WO2020065765A1 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
WO2020065765A1
WO2020065765A1 PCT/JP2018/035690 JP2018035690W WO2020065765A1 WO 2020065765 A1 WO2020065765 A1 WO 2020065765A1 JP 2018035690 W JP2018035690 W JP 2018035690W WO 2020065765 A1 WO2020065765 A1 WO 2020065765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
chamber
introduction
exhaust
exhaust pipe
Prior art date
Application number
PCT/JP2018/035690
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 正樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/035690 priority Critical patent/WO2020065765A1/en
Publication of WO2020065765A1 publication Critical patent/WO2020065765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a heating device.
  • Patent Document 1 heat is exchanged between the exhaust gas sent from the carbonization furnace and the outside air in the heat exchanger.
  • the heated outside air sent from the heat exchanger passes through a heated outside air supply passage and is supplied to a flameproofing furnace provided separately from the heat exchanger. According to Patent Literature 1, it is described that the flameproofing treatment can be performed stably.
  • Patent Document 1 heated outside air for supplying air to the oxidization furnace is heated in the heat exchanger by exhaust gas heated in a carbonization furnace provided separately from the oxidization furnace. As described above, in Patent Literature 1, since a heat source different from that of the oxidization furnace is required, power consumption increases.
  • One object of one embodiment of the present invention is to provide a heating device in which an increase in power consumption is prevented.
  • a heating device includes a chamber for baking a resin material, an introduction pipe connected to the chamber and introducing an inert gas into the chamber, And an exhaust pipe connected to the exhaust pipe for discharging gas from the chamber, wherein the exhaust pipe is provided so as to surround the introduction pipe.
  • a heating device in which an increase in power consumption is prevented can be provided.
  • FIG. 1 is a plan view schematically illustrating a display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration in a display area of the display device according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating a method for manufacturing a display device according to the first embodiment of the present invention.
  • 3 is a flowchart illustrating a method for manufacturing a resin layer according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a cross section of a chamber of the heating device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an upper surface of a chamber of the heating device according to the first embodiment.
  • FIG. 6 is a sectional view taken along line BB shown in FIG. 5.
  • FIG. 7 is a diagram illustrating an upper surface of a chamber of the heating device according to the second embodiment. It is a figure showing the section of the chamber of the heating device concerning Embodiment 3.
  • FIG. 13 is a diagram illustrating an upper surface of a chamber of the heating device according to the third embodiment.
  • “same layer” means being formed in the same process
  • “lower layer” means being formed in a process earlier than the layer to be compared
  • the “upper layer” means that it is formed in a process subsequent to the layer to be compared.
  • FIG. 1 is a plan view of the display device 2 according to the first embodiment.
  • the display device 2 according to the present embodiment has a display area DA and a frame area NA adjacent to the periphery of the display area DA.
  • a terminal portion T is formed at one end of the frame region NA.
  • a driver or the like (not shown) that supplies a signal for driving each light emitting element in the display area DA via a connection line CL from the display area DA is mounted on the terminal portion T.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration in a display area of the display device 2 according to the first embodiment.
  • FIG. 2 shows a cross section taken along line AA in FIG.
  • the display device 2 includes a lower film 10, an adhesive layer 11, a resin layer 12, a barrier layer 3, a TFT layer 4, a light emitting element layer 5, a sealing layer 6 is provided.
  • the display device 2 may include a functional film 39 having an optical compensation function, a touch sensor function, a protection function, and the like, further above the sealing layer 6.
  • the lower film 10 is a base film of the display device 2 and may include, for example, an organic resin material.
  • the adhesive layer 11 is a layer for bonding the lower film 10 and the resin layer 12, and may be formed using a conventionally known adhesive. It is preferable to use a material having high heat resistance and a linear expansion coefficient close to that of glass, such as polyimide or polyamide, as the resin layer 12.
  • the barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from penetrating into the TFT layer 4 and the light emitting element layer 5 when the display device 2 is used.
  • the barrier layer 3 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by CVD, or a stacked film thereof.
  • the TFT layer 4 includes, in order from the lower layer, a semiconductor film 15, a first inorganic insulating film 16 (gate insulating film), a gate electrode GE, a second inorganic insulating film 18, a capacitor electrode CE, and a third inorganic insulating film. 20, a source wiring SH (metal wiring layer), and a planarizing film 21 (interlayer insulating film).
  • a transistor Tr which is a thin-layer transistor (TFT), is configured to include the semiconductor film 15, the first inorganic insulating film 16, and the gate electrode GE.
  • the semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor. Note that in FIG. 2, a TFT having the semiconductor film 15 as a channel is illustrated as having a top gate structure; however, a TFT having a bottom gate structure may be employed (for example, a case where the channel of the TFT is an oxide semiconductor).
  • LTPS low-temperature polysilicon
  • the gate electrode GE, the capacitor electrode CE, or the source wiring SH are used for the gate electrode GE, the capacitor electrode CE, or the source wiring SH. May be included. That is, the gate electrode GE, the capacitor electrode CE, or the source wiring SH is formed of a single-layer film or a stacked film of the above-described metal.
  • the first inorganic insulating film 16, the second inorganic insulating film 18, and the third inorganic insulating film 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • the flattening film 21 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
  • the light-emitting element layer 5 (for example, an organic light-emitting diode layer) includes, in order from the bottom, a pixel electrode 22 (a first electrode, for example, an anode), a cover film (edge cover) 23 that covers the edge of the pixel electrode 22, and an EL (electrode). (Luminescence) layer 24 and an upper electrode (second electrode, for example, a cathode) 25.
  • the light-emitting element layer 5 includes, for each sub-pixel SP (pixel), a light-emitting element (for example, an OLED: organic light-emitting diode) including an island-shaped pixel electrode 22, an island-shaped EL layer 24, and an upper electrode 25; And a sub-pixel circuit for driving the same.
  • a transistor Tr is formed for each sub-pixel circuit, and the sub-pixel circuit is controlled by controlling the transistor Tr.
  • the pixel electrode 22 is provided at a position overlapping the planarization film 21 and a contact hole that is an opening of the planarization film 21 in a plan view.
  • the pixel electrode 22 is electrically connected to the source wiring SH via a contact hole. Therefore, a signal in the TFT layer 4 is supplied to the pixel electrode 22 via the source wiring SH.
  • the thickness of the pixel electrode 22 may be, for example, 100 nm.
  • the pixel electrode 22 is formed in an island shape for each of the plurality of sub-pixels SP, is made of, for example, a stack of an alloy containing ITO (Indium Tin In Oxide) and Ag, and has light reflectivity.
  • the upper electrode 25 is formed as a solid layer as a common layer of the plurality of sub-pixels SP, and can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the cover film 23 is an organic insulating film and is formed at a position covering the edge of the pixel electrode 22. An opening is formed in the cover film 23 for each of the plurality of sub-pixels SP, and a part of the pixel electrode 22 is exposed through the opening.
  • the cover film 23 can be made of, for example, a coatable material such as polyimide.
  • the EL layer 24 is configured by, for example, stacking a hole transport layer, a light emitting layer, and an electron transport layer in this order from the lower layer side.
  • at least one layer of the EL layer 24 is formed by an evaporation method.
  • each layer included in the EL layer 24 may be formed in an island shape for each sub-pixel SP, or may be formed in a solid shape as a common layer of a plurality of sub-pixels SP. .
  • the light emitting element layer 5 is an OLED layer
  • holes and electrons are recombined in the EL layer 24 by the drive current between the pixel electrode 22 and the upper electrode 25, and the excitons generated by the recombination fall to the ground state.
  • Light is emitted. Since the upper electrode 25 has a light transmitting property and the pixel electrode 22 has a light reflecting property, light emitted from the EL layer 24 passes through the upper electrode 25 and is emitted upward in the plane of FIG. As described above, the display device 2 has, for example, top emission.
  • the sealing layer 6 includes a first inorganic sealing film 26 above the upper electrode 25, an organic sealing film 27 above the first inorganic sealing film 26, and a first inorganic sealing film 27 above the organic sealing film 27. 2 and an inorganic sealing film 28 to prevent foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 can be formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof formed by CVD. .
  • the organic sealing film 27 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
  • FIG. 3 is a flowchart for explaining a method for manufacturing the display device 2 according to the first embodiment. A method for manufacturing the display device 2 will be described with reference to FIGS.
  • the resin layer 12 is formed on a not-shown translucent support substrate (for example, mother glass) (Step S1). The details of the method for forming the resin layer 12 will be described later.
  • the barrier layer 3 is formed on the resin layer 12 (Step S2).
  • the TFT layer 4 is formed on the barrier layer 3 (Step S3).
  • a top emission type light emitting element layer 5 is formed on the TFT layer 4 (Step S4).
  • the sealing layer 6 is formed on the light emitting element layer 5 (Step S5).
  • an upper surface film is attached on the sealing layer 6 (Step S6).
  • Step S7 the support substrate is separated from the resin layer 12 by laser light irradiation or the like (Step S7).
  • the lower surface film 10 is attached to the lower surface of the resin layer 12 via the adhesive layer 11 (Step S8).
  • the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (Step S9).
  • the functional film 39 is attached to the obtained individual pieces (Step S10).
  • an electronic circuit board for example, an IC chip and an IC chip
  • FPC is mounted (step S11).
  • the display device 2 is completed.
  • FIG. 4 is a flowchart for explaining a method for manufacturing the resin layer 12 according to the first embodiment. That is, step S1 shown in FIG. 3 specifically includes steps S21 to S23 shown in FIG.
  • Step S21 application step
  • the mixture used in step S21 may include, for example, a polyimide precursor and an organic solvent.
  • the precursor of the polyimide may include polyamic acid
  • the organic solvent may include NMP (N-methyl-2-pyrrolidene).
  • a so-called slit coater method or an inkjet method can be used.
  • the support substrate to which the mixture has been applied is carried into a chamber (chamber) in which prebaking is performed, and prebaking is performed (step S22, prebaking step).
  • the pre-bake step may be performed, for example, under a reduced pressure environment of 80 ° C. or less.
  • the fixation of the coating liquid due to the volatilization of the solvent applied on the supporting substrate (making the coating liquid difficult to drip or flow) progresses, and the mixture on the supporting substrate is mixed. Fluidity decreases.
  • the content of the organic solvent in the mixture on the supporting substrate may be reduced to about 10% by performing prebaking.
  • the pre-baked support substrate is carried into a chamber for curing and baking (actual baking) (step S23, cure baking step (actual baking step)).
  • the precursor in the mixture is imidized by heating the mixture on the supporting substrate at about 150 ° C. to 250 ° C. in a low oxygen atmosphere of about 500 ppm to several ppm or less, and further from there.
  • the temperature in the chamber is increased to 450 to 520 ° C., and the supporting substrate and the mixture are heated for a predetermined time.
  • the resin layer 12 (see FIG. 2) is formed on the supporting substrate by the high-temperature heating in the curing and baking step.
  • step S2 shown in FIG.
  • pre-bake step and the cure-bake step have been described to be performed in separate chambers, the pre-bake step and the cure-bake step may be performed in the same chamber.
  • FIG. 5 is a diagram illustrating a cross section of the chamber 41 of the heating device 40 according to the first embodiment.
  • FIG. 6 is a diagram illustrating an upper surface of the chamber 41 of the heating device 40 according to the first embodiment.
  • FIG. 7 is a sectional view taken along line BB shown in FIG.
  • the heating device 40 is a heating device used to heat the supporting substrate and the mixture at a high temperature in the curing and baking process.
  • the heating device 40 includes a chamber 41, a gas supply source (first gas supply source) 50A, and a pipe (first pipe) 80A.
  • the chamber 41 is a chamber for curing and baking the mixture 12a on the support substrate S.
  • the chamber 41 is a space for baking the mixture 12a (a mixture that becomes the resin layer 12), which is a resin material.
  • the chamber 41 includes opposing side walls 41a and 41b, opposing side walls 41c and 41d, a bottom part 41e, and an upper part 41f.
  • the side walls 41a to 41d stand on the bottom 41e, and the upper portion 41f is supported by the side walls 41a to 41d.
  • the side wall 41c is provided with an opening through which the support substrate S can be taken in and out of the chamber 41, and the side wall 41c is provided with a door. By closing the door 42, the inside of the chamber 41 is sealed.
  • the side wall 41a is provided with an opening connected to the pipe (first pipe) 80A.
  • the heating unit 43 is a heater.
  • the mounting section 44 is a table on which the support substrate S is mounted.
  • the heating unit 43 and the placement unit 44 are provided so as to alternately overlap with each other. That is, the mounting section 44 is sandwiched between the heating sections 43 provided above and below.
  • three stages of the mounting units 44 are provided in the chamber 41, and the heating units 43 are provided so as to vertically face each of the three stages of the mounting units 44.
  • a support substrate S on which the mixture 12a (mixture to become the resin layer 12) which has been finished up to pre-baking is mounted.
  • the support substrate S and the mixture 12a placed on the placement unit 44 are heated at a high temperature by the heating unit 43.
  • the pipe 80A is a double pipe including the introduction pipe 60A and the exhaust pipe 70A provided so as to surround the introduction pipe 60A.
  • the introduction pipe 60A is mostly inserted into the exhaust pipe 70A.
  • the introduction pipe 60A and the exhaust pipe 70A are cylinders having a circular cross section.
  • the introduction pipe 60A is connected to the side wall 41a of the chamber 41 and also to the gas supply source 50A.
  • the introduction pipe 60A is a pipe that introduces the inert gas supplied from the gas supply source 50A into the chamber 41.
  • the inside of the chamber 41 is replaced with an inert gas from air, and becomes a low oxygen state. Accordingly, the mixture 12a on the support substrate S can be cured and bake under a low oxygen atmosphere.
  • the introduction pipe 60A includes an introduction trunk pipe 61A connected to the gas supply source 50A, and one or more introduction branch pipes 62A branched from the introduction trunk pipe 61A and connected to the side wall 41a of the chamber 41. I have. Thereby, as shown by the arrow INA, the inert gas supplied from the gas supply source 50A passes through the introduction main pipe 61A, and further, one or a plurality of introduction branch pipes 62A branched from the introduction main pipe 61A. Through the inside, it is supplied into the chamber 41. In the example shown in FIG. 5, three introduction branch pipes 62A branch from one introduction trunk pipe 61A, and the tips of the three introduction branch pipes 62A are connected to the side walls 41a of the chamber 41.
  • the numbers of the introduction trunk pipe 61A and the introduction branch pipe 62A are not limited to the example shown in FIG.
  • N 2 gas can be mentioned.
  • the inert gas supplied from a gas supply source 50A also outside than N 2 gas, for example, it can be mentioned He, Ar, and gases Ne, and the like.
  • the exhaust pipe 70A is connected to the side wall 41a of the chamber 41.
  • the exhaust pipe 70A is provided with an exhaust part (fan) 75A.
  • the exhaust pipe 70 ⁇ / b> A is a pipe that discharges gas in the chamber 41.
  • the gas discharged from the chamber 41 through the exhaust pipe 70A is a mixed gas of the air in the chamber 41 and the inert gas introduced into the chamber 41.
  • the gas discharged from the chamber 41 is a high-temperature gas because the gas is discharged while being heated in the chamber 41.
  • the exhaust pipe 70A includes an exhaust main pipe 71A provided with an exhaust portion 75A, and one or more exhaust branch pipes 72A branched from the exhaust main pipe 71A and connected to the side wall 41a of the chamber 41. .
  • the gas heated in the chamber 41 passes through the one or more exhaust branch pipes 72A, and further, the exhaust main pipe to which the one or more exhaust branch pipes 72A are connected.
  • the gas is exhausted from the inside of the chamber 41 to the outside of the chamber 41 through the inside of 71A.
  • three exhaust branch pipes 72A are branched from one exhaust main pipe 71A, and the tips of the three exhaust branch pipes 72A are connected to the side walls 41a of the chamber 41.
  • the number of the exhaust main pipe 71A and the exhaust branch pipe 72A is not limited to the example shown in FIG.
  • the exhaust section 75A has a fan. By driving the fan, the exhaust efficiency in the exhaust pipe 70A can be increased.
  • the exhaust pipe 70A is provided so as to surround the introduction pipe 60A.
  • the exhaust branch pipe 72A surrounds the outside of the introduction branch pipe 62A
  • the exhaust main pipe 71A surrounds most of the introduction main pipe 61A.
  • the exhaust pipe 70A is provided so as to surround one or a plurality of introduction branch pipes 62A and at least a part of the introduction trunk pipe 61A.
  • the introduction main pipe 61A is exposed to the outside from the inside of the exhaust main pipe 71A near the gas supply source 50A and is connected to the gas supply source 50A. Thereby, when the gas heated in the chamber 41 passes through the exhaust pipe 70A, the inert gas passing through the introduction pipe 60A is heated. Therefore, the inert gas supplied from the gas supply source 50A into the introduction pipe 60A is heated and heated by the exhaust pipe 70A (that is, by the gas passing through the exhaust pipe 70A) in the process of passing through the introduction pipe 60A. It is introduced into the chamber 41 in a state.
  • the temperature in the chamber 41 is maintained at a high temperature. For this reason, when an inert gas at a temperature considerably lower than the temperature in the chamber 41 (for example, about room temperature) is introduced into the chamber 41, the temperature near the introduction pipe 60A in the chamber 41 becomes lower than in other places. In this case, fumes (foreign matter) are likely to be generated and adhere to the mixture 12a in which the thermal reaction proceeds in the chamber 41, near the introduction pipe 60A. Then, the fumes attached and deposited fly to the support substrate S by the inert gas, which causes a decrease in yield. As an example of the fume (foreign matter) generated, for example, a floating substance of polyamic acid contained in the mixture 12a in which the thermal reaction proceeds can be cited.
  • the inside of the chamber 41 is heated at a high temperature for a long time, so that the power consumption is large. That is, in the curing and baking step of the mixture 12a on the supporting substrate S, the temperature in the chamber 41 needs to be raised to about 450 ° C. to 520 ° C., and the predetermined time for curing and baking is about 3 hours to 12 hours. May require. As described above, in order to maintain the temperature in the chamber 41 at a high temperature for a long time, it is necessary to continuously supply a large current to the heating unit 43 for a long time.
  • the size of the support substrate S (mother glass) is increased, the number of stages of the mounting portion 44 in the chamber 41 is increased, and the capacity of the chamber 41 is increased.
  • power consumption for maintaining the temperature in the chamber 41 is considerably large.
  • the exhaust pipe 70A is provided so as to surround the introduction pipe 60A.
  • the exhaust pipe 70A is provided so as to heat the introduction pipe 60A when the gas containing the inert gas heated in the chamber 41 is discharged through the exhaust pipe 70A. That is, the inert gas in the introduction pipe 60A is heated by using the waste heat exhausted from the chamber 41 through the exhaust pipe 70A.
  • the introduction pipe 60 ⁇ / b > A is heated by the gas containing the inert gas (N 2 in this embodiment) heated in the chamber 41.
  • the inert gas in the introduction pipe 60A can be heated by the exhaust pipe 70A (that is, by the gas passing through the exhaust pipe 70A) without providing a separate heater. This can prevent further increase in power consumption for heating the inert gas passing through the introduction pipe 60A.
  • the heated inert gas is introduced into the chamber 41 through the introduction pipe 60A. Accordingly, it is possible to prevent fume (foreign matter) from being generated in the vicinity of the introduction pipe 60A in the chamber 41. For this reason, fumes (foreign matter) can be prevented from adhering to the vicinity of the introduction pipe 60A in the mixture 12a in which the thermal reaction proceeds, and a decrease in yield can be prevented.
  • the mixture 12a can be heated (cured bake) while suppressing an increase in power consumption and preventing fume (foreign matter) from adhering.
  • the heating device 40 has the exhaust pipe 70A and the pipe 80A including the introduction pipe 60A surrounded by the exhaust pipe 70A.
  • the pipe 80A which is a double pipe, can be described as a heat exchanger that exchanges heat between the exhaust pipe 70A and the introduction pipe 60A.
  • the heat exchanger which is a double pipe, is directly connected to the chamber 41.
  • the gas heated in the chamber 41 can be directly introduced into the double-pipe heat exchanger (that is, the exhaust pipe 70A). it can.
  • heat exchange can be efficiently performed in the pipe 80A as compared with a configuration in which the heat exchanger is provided away from the chamber.
  • the introduction tube 60A includes a protruding portion 62Aa protruding into the chamber 41.
  • each introduction branch pipe 62A includes a protruding portion 62Aa that penetrates the side wall 41a of the chamber 41 and protrudes from the inner wall surface inside the chamber 41 in the side wall 41a toward the center of the chamber 41. That is, the introduction port 60Aa, which is the tip of the introduction pipe 60A in the chamber 41, protrudes from the inner wall surface in the chamber 41 on the side wall 41a toward the center of the chamber 41.
  • an inert gas can be introduced from each introduction branch pipe 62A in a more central direction in the chamber 41 (a direction approaching the support substrate S and the mixture 12a). Therefore, the atmosphere near the mixture 12a on the support substrate S can be maintained in a lower oxygen state.
  • the protruding portion 62Aa protrudes into the chamber 41 more than the exhaust pipe 70A.
  • the exhaust pipe 70A is flush with the inner wall surface inside the chamber 41 in the side wall 41a of the chamber 41 to which the exhaust pipe 70A is connected.
  • the exhaust port 70Aa which is the tip of the exhaust pipe 70A in the chamber 41, is flush with the inner wall surface in the chamber 41.
  • the exhaust port 70Aa of the exhaust pipe 70A is not limited to be flush with the inner wall surface in the chamber 41, and may protrude into the chamber 41 from the inner wall surface of the side wall 41a of the chamber 41.
  • the exhaust pipe 70A surrounds the outer circumference of the introduction pipe 60A.
  • the cross-sectional area of the exhaust pipe 70A that contributes to the exhaust is preferably larger than the cross-sectional area of the introduction pipe 60A.
  • the exhaust pipe 70A is designed to surround the introduction pipe 60A.
  • the pipe 80A may have a configuration in which the exhaust pipe 70A is wound around the outer circumference of the introduction pipe 60A instead of the configuration in which the introduction pipe 60A is inserted inside the exhaust pipe 70A. In this way, the heated gas passing through the exhaust pipe 70A can also heat the inert gas passing through the introduction pipe 60A.
  • FIG. 8 is a cross-sectional view illustrating a shape of a pipe 80A1 according to a modification of the first embodiment.
  • the heating device 40 may include a pipe 80A1 instead of the pipe 80A.
  • the pipe 80A1 includes an exhaust pipe 70A and an introduction pipe 60A1.
  • the introduction pipe 60A1 has a different cross-sectional shape from the introduction pipe 60A.
  • the other configuration of the pipe 80A1 is the same as that of the pipe 80A.
  • the introduction pipe 60A1 has irregularities on the outer wall surrounded by the exhaust pipe 70A. In the example shown in FIG. 8, the introduction pipe 60A1 has a star-shaped cross section.
  • the introduction pipe 60A1 Since the introduction pipe 60A1 has irregularities on the outer wall as compared with the case where the cross-sectional shape is circular, the surface area of the outer wall increases. Thereby, the introduction pipe 60A1 is efficiently heated by the heated gas in the exhaust pipe 70A flowing around the introduction pipe 60A1. As a result, it is possible to efficiently heat the inert gas passing through the introduction pipe 60A1.
  • FIG. 9 is a diagram illustrating a cross section of a chamber 41A of a heating device 40A according to the second embodiment.
  • FIG. 10 is a diagram illustrating an upper surface of a chamber 41A of a heating device 40A according to the second embodiment.
  • the heating device 40A has a configuration in which the heating device 40 (FIG. 5 and the like) is further provided with a double pipe.
  • the heating device 40A includes a chamber 41A, a gas supply source (first gas supply source) 50A, a pipe (first pipe) 80A, a gas supply source (second gas supply source) 50B, and a pipe (second pipe). 80B.
  • the chamber 41A is a chamber for curing and baking the mixture 12a on the support substrate S.
  • the chamber 41A includes opposing side walls 41Aa and 41Ab, opposing side walls 41Ac and 41Ad, a bottom 41Ae, and an upper part 41Af.
  • the side walls 41Aa to 41Ad stand on the bottom 41Ae, and the upper portion 41Af is supported by the side walls 41Aa to 41Ad.
  • the side wall 41Ac is provided with an opening through which the support substrate S can be taken in and out of the chamber 41A, and the side wall 41Ac is provided with a door 42. By closing the door 42, the inside of the chamber 41A is sealed.
  • the side wall 41Aa is provided with an opening connected to the pipe (first pipe) 80A, and the side wall 41Ab is provided with an opening connected to the pipe (second pipe) 80B.
  • a plurality of heating units 43 and a plurality of mounting units 44 are provided so as to be alternately overlapped while being separated from each other.
  • the pipe 80B has the same configuration and the same shape as the pipe 80A. That is, the pipe 80B is a double pipe including the introduction pipe 60B and the exhaust pipe 70B provided so as to surround the introduction pipe 60B.
  • the introduction pipe 60B is connected to the side wall 41Ab of the chamber 41A and also to the gas supply source 50B.
  • the introduction pipe 60B is a pipe that introduces the inert gas supplied from the gas supply source 50B into the chamber 41A.
  • the introduction pipe 60B includes an introduction trunk pipe 61B connected to the gas supply source 50B, and one or more introduction branch pipes 62B branched from the introduction trunk pipe 61B and connected to the side wall 41Ab of the chamber 41A. I have. Thereby, as shown by the arrow INB, the inert gas supplied from the gas supply source 50B passes through the introduction trunk pipe 61B, and further, one or a plurality of introduction branch pipes 62B branched from the introduction trunk pipe 61B.
  • three introduction branch pipes 62B branch off from one introduction trunk pipe 61B, and the tips of the three introduction branch pipes 62B are connected to the side walls 41Ab of the chamber 41A.
  • the numbers of the introduction trunk pipes 61B and the introduction branch pipes 62B are not limited to the example shown in FIG.
  • the exhaust pipe 70B is connected to the side wall 41Ab of the chamber 41A.
  • the exhaust pipe 70B is provided with an exhaust part (fan) 75B.
  • the exhaust pipe 70B is a pipe that discharges gas in the chamber 41A.
  • the exhaust pipe 70B includes an exhaust main pipe 71B provided with an exhaust portion 75B, and one or more exhaust branch pipes 72B branched from the exhaust main pipe 71B and connected to the side wall 41Ab of the chamber 41A. .
  • the gas heated in the chamber 41 passes through the one or more exhaust branch pipes 72B, and further, the exhaust main pipe to which the one or more exhaust branch pipes 72B are connected.
  • the gas is exhausted from the inside of the chamber 41A to the outside of the chamber 41A through the inside of the chamber 71B.
  • three exhaust branch pipes 72B are branched from one exhaust main pipe 71B, and the tips of the three exhaust branch pipes 72B are connected to the side walls 41Ab of the chamber 41A.
  • the numbers of the exhaust main pipe 71B and the exhaust branch pipe 72B are not limited to the example shown in FIG.
  • the exhaust pipe 70B is provided so as to surround the introduction pipe 60B.
  • the exhaust branch pipes 72B respectively surround the outside of the introduction branch pipe 62B
  • the exhaust main pipe 71B surrounds the outside of most of the introduction main pipes 61B.
  • the exhaust pipe 70B is provided so as to surround one or a plurality of introduction branch pipes 62B and at least a part of the introduction trunk pipe 61B.
  • the heating device 40A includes the introduction pipes 60A and 60B, and further includes the exhaust pipes 70A and 70B.
  • the exhaust pipe 70A is provided so as to surround the introduction pipe 60A
  • the exhaust pipe 70B is provided so as to surround the introduction pipe 60B.
  • the exhaust pipe 70A and the introduction pipe 60A, and the exhaust pipe 70B and the introduction pipe 60B are connected to the mutually facing side walls 41Aa and 41Ab of the chamber 41Ab. That is, the exhaust pipe 70A and the introduction pipe 60A are connected to the side wall 41Aa, and the exhaust pipe 70B and the introduction pipe 60B are connected to the side wall 41Ab.
  • the heated inert gas can be efficiently supplied from both directions in the chamber 41A, and the waste heat in the chamber 41A can be efficiently exhausted in both directions (directions of the pipes 80A and 80B). can do.
  • the introduction pipe 60B includes a protruding portion 62Ba protruding into the chamber 41A.
  • each introduction branch pipe 62B includes a protruding portion 62Ba that penetrates the side wall 41Ab of the chamber 41A and protrudes from the inner wall surface in the chamber 41A in the side wall 41Ab toward the center of the chamber 41A.
  • the protruding portion 62Ba protrudes into the chamber 41A from the exhaust pipe 70B.
  • the exhaust pipe 70B is flush with the inner wall surface inside the chamber 41A in the side wall 41Ab of the chamber 41A to which the exhaust pipe 70B is connected.
  • the exhaust port 70Ba which is the tip of the exhaust pipe 70B in the chamber 41A, is flush with the inner wall surface in the chamber 41A.
  • the exhaust port 70Ba of the exhaust pipe 70B is not limited to be flush with the inner wall surface inside the chamber 41A, and may protrude into the chamber 41A from the inner wall surface of the side wall 41Ab of the chamber 41A.
  • FIG. 11 is a diagram illustrating a cross section of a chamber 41A of a heating device 40C according to the third embodiment.
  • FIG. 12 is a diagram illustrating an upper surface of a chamber 41A of a heating device 40C according to the third embodiment.
  • the heating device 40C includes an introduction pipe (third introduction pipe) 60C, an exhaust pipe (third exhaust pipe) 70C, and a gas supply instead of the pipe 80B and the gas supply source 50B provided in the heating apparatus 40A (FIG. 9 and the like). This is a configuration including a source 50C. Other configurations of the heating device 40C are the same as those of the heating device 40A.
  • the introduction pipe 60C is exposed and is not surrounded by the exhaust pipe 70C.
  • the introduction pipe 60C is connected to the side wall 41Ab of the chamber 41A and also to the gas supply source 50C.
  • the pipe 80A is used during the cure bake, and the inlet pipe 60C and the exhaust pipe 70C are used to cool the inside of the chamber 41A after the completion of the cure bake.
  • the introduction pipe 60C is a pipe for introducing a gas supplied from the gas supply source 50C into the chamber 41A in order to introduce a gas for cooling the inside of the chamber 41 after the completion of the cure bake in the chamber 41A.
  • the introduction pipe 60C includes an introduction trunk pipe 61C connected to the gas supply source 50C, and one or more introduction branch pipes 62C branched from the introduction trunk pipe 61C and connected to the side wall 41Ab of the chamber 41A. I have.
  • the gas (for example, compressed air) supplied from the gas supply source 50C passes through the introduction trunk pipe 61C, and further, has one or more introduction branches branched from the introduction trunk pipe 61C.
  • the gas is supplied into the chamber 41A through the pipe 62C.
  • three introduction branch pipes 62C branch off from one introduction trunk pipe 61C, and the tips of the three introduction branch pipes 62C are connected to the side walls 41Ab of the chamber 41A.
  • the numbers of the introduction trunk pipes 61C and the introduction branch pipes 62C are not limited to the example shown in FIG.
  • a valve 96 is provided on one or a plurality of introduction branch pipes 62C. During the cure bake, the valve 96 is closed, and when the cure bake is completed and the inside of the chamber 41 is cooled, the valve 96 is opened to use the introduction pipe 60C.
  • the exhaust pipe 70C is connected to the side wall 41Ab of the chamber 41A, and does not surround the introduction pipe 60C.
  • the exhaust pipe 70C is connected to the side wall 41Ab of the chamber 41A without branching.
  • the exhaust pipe 70C includes an exhaust main pipe and one or more exhaust branch pipes branched from the exhaust main pipe, and the one or more exhaust branch pipes may be connected to the side wall 41Ab of the chamber 41A.
  • An exhaust part 75C is provided in the exhaust pipe 70C.
  • a valve 97 is provided in the exhaust pipe 70C. During the cure bake, the valve 97 is closed, and when the cure bake is completed and the inside of the chamber 41 is cooled, the exhaust pipe 70C is used by opening the valve 97.
  • the exhaust pipe 70C does not surround the introduction pipe 60C. For this reason, when the inside of the chamber 41 is cooled after the completion of the curing bake, a gas having a temperature lower than the temperature in the chamber 41 (for example, a temperature around room temperature) is passed through the introduction pipe 60C while the temperature is low. , Chamber 41A. Thereby, the temperature in the chamber 41A can be quickly reduced.
  • a gas having a temperature lower than the temperature in the chamber 41 for example, a temperature around room temperature
  • the introduction pipe 60C includes a protrusion 62Ca protruding into the chamber 41A.
  • each introduction branch pipe 62C includes a protruding portion 62Ca that penetrates the side wall 41Ab of the chamber 41A and protrudes from the inner wall surface inside the chamber 41A in the side wall 41Ab toward the center of the chamber 41A.
  • the protruding portion 62Ca protrudes into the chamber 41A from the exhaust pipe 70C.
  • the exhaust pipe 70C is flush with the inner wall surface inside the chamber 41A in the side wall 41Ab of the chamber 41A to which the exhaust pipe 70C is connected.
  • the exhaust port 70Ca at the tip of the exhaust pipe 70C in the chamber 41A is flush with the inner wall surface in the chamber 41A.
  • the exhaust port 70Ca of the exhaust pipe 70C is not limited to be flush with the inner wall surface inside the chamber 41A, and may protrude into the chamber 41A from the inner wall surface of the side wall 41Ab of the chamber 41A.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A heating device (40) according to the present invention is provided with: a chamber (41) in which a mixture (12a) is fired; an introduction pipe (60A) which is connected to the chamber (41) and introduces N2 into the chamber (41); and a discharge pipe (70A) which is connected to the chamber (41) and discharges a gas from the chamber (41). The discharge pipe (70A) is provided so as to surround the introduction pipe (60A). Consequently, the present invention provides a heating device which is prevented from increase in the power consumption.

Description

加熱装置Heating equipment
 本発明は、加熱装置に関する。 The present invention relates to a heating device.
 特許文献1では、熱交換器において、炭素化炉から送出された排気ガスと外気との間で熱交換を行う。そして、熱交換器から送出された加熱された外気は、加熱外気給気路内を通って、熱交換器から離れて設けられている耐炎化炉に給気される。特許文献1によると、耐炎化処理を安定して行うことができるとされている。 で は In Patent Document 1, heat is exchanged between the exhaust gas sent from the carbonization furnace and the outside air in the heat exchanger. The heated outside air sent from the heat exchanger passes through a heated outside air supply passage and is supplied to a flameproofing furnace provided separately from the heat exchanger. According to Patent Literature 1, it is described that the flameproofing treatment can be performed stably.
日本国公開特許公報「特開2009‐174077号」Japanese Unexamined Patent Publication "JP 2009-174077"
 特許文献1によると、耐炎化炉に給気するための加熱された外気は、耐炎化炉とは別に設けられた炭素化炉で加熱された排出ガスによって、熱交換器において加熱される。このように、特許文献1では、耐炎化炉とは別の熱源が必要であるため、消費電力が増大する。 に よ る According to Patent Document 1, heated outside air for supplying air to the oxidization furnace is heated in the heat exchanger by exhaust gas heated in a carbonization furnace provided separately from the oxidization furnace. As described above, in Patent Literature 1, since a heat source different from that of the oxidization furnace is required, power consumption increases.
 本発明の一態様は、消費電力の増大を防止した加熱装置を提供することを目的とする。 One object of one embodiment of the present invention is to provide a heating device in which an increase in power consumption is prevented.
 上記の課題を解決するために、本発明の一態様に係る加熱装置は、樹脂材料を焼成処理するチャンバーと、前記チャンバーと接続され当該チャンバー内に不活性ガスを導入する導入管と、前記チャンバーと接続され当該チャンバー内の気体を排出する排気管とを備え、前記排気管は、前記導入管を囲むように設けられていることを特徴とする。 In order to solve the above problem, a heating device according to one embodiment of the present invention includes a chamber for baking a resin material, an introduction pipe connected to the chamber and introducing an inert gas into the chamber, And an exhaust pipe connected to the exhaust pipe for discharging gas from the chamber, wherein the exhaust pipe is provided so as to surround the introduction pipe.
 本発明の一態様によれば、消費電力の増大を防止した加熱装置を提供することができる。 According to one embodiment of the present invention, a heating device in which an increase in power consumption is prevented can be provided.
本発明の実施形態1に係る表示デバイスの概略を表す平面図である。FIG. 1 is a plan view schematically illustrating a display device according to a first embodiment of the present invention. 本発明の実施形態1に係る表示デバイスの表示領域における概略構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration in a display area of the display device according to the first embodiment of the present invention. 本発明の実施形態1に係る表示デバイスの製造方法を説明するためのフローチャートである。5 is a flowchart illustrating a method for manufacturing a display device according to the first embodiment of the present invention. 本発明の実施形態1に係る樹脂層の製造方法を説明するためのフローチャートである。3 is a flowchart illustrating a method for manufacturing a resin layer according to the first embodiment of the present invention. 実施形態1に係る加熱装置のチャンバーの断面を表す図である。FIG. 2 is a diagram illustrating a cross section of a chamber of the heating device according to the first embodiment. 実施形態1に係る加熱装置のチャンバーの上面を表す図である。FIG. 2 is a diagram illustrating an upper surface of a chamber of the heating device according to the first embodiment. 図5に示すB‐B線断面図である。FIG. 6 is a sectional view taken along line BB shown in FIG. 5. 実施形態1の変形例に係る配管の形状を表す断面図である。It is sectional drawing showing the shape of the piping which concerns on the modification of Embodiment 1. 実施形態2に係る加熱装置のチャンバーの断面を表す図である。It is a figure showing the section of the chamber of the heating device concerning Embodiment 2. 実施形態2に係る加熱装置のチャンバーの上面を表す図である。FIG. 7 is a diagram illustrating an upper surface of a chamber of the heating device according to the second embodiment. 実施形態3に係る加熱装置のチャンバーの断面を表す図である。It is a figure showing the section of the chamber of the heating device concerning Embodiment 3. 実施形態3に係る加熱装置のチャンバーの上面を表す図である。FIG. 13 is a diagram illustrating an upper surface of a chamber of the heating device according to the third embodiment.
 〔実施形態1〕
 以下においては、「同層」とは同一のプロセスにて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
[Embodiment 1]
In the following, “same layer” means being formed in the same process, “lower layer” means being formed in a process earlier than the layer to be compared, The “upper layer” means that it is formed in a process subsequent to the layer to be compared.
 図1は、実施形態1に係る表示デバイス2の平面図である。本実施形態に係る表示デバイス2は、図1に示すように、表示領域DAと、当該表示領域DAの周囲に隣接する額縁領域NAとを有する。額縁領域NAの一端部には、端子部Tが形成される。端子部Tには、表示領域DAからの接続配線CLを介して表示領域DAにおける各発光素子を駆動するための信号を供給する、図示しないドライバ等が実装される。 FIG. 1 is a plan view of the display device 2 according to the first embodiment. As shown in FIG. 1, the display device 2 according to the present embodiment has a display area DA and a frame area NA adjacent to the periphery of the display area DA. A terminal portion T is formed at one end of the frame region NA. A driver or the like (not shown) that supplies a signal for driving each light emitting element in the display area DA via a connection line CL from the display area DA is mounted on the terminal portion T.
 図2は、実施形態1に係る表示デバイス2の表示領域における概略構成を表す断面図である。図2は、図1におけるA‐A線矢視断面を表している。図2に示すように、表示デバイス2は、下層から順に、下面フィルム10と、接着層11と、樹脂層12と、バリア層3と、TFT層4と、発光素子層5と、封止層6とを備える。表示デバイス2は、封止層6のさらに上層に、光学補償機能、タッチセンサ機能、保護機能等を有する機能フィルム39を備えていてもよい。 FIG. 2 is a cross-sectional view illustrating a schematic configuration in a display area of the display device 2 according to the first embodiment. FIG. 2 shows a cross section taken along line AA in FIG. As shown in FIG. 2, the display device 2 includes a lower film 10, an adhesive layer 11, a resin layer 12, a barrier layer 3, a TFT layer 4, a light emitting element layer 5, a sealing layer 6 is provided. The display device 2 may include a functional film 39 having an optical compensation function, a touch sensor function, a protection function, and the like, further above the sealing layer 6.
 下面フィルム10は、表示デバイス2の基材フィルムであり、例えば、有機樹脂材料を含んでいてもよい。接着層11は、下面フィルム10と樹脂層12とを接着する層であり、従来公知の接着剤を使用して形成してもよい。樹脂層12として、ポリイミド又はポリアミド等に代表されるような、耐熱性が高く線膨張係数がガラスに近い材料を用いることが好ましい。 The lower film 10 is a base film of the display device 2 and may include, for example, an organic resin material. The adhesive layer 11 is a layer for bonding the lower film 10 and the resin layer 12, and may be formed using a conventionally known adhesive. It is preferable to use a material having high heat resistance and a linear expansion coefficient close to that of glass, such as polyimide or polyamide, as the resin layer 12.
 バリア層3は、表示デバイス2の使用時に、水、酸素等の異物がTFT層4、発光素子層5に浸透することを防ぐ層である。バリア層3は、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from penetrating into the TFT layer 4 and the light emitting element layer 5 when the display device 2 is used. The barrier layer 3 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by CVD, or a stacked film thereof.
 TFT層4は、下層から順に、半導体膜15と、第1無機絶縁膜16(ゲート絶縁膜)と、ゲート電極GEと、第2無機絶縁膜18と、容量電極CEと、第3無機絶縁膜20と、ソース配線SH(金属配線層)と、平坦化膜21(層間絶縁膜)とを含む。半導体膜15と、第1無機絶縁膜16と、ゲート電極GEとを含むように、薄層トランジスタ(TFT)であるトランジスタTrが構成される。 The TFT layer 4 includes, in order from the lower layer, a semiconductor film 15, a first inorganic insulating film 16 (gate insulating film), a gate electrode GE, a second inorganic insulating film 18, a capacitor electrode CE, and a third inorganic insulating film. 20, a source wiring SH (metal wiring layer), and a planarizing film 21 (interlayer insulating film). A transistor Tr, which is a thin-layer transistor (TFT), is configured to include the semiconductor film 15, the first inorganic insulating film 16, and the gate electrode GE.
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2においては、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造であってもよい(例えば、TFTのチャネルが酸化物半導体の場合)。 The semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor. Note that in FIG. 2, a TFT having the semiconductor film 15 as a channel is illustrated as having a top gate structure; however, a TFT having a bottom gate structure may be employed (for example, a case where the channel of the TFT is an oxide semiconductor).
 ゲート電極GE、容量電極CE、またはソース配線SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含んでいてもよい。すなわち、ゲート電極GE、容量電極CE、またはソース配線SHは、上述の金属の単層膜あるいは積層膜によって構成される。 For example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu) are used for the gate electrode GE, the capacitor electrode CE, or the source wiring SH. May be included. That is, the gate electrode GE, the capacitor electrode CE, or the source wiring SH is formed of a single-layer film or a stacked film of the above-described metal.
 第1無機絶縁膜16、第2無機絶縁膜18、および第3無機絶縁膜20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。 The first inorganic insulating film 16, the second inorganic insulating film 18, and the third inorganic insulating film 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method. Can be configured by
 平坦化膜21は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。 (4) The flattening film 21 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
 発光素子層5(例えば、有機発光ダイオード層)は、下層から順に、画素電極22(第1電極、例えばアノード)と、画素電極22のエッジを覆うカバー膜(エッジカバー)23と、EL(エレクトロルミネッセンス)層24と、上部電極(第2電極、例えばカソード)25とを含む。発光素子層5には、サブピクセルSP(画素)ごとに、島状の画素電極22、島状のEL層24、および上部電極25を含む発光素子(例えば、OLED:有機発光ダイオード)と、これを駆動するサブ画素回路とが設けられる。また、TFT層4において、当該サブ画素回路ごとにトランジスタTrが形成され、トランジスタTrの制御をもって、サブ画素回路が制御される。 The light-emitting element layer 5 (for example, an organic light-emitting diode layer) includes, in order from the bottom, a pixel electrode 22 (a first electrode, for example, an anode), a cover film (edge cover) 23 that covers the edge of the pixel electrode 22, and an EL (electrode). (Luminescence) layer 24 and an upper electrode (second electrode, for example, a cathode) 25. The light-emitting element layer 5 includes, for each sub-pixel SP (pixel), a light-emitting element (for example, an OLED: organic light-emitting diode) including an island-shaped pixel electrode 22, an island-shaped EL layer 24, and an upper electrode 25; And a sub-pixel circuit for driving the same. In the TFT layer 4, a transistor Tr is formed for each sub-pixel circuit, and the sub-pixel circuit is controlled by controlling the transistor Tr.
 画素電極22は、平面視において、平坦化膜21と当該平坦化膜21の開口であるコンタクトホールとに重畳する位置に設けられる。画素電極22は、コンタクトホールを介してソース配線SHと電気的に接続される。このため、TFT層4における信号が、ソース配線SHを介して画素電極22に供給される。なお、画素電極22の厚みは、例えば、100nmであってもよい。 (4) The pixel electrode 22 is provided at a position overlapping the planarization film 21 and a contact hole that is an opening of the planarization film 21 in a plan view. The pixel electrode 22 is electrically connected to the source wiring SH via a contact hole. Therefore, a signal in the TFT layer 4 is supplied to the pixel electrode 22 via the source wiring SH. Note that the thickness of the pixel electrode 22 may be, for example, 100 nm.
 画素電極22は、複数のサブピクセルSPごとに島状に形成され、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。上部電極25は、複数のサブピクセルSPの共通層としてベタ状に形成され、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透光性の導電材によって構成することができる。 The pixel electrode 22 is formed in an island shape for each of the plurality of sub-pixels SP, is made of, for example, a stack of an alloy containing ITO (Indium Tin In Oxide) and Ag, and has light reflectivity. The upper electrode 25 is formed as a solid layer as a common layer of the plurality of sub-pixels SP, and can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
 カバー膜23は有機絶縁膜であり、画素電極22のエッジを覆う位置に形成されている。カバー膜23には、複数のサブピクセルSPごとに開口が形成されており、当該開口にて画素電極22の一部が露出する。カバー膜23は、例えば、ポリイミド等の塗布可能な材料によって構成することができる。 The cover film 23 is an organic insulating film and is formed at a position covering the edge of the pixel electrode 22. An opening is formed in the cover film 23 for each of the plurality of sub-pixels SP, and a part of the pixel electrode 22 is exposed through the opening. The cover film 23 can be made of, for example, a coatable material such as polyimide.
 EL層24は、例えば、下層側から順に、正孔輸送層、発光層、電子輸送層を積層することで構成される。本実施形態においては、EL層24の少なくとも1層は、蒸着法によって形成される。また、本実施形態においては、EL層24に含まれる各層は、サブピクセルSPごとに島状に形成されていてもよく、複数のサブピクセルSPの共通層としてベタ状に形成されていてもよい。 The EL layer 24 is configured by, for example, stacking a hole transport layer, a light emitting layer, and an electron transport layer in this order from the lower layer side. In the present embodiment, at least one layer of the EL layer 24 is formed by an evaporation method. In the present embodiment, each layer included in the EL layer 24 may be formed in an island shape for each sub-pixel SP, or may be formed in a solid shape as a common layer of a plurality of sub-pixels SP. .
 発光素子層5がOLED層である場合、画素電極22および上部電極25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。上部電極25が透光性を有し、画素電極22が光反射性を有するため、EL層24から放出された光は上部電極25を透過して図2における紙面上方へ出射する。このように、表示デバイス2は、例えば、トップエミッションとなる。 When the light emitting element layer 5 is an OLED layer, holes and electrons are recombined in the EL layer 24 by the drive current between the pixel electrode 22 and the upper electrode 25, and the excitons generated by the recombination fall to the ground state. Light is emitted. Since the upper electrode 25 has a light transmitting property and the pixel electrode 22 has a light reflecting property, light emitted from the EL layer 24 passes through the upper electrode 25 and is emitted upward in the plane of FIG. As described above, the display device 2 has, for example, top emission.
 封止層6は、上部電極25よりも上層の第1無機封止膜26と、第1無機封止膜26よりも上層の有機封止膜27と、有機封止膜27よりも上層の第2無機封止膜28とを含み、水、酸素等の異物の発光素子層5への浸透を防ぐ。第1無機封止膜26および第2無機封止膜28は、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。 The sealing layer 6 includes a first inorganic sealing film 26 above the upper electrode 25, an organic sealing film 27 above the first inorganic sealing film 26, and a first inorganic sealing film 27 above the organic sealing film 27. 2 and an inorganic sealing film 28 to prevent foreign substances such as water and oxygen from penetrating into the light emitting element layer 5. The first inorganic sealing film 26 and the second inorganic sealing film 28 can be formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof formed by CVD. . The organic sealing film 27 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
 図3は、実施形態1に係る表示デバイス2の製造方法を説明するためのフローチャートである。図2及び図3を用いて、表示デバイス2の製造方法について説明する。 FIG. 3 is a flowchart for explaining a method for manufacturing the display device 2 according to the first embodiment. A method for manufacturing the display device 2 will be described with reference to FIGS.
 まず、図示しない透光性の支持基板(例えば、マザーガラス)上に樹脂層12を形成する(ステップS1)。なお、この樹脂層12の形成方法の詳細は後述する。そして、樹脂層12上にバリア層3を形成する(ステップS2)。次いで、バリア層3上にTFT層4を形成する(ステップS3)。次いで、TFT層4上にトップエミッション型の発光素子層5を形成する(ステップS4)。次いで、発光素子層5上に封止層6を形成する(ステップS5)。次いで、封止層6上に上面フィルムを貼り付ける(ステップS6)。 First, the resin layer 12 is formed on a not-shown translucent support substrate (for example, mother glass) (Step S1). The details of the method for forming the resin layer 12 will be described later. Then, the barrier layer 3 is formed on the resin layer 12 (Step S2). Next, the TFT layer 4 is formed on the barrier layer 3 (Step S3). Next, a top emission type light emitting element layer 5 is formed on the TFT layer 4 (Step S4). Next, the sealing layer 6 is formed on the light emitting element layer 5 (Step S5). Next, an upper surface film is attached on the sealing layer 6 (Step S6).
 次いで、レーザ光の照射等によって支持基板を樹脂層12から剥離する(ステップS7)。次いで、樹脂層12の下面に接着層11を介して下面フィルム10を貼り付ける(ステップS8)。次いで、下面フィルム10、樹脂層12、バリア層3、TFT層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS9)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS10)。次いで、複数のサブ画素が形成された表示領域DAよりも外側である非表示領域NA(額縁領域)の一部である端部に形成された端子部TSに電子回路基板(例えば、ICチップおよびFPC)をマウントする(ステップS11)。これにより、表示デバイス2が完成する。 Next, the support substrate is separated from the resin layer 12 by laser light irradiation or the like (Step S7). Next, the lower surface film 10 is attached to the lower surface of the resin layer 12 via the adhesive layer 11 (Step S8). Next, the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (Step S9). Next, the functional film 39 is attached to the obtained individual pieces (Step S10). Next, an electronic circuit board (for example, an IC chip and an IC chip) is attached to a terminal portion TS formed at an end which is a part of a non-display region NA (frame region) outside the display region DA in which the plurality of sub-pixels are formed. FPC) is mounted (step S11). Thus, the display device 2 is completed.
 図4は、実施形態1に係る樹脂層12の製造方法を説明するためのフローチャートである。すなわち、図3に示したステップS1は、具体的には、図4に示すステップS21~S23を含む。 FIG. 4 is a flowchart for explaining a method for manufacturing the resin layer 12 according to the first embodiment. That is, step S1 shown in FIG. 3 specifically includes steps S21 to S23 shown in FIG.
 まず、支持基板(例えば、マザーガラス)上に、樹脂層12となる溶液である混合物を塗布する(ステップS21、塗布工程)。ステップS21にて使用する混合物は、例えば、ポリイミドの前駆体と、有機溶媒とを含んでもよい。例えば、ポリイミドの前駆体はポリアミック酸を含み、有機溶媒はNMP(N-メチル-2-ピロリデン)を含んでもよい。当該混合物の塗布方法は、例えば、いわゆるスリットコータ法、又は、インクジェット法を用いることができる。 {Circle around (1)} First, a mixture which is a solution to be the resin layer 12 is applied onto a supporting substrate (for example, mother glass) (Step S21, application step). The mixture used in step S21 may include, for example, a polyimide precursor and an organic solvent. For example, the precursor of the polyimide may include polyamic acid, and the organic solvent may include NMP (N-methyl-2-pyrrolidene). As a method for applying the mixture, for example, a so-called slit coater method or an inkjet method can be used.
 次いで、混合物が塗布された支持基板を、プリベークを行うチャンバー(チャンバー)へ搬入してプリベークを行う(ステップS22、プリベーク工程)。プリベーク工程は、例えば、80℃以下の減圧環境下で行ってもよい。プリベークを行うことで、支持基板上に塗布された溶剤の揮発による塗工液の固定化(塗工液がだれ難くなったり流動し難くなったりすること)が進み、支持基板上での混合物の流動性が低下する。例えば、プリベークを行うことによって、支持基板上の混合物における有機溶媒含有率を10%程度まで小さくしてもよい。 Next, the support substrate to which the mixture has been applied is carried into a chamber (chamber) in which prebaking is performed, and prebaking is performed (step S22, prebaking step). The pre-bake step may be performed, for example, under a reduced pressure environment of 80 ° C. or less. By performing the pre-bake, the fixation of the coating liquid due to the volatilization of the solvent applied on the supporting substrate (making the coating liquid difficult to drip or flow) progresses, and the mixture on the supporting substrate is mixed. Fluidity decreases. For example, the content of the organic solvent in the mixture on the supporting substrate may be reduced to about 10% by performing prebaking.
 次いで、プリベークを行った支持基板を、キュアベークを行うチャンバーへ搬入してキュアベーク(本ベーク)を行う(ステップS23、キュアベーク工程(本ベーク工程))。キュアベーク工程では、例えば、500ppmから数ppm以下程度の低酸素雰囲気下において、150℃~250℃程度で支持基板上の混合物を加熱することで、当該混合物中の前駆体をイミド化し、さらにそこから、450℃~520℃となるようにチャンバー内の温度を上げて、支持基板及び混合物を所定時間、加熱する。このように、キュアベーク工程における高温の加熱により、支持基板上に、樹脂層12(図2参照)が成膜される。当該450℃~520℃での所定時間の加熱が終了すると、チャンバー内の加熱を停止してチャンバー内を冷却する。これにより、チャンバー内の温度を室温に戻す。そして、キュアベーク工程が終了する。そして、図3に示したステップS2の処理へ進む。 Next, the pre-baked support substrate is carried into a chamber for curing and baking (actual baking) (step S23, cure baking step (actual baking step)). In the curing bake step, for example, the precursor in the mixture is imidized by heating the mixture on the supporting substrate at about 150 ° C. to 250 ° C. in a low oxygen atmosphere of about 500 ppm to several ppm or less, and further from there. The temperature in the chamber is increased to 450 to 520 ° C., and the supporting substrate and the mixture are heated for a predetermined time. As described above, the resin layer 12 (see FIG. 2) is formed on the supporting substrate by the high-temperature heating in the curing and baking step. When the heating at 450 ° C. to 520 ° C. for a predetermined time is completed, the heating in the chamber is stopped and the inside of the chamber is cooled. Thereby, the temperature in the chamber is returned to room temperature. Then, the cure bake process is completed. Then, the process proceeds to step S2 shown in FIG.
 なお、プリベーク工程と、キュアベーク工程とを別のチャンバー内で行うように説明したが、プリベーク工程とキュアベーク工程とは、同じチャンバー内で続けて行ってもよい。 Although the pre-bake step and the cure-bake step have been described to be performed in separate chambers, the pre-bake step and the cure-bake step may be performed in the same chamber.
 次に、図5~図7を用いて、キュアベーク工程で用いる加熱装置の詳細について説明する。図5は、実施形態1に係る加熱装置40のチャンバー41の断面を表す図である。図6は、実施形態1に係る加熱装置40のチャンバー41の上面を表す図である。図7は、図5に示すB‐B線断面図である。加熱装置40は、キュアベーク工程にて、支持基板及び混合物を高温で加熱するために用いる加熱装置である。 Next, the details of the heating device used in the curing and baking step will be described with reference to FIGS. FIG. 5 is a diagram illustrating a cross section of the chamber 41 of the heating device 40 according to the first embodiment. FIG. 6 is a diagram illustrating an upper surface of the chamber 41 of the heating device 40 according to the first embodiment. FIG. 7 is a sectional view taken along line BB shown in FIG. The heating device 40 is a heating device used to heat the supporting substrate and the mixture at a high temperature in the curing and baking process.
 図5及び図6に示すように、加熱装置40は、チャンバー41と、ガス供給源(第1ガス供給源)50Aと、配管(第1配管)80Aとを備えている。チャンバー41は、支持基板S上の混合物12aのキュアベークを行うためのチャンバーである。 As shown in FIGS. 5 and 6, the heating device 40 includes a chamber 41, a gas supply source (first gas supply source) 50A, and a pipe (first pipe) 80A. The chamber 41 is a chamber for curing and baking the mixture 12a on the support substrate S.
 チャンバー41は、樹脂材料である混合物12a(樹脂層12となる混合物)を焼成処理する空間である。チャンバー41は、互いに対向する側壁41a・41bと、互いに対向する側壁41c・41dと、底部41eと、上部41fとを備えている。側壁41a~41dは、底部41eに立設し、上部41fは側壁41a~41dに支持されている。側壁41cには、支持基板Sをチャンバー41へ出し入れ可能な開口部が設けられており、側壁41cに扉42が設けられている。扉42を閉じることで、チャンバー41内は密閉される。側壁41aには、配管(第1配管)80Aと接続される開口部が設けられている。 The chamber 41 is a space for baking the mixture 12a (a mixture that becomes the resin layer 12), which is a resin material. The chamber 41 includes opposing side walls 41a and 41b, opposing side walls 41c and 41d, a bottom part 41e, and an upper part 41f. The side walls 41a to 41d stand on the bottom 41e, and the upper portion 41f is supported by the side walls 41a to 41d. The side wall 41c is provided with an opening through which the support substrate S can be taken in and out of the chamber 41, and the side wall 41c is provided with a door. By closing the door 42, the inside of the chamber 41 is sealed. The side wall 41a is provided with an opening connected to the pipe (first pipe) 80A.
 チャンバー41内には、複数の加熱部43及び複数の載置部44が設けられている。加熱部43はヒータである。載置部44は、支持基板Sを載置するためのテーブルである。加熱部43と載置部44とは、離間しつつ交互に重なって設けられている。すなわち、載置部44は、上方と下方に設けられた加熱部43に挟まれている。図5に示す例では、3段の載置部44がチャンバー41内に設けられており、3段の載置部44それぞれの上下に対向するように加熱部43が設けられている。載置部44には、プリベークまで終わった混合物12a(樹脂層12となる混合物)が積層された支持基板Sが載置されている。これにより、加熱部43によって、載置部44に載置された支持基板S及び混合物12aは高温で加熱される。 In the chamber 41, a plurality of heating units 43 and a plurality of mounting units 44 are provided. The heating unit 43 is a heater. The mounting section 44 is a table on which the support substrate S is mounted. The heating unit 43 and the placement unit 44 are provided so as to alternately overlap with each other. That is, the mounting section 44 is sandwiched between the heating sections 43 provided above and below. In the example illustrated in FIG. 5, three stages of the mounting units 44 are provided in the chamber 41, and the heating units 43 are provided so as to vertically face each of the three stages of the mounting units 44. On the mounting portion 44, a support substrate S on which the mixture 12a (mixture to become the resin layer 12) which has been finished up to pre-baking is mounted. Thus, the support substrate S and the mixture 12a placed on the placement unit 44 are heated at a high temperature by the heating unit 43.
 配管80Aは、導入管60Aと、導入管60Aを囲むように設けられた排気管70Aとを含む二重配管である。 The pipe 80A is a double pipe including the introduction pipe 60A and the exhaust pipe 70A provided so as to surround the introduction pipe 60A.
 図5及び図7に示すように、導入管60Aは、大部分が排気管70A内に挿入されている。本実施形態では、導入管60A及び排気管70Aは、断面が円形状の筒である。 As shown in FIGS. 5 and 7, the introduction pipe 60A is mostly inserted into the exhaust pipe 70A. In the present embodiment, the introduction pipe 60A and the exhaust pipe 70A are cylinders having a circular cross section.
 図5に示すように、導入管60Aは、チャンバー41の側壁41aと接続されると共にガス供給源50Aとも接続されている。導入管60Aは、ガス供給源50Aから供給された不活性ガスをチャンバー41内に導入する配管である。チャンバー41内に不活性ガスを導入することで、チャンバー41内が、空気から不活性ガスに置換されていき、低酸素状態となる。これにより、低酸素状態の雰囲気下で支持基板S上の混合物12aをキュアベークすることができる。 (5) As shown in FIG. 5, the introduction pipe 60A is connected to the side wall 41a of the chamber 41 and also to the gas supply source 50A. The introduction pipe 60A is a pipe that introduces the inert gas supplied from the gas supply source 50A into the chamber 41. By introducing an inert gas into the chamber 41, the inside of the chamber 41 is replaced with an inert gas from air, and becomes a low oxygen state. Accordingly, the mixture 12a on the support substrate S can be cured and bake under a low oxygen atmosphere.
 導入管60Aは、ガス供給源50Aと接続されている導入幹管61Aと、導入幹管61Aから枝分かれしてチャンバー41の側壁41aと接続されている一又は複数の導入枝管62Aとを備えている。これにより、矢印INAに示すように、ガス供給源50Aから供給された不活性ガスは、導入幹管61A内を通り、さらに、導入幹管61Aから分岐している一又は複数の導入枝管62A内を通って、チャンバー41内へ供給される。図5に示す例では、1本の導入幹管61Aから3本の導入枝管62Aが分岐し、3本の導入枝管62Aそれぞれの先端がチャンバー41の側壁41aと接続されている。なお、導入幹管61A及び導入枝管62Aの本数は図5に示す例に限定されない。ガス供給源50Aから供給される不活性ガスとしては、例えば、Nガスを挙げることができる。また、ガス供給源50Aから供給される不活性ガスとして、Nガス以外外にも、例えば、He、Ar、Ne等のガスを挙げることができる。 The introduction pipe 60A includes an introduction trunk pipe 61A connected to the gas supply source 50A, and one or more introduction branch pipes 62A branched from the introduction trunk pipe 61A and connected to the side wall 41a of the chamber 41. I have. Thereby, as shown by the arrow INA, the inert gas supplied from the gas supply source 50A passes through the introduction main pipe 61A, and further, one or a plurality of introduction branch pipes 62A branched from the introduction main pipe 61A. Through the inside, it is supplied into the chamber 41. In the example shown in FIG. 5, three introduction branch pipes 62A branch from one introduction trunk pipe 61A, and the tips of the three introduction branch pipes 62A are connected to the side walls 41a of the chamber 41. The numbers of the introduction trunk pipe 61A and the introduction branch pipe 62A are not limited to the example shown in FIG. As the inert gas supplied from the gas supply source 50A, for example, N 2 gas can be mentioned. Further, as the inert gas supplied from a gas supply source 50A, also outside than N 2 gas, for example, it can be mentioned He, Ar, and gases Ne, and the like.
 排気管70Aは、チャンバー41の側壁41aと接続されている。排気管70Aには排気部(ファン)75Aが設けられている。排気管70Aは、チャンバー41内の気体を排出する配管である。排気管70A内を通って、チャンバー41内から排出される気体は、チャンバー41内の空気と、チャンバー41内に導入された不活性ガスとの混合気体である。また、チャンバー41内から排出される気体は、チャンバー41内において加熱された状態で排出されるため高温の気体である。 The exhaust pipe 70A is connected to the side wall 41a of the chamber 41. The exhaust pipe 70A is provided with an exhaust part (fan) 75A. The exhaust pipe 70 </ b> A is a pipe that discharges gas in the chamber 41. The gas discharged from the chamber 41 through the exhaust pipe 70A is a mixed gas of the air in the chamber 41 and the inert gas introduced into the chamber 41. The gas discharged from the chamber 41 is a high-temperature gas because the gas is discharged while being heated in the chamber 41.
 排気管70Aは、排気部75Aが設けられている排気幹管71Aと、排気幹管71Aから枝分かれしてチャンバー41の側壁41aと接続されている一又は複数の排気枝管72Aとを備えている。これにより、矢印OUTAに示すように、チャンバー41内で加熱された気体は、一又は複数の排気枝管72A内を通り、さらに、一又は複数の排気枝管72Aが接続されている排気幹管71A内を通って、チャンバー41内からチャンバー41外へ排気される。図5に示す例では、1本の排気幹管71Aから3本の排気枝管72Aが分岐し、3本の排気枝管72Aそれぞれの先端がチャンバー41の側壁41aと接続されている。なお、排気幹管71A及び排気枝管72Aの本数は図5に示す例に限定されない。 The exhaust pipe 70A includes an exhaust main pipe 71A provided with an exhaust portion 75A, and one or more exhaust branch pipes 72A branched from the exhaust main pipe 71A and connected to the side wall 41a of the chamber 41. . Thereby, as shown by the arrow OUTA, the gas heated in the chamber 41 passes through the one or more exhaust branch pipes 72A, and further, the exhaust main pipe to which the one or more exhaust branch pipes 72A are connected. The gas is exhausted from the inside of the chamber 41 to the outside of the chamber 41 through the inside of 71A. In the example shown in FIG. 5, three exhaust branch pipes 72A are branched from one exhaust main pipe 71A, and the tips of the three exhaust branch pipes 72A are connected to the side walls 41a of the chamber 41. The number of the exhaust main pipe 71A and the exhaust branch pipe 72A is not limited to the example shown in FIG.
 排気部75Aにはファンを有する。このファンが駆動することで、排気管70A内の排気効率を上げることができる。 The exhaust section 75A has a fan. By driving the fan, the exhaust efficiency in the exhaust pipe 70A can be increased.
 排気管70Aは、導入管60Aを囲むように設けられている。図5に示す例では、排気枝管72Aはそれぞれ導入枝管62Aの外側を囲っており、排気幹管71Aは大部分の導入幹管61Aの外側を囲っている。このように、排気管70Aは、一又は複数の導入枝管62Aと、導入幹管61Aの少なくとも一部とを囲むように設けられている。 The exhaust pipe 70A is provided so as to surround the introduction pipe 60A. In the example shown in FIG. 5, the exhaust branch pipe 72A surrounds the outside of the introduction branch pipe 62A, and the exhaust main pipe 71A surrounds most of the introduction main pipe 61A. Thus, the exhaust pipe 70A is provided so as to surround one or a plurality of introduction branch pipes 62A and at least a part of the introduction trunk pipe 61A.
 そして、導入幹管61Aは、ガス供給源50Aの近傍で排気幹管71Aの内部から外部へ露出してガス供給源50Aと接続されている。これにより、チャンバー41内で加熱された気体が排気管70Aを通るときに、導入管60A内を通る不活性ガスを加熱する。このため、ガス供給源50Aから導入管60A内に供給された不活性ガスは、導入管60Aを通る過程において、排気管70Aによって(すなわち排気管70A内を通る気体によって)加熱され、加熱された状態でチャンバー41内へ導入される。 The introduction main pipe 61A is exposed to the outside from the inside of the exhaust main pipe 71A near the gas supply source 50A and is connected to the gas supply source 50A. Thereby, when the gas heated in the chamber 41 passes through the exhaust pipe 70A, the inert gas passing through the introduction pipe 60A is heated. Therefore, the inert gas supplied from the gas supply source 50A into the introduction pipe 60A is heated and heated by the exhaust pipe 70A (that is, by the gas passing through the exhaust pipe 70A) in the process of passing through the introduction pipe 60A. It is introduced into the chamber 41 in a state.
 ここで、キュアベーク工程では、チャンバー41内の温度が高温で維持されている。このため、チャンバー41内の温度よりもかなり低い温度(例えば室温程度)の不活性ガスがチャンバー41内に導入された場合、チャンバー41内における導入管60A近傍の温度が他の場所よりも下がる。この場合、チャンバー41内において熱反応が進む混合物12aにおける、導入管60A近傍に、ヒューム(異物)が発生して付着しやすい。そして、当該付着して堆積したヒュームが不活性ガスにより支持基板Sへ飛来することで、歩留り低下の原因となる。この発生するヒューム(異物)の例としては、例えば、熱反応が進む混合物12aに含まれるポリアミック酸の浮流物を挙げることができる。 Here, in the cure bake process, the temperature in the chamber 41 is maintained at a high temperature. For this reason, when an inert gas at a temperature considerably lower than the temperature in the chamber 41 (for example, about room temperature) is introduced into the chamber 41, the temperature near the introduction pipe 60A in the chamber 41 becomes lower than in other places. In this case, fumes (foreign matter) are likely to be generated and adhere to the mixture 12a in which the thermal reaction proceeds in the chamber 41, near the introduction pipe 60A. Then, the fumes attached and deposited fly to the support substrate S by the inert gas, which causes a decrease in yield. As an example of the fume (foreign matter) generated, for example, a floating substance of polyamic acid contained in the mixture 12a in which the thermal reaction proceeds can be cited.
 このヒュームの発生を防止するために、別途ヒータを導入管60Aの周囲に設けて、当該ヒータによって導入管60Aを加熱する方法が考えられる。 (4) In order to prevent the generation of the fume, a method is conceivable in which a separate heater is provided around the introduction pipe 60A and the introduction pipe 60A is heated by the heater.
 しかし、キュアベーク工程では、チャンバー41内を高温で長時間加熱するため、消費電力が大きい。すなわち、支持基板S上の混合物12aのキュアベーク工程では、チャンバー41内の温度を、450℃~520℃程度まで高温にする必要があり、また、キュアベークする所定時間として、3時間から12時間程度を要する場合がある。このように、チャンバー41内の温度を高温で長時間維持するには、加熱部43に大電流を長時間流し続ける必要がある。 However, in the cure bake process, the inside of the chamber 41 is heated at a high temperature for a long time, so that the power consumption is large. That is, in the curing and baking step of the mixture 12a on the supporting substrate S, the temperature in the chamber 41 needs to be raised to about 450 ° C. to 520 ° C., and the predetermined time for curing and baking is about 3 hours to 12 hours. May require. As described above, in order to maintain the temperature in the chamber 41 at a high temperature for a long time, it is necessary to continuously supply a large current to the heating unit 43 for a long time.
 加えて、支持基板S(マザーガラス)の大型化、及び、チャンバー41内の載置部44の多段化、及びチャンバー41の大容量化が進む傾向がある。例えば、1度に100枚以上の支持基板Sをキュアベーク可能な程度に多段化された加熱装置では、チャンバー41内の温度維持のための消費電力がかなり大きい。 In addition, there is a tendency that the size of the support substrate S (mother glass) is increased, the number of stages of the mounting portion 44 in the chamber 41 is increased, and the capacity of the chamber 41 is increased. For example, in a heating device having a multistage structure capable of curing and baking 100 or more support substrates S at one time, power consumption for maintaining the temperature in the chamber 41 is considerably large.
 さらに、キュアベーク工程では、チャンバー41内を低酸素状態とするため、不活性ガスをチャンバー41内に供給し続ける必要がある。このように、キュアベーク工程中はガス供給源50Aを動作させ続ける必要があるため、この点からもキュアベーク工程における消費電力の増大化が進む傾向にある。 {Circle around (4)} In the cure bake step, it is necessary to keep supplying an inert gas into the chamber 41 in order to keep the inside of the chamber 41 in a low oxygen state. As described above, it is necessary to keep operating the gas supply source 50A during the curing and baking process, and from this point, the power consumption in the curing and baking process also tends to increase.
 このため、導入管60Aを加熱するために別途ヒータを設ける構成とすると、さらなる消費電力の増大化を招来することになる。 Therefore, if a separate heater is provided to heat the introduction pipe 60A, power consumption will be further increased.
 そこで、上述のように、本実施形態に係る加熱装置40では、排気管70Aは、導入管60Aを囲むように設けられている。換言すると、排気管70Aは、チャンバー41内で加熱された不活性ガスを含む気体が排気管70Aを通って排出されるときに、導入管60Aを加熱するように設けられている。つまり、チャンバー41から排気管70Aを通って排出される廃熱を利用して、導入管60A内の不活性ガスを加熱する。このように、導入管60Aはチャンバー41内で加熱された不活性ガス(本実施形態ではN)を含む気体により加熱される。 Therefore, as described above, in the heating device 40 according to the present embodiment, the exhaust pipe 70A is provided so as to surround the introduction pipe 60A. In other words, the exhaust pipe 70A is provided so as to heat the introduction pipe 60A when the gas containing the inert gas heated in the chamber 41 is discharged through the exhaust pipe 70A. That is, the inert gas in the introduction pipe 60A is heated by using the waste heat exhausted from the chamber 41 through the exhaust pipe 70A. As described above, the introduction pipe 60 </ b > A is heated by the gas containing the inert gas (N 2 in this embodiment) heated in the chamber 41.
 このため、別途ヒータを設けることなく、導入管60A内の不活性ガスを、排気管70Aによって(すなわち排気管70A内を通る気体によって)加熱することができる。これにより、導入管60A内を通る不活性ガスを加熱するためのさらなる消費電力の増大を防止することができる。 た め Therefore, the inert gas in the introduction pipe 60A can be heated by the exhaust pipe 70A (that is, by the gas passing through the exhaust pipe 70A) without providing a separate heater. This can prevent further increase in power consumption for heating the inert gas passing through the introduction pipe 60A.
 そして、導入管60Aを通って、加熱された状態の不活性ガスが、チャンバー41内へ導入される。これにより、チャンバー41内において、導入管60A近傍に、ヒューム(異物)が発生することを防止することができる。このため、熱反応が進む混合物12aにおける導入管60A近傍に、ヒューム(異物)が付着することを防止し、歩留りの低下を防止することができる。 Then, the heated inert gas is introduced into the chamber 41 through the introduction pipe 60A. Accordingly, it is possible to prevent fume (foreign matter) from being generated in the vicinity of the introduction pipe 60A in the chamber 41. For this reason, fumes (foreign matter) can be prevented from adhering to the vicinity of the introduction pipe 60A in the mixture 12a in which the thermal reaction proceeds, and a decrease in yield can be prevented.
 すなわち、加熱装置40によると、消費電力の増大を抑え、かつ、ヒューム(異物)の付着を防止して混合物12aの加熱(キュアベーク)を行うことができる。 That is, according to the heating device 40, the mixture 12a can be heated (cured bake) while suppressing an increase in power consumption and preventing fume (foreign matter) from adhering.
 このように、加熱装置40は、排気管70Aと、排気管70Aに囲まれた導入管60Aを含む配管80Aを有する。この二重配管である配管80Aは、排気管70Aと導入管60Aとの間で熱を交換する熱交換器であると表現することもできる。さらに、加熱装置40は、この二重配管である熱交換器が、チャンバー41に直接接続されている。このように、熱交換器がチャンバー41に直接接続されていることで、チャンバー41内で加熱された気体を、直接、二重配管である熱交換器(すなわち排気管70A)に導入することができる。このため、加熱装置40によると、熱交換器がチャンバーから離れて設けられた構成と比べて、効率よく、配管80A内で熱交換を行うことができる。 As described above, the heating device 40 has the exhaust pipe 70A and the pipe 80A including the introduction pipe 60A surrounded by the exhaust pipe 70A. The pipe 80A, which is a double pipe, can be described as a heat exchanger that exchanges heat between the exhaust pipe 70A and the introduction pipe 60A. Further, in the heating device 40, the heat exchanger, which is a double pipe, is directly connected to the chamber 41. As described above, since the heat exchanger is directly connected to the chamber 41, the gas heated in the chamber 41 can be directly introduced into the double-pipe heat exchanger (that is, the exhaust pipe 70A). it can. For this reason, according to the heating device 40, heat exchange can be efficiently performed in the pipe 80A as compared with a configuration in which the heat exchanger is provided away from the chamber.
 また、図5に示すように、導入管60Aは、チャンバー41内に突出している突出部62Aaを含む。具体的には、各導入枝管62Aは、チャンバー41の側壁41aを貫通し、側壁41aにおけるチャンバー41内の内壁表面からチャンバー41中心方向へ突出する突出部62Aaを含む。すなわち、導入管60Aのチャンバー41内の先端部である導入口60Aaは、側壁41aにおけるチャンバー41内の内壁表面からチャンバー41中心方向へ突出する。これにより、各導入枝管62Aから、チャンバー41内のより中心方向(支持基板S及び混合物12aに近づく方向)に不活性ガスを導入することができる。このため、支持基板S上の混合物12a近傍の雰囲気を、より低酸素状態で維持することができる。 Also, as shown in FIG. 5, the introduction tube 60A includes a protruding portion 62Aa protruding into the chamber 41. Specifically, each introduction branch pipe 62A includes a protruding portion 62Aa that penetrates the side wall 41a of the chamber 41 and protrudes from the inner wall surface inside the chamber 41 in the side wall 41a toward the center of the chamber 41. That is, the introduction port 60Aa, which is the tip of the introduction pipe 60A in the chamber 41, protrudes from the inner wall surface in the chamber 41 on the side wall 41a toward the center of the chamber 41. Thereby, an inert gas can be introduced from each introduction branch pipe 62A in a more central direction in the chamber 41 (a direction approaching the support substrate S and the mixture 12a). Therefore, the atmosphere near the mixture 12a on the support substrate S can be maintained in a lower oxygen state.
 また、突出部62Aaは、排気管70Aよりもチャンバー41内に突出していることが好ましい。例えば、排気管70Aは、排気管70Aが接続されているチャンバー41の側壁41aにおけるチャンバー41内の内壁表面と面一である。換言すると、排気管70Aのチャンバー41内の先端部である排気口70Aaは、チャンバー41内の内壁表面と面一である。このように、導入管60Aの導入口60Aaの方が、排気管70Aの排気口70Aaよりも、チャンバー41内に突出していることで、導入口60Aaからチャンバー41内に導入された不活性ガスがチャンバー41内で滞留せずに(すなわちチャンバー41内で十分加熱されずに)直接排気口70Aaから排気されてしまうことを防止することができる。これにより、チャンバー41内で十分加熱された気体を排気管70Aから排気することができる。このため、より確実に、排気管70Aを通って排気される気体によって、導入管60内を通る不活性ガスを加熱することができる。 It is preferable that the protruding portion 62Aa protrudes into the chamber 41 more than the exhaust pipe 70A. For example, the exhaust pipe 70A is flush with the inner wall surface inside the chamber 41 in the side wall 41a of the chamber 41 to which the exhaust pipe 70A is connected. In other words, the exhaust port 70Aa, which is the tip of the exhaust pipe 70A in the chamber 41, is flush with the inner wall surface in the chamber 41. As described above, since the inlet 60Aa of the inlet pipe 60A protrudes into the chamber 41 from the outlet 70Aa of the exhaust pipe 70A, the inert gas introduced into the chamber 41 from the inlet 60Aa is reduced. It is possible to prevent the gas from being exhausted directly from the exhaust port 70Aa without staying in the chamber 41 (that is, without being sufficiently heated in the chamber 41). Thus, the gas sufficiently heated in the chamber 41 can be exhausted from the exhaust pipe 70A. Therefore, the gas exhausted through the exhaust pipe 70A can more reliably heat the inert gas passing through the introduction pipe 60.
 なお、排気管70Aの排気口70Aaは、チャンバー41内の内壁表面と面一に限定されず、チャンバー41の側壁41aの内壁表面からチャンバー41内へ突出していてもよい。 The exhaust port 70Aa of the exhaust pipe 70A is not limited to be flush with the inner wall surface in the chamber 41, and may protrude into the chamber 41 from the inner wall surface of the side wall 41a of the chamber 41.
 また、図7に示したように、排気管70Aは、導入管60Aの外周を囲っている。そして、排気管70Aにおける排気に寄与する断面積は、導入管60Aの断面積より大きいことが好ましい。このように、排気管70Aは、導入管60Aを囲むように設計されている。 Further, as shown in FIG. 7, the exhaust pipe 70A surrounds the outer circumference of the introduction pipe 60A. The cross-sectional area of the exhaust pipe 70A that contributes to the exhaust is preferably larger than the cross-sectional area of the introduction pipe 60A. Thus, the exhaust pipe 70A is designed to surround the introduction pipe 60A.
 なお、配管80Aは、排気管70Aの内部に導入管60Aが挿入された構成ではなく、導入管60Aの外周に沿って排気管70Aが巻き付いた構成であってもよい。これによっても、排気管70A内を通る加熱された気体により、導入管60A内を通る不活性ガスを加熱することができる。 The pipe 80A may have a configuration in which the exhaust pipe 70A is wound around the outer circumference of the introduction pipe 60A instead of the configuration in which the introduction pipe 60A is inserted inside the exhaust pipe 70A. In this way, the heated gas passing through the exhaust pipe 70A can also heat the inert gas passing through the introduction pipe 60A.
 図8は、実施形態1の変形例に係る配管80A1の形状を表す断面図である。図8に示すように、加熱装置40(図5等参照)は、配管80Aに換えて配管80A1を備えていてもよい。配管80A1は、排気管70Aと、導入管60A1とを含む。導入管60A1は、導入管60Aと断面形状が異なる。配管80A1の他の構成は配管80Aと同様である。導入管60A1は、排気管70Aに囲まれた外壁に凹凸が設けられている。図8に示す例では、導入管60A1は、断面形状が星型である。導入管60A1は、断面形状が円形状の場合と比べて、外壁に凹凸を有するため、外壁の表面積が増加する。これにより、導入管60A1の周囲の流れる排気管70A内の加熱された気体により、効率よく、導入管60A1が加熱される。この結果、効率よく、導入管60A1内を通る不活性ガスを加熱することができる。 FIG. 8 is a cross-sectional view illustrating a shape of a pipe 80A1 according to a modification of the first embodiment. As shown in FIG. 8, the heating device 40 (see FIG. 5 and the like) may include a pipe 80A1 instead of the pipe 80A. The pipe 80A1 includes an exhaust pipe 70A and an introduction pipe 60A1. The introduction pipe 60A1 has a different cross-sectional shape from the introduction pipe 60A. The other configuration of the pipe 80A1 is the same as that of the pipe 80A. The introduction pipe 60A1 has irregularities on the outer wall surrounded by the exhaust pipe 70A. In the example shown in FIG. 8, the introduction pipe 60A1 has a star-shaped cross section. Since the introduction pipe 60A1 has irregularities on the outer wall as compared with the case where the cross-sectional shape is circular, the surface area of the outer wall increases. Thereby, the introduction pipe 60A1 is efficiently heated by the heated gas in the exhaust pipe 70A flowing around the introduction pipe 60A1. As a result, it is possible to efficiently heat the inert gas passing through the introduction pipe 60A1.
 〔実施形態2〕
 図9は、実施形態2に係る加熱装置40Aのチャンバー41Aの断面を表す図である。図10は、実施形態2に係る加熱装置40Aのチャンバー41Aの上面を表す図である。加熱装置40Aは、加熱装置40(図5等)の構成に、さらに、二重配管を備えた構成である。
[Embodiment 2]
FIG. 9 is a diagram illustrating a cross section of a chamber 41A of a heating device 40A according to the second embodiment. FIG. 10 is a diagram illustrating an upper surface of a chamber 41A of a heating device 40A according to the second embodiment. The heating device 40A has a configuration in which the heating device 40 (FIG. 5 and the like) is further provided with a double pipe.
 加熱装置40Aは、チャンバー41Aと、ガス供給源(第1ガス供給源)50Aと、配管(第1配管)80Aと、ガス供給源(第2ガス供給源)50Bと、配管(第2配管)80Bとを備えている。 The heating device 40A includes a chamber 41A, a gas supply source (first gas supply source) 50A, a pipe (first pipe) 80A, a gas supply source (second gas supply source) 50B, and a pipe (second pipe). 80B.
 チャンバー41Aは、支持基板S上の混合物12aのキュアベークを行うためのチャンバーである。チャンバー41Aは、互いに対向する側壁41Aa・41Abと、互いに対向する側壁41Ac・41Adと、底部41Aeと、上部41Afとを備えている。側壁41Aa~41Adは、底部41Aeに立設し、上部41Afは側壁41Aa~41Adに支持されている。側壁41Acには、支持基板Sをチャンバー41Aへ出し入れ可能な開口部が設けられており、側壁41Acに扉42が設けられている。扉42を閉じることで、チャンバー41A内は密閉される。側壁41Aaには、配管(第1配管)80Aと接続される開口部が設けられており、側壁41Abには、配管(第2配管)80Bと接続される開口部が設けられている。チャンバー41A内には、チャンバー41と同様に、複数の加熱部43及び複数の載置部44が、互いに離間しつつ、交互に重なって設けられている。 The chamber 41A is a chamber for curing and baking the mixture 12a on the support substrate S. The chamber 41A includes opposing side walls 41Aa and 41Ab, opposing side walls 41Ac and 41Ad, a bottom 41Ae, and an upper part 41Af. The side walls 41Aa to 41Ad stand on the bottom 41Ae, and the upper portion 41Af is supported by the side walls 41Aa to 41Ad. The side wall 41Ac is provided with an opening through which the support substrate S can be taken in and out of the chamber 41A, and the side wall 41Ac is provided with a door 42. By closing the door 42, the inside of the chamber 41A is sealed. The side wall 41Aa is provided with an opening connected to the pipe (first pipe) 80A, and the side wall 41Ab is provided with an opening connected to the pipe (second pipe) 80B. In the chamber 41A, similarly to the chamber 41, a plurality of heating units 43 and a plurality of mounting units 44 are provided so as to be alternately overlapped while being separated from each other.
 配管80Bは、配管80Aと同様の構成及び同様の形状である。すなわち、配管80Bは、導入管60Bと、導入管60Bを囲むように設けられた排気管70Bとを含む二重配管である。 The pipe 80B has the same configuration and the same shape as the pipe 80A. That is, the pipe 80B is a double pipe including the introduction pipe 60B and the exhaust pipe 70B provided so as to surround the introduction pipe 60B.
 導入管60Bは、チャンバー41Aの側壁41Abと接続されると共にガス供給源50Bとも接続されている。導入管60Bは、ガス供給源50Bから供給された不活性ガスをチャンバー41A内に導入する配管である。導入管60Bは、ガス供給源50Bと接続されている導入幹管61Bと、導入幹管61Bから枝分かれしてチャンバー41Aの側壁41Abと接続されている一又は複数の導入枝管62Bとを備えている。これにより、矢印INBに示すように、ガス供給源50Bから供給された不活性ガスは、導入幹管61B内を通り、さらに、導入幹管61Bから分岐している一又は複数の導入枝管62B内を通って、チャンバー41A内へ供給される。図9に示す例では、1本の導入幹管61Bから3本の導入枝管62Bが分岐し、3本の導入枝管62Bそれぞれの先端がチャンバー41Aの側壁41Abと接続されている。なお、導入幹管61B及び導入枝管62Bの本数は図9に示す例に限定されない。 The introduction pipe 60B is connected to the side wall 41Ab of the chamber 41A and also to the gas supply source 50B. The introduction pipe 60B is a pipe that introduces the inert gas supplied from the gas supply source 50B into the chamber 41A. The introduction pipe 60B includes an introduction trunk pipe 61B connected to the gas supply source 50B, and one or more introduction branch pipes 62B branched from the introduction trunk pipe 61B and connected to the side wall 41Ab of the chamber 41A. I have. Thereby, as shown by the arrow INB, the inert gas supplied from the gas supply source 50B passes through the introduction trunk pipe 61B, and further, one or a plurality of introduction branch pipes 62B branched from the introduction trunk pipe 61B. Through the inside, it is supplied into the chamber 41A. In the example shown in FIG. 9, three introduction branch pipes 62B branch off from one introduction trunk pipe 61B, and the tips of the three introduction branch pipes 62B are connected to the side walls 41Ab of the chamber 41A. The numbers of the introduction trunk pipes 61B and the introduction branch pipes 62B are not limited to the example shown in FIG.
 排気管70Bは、チャンバー41Aの側壁41Abと接続されている。排気管70Bには排気部(ファン)75Bが設けられている。排気管70Bは、チャンバー41A内の気体を排出する配管である。排気管70Bは、排気部75Bが設けられている排気幹管71Bと、排気幹管71Bから枝分かれしてチャンバー41Aの側壁41Abと接続されている一又は複数の排気枝管72Bとを備えている。これにより、矢印OUTBに示すように、チャンバー41内で加熱された気体は、一又は複数の排気枝管72B内を通り、さらに、一又は複数の排気枝管72Bが接続されている排気幹管71B内を通って、チャンバー41A内からチャンバー41A外へ排気される。図9に示す例では、1本の排気幹管71Bから3本の排気枝管72Bが分岐し、3本の排気枝管72Bそれぞれの先端がチャンバー41Aの側壁41Abと接続されている。なお、排気幹管71B及び排気枝管72Bの本数は図9に示す例に限定されない。 The exhaust pipe 70B is connected to the side wall 41Ab of the chamber 41A. The exhaust pipe 70B is provided with an exhaust part (fan) 75B. The exhaust pipe 70B is a pipe that discharges gas in the chamber 41A. The exhaust pipe 70B includes an exhaust main pipe 71B provided with an exhaust portion 75B, and one or more exhaust branch pipes 72B branched from the exhaust main pipe 71B and connected to the side wall 41Ab of the chamber 41A. . Thereby, as shown by the arrow OUTB, the gas heated in the chamber 41 passes through the one or more exhaust branch pipes 72B, and further, the exhaust main pipe to which the one or more exhaust branch pipes 72B are connected. The gas is exhausted from the inside of the chamber 41A to the outside of the chamber 41A through the inside of the chamber 71B. In the example shown in FIG. 9, three exhaust branch pipes 72B are branched from one exhaust main pipe 71B, and the tips of the three exhaust branch pipes 72B are connected to the side walls 41Ab of the chamber 41A. The numbers of the exhaust main pipe 71B and the exhaust branch pipe 72B are not limited to the example shown in FIG.
 排気管70Bは、導入管60Bを囲むように設けられている。図9に示す例では、排気枝管72Bはそれぞれ導入枝管62Bの外側を囲っており、排気幹管71Bは大部分の導入幹管61Bの外側を囲っている。このように排気管70Bは、一又は複数の導入枝管62Bと、導入幹管61Bの少なくとも一部とを囲むように設けられている。 The exhaust pipe 70B is provided so as to surround the introduction pipe 60B. In the example shown in FIG. 9, the exhaust branch pipes 72B respectively surround the outside of the introduction branch pipe 62B, and the exhaust main pipe 71B surrounds the outside of most of the introduction main pipes 61B. As described above, the exhaust pipe 70B is provided so as to surround one or a plurality of introduction branch pipes 62B and at least a part of the introduction trunk pipe 61B.
 このように、加熱装置40Aは、導入管60A・60Bを含み、さらに、排気管70A・70Bを含む。そして、排気管70Aは導入管60Aを囲むように設けられ、排気管70Bは導入管60Bを囲むように設けられている。さらに、排気管70A及び導入管60Aと、排気管70Bは導入管60Bとは、チャンバー41Abのうち、互いに対向する側壁41Aa・41Abにそれぞれ接続されている。すなわち、排気管70A及び導入管60Aは、側壁41Aaに接続されており、排気管70B及び導入管60Bは、側壁41Abに接続されている。これにより、チャンバー41A内を両方向から、効率的に、加熱された不活性ガスを供給することができると共に、両方向(配管80A・80B方向)に向けて、効率よくチャンバー41A内の廃熱を排気することができる。 As described above, the heating device 40A includes the introduction pipes 60A and 60B, and further includes the exhaust pipes 70A and 70B. The exhaust pipe 70A is provided so as to surround the introduction pipe 60A, and the exhaust pipe 70B is provided so as to surround the introduction pipe 60B. Further, the exhaust pipe 70A and the introduction pipe 60A, and the exhaust pipe 70B and the introduction pipe 60B are connected to the mutually facing side walls 41Aa and 41Ab of the chamber 41Ab. That is, the exhaust pipe 70A and the introduction pipe 60A are connected to the side wall 41Aa, and the exhaust pipe 70B and the introduction pipe 60B are connected to the side wall 41Ab. Thereby, the heated inert gas can be efficiently supplied from both directions in the chamber 41A, and the waste heat in the chamber 41A can be efficiently exhausted in both directions (directions of the pipes 80A and 80B). can do.
 また、導入管60Bは、チャンバー41A内に突出している突出部62Baを含む。具体的には、各導入枝管62Bは、チャンバー41Aの側壁41Abを貫通し、側壁41Abにおけるチャンバー41A内の内壁表面からチャンバー41A中心方向へ突出する突出部62Baを含む。 導入 The introduction pipe 60B includes a protruding portion 62Ba protruding into the chamber 41A. Specifically, each introduction branch pipe 62B includes a protruding portion 62Ba that penetrates the side wall 41Ab of the chamber 41A and protrudes from the inner wall surface in the chamber 41A in the side wall 41Ab toward the center of the chamber 41A.
 突出部62Baは、排気管70Bよりもチャンバー41A内に突出していることが好ましい。例えば、排気管70Bは、排気管70Bが接続されているチャンバー41Aの側壁41Abにおけるチャンバー41A内の内壁表面と面一である。換言すると、排気管70Bのチャンバー41A内の先端部である排気口70Baは、チャンバー41A内の内壁表面と面一である。このように、導入管60Bの導入口60Baの方が、排気管70Bの排気口70Baよりも、チャンバー41A内に突出していることで、チャンバー41A内で十分加熱された気体を排気管70Bから排気することができる。このため、より確実に、排気管70Bを通って排気される気体によって、導入管60B内を通る不活性ガスを加熱することができる。 It is preferable that the protruding portion 62Ba protrudes into the chamber 41A from the exhaust pipe 70B. For example, the exhaust pipe 70B is flush with the inner wall surface inside the chamber 41A in the side wall 41Ab of the chamber 41A to which the exhaust pipe 70B is connected. In other words, the exhaust port 70Ba, which is the tip of the exhaust pipe 70B in the chamber 41A, is flush with the inner wall surface in the chamber 41A. As described above, since the introduction port 60Ba of the introduction pipe 60B protrudes into the chamber 41A from the exhaust port 70Ba of the exhaust pipe 70B, the gas sufficiently heated in the chamber 41A is exhausted from the exhaust pipe 70B. can do. For this reason, the gas exhausted through the exhaust pipe 70B can more reliably heat the inert gas passing through the introduction pipe 60B.
 なお、排気管70Bの排気口70Baは、チャンバー41A内の内壁表面と面一に限定されず、チャンバー41Aの側壁41Abの内壁表面からチャンバー41A内へ突出していてもよい。 The exhaust port 70Ba of the exhaust pipe 70B is not limited to be flush with the inner wall surface inside the chamber 41A, and may protrude into the chamber 41A from the inner wall surface of the side wall 41Ab of the chamber 41A.
 〔実施形態3〕
 図11は、実施形態3に係る加熱装置40Cのチャンバー41Aの断面を表す図である。図12は、実施形態3に係る加熱装置40Cのチャンバー41Aの上面を表す図である。加熱装置40Cは、加熱装置40A(図9等)が備えていた配管80B及びガス供給源50Bに換えて、導入管(第3導入管)60C、排気管(第3排気管)70C及びガス供給源50Cを備えた構成である。加熱装置40Cの他の構成は加熱装置40Aと同様である。
[Embodiment 3]
FIG. 11 is a diagram illustrating a cross section of a chamber 41A of a heating device 40C according to the third embodiment. FIG. 12 is a diagram illustrating an upper surface of a chamber 41A of a heating device 40C according to the third embodiment. The heating device 40C includes an introduction pipe (third introduction pipe) 60C, an exhaust pipe (third exhaust pipe) 70C, and a gas supply instead of the pipe 80B and the gas supply source 50B provided in the heating apparatus 40A (FIG. 9 and the like). This is a configuration including a source 50C. Other configurations of the heating device 40C are the same as those of the heating device 40A.
 本実施形態においては、導入管60Cは露出ししており、排気管70Cに囲まれていない。導入管60Cは、チャンバー41Aの側壁41Abと接続されると共にガス供給源50Cとも接続されている。 In the present embodiment, the introduction pipe 60C is exposed and is not surrounded by the exhaust pipe 70C. The introduction pipe 60C is connected to the side wall 41Ab of the chamber 41A and also to the gas supply source 50C.
 加熱装置40Cでは、キュアベーク時は、配管80Aを使用し、キュアベークが終了してからチャンバー41A内を冷却する際に、導入管60C及び排気管70Cを使用する。 In the heating device 40C, the pipe 80A is used during the cure bake, and the inlet pipe 60C and the exhaust pipe 70C are used to cool the inside of the chamber 41A after the completion of the cure bake.
 導入管60Cは、チャンバー41A内でのキュアベーク終了後、チャンバー41内を冷却するためのガスを導入するために、ガス供給源50Cから供給されたガスをチャンバー41A内に導入する配管である。導入管60Cは、ガス供給源50Cと接続されている導入幹管61Cと、導入幹管61Cから枝分かれしてチャンバー41Aの側壁41Abと接続されている一又は複数の導入枝管62Cとを備えている。 (4) The introduction pipe 60C is a pipe for introducing a gas supplied from the gas supply source 50C into the chamber 41A in order to introduce a gas for cooling the inside of the chamber 41 after the completion of the cure bake in the chamber 41A. The introduction pipe 60C includes an introduction trunk pipe 61C connected to the gas supply source 50C, and one or more introduction branch pipes 62C branched from the introduction trunk pipe 61C and connected to the side wall 41Ab of the chamber 41A. I have.
 これにより、矢印INCに示すように、ガス供給源50Cから供給されたガス(例えば圧空)は、導入幹管61C内を通り、さらに、導入幹管61Cから分岐している一又は複数の導入枝管62C内を通って、チャンバー41A内へ供給される。図11に示す例では、1本の導入幹管61Cから3本の導入枝管62Cが分岐し、3本の導入枝管62Cそれぞれの先端がチャンバー41Aの側壁41Abと接続されている。なお、導入幹管61C及び導入枝管62Cの本数は図11に示す例に限定されない。 Thereby, as indicated by the arrow INC, the gas (for example, compressed air) supplied from the gas supply source 50C passes through the introduction trunk pipe 61C, and further, has one or more introduction branches branched from the introduction trunk pipe 61C. The gas is supplied into the chamber 41A through the pipe 62C. In the example shown in FIG. 11, three introduction branch pipes 62C branch off from one introduction trunk pipe 61C, and the tips of the three introduction branch pipes 62C are connected to the side walls 41Ab of the chamber 41A. The numbers of the introduction trunk pipes 61C and the introduction branch pipes 62C are not limited to the example shown in FIG.
 また、一又は複数の導入枝管62Cには、バルブ96が設けられている。キュアベーク時にはバルブ96を閉じ、キュアベークが終了してチャンバー41内を冷却する際に、バルブ96を開けることで導入管60Cを使用する。 バ ル ブ Further, a valve 96 is provided on one or a plurality of introduction branch pipes 62C. During the cure bake, the valve 96 is closed, and when the cure bake is completed and the inside of the chamber 41 is cooled, the valve 96 is opened to use the introduction pipe 60C.
 排気管70Cは、チャンバー41Aの側壁41Abと接続されており、導入管60Cを囲っていない。図11に示す例では、排気管70Cは枝分かれせずにチャンバー41Aの側壁41Abと接続されている。しかし、排気管70Cは、排気幹管と当該排気幹管から枝分かれする一又は複数の排気枝管を備え、当該一又は複数の排気枝管が、チャンバー41Aの側壁41Abと接続されていてもよい。排気管70Cには、排気部75Cが設けられている。また、排気管70Cには、バルブ97が設けられている。キュアベーク時にはバルブ97を閉じ、キュアベークが終了してチャンバー41内を冷却する際に、バルブ97を開けることで排気管70Cを使用する。 The exhaust pipe 70C is connected to the side wall 41Ab of the chamber 41A, and does not surround the introduction pipe 60C. In the example shown in FIG. 11, the exhaust pipe 70C is connected to the side wall 41Ab of the chamber 41A without branching. However, the exhaust pipe 70C includes an exhaust main pipe and one or more exhaust branch pipes branched from the exhaust main pipe, and the one or more exhaust branch pipes may be connected to the side wall 41Ab of the chamber 41A. . An exhaust part 75C is provided in the exhaust pipe 70C. A valve 97 is provided in the exhaust pipe 70C. During the cure bake, the valve 97 is closed, and when the cure bake is completed and the inside of the chamber 41 is cooled, the exhaust pipe 70C is used by opening the valve 97.
 このように、排気管70Cは導入管60Cを囲っていない。このため、キュアベークが終了してチャンバー41内を冷却する際、チャンバー41内の温度よりも低い温度(例えば室温程度の温度等)のガスを、温度が低い状態のまま、導入管60Cを通って、チャンバー41A内に導入することができる。これにより、速やかに、チャンバー41A内の温度を下げることができる。 Thus, the exhaust pipe 70C does not surround the introduction pipe 60C. For this reason, when the inside of the chamber 41 is cooled after the completion of the curing bake, a gas having a temperature lower than the temperature in the chamber 41 (for example, a temperature around room temperature) is passed through the introduction pipe 60C while the temperature is low. , Chamber 41A. Thereby, the temperature in the chamber 41A can be quickly reduced.
 また、導入管60Cは、チャンバー41A内に突出している突出部62Caを含む。具体的には、各導入枝管62Cは、チャンバー41Aの側壁41Abを貫通し、側壁41Abにおけるチャンバー41A内の内壁表面からチャンバー41A中心方向へ突出する突出部62Caを含む。 導入 The introduction pipe 60C includes a protrusion 62Ca protruding into the chamber 41A. Specifically, each introduction branch pipe 62C includes a protruding portion 62Ca that penetrates the side wall 41Ab of the chamber 41A and protrudes from the inner wall surface inside the chamber 41A in the side wall 41Ab toward the center of the chamber 41A.
 突出部62Caは、排気管70Cよりもチャンバー41A内に突出していることが好ましい。例えば、排気管70Cは、排気管70Cが接続されているチャンバー41Aの側壁41Abにおけるチャンバー41A内の内壁表面と面一である。換言すると、排気管70Cのチャンバー41A内の先端部である排気口70Caは、チャンバー41A内の内壁表面と面一である。このように、導入管60Cの導入口60Caの方が、排気管70Cの排気口70Caよりも、チャンバー41A内に突出していることで、導入管60Cから導入したガスが直接排気口70Caから排気されてしまうことを防止することができる。このため、より効率よく、チャンバー41A内を冷却することができる。 It is preferable that the protruding portion 62Ca protrudes into the chamber 41A from the exhaust pipe 70C. For example, the exhaust pipe 70C is flush with the inner wall surface inside the chamber 41A in the side wall 41Ab of the chamber 41A to which the exhaust pipe 70C is connected. In other words, the exhaust port 70Ca at the tip of the exhaust pipe 70C in the chamber 41A is flush with the inner wall surface in the chamber 41A. Thus, the gas introduced from the introduction pipe 60C is directly exhausted from the exhaust port 70Ca because the introduction port 60Ca of the introduction pipe 60C protrudes into the chamber 41A from the exhaust port 70Ca of the exhaust pipe 70C. Can be prevented. Therefore, the inside of the chamber 41A can be cooled more efficiently.
 なお、排気管70Cの排気口70Caは、チャンバー41A内の内壁表面と面一に限定されず、チャンバー41Aの側壁41Abの内壁表面からチャンバー41A内へ突出していてもよい。 The exhaust port 70Ca of the exhaust pipe 70C is not limited to be flush with the inner wall surface inside the chamber 41A, and may protrude into the chamber 41A from the inner wall surface of the side wall 41Ab of the chamber 41A.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
40、40A、40C 加熱装置
2 表示デバイス
12 樹脂層
12a 混合物(樹脂材料)
41、41A、41Ab チャンバー
41a~41d、41Aa~41Ad 側壁
41e、41Ae 底部
41f、41Af 上部
43 加熱部
44 載置部
50A~50C ガス供給源
60A、60A1 導入管(第1導入管)
60B 導入管(第2導入管)
60C 導入管(第3導入管)
60Aa、60Ba、60Ca 導入口
61A、61B、61C 導入幹管
62A、62B、62C 導入枝管
62Aa、62Ba、62Ca 突出部
70A 排気管(第1排気管)
70B 排気管(第2排気管)
70C 排気管(第3排気管)
70Aa、70Ba、70Ca 排気口
71A、71B 排気幹管
72A、72B 排気枝管
75A、75B、75C 排気部
80A、80A1、80B 配管
96、97 バルブ
40, 40A, 40C Heating device 2 Display device 12 Resin layer 12a Mixture (resin material)
41, 41A, 41Ab Chambers 41a to 41d, 41Aa to 41Ad Side walls 41e, 41Ae Bottom part 41f, 41Af Upper part 43 Heating part 44 Placement parts 50A to 50C Gas supply sources 60A, 60A1 Introducing pipe (first introducing pipe)
60B inlet pipe (second inlet pipe)
60C inlet pipe (third inlet pipe)
60Aa, 60Ba, 60Ca Inlet 61A, 61B, 61C Introductory main pipe 62A, 62B, 62C Introductory branch pipe 62Aa, 62Ba, 62Ca Projection 70A Exhaust pipe (first exhaust pipe)
70B exhaust pipe (second exhaust pipe)
70C exhaust pipe (third exhaust pipe)
70Aa, 70Ba, 70Ca Exhaust ports 71A, 71B Exhaust main pipes 72A, 72B Exhaust branch pipes 75A, 75B, 75C Exhaust sections 80A, 80A1, 80B Piping 96, 97 Valve

Claims (15)

  1.  樹脂材料を焼成処理するチャンバーと、
     前記チャンバーと接続され当該チャンバー内に不活性ガスを導入する導入管と、
     前記チャンバーと接続され当該チャンバー内の気体を排出する排気管とを備え、
     前記排気管は、前記導入管を囲むように設けられていることを特徴とする加熱装置。
    A chamber for baking the resin material,
    An introduction pipe connected to the chamber and introducing an inert gas into the chamber;
    An exhaust pipe connected to the chamber and exhausting gas in the chamber,
    The heating device, wherein the exhaust pipe is provided so as to surround the introduction pipe.
  2.  前記排気管は、前記チャンバー内で加熱された前記不活性ガスが当該排気管を通って排出されるときに前記導入管を加熱するように設けられていることを特徴とする請求項1に記載の加熱装置。 2. The exhaust pipe according to claim 1, wherein the exhaust pipe is provided to heat the introduction pipe when the inert gas heated in the chamber is exhausted through the exhaust pipe. 3. Heating equipment.
  3.  前記導入管は、前記チャンバー内に突出している突出部を含むことを特徴とする請求項1又は2に記載の加熱装置。 (3) The heating device according to (1) or (2), wherein the introduction pipe includes a protrusion that protrudes into the chamber.
  4.  前記突出部は、前記排気管よりも当該チャンバー内に突出していることを特徴とする請求項3に記載の加熱装置。 4. The heating device according to claim 3, wherein the protruding portion protrudes into the chamber from the exhaust pipe. 5.
  5.  さらに、前記不活性ガスを供給するガス供給源を備え、
     前記導入管は、前記ガス供給源と接続されている導入幹管と、当該導入幹管から枝分かれして前記チャンバーと接続されている一又は複数の導入枝管とを備えていることを特徴とする請求項1~4の何れか1項に記載の加熱装置。
    Further, a gas supply source for supplying the inert gas,
    The introduction pipe includes an introduction main pipe connected to the gas supply source, and one or more introduction branch pipes branched from the introduction main pipe and connected to the chamber. The heating device according to any one of claims 1 to 4, wherein:
  6.  前記排気管は、前記一又は複数の導入枝管と、前記導入幹管の少なくとも一部と、を囲むように設けられていることを特徴とする請求項5に記載の加熱装置。 The heating device according to claim 5, wherein the exhaust pipe is provided so as to surround the one or more introduction branch pipes and at least a part of the introduction trunk pipe.
  7.  さらに、前記排気管に設けられた排気部を備え、
     前記排気部はファンを有することを特徴とする請求項1~6の何れか1項に記載の加熱装置。
    Furthermore, an exhaust unit provided in the exhaust pipe is provided,
    The heating device according to any one of claims 1 to 6, wherein the exhaust unit has a fan.
  8.  前記排気管における排気に寄与する断面積は、前記導入管の断面積より大きいことを特徴とする請求項1~7の何れか1項に記載の加熱装置。 The heating device according to any one of claims 1 to 7, wherein a cross-sectional area of the exhaust pipe contributing to exhaust is larger than a cross-sectional area of the introduction pipe.
  9.  前記排気管は、前記排気管が接続されている前記チャンバーの内壁表面と面一であることを特徴とする請求項1~8の何れか1項に記載の加熱装置。 The heating apparatus according to any one of claims 1 to 8, wherein the exhaust pipe is flush with an inner wall surface of the chamber to which the exhaust pipe is connected.
  10.  前記不活性ガスは、Nであることを特徴とする請求項1~9の何れか1項に記載の加熱装置。 The inert gas heating apparatus according to any one of claims 1 to 9, characterized in that it is N 2.
  11.  前記導入管は、前記チャンバー内で加熱された前記Nによって加熱されることを特徴とする請求項10に記載の加熱装置。 The inlet tube, the heating device according to claim 10, characterized in that it is heated by the N 2 heated in the chamber.
  12.  前記排気管に囲まれた前記導入管の外壁に凹凸が設けられていることを特徴とする請求項1~11の何れか1項に記載の加熱装置。 The heating apparatus according to any one of claims 1 to 11, wherein an irregularity is provided on an outer wall of the introduction pipe surrounded by the exhaust pipe.
  13.  前記導入管は第1導入管及び第2導入管を含み、前記排気管は第1排気管及び第2排気管を含み、
     前記第1排気管は前記第1導入管を囲むように設けられ、前記第2排気管は前記第2導入管を囲むように設けられ、
     前記第1排気管及び前記第1導入管と、前記第2排気管及び前記第2導入管とは、前記チャンバーのうち、互いに対向する側壁にそれぞれ接続されていることを特徴とする請求項1~12の何れか1項に記載の加熱装置。
    The introduction pipe includes a first introduction pipe and a second introduction pipe, and the exhaust pipe includes a first exhaust pipe and a second exhaust pipe,
    The first exhaust pipe is provided to surround the first introduction pipe, and the second exhaust pipe is provided to surround the second introduction pipe.
    The said 1st exhaust pipe and the said 1st introduction pipe, and the said 2nd exhaust pipe and the said 2nd introduction pipe are each connected to the mutually opposing side wall in the said chamber. 13. The heating device according to any one of items 12 to 12.
  14.  さらに、前記チャンバーと接続され前記導入管を囲っていない第3排気管を備えていることを特徴とする請求項1~13の何れか1項に記載の加熱装置。 The heating apparatus according to any one of claims 1 to 13, further comprising a third exhaust pipe connected to the chamber and not surrounding the introduction pipe.
  15.  さらに、前記排気管に囲まれていない第3導入管を備えていることを特徴とする請求項1~14の何れか1項に記載の加熱装置。 The heating device according to any one of claims 1 to 14, further comprising a third introduction pipe not surrounded by the exhaust pipe.
PCT/JP2018/035690 2018-09-26 2018-09-26 Heating device WO2020065765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035690 WO2020065765A1 (en) 2018-09-26 2018-09-26 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035690 WO2020065765A1 (en) 2018-09-26 2018-09-26 Heating device

Publications (1)

Publication Number Publication Date
WO2020065765A1 true WO2020065765A1 (en) 2020-04-02

Family

ID=69952845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035690 WO2020065765A1 (en) 2018-09-26 2018-09-26 Heating device

Country Status (1)

Country Link
WO (1) WO2020065765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012517A (en) * 1996-06-20 1998-01-16 Dainippon Screen Mfg Co Ltd Heat treatment apparatus for substrate
JP2015209557A (en) * 2014-04-24 2015-11-24 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, program, and recording medium
JP2016139556A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2017166721A (en) * 2016-03-14 2017-09-21 関東冶金工業株式会社 Heat treatment furnace
JP2018093148A (en) * 2016-12-07 2018-06-14 東京エレクトロン株式会社 Supply and exhaust structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012517A (en) * 1996-06-20 1998-01-16 Dainippon Screen Mfg Co Ltd Heat treatment apparatus for substrate
JP2015209557A (en) * 2014-04-24 2015-11-24 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, program, and recording medium
JP2016139556A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2017166721A (en) * 2016-03-14 2017-09-21 関東冶金工業株式会社 Heat treatment furnace
JP2018093148A (en) * 2016-12-07 2018-06-14 東京エレクトロン株式会社 Supply and exhaust structure

Similar Documents

Publication Publication Date Title
JP4469739B2 (en) Film forming device
US10468623B2 (en) Organic EL display panel and method of manufacturing organic EL display panel
KR101122623B1 (en) A method of manufacturing a light emitting device
JP5722453B2 (en) Manufacturing method of display device
JP5071152B2 (en) Display device manufacturing method and lighting device manufacturing method
TW540021B (en) Tiling type display device and manufacturing method therefor
KR101229022B1 (en) Method of fabricating Organic electro luminescent device
US10535843B2 (en) Method for producing thin-film element device and light irradiation device used therefor
KR101127594B1 (en) Flat display device
JP2010257957A (en) Organic electroluminescent device
JP2012036505A (en) Manufacturing apparatus
JPWO2010146730A1 (en) Organic EL display device and manufacturing method thereof
KR102167046B1 (en) Display apparatus
US20140056579A1 (en) Electrode cover and evaporation device
US20190036077A1 (en) Method for producing organic el display device, and organic el display device
JP2013125718A (en) Display device and manufacturing method thereof
WO2020065765A1 (en) Heating device
JP2007134243A (en) Method of manufacturing display device, and mask
WO2013047457A1 (en) Method for manufacturing display device, and display device
WO2013150713A1 (en) Organic el display device and manufacturing method therefor
KR101775503B1 (en) Method of fabricating organic light emitting diodes
JP4467876B2 (en) Light emitting device
WO2020044405A1 (en) Method for manufacturing display device, and apparatus for manufacturing display device
JP2007095545A (en) Method and apparatus of manufacturing self-luminescent element
WO2020065793A1 (en) Device and method for manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP