 to X8 may be the same or different and each represents hydrogen, a halogen or an alkyl group.
 式(8)で表される構造を有する化合物の具体例としては、特に限定されないが、ジフェニルエーテル骨格、ジフェニルスルホン骨格、9-フルオレニリデンジフェノール骨格、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールAのエチレンオキサイド付加物骨格又はビスフェノールAのプロピレンオキサイド付加物骨格、ビフェニル骨格、ナフタレン骨格等が挙げられる。 Specific examples of the compound having the structure represented by the formula (8) are not particularly limited, but include diphenyl ether skeleton, diphenyl sulfone skeleton, 9-fluorenylidene diphenol skeleton, bisphenol A skeleton, bisphenol F skeleton, and bisphenol A. Examples thereof include an ethylene oxide adduct skeleton, a propylene oxide adduct skeleton of bisphenol A, a biphenyl skeleton, and a naphthalene skeleton.
 前記骨格は、式(8)の両方のベンゼン環に各1個のヒドロキシ基を有する化合物から誘導される残基であることが好ましい。式(8)で表される構造を有する化合物の原料としては、4,4′-ジヒドロキシジフェニルエーテル、4,4′-ジヒドロキシジフェニルスルホン、4,4′-(9-フルオレニリデン)ジフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、4,4′-ビフェノール、3,4′-ビフェノール、2,2′-ビフェノール、3,3′,5,5′-テトラメチル-4,4′-ビフェノール、2,6-ナフタレンジオール、1,4-ナフタレンジオール、1,5-ナフタレンジオール又は1,8-ナフタレンジオール等が使用できる。 The skeleton is preferably a residue derived from a compound having one hydroxy group on each of the benzene rings in the formula (8). The raw materials for the compound having the structure represented by the formula (8) include 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfone, 4,4 ′-(9-fluorenylidene) diphenol, bisphenol A, Bisphenol F, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, 4,4'-biphenol, 3,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'- Tetramethyl-4,4′-biphenol, 2,6-naphthalenediol, 1,4-naphthalenediol, 1,5-naphthalenediol, 1,8-naphthalenediol, and the like can be used.
 好ましくは、4,4′-ジヒドロキシジフェニルエーテル、4,4′-ジヒドロキシジフェニルスルホン、4,4′-(9-フルオレニリデン)ジフェノール又はビスフェノールAのエチレンオキサイド付加物がよい。さらに好ましくは、4,4′-ジヒドロキシジフェニルエーテル又はビスフェノールAのエチレンオキサイド付加物である。 Preferably, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfone, 4,4 ′-(9-fluorenylidene) diphenol or bisphenol A ethylene oxide adduct is preferred. More preferably, 4,4′-dihydroxydiphenyl ether or ethylene oxide adduct of bisphenol A is used.
 これらの化合物を単独、又は2種類以上を組み合わせて使用することができる。これらの原料を用いることで、式(6)のR1位に、前記ジフェニルエーテル骨格等を導入することができる。 These compounds can be used alone or in combination of two or more. By using these raw materials, the diphenyl ether skeleton or the like can be introduced at the R1 position of the formula (6).
 〔式(9)で表される構造を有する化合物〕
 式(9)で表される構造を有する化合物について説明する。
[Compound having structure represented by formula (9)]
The compound having the structure represented by formula (9) will be described.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(9)中、R4′は、直結(結合)、アルキレン基(-C2n-)、パーフルオロアルキレン基(-C2n-)、エーテル結合(-O-)、エステル結合(-COO-)、カルボニル基(-CO-)、スルホニル基(-S(=O)-)、スルフィニル基(-SO-)、スルフェニル基(-S-)、カーボネート基(-OCOO-)、又はフルオレニリデン基を表す。nは1以上の正の整数である。nの上限は特に限定されないが、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下である。X1′~X8′は、それぞれが同じであっても、異なっていても良く、それぞれ水素、ハロゲン又はアルキル基を表す。
 式(9)で表される構造を有する化合物の具体例としては、特に限定されないが、ジシクロヘキシルエーテル骨格、ジシクロヘキシルスルホン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールAのエチレンオキサイド付加物骨格又は水添ビスフェノールAのプロピレンオキサイド付加物骨格等が挙げられる。
In the formula (9), R4 ′ is a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond ( —COO—), carbonyl group (—CO—), sulfonyl group (—S (═O) 2 —), sulfinyl group (—SO—), sulfenyl group (—S—), carbonate group (—OCOO—) Or a fluorenylidene group. n is a positive integer of 1 or more. The upper limit of n is not particularly limited, but is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less. X1 ′ to X8 ′ may be the same or different and each represents hydrogen, a halogen or an alkyl group.
Specific examples of the compound having the structure represented by the formula (9) are not particularly limited, but include dicyclohexyl ether skeleton, dicyclohexyl sulfone skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, and hydrogenated bisphenol A ethylene oxide. Examples include an adduct skeleton or a propylene oxide adduct skeleton of hydrogenated bisphenol A.
 前記骨格は、式(9)の両方のシクロヘキサン環に各1個のヒドロキシ基を有する化合物から誘導される残基であることが好ましい。式(9)で表される構造を有する化合物の原料としては、4,4′-ジヒドロキシジシクロヘキシルエーテル、4,4′-ジヒドロキシジシクロヘキシルスルホン、水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールAのエチレンオキサイド付加物又は水添ビスフェノールAのプロピレンオキサイド付加物等が使用できる。 The skeleton is preferably a residue derived from a compound having one hydroxy group in each of the cyclohexane rings of the formula (9). Examples of the raw material for the compound having the structure represented by the formula (9) include 4,4′-dihydroxydicyclohexyl ether, 4,4′-dihydroxydicyclohexylsulfone, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol A. An ethylene oxide adduct or a propylene oxide adduct of hydrogenated bisphenol A can be used.
 好ましくは、4,4′-ジヒドロキシジシクロヘキシルエーテル又は4,4′-ジヒドロキシジシクロヘキシルスルホンがよい。 Preferably, 4,4′-dihydroxydicyclohexyl ether or 4,4′-dihydroxydicyclohexyl sulfone is used.
 これらの化合物を単独、又は2種類以上を組み合わせて使用することができる。これらの原料を用いることで、式(6)のR1位に、前記ジシクロヘキシルエーテル骨格等を導入することができる。 These compounds can be used alone or in combination of two or more. By using these raw materials, the dicyclohexyl ether skeleton or the like can be introduced at the R1 position of the formula (6).
 式(6)の構造は、一例を挙げるならば、トリメリット酸無水物のハロゲン化物とジオール類とを反応させエステル基含有テトラカルボン酸二無水物を得、次いで、そのエステル基含有テトラカルボン酸二無水物とジアミン又はジイソシアネート等とを縮合反応(ポリイミド化)させて得ることができる。 For example, the structure of formula (6) is obtained by reacting a halide of trimellitic anhydride with diols to obtain an ester group-containing tetracarboxylic dianhydride, and then the ester group-containing tetracarboxylic acid. It can be obtained by condensation reaction (polyimidation) of dianhydride and diamine or diisocyanate.
 〔式(10)で表される構造を有する化合物〕
 本発明に係るポリエステルイミド樹脂は、さらに、式(10)で表される構造を構成単位中に含有するのがよい。
[Compound having structure represented by formula (10)]
The polyesterimide resin according to the present invention preferably further contains the structure represented by the formula (10) in the structural unit.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 〔式(6)のR2及び式(10)のR2′〕
 R2及びR2′について説明する。R2及びR2′はそれぞれ独立して、2価の鎖式脂肪族基、2価の環式脂肪族基又は2価の芳香族基であれば特に限定されない。これらの「2価の鎖式脂肪族基」、「2価の環式脂肪族基」、「2価の芳香族基」を、単独、又は2種類以上を組み合わせて使用することもできる。
[R2 in Formula (6) and R2 ′ in Formula (10)]
R2 and R2 ′ will be described. R2 and R2 ′ are not particularly limited as long as they are independently a divalent chain aliphatic group, a divalent cycloaliphatic group, or a divalent aromatic group. These “divalent chain aliphatic group”, “divalent cycloaliphatic group”, and “divalent aromatic group” can be used alone or in combination of two or more.
 好ましくは、R2は下記式(11)で表される構造を有する化合物であり、R2′は下記式(12)で表される構造を有する化合物である。 Preferably, R2 is a compound having a structure represented by the following formula (11), and R2 ′ is a compound having a structure represented by the following formula (12).
 〔式(11)で表される構造を有する化合物〕
 式(6)におけるR2としては、耐熱性、柔軟性、低吸湿性のバランス等から、式(11)で表される構造を有する化合物であることが好ましい。
[Compound having structure represented by formula (11)]
R2 in Formula (6) is preferably a compound having a structure represented by Formula (11) from the viewpoint of balance between heat resistance, flexibility, low hygroscopicity, and the like.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(11)中、R5は、直結(結合)、アルキレン基(-C2n-)、パーフルオロアルキレン基(-C2n-)、エーテル結合(-O-)、エステル結合(-COO-)、カルボニル基(-CO-)、スルホニル基(-S(=O)-)、スルフィニル基(-SO-)又はスルフェニル基(-S-)を表す。nは1以上10以下の正の整数であることが好ましく、より好ましくは1以上5以下、さらに好ましくは1以上3以下である。X9~16は、同じであっても、異なっていても良く、それぞれ水素、ハロゲン又はアルキル基を表す。 In the formula (11), R5 represents a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond (— COO—), a carbonyl group (—CO—), a sulfonyl group (—S (═O) 2 —), a sulfinyl group (—SO—) or a sulfenyl group (—S—). n is preferably a positive integer of 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. X9 to 16 may be the same or different and each represents hydrogen, a halogen or an alkyl group.
 〔式(12)で表される構造を有する化合物〕
 式(10)におけるR2′としては、耐熱性、柔軟性、低吸湿性のバランス等から、式(12)で表される構造を有する化合物であることが好ましい。
[Compound having structure represented by formula (12)]
R2 ′ in the formula (10) is preferably a compound having a structure represented by the formula (12) from the balance of heat resistance, flexibility, low hygroscopicity, and the like.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(12)中、R5′は、直結(結合)、アルキレン基(-C2n-)、パーフルオロアルキレン基(-C2n-)、エーテル結合(-O-)、エステル結合(-COO-)、カルボニル基(-CO-)、スルホニル基(-S(=O)-)、スルフィニル基(-SO-)又はスルフェニル基(-S-)を表す。nは1以上10以下の正の整数であることが好ましく、より好ましくは1以上5以下、さらに好ましくは1以上3以下である。X9′~16′は、同じであっても、異なっていても良く、それぞれ水素、ハロゲン又はアルキル基を表す。 In the formula (12), R5 ′ is a direct bond (bond), an alkylene group (—C n H 2n —), a perfluoroalkylene group (—C n F 2n —), an ether bond (—O—), an ester bond ( And represents a carbonyl group (—CO—), a sulfonyl group (—S (═O) 2 —), a sulfinyl group (—SO—) or a sulfenyl group (—S—). n is preferably a positive integer of 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. X9 ′ to 16 ′ may be the same or different and each represents a hydrogen, halogen or alkyl group.
 式(6)及び式(10)において、「2価の鎖式脂肪族基」、「2価の環式脂肪族基」又は「2価の芳香族基」を式(6)のR2位及び式(10)のR2′位に導入するためには、それぞれ対応するジアミン成分又はジイソシアネート成分を用いることが好ましい。すなわち、「芳香族ジアミン又はそれに対応する芳香族ジイソシアネート」、「環式脂肪族ジアミン又はそれに対応する環式脂肪族ジイソシアネート」、「鎖式脂肪族ジアミン又はそれに対応する鎖式脂肪族ジイソシアネート」を適宜選択することによって、耐熱性、柔軟性、低吸湿性に優れたポリエステルイミド樹脂を得ることができる。 In the formula (6) and the formula (10), “a divalent chain aliphatic group”, “a divalent cycloaliphatic group” or “a divalent aromatic group” is represented by the R2 position in the formula (6) and In order to introduce at the R2 ′ position of the formula (10), it is preferable to use a corresponding diamine component or diisocyanate component, respectively. That is, “aromatic diamine or the corresponding aromatic diisocyanate”, “cycloaliphatic diamine or the corresponding cycloaliphatic diisocyanate”, “chain aliphatic diamine or the corresponding chain aliphatic diisocyanate” are appropriately used. By selecting, a polyesterimide resin excellent in heat resistance, flexibility and low hygroscopicity can be obtained.
 式(6)のR2及び式(10)のR2′ のジアミン成分又はそれに対応するジイソシアネート成分は同一であっても異なっていてもよい。後述する好ましい製造方法に基づくならば、同一であるのが好ましい。 R2 in formula (6) and R2 ′ ジ ア ミ ン in formula (10) or the corresponding diisocyanate component may be the same or different. If based on the preferable manufacturing method mentioned later, it is preferable that it is the same.
 R2及びR2′を基本骨格とするジアミン成分又はそれに対応するジイソシアネート成分について説明する。 A diamine component having R2 and R2 ′ as a basic skeleton or a diisocyanate component corresponding thereto will be described.
 「芳香族ジアミン又はそれに対応する芳香族ジイソシアネート」としては、具体的には、ジアミン化合物として例示すると、2,2′-ビス(トリフルオロメチル)ベンジジン、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノデュレン、4,4′-ジアミノジフェニルメタン、4,4′-メチレンビス(2-メチルアニリン)、4,4′-メチレンビス(2-エチルアニリン)、4,4′-メチレンビス(2,6-ジメチルアニリン)、4,4′-メチレンビス(2,6-ジエチルアニリン)、4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルエーテル、3,3′-ジアミノジフェニルエーテル、2,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、3,3′-ジアミノジフェニルスルホン、4,4′-ジアミノベンゾフェノン、3,3′-ジアミノベンゾフェノン、4,4′-ジアミノジフェニルスルフィド、3,3′-ジアミノジフェニルスルフィド、4,4′-ジアミノジフェニルプロパン、3,3′-ジアミノジフェニルプロパン、4,4′-ジアミノベンズアニリド、P-キシレンジアミン、m-キシレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、ベンジジン、3,3′-ジヒドロキシベンジジン、3,3′-ジメトキシベンジジン、3,3′-ジメチル-4,4′-ジアミノビフェニル、3,3′-ジエチル-4,4′-ジアミノビフェニル、2,2′-ジメチル-4,4′-ジアミノビフェニル、2,2′-ジエチル-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジエトキシ-4,4′-ジアミノビフェニル、o-トリジン、m-トリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4′-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ジアミノターフェニル等が挙げられる。また、これらは、2種類以上併用することもできる。 Specific examples of the “aromatic diamine or the corresponding aromatic diisocyanate” include 2,2′-bis (trifluoromethyl) benzidine, p-phenylenediamine, m-phenylenediamine, , 4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4, 4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4 -Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenyl sulfide, 3,3 '-Diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminobenzanilide, P-xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 2,7-naphthalenediamine, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, 3,3'-dimethyl-4,4 ' -Diaminobiphenyl, 3,3'-diethyl -4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4 ' -Diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, o-tolidine, m-tolidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) ) Benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4 -Aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl Yl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, diamino terphenyl, and the like. These can be used in combination of two or more.
 また、「環式脂肪族ジアミン又はそれに対応する環式脂肪族ジイソシアネート」としては、ジアミン化合物として例示すると、トランス-1,4-ジアミノシクロヘキサン、シス-1,4-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン(トランス/シス混合物)、1,3-ジアミノシクロヘキサン、4,4′-メチレンビス(シクロヘキシルアミン) (トタンス体、シス体、トランス/シス混合物)、イソホロンジアミン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8-ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3-ジアミノアダマンタン、4,4′-メチレンビス(2-メチルシクロヘキシルアミン)、4,4′-メチレンビス(2-エチルシクロヘキシルアミン)、4,4′-メチレンビス(2,6-ジメチルシクロヘキシルアミン)、4,4′-メチレンビス(2,6-ジエチルシクロヘキシルアミン)、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン等が挙げられる。また、これらは、2種類以上併用することもできる。 Examples of the “cycloaliphatic diamine or the corresponding cycloaliphatic diisocyanate” include trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-diamino, as diamine compounds. Cyclohexane (trans / cis mixture), 1,3-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine) (tonthus, cis, trans / cis mixture), isophoronediamine, 1,4-cyclohexanebis (methylamine) ), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 4,4'-methyl Bis (2-methylcyclohexylamine), 4,4'-methylenebis (2-ethylcyclohexylamine), 4,4'-methylenebis (2,6-dimethylcyclohexylamine), 4,4'-methylenebis (2,6- Diethyl cyclohexylamine), 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexafluoropropane and the like. These can be used in combination of two or more.
 「鎖式脂肪族ジアミン又はそれに対応する鎖式脂肪族ジイソシアネート」としては、ジアミン化合物として例示すると、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン等が挙げられる。また、これらは、2種類以上併用することもできる。 Examples of the “chain aliphatic diamine or the corresponding chain aliphatic diisocyanate” include 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1, Examples include 6-hexamethylene diamine, 1,7-heptamethylene diamine, 1,8-octamethylene diamine, and 1,9-nonamethylene diamine. These can be used in combination of two or more.
 耐熱性、柔軟性、低吸湿性のバランス等から、式(6)中のR2及び式(12)中のR2′のジアミン成分又はそれに対応するジイソシアネート成分として好ましい成分は、ジアミン化合物として例示すると、p-フェニレンジアミン、2,4-ジアミノトルエン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル、1,5-ナフタレンジアミン、o-トリジン、ジアミノターフェニル、4,4′-メチレンビス(シクロヘキシルアミン)、イソホロンジアミン等から誘導される残基である。より好ましくは、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル、1,5-ナフタレンジアミン、o-トリジンであり、さらに好ましいのは、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル、o-トリジンである。最も好ましくは4,4′-ジアミノジフェニルメタン、o-トリジンから誘導される残基である。 In view of the balance of heat resistance, flexibility, low hygroscopicity, and the like, the preferred component as the diamine component of R2 ′ in formula (6) and R2 ′ in formula (12) or the corresponding diisocyanate component is exemplified as the diamine compound. p-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 1,5-naphthalenediamine, o-tolidine, diaminoterphenyl, 4,4'-methylenebis ( Cyclohexylamine), isophoronediamine and the like. More preferred are 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 1,5-naphthalenediamine, o-tolidine, and further preferred is 4,4′-diaminodiphenylmethane, 4,4 ′. -Diaminodiphenyl ether, o-tolidine. Most preferred is a residue derived from 4,4'-diaminodiphenylmethane, o-tolidine.
 ポリエステルイミド樹脂を構成する全構成単位を100モル%としたときに、式(6)で表される構造、又は式(6)で表される構造と式(10)で表される構造の合計を、20モル%以上含有するのが好ましく、より好ましくは50モル%以上含有するのがよく、さらに好ましくは70モル%以上含有するのがよい。ポリエステルイミド樹脂を構成する全構成単位を100モル%としたときに、式(6)及び式(10)で表される構造が20モル%未満の場合、柔軟性、低吸湿性を併せ持つ樹脂組成物の製造が困難となることがある。 When all the structural units constituting the polyesterimide resin are 100 mol%, the structure represented by the formula (6), or the sum of the structure represented by the formula (6) and the structure represented by the formula (10) Is preferably contained in an amount of 20 mol% or more, more preferably 50 mol% or more, and even more preferably 70 mol% or more. Resin composition having both flexibility and low hygroscopicity when the structure represented by formula (6) and formula (10) is less than 20 mol% when the total constitutional units constituting the polyesterimide resin are 100 mol% Manufacture of things may be difficult.
 本発明に係るポリエステルイミド樹脂は、式(6)で表される構造と式(10)で表される構造のモル比が式(6)/式(10)=99/1~1/99であるのが好ましく、式(6)/式(10)=90/10~10/90であるのがより好ましく、式(6)/式(10)=80/20~20/80であるのがさらに好ましく、式(6)/式(10)=70/30~30/70であるのが特に好ましい。 In the polyesterimide resin according to the present invention, the molar ratio of the structure represented by the formula (6) and the structure represented by the formula (10) is formula (6) / formula (10) = 99/1 to 1/99. Preferably, there is a formula (6) / formula (10) = 90/10 to 10/90, more preferably a formula (6) / formula (10) = 80/20 to 20/80. More preferably, formula (6) / formula (10) = 70/30 to 30/70 is particularly preferable.
 式(6)で表される構造が99以内であると、R1成分の化学構造によっては、耐熱性、熱寸法精度がよい。又、式(10)で表される構造のモル比が99以内であると、R2成分及び/又はR2′成分に依存するが、概ね、低吸湿性、柔軟性が向上する。又、溶解性もよい。 If the structure represented by formula (6) is within 99, depending on the chemical structure of the R1 component, heat resistance and thermal dimensional accuracy are good. In addition, when the molar ratio of the structure represented by the formula (10) is within 99, depending on the R2 component and / or the R2 ′ component, low hygroscopicity and flexibility are generally improved. It also has good solubility.
 ポリエステルイミド樹脂の製造法の一例を挙げるならば、トリメリット酸無水物のハロゲン化物とジオール類とを反応させエステル基含有テトラカルボン酸二無水物を得、次いで、そのエステル基含有テトラカルボン酸二無水物とジアミン又はジイソシアネート等とを縮合反応(ポリイミド化)させて得ることができる。 To give an example of a method for producing a polyesterimide resin, a trimellitic anhydride halide and a diol are reacted to obtain an ester group-containing tetracarboxylic dianhydride, and then the ester group-containing tetracarboxylic acid dianhydride. It can be obtained by condensation reaction (polyimidation) of an anhydride with diamine or diisocyanate.
 本発明で用いられるポリエステルイミド樹脂の分子量は、N-メチル-2-ピロリドン中(ポリマー濃度0.5g/dL)、30℃での対数粘度にして0.1~2.5dL/gに相当する分子量を有するものが好ましく、より好ましくは0.3~1.5dL/gに相当する分子量を有するものである。上記範囲内であれば、機械的特性が十分であり、また、フィルム等へ加工する際の成形加工が容易となる。 The molecular weight of the polyesterimide resin used in the present invention corresponds to a logarithmic viscosity at 30 ° C. in 0.1-2.5 dL / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dL). Those having a molecular weight are preferred, more preferably those having a molecular weight corresponding to 0.3 to 1.5 dL / g. If it is in the said range, mechanical characteristics will be enough, and the shaping | molding process at the time of processing to a film etc. will become easy.
 〔1.4〕ポリアミドイミド
 本発明に係るポリアミドイミドは、酸成分として、
 a)トリカルボン酸;ジフェニルエーテル-3,3′,4′-トリカルボン酸、ジフェニルスルホン-3,3′,4′-トリカルボン酸、ベンゾフェノン-3,3′,4′-トリカルボン酸、ナフタレン-1,2,4-トリカルボン酸、ブタン-1,2,4-トリカルボン酸などのトリカルボン酸等の一無水物、エステル化物などの単独、又は2種以上の混合物。
[1.4] Polyamideimide The polyamideimide according to the present invention is an acid component,
a) Tricarboxylic acid; diphenyl ether-3,3 ', 4'-tricarboxylic acid, diphenylsulfone-3,3', 4'-tricarboxylic acid, benzophenone-3,3 ', 4'-tricarboxylic acid, naphthalene-1,2 , 4-tricarboxylic acid, butan-1,2,4-tricarboxylic acid and other tricarboxylic acid monoanhydrides, esterified products and the like, or a mixture of two or more.
 b)テトラカルボン酸;ジフェニルスルホン-3,3′,4,4′-テトラカルボン酸、ナフタレン-2,3,6,7-テトラカルボン酸、ナフタレン-1,2,4,5-テトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸、ブタン-1,2,3,4-テトラカルボン酸、シクロペンタン-1,2,3,4-テトラカルボン酸一無水物、二無水物、エステル化物などの単独、又は2種以上の混合物。 b) Tetracarboxylic acid; diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Naphthalene-1,4,5,8-tetracarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid monoanhydride, dianhydride , Esterified compounds alone, or a mixture of two or more.
 c)ジカルボン酸;アジピン酸、アゼライン酸、セバシン酸、シクロヘキサン-4,4′-ジカルボン酸のジカルボン酸、及びこれらの一無水物やエステル化物。
 アミン成分としては、
 d)アミン成分
 3,3′-ジメチル-4,4′-ジアミノビフェニル、3,3′-ジエチル-4,4′-ジアミノビフェニル、2,2′-ジメチル-4,4′-ジアミノビフェニル、2,2′-ジエチル-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジエトキシ-4,4′-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、3,3′-ジアミノジフェニルスルホン、3,4′-ジアミノビフェニル、3,3′-ジアミノビフェニル、3,3′-ジアミノベンズアニリド、4,4′-ジアミノベンズアニリド、4,4′-ジアミノベンゾフェノン、3,3′-ジアミノベンゾフェノン、3,4′-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4′-ジアミノジフェニルスルフィド、3,3′-ジアミノジフェニルスルフィド、4,4′-ジアミノジフェニルプロパン、3,3′-ジアミノジフェニルプロパン、3,3′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルメタン、p-キシレンジアミン、m-キシレンジアミン、2,2′-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4′-ビス(4-アミノフェノキシ)ビフェニル、4,4′-ビス(3-アミノフェノキシ)ビフェニル、テトラメチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、4,4′-ジシクロヘキシルメタンジアミン、シクロヘキサン-1,4-ジアミン、ジアミノシロキサン、又はこれらに対応するジイソシアネート単独、又は2種以上の混合物が挙げられる。
c) Dicarboxylic acid; adipic acid, azelaic acid, sebacic acid, dicarboxylic acid of cyclohexane-4,4'-dicarboxylic acid, and monoanhydrides and esterified products thereof.
As an amine component,
d) Amine component 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, p-phenylenediamine, m -Phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3 ' -Diaminobiphenyl, 3,3'-diaminobenzanilide, 4,4'-diaminobenzanilide, 4,4'-diaminobenzene Nzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Sulfide, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, p-xylenediamine, m-xylenediamine, 2,2 ' -Bis (4-aminophenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2 , 2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4 Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4 , 4'-bis (3-aminophenoxy) biphenyl, tetramethylenediamine, hexamethylenediamine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, cyclohexane-1,4-diamine, diaminosiloxane, or their corresponding diisocyanates These may be used alone or in combination of two or more.
 特に、酸成分として、無水トリメリット酸(TMA)、3,3,4′,4′-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、及び3,3,4′,4′-ビフェニルテトラカルボン酸二無水物(BPDA)、イソシアネート成分として1,5-ナフタレンジイソシアネート(NDI)、を含む原料で重合されたポリアミドイミド樹脂であることが好ましい。 In particular, trimellitic anhydride (TMA), 3,3,4 ', 4'-benzophenone tetracarboxylic dianhydride (BTDA), and 3,3,4', 4'-biphenyltetracarboxylic acid as acid components Polyamideimide resin polymerized with a raw material containing dianhydride (BPDA) and 1,5-naphthalene diisocyanate (NDI) as an isocyanate component is preferable.
 ポリアミドイミドのイミド結合とアミド結合のモル比は、99/1~60/40モル比が好ましく、より好ましくは99/1~75/25であり、さらにより好ましくは90/10~80/20である。イミド結合とアミド結合のモル比が、60/40以上では、耐熱性、耐湿信頼性、耐熱信頼性が向上する。また、99/1以下であると、弾性率が低くなり、耐折特性、屈曲特性が向上する傾向にある。 The molar ratio between the imide bond and the amide bond of the polyamideimide is preferably 99/1 to 60/40, more preferably 99/1 to 75/25, and even more preferably 90/10 to 80/20. is there. When the molar ratio of the imide bond to the amide bond is 60/40 or more, the heat resistance, moisture resistance reliability, and heat resistance reliability are improved. On the other hand, if it is 99/1 or less, the elastic modulus tends to be low, and the folding resistance and bending characteristics tend to be improved.
 一つの好ましい実施態様は、式(13)で表される単位を必須成分とし、更に、式(14)、式(15)、及び、式(16)で表される群より選ばれる少なくとも1種の単位を、繰り返し単位として分子鎖中に含有するポリアミドイミド樹脂である。 In one preferred embodiment, the unit represented by the formula (13) is an essential component, and at least one selected from the group represented by the formula (14), the formula (15), and the formula (16) is used. Is a polyamidoimide resin containing as a repeating unit in the molecular chain.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(Xは、酸素原子、CO、SO、又は、結合を表し、nは0又は1を表す。)
Figure JPOXMLDOC01-appb-C000020
(Yは、酸素原子、CO、又はOOC-R-COOを表し、nは0又は1を、Rは二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000021
(X represents an oxygen atom, CO, SO 2 , or a bond, and n represents 0 or 1.)
Figure JPOXMLDOC01-appb-C000020
(Y represents an oxygen atom, CO, or OOC—R—COO, n represents 0 or 1, and R represents a divalent organic group.)
Figure JPOXMLDOC01-appb-C000021
 ここで、式(14)中、SO、又は、結合(ビフェニル結合)、又は、n=0が好ましく、更に好ましくは、結合(ビフェニル結合)、又はn=0の場合である。式(14)中、Yは、ベンゾフェノン型(CO)、又は、結合型(ビフェニル結合)が好ましい。 Here, in formula (14), SO 2 or a bond (biphenyl bond) or n = 0 is preferable, and a bond (biphenyl bond) or n = 0 is more preferable. In formula (14), Y is preferably a benzophenone type (CO) or a bond type (biphenyl bond).
 一つの好ましい実施態様は式(13)が無水トリメリット酸と1,5-ナフタレンジイソシアネートからの繰り返し単位、式(14)がテレフタル酸と1,5-ナフタレンジイソシアネートからの繰り返し単位、式(15)がビフェニルテトラカルボン酸二無水物、及び/又は、ベンゾフェノンテトラカルボン酸二無水物と1,5-ナフタレンジイソシアネートからの繰り返し単位で、その含有比が式(13)/{式(14)+式(15)+式(16)}=1/99~40/60モル比で、かつ、式(14)/式(15)=10/90~90/10モル比が好ましい。 One preferred embodiment is that formula (13) is a repeating unit from trimellitic anhydride and 1,5-naphthalene diisocyanate, formula (14) is a repeating unit from terephthalic acid and 1,5-naphthalene diisocyanate, formula (15) Is a repeating unit from biphenyltetracarboxylic dianhydride and / or benzophenonetetracarboxylic dianhydride and 1,5-naphthalene diisocyanate, the content ratio of which is the formula (13) / {formula (14) + formula ( 15) + formula (16)} = 1/99 to 40/60 molar ratio, and formula (14) / formula (15) = 10/90 to 90/10 molar ratio is preferable.
 ポリアミドイミド樹脂のイミド結合は、そのイミド化率が50%以上であることが好ましく、より好ましくは90%以上、さらにより好ましくは95%以上である。イミド化率は高いほど好ましく上限は100%である。上記ポリアミドイミド樹脂は、通常の方法で合成することができる。例えば、イソシアネート法、アミン法(酸クロリド法、低温溶液重合法、室温溶液重合法等)などであるが、本発明で用いるポリアミドイミド樹脂は有機溶剤に可溶なものが好ましく、前記通り、ピール強度(接着強度)の信頼性確保などの理由から、イソシアネート法による製造が好ましい。また、工業的にも、重合時の溶液がそのまま塗工できるため好ましい。 The imide bond of the polyamide-imide resin preferably has an imidation ratio of 50% or more, more preferably 90% or more, and still more preferably 95% or more. The higher the imidization rate, the more preferable the upper limit is 100%. The polyamideimide resin can be synthesized by a usual method. For example, the isocyanate method, amine method (acid chloride method, low temperature solution polymerization method, room temperature solution polymerization method, etc.), etc., but the polyamideimide resin used in the present invention is preferably soluble in an organic solvent. For reasons such as ensuring the reliability of strength (adhesive strength), production by the isocyanate method is preferred. Also, industrially, it is preferable because the solution at the time of polymerization can be applied as it is.
 本発明のポリアミドイミド樹脂の分子量は、N-メチル-2-ピロリドン中(ポリマー濃度0.5g/dL)、30℃での対数粘度にして0.3から2.5dL/gに相当する分子量を有するものが好ましく、より好ましくは0.5から2.0dL/gに相当する分子量を有するものである。対数粘度が0.3dL/g以上であればフィルム等の成型物にしたとき、機械的特性が十分となる。また、2.0dL/g以下であると溶液粘度が高くなり過ぎず、成形加工が容易となる。 The molecular weight of the polyamideimide resin of the present invention is a molecular weight corresponding to 0.3 to 2.5 dL / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dL) and logarithmic viscosity at 30 ° C. Those having a molecular weight corresponding to 0.5 to 2.0 dL / g are more preferable. When the logarithmic viscosity is 0.3 dL / g or more, mechanical properties are sufficient when formed into a molded product such as a film. On the other hand, if it is 2.0 dL / g or less, the solution viscosity does not become too high, and the molding process becomes easy.
 〔1.5〕ポリエーテルイミド
 本発明に係るポリエーテルイミドは、その構造単位に芳香核結合及びイミド結合を含む熱可塑性樹脂であり、特に制限されるものでなく、具体的には、下記式(17)又は下記式(18)で表される繰り返し単位を有するポリエーテルイミドである。
[1.5] Polyetherimide The polyetherimide according to the present invention is a thermoplastic resin containing an aromatic nucleus bond and an imide bond in its structural unit, and is not particularly limited. It is a polyetherimide having a repeating unit represented by (17) or the following formula (18).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(17)で表される繰り返し単位を有するポリエーテルイミドは、ゼネラルエレクトリック社製の商品名「Ultem 1000」(ガラス転移温度:216℃)、「Ultem 1010」(ガラス転移温度:216℃)]、上記式(18)で表される繰り返し単位を有するポリエーテルイミドは、「Ultem CRS5001」(ガラス転移温度Tg226℃)]、が挙げられ、そのほかの具体例として、三井化学株式会社製の商品名「オーラムPL500AM」(ガラス転移温度258℃)などが挙げられる。 Polyetherimides having a repeating unit represented by the above formula (17) are trade names “Ultem 1000” (glass transition temperature: 216 ° C.) and “Ultem 1010” (glass transition temperature: 216 ° C.) manufactured by General Electric Co., Ltd. ], A polyetherimide having a repeating unit represented by the above formula (18) is “Ultem CRS5001” (glass transition temperature Tg 226 ° C.)], and other specific examples include products manufactured by Mitsui Chemicals, Inc. The name “Aurum PL500AM” (glass transition temperature 258 ° C.) and the like.
 当該ポリエーテルイミドの製造方法は特に限定されるものではないが、通常、上記式(17)を有する非晶性ポリエーテルイミドは、4,4´-[イソプロピリデンビス(p-フェニレンオキシ)ジフタル酸二無水物とm-フェニレンジアミンとの重縮合物として、また上記構造式(18)を有するポリエーテルイミドは、4,4´-[イソプロピリデンビス(p-フェニレンオキシ)ジフタル酸二無水物とp-フェニレンジアミンとの重縮合物として公知の方法によって合成される。 The method for producing the polyetherimide is not particularly limited. Usually, the amorphous polyetherimide having the above formula (17) is 4,4 ′-[isopropylidenebis (p-phenyleneoxy) diphthalate. As a polycondensate of acid dianhydride and m-phenylenediamine, and polyetherimide having the above structural formula (18), 4,4 ′-[isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride It is synthesized by a known method as a polycondensate of benzene and p-phenylenediamine.
 また、本発明で使用するポリエーテルイミドには、本発明の主旨を超えない範囲でアミド基、エステル基、スルホニル基など共重合可能な他の単量体単位を含むものであってもよい。なお、ポリエーテルイミドは、1種類を単独で又は2種類以上を組み合わせて用いることができる。 Further, the polyetherimide used in the present invention may contain other monomer units capable of copolymerization such as amide group, ester group and sulfonyl group within the range not exceeding the gist of the present invention. In addition, polyetherimide can be used individually by 1 type or in combination of 2 or more types.
 〔2〕添加剤
 本発明に係る上記イミド構造を有する透明耐熱性樹脂を含有するドープには、各種添加剤を添加することができる。用いることができる添加剤について以下説明する。
[2] Additives Various additives can be added to the dope containing the transparent heat-resistant resin having the imide structure according to the present invention. Additives that can be used are described below.
 透明耐熱性樹脂を含有するドープには、本発明の効果を阻害しない範囲で、熱伝導性フィラーを添加しても良い。これにより、ポリイミド系光学フィルムの熱伝導率を高めることができる。 A heat conductive filler may be added to the dope containing the transparent heat resistant resin as long as the effect of the present invention is not impaired. Thereby, the thermal conductivity of a polyimide-type optical film can be raised.
 熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、アルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられ、これらのフィラー形状は球状、板状の物のほか、針状など特に限定されるものではない。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーが好ましい。 The thermally conductive filler is preferably a highly thermally conductive filler, and specifically includes aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, and silicon carbide. The filler shape is not particularly limited to a spherical or plate-like material, or a needle shape. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable.
 また、本発明に係る透明耐熱性樹脂を含有するドープには、脱水剤を添加しても良い。脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族カルボン酸無水物、及び無水安息香酸等の芳香族カルボン酸無水物等が挙げられるが、無水酢酸及び/又は無水安息香酸が好ましい。また、ポリアミド酸又はポリイミドに対する脱水剤の含有量は、脱水剤の含有量(モル)/ポリアミド酸又はポリイミドの含有量(モル)が、0.1~5.0となる範囲が好ましい。なお、この場合には、アセチルアセトン等のゲル化遅延剤を併用しても良い。 Further, a dehydrating agent may be added to the dope containing the transparent heat resistant resin according to the present invention. Specific examples of the dehydrating agent include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride, but acetic anhydride and / or anhydrous Benzoic acid is preferred. The content of the dehydrating agent relative to the polyamic acid or polyimide is preferably in the range where the dehydrating agent content (mole) / polyamic acid or polyimide content (mole) is 0.1 to 5.0. In this case, a gelation retarder such as acetylacetone may be used in combination.
 また、本発明に係る透明耐熱性樹脂を含有するドープには、例えば、フッ素系、ポリシロキサン系等の界面活性剤を添加しても良い。界面活性剤を添加すると、表面平滑性の良好なフィルムを得やすくなる。界面活性剤は市販品を使用しても良く、フッ素系界面活性剤としては、例えば、DIC株式会社のメガファック(登録商標)シリーズや、株式会社ネオスのフタージェント(登録商標)シリーズであるフタージェント(登録商標)251、212MH、250、222F、212D、FTX-218等が挙げられる。ポリシロキサン系界面活性剤としては、例えば、ビックケミー・ジャパン株式会社のBYK-307、BYK-315、BYK-320、BYK-325、BYK-330、BYK-331、BYK-332、BYK-333、BYK-344等が挙げられる。 Further, for example, a fluorine-based or polysiloxane-based surfactant may be added to the dope containing the transparent heat-resistant resin according to the present invention. When a surfactant is added, a film with good surface smoothness can be easily obtained. A commercially available product may be used as the surfactant, and examples of the fluorosurfactant include a mega-fac (registered trademark) series manufactured by DIC Corporation and a footer such as Neos Corporation's Footgent (registered trademark) series. GENT (registered trademark) 251, 212MH, 250, 222F, 212D, FTX-218, and the like. Examples of the polysiloxane surfactant include BYK-307, BYK-315, BYK-320, BYK-325, BYK-330, BYK-331, BYK-332, BYK-333, BYK manufactured by BYK-Chemie Japan Co., Ltd. -344 and the like.
 また、本発明に係る透明耐熱性樹脂を含有するドープには、例えば、フェノール系、硫黄系、リン酸系、亜リン酸系等の酸化防止剤を添加しても良い。 Further, for example, a phenol-based, sulfur-based, phosphoric acid-based or phosphorous acid-based antioxidant may be added to the dope containing the transparent heat-resistant resin according to the present invention.
 また、本発明に係る透明耐熱性樹脂を含有するドープには、その他の各種機能性材料を添加しても良い。各種機能性材料とは、例えば、カーボンナノチューブ、ナノ金属材料等の導電性材料、チタン酸バリウム等の強誘電性材料、ZnS:Ag、ZnS:Cu、YS:Eu等の蛍光体、紫外線吸収剤等である。 Various other functional materials may be added to the dope containing the transparent heat-resistant resin according to the present invention. Various functional materials include, for example, conductive materials such as carbon nanotubes and nano metal materials, ferroelectric materials such as barium titanate, and phosphors such as ZnS: Ag, ZnS: Cu, and Y 2 O 2 S: Eu. UV absorbers and the like.
 更に、本発明に係る透明耐熱性樹脂を含有するドープには、リン系難燃剤を添加しても良い。これにより、ポリイミド系光学フィルムに難燃性を付与することができる。リン系難燃剤としては、例えば、ポリリン酸アンモニウム、リン酸エステル、縮合リン酸エステル、フェノキシホスファゼン化合物、リン酸エステルアミド等を用いることができる。これらリン系難燃剤の中でも、フェノキシホスファゼン化合物を使用することが好ましい。該フェノキシホスファゼン化合物としては、例えば、大塚化学製SPS-100等を使用することができる。なお、ハロゲン形難燃剤を混合して難燃性を付与することもできるが、リン系難燃剤を使用することが好ましい。 Furthermore, a phosphorus flame retardant may be added to the dope containing the transparent heat resistant resin according to the present invention. Thereby, a flame retardance can be provided to a polyimide-type optical film. Examples of the phosphorus-based flame retardant include ammonium polyphosphate, phosphate ester, condensed phosphate ester, phenoxyphosphazene compound, phosphate ester amide, and the like. Among these phosphorus flame retardants, it is preferable to use a phenoxyphosphazene compound. As the phenoxyphosphazene compound, for example, SPS-100 manufactured by Otsuka Chemical Co., Ltd. can be used. Although a flame retardant can be imparted by mixing a halogen type flame retardant, it is preferable to use a phosphorus-based flame retardant.
 〔3〕フィルムのイミド化処理
 ポリアミド酸を用いて流延膜を形成した場合、得られたフィルムに対してイミド化処理を施すことでポリイミドフィルムを製造することができる。
[3] Imidization treatment of film When a cast film is formed using a polyamic acid, a polyimide film can be produced by applying an imidization treatment to the obtained film.
 フィルムは適切な熱処理を施すことでポリマー鎖分子内及びポリマー鎖分子間でのイミド化が進行して機械的特性が向上するが、熱処理を施すほどポリイミドを用いた光学フィルムは吸収波長の変化に伴い色濃く変化する。特に、4.0~15.0μmの薄いポリイミドを用いた光学フィルムにおいては、L値が高いほど全体的に色が薄いために厚さムラによる横段ムラは見えにくく外観は良好となるが、イミド化の進行具合が十分ではないためポリイミドフィルムの耐屈曲性及び破断強度等の機械的特性が悪化する。また、逆にL値が低すぎると、厚さムラによる色のコントラストが鮮明になるため横段ムラが悪化するばかりか、ポリイミドを用いた光学フィルムが一部炭化して脆弱となりフィルムの機械的特性が著しく後退する。上記理由から、本発明のポリイミドを用いた光学フィルムの製造方法では、L値を30~55とするのが良好な機械的特性を保つのに良く、より好ましくは、L値は38~54とするのが良い。 When the film is subjected to appropriate heat treatment, imidization in the polymer chain molecules and between the polymer chain molecules proceeds to improve the mechanical properties. However, as the heat treatment is performed, the optical film using polyimide changes in the absorption wavelength. The color changes with color. In particular, in an optical film using a polyimide with a thickness of 4.0 to 15.0 μm, the higher the L * value, the lighter the color, so that the horizontal unevenness due to thickness unevenness is less visible and the appearance is better. Since the progress of imidization is not sufficient, mechanical properties such as flex resistance and breaking strength of the polyimide film are deteriorated. On the other hand, if the L * value is too low, the color contrast due to the thickness unevenness becomes clear and the horizontal unevenness deteriorates, and the optical film using polyimide partially carbonizes and becomes brittle. Characteristics are significantly regressed. For the above reasons, in the method for producing an optical film using the polyimide of the present invention, an L * value of 30 to 55 is good for maintaining good mechanical properties, and more preferably, the L * value is 38 to 54 is preferable.
 フィルムのL値は、スガ試験機製SM-7-CHを用い測定した。フィルム幅方向に5分割したそれぞれのサンプルについて、幅方向の中央位置を中心とした30mm×30mmの範囲を切り出して測定し、その5点平均値とした。なお、L値はフィルム厚さが薄くなると検出器の感度が鈍くなり適切な評価ができないことから、フィルム厚さが50μm以上のフィルムについては1枚、50μm未満のフィルムについては50μm以上になる最小の枚数を重ねて測定した値である。 The L * value of the film was measured using SM-7-CH manufactured by Suga Test Instruments. About each sample divided into 5 in the film width direction, the range of 30 mm x 30 mm centering on the center position of the width direction was cut out and measured, and it was set as the 5-point average value. In addition, since the sensitivity of a detector becomes dull and the appropriate evaluation cannot be performed when the film thickness is thin, the L * value is one for a film having a thickness of 50 μm or more, and 50 μm or more for a film having a thickness of less than 50 μm. It is a value measured by overlapping the minimum number of sheets.
 フィルムのL値が30~55となるようなフィルムを得るための熱処理の方法については、例えば、熱風や電気ヒーター(例えば、赤外線ヒーター等)等公知の手段を用いて熱処理量を調整する手法を挙げることができる。 Regarding a heat treatment method for obtaining a film having an L * value of 30 to 55, for example, a method of adjusting the heat treatment amount using a known means such as hot air or an electric heater (for example, an infrared heater). Can be mentioned.
 本発明に係るポリイミドを用いた光学フィルムの製造方法においては、閉環触媒及び脱水剤を含有しないポリアミド酸の溶液を流延してフィルムに成形し、支持体上で加熱乾燥した後、支持体よりフィルムを剥離し、更に高温下で乾燥熱処理することによりイミド化する熱閉環法を用いることができる。また、閉環触媒及び脱水剤を含有させたポリアミド酸の溶液を流延してフィルム状に成形し、支持体上でイミド化を一部進行させてフィルムとした後、支持体よりフィルムを剥離し、加熱乾燥/イミド化し、熱処理を行う化学閉環法を用いることもできる。閉環触媒としては、上記した第3級アミン等を用いることができる。 In the method for producing an optical film using the polyimide according to the present invention, a solution of a polyamic acid not containing a ring-closing catalyst and a dehydrating agent is cast, formed into a film, heated and dried on the support, and then from the support. A thermal ring closure method in which the film is peeled and further imidized by a drying heat treatment at a high temperature can be used. In addition, a solution of a polyamic acid containing a ring-closing catalyst and a dehydrating agent is cast to form a film, and after partially imidizing on the support to form a film, the film is peeled off from the support. Alternatively, a chemical ring closure method in which heat drying / imidization and heat treatment are performed can also be used. As the ring-closing catalyst, the above-mentioned tertiary amine or the like can be used.
 熱閉環法においては、例えば赤外線ヒーターを用いることにより熱処理を行うことができる。 In the thermal ring closure method, heat treatment can be performed by using, for example, an infrared heater.
 赤外線ヒーターとしては、例えば、フィラメントを内管が囲むように形成されたヒーター本体が外管によって覆われ、ヒーター本体と外管との間に冷却流体が流通可能に構成されたものが用いられる。フィラメントは、700~1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。内管及び外管は、石英ガラスやホウケイ酸クラウンガラス等で作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルタとして機能する。このような赤外線ヒーターは、フィラメントから波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線を内管や外管を通過してフィルムに照射する。この波長の赤外線が照射されることにより、フィルム内の混合溶媒を効率的に蒸発させることができるとともに、フィルム内のポリアミド酸をイミド化することができる。なお、内管や外管は、3.5μmを超える波長の赤外線を吸収するが、流路を流れる冷却流体によって冷却されるため、フィルムから蒸発する混合溶媒の着火点未満の温度に維持することが可能である。 As the infrared heater, for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube. The filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 μm. The inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared rays having a wavelength of 3.5 μm or less and absorbs infrared rays having a wavelength exceeding 3.5 μm. Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 μm or less through an inner tube or an outer tube when infrared light having a peak near 3 μm is emitted from the filament. By irradiating with infrared rays having this wavelength, the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized. The inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 μm, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
 本発明に係るポリイミドを用いた光学フィルムの製造方法では、上記のいずれの閉環方法を採用しても良いが、化学閉環法はポリアミド酸の溶液に閉環触媒及び脱水剤を含有させる設備を必要とするものの、自己支持性を有するフィルムを短時間で得られる点で、より好ましい方法といえる。 In the method for producing an optical film using the polyimide according to the present invention, any of the above ring closure methods may be adopted, but the chemical ring closure method requires equipment for containing a ring closure catalyst and a dehydrating agent in the polyamic acid solution. However, it can be said to be a more preferable method in that a film having self-supporting properties can be obtained in a short time.
 〔4〕イミド構造を有する透明耐熱性樹脂を用いた光学フィルムの製造方法
 本発明のポリイミド系光学フィルム(以下、ポリイミドフィルムともいう。)の製造方法の具体例について以下説明する。
[4] Method for Producing Optical Film Using Transparent Heat Resistant Resin Having Imide Structure A specific example of a method for producing a polyimide optical film (hereinafter also referred to as polyimide film) of the present invention will be described below.
 本発明に係るイミド構造を有する透明耐熱性樹脂を、後述するジクロロメタンを50質量%以上含有する混合溶媒に溶解してドープを調製する工程(ドープ調製工程)と、前記ドープを支持体上に流延して流延膜を形成する工程(流延工程)と、支持体上で流延膜から溶媒を蒸発させる工程(溶媒蒸発工程)、流延膜を支持体から剥離する工程(剥離工程)、得られたフィルムを乾燥させる工程(第1乾燥工程)、フィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させながらベンディング処理を行う工程(第2乾燥工程)、得られたポリイミドフィルムを巻き取る工程(巻取り工程)、フィルムを加熱処理してイミド化させる工程(加熱工程)等により行われることが好ましい。 A step of preparing a dope by dissolving the transparent heat-resistant resin having an imide structure according to the present invention in a mixed solvent containing 50% by mass or more of dichloromethane described later (dope preparation step), and flowing the dope onto a support. Extending the casting film to form a casting film (casting process), evaporating the solvent from the casting film on the support (solvent evaporation process), and peeling the casting film from the support (peeling process) A step of drying the obtained film (first drying step), a step of stretching the film (stretching step), a step of performing a bending treatment while further drying the stretched film (second drying step), and It is preferably performed by a step of winding a polyimide film (winding step), a step of heating the film to imidize (heating step), or the like.
 以下、各工程について具体的に説明する。 Hereinafter, each process will be described in detail.
 〔4.1〕ドープ調製工程
 ドープ調製工程は、本発明に係るイミド構造を有する透明耐熱性樹脂を、ジクロロメタンを主な溶媒、好ましくは溶媒の50質量%以上ジクロロメタンを含有する混合溶媒に溶解させたドープを調製することが好ましい。
[4.1] Dope preparation step In the dope preparation step, the transparent heat-resistant resin having an imide structure according to the present invention is dissolved in dichloromethane as a main solvent, preferably a mixed solvent containing dichloromethane at 50% by mass or more of the solvent. It is preferable to prepare a new dope.
 その後、調製したドープを送液ポンプ等により濾過器に導いて濾過する。 Thereafter, the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
 すなわち、ドープの主たる溶剤であるジクロロメタンの1気圧における沸点+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除く。好ましい温度範囲は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。 That is, by filtering the dope at a temperature of boiling point at 1 atm of dichloromethane, which is the main solvent of the dope, at a temperature of 5 ° C. or higher, gel-like foreign matters in the dope are removed. A preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
 ここで、ジクロロメタンを50質量%以上含有する溶媒を用いることが、光学フィルムの平滑製を向上する観点から、好ましい。 Here, it is preferable to use a solvent containing 50% by mass or more of dichloromethane from the viewpoint of improving the smoothness of the optical film.
 ジクロロメタンとともに含有される溶媒としては、本発明に係るイミド構造を有する透明耐熱性樹脂を溶解し得るものであればいずれであっても良く、例えば、エタノール、ブタノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、1,4-ジオキサン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、ポリアミド酸又はポリイミドが析出しない程度に使用しても良い。 The solvent contained together with dichloromethane may be any solvent that can dissolve the transparent heat-resistant resin having an imide structure according to the present invention, such as ethanol, butanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, Phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ-butyrolactone, dioxolane, cyclohexanone, cyclopentanone, 1,4-dioxane, epsilon caprol Tam, chloroform and the like can be used, and may be used in combination of two or more. In addition to these solvents, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene may be used to the extent that polyamic acid or polyimide does not precipitate.
 また、上記ジクロロメタンとともに混合溶媒に含有される溶媒としては、ジクロロメタンよりも沸点の高い溶媒であることが好ましい。これにより、支持体から剥離した後の流延膜のカールも効果的に抑制することができる。 Moreover, the solvent contained in the mixed solvent together with the dichloromethane is preferably a solvent having a boiling point higher than that of dichloromethane. Thereby, the curling of the cast film after peeling from the support can be effectively suppressed.
 〔4.2〕流延膜形成工程
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通してダイスに送液し、無限に移送する無端の支持体、例えば、ステンレスベルト又は回転する金属ドラム等の金属支持体上の流延位置に、ダイスからドープを流延する。
[4.2] Casting film forming step An endless support such as a stainless steel belt or a rotating metal that feeds the prepared dope to a die through a feed pump (for example, a pressurized metering gear pump) and transfers it infinitely A dope is cast from a die at a casting position on a metal support such as a drum.
 流延(キャスト)における金属支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、更に好ましくは2~2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良い。 The metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used. The cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. Note that the support may not be made of metal.
 金属支持体の走行速度は特に制限されないが、通常は5m/分以上であり、好ましくは10~180m/分、特に好ましくは80~150m/分である。金属支持体の走行速度は、高速であるほど、同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。 The traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
 金属支持体の走行速度は、金属支持体外表面の移動速度である。 The traveling speed of the metal support is the moving speed of the outer surface of the metal support.
 金属支持体の表面温度は特に制限されないが、通常は0℃以上、好ましくは20~60℃であり、より好ましくは20~25℃である。 The surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
 ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなる形状を有している。ダイスは通常、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。 The die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction. In general, the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces. A die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
 ダイスの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。 It is preferable to use a pressure die that can adjust the slit shape of the die portion of the die and easily make the film thickness uniform. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
 ダイスからのドープの吐出量は好ましくは200~720g/mであり、より好ましくは400~650g/mである。本発明において、厚さが異なるフィルムを連続的に製造する場合であっても、ダイスからのドープ吐出量は上記範囲内で略一定の値に維持されることが好ましい。当該吐出量が200g/m以上であると、流延膜が振動及び風等の外乱の影響を受けにくくなるので、膜厚ムラを十分に防止することができる。当該吐出量が720g/m以下であると、収縮が過度に起きにくく、収縮による膜厚ムラが発生しないので、膜厚ムラを十分に防止できる。 Discharge rate of the dope from the die is preferably 200 ~ 720g / m 2, more preferably 400 ~ 650g / m 2. In the present invention, even when films having different thicknesses are continuously produced, it is preferable that the dope discharge amount from the die is maintained at a substantially constant value within the above range. When the discharge amount is 200 g / m 2 or more, the cast film is not easily affected by disturbances such as vibration and wind, so that the film thickness unevenness can be sufficiently prevented. When the discharge amount is 720 g / m 2 or less, the shrinkage does not occur excessively and the film thickness unevenness due to the contraction does not occur, and thus the film thickness unevenness can be sufficiently prevented.
 〔4.3〕溶媒蒸発工程
 溶媒蒸発工程は、金属支持体上で行われ、流延膜(ウェブともいう。を金属支持体上で加熱し、溶媒を蒸発させる予備乾燥工程である。
[4.3] Solvent evaporation process The solvent evaporation process is a preliminary drying process in which a cast film (also referred to as a web) is heated on a metal support to evaporate the solvent.
 溶媒を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。加熱風の温度は10~80℃が好ましい。 In order to evaporate the solvent, for example, a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer, a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc. A method of appropriately selecting and combining them is also preferable. The surface temperature of the metal support may be the same as a whole or may vary depending on the position. The temperature of the heating air is preferably 10 to 80 ° C.
 金属支持体を加熱する方法においては、温度が高い方が流延膜の乾燥速度を速くできるため好ましいが、余り高すぎると流延膜が発泡したり、平面性が劣化したりする場合があるため10~30℃で行うことが好ましい。 In the method of heating the metal support, a higher temperature is preferable because the drying speed of the cast film can be increased. However, if the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferably performed at 10 to 30 ° C.
 溶媒蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶媒量が10~150質量%になるまで、流延膜を乾燥することが好ましい。 In the solvent evaporation step, it is preferable to dry the cast film until the residual solvent amount is 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
 本発明において、残留溶媒量は下記の式で表すことができる。 In the present invention, the residual solvent amount can be expressed by the following formula.
  残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mは流延膜(フィルム)の所定の時点での質量、NはMのものを200℃で3時間乾燥させた時の質量である。特に、溶媒蒸発工程において達成された残留溶媒量を算出するときのMは剥離工程直前の流延膜の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass at a predetermined point of the casting membrane (film), and N is the mass when M is dried at 200 ° C. for 3 hours. In particular, M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
 〔4.4〕剥離工程
 金属支持体上で溶媒が蒸発した流延膜を、剥離位置で剥離する。
[4.4] Peeling Step The cast film having the solvent evaporated on the metal support is peeled off at the peeling position.
 金属支持体と流延膜とを剥離する際の剥離張力は、通常、60~400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。 The peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~60℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~40℃の範囲内とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably in the range of −50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
 剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶媒量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。 The peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount. In the present invention, from the viewpoint of stable conveyance in the stretching step, it is preferable that the film is sequentially sent to the first drying step and the stretching step after the peeling step.
 〔4.5〕第1乾燥工程
 第1乾燥工程は、フィルムを加熱し、溶媒を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、残留溶媒量及び搬送における伸縮率等を考慮して、30~200℃の範囲が好ましい。
[4.5] First drying step The first drying step is a drying step in which the film is heated and the solvent is further evaporated. The drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner. The drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during transportation.
 〔4.6〕延伸工程
 金属支持体から剥離されたフィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
[4.6] Stretching Step By stretching the film peeled from the metal support, the film thickness, flatness, orientation, etc. of the film can be controlled.
 本発明のポリイミドフィルムの製造方法においては、長手方向及び/又は幅手方向に延伸することが好ましい。 In the method for producing a polyimide film of the present invention, it is preferable to stretch in the longitudinal direction and / or the width direction.
 延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 The stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
 すなわち、例えば、次のような延伸ステップも可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
Thus, for example, the following stretching steps are possible:
-Stretch in the longitudinal direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction Includes stretching in one direction and contracting the other while relaxing the tension.
 延伸開始時の残留溶媒量は2~50質量%の範囲内であることが好ましい。 The residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass.
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。 If the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the unevenness of the surface is reduced and the flatness is improved.
 本発明に係るポリイミドフィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向に、好ましくは幅手方向に延伸しても良い。フィルムのガラス転移点(Tg)のうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL-200)~(TgH+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れたポリイミドフィルムが得られる。延伸温度は、(TgL-150)~(TgH+40)℃の範囲で行うことがより好ましい。 In the method for producing a polyimide film according to the present invention, the film may be stretched in the longitudinal direction and / or the lateral direction, preferably in the lateral direction so that the film thickness after stretching is in a desired range. The film is preferably stretched in a temperature range of (TgL−200) to (TgH + 50) ° C., where TgL is the lowest Tg of the glass transition point (Tg) and TgH is the highest Tg. If it extends in the said temperature range, since a extending | stretching stress can be reduced, haze will become low. Moreover, generation | occurrence | production of a fracture | rupture is suppressed and the polyimide film excellent in planarity and the coloring property of the film itself is obtained. The stretching temperature is more preferably in the range of (TgL−150) to (TgH + 40) ° C.
 本発明のポリイミドフィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。長手方向の延伸倍率は、30~250℃の温度範囲で1.05~1.90倍が好ましく、より好ましくは1.10~1.60倍、更に好ましくは1.10~1.50倍である。 In the method for producing a polyimide film of the present invention, the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller. The draw ratio in the longitudinal direction is preferably 1.05 to 1.90 times, more preferably 1.10 to 1.60 times, still more preferably 1.10 to 1.50 times in a temperature range of 30 to 250 ° C. is there.
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。 In order to stretch the film in the width direction, for example, the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625. A method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
 長手方向に延伸されたフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。幅方向の延伸倍率は、特に限定されないが、30~300℃の温度範囲で1.05~1.90倍が好ましく、より好ましくは1.10~1.60倍、更に好ましくは1.10~1.50倍である。 The film stretched in the longitudinal direction is preferably introduced into the tenter in a state where both ends in the width direction are gripped by the clip, and stretched in the width direction while running with the tenter clip. The draw ratio in the width direction is not particularly limited, but is preferably 1.05 to 1.90 times, more preferably 1.10 to 1.60 times, and still more preferably 1.10 to 1.000 in the temperature range of 30 to 300 ° C. 1.50 times.
 幅手方向への延伸に際し、フィルム幅手方向に50~1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。 When stretching in the width direction, stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
 延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。 If the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
 より好ましい延伸速度は、100~500%/minの範囲内である。延伸速度は下記式によって定義される。 More preferable stretching speed is in the range of 100 to 500% / min. The stretching speed is defined by the following formula.
  延伸速度(%/min)=[(d/d)-1]×100(%)/t
(上記式において、dは延伸後の樹脂フィルムの前記延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
Stretching speed (% / min) = [(d 1 / d 2 ) −1] × 100 (%) / t
(In the above formula, d 1 is the width dimension in the stretching direction of the resin film after stretching, d 2 is the width dimension in the stretching direction of the resin film before stretching, and t is the time (min) required for stretching. .)
In the stretching step, usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order. In the holding step, the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step. In the relaxation stage, the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching. The relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
 〔4.7〕第2乾燥工程
 次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲がより好ましい。また、乾燥時間は5秒~30分程度が好ましく、10秒~15分がより好ましい。
[4.7] Second drying step Subsequently, the stretched film is heated and dried. When the film is heated with hot air or the like, a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used. The hot air temperature is more preferably in the range of 40 to 350 ° C. The drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。 Further, the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used. The drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
 第2乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。 In the second drying step, it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
 [ベンディング処理]
 本発明のポリイミドフィルムは、ドライヤーゾーンで乾燥する第2乾燥工程において、当該ドライヤーゾーンが、フィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で、ローラー搬送しながらベンディング処理を150回以上行うことが、グレースケールの標準偏差σを所定の範囲内に調整し、かつ二値化画像における黒部分の占める面積を10~50%の範囲内に調整して、フィルムの平滑性を向上する観点から好ましい製造方法である。
[Bending process]
In the second drying step in which the polyimide film of the present invention is dried in the dryer zone, the dryer zone has a drying temperature within the range of (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film. If the bending process is performed 150 times or more while transporting the roller, the standard deviation σ of the gray scale is adjusted within a predetermined range, and the area occupied by the black portion in the binarized image is within the range of 10 to 50%. It is a preferable production method from the viewpoint of adjusting and improving the smoothness of the film.
 前記ベンディング処理とは、所定の乾燥温度に保持されながら、搬送ローラーによって当該ウェブのA面(例えば、流延支持体上のウェブの空気面側)と対向するB面(例えば、流延支持体上のウェブのベルト面側)が交互に内側になるように、搬送過程においてローラーによって曲げられる処理をいう。当該ベンディング処理が、当該ウェブを曲げた時の半径をa(mm)としたとき、1/aの値が0.035mm-1~0.050mm-1の範囲内とし、かつ、ベンディングを150回以上500回未満繰り返しながら行うことによって乾燥されることが好ましい。好ましくは、200~400回の範囲内であることが、平滑性向上の効果と生産性とを満たすため好ましい。フィルムの折り曲げの間隔は、1秒~1分の範囲で行われることが好ましく、2~30秒の範囲で行われることがより好ましい。 The bending process is a B surface (for example, a casting support) that is opposed to the A surface (for example, the air surface side of the web on the casting support) of the web by a conveying roller while being held at a predetermined drying temperature. This is a process in which the belt is bent by a roller in the conveying process so that the belt surface side of the upper web is alternately inside. The bending process, when the radius when bending the web was a (mm), the value of 1 / a is in the range of 0.035 mm -1 ~ 0.050 mm -1, and 150 times the bending It is preferable that the drying is carried out by repeating the steps less than 500 times. Preferably, the number is in the range of 200 to 400 times in order to satisfy the effect of improving smoothness and productivity. The film folding interval is preferably in the range of 1 second to 1 minute, and more preferably in the range of 2 to 30 seconds.
 本発明に好ましい上記ベンディング処理について図を用いて説明する。ただし、これに限定されるものではない。 The above bending process preferable for the present invention will be described with reference to the drawings. However, it is not limited to this.
 図2は、本発明に好ましく適用できるベンディング処理装置の模式図である。 FIG. 2 is a schematic diagram of a bending processing apparatus that can be preferably applied to the present invention.
 ダイス101よりドープ液が金属支持体102上に流延され、駆動ローラー103により連続的に金属支持体上で乾燥され、ウェブ(金属支持体上に流延した以降のドープ膜の呼び方をウェブとする)を形成する。ウェブは残留溶媒量が所望の値になるように乾燥され、剥離点104においてフィルム状に剥離された後、予備乾燥、延伸処理(不図示)が施され、ベンディングゾーン106に搬送されて、多数の搬送ローラー105によりA面(ウェブが金属支持体に接する面とは反対の面)、B面(ウェブが金属支持体に接する面)が交互に搬送ローラー105の内側になるように搬送され連続的にベンディング処理が繰り返される。該ベンディング処理は吸気口107及び排気口108を有するベンディングゾーン106内で行われ、フィルムが所望の雰囲気温度でベンディングされるように調整される。ベンディングゾーン106の後には、フィルムを所定の温度に冷却するための冷却ゾーン109を設けてもよい。 A dope solution is cast from a die 101 onto a metal support 102 and continuously dried on the metal support by a driving roller 103 to obtain a web (referred to as a dope film after casting on the metal support. Form). The web is dried so that the residual solvent amount becomes a desired value, peeled into a film at the peeling point 104, subjected to preliminary drying and stretching treatment (not shown), conveyed to the bending zone 106, The transport roller 105 continuously conveys the A surface (the surface opposite to the surface where the web contacts the metal support) and the B surface (the surface where the web contacts the metal support) alternately inside the transport roller 105. The bending process is repeated. The bending process is performed in a bending zone 106 having an intake port 107 and an exhaust port 108, and is adjusted so that the film is bent at a desired atmospheric temperature. A cooling zone 109 for cooling the film to a predetermined temperature may be provided after the bending zone 106.
 搬送ローラーの径は、90~108mmの範囲が好ましく、各ローラー間は1800mm程度が好ましい。フィルムを曲げたときの半径をa(mm)としたとき1/aの値が0.035~0.050mm-1の範囲となるようにローラー径を決定すればよい。 The diameter of the transport roller is preferably in the range of 90 to 108 mm, and the distance between the rollers is preferably about 1800 mm. The roller diameter may be determined so that the value of 1 / a is in the range of 0.035 to 0.050 mm −1 when the radius when the film is bent is a (mm).
 ベンディングゾーン106では、温度調整された熱風が吸気口107より導入され、ベンディングゾーン106内を一定の雰囲気温度に保ち、排気口108より排気される。ベンディングゾーン106内の雰囲気温度を調整するには、他に赤外線、加熱ローラー等で行っても良いが、簡便さの点で熱風で行うのが好ましい。また、乾燥装置内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス、アルゴン等の不活性ガス雰囲気で行ってもよい。 In the bending zone 106, hot air whose temperature has been adjusted is introduced from the intake port 107, and the inside of the bending zone 106 is maintained at a constant atmospheric temperature and is exhausted from the exhaust port 108. In order to adjust the atmospheric temperature in the bending zone 106, it may be performed by infrared rays, a heating roller, or the like, but it is preferably performed by hot air in terms of simplicity. The atmosphere in the drying apparatus may be air, but may be performed in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or argon.
 本発明のポリイミドフィルムのベンディング処理時の雰囲気温度は、フィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で行うことが好ましく、具体的には、180~250℃の範囲が本発明の効果を得る上でより好ましい。 The atmospheric temperature during the bending treatment of the polyimide film of the present invention is preferably carried out at a drying temperature within the range of (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film. A range of 180 to 250 ° C. is more preferable for obtaining the effects of the present invention.
 当該ベンディングゾーンにおける本発明のポリイミドフィルムフィルムの搬送速度は、10~150m/分の範囲で行うことが好ましく、15~100m/分の範囲で行うことが生産性や破断の点でより好ましい。 The conveyance speed of the polyimide film of the present invention in the bending zone is preferably 10 to 150 m / min, more preferably 15 to 100 m / min in terms of productivity and breakage.
 〔4.8〕巻取り工程
 巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
[4.8] Winding step The winding step is a step of winding the obtained film and cooling it to room temperature. The winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
 フィルムの厚さは特に制限されず、例えば、5~200μm、特に5~100μmであることが好ましい。 The thickness of the film is not particularly limited, and is preferably 5 to 200 μm, particularly 5 to 100 μm.
 巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだフィルムの両端をスリット加工しても良い。スリットした端部は、返材として再利用することが好ましい。ここで、返材とは、フィルムに成形したもののうち、何らかの理由で原料として再利用される部分のことを指し、上記スリットされた端部(耳部ともいう。)や、製造の繰り出し・終端に位置するフィルムの全幅部分、更には、傷やスジ等の外観上の問題で製品として不適合なフィルム等が挙げられる。スリットしたフィルム端部は、1~30mm幅に細かく断裁された後、溶剤に溶解させて再利用する。 In the winding process, both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit. The slit end is preferably reused as a return material. Here, the recycled material refers to a portion that is formed into a film and is reused as a raw material for some reason, and the slit end (also referred to as an ear), or the feeding / termination of production. In addition, a film that is not suitable as a product due to an appearance problem such as a scratch or a streak is exemplified. The slit film edge is finely cut to a width of 1 to 30 mm, then dissolved in a solvent and reused.
 成形されたフィルムのうち返材として再利用される部分の比は、10~90質量%が好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。 The ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
 製膜工程の途中又は最終的に発生する返材の量により投入量は若干変わるが、通常、ドープ中の全固形分に対する返材の混合率は10~50質量%程度であり、好ましくは、15~40質量%程度である。返材の混合率は、できるだけ一定量とすることが生産安定上好ましい。 The input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass. The mixing ratio of the recycled materials is preferably as constant as possible for production stability.
 上述した溶媒蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶媒の爆発限界濃度を考慮して行う。 Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
 〔4.9〕加熱工程
 上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥したフィルムを更に熱処理する加熱工程を行うことが好ましい。
[4.9] Heating step After the winding step, the film dried in the second drying step is further heat-treated in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. It is preferable to perform the heating process.
 また、ポリイミド(イミド化率100%)を用いてドープを調製した場合や、上記第2乾燥工程を行うことによりフィルムのイミド化率が100%となった場合であっても、フィルムの残留応力を緩和させる目的で、加熱工程を行うことが好ましい。 Moreover, even when the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film For the purpose of relaxing, it is preferable to perform a heating step.
 なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。 In addition, the said 2nd drying process may serve as a heating process.
 加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。 The heating means is performed using a known means such as hot air, an electric heater, or a microwave. As the electric heater, the above-described infrared heater can be used.
 加熱処理条件は、フィルムL値が30~55となるようにヒーター出力及び熱風温度等を調整し、最終的な処理条件が200~450℃の温度範囲内で、30秒~1時間の範囲で適宜行うのが好ましい。これにより、ポリイミドフィルムの寸法安定性を向上させることができる。加熱工程において、フィルムを急激に加熱すると表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。 The heat treatment conditions are such that the heater output and hot air temperature are adjusted so that the film L * value is 30 to 55, and the final treatment condition is within the temperature range of 200 to 450 ° C., and the range of 30 seconds to 1 hour. It is preferable to carry out as appropriate. Thereby, the dimensional stability of a polyimide film can be improved. In the heating step, if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select the heating method as appropriate. The heating step is preferably performed in a low oxygen atmosphere.
 第二乾燥工程及び加熱工程における加熱温度は450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。 When the heating temperature in the second drying step and the heating step exceeds 450 ° C., the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load. The following is preferable.
 なお、巻取り工程後であって、加熱工程の前又は後に、ポリイミドフィルムの幅方向端部をスリットする工程や、ポリイミドフィルムが帯電していた場合にはこれを除電する工程等を更に行うものとしても良い。 In addition, after the winding process, before or after the heating process, a process of slitting the width direction end of the polyimide film, or a process of neutralizing the polyimide film if charged, etc. It is also good.
 〔5〕ポリイミド系光学フィルムの物性
 〔5.1〕ヘイズ、全光線透過率
 本発明のポリイミドフィルムは、ヘイズが1%未満であることが好ましく、0.5%未満であることがより好ましく、0.3%未満であることがさらに好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。
[5] Physical properties of polyimide optical film [5.1] Haze, total light transmittance The polyimide film of the present invention preferably has a haze of less than 1%, more preferably less than 0.5%. More preferably, it is less than 0.3%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
 フィルム試料について、23℃・55RHの空調質で24時間調湿した資料一枚をJIS K-7136にしたがって、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用してヘイズと全光線透過率を測定する。 Using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K-7136, a film sample was conditioned for 24 hours at 23 ° C and 55RH air conditioning quality. The light transmittance is measured.
 全光線透過率は、50%以上であることが好ましく、70%以上であることがより好ましく、85%以上であることが、本発明の光学フィルムを有機ELディスプレイに具備する観点から、特に好ましい。 The total light transmittance is preferably 50% or more, more preferably 70% or more, and particularly preferably 85% or more from the viewpoint of providing the organic EL display with the optical film of the present invention. .
 〔5.2〕フィルム長、幅、膜厚
 本発明に係るポリイミドフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明に係るポリイミドフィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
[5.2] Film Length, Width, Film Thickness The polyimide film according to the present invention is preferably long, specifically, preferably has a length of about 100 to 10,000 m and wound in a roll shape. Taken. The width of the polyimide film according to the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
 フィルムの膜厚は、強度と透明性の観点から、5~200μmの範囲内であることが好ましく、薄膜なデバイスを提供する観点から、25~100μmの範囲であることがより好ましい。膜厚が5μm以上であれば、一定以上のフィルム強度を発現させることができる。膜厚が200μm以下であれば、フレキシブル性を発現することができる。 The film thickness is preferably in the range of 5 to 200 μm from the viewpoint of strength and transparency, and more preferably in the range of 25 to 100 μm from the viewpoint of providing a thin film device. If the film thickness is 5 μm or more, a certain level of film strength can be developed. If the film thickness is 200 μm or less, flexibility can be exhibited.
 〔6〕有機エレクトロルミネッセンスディスプレイ
 本発明の有機ELディスプレイは、本発明のポリイミド系光学フィルムを具備していることが好ましく、本発明のポリイミド系光学フィルムは平面性が改善され、当該有機ELディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れる有機ELディスプレイを提供することができる。
[6] Organic electroluminescence display The organic EL display of the present invention preferably includes the polyimide optical film of the present invention. The polyimide optical film of the present invention has improved planarity, and When used on the surface, it is possible to provide an organic EL display that is not noticeably uneven when viewed through polarized sunglasses and has excellent visibility.
 本発明の有機ELディスプレイに適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 Regarding the outline of the organic EL element applicable to the organic EL display of the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A. JP, 2013-191644, JP 2013-191804, JP 2013-225678, JP 2013-235994, JP 2013-243234, JP 2013-243236, JP 2013-242366 A, JP 2013-243371 A, JP 2013-245179 A, JP 2014-003249 A, JP 2014-003299 A, JP 2014-013910 A, JP Japanese Patent Application Laid-Open No. 2014-017493, JP 20 It can be mentioned arrangement described in 4-017494 Patent Publication.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 最初に実施例に用いたポリイミド樹脂の作製方法について述べる。
Example 1
First, a method for producing the polyimide resin used in the examples will be described.
 [ポリイミド樹脂A:式(1)で表される構造を有するポリイミド]
 (ポリイミド前駆体の重合)
 反応容器としてステンレス製セパラブルフラスコを備え、該セパラブルフラスコ内の撹拌装置として2枚のパドル翼を備え、冷却装置として20.9kJ/minの冷却能力を持つ装置を備えた反応装置を用いてポリアミック酸を製造した。重合反応中は水分の混入を防ぐために、シリカゲル中を通過させて脱水を行った窒素ガスを0.05L/minで流して重合反応を行った。
[Polyimide resin A: polyimide having a structure represented by the formula (1)]
(Polymerization of polyimide precursor)
Using a reactor equipped with a stainless separable flask as a reaction vessel, two paddle blades as a stirring device in the separable flask, and a device having a cooling capacity of 20.9 kJ / min as a cooling device A polyamic acid was produced. During the polymerization reaction, in order to prevent moisture from being mixed, the polymerization reaction was carried out by flowing nitrogen gas dehydrated by passing through silica gel at 0.05 L / min.
 上記セパラブルフラスコに、重合溶媒としてN,N-ジメチルホルムアミド(DMF)223.5gを仕込み、これに、トリフルオリメチルベンゼン(TFMB)を40.0g(0.125モル)溶解する。この溶液に、1,1,1,3,3,3-ヘキサフルオロ-2,2-ジ(3,4-ジカルボキシフェニル)プロパン二無水物(6FDA)を55.5g(0.125モル)添加・撹拌して完全に溶解させた。完全に溶解した後、撹拌して重合粘度を80Pa・sまで上昇させた。ポリアミック酸溶液の粘度は、23℃に保温された水溶液中で1時間保温し、その時の粘度をB型粘度計で、ローターはNo.7を回転数は4rpmで測定を行った。なお、この反応溶液における芳香族ジアミン化合物及び芳香族テトラカルボン酸二無水物の仕込み濃度は、全反応液に対して30質量%となっている。 In the above separable flask, 223.5 g of N, N-dimethylformamide (DMF) is charged as a polymerization solvent, and 40.0 g (0.125 mol) of trifluoromethylbenzene (TFMB) is dissolved therein. To this solution, 55.5 g (0.125 mol) of 1,1,1,3,3,3-hexafluoro-2,2-di (3,4-dicarboxyphenyl) propane dianhydride (6FDA) Added and stirred to dissolve completely. After complete dissolution, the mixture was stirred to increase the polymerization viscosity to 80 Pa · s. The viscosity of the polyamic acid solution was kept for 1 hour in an aqueous solution kept at 23 ° C., and the viscosity at that time was measured with a B-type viscometer. 7 was measured at a rotational speed of 4 rpm. In addition, the preparation density | concentration of the aromatic diamine compound and aromatic tetracarboxylic dianhydride in this reaction solution is 30 mass% with respect to all the reaction liquids.
 (ポリイミド樹脂への化学イミド化)
 上記溶液にDMFを加え固形分濃度を15質量%とし、イミド化促進剤としてピリジン(pkBH+;5.17)を60g(イミド化促進剤/ポリアミック酸中アミド基のモル比=3)添加して、完全に分散させる。分散させた溶液中に無水酢酸を1分間に1gの速度で30.6g(脱水剤/ポリアミック酸中アミド基のモル比=1.2)を添加してさらに30分間撹拌した。撹拌後に内部温度を100℃に上昇させて5時間過熱撹拌を行った。
(Chemical imidation to polyimide resin)
DMF was added to the above solution to adjust the solid concentration to 15% by mass, and 60 g of pyridine (pkBH +; 5.17) as an imidization accelerator (molar ratio of imidization accelerator / amide group in polyamic acid = 3) was added. Disperse completely. To the dispersed solution, 30.6 g of acetic anhydride (dehydrating agent / molar ratio of amide group in polyamic acid = 1.2) was added at a rate of 1 g per minute and stirred for another 30 minutes. After stirring, the internal temperature was raised to 100 ° C. and superheated stirring was performed for 5 hours.
 (ポリイミド樹脂の抽出)
 ポリイミド樹脂の溶液を穴の直径が約5mmのロートに入れて、5Lのメタノール中に垂らして抽出を行った。抽出時、メタノールを1500回転以上に回転した撹拌羽で高速に撹拌しながら抽出を行った。垂らしたポリイミド溶液の直径はメタノール界面付近で1mm以下になるように、ロートとメタノールの液面の間の高さを調節しながら繊維状になるようにメタノール溶液中に垂らした、溶液中でポリイミド樹脂は、繊維状になる場合もあるが、撹拌を続けることで溶液中に一度繊維状になったものが分解されて5mm以下の繊維に溶液中で分断される。
(Extraction of polyimide resin)
The polyimide resin solution was placed in a funnel having a hole diameter of about 5 mm and extracted by dropping in 5 L of methanol. At the time of extraction, extraction was performed while stirring methanol at high speed with a stirring blade rotated at 1500 rpm or more. The polyimide in the solution was hung in the methanol solution so that the diameter of the dripped polyimide solution was 1 mm or less near the methanol interface while adjusting the height between the funnel and the liquid surface of the methanol so as to form a fiber. The resin may be in a fibrous form, but by continuing stirring, what once becomes a fibrous form in the solution is decomposed and divided into fibers of 5 mm or less in the solution.
 分断された樹脂固形分溶液中に、更に、5Lのメタノールを添加して完全に固形分を抽出して取り出して固形分をソックスレー抽出装置でイソプロパノールにより洗浄を行った後に、真空乾燥装置で100℃ に加熱乾燥して、ポリイミド樹脂として取り出した。 Further, 5 L of methanol was added to the divided resin solid solution, and the solid content was completely extracted and taken out. The solid content was washed with isopropanol in a Soxhlet extractor, and then 100 ° C. in a vacuum dryer. And dried as a polyimide resin.
 [ポリイミド樹脂Bの合成:式(2)及び(3)で表される繰り返し単位を有するポリイミド]
 温度計、撹拌機、窒素導入管、及び冷却管を取り付けたディーンスターク装置並びに滴下ロートを備えた300mLの5ツ口セパラブルフラスコに、4,4′-ビス(4-アミノフェノキシ)ビフェニル(BAPB)26.48g(0.07187モル)、γ-ブチロラクトン(GBL)51.11g、及びトリエチルアミン(TEA)0.364gを入れ、窒素雰囲気下で撹拌して溶液を得た。
[Synthesis of polyimide resin B: polyimide having repeating units represented by formulas (2) and (3)]
A 300 mL 5-neck separable flask equipped with a Dean-Stark apparatus equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube and a dropping funnel was charged with 4,4′-bis (4-aminophenoxy) biphenyl (BAPB). ) 26.48 g (0.07187 mol), γ-butyrolactone (GBL) 51.11 g, and triethylamine (TEA) 0.364 g were added and stirred under a nitrogen atmosphere to obtain a solution.
 この溶液に1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)16.11g(0.07187モル)、及びジメチルアセトアミド(DMAC)12.78gをそれぞれ一括で加えた後、シリコンオイルバスで加熱し、反応系内温度を180℃まで上げた。そして、留去される成分を捕集しながら、反応系内温度を180℃に3.5時間維持した。 To this solution, 16.11 g (0.07187 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) and 12.78 g of dimethylacetamide (DMAC) were added all at once, The reaction system was heated by a bath to raise the temperature inside the reaction system to 180 ° C. And the temperature in reaction system was maintained at 180 degreeC for 3.5 hours, collecting the component distilled off.
 次いで、DMAC96.11gをさらに添加後、反応系内温度130℃付近で約30分間撹拌して均一な溶液とし、10分間程度かけて100℃まで空冷して、固形分濃度20質量%のポリイミド溶液を得た。得られたポリイミド溶液を放冷後にメタノール中に投入してポリイミドを析出させ、析出物をさらに洗浄・乾燥して、ポリイミド樹脂固形分を得た。 Next, after further adding 96.11 g of DMAC, the reaction system was stirred for about 30 minutes at a temperature in the vicinity of 130 ° C. to obtain a uniform solution. Got. The obtained polyimide solution was allowed to cool and then poured into methanol to precipitate a polyimide, and the precipitate was further washed and dried to obtain a polyimide resin solid.
 [ポリイミド樹脂Cの合成:ポリエステルイミド]
 反応容器にトリメリット酸無水物とジオール化合物として3,3′,5,5′-テトラメチル-4,4′-ビフェノールとを反応させてなるジエステルテトラカルボン酸二無水物 41.3g(0.07モル)、トリメリット酸無水物5.76g(0.03モル)、ジイソシアネートとして4,4′-ジフェニルメタンジイソシアネート25.03g(0.1モル)、フッ化カリウム0.1gを入れ、N-メチル-2-ピロリドン134.57gに溶解した後、窒素気流下、撹拌しながら、80℃~190℃で8時間反応させることにより、透明で粘稠なポリエステルイミド溶液を得た。
[Synthesis of Polyimide Resin C: Polyesterimide]
41.3 g of diester tetracarboxylic dianhydride obtained by reacting trimellitic anhydride and 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol as a diol compound in a reaction vessel. 07 mol), trimellitic anhydride 5.76 g (0.03 mol), diisocyanate 4,4'-diphenylmethane diisocyanate 25.03 g (0.1 mol), potassium fluoride 0.1 g, N-methyl After dissolving in 134.57 g of -2-pyrrolidone, the mixture was reacted at 80 ° C. to 190 ° C. for 8 hours with stirring in a nitrogen stream to obtain a transparent and viscous polyesterimide solution.
 ポリエステルイミド溶液を放冷後にメタノールに投入し、ポリエステルイミドを析出させた。これを再度洗浄、乾燥させてポリエステルイミドの固形分を得た。 The polyesterimide solution was allowed to cool and then poured into methanol to precipitate the polyesterimide. This was again washed and dried to obtain a solid content of polyesterimide.
 [ポリイミド樹脂Dの合成:ポリアミドイミド]
 反応容器に無水トリメリット酸172g(90モル%、三菱瓦斯化学(株)製)、3,3′、4,4′-ビフェニルテトラカルボン酸二無水物29g(10モル%、三菱化学(株)製)、1,5-ナフタレンジイソシアネート210g(100モル%、住化バイエルウレタン(株)製)、ジアザビシクロウンデセン1g(サンアプロ(株)製)、及び、N-メチル-2-ピロリドン(NMP)1836g(三菱化学(株)製)(ポリマー濃度15%)を加え、100℃まで2時間で昇温し、そのまま5時間反応させた。次いで、NMP534g(ポリマー濃度12質量%)を加え、室温まで冷却した。
[Synthesis of Polyimide Resin D: Polyamideimide]
In a reaction vessel, 172 g of trimellitic anhydride (90 mol%, manufactured by Mitsubishi Gas Chemical Co., Ltd.), 29 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (10 mol%, Mitsubishi Chemical Corporation) 1,5-naphthalene diisocyanate 210 g (100 mol%, manufactured by Sumika Bayer Urethane Co., Ltd.), diazabicycloundecene 1 g (manufactured by San Apro), and N-methyl-2-pyrrolidone (NMP) ) 1836 g (Mitsubishi Chemical Corporation) (polymer concentration 15%) was added, the temperature was raised to 100 ° C. over 2 hours, and the reaction was allowed to proceed for 5 hours. Subsequently, NMP534g (polymer concentration 12 mass%) was added, and it cooled to room temperature.
 得られたポリアミドイミド溶液を放冷後にメタノールに投入し、ポリアミドイミドを析出させた。これを再度洗浄、乾燥させてポリアミドイミドの固形分を得た。 The obtained polyamideimide solution was allowed to cool and then poured into methanol to precipitate polyamideimide. This was again washed and dried to obtain a solid content of polyamideimide.
 [ポリイミド樹脂Eの準備:ポリエーテルイミド]
 ポリエーテルイミドとして、ゼネラルエレクトリック社製の商品名「Ultem 1000」を用いた。
[Preparation of polyimide resin E: polyetherimide]
The product name “Ultem 1000” manufactured by General Electric Co., Ltd. was used as the polyetherimide.
 以上のポリイミド樹脂を用いて、下記方法によりポリイミドフィルムを作製した。 A polyimide film was prepared by the following method using the above polyimide resin.
 <ポリイミドフィルム101の作製>
 〈ドープの調製〉
 下記組成の主ドープを調製した。まず、加圧溶解タンクにジクロロメタン(MC)とエタノール(EtOH)を添加した。溶剤の入った加圧溶解タンクに、上記調製したポリイミド樹脂Aを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、残りの成分を添加し、撹拌して溶解させて、主ドープを調製した。
<Preparation of polyimide film 101>
<Preparation of dope>
A main dope having the following composition was prepared. First, dichloromethane (MC) and ethanol (EtOH) were added to the pressure dissolution tank. The prepared polyimide resin A was added to a pressure dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. After filtration using 244, the remaining components were added and stirred to dissolve to prepare the main dope.
 〈主ドープの組成〉
 ジクロロメタン(表中、MCと略記。)        340質量部
 エタノール(表中、EtOHと略記。)         10質量部
 ポリイミド樹脂A                  100質量部
 〈流延工程〉
 次いで、無端ベルト流延装置を用い、ドープを温度30℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
<Composition of main dope>
Dichloromethane (abbreviated as MC in the table) 340 parts by mass Ethanol (abbreviated as EtOH in the table) 10 parts by mass Polyimide resin A 100 parts by mass <Casting step>
Next, using an endless belt casting apparatus, the dope was cast uniformly on a stainless steel belt support at a temperature of 30 ° C. and a width of 1500 mm. The temperature of the stainless steel belt was controlled at 30 ° C.
 〈剥離工程〉
 40℃に温度保持したステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力180N/mで、ステンレスベルト支持体上から剥離した。
<Peeling process>
On the stainless steel belt support held at 40 ° C., the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then from the stainless steel belt support at a peeling tension of 180 N / m. It peeled.
 〈延伸工程〉
 剥離したポリイミドフィルムを、200℃の熱をかけながら搬送ローラーの周速差を利用しMD方向(長手方向)に1.1倍、及びクリップ式テンターを用いてTD方向(幅手方向)に1.1倍延伸した。延伸開始時の残留溶媒量は20質量%であった。
<Extension process>
The peeled polyimide film is 1.1 times in the MD direction (longitudinal direction) using the peripheral speed difference of the transport roller while applying heat at 200 ° C., and 1 in the TD direction (width direction) using a clip type tenter. The film was stretched 1 time. The residual solvent amount at the start of stretching was 20% by mass.
 〈乾燥工程〉
 延伸したフィルムを、図2で示すベンディングゾーン106にて、乾燥温度220℃で、多数の搬送ローラーによって、400回のベンディング処理を行った。搬送張力は100N/m、乾燥時間20分間として、残留溶媒量が0.1質量%未満となるように乾燥させて、乾燥膜厚80μmのフィルムを得た。得られたフィルムを巻き取って、ポリイミドフィルム101を得た。
<Drying process>
The stretched film was subjected to bending processing 400 times by a large number of conveying rollers at a drying temperature of 220 ° C. in the bending zone 106 shown in FIG. The film was dried at a conveyance tension of 100 N / m and a drying time of 20 minutes so that the amount of residual solvent was less than 0.1% by mass to obtain a film having a dry film thickness of 80 μm. The obtained film was wound up to obtain a polyimide film 101.
 <ポリイミドフィルム102~105の作製>
 上記ポリイミドフィルム101の作製において、ポリイミド樹脂Aの代わりに、ポリイミド樹脂B~Eを用い、ベンディング処理の温度を表1に記載のように変えた以外は同様にして、ポリイミドフィルム102~105を作製した。
<Preparation of polyimide films 102-105>
In the production of the polyimide film 101, polyimide films 102 to 105 were produced in the same manner except that the polyimide resins B to E were used instead of the polyimide resin A and the bending temperature was changed as shown in Table 1. did.
 <ポリイミドフィルム106~109の作製>
 上記ポリイミドフィルム101の作製において、ポリイミド樹脂A~Dを用い、溶媒として、γ-ブチロラクトン(表中、GBLと表記。)及びジメチルアセトアミド(表中、DMAcと表記。)を用い、延伸及びベンディング処理を行わなかった以外は、同様にして比較のポリイミドフィルム106~109を作製した。
<Preparation of polyimide films 106-109>
In the production of the polyimide film 101, polyimide resins A to D are used, and γ-butyrolactone (indicated in the table as GBL) and dimethylacetamide (in the table as DMAc) are used as solvents, and stretching and bending treatments are performed. Comparative polyimide films 106 to 109 were produced in the same manner except that was not performed.
 ≪評価≫
 作製したポリイミドフィルム101~109を用いて、下記評価を実施した。
≪Evaluation≫
Using the produced polyimide films 101 to 109, the following evaluation was performed.
 (1)平面性評価
 図1で示す装置及びレイアウトを用いて、フィルム投影画像の解析を行った。
(1) Flatness evaluation Film projection images were analyzed using the apparatus and layout shown in FIG.
 白色光源2をフィルム試料1に対して斜め45°方向から、フィルム試料1と白色光源2の距離を60cmに調整して照射し、フィルム試料1から投影面3までの距離を70cmとして投影する。投影面3から90°の方向に80cmの距離で、カメラ4(Canon製EOS KISS50、レンズEF-S 18=55mm、ISO感度100、絞り5.6、シャッター速度1/10秒、ホワイトバランス マニュアル設定)にて投影画像を撮影し撮影画像を得た。 The white light source 2 is irradiated with the distance from the film sample 1 to the white light source 2 adjusted to 60 cm from an oblique 45 ° direction with respect to the film sample 1, and the distance from the film sample 1 to the projection plane 3 is projected to 70 cm. Camera 4 (Canon EOS KISS50, Lens EF-S 18 = 55 mm, ISO sensitivity 100, Aperture 5.6, Shutter speed 1/10 sec, White balance manual setting at a distance of 80 cm in the direction of 90 ° from the projection plane 3 ) And a projected image was photographed to obtain a photographed image.
 次いで、撮影画像について以下の手順にて、グレースケールの標準偏差σと二値化画像の黒部分(暗部)の面積率K(%)を求めた。 Then, the standard deviation σ of the gray scale and the area ratio K (%) of the black part (dark part) of the binarized image were obtained for the photographed image by the following procedure.
 1.撮影した画像をフリーソフトImageJを用いてパソコンに読み込んだ。 1. The photographed image was read into a personal computer using free software ImageJ.
 2.実際の撮影画像において1cm×5cmとなるような矩形の評価エリアを設定した。そのとき前記矩形の長辺がフィルム試料の搬送方向になるようにした。 2. A rectangular evaluation area was set to be 1 cm × 5 cm in the actual captured image. At that time, the long side of the rectangle was set to be the film sample transport direction.
 3.フリーソフトImageJによって、8bit化(グレースケール化)を行った。 3. 8-bit conversion (gray scale conversion) was performed using free software ImageJ.
 4.フリーソフトImageJによってバックグラウンド補正を行った。 4. Background correction was performed with the free software ImageJ.
 5.グレースケールにおけるグレーバリューの標準偏差σ、平均値mを算出した。 5. The standard deviation σ and the average value m of the gray value in the gray scale were calculated.
 6.平均値mを閾値として前記矩形の評価エリアの二値化を行った。 6. The rectangular evaluation area was binarized using the average value m as a threshold.
 7.前記二値化によって得られる黒部分(暗部)の面積を全体の面積で除して、黒部分面積率K(%)を算出した。 7. The area of the black part (dark part) obtained by the binarization was divided by the total area to calculate the black part area ratio K (%).
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sである。 Here, the free software ImageJ is ImageJ1.32S created by Wayne Rasband.
 実施例のポリイミドフィルムについて、本発明のポリイミド系光学フィルムの投影画像、二値化画像及びグレースケール標準偏差を図4に示した。また、比較例のポリイミドフィルムの投影画像、二値化画像及びグレースケール標準偏差を図5~図7に示した。 FIG. 4 shows a projected image, a binarized image, and a gray scale standard deviation of the polyimide optical film of the present invention for the polyimide film of the example. Further, projection images, binarized images, and gray scale standard deviations of the polyimide film of the comparative example are shown in FIGS.
 (2)偏光サングラスによる視認性評価
 作製したポリイミドフィルム101~109を用いて、以下の偏光サングラスによる視認性評価を行った。
(2) Visibility evaluation with polarized sunglasses Using the prepared polyimide films 101 to 109, the following visibility evaluation with polarized sunglasses was performed.
 <有機ELディスプレイの作製>
 上記作製した、ポリイミドフィルム101~109を用いて、下記構成により、有機ELディスプレイ101~109を作製した。
<Production of organic EL display>
Using the polyimide films 101 to 109 produced as described above, organic EL displays 101 to 109 were produced with the following configuration.
 (有機ELディスプレイの作製)
 図3に示す構成からなる有機ELディスプレイを作製した。
(Production of organic EL display)
An organic EL display having the configuration shown in FIG. 3 was produced.
 〔有機ELディスプレイの作製〕
 図3に示す構成において、透明基板11としてPETフィルムを用いて、その上にクロムからなる反射電極、反射電極上に金属電極(陽極)としてITO用いて金属電極12を形成し、有機発光層13として、陽極上に正孔輸送層としてポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nmで形成し、次いで正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層13R、13G、13B(いずれも不図示)を100nmの膜厚で形成した。赤色発光層13Rとしては、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層13Gとしては、ホストとしてAlqと、発光性化合物クマリン6(3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層13Bとしては、ホストとしてBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。
[Production of organic EL display]
In the configuration shown in FIG. 3, a PET film is used as the transparent substrate 11, a reflective electrode made of chromium is formed thereon, a metal electrode 12 is formed on the reflective electrode using ITO as a metal electrode (anode), and the organic light emitting layer 13 is formed. As a hole transport layer, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed with a thickness of 80 nm on the anode by a sputtering method, and then a shadow mask is formed on the hole transport layer. In this way, RGB light emitting layers 13R, 13G, and 13B (all not shown) were formed to a thickness of 100 nm. As the red light emitting layer 13R, tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm. As the green light emitting layer 13G, Alq 3 as a host and the light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) are co-evaporated (mass ratio 99: 1) to a thickness of 100 nm. Formed. The blue light emitting layer 13B was formed with a thickness of 100 nm by co-evaporating BAlq and a light emitting compound Perylene as a host (mass ratio 90:10).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 さらに、有機発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成した。ここで、第2の陰極として用いたアルミニウムはその上に形成される透明導電膜をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機発光層を得た。次に、陰極上にスパッタリング法によって透明導電膜を80nmの厚さで成膜し透明電極14とした。ここで透明導電膜としてはITOを用いた。さらに、透明電極14上にCVD法によって窒化ケイ素を200nm成膜することで、絶縁膜15とし、有機EL素子ユニットを作製した。 Further, calcium is deposited in a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer, and a second cathode is formed on the first cathode. As a result, aluminum was formed to a thickness of 2 nm. Here, the aluminum used as the second cathode has a role to prevent calcium as the first cathode from being chemically altered when the transparent conductive film formed thereon is formed by sputtering. . As described above, an organic light emitting layer was obtained. Next, a transparent conductive film was formed to a thickness of 80 nm on the cathode by sputtering to form a transparent electrode 14. Here, ITO was used as the transparent conductive film. Furthermore, 200 nm of silicon nitride was deposited on the transparent electrode 14 by the CVD method to form the insulating film 15 and an organic EL element unit was fabricated.
 次に、ガスバリアーフィルム17として、厚さ20μmのガスバリアー層付きポリエチレンテレフタレートフィルムを使用し、このガスバリアーフィルム17の片面に、封止層16として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与した封止ユニットを作製した。 Next, a polyethylene terephthalate film with a gas barrier layer having a thickness of 20 μm is used as the gas barrier film 17, and a thermosetting liquid adhesive (epoxy resin) is used as the sealing layer 16 on one side of the gas barrier film 17. A sealing unit having a thickness of 25 μm was produced.
 次に、90℃で0.1MPaの減圧条件下で、透明基板11~絶縁層15まで形成した有機EL素子ユニットと封止ユニットとに押圧をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させて、有機EL表示デバイスBを作製した。 Next, the organic EL element unit formed from the transparent substrate 11 to the insulating layer 15 and the sealing unit were pressed and held for 5 minutes under a reduced pressure of 0.1 MPa at 90 ° C. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, whereby an organic EL display device B was produced.
 上記作製した有機EL表示デバイスBの発光面積は1296mm×784mmであった。また、この有機EL表示デバイスBに6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタ社製分光放射輝度計CS-1000を用いて、2°視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。 The light-emitting area of the produced organic EL display device B was 1296 mm × 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL display device B was 1200 cd / m 2 . The front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Co., Ltd., with the front luminance at 2 ° viewing angle and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface. The range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
 〔有機ELディスプレイ101~109の作製〕
 上記作製した有機EL表示デバイスBに、λ/4位相差フィルム18、偏光子19及び保護フィルム20を搭載した円偏光板Cを、図3に記載の構成となるように、対向して接着層を介して固定化し、さらにその上層として前記作製したポリイミドフィルム101~109を最表層21bとして接着層21aを介して前面板21として積層し、有機ELディスプレイ101~109を作製した。
[Production of organic EL displays 101 to 109]
A circularly polarizing plate C on which the λ / 4 retardation film 18, the polarizer 19, and the protective film 20 are mounted on the produced organic EL display device B so as to face each other so as to have the configuration shown in FIG. 3. Further, the polyimide films 101 to 109 produced as the upper layer were laminated as the outermost layer 21b as the front plate 21 via the adhesive layer 21a to produce the organic EL displays 101 to 109.
 <偏光サングラスによる視認性評価>
 上記作製した有機ELディスプレイ101~109を、偏光サングラス越しに観察する。その時の表示ムラを10名の観察者によって下記5段階で目視評価した。実用上は4以上が問題ない。
<Visibility evaluation using polarized sunglasses>
The produced organic EL displays 101 to 109 are observed through polarized sunglasses. The display unevenness at that time was visually evaluated by 10 observers in the following five stages. For practical use, 4 or more is not a problem.
 5:観察者10名とも表示ムラが目立たないと判断する
 4:観察者8名が表示ムラが目立たないと判断する
 3:観察者5名が表示ムラが目立つと判断する
 2:観察者8名が表示ムラが目立つと判断する
 1:観察者全員が表示ムラが目立つと判断する
Figure JPOXMLDOC01-appb-T000024
5: It is determined that display unevenness is not conspicuous for all 10 observers. 4: 8 observers determine that display unevenness is not conspicuous. 3: 5 observers determine that display unevenness is conspicuous. 2: 8 observers. Determines that display unevenness is conspicuous 1: All observers determine that display unevenness is conspicuous
Figure JPOXMLDOC01-appb-T000024
 表1から、ポリイミド樹脂を本発明の好ましい製造方法で作製したポリイミドフィルム101~105は、グレースケールの標準偏差σ、及び二値化画像の黒部分の面積比率が、本発明で規定する範囲を満たし、それを用いた有機ELディスプレイを偏光サングラスによって観察したときに、表示ムラが目立たず、視認性が良好なことが分かった。 From Table 1, the polyimide films 101 to 105 made of polyimide resin by the preferred production method of the present invention have the gray scale standard deviation σ and the area ratio of the black portion of the binarized image within the range defined by the present invention. When the organic EL display using the same was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
 実施例2
 <ポリイミドフィルム201~204の作製>
 実施例1のポリイミドフィルム101の作製において、ベンディング処理の回数を表2に記載のように変えた以外は同様にして、ポリイミドフィルム201~204を作製した。
Example 2
<Preparation of polyimide films 201-204>
In the production of the polyimide film 101 of Example 1, polyimide films 201 to 204 were produced in the same manner except that the number of bending treatments was changed as shown in Table 2.
 作製したポリイミドフィルム201~204を用いて、実施例1と同様な評価を実施した。 The same evaluation as in Example 1 was performed using the produced polyimide films 201 to 204.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 本発明の好ましい製造方法において、好ましいベンディング処理の温度、回数を満たす場合に、グレースケールの標準偏差σ、及び二値化画像の黒部分の面積比率が、本発明で規定する範囲を満たし、それを用いた有機ELディスプレイを偏光サングラスによって観察したときに、表示ムラが目立たず、視認性が良好なことが分かった。 In the preferable manufacturing method of the present invention, when the preferable temperature and number of bending processes are satisfied, the grayscale standard deviation σ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention, and It was found that when the organic EL display using was observed with polarized sunglasses, display unevenness was not noticeable and visibility was good.
 実施例3
 <ポリイミドフィルム301~304の作製>
 実施例1のポリイミドフィルム101の作製において、延伸倍率を表3に記載のように変えた以外は同様にして、ポリイミドフィルム301~304を作製した。
Example 3
<Preparation of polyimide films 301 to 304>
Polyimide films 301 to 304 were produced in the same manner as in the production of the polyimide film 101 of Example 1, except that the draw ratio was changed as shown in Table 3.
 作製したポリイミドフィルム301~305を用いて、実施例1と同様な評価を実施した。 The same evaluation as in Example 1 was performed using the produced polyimide films 301 to 305.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 本発明の好ましい製造方法において、好ましい延伸倍率で延伸する場合に、グレースケールの標準偏差σ、及び二値化画像の黒部分の面積比率が、本発明で規定する範囲を満たし、それを用いた有機ELディスプレイを偏光サングラスによって観察したときに、表示ムラが目立たず、視認性が良好なことが分かった。 In the preferred production method of the present invention, when stretching at a preferred stretch ratio, the grayscale standard deviation σ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention and used. When the organic EL display was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
 実施例4
 <ポリイミドフィルム401~404の作製>
 実施例1のポリイミドフィルム101の作製において、膜厚を表4に記載のように変えた以外は同様にして、ポリイミドフィルム401~404を作製した。
Example 4
<Preparation of polyimide films 401-404>
Polyimide films 401 to 404 were produced in the same manner as in the production of the polyimide film 101 of Example 1, except that the film thickness was changed as shown in Table 4.
 作製したポリイミドフィルム401~404を用いて、実施例1と同様な評価を実施した。 The same evaluation as in Example 1 was performed using the produced polyimide films 401 to 404.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 本発明の好ましい製造方法において、好ましいフィルム膜厚で作製した場合、グレースケールの標準偏差σ、及び二値化画像の黒部分の面積比率が、本発明で規定する範囲を満たし、それを用いた有機ELディスプレイを偏光サングラスによって観察したときに、表示ムラが目立たず、視認性が良好なことが分かった。 In the preferred production method of the present invention, when produced with a preferred film thickness, the grayscale standard deviation σ and the area ratio of the black portion of the binarized image satisfy the range defined in the present invention and used. When the organic EL display was observed with polarized sunglasses, it was found that display unevenness was not noticeable and visibility was good.
 本発明のポリイミド系光学フィルムは、平面性が改善され、有機エレクトロルミネッセンスディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れるため、有機エレクトロルミネッセンスディスプレイ用途として好適に用いることができる。 The polyimide-based optical film of the present invention has improved flatness, and when used on the surface of an organic electroluminescence display, the unevenness of the film when viewed through polarized sunglasses is not noticeable and has excellent visibility. It can be suitably used as a display application.
 1 ポリイミド系光学フィルム
 2 白色光源
 3 投影面
 4 カメラ
 A 有機ELディスプレイ
 B 有機EL表示デバイス
 C 円偏光板
 11 基板、透明基板
 12 金属電極
 13 有機発光層
 14 透明電極
 15 絶縁層
 16 封止層
 17 ガスバリアーフィルム
 18 λ/4位相差フィルム
 19 偏光子
 20 保護フィルム
 21 ポリイミドフィルム
 21a ポリイミドフィルム
 21b 接着層
 100 ダイス
 102 金属支持体
 103 駆動ローラー
 104 剥離点
 105 搬送ローラー
 106 ベンディングゾーン
 107 吸気口
 108 排気口
 109 冷却ゾーン
DESCRIPTION OF SYMBOLS 1 Polyimide type optical film 2 White light source 3 Projection surface 4 Camera A Organic EL display B Organic EL display device C Circular polarizing plate 11 Substrate, transparent substrate 12 Metal electrode 13 Organic light emitting layer 14 Transparent electrode 15 Insulating layer 16 Sealing layer 17 Gas Barrier film 18 λ / 4 retardation film 19 Polarizer 20 Protective film 21 Polyimide film 21a Polyimide film 21b Adhesive layer 100 Die 102 Metal support 103 Driving roller 104 Peeling point 105 Conveying roller 106 Bending zone 107 Air inlet 108 Air outlet 109 Cooling zone

Claims (6)

  1.  イミド構造を有する透明耐熱性樹脂を含有するポリイミド系光学フィルムであって、
     前記ポリイミド系光学フィルムの投影画像から切り取った所定の矩形エリアにおいて、グレースケールの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下に調整されたことを特徴とするポリイミド系光学フィルム。
    A polyimide optical film containing a transparent heat resistant resin having an imide structure,
    In a predetermined rectangular area cut out from the projected image of the polyimide optical film, the standard deviation σ of the gray scale is in the range of 0.50 to 1.10, and the black portion in the binarized image of the rectangular area The polyimide-based optical film is characterized in that the area occupied by is adjusted to 50% or less.
  2.  前記イミド構造を有する透明耐熱性樹脂が、式(1)で表される構造を有するポリイミド、式(2)又は式(3)で表される構造を有するポリイミド、ポリエステルイミド、ポリアミドイミド及びポリエーテルイミドから選択されることを特徴とする請求項1に記載のポリイミド系光学フィルム。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Xは炭素数が2~39の2価の脂肪族基、炭素数が3~39の2価の脂環族基、炭素数が6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基であり、Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれた少なくとも1種の結合基が介在していてもよく、Xはカルボキシ基、ヒドロキシ基又はカルボニル基からなる群から選ばれた少なくとも1種の官能基を有していてもよい。)
    The transparent heat resistant resin having the imide structure is a polyimide having a structure represented by the formula (1), a polyimide having a structure represented by the formula (2) or the formula (3), a polyesterimide, a polyamideimide, and a polyether. The polyimide-based optical film according to claim 1, wherein the polyimide-based optical film is selected from imides.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (3), X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms. A divalent group consisting of a group or a combination thereof, and the main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group. And may have at least one functional group.)
  3.  請求項1又は請求項2に記載のポリイミド系光学フィルムを製造するポリイミド系光学フィルムの製造方法であって、前記イミド構造を有する透明耐熱性樹脂とジクロロメタンとを含有するドープを調製し、溶液流延製膜法によって製膜することを特徴とするポリイミド系光学フィルムの製造方法。 A method for producing a polyimide optical film for producing the polyimide optical film according to claim 1, wherein a dope containing the transparent heat-resistant resin having the imide structure and dichloromethane is prepared, and a solution flow is prepared. A method for producing a polyimide-based optical film, wherein the film is formed by a film-forming method.
  4.  前記製膜する過程において、フィルムを長手方向又は幅手方向の少なくとも一方向に1.05倍以上の倍率で延伸し、次いでフィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で、ローラー搬送しながらベンディング処理を150回以上行うことを特徴とする請求項3に記載のポリイミド系光学フィルムの製造方法。 In the film forming process, the film is stretched at a magnification of 1.05 times or more in at least one direction of the longitudinal direction or the width direction, and then the (glass transition temperature Tg-150) to (glass transition temperature Tg-30) of the film. The method for producing a polyimide-based optical film according to claim 3, wherein the bending treatment is performed 150 times or more while being conveyed by a roller at a drying temperature in a range of ° C.
  5.  膜厚を、25~100μmの範囲内に調整することを特徴とする請求項3又は請求項4に記載のポリイミド系光学フィルムの製造方法。 5. The method for producing a polyimide-based optical film according to claim 3, wherein the film thickness is adjusted within a range of 25 to 100 μm.
  6.  請求項1又は請求項2に記載のポリイミド系光学フィルムを具備することを特徴とする有機エレクトロルミネッセンスディスプレイ。 An organic electroluminescence display comprising the polyimide-based optical film according to claim 1.
PCT/JP2016/056756 2015-03-24 2016-03-04 Polyimide-based optical film, process for producing same, and organic electroluminescent display WO2016152459A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177024910A KR102046699B1 (en) 2015-03-24 2016-03-04 Polyimide Optical Film, Manufacturing Method thereof, and Organic Electroluminescent Display
JP2017508162A JP6635110B2 (en) 2015-03-24 2016-03-04 Polyimide-based optical film, method for producing the same, and organic electroluminescent display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015060590 2015-03-24
JP2015-060590 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152459A1 true WO2016152459A1 (en) 2016-09-29

Family

ID=56978015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056756 WO2016152459A1 (en) 2015-03-24 2016-03-04 Polyimide-based optical film, process for producing same, and organic electroluminescent display

Country Status (4)

Country Link
JP (1) JP6635110B2 (en)
KR (1) KR102046699B1 (en)
TW (1) TW201638153A (en)
WO (1) WO2016152459A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053156A (en) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 Polyimide resin composition, method for producing polyimide resin composition, transparent substrate and film for display
WO2018070146A1 (en) * 2016-10-12 2018-04-19 コニカミノルタ株式会社 Production method for optical film
WO2018135433A1 (en) * 2017-01-20 2018-07-26 住友化学株式会社 Optical film and production method for optical film
JP2018119133A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Optical film and production method for optical film
JP2018119144A (en) * 2017-01-25 2018-08-02 住友化学株式会社 Polyimide-based film and laminate
JP2018156829A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Transparent polyimide film for flexible display front plate, method for manufacturing the same, and organic electroluminescence display
JP6430675B1 (en) * 2017-06-05 2018-11-28 住友化学株式会社 Film, method for evaluating optical homogeneity of film, and method for producing film
JP6450048B1 (en) * 2018-02-14 2019-01-09 住友化学株式会社 Laminate
KR102025321B1 (en) 2018-10-02 2019-09-25 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
KR102028037B1 (en) 2018-10-02 2019-10-02 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
WO2020044405A1 (en) * 2018-08-27 2020-03-05 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
KR20200063031A (en) 2018-11-27 2020-06-04 스미또모 가가꾸 가부시키가이샤 Optical multilayer body, flexible display device and method for producing optical multilayer body
WO2021075395A1 (en) * 2019-10-15 2021-04-22 住友化学株式会社 Optical film
WO2021085283A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Polyamideimide resin
US11226445B2 (en) 2019-11-01 2022-01-18 Samsung Display Co., Ltd. Display device viewable with polarizing sunglasses and method for manufacturing the same
US20220162388A1 (en) * 2018-01-31 2022-05-26 Skc Co., Ltd. Polyamide-imide film and preparation method thereof
CN114599708A (en) * 2019-10-31 2022-06-07 住友化学株式会社 Polyamide-imide resin
KR20220095209A (en) 2019-10-31 2022-07-06 스미또모 가가꾸 가부시키가이샤 Optical film and flexible display device
CN114967321A (en) * 2022-06-21 2022-08-30 广东工业大学 Photosensitive polyimide derived nitrogen-doped carbon pattern and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571248B2 (en) * 2017-01-09 2020-02-25 Kla-Tencor Corporation Transparent film error correction pattern in wafer geometry system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139413A (en) * 1983-12-27 1985-07-24 Mitsubishi Plastics Ind Ltd Preparation of polyetherimide rough surfaced film
JP2000169579A (en) * 1998-12-02 2000-06-20 Teijin Ltd Organic solvent-soluble polyimide and manufacture thereof
JP2001302913A (en) * 2000-04-21 2001-10-31 Unitika Ltd Polyimide precursor solution and polyamide coating film obtainable therefrom
JP2006117935A (en) * 2004-10-19 2006-05-11 General Electric Co <Ge> Polyetherimide composition, film, method and article
JP2009104127A (en) * 2007-10-02 2009-05-14 Nitto Denko Corp Polarizing plate, optical film and image display device
JP2014025059A (en) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd Polyimide film for supporting base material of display device, laminate of the same and method for manufacturing the same
WO2014175040A1 (en) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 Polarizing plate, method for producing same and liquid crystal display device
WO2014192561A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Flexible base material, and manufacturing method therefor, glass laminate, and manufacturing method therefor, and manufacturing method for electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222884A (en) 1978-12-04 1980-09-16 Ethyl Corporation Antioxidant
KR20150023728A (en) * 2012-06-19 2015-03-05 신닛테츠 수미킨 가가쿠 가부시키가이샤 Display device, method for manufacturing same, polyimide film for display device supporting bases, and method for producing polyimide film for display device supporting bases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139413A (en) * 1983-12-27 1985-07-24 Mitsubishi Plastics Ind Ltd Preparation of polyetherimide rough surfaced film
JP2000169579A (en) * 1998-12-02 2000-06-20 Teijin Ltd Organic solvent-soluble polyimide and manufacture thereof
JP2001302913A (en) * 2000-04-21 2001-10-31 Unitika Ltd Polyimide precursor solution and polyamide coating film obtainable therefrom
JP2006117935A (en) * 2004-10-19 2006-05-11 General Electric Co <Ge> Polyetherimide composition, film, method and article
JP2009104127A (en) * 2007-10-02 2009-05-14 Nitto Denko Corp Polarizing plate, optical film and image display device
JP2014025059A (en) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd Polyimide film for supporting base material of display device, laminate of the same and method for manufacturing the same
WO2014175040A1 (en) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 Polarizing plate, method for producing same and liquid crystal display device
WO2014192561A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Flexible base material, and manufacturing method therefor, glass laminate, and manufacturing method therefor, and manufacturing method for electronic device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053156A (en) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 Polyimide resin composition, method for producing polyimide resin composition, transparent substrate and film for display
WO2018070146A1 (en) * 2016-10-12 2018-04-19 コニカミノルタ株式会社 Production method for optical film
JPWO2018070146A1 (en) * 2016-10-12 2019-07-25 コニカミノルタ株式会社 Optical film manufacturing method
WO2018135433A1 (en) * 2017-01-20 2018-07-26 住友化学株式会社 Optical film and production method for optical film
JP2018119133A (en) * 2017-01-20 2018-08-02 住友化学株式会社 Optical film and production method for optical film
KR102461806B1 (en) 2017-01-20 2022-11-01 스미또모 가가꾸 가부시키가이샤 Optical film and method of manufacturing optical film
JP7249732B2 (en) 2017-01-20 2023-03-31 住友化学株式会社 Optical film and method for producing optical film
KR20190109453A (en) * 2017-01-20 2019-09-25 스미또모 가가꾸 가부시키가이샤 Optical film and manufacturing method of the optical film
JP2018119144A (en) * 2017-01-25 2018-08-02 住友化学株式会社 Polyimide-based film and laminate
JP7164304B2 (en) 2017-01-25 2022-11-01 住友化学株式会社 Polyimide film and laminate
JP2018156829A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Transparent polyimide film for flexible display front plate, method for manufacturing the same, and organic electroluminescence display
JP6474936B1 (en) * 2017-06-05 2019-02-27 住友化学株式会社 Film, method for evaluating optical homogeneity of film, and method for producing film
KR101955599B1 (en) 2017-06-05 2019-03-07 스미또모 가가꾸 가부시키가이샤 Method for evaluating optical homogeneity of film and film and method for producing film
KR20190025061A (en) 2017-06-05 2019-03-08 스미또모 가가꾸 가부시키가이샤 Film, method for evaluating optical homogeneity of film, and film production method
KR101968720B1 (en) 2017-06-05 2019-04-12 스미또모 가가꾸 가부시키가이샤 Film, method for evaluating optical homogeneity of film, and film production method
JP2019073707A (en) * 2017-06-05 2019-05-16 住友化学株式会社 Film, method of evaluating optical homogeneity of film and method for producing film
JP2018203986A (en) * 2017-06-05 2018-12-27 住友化学株式会社 Film, evaluation method for optical homogeneity of film, and production method of film
KR20180134930A (en) 2017-06-05 2018-12-19 스미또모 가가꾸 가부시키가이샤 Method for evaluating optical homogeneity of film and film and method for producing film
WO2018225598A1 (en) * 2017-06-05 2018-12-13 住友化学株式会社 Film, method for evaluating optical homogeneity of film, and film production method
KR20200005523A (en) 2017-06-05 2020-01-15 스미또모 가가꾸 가부시키가이샤 Film, method for evaluating optical homogeneity of film, and film production method
JP6430675B1 (en) * 2017-06-05 2018-11-28 住友化学株式会社 Film, method for evaluating optical homogeneity of film, and method for producing film
US11780965B2 (en) * 2018-01-31 2023-10-10 Sk Microworks Co., Ltd. Polyamide-imide film and preparation method thereof
US20220162388A1 (en) * 2018-01-31 2022-05-26 Skc Co., Ltd. Polyamide-imide film and preparation method thereof
JP6450048B1 (en) * 2018-02-14 2019-01-09 住友化学株式会社 Laminate
JP2020006673A (en) * 2018-02-14 2020-01-16 住友化学株式会社 Laminate
JP2020007520A (en) * 2018-02-14 2020-01-16 住友化学株式会社 Laminate
WO2020044405A1 (en) * 2018-08-27 2020-03-05 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
KR20200038186A (en) 2018-10-02 2020-04-10 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
KR20200038179A (en) 2018-10-02 2020-04-10 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
KR102025321B1 (en) 2018-10-02 2019-09-25 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
KR102028037B1 (en) 2018-10-02 2019-10-02 스미또모 가가꾸 가부시키가이샤 Optical film, flexible display device and method for producing optical film
KR20200063031A (en) 2018-11-27 2020-06-04 스미또모 가가꾸 가부시키가이샤 Optical multilayer body, flexible display device and method for producing optical multilayer body
KR20200067806A (en) 2018-11-27 2020-06-12 스미또모 가가꾸 가부시키가이샤 Optical multilayer body, flexible display device and method for producing optical multilayer body
WO2021075395A1 (en) * 2019-10-15 2021-04-22 住友化学株式会社 Optical film
KR20220095208A (en) 2019-10-31 2022-07-06 스미또모 가가꾸 가부시키가이샤 polyamideimide resin
KR20220095209A (en) 2019-10-31 2022-07-06 스미또모 가가꾸 가부시키가이샤 Optical film and flexible display device
CN114599708A (en) * 2019-10-31 2022-06-07 住友化学株式会社 Polyamide-imide resin
WO2021085283A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Polyamideimide resin
US11226445B2 (en) 2019-11-01 2022-01-18 Samsung Display Co., Ltd. Display device viewable with polarizing sunglasses and method for manufacturing the same
CN114967321A (en) * 2022-06-21 2022-08-30 广东工业大学 Photosensitive polyimide derived nitrogen-doped carbon pattern and preparation method and application thereof
CN114967321B (en) * 2022-06-21 2023-03-07 广东工业大学 Photosensitive polyimide derived nitrogen-doped carbon pattern and preparation method and application thereof

Also Published As

Publication number Publication date
TW201638153A (en) 2016-11-01
KR102046699B1 (en) 2019-11-19
KR20170110704A (en) 2017-10-11
JP6635110B2 (en) 2020-01-22
JPWO2016152459A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2016152459A1 (en) Polyimide-based optical film, process for producing same, and organic electroluminescent display
JP6638654B2 (en) Polyimide film and manufacturing method thereof, flexible printed circuit board, base material for flexible display, front panel for flexible display, LED lighting device, and organic electroluminescent display device
WO2016129329A1 (en) Method for manufacturing transparent heat-resistant layered film, transparent heat-resistant layered film, flexible printed circuit board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device
TWI637015B (en) Optical film manufacturing method
WO2017010178A1 (en) Polarizing plate, manufacturing method for same, liquid crystal display device, and organic electroluminescent display device
TWI636077B (en) Polyimine film and method of producing the same
JP6834440B2 (en) Polyimide film and display device using the film
JP6874759B2 (en) Polyimide film and its manufacturing method
JP2017083669A (en) Polarizing plate and manufacturing method therefor
WO2017099041A1 (en) Polyimide film, flexible printed board, led lighting device etc.
JP6929355B2 (en) Polyamic acid, polyimide, polyimide film, image display device containing this, and method for producing polyamic acid
JP2016075894A (en) Optical film, production method of the same, flexible printed circuit board, and led illumination
JP7084755B2 (en) A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film.
JP2011251450A (en) Laminate
JP7172981B2 (en) BASE FILM FOR TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
JP2020164704A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for manufacturing polyimide film
WO2017057247A1 (en) Polyimide film, flexible printed board, substrate for led lighting and front plate for flexible display
JP2017185743A (en) Manufacturing method and manufacturing device of polyimide film
JP6772519B2 (en) Polyimide film, its manufacturing method, transparent conductive film and touch panel
JP2017186466A (en) Polyimide film, manufacturing method therefor, and organic electroluminescent display device
JPWO2020067558A1 (en) Polyimide precursors and the resulting polyimides and flexible devices
JP2017187562A (en) Method of manufacturing optical film, and manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768362

Country of ref document: EP

Kind code of ref document: A1