JP5318182B2 - Manufacturing method of organic EL element - Google Patents

Manufacturing method of organic EL element Download PDF

Info

Publication number
JP5318182B2
JP5318182B2 JP2011261600A JP2011261600A JP5318182B2 JP 5318182 B2 JP5318182 B2 JP 5318182B2 JP 2011261600 A JP2011261600 A JP 2011261600A JP 2011261600 A JP2011261600 A JP 2011261600A JP 5318182 B2 JP5318182 B2 JP 5318182B2
Authority
JP
Japan
Prior art keywords
organic
layer
moisture
proof layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011261600A
Other languages
Japanese (ja)
Other versions
JP2012069529A (en
Inventor
一郎 片岡
知之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011261600A priority Critical patent/JP5318182B2/en
Publication of JP2012069529A publication Critical patent/JP2012069529A/en
Application granted granted Critical
Publication of JP5318182B2 publication Critical patent/JP5318182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element with high reliability. <P>SOLUTION: A manufacturing method for an organic EL element comprises: a step of forming a plurality of organic EL elements each including a first electrode, a second electrode, and an organic EL layer including at least a light-emitting layer sandwiched between the first electrode and the second electrode on a substrate; a step of forming a moisture barrier layer across the organic EL elements; a step of dividing the substrate on which the steps up to the step of forming the moisture barrier layer have been performed, so that plural pieces of the organic EL elements are obtained; and a step of providing a resin layer for covering a side end part of the substrate and a side end part of the moisture barrier layer of the divided organic EL element. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は有機EL素子の製造方法に関する。 The present invention relates to a method for manufacturing an organic EL element.

少なくとも基板、第一の電極、有機EL層、第二の電極、防湿層が積層されて成る有機EL素子が知られている。前記有機EL層は防湿層によって封止され、外部駆動回路により電圧を印加することにより発光する構成である。前記有機EL層の光を外に取り出せるようにするために、電極の片方は透明のものが使われており、一般的にはITO(Indium Tin Oxide)透明電極が使われている。   An organic EL element in which at least a substrate, a first electrode, an organic EL layer, a second electrode, and a moisture-proof layer are laminated is known. The organic EL layer is sealed by a moisture-proof layer and emits light when a voltage is applied by an external drive circuit. In order to extract light from the organic EL layer to the outside, one of the electrodes is transparent, and generally an ITO (Indium Tin Oxide) transparent electrode is used.

以上の原理により発光する有機EL素子は、視認性あるいはフレキシブル性に優れ且つ発色性が多様であることから、車載用コンポや携帯電話等のディスプレイや表示素子に利用されている。   Organic EL elements that emit light based on the above principle are excellent in visibility or flexibility, and have various color development properties. Therefore, they are used in displays and display elements such as in-vehicle components and mobile phones.

これらの特性を有する有機EL素子ではあるが、一方では一般に水分に対して極めて弱いという問題がよく知られている。一例としては、有機EL層を封止する際の環境雰囲気中に含まれる水分や、防湿層の欠陥部を透過してくる水分が有機EL素子中に進入することにより、ダークスポットと称する非発光領域が発生し、発光が維持出来なくなるといった寿命の課題が生じている。   Although it is an organic EL element having these characteristics, on the other hand, the problem that it is generally very weak against moisture is well known. As an example, when the moisture contained in the environmental atmosphere at the time of sealing the organic EL layer or the moisture that permeates through the defective portion of the moisture-proof layer enters the organic EL element, non-light emission called a dark spot There is a problem of a lifetime in which a region is generated and light emission cannot be maintained.

また、水分だけでなく、酸素による電極の酸化などを原因とする有機EL素子の発光効率の低下が発生する場合もある。   In addition, the emission efficiency of the organic EL element may be reduced due to oxidation of the electrode by oxygen as well as moisture.

この水分・酸素の影響による有機EL素子の寿命低下に関する課題を解決するための方策として、下記のような方法が知られている。有機EL素子の上面を酸化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化チタン、アモルファスシリコン、ダイアモンド状カーボン、SiCN等の無機物よりなる防湿層で封止する(特許文献1、特許文献2、特許文献3、特許文献4)。   The following method is known as a measure for solving the problem relating to the reduction in the lifetime of the organic EL element due to the influence of moisture and oxygen. The upper surface of the organic EL element is sealed with a moisture-proof layer made of an inorganic material such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, amorphous silicon, diamond-like carbon, or SiCN (Patent Document 1, Patent Document 2, Patent Document 3 and Patent document 4).

発光側表面を防湿層で封止したトップエミッション方式の有機EL素子の代表的な概略断面図を図5に示す。図示のように、ガラス基板1、陽極2、有機EL層3、陰極4、防湿層5からなる有機EL素子を、ガラス板14と接着層13とにより封止している(特許文献5)。   FIG. 5 shows a typical schematic cross-sectional view of a top emission type organic EL device in which the light emitting side surface is sealed with a moisture-proof layer. As shown in the figure, an organic EL element composed of a glass substrate 1, an anode 2, an organic EL layer 3, a cathode 4, and a moisture-proof layer 5 is sealed with a glass plate 14 and an adhesive layer 13 (Patent Document 5).

特開平8−111286号公報JP-A-8-111286 特開2000−58256号公報JP 2000-58256 A 特開2000−208253号公報JP 2000-208253 A 特開2002−117973号公報JP 2002-117773 A 特開2004−281380号公報JP 2004-281380 A

防湿層を形成するには、原料ガスのプラズマ雰囲気に陰極まで設けた有機EL素子の基板を晒すことによって行う、いわゆるプラズマCVD法が一般的である。有機EL素子を生産する場合は、大判のガラス基板で陽極、有機EL層、陰極、防湿層までの形成を行い、その後、複数個の有機EL素子に切り分ける。したがって、図6のように防湿層の切断端面が有機EL素子の側縁部において露出する。   In order to form the moisture-proof layer, a so-called plasma CVD method is generally performed, which is performed by exposing a substrate of an organic EL element provided up to a cathode to a plasma atmosphere of a source gas. When producing an organic EL element, the anode, the organic EL layer, the cathode, and the moisture-proof layer are formed on a large glass substrate, and then divided into a plurality of organic EL elements. Therefore, the cut end face of the moisture-proof layer is exposed at the side edge of the organic EL element as shown in FIG.

このような有機EL素子に高温高湿試験のような信頼性試験を行うと、同有機EL素子の側縁部において防湿層と基板との界面から水分が浸入し、防湿層の剥離の原因となったり、有機EL素子の発光効率の低下を招いたりする。   When a reliability test such as a high-temperature and high-humidity test is performed on such an organic EL element, moisture permeates from the interface between the moisture-proof layer and the substrate at the side edge of the organic EL element, which causes the moisture-proof layer to peel off. Or the luminous efficiency of the organic EL element is reduced.

これを解決するために、マスクを用いて基板の切断部に防湿層を形成しないようにする方法も考えられるが、マスク部分に隣接する防湿層の厚みが薄くなり、防湿層として十分な効果を発揮できなくなるという問題がある。   In order to solve this problem, a method of preventing the moisture-proof layer from being formed on the cut portion of the substrate using a mask is conceivable, but the thickness of the moisture-proof layer adjacent to the mask portion is reduced, so that a sufficient effect as a moisture-proof layer is achieved. There is a problem that it can not be demonstrated.

本発明は、以上のような事情に鑑み、防湿層を形成したのちに複数個の有機EL素子に切断、分割することによって、防湿層の切断端面が露出した有機EL素子の信頼性を向上させることを目的とする。すなわち、側縁部において防湿層とその下のガラス基板との界面から水分が浸入して前記防湿層が剥離することがない、信頼性の高い有機EL素子を提供することを目的とする。   In view of the above circumstances, the present invention improves the reliability of an organic EL element in which the cut end surface of the moisture-proof layer is exposed by cutting and dividing into a plurality of organic EL elements after forming the moisture-proof layer. For the purpose. That is, an object of the present invention is to provide a highly reliable organic EL element in which moisture does not enter from the interface between the moisture-proof layer and the underlying glass substrate at the side edge portion and the moisture-proof layer does not peel off.

上記した背景技術の課題を解決するための手段として、本発明に係る有機EL素子の製造方法は、
基板の上に、第一の電極と、第二の電極と、前記第一の電極と前記第二の電極に挟まれた少なくとも発光層を含む有機EL層と、を備える有機EL素子を複数形成する工程と、
複数の前記有機EL素子にわたって防湿層をプラズマCVD法、抵抗加熱蒸着法、電子ビーム蒸着法またはスパッタリング法により形成する工程と、
前記防湿層までが形成された前記基板を切断して複数個の有機EL素子に分割する工程と、
前記分割された有機EL素子の防湿層の側縁部、および基板の側縁部を覆う樹脂層を設ける工程と、
を有することを特徴とする。
As a means for solving the problems of the background art described above, a method for producing an organic EL element according to the present invention includes:
A plurality of organic EL elements each including a first electrode, a second electrode, and an organic EL layer including at least a light emitting layer sandwiched between the first electrode and the second electrode are formed on a substrate. And a process of
Plasma CVD anti Shimeso over a plurality of the organic EL element, a resistance heating deposition method, a step of forming by electron beam evaporation or sputtering,
Cutting the substrate on which the moisture proof layer is formed and dividing it into a plurality of organic EL elements;
Providing a resin layer covering a side edge of the moisture-proof layer of the divided organic EL element and a side edge of the substrate;
It is characterized by having.

本発明によれば、少なくとも基板、第一の電極、有機EL層、第二の電極、防湿層が積層されており、同防湿層が基板の周縁部まで形成されてなる有機EL素子において、少なくとも防湿層の側縁部を覆うように樹脂層が設けられている。そのため、防湿層の切断端面が露出した有機EL素子の信頼性が向上する。すなわち、防湿層の側縁部が樹脂層で覆われているので、側縁部において防湿層とその下のガラス基板との界面から水分が浸入して前記防湿層が剥離することがなく、信頼性の高い有機EL素子となる。   According to the present invention, at least a substrate, a first electrode, an organic EL layer, a second electrode, and a moisture-proof layer are laminated, and the moisture-proof layer is formed up to the peripheral edge of the substrate. A resin layer is provided so as to cover the side edge of the moisture-proof layer. Therefore, the reliability of the organic EL element in which the cut end surface of the moisture-proof layer is exposed is improved. That is, since the side edge portion of the moisture-proof layer is covered with the resin layer, the moisture-proof layer does not peel off from the interface between the moisture-proof layer and the glass substrate therebelow at the side edge portion. It becomes a highly organic EL element.

本発明における有機EL素子の構造を模式的に示した断面図である。It is sectional drawing which showed the structure of the organic EL element in this invention typically. 実施例1の有機EL素子の構造を模式的に示した部分断面図である。3 is a partial cross-sectional view schematically showing the structure of the organic EL element of Example 1. FIG. 実施例2の有機EL素子の構造を模式的に示した部分断面図である。5 is a partial cross-sectional view schematically showing the structure of an organic EL element of Example 2. FIG. 実施例3の有機EL素子の構造を模式的に示した部分断面図である。6 is a partial cross-sectional view schematically showing the structure of an organic EL element of Example 3. FIG. 一般的なトップエミッション方式の有機EL素子を模式的に示した断面図である。It is sectional drawing which showed typically the organic EL element of a general top emission system. 防湿層の切断端面が露出した有機EL素子を模式的に示した断面図である。It is sectional drawing which showed typically the organic EL element which the cut end surface of the moisture-proof layer exposed.

本発明における有機EL素子の模式的断面図を図1に示す。図1において、1はガラス基板、2は第一の電極、3は有機EL層、4は第二の電極、5は防湿層、6は樹脂層である。   FIG. 1 shows a schematic cross-sectional view of the organic EL device in the present invention. In FIG. 1, 1 is a glass substrate, 2 is a first electrode, 3 is an organic EL layer, 4 is a second electrode, 5 is a moisture-proof layer, and 6 is a resin layer.

まず、本発明における有機EL素子を構成する各部材のうち、防湿層5と樹脂層6について説明する。   First, the moisture-proof layer 5 and the resin layer 6 are demonstrated among each member which comprises the organic EL element in this invention.

防湿層5は有機EL素子を水分・酸素の影響から守り、その劣化を防止するために設けられる。材料としては例えば、酸化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化チタン、アモルファスシリコン、ダイアモンド状カーボン、SiCN等の無機物が好適である。なかでも窒化珪素が防湿性、成膜性、耐クラック性に優れているため好んで用いられる。また、トップエミッションタイプの有機EL素子の場合は、透明性も要求される。窒化珪素は僅かに着色しているので、透明性を上げるために水素をドープするなどの方法が採られる。   The moisture-proof layer 5 is provided to protect the organic EL element from the influence of moisture and oxygen and prevent its deterioration. As the material, for example, inorganic substances such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, amorphous silicon, diamond-like carbon, and SiCN are suitable. Of these, silicon nitride is preferred because it has excellent moisture resistance, film-forming properties, and crack resistance. In the case of a top emission type organic EL element, transparency is also required. Since silicon nitride is slightly colored, a method such as doping with hydrogen is employed to increase transparency.

防湿層5の厚みは、例えば500〜10000nmである。500nm未満であるとピンホールなどにより十分な防湿性が発揮できず、10000nmを超えると外部応力によるクラックの発生が起こりやすくなる。   The thickness of the moisture-proof layer 5 is, for example, 500 to 10,000 nm. If it is less than 500 nm, sufficient moisture resistance cannot be exhibited due to pinholes or the like, and if it exceeds 10000 nm, cracks are likely to occur due to external stress.

防湿層5の形成方法としては、プラズマCVD法、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法などから選択すればよい。窒化珪素の場合はプラズマCVD法によるのが一般的である。   A method for forming the moisture-proof layer 5 may be selected from plasma CVD, resistance heating vapor deposition, electron beam vapor deposition, and sputtering. In the case of silicon nitride, the plasma CVD method is generally used.

樹脂層6は少なくとも防湿層5の側縁部を覆うように設けられている。そのため、複数個の有機EL素子に切断、分割することによって、防湿層5の切断端面が露出した有機EL素子の信頼性が向上する。すなわち、防湿層5の側縁部が樹脂層6で覆われているので、側縁部において防湿層5とその下のガラス基板1との界面から水分が浸入して前記防湿層5が剥離することがなく、信頼性の高い有機EL素子となる。なお、樹脂層6は防湿層5の側縁部だけでなく、防湿層5の側縁部の上面も覆うように設けるのが好ましく、さらにガラス基板1の側縁部や下面まで覆うように設けるのがより好ましい。要するに、樹脂層6は、防湿層5とガラス基板1との界面を覆うように設けられていればよい。   The resin layer 6 is provided so as to cover at least the side edge of the moisture-proof layer 5. Therefore, the reliability of the organic EL element in which the cut end face of the moisture-proof layer 5 is exposed is improved by cutting and dividing into a plurality of organic EL elements. That is, since the side edge portion of the moisture-proof layer 5 is covered with the resin layer 6, moisture enters from the interface between the moisture-proof layer 5 and the glass substrate 1 below the side edge portion, and the moisture-proof layer 5 is peeled off. And a highly reliable organic EL element. The resin layer 6 is preferably provided so as to cover not only the side edge portion of the moisture-proof layer 5 but also the upper surface of the side edge portion of the moisture-proof layer 5, and further provided to cover the side edge portion and the lower surface of the glass substrate 1. Is more preferable. In short, the resin layer 6 only needs to be provided so as to cover the interface between the moisture-proof layer 5 and the glass substrate 1.

樹脂層6を構成する材料としては、防湿層5との十分な接着性を有し、防湿層5とガラス基板1との界面への水分の浸入を抑制できるものであれば、特に限定はされない。例えば、アクリル樹脂、シリコン樹脂、フッ素樹脂、エポキシ樹脂、エチレン系重合体樹脂、金属アルコキシド重合体などが挙げられる。なかでも、アクリル樹脂、エポキシ樹脂、ポリイソブチレン樹脂、イソブテン−イソプレン共重合体樹脂、金属アルコキシド重合体は防湿性が高く、本発明において好適に用いられる。   The material constituting the resin layer 6 is not particularly limited as long as it has sufficient adhesion to the moisture-proof layer 5 and can suppress the ingress of moisture into the interface between the moisture-proof layer 5 and the glass substrate 1. . For example, acrylic resin, silicon resin, fluorine resin, epoxy resin, ethylene polymer resin, metal alkoxide polymer, and the like can be given. Among them, acrylic resin, epoxy resin, polyisobutylene resin, isobutene-isoprene copolymer resin, and metal alkoxide polymer have high moisture resistance and are preferably used in the present invention.

アクリル樹脂、エポキシ樹脂の具体例としては、液状アクリル樹脂、液状エポキシ樹脂に光反応開始剤、熱反応開始剤などの硬化剤を配合して硬化させたものが挙げられる。   Specific examples of the acrylic resin and the epoxy resin include a liquid acrylic resin and a liquid epoxy resin mixed with a curing agent such as a photoreaction initiator and a thermal reaction initiator and cured.

金属アルコキシド重合体としては、アルコキシシラン、アルコキシチタンなどの金属アルコキシド化合物をアルコールなどの溶液中で加水分解・重合させた、いわゆるゾルゲル法によって生成されたものが好適に用いられる。   As the metal alkoxide polymer, a polymer produced by a so-called sol-gel method in which a metal alkoxide compound such as alkoxysilane or alkoxytitanium is hydrolyzed and polymerized in a solution of alcohol or the like is preferably used.

樹脂層6には防湿層5との接着性を高めるためにシランカップリング剤、あるいはチタンカップリング剤を添加することが望ましい。添加量は樹脂100重量部に対して0.5〜5.0重量部が適正である。   It is desirable to add a silane coupling agent or a titanium coupling agent to the resin layer 6 in order to improve the adhesion to the moisture-proof layer 5. The addition amount is appropriately 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the resin.

樹脂層6の形成方法としては、液状の樹脂を塗布することによって行う。例えば、ディッピングによって行ってもよいし、ディスペンサーから樹脂を吐出させて行ってもよい。さらに、スクリーン印刷、ロールコートなどによって行ってもよい。   The resin layer 6 is formed by applying a liquid resin. For example, it may be performed by dipping or by discharging resin from a dispenser. Furthermore, it may be performed by screen printing, roll coating, or the like.

次に、本発明の有機EL素子の作製方法を図1を用いて説明する。   Next, a method for manufacturing the organic EL element of the present invention will be described with reference to FIG.

ガラス基板1上に蒸着装置やスピンコーターなどの成膜装置により第一の電極2と有機EL層3と第二の電極4からなる有機EL素子を複数個形成し、更に防湿層5を形成して有機EL素子基板を作製する。   A plurality of organic EL elements composed of the first electrode 2, the organic EL layer 3, and the second electrode 4 are formed on a glass substrate 1 by a film forming apparatus such as a vapor deposition apparatus or a spin coater, and a moisture-proof layer 5 is further formed. Thus, an organic EL element substrate is produced.

この基板を切断して複数個の有機EL素子に切り分けた後、防湿層5が露出している側縁部に樹脂層6を形成する。   After the substrate is cut into a plurality of organic EL elements, a resin layer 6 is formed on the side edge where the moisture-proof layer 5 is exposed.

最後に、各々の電極2、3を外部回路(不図示)に接続することにより本発明の有機EL素子が発光する。   Finally, the organic EL element of the present invention emits light by connecting the electrodes 2 and 3 to an external circuit (not shown).

以下、本発明の有機EL素子を具体的実施例に基づき詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではなく、その要旨の範囲内で種々変更することができる。   Hereinafter, the organic EL device of the present invention will be described in detail based on specific examples. In addition, this invention is not limited to a following example at all, and can be variously changed within the range of the summary.

<実施例1>
本発明の第一の実施例を図2に基づいて説明する。図2において、7はTFT回路が形成されたガラス基板、2は陽極、3は有機EL層、4は陰極、5は防湿層、8は素子分離膜、9は平坦化膜、6は樹脂層である。以下に、有機EL素子の詳細な作製方法について述べる。
<Example 1>
A first embodiment of the present invention will be described with reference to FIG. In FIG. 2, 7 is a glass substrate on which a TFT circuit is formed, 2 is an anode, 3 is an organic EL layer, 4 is a cathode, 5 is a moisture-proof layer, 8 is an element isolation film, 9 is a planarizing film, and 6 is a resin layer. It is. Below, the detailed manufacturing method of an organic EL element is described.

[平坦化膜形成]
複数のパネルのTFT回路が形成されたガラス基板7上にアクリル樹脂よりなる平坦化膜9をフォトリソグラフィー法にて形成し、回路による凹凸を平坦にした。
[Flattening film formation]
A planarizing film 9 made of acrylic resin was formed on a glass substrate 7 on which TFT circuits of a plurality of panels were formed by a photolithography method, and the unevenness due to the circuit was flattened.

[Cr電極形成]
平坦化膜9が形成されたガラス基板7上にCrターゲットをDCスパッタし、陽極2として100nmの厚さにCr膜を成膜した。この際、成膜マスクを用いて、20μm×100μmの画素電極とした。Arガスを用いて、0.2Paの圧力、300Wの投入電力条件で行った。
[Cr electrode formation]
A Cr target was DC sputtered on the glass substrate 7 on which the planarizing film 9 was formed, and a Cr film having a thickness of 100 nm was formed as the anode 2. At this time, a pixel electrode of 20 μm × 100 μm was formed using a film formation mask. Using Ar gas, the pressure was 0.2 Pa and the input power was 300 W.

[大気開放]
上記工程まで済んだガラス基板7をスパッタ装置より取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。
[Atmospheric release]
The glass substrate 7 which had been processed up to the above step was taken out of the sputtering apparatus, was successively ultrasonically washed with acetone and isopropyl alcohol (IPA), then was boiled and washed with IPA and then dried. Further, UV / ozone cleaning was performed.

[素子分離膜形成]
各画素を分離するために、ポリイミド樹脂よりなる素子分離膜8をフォトリソグラフィー法にて形成した。
[Element isolation film formation]
In order to separate each pixel, an element isolation film 8 made of polyimide resin was formed by a photolithography method.

[前処理]
有機EL蒸着装置へ移し、真空排気し、前処理室で基板付近に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Pa、処理時間は40秒であった。
[Preprocessing]
It moved to the organic electroluminescent vapor deposition apparatus, evacuated, and 50-W RF electric power was supplied to the ring-shaped electrode provided near the board | substrate in the pre-processing chamber, and the oxygen plasma cleaning process was performed. The oxygen pressure was 0.6 Pa and the treatment time was 40 seconds.

[正孔輸送層形成]
上記工程まで済んだガラス基板7を前処理室より成膜室へ移動し、成膜室を、1×10-4Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜速度0.2〜0.3nm/secの条件で成膜、膜厚35nmの正孔輸送層を形成した。なお、正孔輸送層、発光層、および電子注入層は、同一の蒸着マスクを用いることにより所定の部分に蒸着した。所定の部分とはガラス基板7上で、画素電極であるCrが露出している部分である。
[Hole transport layer formation]
The glass substrate 7 that has been subjected to the above steps is moved from the pretreatment chamber to the film formation chamber, and after the film formation chamber is evacuated to 1 × 10 −4 Pa, αNPD having hole transportability is formed by resistance heating vapor deposition. A film was formed under the condition of a film speed of 0.2 to 0.3 nm / sec, and a hole transport layer having a film thickness of 35 nm was formed. Note that the hole transport layer, the light emitting layer, and the electron injection layer were deposited on predetermined portions by using the same deposition mask. The predetermined portion is a portion on the glass substrate 7 where the pixel electrode Cr is exposed.

[発光層形成]
続いて正孔輸送層の上にアルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で成膜し、膜厚15nmの発光層を形成した。
[Light emitting layer formation]
Subsequently, Alq3, which is an alkylate complex, was formed on the hole transport layer by resistance heating vapor deposition under the same film formation conditions as the hole transport layer to form a light emitting layer having a film thickness of 15 nm.

[電子注入電極層形成]
発光層の上に抵抗加熱共蒸着法によりAlq3と炭酸セシウム(Cs2CO3)を膜厚比9:1の割合で混合されるように、各々の蒸着速度を調整して成膜し、膜厚35nmの電子注入層を形成した。詳しくは、それぞれの蒸着ボートにセットした材料を抵抗加熱方式で蒸発させ、有機層は〜0.5nm/sec、共蒸着層もそれぞれのボート電流値を調整することで、あわせて〜0.5nm/secの蒸着速度で膜形成を行った。
[Electron injection electrode layer formation]
A film is formed on the light emitting layer by resistance heating co-evaporation so that Alq3 and cesium carbonate (Cs2CO3) are mixed at a film thickness ratio of 9: 1 to adjust the respective vapor deposition rates. An electron injection layer was formed. Specifically, the material set in each evaporation boat is evaporated by resistance heating method, the organic layer is ~ 0.5 nm / sec, and the co-deposition layer is also adjusted to each boat current value, so that it is ~ 0.5 nm. Film formation was performed at a deposition rate of / sec.

[陰極(透明導電膜)形成]
別の成膜室に、上記工程まで済んだガラス基板7を移し、電子注入層の上にITOターゲットを用いてDCマグネトロンスパッタリング法により、膜厚が130nmになるよう成膜し、ITOからなる陰極4を形成した。
[Cathode (transparent conductive film) formation]
The glass substrate 7 which has been subjected to the above steps is transferred to another film formation chamber, and a film is formed on the electron injection layer to a thickness of 130 nm by a DC magnetron sputtering method using an ITO target, and a cathode made of ITO. 4 was formed.

[防湿層形成]
防湿層5の形成を行った。すなわち、前記陰極4の上にプラズマCVD法を用いて、厚さ1μmの窒化シリコン膜を堆積した。この時、後述する実装工程でFPCを接続する電極部のみはマスクによって窒化シリコン膜が堆積しないようにした。それ以外は複数個の有機EL素子にわたって全面に窒化シリコン膜を堆積した。
[Dampproof layer formation]
The moisture-proof layer 5 was formed. That is, a silicon nitride film having a thickness of 1 μm was deposited on the cathode 4 by plasma CVD. At this time, the silicon nitride film was not deposited by the mask only on the electrode portion to which the FPC was connected in the mounting process described later. Otherwise, a silicon nitride film was deposited on the entire surface over a plurality of organic EL elements.

以上のようにして、TFT回路が形成されたガラス基板7上に、平坦化膜9、陽極2、素子分離膜8、有機EL層3(正孔輸送層、発光層、電子注入電極層)、陰極4及び防湿層5を設け、有機EL素子を作製した。   As described above, on the glass substrate 7 on which the TFT circuit is formed, the planarization film 9, the anode 2, the element isolation film 8, the organic EL layer 3 (hole transport layer, light emitting layer, electron injection electrode layer), A cathode 4 and a moisture-proof layer 5 were provided to produce an organic EL device.

[切断工程]
複数個の有機EL素子を有する基板を精密ガラススクライバーを用いて切断して、個々の有機EL素子に分離した。
[Cutting process]
A substrate having a plurality of organic EL elements was cut using a precision glass scriber and separated into individual organic EL elements.

[側縁部封止工程]
防湿層5の側縁部を樹脂で封止する工程に移る。すなわち、精密ディスペンサーにより紫外線硬化型接着剤を有機EL素子の側縁部に塗布して、樹脂層6を形成した。
[Side edge sealing process]
It moves to the process of sealing the side edge part of the moisture-proof layer 5 with resin. That is, the resin layer 6 was formed by applying an ultraviolet curable adhesive to the side edge of the organic EL element with a precision dispenser.

ここで紫外線硬化型接着剤としては、エポキシ系シランカップリング剤を樹脂100重量部に対して1.0重量部添加した光カチオン重合系の液状エポキシ樹脂を用いた。そして、メタルハライドランプにより300〜390nmの波長領域で照射強度100mW/cm2の紫外線を6000mJ/cm2の照射量となるように接着剤に照射後、さらに100℃で30分加熱した。 Here, as the ultraviolet curable adhesive, a photocationic polymerization type liquid epoxy resin in which 1.0 part by weight of an epoxy silane coupling agent was added to 100 parts by weight of the resin was used. Then, the adhesive was irradiated with an ultraviolet ray having an irradiation intensity of 100 mW / cm 2 in a wavelength region of 300 to 390 nm with a metal halide lamp so as to have an irradiation dose of 6000 mJ / cm 2 , and further heated at 100 ° C. for 30 minutes.

[実装工程]
最後に有機EL素子を駆動させるための駆動回路(不図示)を接続するのに必要なフレキシブルプリント配線板(FPC)の実装を行なった。すなわち、有機EL素子の取り出し配線(不図示)にFPCを異方性導電性フィルム(ACF)で熱圧着を行い、FPCを接合した。
[Mounting process]
Finally, a flexible printed wiring board (FPC) necessary for connecting a drive circuit (not shown) for driving the organic EL element was mounted. That is, FPC was bonded to an extraction line (not shown) of the organic EL element by thermocompression bonding with an anisotropic conductive film (ACF) to join the FPC.

以上のような工程によって作製した有機EL素子を60℃/90%RHの環境下に1000時間保管する高温高湿試験を行った。その後、外観を目視及び光学顕微鏡で観察したところ問題は認められなかった。また、陽極2と陰極3の間に電圧を印加して評価した有機EL素子の発光特性にも異常は認められなかった。   A high-temperature and high-humidity test was conducted in which the organic EL device produced by the above process was stored for 1000 hours in an environment of 60 ° C./90% RH. Thereafter, when the appearance was observed visually and with an optical microscope, no problem was found. Further, no abnormality was observed in the light emission characteristics of the organic EL element evaluated by applying a voltage between the anode 2 and the cathode 3.

<実施例2>
本発明の第二の実施例を図3に基づいて説明する。図3において、7はTFT回路が形成されたガラス基板、11は封止ガラス、10は透明充填層、12は紫外線硬化型接着剤、2は陽極、3は有機EL層、4は陰極、5は防湿層、8は素子分離膜、9は平坦化膜、6は樹脂層である。以下に、有機EL素子の詳細な作製方法について述べる。なお、切断工程までは実施例1と同様であるため、説明を省略する。
<Example 2>
A second embodiment of the present invention will be described with reference to FIG. In FIG. 3, 7 is a glass substrate on which a TFT circuit is formed, 11 is a sealing glass, 10 is a transparent filling layer, 12 is an ultraviolet curable adhesive, 2 is an anode, 3 is an organic EL layer, 4 is a cathode, 5 Is a moisture-proof layer, 8 is an element isolation film, 9 is a planarizing film, and 6 is a resin layer. Below, the detailed manufacturing method of an organic EL element is described. In addition, since it is the same as that of Example 1 until the cutting process, description is abbreviate | omitted.

[封止工程]
有機EL素子に空気中の水蒸気が浸入しないような封止材料でバリア性を付与させるため、透明充填層10の形成と紫外線硬化型接着剤12による封止工程に移る。
[Sealing process]
In order to impart barrier properties to the organic EL element with a sealing material that does not allow water vapor in the air to enter, the process proceeds to the formation of the transparent filling layer 10 and the sealing step using the ultraviolet curable adhesive 12.

透明充填層10として、二液熱硬化型のアクリル酸エステルの液状樹脂からなる粘着剤を用いた。すなわち、この液状樹脂を封止ガラス11上にスピンコーターにより、厚み15μmで塗布を行い、不図示のホットプレート上で加熱硬化させて、粘着剤とした。尚、その時の加熱条件は80℃/30分である。   As the transparent filling layer 10, a two-component thermosetting type acrylic ester liquid adhesive was used. That is, this liquid resin was applied on the sealing glass 11 by a spin coater with a thickness of 15 μm, and heat cured on a hot plate (not shown) to obtain an adhesive. The heating condition at that time is 80 ° C./30 minutes.

加熱硬化後、防湿層5まで形成し切断した有機EL素子と、透明充填層10を形成した封止ガラス11を貼り合わせた。   After heat curing, the organic EL element formed up to the moisture-proof layer 5 and cut was bonded to the sealing glass 11 on which the transparent filling layer 10 was formed.

貼り合わせた後、外界からの水分のバリア性を向上させるために、精密ディスペンサーにより、封止ガラス11の側縁部を紫外線硬化型接着剤12により封着した。   After bonding, in order to improve the barrier property of moisture from the outside, the side edge portion of the sealing glass 11 was sealed with the ultraviolet curable adhesive 12 with a precision dispenser.

さらに、引き続いて精密ディスペンサーにより同じ紫外線硬化型接着剤を有機EL素子の側縁部に塗布して、樹脂層6を形成した。   Further, the same ultraviolet curable adhesive was subsequently applied to the side edge portion of the organic EL element with a precision dispenser to form the resin layer 6.

ここで紫外線硬化型接着剤としては、光カチオン重合系の液状エポキシ樹脂を用い、メタルハライドランプにより300〜390nmの波長領域で照射強度100mW/cm2の紫外線を6000mJ/cm2の照射量となるように前記接着剤に照射した。 Examples of the ultraviolet curable adhesive, using the cationic photopolymerizable liquid epoxy resin, such as a dose of 6000 mJ / cm 2 ultraviolet irradiation intensity 100 mW / cm 2 in the wavelength region of 300~390nm metal halide lamp The adhesive was irradiated.

なお、これら封止工程は、水分濃度を10ppm以下に制御したグローブボックス(不図示)内で行い、工程中の水分による有機EL素子の劣化を最小限にするように配慮した。   These sealing steps were performed in a glove box (not shown) in which the moisture concentration was controlled to 10 ppm or less, and consideration was given to minimize deterioration of the organic EL element due to moisture in the step.

最後に実施例1と同様にFPCを接合して有機EL素子を完成した。この有機EL素子を実施例1と同じ高温高湿試験に供して試験後の前記有機EL素子を評価したところ、外観及び発光特性に異常は認められなかった。   Finally, FPC was joined in the same manner as in Example 1 to complete the organic EL device. When this organic EL element was subjected to the same high-temperature and high-humidity test as in Example 1 and the organic EL element after the test was evaluated, no abnormality was observed in the appearance and light emission characteristics.

<実施例3>
本発明の第三の実施例を図4に基づいて説明する。図4において、7はTFT回路が形成されたガラス基板、11は封止ガラス、10は透明充填層、2は陽極、3は有機EL層、4は陰極、5は防湿層、8は素子分離膜、9は平坦化膜である。以下に、有機EL素子の詳細な作製方法について述べる。なお、切断工程までは実施例1と同様であるため、説明は省略する。
<Example 3>
A third embodiment of the present invention will be described with reference to FIG. In FIG. 4, 7 is a glass substrate on which a TFT circuit is formed, 11 is a sealing glass, 10 is a transparent filling layer, 2 is an anode, 3 is an organic EL layer, 4 is a cathode, 5 is a moisture-proof layer, and 8 is element isolation. A film 9 is a planarizing film. Below, the detailed manufacturing method of an organic EL element is described. In addition, since it is the same as that of Example 1 until the cutting process, description is abbreviate | omitted.

[封止工程]
有機EL素子に空気中の水蒸気が浸入しないような封止材料でバリア性を付与させるため、透明充填層10の形成による封止工程に移る。
[Sealing process]
In order to impart barrier properties to the organic EL element with a sealing material that does not allow water vapor in the air to enter, the process proceeds to a sealing step by forming the transparent filling layer 10.

透明充填層10の透明樹脂として、エポキシ系シランカップリング剤を樹脂100重量部に対して1.0重量部添加した熱硬化型エポキシ液状樹脂を用いた。この液状樹脂を封止ガラス11上にスクリーン印刷により厚み15μmで塗布を行い、防湿層5まで形成し切断した有機EL素子と、透明充填層10を形成した封止ガラス11とを真空下で貼り合わせた。この時、封止ガラス11を有機EL素子よりも僅かに大きくして、透明充填層10が有機EL素子の側縁部を覆うようにした。すなわち、本実施例では透明充填層10が防湿層5の側縁部を覆う樹脂層を兼ねる構成とした。   As the transparent resin of the transparent filling layer 10, a thermosetting epoxy liquid resin in which 1.0 part by weight of an epoxy silane coupling agent was added to 100 parts by weight of the resin was used. This liquid resin is applied on the sealing glass 11 by screen printing to a thickness of 15 μm, and the organic EL element formed by cutting up to the moisture-proof layer 5 and the sealing glass 11 on which the transparent filling layer 10 is formed are attached in a vacuum. Combined. At this time, the sealing glass 11 was made slightly larger than the organic EL element so that the transparent filling layer 10 covered the side edge of the organic EL element. That is, in this embodiment, the transparent filling layer 10 also serves as a resin layer that covers the side edge of the moisture-proof layer 5.

貼り合わせた後、100℃で60分加熱することにより、透明充填層10を硬化させた。   After bonding, the transparent filling layer 10 was hardened by heating at 100 ° C. for 60 minutes.

なお、これら封止工程は、水分濃度を10ppm以下に制御したグローブボックス(不図示)内で行い、工程中の水分による有機EL素子の劣化を最小限にするように配慮した。   These sealing steps were performed in a glove box (not shown) in which the moisture concentration was controlled to 10 ppm or less, and consideration was given to minimize deterioration of the organic EL element due to moisture in the step.

最後に実施例1と同様にFPCを接合して有機EL素子を完成した。この有機EL素子を実施例1と同じ高温高湿試験に供して試験後の前記有機EL素子を評価したところ、外観及び発光特性に異常は認められなかった。   Finally, FPC was joined in the same manner as in Example 1 to complete the organic EL device. When this organic EL element was subjected to the same high-temperature and high-humidity test as in Example 1 and the organic EL element after the test was evaluated, no abnormality was observed in the appearance and light emission characteristics.

<実施例4>
切断工程までは実施例1と同様であるため、説明は省略する。
<Example 4>
Since the process up to the cutting step is the same as that of the first embodiment, the description thereof is omitted.

[側縁部封止工程]
実施例1の紫外線硬化型接着剤に替えて、アルコキシシラン重合体で防湿層5の側縁部を封止した。すなわち、触媒を含有するアルコキシシランのアルコール溶液に有機EL素子の側縁部を浸漬した後、100℃で30分加熱することにより、アルコキシシラン重合体よりなる樹脂層6を形成した。
[Side edge sealing process]
Instead of the ultraviolet curable adhesive of Example 1, the side edge of the moisture-proof layer 5 was sealed with an alkoxysilane polymer. That is, after immersing the side edge portion of the organic EL element in an alcohol solution of alkoxysilane containing a catalyst, the resin layer 6 made of an alkoxysilane polymer was formed by heating at 100 ° C. for 30 minutes.

最後に実施例1と同様にFPCを接合して有機EL素子を完成した。この有機EL素子を実施例1と同じ高温高湿試験に供して試験後の前記有機EL素子を評価したところ、外観及び発光特性に異常は認められなかった。   Finally, FPC was joined in the same manner as in Example 1 to complete the organic EL device. When this organic EL element was subjected to the same high-temperature and high-humidity test as in Example 1 and the organic EL element after the test was evaluated, no abnormality was observed in the appearance and light emission characteristics.

<比較例1>
樹脂層を形成しない以外は実施例1と同様にして有機EL素子を作製した。
<Comparative Example 1>
An organic EL element was produced in the same manner as in Example 1 except that the resin layer was not formed.

この有機EL素子を実施例1と同様に高温高湿試験後、目視及び光学顕微鏡で観察したところ、側縁部より防湿層にクラックが発生しており、防湿層の剥離が認められた。   When this organic EL device was observed visually and with an optical microscope after the high-temperature and high-humidity test in the same manner as in Example 1, cracks were generated in the moisture-proof layer from the side edges, and peeling of the moisture-proof layer was observed.

さらに有機EL素子を発光させたところ、パネル周辺部の画素の有機EL層が劣化して大きく発光効率が低下しており、一部画素が発光していないことが確認された。   Further, when the organic EL element was caused to emit light, it was confirmed that the organic EL layer of the pixel in the peripheral portion of the panel was deteriorated to greatly reduce the light emission efficiency, and that some of the pixels did not emit light.

<比較例2>
樹脂層を形成しない以外は実施例2と同様にして有機EL素子を作製した。
<Comparative example 2>
An organic EL device was produced in the same manner as in Example 2 except that the resin layer was not formed.

この有機EL素子を実施例1と同様に高温高湿試験後、目視及び光学顕微鏡で観察したところ、側縁部より防湿層にクラックが発生しており、防湿層の剥離が認められた。   When this organic EL device was observed visually and with an optical microscope after the high-temperature and high-humidity test in the same manner as in Example 1, cracks were generated in the moisture-proof layer from the side edges, and peeling of the moisture-proof layer was observed.

さらに有機EL素子を発光させたところ、比較例1よりも軽微ではあるが有機EL素子の側縁部近傍の画素の有機EL層が劣化して発光効率が低下していることが確認された。   Further, when the organic EL element was caused to emit light, it was confirmed that the organic EL layer of the pixel in the vicinity of the side edge portion of the organic EL element was deteriorated and the light emission efficiency was lowered although it was lighter than Comparative Example 1.

1 ガラス基板、2 第一の電極、3 有機EL層、4 第二の電極、5 防湿層、6 樹脂層、7 TFT回路を形成したガラス基板、8 素子分離膜、9 平坦化膜、10 透明充填層、11 封止ガラス、12 紫外線硬化型樹脂、13 接着層、14 ガラス板   DESCRIPTION OF SYMBOLS 1 Glass substrate, 2 1st electrode, 3 Organic EL layer, 4 2nd electrode, 5 Moisture-proof layer, 6 Resin layer, 7 Glass substrate which formed TFT circuit, 8 Element isolation film, 9 Planarization film, 10 Transparent Filling layer, 11 sealing glass, 12 UV curable resin, 13 adhesive layer, 14 glass plate

Claims (2)

基板の上に、第一の電極と、第二の電極と、前記第一の電極と前記第二の電極に挟まれた少なくとも発光層を含む有機EL層と、を備える有機EL素子を複数形成する工程と、
複数の前記有機EL素子にわたって防湿層をプラズマCVD法、抵抗加熱蒸着法、電子ビーム蒸着法またはスパッタリング法により形成する工程と、
前記防湿層までが形成された前記基板を切断して複数個の有機EL素子に分割する工程と、
前記分割された有機EL素子の防湿層の側縁部、および基板の側縁部を覆う樹脂層を設ける工程と、
を有することを特徴とする有機EL素子の製造方法。
A plurality of organic EL elements each including a first electrode, a second electrode, and an organic EL layer including at least a light emitting layer sandwiched between the first electrode and the second electrode are formed on a substrate. And a process of
Plasma CVD anti Shimeso over a plurality of the organic EL element, a resistance heating deposition method, a step of forming by electron beam evaporation or sputtering,
Cutting the substrate on which the moisture proof layer is formed and dividing it into a plurality of organic EL elements;
Providing a resin layer covering a side edge of the moisture-proof layer of the divided organic EL element and a side edge of the substrate;
The manufacturing method of the organic EL element characterized by having.
前記分割された有機EL素子の防湿層の側縁部、および基板の側縁部を覆う樹脂層を設ける工程は、
止ガラスに樹脂材料を塗布する工程と、
前記封止ガラスの前記樹脂材料が形成された面を、前記分割された有機EL素子に貼り合わせる工程と、
前記樹脂材料を硬化して、前記分割された有機EL素子の防湿層の側縁部、および基板の側縁部を覆う樹脂層を設ける工程と、
を含むことを特徴とする請求項1に記載の有機EL素子の製造方法。
The step of providing a resin layer that covers the side edge of the moisture-proof layer of the divided organic EL element and the side edge of the substrate,
A step of applying a resin material for sealing glass,
Bonding the surface of the sealing glass on which the resin material is formed to the divided organic EL element;
Curing the resin material and providing a resin layer covering the side edge of the moisture-proof layer of the divided organic EL element and the side edge of the substrate;
The manufacturing method of the organic EL element of Claim 1 characterized by the above-mentioned.
JP2011261600A 2011-11-30 2011-11-30 Manufacturing method of organic EL element Expired - Fee Related JP5318182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261600A JP5318182B2 (en) 2011-11-30 2011-11-30 Manufacturing method of organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261600A JP5318182B2 (en) 2011-11-30 2011-11-30 Manufacturing method of organic EL element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006123351A Division JP2007294352A (en) 2006-04-27 2006-04-27 Organic el element

Publications (2)

Publication Number Publication Date
JP2012069529A JP2012069529A (en) 2012-04-05
JP5318182B2 true JP5318182B2 (en) 2013-10-16

Family

ID=46166504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261600A Expired - Fee Related JP5318182B2 (en) 2011-11-30 2011-11-30 Manufacturing method of organic EL element

Country Status (1)

Country Link
JP (1) JP5318182B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426705B2 (en) * 2014-03-19 2018-11-21 富士フイルム株式会社 Functional laminated film, method of producing functional laminated film, and organic electroluminescent device including functional laminated film
JP2016143606A (en) 2015-02-04 2016-08-08 セイコーエプソン株式会社 Organic el device and electronic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412296U (en) * 1990-05-22 1992-01-31
JPH07169567A (en) * 1993-12-16 1995-07-04 Idemitsu Kosan Co Ltd Organic el element
JP4513194B2 (en) * 2000-09-08 2010-07-28 東レ株式会社 Method for manufacturing organic electroluminescent device
US7038377B2 (en) * 2002-01-16 2006-05-02 Seiko Epson Corporation Display device with a narrow frame
JP2005011648A (en) * 2003-06-18 2005-01-13 Sanyo Electric Co Ltd Electroluminescent panel and manufacturing method of electroluminescent panel
KR20070003860A (en) * 2004-01-19 2007-01-05 파이오니아 가부시키가이샤 Protective film and organic el device
JP2005322599A (en) * 2004-05-11 2005-11-17 Toyota Industries Corp Organic electroluminescent device

Also Published As

Publication number Publication date
JP2012069529A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
TWI245251B (en) Display device
US8221553B2 (en) Method for producing organic light-emitting device
JP4990415B2 (en) Organic EL device and manufacturing method thereof
US20160164030A1 (en) Method for producing flexible display device, and flexible display device
US9172057B2 (en) Encapsulation structure for an opto-electronic component
RU2413338C2 (en) Electric luminescent device
JP2010027599A (en) Organic light-emitting display device and method of manufacturing the same
JP2009266922A (en) Organic light-emitting device
JP2008218323A (en) Manufacturing method for organic el panel
JP2010218940A (en) Organic light-emitting device and method for manufacturing the same
JP2012178262A (en) Manufacturing method of light emitting device
JP4708360B2 (en) Organic electroluminescent display device and manufacturing method thereof
JP6489016B2 (en) Electronic device and manufacturing method thereof
JP2008084599A (en) Organic electroluminescent device and manufacturing method of organic electroluminescent device
WO2014073534A1 (en) Organic electroluminescent display device and production method for same
JP2013131339A (en) Organic light emitting device and manufacturing method of the same
JP4101547B2 (en) Manufacturing method of organic EL display and substrate for organic EL display
JP5318182B2 (en) Manufacturing method of organic EL element
JP2011040347A (en) Organic el device
JP2005183209A (en) Organic electroluminescent display device and method of manufacturing the same
JP2009283242A (en) Organic el display device
JP2007242313A (en) Manufacturing method of display
JP2007265764A (en) Organic el element
JP2007294352A (en) Organic el element
JP2012038574A (en) Method of manufacturing display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R151 Written notification of patent or utility model registration

Ref document number: 5318182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees