WO2023013401A1 - Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate - Google Patents

Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate Download PDF

Info

Publication number
WO2023013401A1
WO2023013401A1 PCT/JP2022/028046 JP2022028046W WO2023013401A1 WO 2023013401 A1 WO2023013401 A1 WO 2023013401A1 JP 2022028046 W JP2022028046 W JP 2022028046W WO 2023013401 A1 WO2023013401 A1 WO 2023013401A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
polyamic acid
polyimide
tetracarboxylic dianhydride
Prior art date
Application number
PCT/JP2022/028046
Other languages
French (fr)
Japanese (ja)
Inventor
健一 福川
穣 久宗
達宣 浦上
佳広 坂田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023540232A priority Critical patent/JPWO2023013401A1/ja
Publication of WO2023013401A1 publication Critical patent/WO2023013401A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present disclosure relates to polyamic acid compositions and polyimide compositions, polyimide films, and display panel substrates.
  • inorganic glass which is a transparent material
  • inorganic glass has a high specific gravity (weight) and low flexibility and impact resistance. Therefore, application of a polyimide film, which is excellent in lightness, impact resistance, workability and flexibility, to a panel substrate of a display device has been studied.
  • the panel substrate of the display device is required to have high transparency.
  • the panel substrate may be heated in the process of forming elements such as thin film transistors and transparent electrodes on the panel substrate. Therefore, the panel substrate is also required to have high heat resistance.
  • the diamine contains 2,2-bis(trifluoromethyl)benzidine (TFMB), and the tetracarboxylic dianhydride contains 3,3',4,4' Polyimide films derived from polyamic acids including -biphenyltetracarboxylic dianhydride (BPDA) and 9,9′-bis(3,4′-dicarboxyphenyl)fluoric dianhydride (BPAF) have been proposed.
  • BPDA -biphenyltetracarboxylic dianhydride
  • BPAF 9,9′-bis(3,4′-dicarboxyphenyl)fluoric dianhydride
  • a polyimide film obtained from a polyamic acid in which the diamine contains 2,2-bistrifluoromethylbenzidine (TFMB) and the tetracarboxylic dianhydride contains pyromellitic dianhydride (PMDA) has also been proposed.
  • TFMB 2,2-bistrifluoromethylbenzidine
  • PMDA pyromellitic dianhydride
  • low-CTE polyimides are polyimides derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) and 2,2-bis(trifluoromethyl)benzidine (TFMB).
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • TFMB 2,2-bis(trifluoromethyl)benzidine
  • the polyimide film of Patent Document 1 did not have sufficiently low thermal expansion.
  • the polyimide film of Patent Document 2 has low thermal expansion, pyromellitic dianhydride (PMDA) tends to cause coloration and tends to increase the b * value.
  • PMDA pyromellitic dianhydride
  • excellent flexibility bending resistance
  • the polyimide film of Non-Patent Document 1 exhibits low thermal expansion, it has low bending resistance, and the b * value sometimes increases depending on the thermal imide temperature.
  • a polyamic acid composition capable of imparting a polyimide film having both sufficiently low thermal expansion and bending resistance without increasing the b * value
  • An object of the present invention is to provide a polyimide composition.
  • Another object of the present invention is to provide a polyimide film and a display panel substrate using the polyimide composition.
  • the polyamic acid composition of the present disclosure contains a polyamic acid, the polyamic acid contains a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine, and the tetracarboxylic acid di
  • the anhydride includes a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3), (In formula (a1), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, m and n are each an integer of 0 to 2, and m+n is 3 or less) (In formula (a3), R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, o and p are each an integer of 0 to 3, and o+p is 3 or less)
  • the diamine contains a compound represented by formula (b1), The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the
  • the content of the compound represented by the formula (a1) is 30 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride, according to any one of [1] to [4] polyamic acid composition.
  • the total amount of the compound represented by the formula (a2) and the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride, [ 1]
  • the tetracarboxylic dianhydride further includes a compound represented by formula (a4), or
  • the diamine further comprises a compound represented by formula (b2), (In formulas (a4) and (b2), R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 to 4 carbon atoms, q, r, s and t are each an integer from 0 to 3, and q+r and s+t are each 3 or less)
  • the polyamic acid composition according to any one of [1] to [6].
  • the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) is 0.5 to 15 mol% with respect to the total of the diamine and the tetracarboxylic dianhydride.
  • the polyamic acid composition is thermally imidized at 350° C. to form a polyimide film having a thickness of 10 ⁇ m, the b * value in the L * a * b * color system is 8.0 or less.
  • the polyamic acid composition according to any one of to [9]. [11] The polyamic acid composition is thermally imidized at 350° C. to form a polyimide film having a thickness of 10 ⁇ m. The polyamic acid composition according to any one of [1] to [9].
  • the polyimide composition of the present disclosure includes a polyimide, the polyimide includes a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine, and the tetracarboxylic dianhydride is , a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3), (In formula (a1), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, m and n are each an integer of 0 to 2, and m+n is 3 or less) (In formula (a3), R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, o and p are each an integer of 0 to 3, and o+p is 3 or less)
  • the diamine contains a compound represented by formula (b1), The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the total amount of the total
  • the content of the compound represented by the formula (a1) is 30 to 80 mol% relative to the total amount of the tetracarboxylic dianhydride, according to any one of [12] to [15] polyimide composition.
  • the total amount of the compound represented by the formula (a2) and the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride,
  • the polyimide composition according to any one of [16].
  • the tetracarboxylic dianhydride further includes a compound represented by formula (a4), or
  • the diamine further comprises a compound represented by formula (b2), (In formulas (a4) and (b2), R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 to 4 carbon atoms, q, r, s and t are each an integer from 0 to 3, and q+r and s+t are each 3 or less) [12]
  • the polyimide composition according to any one of [17].
  • the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) is 0.5 to 15 mol% with respect to the sum of the diamine and the tetracarboxylic dianhydride.
  • the polyimide composition according to any one of [12] to [20] which has a linear thermal expansion coefficient of ⁇ 10 to 30 ppm/K at 100 to 350° C. when formed into a film.
  • [23] comprising the polyimide composition according to any one of [12] to [22], polyimide film.
  • a display panel substrate comprising the polyimide film according to any one of [23] to [25].
  • a polyamic acid composition and a polyimide composition capable of imparting a polyimide film having both sufficiently low thermal expansion and bending resistance while suppressing an increase in the b * value.
  • a polyimide film and a display panel substrate using the polyimide composition can also be provided.
  • a numerical range represented using “ ⁇ ” means a range that includes the numerical values before and after " ⁇ " as lower and upper limits, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the present inventors have found that by containing the compound represented by the formula (a1) as a tetracarboxylic dianhydride, while suppressing the coloring of the resulting polyimide film (without increasing the b * value), It has been found that the CTE can be lowered.
  • the naphthalene ring has a rigid structure and tends to increase the orientation, the CTE of the film can be easily lowered.
  • the benzene ring easily absorbs light due to the formation of an intermolecular charge transfer complex accompanying the donor-acceptor with two adjacent acid dianhydride sites, and 1,4,5,8-naphthalenetetracarboxylic acid Dianhydrides and condensed rings in which three or more benzene rings are condensed (for example, 3,4,9,10-perylenetetracarboxylic dianhydride, etc.) have a structure similar to a dye compound, and the ⁇ electrons in the molecule Since the conjugated system is extended, it is easy to absorb light.
  • the naphthalene ring is less likely to form an intermolecular charge-transfer complex associated with the donor/acceptor that causes light absorption, and is less likely to cause coloration because the ⁇ -electron conjugation in the molecule does not spread much. .
  • the compound represented by formula (a1) can contribute to lowering the CTE while suppressing coloration, but the bending resistance of the film is likely to be impaired.
  • the present inventors have found that by further including at least one of the compound represented by formula (a2) and the compound represented by formula (a3), bending resistance can be ensured while maintaining a low CTE.
  • a compound represented by formula (a1), a tetracarboxylic dianhydride containing a compound represented by formula (a2) and/or a compound represented by formula (a3), and a specific diamine (TFMB ) can provide a polyimide film that can achieve both low CTE and high bending resistance while suppressing coloration (while having transparency).
  • TFMB specific diamine
  • polyamic Acid composition of the present disclosure contains a polyamic acid and may optionally further contain other optional ingredients such as a solvent.
  • Polyamic acid contains structural units derived from tetracarboxylic dianhydride and structural units derived from diamine.
  • the tetracarboxylic dianhydride includes a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3).
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms.
  • the number of carbon atoms in the alkyl group is preferably 1 or 2.
  • m and n are each an integer of 0 to 2, and m+n is 3 or less. From the viewpoint of easily lowering the CTE, it is preferable that the orientation (molecular linearity) is high, and m and n are preferably 0.
  • the compound represented by formula (a1) and the compound represented by formula (a2) can lower the CTE of the polyimide film.
  • the compound represented by formula (a2) can lower the CTE without coloring the resulting polyimide film (without increasing the b * value) than the compound represented by formula (a1). .
  • Examples of the compound represented by formula (a1) include 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) and those partially substituted with alkyl groups. 3,6,7-Naphthalenetetracarboxylic dianhydride (NTCDA) is preferred.
  • Examples of compounds represented by formula (a2) include pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic acid, PMDA).
  • R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms.
  • the number of carbon atoms in the alkyl group is preferably 1 or 2.
  • o and p are each an integer from 0 to 3, and o+p is 3 or less.
  • the compound represented by formula (a3) can increase the bending resistance of the polyimide film.
  • Examples of compounds represented by formula (b1) include compounds represented by formula (a3-1) and compounds represented by formula (a3-2).
  • Examples of compounds represented by formula (a3-1) include 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA).
  • Examples of compounds represented by formula (a3-2) include 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA).
  • the compound represented by formula (a3-1) is preferred, and 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) is more preferred, from the viewpoint of increasing bending resistance.
  • the compound represented by the formula (a3-2) is preferable, and 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) is more preferable. preferable.
  • the tetracarboxylic dianhydride preferably contains a compound represented by the formula (a1) and a compound represented by the formula (a3).
  • a compound represented by formula (a2) That is, the compound represented by formula (a2) can have intermediate properties between the compound represented by formula (a1) and the compound represented by formula (a3).
  • the content of the compound represented by formula (a1) is preferably 10 mol % or more relative to the total amount of the tetracarboxylic dianhydride.
  • the content of the compound represented by the formula (a1) is 10 mol % or more, it is possible to suppress the coloring of the polyimide film and lower the b * value while lowering the CTE.
  • the content of the compound represented by formula (a1) is more preferably 30 to 80 mol% with respect to the total amount of tetracarboxylic dianhydride, and 40 to 65 mol%. is more preferred.
  • the content of the compound represented by formula (a1) is preferably larger than that of the compound represented by formula (a2) from the viewpoint of further lowering the CTE while suppressing the coloration of the film.
  • the ratio of the content of the compound represented by formula (a1) to the total amount of the compound represented by formula (a1) and the compound represented by formula (a2) (a1/(a1+a2)) is preferably 0.5 to 1.0, more preferably 0.6 to 1.0.
  • the amount of the compound represented by formula (a3) is preferably 10 mol % or more relative to the total amount of the tetracarboxylic dianhydride. That is, the compound represented by formula (a3) has a slightly non-planar structure. Therefore, in addition to the compound represented by the formula (a1), when 10 mol% or more of the compound represented by the formula (a3) is further included, the resulting polyimide structure derived from the compound represented by the formula (a1) The intermolecular interaction between the unit and the structural unit derived from the compound represented by formula (a3) tends to moderately weaken. As a result, the coloring and b * value of the polyimide film can be further reduced, and the bending performance of the film can be further improved.
  • the compound represented by formula (a3) is preferably 10 to 70 mol%, more preferably 20 to 65 mol%, relative to the total amount of tetracarboxylic dianhydride. , 30 to 60 mol %.
  • the total amount (a1+a2) of the compound represented by formula (a1) and the compound represented by formula (a2) is preferably 30 to 80 mol% relative to the total amount of tetracarboxylic dianhydride.
  • the total amount is 30 mol % or more, the CTE of the film can be sufficiently lowered, and when it is 80 mol % or less, the bending resistance of the film is hardly impaired.
  • the above total amount is more preferably 30 to 70 mol %, more preferably 40 to 65 mol %, relative to the total amount of tetracarboxylic dianhydride.
  • the total amount (a2+a3) of the compound represented by the formula (a2) and the compound represented by the formula (a3) is preferably 10 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride. .
  • the total amount is 10 mol% or more, the bending resistance of the film tends to be increased, and when it is 80 mol% or less, an excessive increase in CTE can be suppressed.
  • the total amount is more preferably 10 to 70 mol%, more preferably 23 to 60 mol%, and 40 to 60 mol% with respect to the total amount of tetracarboxylic dianhydride. is particularly preferred.
  • the total amount (a1+a2) of the compound represented by the formula (a1) and the compound represented by the formula (a2), the compound represented by the formula (a2) and the compound represented by the formula (a3) ) is preferably 4 or less, preferably 2 or less, more preferably 1 or less, and particularly preferably 0.9 or less.
  • (a1 + a2) / (a2 + a3) is preferably 0.4 or more, preferably 0.6 or more, and more preferably 0.8 or more.
  • it is more preferably 1 or more.
  • (a1+a2)/(a2+a3) is preferably 0.4 to 4, more preferably 0.4 to 2, still more preferably 0.4 to 1, further preferably 0.6 to 1, and 0 0.6 to 0.9 are particularly preferred.
  • the tetracarboxylic dianhydride preferably further contains a compound represented by formula (a4).
  • R 5 and R 6 in formula (a4) each independently represent an optionally substituted alkyl group having 1 to 4 carbon atoms or a fluorine atom.
  • the number of carbon atoms in the alkyl group is preferably 1 or 2.
  • substituents that the alkyl group may have include a fluorine atom and the like.
  • q and r each represent an integer of 0 to 3; However, q+r is 3 or less.
  • the compound represented by formula (a4) can not only impart high transparency and heat resistance when formed into a film, but also reduce the birefringence ⁇ n of the film.
  • the compound represented by formula (a4) is preferably 9,9'-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF).
  • the content of the compound represented by the formula (a4) is the total amount of the tetracarboxylic anhydride having a fluorene skeleton and the diamine (the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) amount) is preferably set within the range described later.
  • the tetracarboxylic dianhydride may further contain other tetracarboxylic dianhydrides other than the above, as long as the effects of the present disclosure are not impaired.
  • examples of other tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides other than those mentioned above, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides.
  • the content of other tetracarboxylic dianhydrides can be 10 mol % or less with respect to the total amount of tetracarboxylic dianhydrides.
  • Diamines include compounds represented by formula (b1).
  • the compound represented by formula (b1) is 2,2'-bis(trifluoromethyl)benzidine (TFMB).
  • TFMB 2,2'-bis(trifluoromethyl)benzidine
  • the diamine preferably further contains a compound represented by the formula (b2), for example, from the viewpoint of increasing the heat resistance of the film or reducing the birefringence ⁇ n.
  • R 7 and R 8 in formula (b2) each independently represent an optionally substituted alkyl group having 1 to 4 carbon atoms or a fluorine atom.
  • the number of carbon atoms in the alkyl group is preferably 1 or 2.
  • substituents that the alkyl group may have include a fluorine atom and the like.
  • s and t each represents an integer of 0 to 3; However, s+t is 3 or less.
  • Examples of compounds represented by formula (b2) include 9,9-bis(4-aminophenyl)fluorene (BAFL), 9,9-bis(4-amino-3-methylphenyl)fluorene (FFDA), 9,9-bis(aminofluorophenyl)fluorene is included.
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • FFDA 9,9-bis(4-amino-3-methylphenyl)fluorene
  • 9,9-bis(aminofluorophenyl)fluorene is included.
  • the content of the compound represented by formula (b1) is preferably 80 mol % or more with respect to the total amount of diamine.
  • the content of the compound represented by the formula (b1) is 80 mol% or more, it is easy to suppress the coloration of the film (easy to lower the b * value).
  • the content of the compound represented by formula (b1) is preferably 90 mol % or more, and may be 100 mol %.
  • the content of the compound represented by the formula (b2) is such that the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) (the content of the component having a fluorene skeleton) is equal to the diamine and It is set to be 0 to 15 mol %, preferably 0.5 to 15 mol %, based on the total amount of tetracarboxylic dianhydride.
  • the total amount is 0.15 mol % or more, the birefringence ⁇ n tends to be lowered, and when it is 15 mol % or less, an increase in CTE is easily suppressed. From the same point of view, the above total amount is more preferably 2 to 8 mol %.
  • the diamine may further contain diamines other than the above as long as the effects of the present disclosure are not impaired.
  • diamines include bis(3-aminophenyl)sulfone (3,3-DAS), 4,4′-diaminodiphenylsulfone (4,4-DAS), 1,5-diaminonaphthalene (15DAN), 4,4′-diaminobenzanilide (DABA), m-diaminobenzene (MDA) and other aromatic diamines other than the above, 1,2-cyclohexanediamine (DACH) and 1,3-bis(aminomethyl)cyclohexane, Included are cycloaliphatic diamines such as 1,4-bis(aminomethyl)cyclohexane, and aliphatic diamines such as ethylenediamine and hexamethylenediamine.
  • the content of other diamines can be 10 mol % or less with respect to the total amount of diamines.
  • the intrinsic viscosity ( ⁇ ) of the polyamic acid is not particularly limited, it is preferably 0.3 to 2.0 dL/g, more preferably 0.6 to 1.6 dL/g.
  • the intrinsic viscosity ( ⁇ ) of the polyamic acid varnish is within the above range, it is easy to achieve both coatability and film formability.
  • the intrinsic viscosity ( ⁇ ) of polyamic acid can be adjusted by adjusting the amount ratio (molar ratio) of tetracarboxylic dianhydride and diamine when preparing polyamic acid. For example, when the acid dianhydride/diamine ratio is equimolar, the intrinsic viscosity ( ⁇ ) tends to increase.
  • the intrinsic viscosity ( ⁇ ) is a value measured at 25° C. with an Ubbelohde viscosity tube when the polyamic acid concentration in N-methyl-2-pyrrolidone (NMP) is 0.5 g/dL.
  • the polyamic acid composition of the present disclosure may, if necessary, further contain components other than the polyamic acid described above.
  • the polyamic acid composition may further contain a solvent.
  • the solvent may be a solvent used for preparing the polyamic acid composition described later, and is not particularly limited as long as it can dissolve the diamine component and the tetracarboxylic dianhydride component described above.
  • an aprotic polar solvent, an alcoholic solvent, or the like can be used.
  • aprotic polar solvents examples include N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), N,N- Amide solvents such as dimethylformamide (DMF), N,N-diethylformamide (DEF), hexamethylphosphoramide (HMPA); dimethylsulfoxide; and 2-methoxyethanol, 2-ethoxyethanol, 2-(methoxymethoxy) ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monoethyl ether, tetraethylene glycol, 1 - methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, di
  • alcoholic solvents include methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1 ,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 1,2,6-hexanetriol, Diacetone alcohol and the like are included.
  • solvents may contain only one type, or may be a combination of two or more types.
  • N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone (DMI) or a mixed solvent thereof is preferable.
  • the polyamic acid content is not particularly limited, but from the viewpoint of coatability, it is 5 to 30% by mass, preferably 10 to 25% by mass, based on the total amount of the polyamic acid composition.
  • the resin concentration of the polyamic acid composition may be the same as the solution concentration during preparation of the polyamic acid composition.
  • a film (polyimide film) obtained by imidating the polyamic acid composition of the present disclosure is inhibited from being colored and has good bending resistance.
  • the b * value in the L * a * b * color system of a polyimide film having a thickness of 10 ⁇ m obtained by thermally imidizing a polyamic acid composition at 350° C. is preferably 8.0 or less, more preferably 6.0 or less. , and more preferably 4.0 or less.
  • the b * value represents the yellowness of the film, and a smaller value indicates less yellowness. Therefore, the lower limit of the b * value is usually about 1.0, preferably 0.
  • a polyimide film having a b * value of 8.0 or less is less colored and has excellent transparency, and is suitable for optical films, ie, panel substrates for various display devices.
  • the b * value is obtained by thermally curing (imidizing) the polyamic acid composition at 350 ° C.
  • the b * value of a polyimide film having a thickness of 10 ⁇ m is measured by a colorimeter (for example, Suga Test Instruments Co., Ltd. tristimulus value direct reading type measurement It is the value when measured using a colorimeter (Colour Cute CC-i model) in transmission mode (when using the above equipment, transmission mode is set to 0°di).
  • the b * value can be adjusted by the monomer composition of the polyamic acid. For example, if the content ratio of the compound (TFMB) represented by the formula (b1) in the diamine is increased, or the content ratio of the compound (PMDA) represented by the formula (a2) in the acid anhydride is decreased, , b * values tend to be small.
  • a polyimide film having a thickness of 10 ⁇ m obtained by thermally imidizing a polyamic acid composition at 350° C. has a folding endurance in the MIT folding endurance test of, for example, preferably 10,000 times or more, and preferably 40,000 times or more. is more preferable, 100,000 times or more is more preferable, and 200,000 times or more is even more preferable.
  • the MIT folding endurance test can be performed by the following procedure.
  • a polyimide film (10 ⁇ m thick) is cut into a shape of 120 mm long ⁇ 15 mm wide to obtain a test piece.
  • One end of this test piece is set in an MIT folding endurance tester (307 type) manufactured by Yasuda Seiki Seisakusho, and the other end is held, with a curvature radius of 0.38 mm, a load of 0.5 kg, and a bending accuracy of 270 degrees (left and right 135 degrees). degree) and the bending speed is 175 times/min.
  • the measurement conditions can be as described in Examples below.
  • the thickness of the polyimide film is not restricted to 9 to 12 ⁇ m depending on the thickness of the film.
  • Bending resistance can be adjusted by the monomer composition of polyimide. For example, among the acid dianhydrides, the total amount (a2 + a3) of the compound represented by the formula (a2) and the compound represented by the formula (a3) is increased (or (a1 + a2) / (a2 + a3) is decreased) When the content of the compound represented by the formula (a3) is increased, the bending resistance tends to increase.
  • the polyamic acid composition can be obtained by reacting a tetracarboxylic dianhydride component and a diamine component in a solvent.
  • the types of solvent, tetracarboxylic dianhydride component, and diamine component to be used and their quantitative ratios are as described above.
  • the reaction for obtaining the polyamic acid composition is preferably carried out by heating the above tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature (a temperature at which imidization does not occur). .
  • a temperature at which imidization does not occur can be 5 to 120°C, more preferably 25 to 80°C.
  • the reaction is preferably carried out in an environment in which an imidization catalyst (for example, triethylamine, etc.) is substantially absent.
  • the content of the tetracarboxylic dianhydride and the diamine in the solution is not particularly limited, but from the viewpoint of promoting intermolecular cross-linking during imidization, it is preferably high, and the coating properties are not impaired. From the viewpoint of making The concentration of the solution can be 5 to 30% by mass, preferably 10 to 25% by mass, from the viewpoint of coatability.
  • the above reaction can be performed by a known method. For example, a container equipped with a stirrer and a nitrogen inlet tube is prepared, and the solvent is introduced into the container which is purged with nitrogen. Then, diamine is added so that the final polyamic acid concentration falls within the above range, and the temperature is adjusted and stirred. A predetermined amount of tetracarboxylic dianhydride is added to the solution. Then, the mixture is stirred for about 1 to 50 hours while adjusting the temperature.
  • the ratio (y/x) of the total molar amount x of the diamine and the total molar amount y of the tetracarboxylic dianhydride is, for example, 0.9 to 1.1, preferably 0.95 to 1.05.
  • the polyimide composition of the present disclosure includes a specific polyimide obtained by imidating the polyamic acid contained in the polyamic acid composition.
  • Polyimide The polyimide is obtained by imidizing the polyamic acid, and includes structural units derived from the tetracarboxylic dianhydride and structural units derived from the diamine. Polyimide compositions (eg, polyimide films) containing such polyimides have reduced coloration (low b * values), low CTE, and good bending resistance.
  • the polyimide composition may be in the form of powder, pellets, or film. Among them, a film is preferable from the viewpoint of ease of use as a display substrate.
  • the polyimide composition and the polyimide film containing the same have little coloration, low CTE, and good bending resistance.
  • the polyimide composition and the polyimide film containing it preferably satisfy one or more of the following physical properties.
  • the total light transmittance (Total Transmittance: TT) of the polyimide film depends on the thermal imidization conditions (especially the heating temperature), but is for example 80% or more, preferably 85% or more, more preferably 87% or more, and more preferably 89% or more.
  • the upper limit of the total light transmittance is preferably 100%, but usually about 92% or 90%.
  • a polyimide film having such a high total light transmittance is suitable for optical films, ie, panel substrates (transparent substrates) for various display devices.
  • the total light transmittance (TT) indicates the average transmittance in the entire wavelength range (300 to 830 nm) of D65, which is a standard light source. From the viewpoint of further improving visibility, the transmittance at a wavelength of 450 nm (T@450 nm) is preferably 60% or more, more preferably 75% or more.
  • the total light transmittance of the polyimide film is measured with light source D65 according to JIS-K7361-1.
  • the light transmittance at a wavelength of 450 nm can be obtained by measuring the UV-visible spectrum in the wavelength range of 300 to 800 nm and calculating the transmittance of light at a wavelength of 450 nm as T@450 nm.
  • the total light transmittance of the polyimide film and the transmittance at a wavelength of 450 nm can be adjusted by the monomer composition of the polyimide.
  • the content ratio of the compound represented by the formula (b1) (TFMB) in the diamine or the content ratio of the compound represented by the formula (a4) in the acid anhydride (for example, BPAF) is high, the total light transmission efficiency and transmittance at a wavelength of 450 nm tend to be high.
  • the b * value in the L * a * b * color system of a polyimide film is preferably 16.0 or less, more preferably 8.0 or less, still more preferably 6.0 or less, especially Preferably it is 4.0 or less.
  • the lower limit of the b * value is usually about 1.0, preferably 0.
  • a polyimide film having a b * value of 16.0 or less, preferably 8.0 or less is less colored and has excellent transparency, and is suitable for optical films, ie, panel substrates for various display devices.
  • the method for measuring and adjusting the b * value is as described above.
  • the thickness of the polyimide film is not restricted to 9 to 12 ⁇ m depending on the thickness of the film.
  • the thickness direction birefringence ⁇ n of the polyimide film at a wavelength of 633 nm is not particularly limited, but is preferably 0.19 or less, more preferably 0.1 or less.
  • the birefringence ⁇ n is within the above range, when the polyimide film is used as a display substrate, the image displayed on the display device is less likely to be distorted, and the display characteristics can be improved.
  • the birefringence ⁇ n in the thickness direction can be measured by the following method. Using a Metricon prism coupler (model 2010), a laser beam with a wavelength of 633 nm is incident on the sample through a coupling prism, and the refractive index (nTE) in TE polarized light and the refractive index (nTM) in TM polarized light are measured, Subtract nTM from nTE to calculate birefringence.
  • nTE refractive index
  • nTM refractive index
  • the birefringence ⁇ n in the thickness direction can be adjusted by the monomer composition of polyimide. For example, if the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) with respect to the total of the tetracarboxylic dianhydride and the diamine constituting the polyimide (a component containing a fluorene skeleton) is large, The birefringence ⁇ n of the polyimide film tends to be low. This is probably because the many aromatic rings of the compound containing a fluorene skeleton show different orientations and tend to act in a direction that cancels out the optical anisotropy.
  • the glass transition temperature (Tg) of the polyimide film is preferably 370°C or higher, more preferably 400°C or higher.
  • the film can be applied to substrates for TFT arrays and the like.
  • the Tg of the polyimide film is preferably 350° C. or higher when used for manufacturing a TFT array using IGZO (an oxide semiconductor composed of indium, gallium, zinc, and oxygen), and 390° C. It is more preferably 400° C. or higher when used for manufacturing a TFT array using low-temperature polysilicon.
  • the display device can be used even under the working environment during fabrication of each TFT array, and a highly reliable display device can be easily obtained.
  • the upper limit of the Tg of the polyimide film is not particularly limited, it can be, for example, about 500° C. from the viewpoint of moldability.
  • a sample with a width of 5 mm and a length of 20 mm was measured in a nitrogen atmosphere at a temperature of 25 to 450 ° C., a heating rate of 3 ° C./min, a frequency of 1 Hz,
  • the dynamic viscoelasticity is measured under the measurement condition of an initial load of 5.0 kg/cm 2 per cross-sectional area, and the loss tangent (value obtained by dividing the loss elastic modulus by the storage elastic modulus, tan ⁇ ) is obtained.
  • the temperature at which tan ⁇ shows the maximum value above the firing temperature is defined as the glass transition temperature.
  • the coefficient of linear thermal expansion (CTE) of the polyimide film depends on the thermal imidization conditions (especially the heating temperature), but is preferably -10 to 50 ppm/K, more preferably -10 to 30 ppm/K. It is preferably -5 to 20 ppm/K, and particularly preferably 0 to 10 ppm/K.
  • the coefficient of linear thermal expansion is within the above range, the polyimide film is less likely to deform even at high temperatures when used as a panel substrate for various display devices, and warping due to the high temperature environment in the process of forming electric elements on the substrate. It is easy to suppress misalignment and breakage of electric elements due to thermal deformation such as, and it is easy to stack various elements.
  • CTE coefficient of linear thermal expansion
  • the coefficient of linear thermal expansion (CTE) can be adjusted by the monomer composition of polyimide (or its precursor polyamic acid). For example, among the acid dianhydrides, the total amount (a1 + a2) (or (a1 + a2) / (a2 + a3)) of the compound represented by the formula (a1) and the compound represented by the formula (a2) is increased, or the formula When the content of the compound represented by (a1) is increased, the CTE tends to be lowered.
  • the tensile strength of the polyimide film is preferably 160 MPa or more, for example.
  • the tensile elongation is preferably 4-15%, for example.
  • Tensile strength and tensile elongation can be measured by the following procedures.
  • a dumbbell-shaped punched test piece is prepared from the polyimide film and measured with a tensile tester (EZ-S, manufactured by Shimadzu Corporation) under the conditions of a marked line width of 5 mm, a sample length of 30 mm, and a tensile speed of 30 mm/min. From the obtained stress-strain curve, the strength and elongation at the breaking point are defined as tensile strength and tensile elongation, respectively, and the average values of five measurements are determined as tensile strength TS and tensile elongation EL.
  • the number of folding endurance of the polyimide film in the MIT folding endurance test is, for example, preferably 10,000 times or more, more preferably 40,000 times or more, further preferably 100,000 times or more, and 200,000 times. It is more preferable that it is above.
  • a film having a folding endurance number in the above range in the MIT folding endurance test has high flexibility and is therefore suitable as a flexible display substrate.
  • the method of the MIT folding endurance test and the method of adjusting the bending endurance are as described above.
  • the thickness of the polyimide film is not particularly limited, and is appropriately selected according to the use of the film.
  • the thickness of the polyimide film is, for example, 1-100 ⁇ m, preferably 5-50 ⁇ m, more preferably 5-20 ⁇ m.
  • the polyimide film of the present disclosure has high transparency, low CTE, and high bending resistance. Therefore, it is suitable for substrates for electronic devices.
  • substrates for electronic devices include transparent substrates (display panel substrates) for display devices such as touch panels, liquid crystal displays, and organic EL displays; and substrates for mounting sensors for fingerprint authentication and face authentication.
  • transparent substrates display panel substrates
  • substrates for mounting sensors for fingerprint authentication and face authentication For example, for substrate applications where sensors for fingerprint authentication and face authentication are mounted, it is required to have flexibility, high transparency that does not block the light that is the object of measurement, and little coloring. heat resistance (low CTE) is required.
  • the polyimide film of the present disclosure is also suitable for such uses.
  • the polyimide film of the present disclosure includes: 1) a step of applying the polyamic acid composition of the present disclosure to a substrate to form a coating film; ) is obtained through the step of
  • step 1) varnish application
  • the varnish containing the polyamic acid and solvent is applied to the surface of various substrates to form a coating film.
  • the base material to which the varnish is applied is not particularly limited as long as it has solvent resistance and heat resistance. Any substrate can be used as long as the obtained polyimide film can be easily peeled off, and a flexible substrate such as a glass plate, a metal film, or a heat-resistant polymer film is preferable.
  • Examples of flexible substrates made of metals include copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth. , indium, or alloys thereof.
  • the metal foil surface may be coated with a release agent.
  • Examples of flexible substrates made of heat-resistant polymer films include polyimide films, aramid films, polyetheretherketone films, and polyethersulfone films.
  • the flexible base material made of a heat-resistant polymer film may contain a releasing agent or an antistatic agent, or may be coated with a releasing agent or an antistatic agent.
  • the base material is preferably a polyimide film because it has good film releasability and high heat resistance and solvent resistance.
  • the shape of the substrate is appropriately selected according to the shape of the polyimide film to be produced, and may be in the form of a single leaf sheet or in the form of an elongated sheet.
  • the thickness of the substrate is preferably 5-150 ⁇ m, more preferably 10-70 ⁇ m. When the thickness of the substrate is 5 ⁇ m or more, the substrate is less likely to wrinkle or split during application of the varnish.
  • the method of applying the varnish to the substrate is not particularly limited as long as it can be applied with a uniform thickness.
  • coating methods include methods using a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, a spray coater, a lip coater and the like.
  • step 2) (imidation of polyamic acid)
  • the coating film of the polyamic acid composition is heated to imidize (ring-close) the polyamic acid.
  • the coating film of the varnish is heated while increasing the temperature from 150°C or lower to over 200°C, thereby imidizing the polyamic acid while removing the solvent in the coating film. After the temperature is raised to a predetermined temperature, the material is heated at that temperature for a predetermined time.
  • the temperature at which polyamic acid imidates is 150-200°C. Therefore, when the temperature of the coating film is rapidly raised to 200° C. or higher, the polyamic acid on the coating film surface is imidized before the solvent volatilizes from the coating film. As a result, the solvent remaining in the coating film causes air bubbles or irregularities on the surface of the coating film. Therefore, it is preferable to gradually raise the temperature of the coating film in the temperature range of 150 to 200°C.
  • the temperature increase rate in the temperature range of 150 to 200° C. is preferably 0.25 to 50° C./min, more preferably 1 to 40° C./min, and 2 to 30° C./min. It is more preferable that
  • the temperature may be raised continuously or stepwise (sequentially), but it is preferable to raise the temperature continuously from the viewpoint of suppressing appearance defects of the resulting polyimide film.
  • the rate of temperature increase may be constant over the entire temperature range described above, or may be changed in the middle.
  • An example of a method of heating a single-leaf coating film while raising the temperature is to raise the temperature inside the oven.
  • the heating rate is adjusted by setting the oven.
  • a plurality of heating furnaces for heating the coating film are arranged along the conveying (moving) direction of the substrate; Vary for each heating furnace.
  • the temperature of each heating furnace may be increased along the moving direction of the substrate.
  • the heating rate is adjusted by the conveying speed of the substrate.
  • the heating temperature is not particularly limited, it is preferably a temperature at which the amount of solvent in the film is 0.5% by mass or less.
  • the solvent can be easily removed by making the temperature higher than the Tg of polyimide.
  • the heating temperature is preferably 250° C. or higher, more preferably 300° C. or higher, still more preferably 340° C. or higher, and may be 400° C. or higher.
  • the heating time can usually be about 0.5 to 2 hours.
  • TFTs for display substrates if the TFT device type is the low temperature polysilicon (LTPS) type, a higher process temperature (e.g., 400°C or higher) is required compared to conventional amorphous silicon or IGZO types. There is Even after such a high-temperature thermal history, damage to the device can be reduced.
  • LTPS low temperature polysilicon
  • Polyimide is easily oxidized when heated at a temperature exceeding 200°C.
  • the obtained polyimide film turns yellow and the total light transmittance of the polyimide film decreases. Therefore, in the temperature range exceeding 200° C., it is preferable to (i) use an inert gas atmosphere as the heating atmosphere, or (ii) reduce the pressure of the heating atmosphere.
  • the heating atmosphere is an inert gas atmosphere
  • the oxidation reaction of polyimide is suppressed.
  • the type of inert gas is not particularly limited, and may be argon gas, nitrogen gas, or carbon dioxide gas.
  • the oxygen concentration in the temperature range exceeding 200 ° C. is preferably 1% by volume or less, more preferably 0.1% by volume (1000 ppm) or less, and 0.01% by volume (100 ppm) or less. is more preferred.
  • the oxygen concentration in the atmosphere is measured by a commercially available oxygen concentration meter (for example, a zirconia oxygen concentration meter).
  • the oxidation reaction of polyimide is also suppressed by reducing the pressure of the heating atmosphere.
  • the pressure in the atmosphere is preferably 15 kPa or less, more preferably 5 kPa or less, and even more preferably 1 kPa or less.
  • the heating atmosphere is decompressed, the coating film is heated in a decompression oven or the like.
  • a polyimide film is obtained by peeling off the base material.
  • Tetracarboxylic dianhydrides and diamines used in Examples and Comparative Examples are as follows.
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BPAF fluorenylidene bisphthalic anhydride
  • s-BPDA 3,3',4,4'-biphenyltetra Carboxylic acid dianhydride
  • test 1 2-1 Preparation of varnish (Preparation of polyamic acid varnishes 1 to 15)
  • a flask equipped with a thermometer, a condenser, a nitrogen inlet tube and a stirrer was charged with the diamine and N-methyl-2-pyrrolidinone (NMP) from Table 1 (the weight of NMP was previously added so that the total concentration of all monomers was 20% by mass). calculated) was added and stirred under a nitrogen atmosphere to form a uniform solution.
  • NMP N-methyl-2-pyrrolidinone
  • a predetermined amount of the corresponding tetracarboxylic acid dianhydride in Table 1 was added to the solution as powder, stirred at room temperature for 30 minutes, and then the solution temperature was raised to 85 to 90 ° C. for 1 hour. After stirring for a period of time, a uniform solution was obtained. Thereafter, the mixture was cooled to room temperature, and stirring was continued overnight at room temperature to obtain a pale yellow viscous polyamic acid varnish (polyamic
  • the intrinsic viscosity ⁇ of the obtained varnish was measured with an Ubbelohde viscosity tube at a polymer concentration of 0.5 g/dL, NMP, and 25°C.
  • Table 1 shows the preparation conditions and physical properties of the polyamic acid varnish.
  • thermal properties linear thermal expansion coefficient (CTE) and tan ⁇
  • optical properties total light transmittance, b * value, birefringence ⁇ n
  • mechanical properties Teensile strength, elongation and MIT folding endurance
  • Thermophysical properties (tan ⁇ of DMA (dynamic viscoelasticity measurement)) Using RSA-III manufactured by TA Instruments, a sample with a width of 5 mm and a length of 20 mm was measured in a nitrogen atmosphere at a temperature of 25 to 450 ° C., a temperature increase rate of 3 ° C./min, a frequency of 1 Hz, and an initial load per cross-sectional area.
  • the dynamic viscoelasticity was measured under the measurement condition of 0 kg/cm 2 to obtain the loss tangent (value obtained by dividing the loss elastic modulus by the storage elastic modulus, tan ⁇ ).
  • CTE Coefficient of linear thermal expansion
  • total light transmittance The total light transmittance (TT) of the obtained polyimide film was measured with a light source D65 according to JIS-K7361 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries.
  • MIT folding endurance (bending endurance)
  • the polyimide film prepared above was cut into a shape of length 120 mm ⁇ width 15 mm to obtain a test piece.
  • One end of this test piece is set in an MIT folding endurance tester (307 type) manufactured by Yasuda Seiki Seisakusho, and the other end is held, with a curvature radius of 0.38 mm, a load of 0.5 kg, and a bending angle of 270 degrees (left and right 135 degree), and the bending rate was 175 times/minute, and the number of times until breakage was measured.
  • the measurement conditions were as follows.
  • Table 2 shows the evaluation results of polyimide films 1 to 15.
  • polyimide films obtained from polyamic acid varnishes 1 and 15, in which the tetracarboxylic dianhydride contains NTCDA (a1) but does not contain both PMDA (a2) and BPDA (a3) have poor flexibility.
  • NTCDA NTCDA
  • BPDA BPDA
  • the polyimide film obtained from the polyamic acid varnish 13 in which the tetracarboxylic dianhydride is composed only of PMDA (a2) has poor flexibility.
  • the polyimide film obtained from the polyamic acid varnish 4 in which the tetracarboxylic dianhydride does not contain BPDA (a3) has poor flexibility.
  • test 2 3-1 Preparation of polyimide film Using the polyamic acid varnish shown in Table 3, a glass substrate (non-alkali glass, OA11 made by NEG, thickness 0.5 mm) was spin-coated and placed in an inert oven (manufactured by Koyo Thermo Systems, model INH21CD). ) is used to adjust the oxygen concentration in the chamber to 20 ppm or less, and the glass substrate and the polyimide resin having a thickness shown in Table 3 or 4 are baked under the following conditions A) or B). A laminate of membranes (polyimide films) was produced.
  • Condition A The temperature was raised from 50°C to 430°C at a temperature elevation rate of 2°C/min, and the temperature was maintained at 430°C for 30 minutes.
  • Condition B The temperature was raised from 50°C to 450°C at a temperature elevation rate of 2°C/min. Hold at 450°C for 30 minutes
  • Table 3 shows the evaluation results of the polyimide film produced under condition A
  • Table 4 shows the evaluation result of the polyimide film produced under condition B).
  • "-" indicates unmeasured.
  • TFMB as a diamine
  • NTCDA (a1) and BPDA (a3) as tetracarboxylic dianhydrides
  • the total amount of NTCDA and PMDA (a1 + a2) is within a predetermined range
  • the polyimide films obtained from polyamic acid varnishes 5, 6, 8, 15 had lower b * values than the polyimide films obtained from polyamic acid varnish 1 (comparative example), and polyamic acid varnish 15 (comparative It can be seen that the CTE is lower than that of the polyimide film obtained from Example).
  • the polyimide film obtained from polyamic acid varnish 6 had an MIT folding endurance of more than 1,000,000 times, showing excellent flexibility.
  • test 3 Some of the laminates obtained under the condition A) were evaluated for the LLO peel test and the properties after the LLO peel test.
  • the polyamic acid compositions of the present disclosure can impart polyimide films with both sufficiently low thermal expansion and bending resistance without increasing the b * value. Such films are applicable to substrates for various electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

A polyamic acid composition according to the present disclosure contains a polyamic acid. A tetracarboxylic acid dianhydride constituting the polyamic acid contains a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3), and a diamine constituting the polyamic acid contains a compound represented by formula (b1). The content of the compound represented by formula (a1) is 10 mol% or more relative to the total amount of acid dianhydrides, and the combined amount of the compounds represented by formulas (a1) and (a2) is 30-80 mol% relative to the total amount of the acid dianhydrides. [Compound 1] [Compound 2] [Compound 3] [Compound 4]

Description

ポリアミド酸組成物およびポリイミド組成物、ポリイミドフィルム、ならびにディスプレイパネル基板Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate
 本開示は、ポリアミド酸組成物およびポリイミド組成物、ポリイミドフィルム、ならびにディスプレイパネル基板に関する。 The present disclosure relates to polyamic acid compositions and polyimide compositions, polyimide films, and display panel substrates.
 従来、液晶表示素子や、有機EL表示素子等のディスプレイでは、透明材料である無機ガラスがパネル基板等に使用されている。ただし、無機ガラスは、比重(重さ)が高く、さらに屈曲性や耐衝撃性が低い。そこで、軽量性、耐衝撃性、加工性、およびフレキシブル性に優れるポリイミドフィルムを、ディスプレイ装置のパネル基板に適用することが検討されている。 Conventionally, in displays such as liquid crystal display elements and organic EL display elements, inorganic glass, which is a transparent material, is used for panel substrates and the like. However, inorganic glass has a high specific gravity (weight) and low flexibility and impact resistance. Therefore, application of a polyimide film, which is excellent in lightness, impact resistance, workability and flexibility, to a panel substrate of a display device has been studied.
 ここで、ディスプレイ装置のパネル基板には、高い透明性が求められる。また、パネル基板上に薄膜トランジスタや透明電極などの素子を形成する工程において、パネル基板に熱がかかることがある。そのため、パネル基板には、高い耐熱性も求められる。 Here, the panel substrate of the display device is required to have high transparency. In addition, the panel substrate may be heated in the process of forming elements such as thin film transistors and transparent electrodes on the panel substrate. Therefore, the panel substrate is also required to have high heat resistance.
 そのようなパネル基板として用いられるポリイミドフィルムとして、例えばジアミンが、2,2-ビス(トリフルオロメチル)ベンジジン(TFMB)を含み、テトラカルボン酸二無水物が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)および9,9’-ビス(3,4’-ジカルボキシフェニル)フルオレン酸二無水物(BPAF)を含むポリアミド酸から得られるポリイミドフィルムが提案されている(例えば特許文献1)。また、ジアミンが、2,2-ビストリフルオロメチルベンジジン(TFMB)を含み、テトラカルボン酸二無水物が、ピロメリット酸二無水物(PMDA)を含むポリアミド酸から得られるポリイミドフィルムなども提案されている(例えば特許文献2)。 As a polyimide film used as such a panel substrate, for example, the diamine contains 2,2-bis(trifluoromethyl)benzidine (TFMB), and the tetracarboxylic dianhydride contains 3,3',4,4' Polyimide films derived from polyamic acids including -biphenyltetracarboxylic dianhydride (BPDA) and 9,9′-bis(3,4′-dicarboxyphenyl)fluoric dianhydride (BPAF) have been proposed. (For example, Patent Document 1). A polyimide film obtained from a polyamic acid in which the diamine contains 2,2-bistrifluoromethylbenzidine (TFMB) and the tetracarboxylic dianhydride contains pyromellitic dianhydride (PMDA) has also been proposed. (For example, Patent Document 2).
 また、低CTEポリイミドとしては、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)と2,2-ビス(トリフルオロメチル)ベンジジン(TFMB)から誘導されたポリイミドなども知られている(例えば非特許文献1)。 Also known as low-CTE polyimides are polyimides derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) and 2,2-bis(trifluoromethyl)benzidine (TFMB). (For example, Non-Patent Document 1).
国際公開第2019/188265号WO2019/188265 特開2019-178269号公報JP 2019-178269 A
 近年、パネル基板に素子を形成する工程において、パネル基板に熱がかかったときの、(素子の)無機材料とポリイミドフィルムとの熱膨張係数の違いに起因する基板の反りや素子の破壊を抑制するために、低熱膨張性がこれまで以上に求められている。 In recent years, in the process of forming elements on a panel substrate, when the panel substrate is heated, it suppresses the warping of the substrate and the destruction of the elements due to the difference in thermal expansion coefficient between the inorganic material (of the element) and the polyimide film. Therefore, low thermal expansion is required more than ever.
 しかしながら、特許文献1のポリイミドフィルムは、十分な低熱膨張性を有するものではなかった。特許文献2のポリイミドフィルムは、低熱膨張性を有するものの、ピロメリット酸二無水物(PMDA)は着色を生じやすく、b値が増大しやすいという問題があった。また、フレキシブル基板としての用途に対応すべく、フレキシブル性(曲げ耐性)にも優れることが求められている。非特許文献1のポリイミドフィルムは低熱膨張性を示すものの、曲げ耐性が低く、熱イミド温度によってはb値が増大することもあった。 However, the polyimide film of Patent Document 1 did not have sufficiently low thermal expansion. Although the polyimide film of Patent Document 2 has low thermal expansion, pyromellitic dianhydride (PMDA) tends to cause coloration and tends to increase the b * value. In addition, excellent flexibility (bending resistance) is also required in order to meet the application as a flexible substrate. Although the polyimide film of Non-Patent Document 1 exhibits low thermal expansion, it has low bending resistance, and the b * value sometimes increases depending on the thermal imide temperature.
 本開示は、このような事情に鑑みてなされたものであり、b値を増大させることなく、十分な低熱膨張性と曲げ耐性とを両有するポリイミドフィルムを付与可能なポリアミド酸組成物、ならびにポリイミド組成物を提供することを目的とする。また、当該ポリイミド組成物を用いたポリイミドフィルムおよびディスプレイパネル基板を提供することも目的とする。 The present disclosure has been made in view of such circumstances, a polyamic acid composition capable of imparting a polyimide film having both sufficiently low thermal expansion and bending resistance without increasing the b * value, and An object of the present invention is to provide a polyimide composition. Another object of the present invention is to provide a polyimide film and a display panel substrate using the polyimide composition.
 [1]本開示のポリアミド酸組成物は、ポリアミド酸を含み、前記ポリアミド酸は、テトラカルボン酸二無水物に由来する構造単位と、ジアミンに由来する構造単位とを含み、前記テトラカルボン酸二無水物は、式(a1)で表される化合物と、式(a2)で表される化合物および/または式(a3)で表される化合物とを含み、
Figure JPOXMLDOC01-appb-C000011
(式(a1)において、
 RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 mおよびnは、それぞれ0~2の整数であり、かつm+nは3以下である)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式(a3)において、
 RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 oおよびpは、それぞれ0~3の整数であり、かつo+pは3以下である)
 前記ジアミンは、式(b1)で表される化合物を含み、
Figure JPOXMLDOC01-appb-C000014
 前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10モル%以上であり、前記式(a1)で表される化合物および式(a2)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である。
 [2] 前記テトラカルボン酸二無水物は、前記式(a3)で表される化合物を含む、[1]に記載のポリアミド酸組成物。
 [3] 前記式(a3)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、[1]または[2]に記載のポリアミド酸組成物。
 [4] 前記式(a1)で表される化合物の含有量は、前記式(a2)で表される化合物の含有量よりも多い、[1]~[3]のいずれかに記載のポリアミド酸組成物。
 [5] 前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である、[1]~[4]のいずれかに記載のポリアミド酸組成物。
 [6] 前記式(a2)で表される化合物および前記式(a3)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、[1]~[5]のいずれかに記載のポリアミド酸組成物。
 [7] 前記テトラカルボン酸二無水物は、式(a4)で表される化合物をさらに含むか、または
Figure JPOXMLDOC01-appb-C000015
 前記ジアミンは、式(b2)で表される化合物をさらに含む、
Figure JPOXMLDOC01-appb-C000016
(式(a4)および(b2)において、
 R、R、RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 q、r、sおよびtは、それぞれ0~3の整数であり、かつq+rおよびs+tは、それぞれ3以下である)
 [1]~[6]のいずれかに記載のポリアミド酸組成物。
 [8] 前記式(a4)で表される化合物および前記式(b2)で表される化合物の合計量は、ジアミンとテトラカルボン酸二無水物の合計に対して0.5~15モル%である、[7]に記載のポリアミド酸組成物。
 [9] 前記式(b1)で表される化合物の含有量は、前記ジアミンの全量に対して80モル%以上である、[1]~[8]のいずれかに記載のポリアミド酸組成物。
 [10] 前記ポリアミド酸組成物を350℃で熱イミド化して、厚み10μmのポリイミドフィルムにしたときのL表色系におけるb値は8.0以下である、[1]~[9]のいずれかに記載のポリアミド酸組成物。
 [11] 前記ポリアミド酸組成物を350℃で熱イミド化して、厚み10μmのポリイミドフィルムにしたときのJIS P8115に準拠して測定されるMIT耐折性試験の耐折回数は、1万回以上である、[1]~[9]のいずれかに記載のポリアミド酸組成物。
[1] The polyamic acid composition of the present disclosure contains a polyamic acid, the polyamic acid contains a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine, and the tetracarboxylic acid di The anhydride includes a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3),
Figure JPOXMLDOC01-appb-C000011
(In formula (a1),
R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms,
m and n are each an integer of 0 to 2, and m+n is 3 or less)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(In formula (a3),
R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms,
o and p are each an integer of 0 to 3, and o+p is 3 or less)
The diamine contains a compound represented by formula (b1),
Figure JPOXMLDOC01-appb-C000014
The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the total amount of the tetracarboxylic dianhydride, and the compound represented by the formula (a1) and the formula (a2) The total amount of the represented compounds is 30-80 mol % relative to the total amount of said tetracarboxylic dianhydride.
[2] The polyamic acid composition according to [1], wherein the tetracarboxylic dianhydride contains the compound represented by the formula (a3).
[3] The polyamic acid according to [1] or [2], wherein the content of the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride. Composition.
[4] The polyamic acid according to any one of [1] to [3], wherein the content of the compound represented by the formula (a1) is higher than the content of the compound represented by the formula (a2). Composition.
[5] The content of the compound represented by the formula (a1) is 30 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride, according to any one of [1] to [4] polyamic acid composition.
[6] The total amount of the compound represented by the formula (a2) and the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride, [ 1] The polyamic acid composition according to any one of [5].
[7] The tetracarboxylic dianhydride further includes a compound represented by formula (a4), or
Figure JPOXMLDOC01-appb-C000015
The diamine further comprises a compound represented by formula (b2),
Figure JPOXMLDOC01-appb-C000016
(In formulas (a4) and (b2),
R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 to 4 carbon atoms,
q, r, s and t are each an integer from 0 to 3, and q+r and s+t are each 3 or less)
The polyamic acid composition according to any one of [1] to [6].
[8] The total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) is 0.5 to 15 mol% with respect to the total of the diamine and the tetracarboxylic dianhydride. The polyamic acid composition according to [7].
[9] The polyamic acid composition according to any one of [1] to [8], wherein the content of the compound represented by formula (b1) is 80 mol% or more relative to the total amount of the diamine.
[10] When the polyamic acid composition is thermally imidized at 350° C. to form a polyimide film having a thickness of 10 μm, the b * value in the L * a * b * color system is 8.0 or less. The polyamic acid composition according to any one of to [9].
[11] The polyamic acid composition is thermally imidized at 350° C. to form a polyimide film having a thickness of 10 μm. The polyamic acid composition according to any one of [1] to [9].
 [12] 本開示のポリイミド組成物は、ポリイミドを含み、前記ポリイミドは、テトラカルボン酸二無水物に由来する構造単位と、ジアミンに由来する構造単位とを含み、前記テトラカルボン酸二無水物は、式(a1)で表される化合物と、式(a2)で表される化合物および/または式(a3)で表される化合物とを含み、
Figure JPOXMLDOC01-appb-C000017
(式(a1)において、
 RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 mおよびnは、それぞれ0~2の整数であり、かつm+nは3以下である)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式(a3)において、
 RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 oおよびpは、それぞれ0~3の整数であり、かつo+pは3以下である)
 前記ジアミンは、式(b1)で表される化合物を含み、
Figure JPOXMLDOC01-appb-C000020
 前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10モル%以上であり、前記式(a1)で表される化合物および式(a2)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である。
[12] The polyimide composition of the present disclosure includes a polyimide, the polyimide includes a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine, and the tetracarboxylic dianhydride is , a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3),
Figure JPOXMLDOC01-appb-C000017
(In formula (a1),
R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms,
m and n are each an integer of 0 to 2, and m+n is 3 or less)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(In formula (a3),
R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms,
o and p are each an integer of 0 to 3, and o+p is 3 or less)
The diamine contains a compound represented by formula (b1),
Figure JPOXMLDOC01-appb-C000020
The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the total amount of the tetracarboxylic dianhydride, and the compound represented by the formula (a1) and the formula (a2) The total amount of the represented compounds is 30-80 mol % relative to the total amount of said tetracarboxylic dianhydride.
 [13] 前記テトラカルボン酸二無水物は、前記式(a3)で表される化合物を含む、[12]に記載のポリイミド組成物。
 [14] 前記式(a3)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、[12]または[13]に記載のポリイミド組成物。
 [15] 前記式(a1)で表される化合物の含有量は、前記式(a2)で表される化合物の含有量よりも多い、[12]~[14]のいずれかに記載のポリイミド組成物。
 [16] 前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である、[12]~[15]のいずれかに記載のポリイミド組成物。
 [17] 前記式(a2)で表される化合物および前記式(a3)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、[12]~[16]のいずれかに記載のポリイミド組成物。
 [18] 前記テトラカルボン酸二無水物は、式(a4)で表される化合物をさらに含むか、または
Figure JPOXMLDOC01-appb-C000021
 前記ジアミンは、式(b2)で表される化合物をさらに含む、
Figure JPOXMLDOC01-appb-C000022
(式(a4)および(b2)において、
 R、R、RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
 q、r、sおよびtは、それぞれ0~3の整数であり、かつq+rおよびs+tは、それぞれ3以下である)
 [12]~[17]のいずれかに記載のポリイミド組成物。
 [19] 前記式(a4)で表される化合物および前記式(b2)で表される化合物の合計量は、ジアミンとテトラカルボン酸二無水物の合計に対して0.5~15モル%である、[18]に記載のポリイミド組成物。
 [20] 前記式(b1)で表される化合物の含有量は、前記ジアミンの全量に対して80モル%以上である、[12]~[19]のいずれかに記載のポリイミド組成物。
 [21] フィルムにしたときの100~350℃の線熱膨張係数は、-10~30ppm/Kである、[12]~[20]のいずれかに記載のポリイミド組成物。
 [22] フィルムにしたときの、波長633nmにおける厚み方向の複屈折△nは0.19以下である、[12]~[21]のいずれかに記載のポリイミド組成物。
 [23] [12]~[22]のいずれかに記載のポリイミド組成物を含む、
 ポリイミドフィルム。
 [24] JIS P8115に準拠して測定されるMIT耐折性試験の耐折回数は、1万回以上である、[23]に記載のポリイミドフィルム。
 [25] L表色系におけるb値は16以下である、[23]または[24]に記載のポリイミドフィルム。
 [26] [23]~[25]のいずれかに記載のポリイミドフィルムを含む、ディスプレイパネル基板。
[13] The polyimide composition according to [12], wherein the tetracarboxylic dianhydride contains the compound represented by the formula (a3).
[14] The polyimide composition according to [12] or [13], wherein the content of the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride. thing.
[15] The content of the compound represented by the formula (a1) is higher than the content of the compound represented by the formula (a2), [12] to [14] The polyimide composition according to any one of thing.
[16] The content of the compound represented by the formula (a1) is 30 to 80 mol% relative to the total amount of the tetracarboxylic dianhydride, according to any one of [12] to [15] polyimide composition.
[17] The total amount of the compound represented by the formula (a2) and the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride, [ 12] The polyimide composition according to any one of [16].
[18] The tetracarboxylic dianhydride further includes a compound represented by formula (a4), or
Figure JPOXMLDOC01-appb-C000021
The diamine further comprises a compound represented by formula (b2),
Figure JPOXMLDOC01-appb-C000022
(In formulas (a4) and (b2),
R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 to 4 carbon atoms,
q, r, s and t are each an integer from 0 to 3, and q+r and s+t are each 3 or less)
[12] The polyimide composition according to any one of [17].
[19] The total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) is 0.5 to 15 mol% with respect to the sum of the diamine and the tetracarboxylic dianhydride. The polyimide composition according to [18].
[20] The polyimide composition according to any one of [12] to [19], wherein the content of the compound represented by formula (b1) is 80 mol% or more relative to the total amount of the diamine.
[21] The polyimide composition according to any one of [12] to [20], which has a linear thermal expansion coefficient of −10 to 30 ppm/K at 100 to 350° C. when formed into a film.
[22] The polyimide composition according to any one of [12] to [21], which, when formed into a film, has a thickness-direction birefringence Δn of 0.19 or less at a wavelength of 633 nm.
[23] comprising the polyimide composition according to any one of [12] to [22],
polyimide film.
[24] The polyimide film according to [23], which has a folding endurance of 10,000 or more in an MIT folding endurance test measured according to JIS P8115.
[25] The polyimide film according to [23] or [24], which has a b * value of 16 or less in the L * a * b * color system.
[26] A display panel substrate comprising the polyimide film according to any one of [23] to [25].
 本開示によれば、b値を増大を抑制しつつ、十分な低熱膨張性と曲げ耐性とを両有するポリイミドフィルムを付与可能なポリアミド酸組成物、ならびにポリイミド組成物を提供することができる。また、当該ポリイミド組成物を用いたポリイミドフィルムおよびディスプレイパネル基板を提供することもできる。 According to the present disclosure, it is possible to provide a polyamic acid composition and a polyimide composition capable of imparting a polyimide film having both sufficiently low thermal expansion and bending resistance while suppressing an increase in the b * value. A polyimide film and a display panel substrate using the polyimide composition can also be provided.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値または下限値に置き換えてもよい。 In this specification, a numerical range represented using "~" means a range that includes the numerical values before and after "~" as lower and upper limits, respectively. In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
 本発明者らは、テトラカルボン酸二無水物として、式(a1)で表される化合物を含有させることで、得られるポリイミドフィルムの着色を抑制しつつ(b値を増大させることなく)、CTEを低くしうることを見出した。 The present inventors have found that by containing the compound represented by the formula (a1) as a tetracarboxylic dianhydride, while suppressing the coloring of the resulting polyimide film (without increasing the b * value), It has been found that the CTE can be lowered.
 このメカニズムは明らかではないものの、以下のように考えられる。ナフタレン環は強直な構造を有し、配向性を高めやすいことから、フィルムを低CTE化しやすい。また、ベンゼン環は、隣接し合う二つの酸二無水物部位とのドナー・アクセプターに伴う、分子間の電荷移動錯体の形成により光吸収しやすく、1,4,5,8-ナフタレンテトラカルボン酸二無水物や3つ以上のベンゼン環が縮合した縮合環(例えば3,4,9,10-ペリレンテトラカルボン酸二無水物など)は、色素化合物に近い構造を有し、分子内のπ電子共役系の拡張により光吸収しやすいため、いずれも着色を生じやすい。これに対し、ナフタレン環は、光吸収の原因となる上記ドナー・アクセプターに伴う、分子間の電荷移動錯体を形成しにくく、かつ、分子内のπ電子共役の拡がりも少ないため、着色を生じにくい。 Although this mechanism is not clear, it can be considered as follows. Since the naphthalene ring has a rigid structure and tends to increase the orientation, the CTE of the film can be easily lowered. In addition, the benzene ring easily absorbs light due to the formation of an intermolecular charge transfer complex accompanying the donor-acceptor with two adjacent acid dianhydride sites, and 1,4,5,8-naphthalenetetracarboxylic acid Dianhydrides and condensed rings in which three or more benzene rings are condensed (for example, 3,4,9,10-perylenetetracarboxylic dianhydride, etc.) have a structure similar to a dye compound, and the π electrons in the molecule Since the conjugated system is extended, it is easy to absorb light. On the other hand, the naphthalene ring is less likely to form an intermolecular charge-transfer complex associated with the donor/acceptor that causes light absorption, and is less likely to cause coloration because the π-electron conjugation in the molecule does not spread much. .
 このように、式(a1)で表される化合物は、着色を抑制しつつ、低CTE化に寄与しうるものの、フィルムの曲げ耐性は損なわれやすい。これに対し、式(a2)で表される化合物および式(a3)で表される化合物の少なくとも一方をさらに含有させることで、低いCTEを維持しつつ、曲げ耐性を確保できることを見出した。 As described above, the compound represented by formula (a1) can contribute to lowering the CTE while suppressing coloration, but the bending resistance of the film is likely to be impaired. In contrast, the present inventors have found that by further including at least one of the compound represented by formula (a2) and the compound represented by formula (a3), bending resistance can be ensured while maintaining a low CTE.
 すなわち、式(a1)で表される化合物と、式(a2)で表される化合物および/または式(a3)で表される化合物とを含むテトラカルボン酸二無水物と、特定のジアミン(TFMB)とを反応させて得られるポリアミド酸を含む組成物は、着色を抑制しつつ(透明性を有しつつ)、低いCTEと高い曲げ耐性とを両立しうるポリイミドフィルムを付与しうる。以下、本開示の構成について、詳細に説明する。 That is, a compound represented by formula (a1), a tetracarboxylic dianhydride containing a compound represented by formula (a2) and/or a compound represented by formula (a3), and a specific diamine (TFMB ) can provide a polyimide film that can achieve both low CTE and high bending resistance while suppressing coloration (while having transparency). The configuration of the present disclosure will be described in detail below.
 1.ポリアミド酸組成物
 本開示のポリアミド酸組成物は、ポリアミド酸を含み、必要に応じて溶媒などの他の任意成分をさらに含んでもよい。
1. Polyamic Acid Composition The polyamic acid composition of the present disclosure contains a polyamic acid and may optionally further contain other optional ingredients such as a solvent.
 1-1.ポリアミド酸
 ポリアミド酸は、テトラカルボン酸二無水物に由来する構造単位と、ジアミンに由来する構造単位を含む。
1-1. Polyamic acid Polyamic acid contains structural units derived from tetracarboxylic dianhydride and structural units derived from diamine.
 [テトラカルボン酸二無水物]
 テトラカルボン酸二無水物は、式(a1)で表される化合物と、式(a2)で表される化合物および/または式(a3)で表される化合物とを含む。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
[Tetracarboxylic dianhydride]
The tetracarboxylic dianhydride includes a compound represented by formula (a1) and a compound represented by formula (a2) and/or a compound represented by formula (a3).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式(a1)において、RおよびRは、それぞれ独立して炭素数1~4のアルキル基である。アルキル基の炭素数は、好ましくは1または2である。mおよびnは、それぞれ0~2の整数であり、m+nは、3以下である。CTEを低くしやすい観点では、配向性(分子の直線性)が高いことが好ましく、mおよびnは0であることが好ましい。 In formula (a1), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms. The number of carbon atoms in the alkyl group is preferably 1 or 2. m and n are each an integer of 0 to 2, and m+n is 3 or less. From the viewpoint of easily lowering the CTE, it is preferable that the orientation (molecular linearity) is high, and m and n are preferably 0.
 式(a1)で表される化合物および式(a2)で表される化合物は、ポリイミドフィルムのCTEを低くしうる。特に、式(a2)で表される化合物は、式(a1)で表される化合物よりも、得られるポリイミドフィルムを着色させることなく(b値を増大させることなく)、CTEを低くしうる。 The compound represented by formula (a1) and the compound represented by formula (a2) can lower the CTE of the polyimide film. In particular, the compound represented by formula (a2) can lower the CTE without coloring the resulting polyimide film (without increasing the b * value) than the compound represented by formula (a1). .
 式(a1)で表される化合物の例には、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)やその一部がアルキル基で置換されたものが含まれ、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)であることが好ましい。式(a2)で表される化合物の例には、ピロメリット酸二無水物(1,2,4,5-ベンゼンテトラカルボン酸、PMDA)が含まれる。 Examples of the compound represented by formula (a1) include 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) and those partially substituted with alkyl groups. 3,6,7-Naphthalenetetracarboxylic dianhydride (NTCDA) is preferred. Examples of compounds represented by formula (a2) include pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic acid, PMDA).
 式(a3)において、RおよびRは、それぞれ独立して炭素数1~4のアルキル基である。アルキル基の炭素数は、好ましくは1または2である。oおよびpは、それぞれ0~3の整数であり、o+pは、3以下である。 In formula (a3), R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms. The number of carbon atoms in the alkyl group is preferably 1 or 2. o and p are each an integer from 0 to 3, and o+p is 3 or less.
 式(a3)で表される化合物は、ポリイミドフィルムの曲げ耐性を高めうる。式(b1)で表される化合物の例には、式(a3-1)で表される化合物や式(a3-2)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000026
The compound represented by formula (a3) can increase the bending resistance of the polyimide film. Examples of compounds represented by formula (b1) include compounds represented by formula (a3-1) and compounds represented by formula (a3-2).
Figure JPOXMLDOC01-appb-C000026
 式(a3-1)で表される化合物の例には、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)が含まれる。式(a3-2)で表される化合物の例には、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)が含まれる。中でも、曲げ耐性を高める観点では、式(a3-1)で表される化合物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)がより好ましい。また、複屈折△nを低くする観点では、式(a3-2)で表される化合物が好ましく、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)がより好ましい。 Examples of compounds represented by formula (a3-1) include 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA). Examples of compounds represented by formula (a3-2) include 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA). Among them, the compound represented by formula (a3-1) is preferred, and 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) is more preferred, from the viewpoint of increasing bending resistance. In addition, from the viewpoint of lowering the birefringence Δn, the compound represented by the formula (a3-2) is preferable, and 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) is more preferable. preferable.
 中でも、フィルムの曲げ耐性を高めつつ、CTEをさらに低くする観点では、テトラカルボン酸二無水物は、式(a1)で表される化合物および式(a3)で表される化合物を含むことが好ましく、式(a2)で表される化合物をさらに含んでもよい。すなわち、式(a2)で表される化合物は、式(a1)で表される化合物と式(a3)で表される化合物の中間的な性質を有しうる。 Among them, from the viewpoint of further lowering the CTE while increasing the bending resistance of the film, the tetracarboxylic dianhydride preferably contains a compound represented by the formula (a1) and a compound represented by the formula (a3). , a compound represented by formula (a2). That is, the compound represented by formula (a2) can have intermediate properties between the compound represented by formula (a1) and the compound represented by formula (a3).
 式(a1)で表される化合物の含有量は、テトラカルボン酸二無水物の全量に対して10モル%以上であることが好ましい。式(a1)で表される化合物の含有量が10モル%以上であると、ポリイミドフィルムの着色を抑制し、b値を低くしつつ、CTEを低くすることができる。同様の観点から、式(a1)で表される化合物の含有量は、テトラカルボン酸二無水物の全量に対して30~80モル%であることがより好ましく、40~65モル%であることがさらに好ましい。 The content of the compound represented by formula (a1) is preferably 10 mol % or more relative to the total amount of the tetracarboxylic dianhydride. When the content of the compound represented by the formula (a1) is 10 mol % or more, it is possible to suppress the coloring of the polyimide film and lower the b * value while lowering the CTE. From the same point of view, the content of the compound represented by formula (a1) is more preferably 30 to 80 mol% with respect to the total amount of tetracarboxylic dianhydride, and 40 to 65 mol%. is more preferred.
 式(a1)で表される化合物の含有量は、フィルムの着色を抑制しつつ、CTEをさらに低くする観点では、式(a2)で表される化合物よりも多いことが好ましい。具体的には、式(a1)で表される化合物の含有量の、式(a1)で表される化合物および式(a2)で表される化合物の合計量に対する割合(a1/(a1+a2))は、0.5~1.0であることが好ましく、0.6~1.0であることがさらに好ましい。 The content of the compound represented by formula (a1) is preferably larger than that of the compound represented by formula (a2) from the viewpoint of further lowering the CTE while suppressing the coloration of the film. Specifically, the ratio of the content of the compound represented by formula (a1) to the total amount of the compound represented by formula (a1) and the compound represented by formula (a2) (a1/(a1+a2)) is preferably 0.5 to 1.0, more preferably 0.6 to 1.0.
 式(a3)で表される化合物は、テトラカルボン酸二無水物の全量に対して10モル%以上であることが好ましい。すなわち、式(a3)で表される化合物はわずかに非平面性の構造を有する。そのため、式(a1)で表される化合物に加えて、式(a3)で表される化合物を10モル%以上さらに含むと、得られるポリイミドの式(a1)で表される化合物に由来する構造単位と式(a3)で表される化合物に由来する構造単位との間での分子間の相互作用が適度に弱まりやすい。それにより、ポリイミドフィルムの着色、b値を一層低くしつつ、フィルムの曲げ性能を一層高めることができる。同様の観点から、式(a3)で表される化合物は、テトラカルボン酸二無水物の全量に対して、10~70モル%であることが好ましく、20~65モル%であることがより好ましく、30~60モル%であることがさらに好ましい。 The amount of the compound represented by formula (a3) is preferably 10 mol % or more relative to the total amount of the tetracarboxylic dianhydride. That is, the compound represented by formula (a3) has a slightly non-planar structure. Therefore, in addition to the compound represented by the formula (a1), when 10 mol% or more of the compound represented by the formula (a3) is further included, the resulting polyimide structure derived from the compound represented by the formula (a1) The intermolecular interaction between the unit and the structural unit derived from the compound represented by formula (a3) tends to moderately weaken. As a result, the coloring and b * value of the polyimide film can be further reduced, and the bending performance of the film can be further improved. From the same point of view, the compound represented by formula (a3) is preferably 10 to 70 mol%, more preferably 20 to 65 mol%, relative to the total amount of tetracarboxylic dianhydride. , 30 to 60 mol %.
 式(a1)で表される化合物および式(a2)で表される化合物の合計量(a1+a2)は、テトラカルボン酸二無水物の全量に対して30~80モル%であることが好ましい。上記合計量が30モル%以上であると、フィルムのCTEを十分に低くすることができ、80モル%以下であると、フィルムの曲げ耐性が損なわれにくい。同様の観点から、上記合計量は、テトラカルボン酸二無水物の全量に対して30~70モル%であることがより好ましく、40~65モル%であることがさらに好ましい。 The total amount (a1+a2) of the compound represented by formula (a1) and the compound represented by formula (a2) is preferably 30 to 80 mol% relative to the total amount of tetracarboxylic dianhydride. When the total amount is 30 mol % or more, the CTE of the film can be sufficiently lowered, and when it is 80 mol % or less, the bending resistance of the film is hardly impaired. From the same point of view, the above total amount is more preferably 30 to 70 mol %, more preferably 40 to 65 mol %, relative to the total amount of tetracarboxylic dianhydride.
 式(a2)で表される化合物および式(a3)で表される化合物の合計量(a2+a3)は、テトラカルボン酸二無水物の全量に対して10~80モル%であることが好ましいい。上記合計量が10モル%以上であると、フィルムの曲げ耐性を高めやすく、80モル%以下であると、CTEの過度の増大を抑制しうる。同様の観点から、上記合計量は、テトラカルボン酸二無水物の全量に対して10~70モル%であることがより好ましく、23~60モル%であることがさらに好ましく、40~60モル%であることが特に好ましい。 The total amount (a2+a3) of the compound represented by the formula (a2) and the compound represented by the formula (a3) is preferably 10 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride. . When the total amount is 10 mol% or more, the bending resistance of the film tends to be increased, and when it is 80 mol% or less, an excessive increase in CTE can be suppressed. From the same point of view, the total amount is more preferably 10 to 70 mol%, more preferably 23 to 60 mol%, and 40 to 60 mol% with respect to the total amount of tetracarboxylic dianhydride. is particularly preferred.
 フィルムの曲げ耐性をさらに高める観点では、式(a1)で表される化合物および式(a2)で表される化合物の合計量(a1+a2)と、式(a2)で表される化合物および式(a3)で表される化合物の合計量(a2+a3)の比(a1+a2)/(a2+a3)は、4以下であることが好ましく、2以下が好ましく、1以下がさらに好ましく、0.9以下が特に好ましい。得られるフィルムのCTEをさらに低くする観点では、(a1+a2)/(a2+a3)は、0.4以上であることが好ましく、0.6以上であることが好ましく、0.8以上であることがより好ましく、1以上であることがさらに好ましい。これらの観点から、(a1+a2)/(a2+a3)は、0.4~4が好ましく、0.4~2がより好ましく、0.4~1がさらに好ましく、0.6~1がさらに好ましく、0.6~0.9が特に好ましい。 From the viewpoint of further increasing the bending resistance of the film, the total amount (a1+a2) of the compound represented by the formula (a1) and the compound represented by the formula (a2), the compound represented by the formula (a2) and the compound represented by the formula (a3) ) is preferably 4 or less, preferably 2 or less, more preferably 1 or less, and particularly preferably 0.9 or less. From the viewpoint of further lowering the CTE of the resulting film, (a1 + a2) / (a2 + a3) is preferably 0.4 or more, preferably 0.6 or more, and more preferably 0.8 or more. Preferably, it is more preferably 1 or more. From these viewpoints, (a1+a2)/(a2+a3) is preferably 0.4 to 4, more preferably 0.4 to 2, still more preferably 0.4 to 1, further preferably 0.6 to 1, and 0 0.6 to 0.9 are particularly preferred.
 テトラカルボン酸二無水物は、式(a4)で表される化合物をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000027
The tetracarboxylic dianhydride preferably further contains a compound represented by formula (a4).
Figure JPOXMLDOC01-appb-C000027
 式(a4)のRおよびRは、それぞれ独立して置換されていてもよい炭素数1~4のアルキル基またはフッ素原子を表す。アルキル基の炭素数は、好ましくは1または2である。アルキル基が有しうる置換基の例には、フッ素原子などが含まれる。qおよびrは、それぞれ0~3の整数を表す。ただし、q+rは、3以下である。 R 5 and R 6 in formula (a4) each independently represent an optionally substituted alkyl group having 1 to 4 carbon atoms or a fluorine atom. The number of carbon atoms in the alkyl group is preferably 1 or 2. Examples of substituents that the alkyl group may have include a fluorine atom and the like. q and r each represent an integer of 0 to 3; However, q+r is 3 or less.
 式(a4)で表される化合物は、フィルムにしたときに、高い透明性や耐熱性を付与しうるだけでなく、フィルムの複屈折Δnを低下させうる。式(a4)で表される化合物は、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(BPAF)であることが好ましい。 The compound represented by formula (a4) can not only impart high transparency and heat resistance when formed into a film, but also reduce the birefringence Δn of the film. The compound represented by formula (a4) is preferably 9,9'-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF).
 式(a4)で表される化合物の含有量は、フルオレン骨格を有するテトラカルボン酸無水物およびジアミンの合計量(式(a4)で表される化合物および式(b2)で表される化合物の合計量)が後述する範囲となるように設定されることが好ましい。 The content of the compound represented by the formula (a4) is the total amount of the tetracarboxylic anhydride having a fluorene skeleton and the diamine (the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) amount) is preferably set within the range described later.
 テトラカルボン酸二無水物は、本開示の効果を損なわない範囲で、上記以外の他のテトラカルボン酸二無水物をさらに含んでもよい。他のテトラカルボン酸二無水物の例には、上記以外の芳香族テトラカルボン酸二無水物や脂環式テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物などが含まれる。他のテトラカルボン酸二無水物の含有量は、テトラカルボン酸二無水物の全量に対して10モル%以下としうる。 The tetracarboxylic dianhydride may further contain other tetracarboxylic dianhydrides other than the above, as long as the effects of the present disclosure are not impaired. Examples of other tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides other than those mentioned above, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides. The content of other tetracarboxylic dianhydrides can be 10 mol % or less with respect to the total amount of tetracarboxylic dianhydrides.
 [ジアミン]
 ジアミンは、式(b1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000028
[Diamine]
Diamines include compounds represented by formula (b1).
Figure JPOXMLDOC01-appb-C000028
 式(b1)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)である。当該化合物は、フィルムにしたときに、高い透明性や低いb値を付与しうる。 The compound represented by formula (b1) is 2,2'-bis(trifluoromethyl)benzidine (TFMB). The compound can impart high transparency and low b * value when made into a film.
 ジアミンは、例えばフィルムの耐熱性を高める観点、または、複屈折Δnを低減する観点では、式(b2)で表される化合物をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000029
The diamine preferably further contains a compound represented by the formula (b2), for example, from the viewpoint of increasing the heat resistance of the film or reducing the birefringence Δn.
Figure JPOXMLDOC01-appb-C000029
 式(b2)のRおよびRは、それぞれ独立して置換されていてもよい炭素数1~4のアルキル基またはフッ素原子を表す。アルキル基の炭素数は、好ましくは1または2である。アルキル基が有しうる置換基の例には、フッ素原子などが含まれる。sおよびtは、それぞれ0~3の整数を表す。ただし、s+tは、3以下である。 R 7 and R 8 in formula (b2) each independently represent an optionally substituted alkyl group having 1 to 4 carbon atoms or a fluorine atom. The number of carbon atoms in the alkyl group is preferably 1 or 2. Examples of substituents that the alkyl group may have include a fluorine atom and the like. s and t each represents an integer of 0 to 3; However, s+t is 3 or less.
 式(b2)で表される化合物の例には、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン(FFDA)、9,9-ビス(アミノフルオロフェニル)フルオレンが含まれる。 Examples of compounds represented by formula (b2) include 9,9-bis(4-aminophenyl)fluorene (BAFL), 9,9-bis(4-amino-3-methylphenyl)fluorene (FFDA), 9,9-bis(aminofluorophenyl)fluorene is included.
 式(b1)で表される化合物の含有量は、ジアミンの全量に対して80モル%以上であることが好ましい。式(b1)で表される化合物の含有量が80モル%以上であると、フィルムの着色を抑制しやすい(b値を低くしやすい)。同様の観点から、式(b1)で表される化合物の含有量は、90モル%以上であることが好ましく、100モル%であってもよい。 The content of the compound represented by formula (b1) is preferably 80 mol % or more with respect to the total amount of diamine. When the content of the compound represented by the formula (b1) is 80 mol% or more, it is easy to suppress the coloration of the film (easy to lower the b * value). From the same point of view, the content of the compound represented by formula (b1) is preferably 90 mol % or more, and may be 100 mol %.
 式(b2)で表される化合物の含有量は、式(a4)で表される化合物および式(b2)で表される化合物の合計量(フルオレン骨格を有する成分の含有量)が、ジアミンとテトラカルボン酸二無水物の合計に対して0~15モル%、好ましくは0.5~15モル%となるように設定される。上記合計量が0.15モル%以上であると、複屈折△nを低くしやすく、15モル%以下であると、CTEの増大を抑制しやすい。同様の観点から、上記合計量は、2~8モル%であることがより好ましい。 The content of the compound represented by the formula (b2) is such that the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) (the content of the component having a fluorene skeleton) is equal to the diamine and It is set to be 0 to 15 mol %, preferably 0.5 to 15 mol %, based on the total amount of tetracarboxylic dianhydride. When the total amount is 0.15 mol % or more, the birefringence Δn tends to be lowered, and when it is 15 mol % or less, an increase in CTE is easily suppressed. From the same point of view, the above total amount is more preferably 2 to 8 mol %.
 ジアミンは、本開示の効果を損なわない範囲で、上記以外の他のジアミンをさらに含んでもよい。他のジアミンの例には、ビス(3-アミノフェニル)スルホン(3,3-DAS)、4,4’-ジアミノジフェニルスルホン(4,4-DAS)、1,5-ジアミノナフタレン(15DAN)や4,4’-ジアミノベンズアニリド(DABA)、m-ジアミノベンゼン(MDA)などの上記以外の芳香族ジアミンや、1,2-シクロヘキサンジアミン(DACH)や1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサンなどの脂環式ジアミン、エチレンジアミンおよびヘキサメチレンジアミンなどの脂肪族ジアミンが含まれる。他のジアミンの含有量は、ジアミンの全量に対して10モル%以下としうる。 The diamine may further contain diamines other than the above as long as the effects of the present disclosure are not impaired. Examples of other diamines include bis(3-aminophenyl)sulfone (3,3-DAS), 4,4′-diaminodiphenylsulfone (4,4-DAS), 1,5-diaminonaphthalene (15DAN), 4,4′-diaminobenzanilide (DABA), m-diaminobenzene (MDA) and other aromatic diamines other than the above, 1,2-cyclohexanediamine (DACH) and 1,3-bis(aminomethyl)cyclohexane, Included are cycloaliphatic diamines such as 1,4-bis(aminomethyl)cyclohexane, and aliphatic diamines such as ethylenediamine and hexamethylenediamine. The content of other diamines can be 10 mol % or less with respect to the total amount of diamines.
 [物性]
 ポリアミド酸の固有粘度(η)は、特に制限されないが、0.3~2.0dL/gであることが好ましく、0.6~1.6dL/gであることがより好ましい。ポリアミド酸ワニスの固有粘度(η)が上記範囲内にあると、塗工性と成膜性とを両立しやすい。
[Physical properties]
Although the intrinsic viscosity (η) of the polyamic acid is not particularly limited, it is preferably 0.3 to 2.0 dL/g, more preferably 0.6 to 1.6 dL/g. When the intrinsic viscosity (η) of the polyamic acid varnish is within the above range, it is easy to achieve both coatability and film formability.
 ポリアミド酸の固有粘度(η)は、ポリアミド酸調製時のテトラカルボン酸二無水物とジアミンの量比(モル比)によって調整することができる。例えば、酸二無水物/ジアミン比率を等モルにした場合に、固有粘度(η)が高くなりやすい。また、固有粘度(η)は、N-メチル-2-ピロリドン(NMP)中のポリアミド酸の濃度を0.5g/dLとしたとき、25℃でウベローデ粘度管にて測定される値である。 The intrinsic viscosity (η) of polyamic acid can be adjusted by adjusting the amount ratio (molar ratio) of tetracarboxylic dianhydride and diamine when preparing polyamic acid. For example, when the acid dianhydride/diamine ratio is equimolar, the intrinsic viscosity (η) tends to increase. The intrinsic viscosity (η) is a value measured at 25° C. with an Ubbelohde viscosity tube when the polyamic acid concentration in N-methyl-2-pyrrolidone (NMP) is 0.5 g/dL.
 1-2.他の成分
 本開示のポリアミド酸組成物は、必要に応じて、前述のポリアミド酸以外の他の成分をさらに含んでいてもよい。
1-2. Other Components The polyamic acid composition of the present disclosure may, if necessary, further contain components other than the polyamic acid described above.
 例えば、ポリアミド酸組成物は、溶媒をさらに含んでもよい。溶媒は、後述するポリアミド酸組成物の調製に使用される溶媒であってよく、前述のジアミン成分およびテトラカルボン酸二無水物成分を溶解可能であれば特に制限されない。例えば、非プロトン性極性溶剤やアルコール系溶剤などを用いることができる。 For example, the polyamic acid composition may further contain a solvent. The solvent may be a solvent used for preparing the polyamic acid composition described later, and is not particularly limited as long as it can dissolve the diamine component and the tetracarboxylic dianhydride component described above. For example, an aprotic polar solvent, an alcoholic solvent, or the like can be used.
 非プロトン性極性溶剤の例には、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、ヘキサメチルフォスフォラアミド(HMPA)などのアミド系溶剤;ジメチルスルホキシド;および2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エトキシエタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどのエーテル系溶剤が含まれる。 Examples of aprotic polar solvents include N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), N,N- Amide solvents such as dimethylformamide (DMF), N,N-diethylformamide (DEF), hexamethylphosphoramide (HMPA); dimethylsulfoxide; and 2-methoxyethanol, 2-ethoxyethanol, 2-(methoxymethoxy) ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monoethyl ether, tetraethylene glycol, 1 - methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, polyethylene glycol, polypropylene glycol, tetrahydrofuran, dioxane, 1, Ether solvents such as 2-dimethoxyethane, diethylene glycol dimethyl ether and diethylene glycol diethyl ether are included.
 アルコール系溶剤の例には、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、1,2,6-ヘキサントリオール、ジアセトンアルコール等が含まれる。 Examples of alcoholic solvents include methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1 ,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 1,2,6-hexanetriol, Diacetone alcohol and the like are included.
 これらの溶媒は、1種のみ含んでいてもよく、2種以上を組み合わせてもよい。中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン(DMI)またはこれらの混合溶媒が好ましい。 These solvents may contain only one type, or may be a combination of two or more types. Among them, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone (DMI) or a mixed solvent thereof is preferable.
 ポリアミド酸の含有量(ポリアミド酸組成物の樹脂濃度)は、特に制限されないが、塗工性の観点から、ポリアミド酸組成物の全量に対して5~30質量%、好ましくは10~25質量%としうる。ポリアミド酸組成物の樹脂濃度は、ポリアミド酸組成物の調製時の溶液濃度と同様であってもよい。 The polyamic acid content (resin concentration of the polyamic acid composition) is not particularly limited, but from the viewpoint of coatability, it is 5 to 30% by mass, preferably 10 to 25% by mass, based on the total amount of the polyamic acid composition. can be The resin concentration of the polyamic acid composition may be the same as the solution concentration during preparation of the polyamic acid composition.
 1-3.物性
 本開示のポリアミド酸組成物をイミド化して得られるフィルム(ポリイミドフィルム)は、着色が抑制され、かつ良好な曲げ耐性を有する。
1-3. Physical Properties A film (polyimide film) obtained by imidating the polyamic acid composition of the present disclosure is inhibited from being colored and has good bending resistance.
 (L表色系におけるb値)
 ポリアミド酸組成物を350℃で熱イミド化して得られる、厚み10μmのポリイミドフィルムのL表色系におけるb値は、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは4.0以下である。b値は、フィルムの黄色みを表し、値が小さいほど黄色みが少ないことを示す。したがって、b値の下限値は、通常、1.0程度であるが、好ましくは0である。b値が8.0以下であるポリイミドフィルムは、着色が少なく、透明性に優れるため、光学フィルム、すなわち、各種ディスプレイ装置用のパネル基板などに好適である。
(L * a * b * b * value in color system)
The b * value in the L * a * b * color system of a polyimide film having a thickness of 10 μm obtained by thermally imidizing a polyamic acid composition at 350° C. is preferably 8.0 or less, more preferably 6.0 or less. , and more preferably 4.0 or less. The b * value represents the yellowness of the film, and a smaller value indicates less yellowness. Therefore, the lower limit of the b * value is usually about 1.0, preferably 0. A polyimide film having a b * value of 8.0 or less is less colored and has excellent transparency, and is suitable for optical films, ie, panel substrates for various display devices.
 b値は、ポリアミド酸組成物を350℃で熱硬化(イミド化)して得られる、厚み10μmのポリイミドフィルムのb値を、測色計(例えば、スガ試験機製 三刺激値直読式測色計(Colour Cute i CC-i型)を使用して、透過モード(前述の機器を用いた場合は、透過モード 0°diと設定する)で測定したときの値とする。 The b * value is obtained by thermally curing (imidizing) the polyamic acid composition at 350 ° C. The b * value of a polyimide film having a thickness of 10 μm is measured by a colorimeter (for example, Suga Test Instruments Co., Ltd. tristimulus value direct reading type measurement It is the value when measured using a colorimeter (Colour Cute CC-i model) in transmission mode (when using the above equipment, transmission mode is set to 0°di).
 b値は、ポリアミド酸のモノマー組成によって調整されうる。例えば、ジアミン中の式(b1)で表される化合物(TFMB)の含有比率を高くしたり、酸無水物中の式(a2)で表される化合物(PMDA)の含有比率を低くしたりすると、b値が小さくなりやすい。 The b * value can be adjusted by the monomer composition of the polyamic acid. For example, if the content ratio of the compound (TFMB) represented by the formula (b1) in the diamine is increased, or the content ratio of the compound (PMDA) represented by the formula (a2) in the acid anhydride is decreased, , b * values tend to be small.
 (曲げ耐性)
 ポリアミド酸組成物を350℃で熱イミド化して得られる、厚み10μmのポリイミドフィルムのMIT耐折性試験の耐折回数は、例えば1万回以上であることが好ましく、4万回以上であることがより好ましく、10万回以上であることがさらに好ましく、20万回以上であることがさらに好ましい。
(bending resistance)
A polyimide film having a thickness of 10 μm obtained by thermally imidizing a polyamic acid composition at 350° C. has a folding endurance in the MIT folding endurance test of, for example, preferably 10,000 times or more, and preferably 40,000 times or more. is more preferable, 100,000 times or more is more preferable, and 200,000 times or more is even more preferable.
 MIT耐折性試験は、以下の手順で行うことができる。
 ポリイミドフィルム(厚み10μm)を、長さ120mm×幅15mmの形状にカットし、試験片とする。この試験片の一端を、安田精機製作所製 MIT型耐折試験機(307型)にセットして、他端を把持し、曲率半径0.38mm、荷重0.5Kg、折り曲げ確度270度(左右135度)、折り曲げ速度175回/分の条件で往復折り曲げし、破断するまでの回数(耐折回数)を測定する。測定条件は、後述の実施例の通りとしうる。なお、ポリイミドフィルムの厚みは、フィルムにできた厚さに応じて厚さを9~12μmとすることを妨げない。
The MIT folding endurance test can be performed by the following procedure.
A polyimide film (10 μm thick) is cut into a shape of 120 mm long×15 mm wide to obtain a test piece. One end of this test piece is set in an MIT folding endurance tester (307 type) manufactured by Yasuda Seiki Seisakusho, and the other end is held, with a curvature radius of 0.38 mm, a load of 0.5 kg, and a bending accuracy of 270 degrees (left and right 135 degrees). degree) and the bending speed is 175 times/min. The measurement conditions can be as described in Examples below. The thickness of the polyimide film is not restricted to 9 to 12 μm depending on the thickness of the film.
 曲げ耐性は、ポリイミドのモノマー組成などによって調整されうる。例えば、酸二無水物のうち、式(a2)で表される化合物および式(a3)で表される化合物の合計量(a2+a3)を多く(または(a1+a2)/(a2+a3)を小さく)したり、式(a3)で表される化合物の含有量を多くしたりすると、曲げ耐性は高まりやすい。 Bending resistance can be adjusted by the monomer composition of polyimide. For example, among the acid dianhydrides, the total amount (a2 + a3) of the compound represented by the formula (a2) and the compound represented by the formula (a3) is increased (or (a1 + a2) / (a2 + a3) is decreased) When the content of the compound represented by the formula (a3) is increased, the bending resistance tends to increase.
 2.ポリアミド酸組成物の製造方法
 ポリアミド酸組成物は、溶媒中で、テトラカルボン酸二無水物成分とジアミン成分とを反応させて得ることができる。使用する溶媒やテトラカルボン酸二無水物成分、ジアミン成分の種類およびそれらの量比は、前述の通りである。
2. Method for Producing Polyamic Acid Composition The polyamic acid composition can be obtained by reacting a tetracarboxylic dianhydride component and a diamine component in a solvent. The types of solvent, tetracarboxylic dianhydride component, and diamine component to be used and their quantitative ratios are as described above.
 ポリアミド酸組成物を得るための反応は、上記したテトラカルボン酸二無水物とジアミンとを、溶媒中で、比較的低温(イミド化が生じないような温度)で加熱することにより行うことが好ましい。イミド化が生じないような温度とは、具体的には、5~120℃、より好ましくは25~80℃としうる。また、当該反応は、イミド化触媒(例えばトリエチルアミンなど)が実質的に存在しない環境下で行うことが好ましい。 The reaction for obtaining the polyamic acid composition is preferably carried out by heating the above tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature (a temperature at which imidization does not occur). . Specifically, the temperature at which imidization does not occur can be 5 to 120°C, more preferably 25 to 80°C. Moreover, the reaction is preferably carried out in an environment in which an imidization catalyst (for example, triethylamine, etc.) is substantially absent.
 溶液中のテトラカルボン酸二無水物とジアミンの含有量(溶液の濃度)は、特に制限されないが、イミド化時に分子間架橋を促進する観点では、高いことが好ましく、塗工性を損なわないようにする観点では、低いことが好ましい。溶液の濃度は、塗工性の観点では、5~30質量%、好ましくは10~25質量%としうる。 The content of the tetracarboxylic dianhydride and the diamine in the solution (solution concentration) is not particularly limited, but from the viewpoint of promoting intermolecular cross-linking during imidization, it is preferably high, and the coating properties are not impaired. From the viewpoint of making The concentration of the solution can be 5 to 30% by mass, preferably 10 to 25% by mass, from the viewpoint of coatability.
 上記反応(重合反応)は、公知の方法で行うことができる。例えば、撹拌機および窒素導入管を備える容器を用意し、窒素置換した容器内に溶剤を投入する。そして、最終的なポリアミド酸の濃度が上記範囲となるようにジアミンを加え、温度調整して攪拌する。当該溶液に、テトラカルボン酸二無水物を所定の量加える。そして、温度を調整しながら、1~50時間程度攪拌する。 The above reaction (polymerization reaction) can be performed by a known method. For example, a container equipped with a stirrer and a nitrogen inlet tube is prepared, and the solvent is introduced into the container which is purged with nitrogen. Then, diamine is added so that the final polyamic acid concentration falls within the above range, and the temperature is adjusted and stirred. A predetermined amount of tetracarboxylic dianhydride is added to the solution. Then, the mixture is stirred for about 1 to 50 hours while adjusting the temperature.
 なお、上記反応では、生成する水を除去するための濃縮(ディーンスタークによる濃縮)は行わないことが好ましい。イミド化反応を進行させないためである。 It should be noted that, in the above reaction, it is preferable not to perform concentration (concentration by Dean Stark) for removing the generated water. This is to prevent the imidization reaction from proceeding.
 上記反応を行う際、ジアミンの合計モル量xと、テトラカルボン酸二無水物の合計モル量yとの比(y/x)は、例えば0.9~1.1、好ましくは0.95~1.05としうる。 When performing the above reaction, the ratio (y/x) of the total molar amount x of the diamine and the total molar amount y of the tetracarboxylic dianhydride is, for example, 0.9 to 1.1, preferably 0.95 to 1.05.
 3.ポリイミド組成物
 本開示のポリイミド組成物は、上記ポリアミド酸組成物に含まれるポリアミド酸をイミド化させて得られる特定のポリイミドを含む。
3. Polyimide Composition The polyimide composition of the present disclosure includes a specific polyimide obtained by imidating the polyamic acid contained in the polyamic acid composition.
 3-1.ポリイミド
 上記ポリイミドは、上記ポリアミド酸をイミド化させたものであり、上記テトラカルボン酸二無水物に由来する構造単位と、上記ジアミンに由来する構造単位とを含む。そのようなポリイミドを含むポリイミド組成物(例えばポリイミドフィルム)は、着色が抑制され(b値が低く)、低いCTEと良好な曲げ耐性とを有する。
3-1. Polyimide The polyimide is obtained by imidizing the polyamic acid, and includes structural units derived from the tetracarboxylic dianhydride and structural units derived from the diamine. Polyimide compositions (eg, polyimide films) containing such polyimides have reduced coloration (low b * values), low CTE, and good bending resistance.
 ポリイミド組成物は、粉末状やペレット状、フィルムのいずれであってもよい。中でも、ディスプレイ基板として使用しやすい観点などから、フィルムであることが好ましい。 The polyimide composition may be in the form of powder, pellets, or film. Among them, a film is preferable from the viewpoint of ease of use as a display substrate.
 3-2.ポリイミド組成物の物性
 ポリイミド組成物およびそれを含むポリイミドフィルムは、上記の通り、着色が少なく、低いCTEと良好な曲げ耐性とを有する。具体的には、ポリイミド組成物およびそれを含むポリイミドフィルムは、以下の物性のうち一以上を満たすことが好ましい。
3-2. Physical Properties of Polyimide Composition As described above, the polyimide composition and the polyimide film containing the same have little coloration, low CTE, and good bending resistance. Specifically, the polyimide composition and the polyimide film containing it preferably satisfy one or more of the following physical properties.
 (1)光学物性
 (全光線透過率)
 ポリイミドフィルムの全光線透過率(Total Tranmittance:TT)は、熱イミド化条件(特に加熱温度)にもよるが、例えば80%以上、好ましくは85%以上、より好ましくは87%以上、さらに好ましくは89%以上である。全光線透過率の上限値は、100%であることが好ましいが、通常は、92%、または90%程度である。このように全光線透過率が高いポリイミドフィルムは、光学フィルム、すなわち各種ディスプレイ装置用のパネル基板(透明基板)などに好適である。なお、全光線透過率(TT)は、標準光源であるD65の全ての波長域(300~830nm)での平均透過率を示す。また、視認性をさらに高める観点では、波長450nmでの透過率(T@450nm)は60%以上であることが好ましく、75%以上であることがより好ましい。
(1) Optical properties (total light transmittance)
The total light transmittance (Total Transmittance: TT) of the polyimide film depends on the thermal imidization conditions (especially the heating temperature), but is for example 80% or more, preferably 85% or more, more preferably 87% or more, and more preferably 89% or more. The upper limit of the total light transmittance is preferably 100%, but usually about 92% or 90%. A polyimide film having such a high total light transmittance is suitable for optical films, ie, panel substrates (transparent substrates) for various display devices. The total light transmittance (TT) indicates the average transmittance in the entire wavelength range (300 to 830 nm) of D65, which is a standard light source. From the viewpoint of further improving visibility, the transmittance at a wavelength of 450 nm (T@450 nm) is preferably 60% or more, more preferably 75% or more.
 ポリイミドフィルムの全光線透過率は、JIS-K7361-1に準じて、光源D65にて測定される。波長450nmの光線透過率は、波長300~800nm領域のUV-可視スペクトル測定を行い、波長450nmの光の透過率をT@450nmとして求めることができる。 The total light transmittance of the polyimide film is measured with light source D65 according to JIS-K7361-1. The light transmittance at a wavelength of 450 nm can be obtained by measuring the UV-visible spectrum in the wavelength range of 300 to 800 nm and calculating the transmittance of light at a wavelength of 450 nm as T@450 nm.
 ポリイミドフィルムの全光線透過率や波長450nmでの透過率は、ポリイミドのモノマー組成によって調整することができる。例えば、ジアミン中の式(b1)で表される化合物(TFMB)の含有比率や、酸無水物中の式(a4)で表される化合物(例えばBPAF)の含有比率が高いと、全光線透過率や波長450nmでの透過率は高くなりやすい。 The total light transmittance of the polyimide film and the transmittance at a wavelength of 450 nm can be adjusted by the monomer composition of the polyimide. For example, when the content ratio of the compound represented by the formula (b1) (TFMB) in the diamine or the content ratio of the compound represented by the formula (a4) in the acid anhydride (for example, BPAF) is high, the total light transmission efficiency and transmittance at a wavelength of 450 nm tend to be high.
 (b値)
 ポリイミドフィルム(例えば厚み10μmのポリイミドフィルム)のL表色系におけるb値は、好ましくは16.0以下、より好ましくは8.0以下、さらに好ましくは6.0以下、特に好ましくは4.0以下である。b値の下限値は、通常、1.0程度であるが、好ましくは0である。b値が16.0以下、好ましくは8.0以下であるポリイミドフィルムは、着色が少なく、透明性に優れるため、光学フィルム、すなわち、各種ディスプレイ装置用のパネル基板などに好適である。b値の測定方法および調整方法は、上記した通りである。なお、ポリイミドフィルムの厚みは、フィルムにできた厚さに応じて厚さを9~12μmとすることを妨げない。
(b * value)
The b * value in the L * a * b * color system of a polyimide film (e.g., a polyimide film having a thickness of 10 μm) is preferably 16.0 or less, more preferably 8.0 or less, still more preferably 6.0 or less, especially Preferably it is 4.0 or less. The lower limit of the b * value is usually about 1.0, preferably 0. A polyimide film having a b * value of 16.0 or less, preferably 8.0 or less is less colored and has excellent transparency, and is suitable for optical films, ie, panel substrates for various display devices. The method for measuring and adjusting the b * value is as described above. The thickness of the polyimide film is not restricted to 9 to 12 μm depending on the thickness of the film.
 (厚み方向の複屈折Δn)
 ポリイミドフィルムの、波長633nmにおける厚み方向の複屈折Δnは、特に制限されないが、0.19以下であることが好ましく、0.1以下であることがより好ましい。複屈折Δnが上記範囲内にあると、ポリイミドフィルムをディスプレイ基板として用いた際に、表示装置に表示される像を歪みにくくし、表示特性を高めうる。
(Birefringence Δn in thickness direction)
The thickness direction birefringence Δn of the polyimide film at a wavelength of 633 nm is not particularly limited, but is preferably 0.19 or less, more preferably 0.1 or less. When the birefringence Δn is within the above range, when the polyimide film is used as a display substrate, the image displayed on the display device is less likely to be distorted, and the display characteristics can be improved.
 厚み方向の複屈折Δnは、以下の方法で測定することができる。
 メトリコン社製プリズムカプラ(モデル2010)を用いて、結合プリズムを通してサンプルに波長633nmのレーザー光を入射し、TE偏光における屈折率(nTE)、および、TM偏光における屈折率(nTM)を測定し、nTEからnTMを減じて、複屈折を算出する。
The birefringence Δn in the thickness direction can be measured by the following method.
Using a Metricon prism coupler (model 2010), a laser beam with a wavelength of 633 nm is incident on the sample through a coupling prism, and the refractive index (nTE) in TE polarized light and the refractive index (nTM) in TM polarized light are measured, Subtract nTM from nTE to calculate birefringence.
 厚み方向の複屈折Δnは、ポリイミドのモノマー組成などによって調整されうる。例えば、ポリイミドを構成するテトラカルボン酸二無水物およびジアミンの合計に対する式(a4)で表される化合物および式(b2)で表される化合物の合計量(フルオレン骨格を含む成分)が多いと、ポリイミドフィルムの複屈折Δnが低くなりやすい。フルオレン骨格を含む化合物が有する多数の芳香族環がそれぞれ異なる向きを示し、光学的異方性を打ち消す方向に作用しやすいためと考えられる。 The birefringence Δn in the thickness direction can be adjusted by the monomer composition of polyimide. For example, if the total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) with respect to the total of the tetracarboxylic dianhydride and the diamine constituting the polyimide (a component containing a fluorene skeleton) is large, The birefringence Δn of the polyimide film tends to be low. This is probably because the many aromatic rings of the compound containing a fluorene skeleton show different orientations and tend to act in a direction that cancels out the optical anisotropy.
 (2)熱物性
 (ガラス転移温度(Tg))
 ポリイミドフィルムのガラス転移温度(Tg)は、好ましくは370℃以上、より好ましくは400℃以上である。ポリイミドフィルムのTgが370℃以上であると、フィルムをTFTアレイ用の基板などにも適用することができる。具体的には、ポリイミドフィルムのTgは、IGZO(インジウム・ガリウム・亜鉛・酸素で構成される酸化物半導体)を用いたTFTアレイ作製に用いる場合は、350℃以上であることが好ましく、390℃以上であることがより好ましく;低温ポリシリコンを用いたTFTアレイ作製に用いる場合は、400℃以上であることが好ましい。Tgが当該範囲であれば、各TFTアレイ作製時の作業環境下でも使用可能となり、信頼性の高いディスプレイ装置が得られやすい。ポリイミドフィルムのTgの上限は、特に制限されないが、成形性の観点から、例えば500℃程度としうる。
(2) Thermophysical properties (Glass transition temperature (Tg))
The glass transition temperature (Tg) of the polyimide film is preferably 370°C or higher, more preferably 400°C or higher. When the Tg of the polyimide film is 370° C. or higher, the film can be applied to substrates for TFT arrays and the like. Specifically, the Tg of the polyimide film is preferably 350° C. or higher when used for manufacturing a TFT array using IGZO (an oxide semiconductor composed of indium, gallium, zinc, and oxygen), and 390° C. It is more preferably 400° C. or higher when used for manufacturing a TFT array using low-temperature polysilicon. If the Tg is within this range, the display device can be used even under the working environment during fabrication of each TFT array, and a highly reliable display device can be easily obtained. Although the upper limit of the Tg of the polyimide film is not particularly limited, it can be, for example, about 500° C. from the viewpoint of moldability.
 動的粘弾性装置(TAインスツルメンツ製RSA-III)を用いて、幅5mm、長さ20mmの試料を、窒素雰囲気下において、測定温度25~450℃、昇温速度3℃/分、周波数1Hz、断面積当たり初期荷重5.0kg/cmとの測定条件にて、動的粘弾性を測定し、損失正接(損失弾性率を貯蔵弾性率で除した値、tanδ)を求める。また、tanδが焼成温度以上で最大値を示す温度をガラス転移温度とする。 Using a dynamic viscoelasticity apparatus (RSA-III manufactured by TA Instruments), a sample with a width of 5 mm and a length of 20 mm was measured in a nitrogen atmosphere at a temperature of 25 to 450 ° C., a heating rate of 3 ° C./min, a frequency of 1 Hz, The dynamic viscoelasticity is measured under the measurement condition of an initial load of 5.0 kg/cm 2 per cross-sectional area, and the loss tangent (value obtained by dividing the loss elastic modulus by the storage elastic modulus, tan δ) is obtained. Also, the temperature at which tan δ shows the maximum value above the firing temperature is defined as the glass transition temperature.
 (線熱膨張係数(CTE))
 ポリイミドフィルムの線熱膨張係数(CTE)は、熱イミド化条件(特に加熱温度)にもよるが、例えば-10~50ppm/Kであることが好ましく、-10~30ppm/Kであることがより好ましく、-5~20ppm/Kであることがさらに好ましく、0~10ppm/Kであることが特に好ましい。線熱膨張係数が上記範囲内であると、各種ディスプレイ装置のパネル基板として用いた際に、高温でもポリイミドフィルムが変形しにくく、基板上への電気素子の形成プロセスでの高温環境に起因した反りなどの熱変形による位置ずれや電気素子の破壊を抑制しやすく、各種素子を積層しやすい。
(Coefficient of linear thermal expansion (CTE))
The coefficient of linear thermal expansion (CTE) of the polyimide film depends on the thermal imidization conditions (especially the heating temperature), but is preferably -10 to 50 ppm/K, more preferably -10 to 30 ppm/K. It is preferably -5 to 20 ppm/K, and particularly preferably 0 to 10 ppm/K. When the coefficient of linear thermal expansion is within the above range, the polyimide film is less likely to deform even at high temperatures when used as a panel substrate for various display devices, and warping due to the high temperature environment in the process of forming electric elements on the substrate. It is easy to suppress misalignment and breakage of electric elements due to thermal deformation such as, and it is easy to stack various elements.
 線熱膨張係数(CTE)は、以下の方法で測定することができる。
 熱機械分析装置(TMA)に、試験片を取り付け後、窒素雰囲気下、荷重100mNにて、室温から5℃/minで300℃まで一度昇温した後(1stラン)、その後、50℃以下まで降温して試験片に蓄積された残留応力を取り除き、そのまま再び、5℃/minで450℃まで昇温(2ndラン)した時の、温度範囲100~350℃のTMA伸長比率を、線熱膨張係数(CTE)とする。
A coefficient of linear thermal expansion (CTE) can be measured by the following method.
After attaching the test piece to a thermomechanical analyzer (TMA), the temperature was raised from room temperature to 300°C at a rate of 5°C/min under a nitrogen atmosphere under a load of 100mN (1st run), and then to 50°C or less. The temperature is lowered to remove the residual stress accumulated in the test piece, and the temperature is again raised to 450 ° C. at 5 ° C./min (2nd run). coefficient (CTE).
 線熱膨張係数(CTE)は、ポリイミド(またはその前駆体であるポリアミド酸)のモノマー組成などによって調整されうる。例えば、酸二無水物のうち、式(a1)で表される化合物および式(a2)で表される化合物の合計量(a1+a2)(または(a1+a2)/(a2+a3))を多くしたり、式(a1)で表される化合物の含有量を多くしたりすると、CTEは低くなりやすい。 The coefficient of linear thermal expansion (CTE) can be adjusted by the monomer composition of polyimide (or its precursor polyamic acid). For example, among the acid dianhydrides, the total amount (a1 + a2) (or (a1 + a2) / (a2 + a3)) of the compound represented by the formula (a1) and the compound represented by the formula (a2) is increased, or the formula When the content of the compound represented by (a1) is increased, the CTE tends to be lowered.
 (3)機械物性
 (引張強度)
 ポリイミドフィルムの引張強度は、例えば160MPa以上であることが好ましい。引張伸びは、例えば4~15%であることが好ましい。
(3) Mechanical properties (tensile strength)
The tensile strength of the polyimide film is preferably 160 MPa or more, for example. The tensile elongation is preferably 4-15%, for example.
 引張強度および引張伸びは、以下の手順で測定することができる。
 ポリイミドフィルムより、ダンベル型打ち抜き試験片を作製し、引張試験機(島津製作所製、EZ-S)にて、標線幅5mm、試料長30mm、引張速度30mm/分の条件で測定を行う。得られた応力・歪曲線より、破断に至った点における強度および伸度をそれぞれ引張強度および引張伸度とし、5回の測定値の平均値を、引張強度TS、引張伸度ELとして求める。
Tensile strength and tensile elongation can be measured by the following procedures.
A dumbbell-shaped punched test piece is prepared from the polyimide film and measured with a tensile tester (EZ-S, manufactured by Shimadzu Corporation) under the conditions of a marked line width of 5 mm, a sample length of 30 mm, and a tensile speed of 30 mm/min. From the obtained stress-strain curve, the strength and elongation at the breaking point are defined as tensile strength and tensile elongation, respectively, and the average values of five measurements are determined as tensile strength TS and tensile elongation EL.
 (曲げ耐性)
 ポリイミドフィルムのMIT耐折性試験の耐折回数は、例えば1万回以上であることが好ましく、4万回以上であることがより好ましく、10万回以上であることがさらに好ましく、20万回以上であることがさらに好ましい。MIT耐折性試験の耐折回数が上記範囲であるフィルムは、高いフレキシブル性を有するため、フレキシブルディスプレイ基板として好適である。MIT耐折性試験の方法および曲げ耐性の調整方法は、上記した通りである。
(bending resistance)
The number of folding endurance of the polyimide film in the MIT folding endurance test is, for example, preferably 10,000 times or more, more preferably 40,000 times or more, further preferably 100,000 times or more, and 200,000 times. It is more preferable that it is above. A film having a folding endurance number in the above range in the MIT folding endurance test has high flexibility and is therefore suitable as a flexible display substrate. The method of the MIT folding endurance test and the method of adjusting the bending endurance are as described above.
 (4)厚み
 ポリイミドフィルムの厚みは、特に制限されず、フィルムの用途等に応じて適宜選択される。ポリイミドフィルムの厚みは、例えば1~100μmであり、好ましくは5~50μmであり、より好ましくは5~20μmである。
(4) Thickness The thickness of the polyimide film is not particularly limited, and is appropriately selected according to the use of the film. The thickness of the polyimide film is, for example, 1-100 μm, preferably 5-50 μm, more preferably 5-20 μm.
 (5)用途
 本開示のポリイミドフィルムは、高い透明性を有しつつ、低CTEと高い曲げ耐性とを有する。そのため、電子機器用の基板に好適である。電子機器用の基板の例としては、タッチパネル、液晶表示ディスプレイ、有機ELディスプレイなどのディスプレイ装置の透明基板(ディスプレイパネル基板)や;指紋認証や顔認証用のセンサーを積載する基板などが挙げられる。例えば、指紋認証や顔認証用のセンサーを積載する基板用途では、フレキシブル性や測定対象である光を阻害しないような高い透明性を有し、着色が少ないことが求められ、センサーを積載した基板の製造工程で熱がかかるため、耐熱性(低いCTE)が求められる。そのような用途においても、本開示のポリイミドフィルムは好適である。
(5) Applications The polyimide film of the present disclosure has high transparency, low CTE, and high bending resistance. Therefore, it is suitable for substrates for electronic devices. Examples of substrates for electronic devices include transparent substrates (display panel substrates) for display devices such as touch panels, liquid crystal displays, and organic EL displays; and substrates for mounting sensors for fingerprint authentication and face authentication. For example, for substrate applications where sensors for fingerprint authentication and face authentication are mounted, it is required to have flexibility, high transparency that does not block the light that is the object of measurement, and little coloring. heat resistance (low CTE) is required. The polyimide film of the present disclosure is also suitable for such uses.
 4.ポリイミドフィルムの製造方法
 本開示のポリイミドフィルムは、1)本開示のポリアミド酸組成物を基材に塗布して塗膜を形成する工程と、2)当該塗膜中のポリアミド酸をイミド化(閉環)する工程とを経て得られる。
4. Method for producing polyimide film The polyimide film of the present disclosure includes: 1) a step of applying the polyamic acid composition of the present disclosure to a substrate to form a coating film; ) is obtained through the step of
 1)の工程(ワニスの塗布)について
 上記ポリアミド酸と溶剤とを含むワニスを、各種基材の表面に塗布して塗膜を形成する。
Regarding step 1) (varnish application) The varnish containing the polyamic acid and solvent is applied to the surface of various substrates to form a coating film.
 ワニスを塗布する基材は、耐溶剤性および耐熱性を有するものであれば特に制限されない。基材は、得られるポリイミドフィルムを剥離しやすいものであればよく、ガラス板や、金属または耐熱性ポリマーフィルムなどのフレキシブル基材であることが好ましい。 The base material to which the varnish is applied is not particularly limited as long as it has solvent resistance and heat resistance. Any substrate can be used as long as the obtained polyimide film can be easily peeled off, and a flexible substrate such as a glass plate, a metal film, or a heat-resistant polymer film is preferable.
 金属からなるフレキシブル基材の例には、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム、またはこれらの合金からなる金属箔が含まれる。金属箔表面には、離型剤がコーティングされていてもよい。 Examples of flexible substrates made of metals include copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth. , indium, or alloys thereof. The metal foil surface may be coated with a release agent.
 耐熱性ポリマーフィルムからなるフレキシブル基材の例には、ポリイミドフィルム、アラミドフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルムなどが含まれる。耐熱性ポリマーフィルムからなるフレキシブル基材は、離型剤や耐電防止剤を含んでいてもよく、表面に離型剤や帯電防止剤がコーティングされていてもよい。フィルムの剥離性が良好であり、かつ耐熱性および耐溶剤性が高いことから、基材は、ポリイミドフィルムであることが好ましい。 Examples of flexible substrates made of heat-resistant polymer films include polyimide films, aramid films, polyetheretherketone films, and polyethersulfone films. The flexible base material made of a heat-resistant polymer film may contain a releasing agent or an antistatic agent, or may be coated with a releasing agent or an antistatic agent. The base material is preferably a polyimide film because it has good film releasability and high heat resistance and solvent resistance.
 基材の形状は、製造するポリイミドフィルムの形状に合わせて適宜選択され、単葉シート状であってもよく、長尺状であってもよい。基材の厚みは、5~150μmであることが好ましく、より好ましくは10~70μmである。基材の厚みが5μm以上であると、ワニスの塗布中に、基材に皺が発生したり、基材が裂けたりしにくくしうる。 The shape of the substrate is appropriately selected according to the shape of the polyimide film to be produced, and may be in the form of a single leaf sheet or in the form of an elongated sheet. The thickness of the substrate is preferably 5-150 μm, more preferably 10-70 μm. When the thickness of the substrate is 5 μm or more, the substrate is less likely to wrinkle or split during application of the varnish.
 ワニスの基材への塗布方法は、均一な厚みで塗布可能な方法であれば特に制限されない。塗布方法の例には、ダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータなどを用いた方法が含まれる。 The method of applying the varnish to the substrate is not particularly limited as long as it can be applied with a uniform thickness. Examples of coating methods include methods using a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, a spray coater, a lip coater and the like.
 2)の工程(ポリアミド酸のイミド化)について
 次いで、ポリアミド酸組成物の塗膜を加熱し、ポリアミド酸をイミド化(閉環)させる。
Regarding step 2) (imidation of polyamic acid) Next, the coating film of the polyamic acid composition is heated to imidize (ring-close) the polyamic acid.
 具体的には、上記ワニスの塗膜を、150℃以下の温度から200℃超まで温度を上昇させながら加熱して、塗膜中の溶剤を除去しつつ、ポリアミド酸をイミド化させる。そして、所定の温度まで昇温させた後、一定時間、その温度で加熱する。 Specifically, the coating film of the varnish is heated while increasing the temperature from 150°C or lower to over 200°C, thereby imidizing the polyamic acid while removing the solvent in the coating film. After the temperature is raised to a predetermined temperature, the material is heated at that temperature for a predetermined time.
 一般的に、ポリアミド酸がイミド化する温度は、150~200℃である。そのため、塗膜の温度を急激に200℃以上まで上昇させると、塗膜から溶剤が揮発する前に、塗膜表面のポリアミド酸がイミド化する。その結果、塗膜内に残った溶剤が気泡を生じさせたり、塗膜表面に凹凸を生じたさせたりする。したがって、150~200℃の温度領域では、塗膜の温度を徐々に上昇させることが好ましい。具体的には、150~200℃の温度領域における昇温速度を0.25~50℃/分とすることが好ましく、1~40℃/分とすることがより好ましく、2~30℃/分とすることがさらに好ましい。 Generally, the temperature at which polyamic acid imidates is 150-200°C. Therefore, when the temperature of the coating film is rapidly raised to 200° C. or higher, the polyamic acid on the coating film surface is imidized before the solvent volatilizes from the coating film. As a result, the solvent remaining in the coating film causes air bubbles or irregularities on the surface of the coating film. Therefore, it is preferable to gradually raise the temperature of the coating film in the temperature range of 150 to 200°C. Specifically, the temperature increase rate in the temperature range of 150 to 200° C. is preferably 0.25 to 50° C./min, more preferably 1 to 40° C./min, and 2 to 30° C./min. It is more preferable that
 昇温は、連続的でも段階的(逐次的)でもよいが、連続的とすることが、得られるポリイミドフィルムの外観不良抑制の面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、途中で変化させてもよい。 The temperature may be raised continuously or stepwise (sequentially), but it is preferable to raise the temperature continuously from the viewpoint of suppressing appearance defects of the resulting polyimide film. In addition, the rate of temperature increase may be constant over the entire temperature range described above, or may be changed in the middle.
 単葉状の塗膜を昇温しながら加熱する方法の例には、オーブン内温度を昇温させる方法がある。この場合、昇温速度は、オーブンの設定によって調整する。また、長尺状の塗膜を昇温しながら加熱する場合、例えば塗膜を加熱するための加熱炉を、基材の搬送(移動)方向に沿って複数配置し;加熱炉の温度を、加熱炉ごとに変化させる。例えば、基材の移動方向に沿って、それぞれの加熱炉の温度を高めればよい。この場合、昇温速度は、基材の搬送速度で調整する。 An example of a method of heating a single-leaf coating film while raising the temperature is to raise the temperature inside the oven. In this case, the heating rate is adjusted by setting the oven. Further, when heating a long coating film while increasing the temperature, for example, a plurality of heating furnaces for heating the coating film are arranged along the conveying (moving) direction of the substrate; Vary for each heating furnace. For example, the temperature of each heating furnace may be increased along the moving direction of the substrate. In this case, the heating rate is adjusted by the conveying speed of the substrate.
 上記の通り、昇温後、一定温度で一定時間加熱することが好ましい。加熱温度は、特に制限されないが、フィルム中の溶剤量が0.5質量%以下となるような温度であることが好ましい。例えば、ポリイミドのTg以上とすることで、溶剤を除去しやすくなる。具体的には、加熱温度は、250℃以上であることが好ましく、より好ましくは300℃以上であり、さらに好ましくは340℃以上であり、400℃以上であってもよい。加熱時間は、通常、0.5~2時間程度でありうる。加熱温度を高くすることで、後続のデバイス作成プロセスにて高い温度下に晒されても、フィルム系内に残ったアウトガスや応力変化によるデバイスの損傷を抑制できるためである。例えば、表示基板用のTFTの場合、TFTのデバイスタイプが低温ポリシリコン(LTPS)タイプである場合、従来のアモルファスシリコンやIGZOのタイプよりも高いプロセス温度(例えば400℃以上)が必要となることがある。そのような高温熱履歴後であっても、デバイスへのダメージを低減できる。 As described above, it is preferable to heat at a constant temperature for a certain period of time after raising the temperature. Although the heating temperature is not particularly limited, it is preferably a temperature at which the amount of solvent in the film is 0.5% by mass or less. For example, the solvent can be easily removed by making the temperature higher than the Tg of polyimide. Specifically, the heating temperature is preferably 250° C. or higher, more preferably 300° C. or higher, still more preferably 340° C. or higher, and may be 400° C. or higher. The heating time can usually be about 0.5 to 2 hours. This is because by increasing the heating temperature, damage to the device due to outgassing remaining in the film system or stress change can be suppressed even if the device is exposed to high temperatures in the subsequent device fabrication process. For example, in the case of TFTs for display substrates, if the TFT device type is the low temperature polysilicon (LTPS) type, a higher process temperature (e.g., 400°C or higher) is required compared to conventional amorphous silicon or IGZO types. There is Even after such a high-temperature thermal history, damage to the device can be reduced.
 ポリイミドは、200℃を超える温度で加熱すると、酸化されやすい。ポリイミドが酸化されると、得られるポリイミドフィルムが黄変し、ポリイミドフィルムの全光線透過率が低下する。そこで、200℃を超える温度領域では、(i)加熱雰囲気を不活性ガス雰囲気とするか、もしくは(ii)加熱雰囲気を減圧することが好ましい。 Polyimide is easily oxidized when heated at a temperature exceeding 200°C. When polyimide is oxidized, the obtained polyimide film turns yellow and the total light transmittance of the polyimide film decreases. Therefore, in the temperature range exceeding 200° C., it is preferable to (i) use an inert gas atmosphere as the heating atmosphere, or (ii) reduce the pressure of the heating atmosphere.
 (i)加熱雰囲気を不活性ガス雰囲気とすると、ポリイミドの酸化反応が抑制される。不活性ガスの種類は特に制限されず、アルゴンガスや窒素ガスや炭酸ガスとすることができる。また200℃を超える温度領域における酸素濃度は、1体積%以下であることが好ましく、0.1体積%(1000ppm)以下であることがより好ましく、0.01体積%(100ppm)以下であることがさらに好ましい。雰囲気中の酸素濃度は、市販の酸素濃度計(例えば、ジルコニア式酸素濃度計)により測定される。 (i) When the heating atmosphere is an inert gas atmosphere, the oxidation reaction of polyimide is suppressed. The type of inert gas is not particularly limited, and may be argon gas, nitrogen gas, or carbon dioxide gas. In addition, the oxygen concentration in the temperature range exceeding 200 ° C. is preferably 1% by volume or less, more preferably 0.1% by volume (1000 ppm) or less, and 0.01% by volume (100 ppm) or less. is more preferred. The oxygen concentration in the atmosphere is measured by a commercially available oxygen concentration meter (for example, a zirconia oxygen concentration meter).
 (ii)加熱雰囲気を減圧することによっても、ポリイミドの酸化反応が抑制される。加熱雰囲気を減圧する場合には、雰囲気内の圧力を15kPa以下とすることが好ましく、5kPa以下とすることがより好ましく、1kPa以下とすることがさらに好ましい。加熱雰囲気を減圧する場合には、減圧オーブンなどで塗膜を加熱する。 (ii) The oxidation reaction of polyimide is also suppressed by reducing the pressure of the heating atmosphere. When reducing the pressure of the heating atmosphere, the pressure in the atmosphere is preferably 15 kPa or less, more preferably 5 kPa or less, and even more preferably 1 kPa or less. When the heating atmosphere is decompressed, the coating film is heated in a decompression oven or the like.
 ポリアミド酸のイミド化(閉環)後、基材を剥離することで、ポリイミドフィルムが得られる。 After imidization (ring closure) of polyamic acid, a polyimide film is obtained by peeling off the base material.
 以下、本開示を実施例により更に詳細に説明する。しかしながら、本開示の範囲はこれによって何ら制限を受けない。 Hereinafter, the present disclosure will be described in more detail with examples. However, the scope of the disclosure is not limited thereby.
 1.材料
 実施例および比較例で使用したテトラカルボン酸二無水物およびジアミンは、以下の通りである。
1. Materials Tetracarboxylic dianhydrides and diamines used in Examples and Comparative Examples are as follows.
 [テトラカルボン酸二無水物]
 NTCDA:2,3,6,7-ナフタレンテトラカルボン酸二無水物
 PMDA:ピロメリット酸二無水物
 BPAF:フルオレニリデンビス無水フタル酸
 s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
[Tetracarboxylic dianhydride]
NTCDA: 2,3,6,7-naphthalenetetracarboxylic dianhydride PMDA: pyromellitic dianhydride BPAF: fluorenylidene bisphthalic anhydride s-BPDA: 3,3',4,4'-biphenyltetra Carboxylic acid dianhydride
 [ジアミン]
 TFMB:4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル
 BAFL:9,9-ビス(4-アミノフェニル)フルオレン
[Diamine]
TFMB: 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl BAFL: 9,9-bis(4-aminophenyl)fluorene
 2.試験1
 2-1.ワニスの調製
 (ポリアミド酸ワニス1~15の調製)
 温度計、コンデンサー、窒素導入管および攪拌羽を備えたフラスコに、表1のジアミンおよびN-メチル-2-ピロリジノン(NMP)(全モノマー総和の濃度が20質量%となるようにNMP重量を予め算出)を加えて、窒素雰囲気下において攪拌し、均一な溶液とした。当該溶液に、表1の対応するテトラカルボン酸ニ無水物を所定量、粉体のまま装入し、室温で撹拌30分、続けて、溶液温度を上げて、内温85~90℃で1時間撹拌させたところ、均一な溶液となった。その後、室温まで冷却し、一晩室温にて撹拌を継続し、淡黄色の粘稠なポリアミド酸ワニス(ポリアミド酸濃度が15質量%)を得た。
2. test 1
2-1. Preparation of varnish (Preparation of polyamic acid varnishes 1 to 15)
A flask equipped with a thermometer, a condenser, a nitrogen inlet tube and a stirrer was charged with the diamine and N-methyl-2-pyrrolidinone (NMP) from Table 1 (the weight of NMP was previously added so that the total concentration of all monomers was 20% by mass). calculated) was added and stirred under a nitrogen atmosphere to form a uniform solution. A predetermined amount of the corresponding tetracarboxylic acid dianhydride in Table 1 was added to the solution as powder, stirred at room temperature for 30 minutes, and then the solution temperature was raised to 85 to 90 ° C. for 1 hour. After stirring for a period of time, a uniform solution was obtained. Thereafter, the mixture was cooled to room temperature, and stirring was continued overnight at room temperature to obtain a pale yellow viscous polyamic acid varnish (polyamic acid concentration: 15% by mass).
 (固有粘度η)
 得られたワニスの固有粘度ηを、ポリマー濃度0.5g/dL、NMP、25℃にてウベローデ粘度管にて測定した。
(Intrinsic viscosity η)
The intrinsic viscosity η of the obtained varnish was measured with an Ubbelohde viscosity tube at a polymer concentration of 0.5 g/dL, NMP, and 25°C.
 ポリアミド酸ワニスの調製条件および物性を、表1に示す。 Table 1 shows the preparation conditions and physical properties of the polyamic acid varnish.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 2-2.ポリイミドフィルムの作製
 (ポリイミドフィルム1~15の作製)
 上記調製したポリアミド酸ワニスを、ガラス基材上にドクターブレードで塗工し、ワニスの塗膜を形成した。基材およびワニスの塗膜からなる積層体をイナートオーブンに入れた。その後、イナートオーブン内の酸素濃度を100ppm以下に制御し、オーブン内の雰囲気を50℃から350℃まで2時間30分かけて昇温(昇温速度2℃/分)し、さらに350℃で1時間保持した。加熱終了後、さらにイナート下において自然冷却した後のサンプルを蒸留水に浸漬させて、基材から、厚み9~12μmのポリイミドフィルムを剥離した。
2-2. Preparation of polyimide film (Preparation of polyimide films 1 to 15)
The polyamic acid varnish prepared above was applied onto a glass substrate with a doctor blade to form a coating film of the varnish. The laminate consisting of the substrate and the varnish coating was placed in an inert oven. After that, the oxygen concentration in the inert oven was controlled to 100 ppm or less, and the atmosphere in the oven was heated from 50°C to 350°C over 2 hours and 30 minutes (heating rate: 2°C/min). held for time. After heating, the sample was naturally cooled under an inert atmosphere and then immersed in distilled water to peel off a polyimide film having a thickness of 9 to 12 μm from the substrate.
 2-3.評価
 作製したポリイミドフィルムについて、(1)熱物性(線熱膨張係数(CTE)およびtanδ)、(2)光学物性(全光線透過率、b値、複屈折△n)、(3)機械物性(引張強度、伸びおよびMIT耐折性)を、以下の方法で測定した。
2-3. Evaluation For the prepared polyimide film, (1) thermal properties (linear thermal expansion coefficient (CTE) and tan δ), (2) optical properties (total light transmittance, b * value, birefringence Δn), (3) mechanical properties (Tensile strength, elongation and MIT folding endurance) were measured by the following methods.
 (1)熱物性
 (DMA(動的粘弾性測定)のtanδ)
 TAインスツルメンツ製RSA-IIIを用いて、幅5mm、長さ20mmの試料を、窒素雰囲気下において、測定温度25~450℃、昇温速度3℃/分、周波数1Hz、断面積当たり初期荷重5.0kg/cmとの測定条件にて、動的粘弾性を測定し、損失正接(損失弾性率を貯蔵弾性率で除した値、tanδ)を求めた。
(1) Thermophysical properties (tan δ of DMA (dynamic viscoelasticity measurement))
Using RSA-III manufactured by TA Instruments, a sample with a width of 5 mm and a length of 20 mm was measured in a nitrogen atmosphere at a temperature of 25 to 450 ° C., a temperature increase rate of 3 ° C./min, a frequency of 1 Hz, and an initial load per cross-sectional area. The dynamic viscoelasticity was measured under the measurement condition of 0 kg/cm 2 to obtain the loss tangent (value obtained by dividing the loss elastic modulus by the storage elastic modulus, tan δ).
 (線熱膨張係数(CTE))
 TMA装置に、試験片(幅5mm、長さ20mm)を取り付け後、窒素雰囲気下、荷重100mNにて、室温から5℃/minで300℃まで一度昇温した後(1stラン)、その後、50℃以下まで降温して試験片に蓄積された残留応力を取り除き、そのまま再び、5℃/minで450℃まで昇温(2ndラン)した時の、温度範囲100~350℃のTMA伸長比率を、線熱膨張係数(CTE)とした。
 CTEは、35ppm/K以下であれば許容範囲と判断した。
(Coefficient of linear thermal expansion (CTE))
After attaching a test piece (width 5 mm, length 20 mm) to the TMA device, under a nitrogen atmosphere, with a load of 100 mN, the temperature was raised once from room temperature to 300 ° C. at 5 ° C./min (1st run), then 50 After removing the residual stress accumulated in the test piece by lowering the temperature to ℃ or less, and raising the temperature again at 5 ℃ / min to 450 ℃ (2nd run), the TMA elongation ratio in the temperature range of 100 to 350 ℃, The coefficient of linear thermal expansion (CTE) was used.
A CTE of 35 ppm/K or less was judged to be acceptable.
 (2)光学物性
 (全光線透過率)
 得られたポリイミドフィルムの全光線透過率(Total Tranmittance:TT)を、日本電色工業製ヘーズメーターNDH2000を用いて、JIS-K7361に準じて、光源D65で測定した。
(2) Optical properties (total light transmittance)
The total light transmittance (TT) of the obtained polyimide film was measured with a light source D65 according to JIS-K7361 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries.
 (波長450nmの光線透過率)
 島津製作所製Multi spec-1500を使用し、波長300~800nm領域のUV-可視スペクトル測定を行い、波長450nmの光の透過率をT@450nmとして得た。
(Light transmittance at a wavelength of 450 nm)
Using Multi spec-1500 manufactured by Shimadzu Corporation, UV-visible spectrum measurement in the wavelength range of 300 to 800 nm was performed, and the transmittance of light with a wavelength of 450 nm was obtained as T@450 nm.
 (b値)
 得られたポリイミドフィルムについて、スガ試験機製 三刺激値直読式測色計(Colour Cute i CC-i型)を使用し、黄味の指標となるL表色系におけるb値を透過モード 0°diで測定した。
 b値は、8以下であれば許容範囲と判断した。
(b * value)
For the obtained polyimide film, a tristimulus value direct-reading colorimeter (Colour Cute i CC-i type) manufactured by Suga Test Instruments Co., Ltd. is used, and the b * value in the L * a * b * color system, which is an indicator of yellowness. was measured in transmission mode 0° di.
If the b * value was 8 or less, it was judged to be within the allowable range.
 (複屈折Δn)
 メトリコン社製プリズムカプラ(モデル2010)を用いて、結合プリズムを通してサンプルに波長633nmのレーザー光を入射し、TE偏光における屈折率(nTE)、および、TM偏光における屈折率(nTM)を測定し、nTEからnTMを減じて、複屈折を算出した。
(Birefringence Δn)
Using a Metricon prism coupler (model 2010), a laser beam with a wavelength of 633 nm is incident on the sample through a coupling prism, and the refractive index (nTE) in TE polarized light and the refractive index (nTM) in TM polarized light are measured, Birefringence was calculated by subtracting nTM from nTE.
 (3)機械物性
 (引張強度、引張伸び)
 得られたポリイミドフィルムより、ダンベル型打ち抜き試験片を作製し、引張試験機(島津製作所製、EZ-S)にて、標線幅5mm、試料長30mm、引張速度30mm/分の条件で測定を行った。得られた応力・歪曲線より、破断に至った点における強度および伸度をそれぞれ引張強度(TS)および引張伸び(EL)とし、5回の測定値の平均値を採用した。
(3) Mechanical properties (tensile strength, tensile elongation)
A dumbbell-shaped punched test piece was prepared from the obtained polyimide film, and measured with a tensile tester (EZ-S, manufactured by Shimadzu Corporation) under the conditions of a marked line width of 5 mm, a sample length of 30 mm, and a tensile speed of 30 mm/min. gone. From the obtained stress-strain curve, the strength and elongation at the breaking point were defined as tensile strength (TS) and tensile elongation (EL), respectively, and the average value of five measurements was adopted.
 (MIT耐折性(曲げ耐性))
 上記作製したポリイミドフィルムを、長さ120mm×幅15mmの形状にカットし、試験片とした。
 この試験片の一端を、安田精機製作所製 MIT型耐折試験機(307型)にセットして、他端を把持し、曲率半径0.38mm、荷重0.5Kg、折り曲げ角度270度(左右135度)、折り曲げ速度175回/分の条件で往復折り曲げし、破断するまでの回数を測定した。測定条件は、以下の通りとした。
 (測定条件)
 曲げ半径:R=0.38mm
 荷重:0.5kgf
 折り曲げ角度:270°(左右135°)
 折り曲げ速度:175回/分
 試験回数:n=3
 なお、試験時には、試験片の一方側への折り曲げを1回と数えた。3つの試験片についてそれぞれ試験を行い、これらの試験結果の算術平均値について有効数値2ケタで四捨五入した値を耐折性の測定結果とした。また、耐折性の測定結果の上限値は、100万回とした。
 破断するまでの回数が1万回以上であれば許容範囲と判断した。
(MIT folding endurance (bending endurance))
The polyimide film prepared above was cut into a shape of length 120 mm×width 15 mm to obtain a test piece.
One end of this test piece is set in an MIT folding endurance tester (307 type) manufactured by Yasuda Seiki Seisakusho, and the other end is held, with a curvature radius of 0.38 mm, a load of 0.5 kg, and a bending angle of 270 degrees (left and right 135 degree), and the bending rate was 175 times/minute, and the number of times until breakage was measured. The measurement conditions were as follows.
(Measurement condition)
Bending radius: R = 0.38 mm
Load: 0.5kgf
Bending angle: 270° (left and right 135°)
Bending speed: 175 times/min Number of tests: n = 3
In addition, at the time of the test, the bending of the test piece to one side was counted as one time. Three test pieces were tested, and the arithmetic mean value of these test results was rounded to the nearest two digits to obtain the folding endurance measurement result. Moreover, the upper limit of the folding endurance measurement result was set to 1,000,000 times.
If the number of times until breakage was 10,000 times or more, it was judged to be acceptable.
 ポリイミドフィルム1~15の評価結果を表2に示す。 Table 2 shows the evaluation results of polyimide films 1 to 15.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表2に示されるように、ジアミンとしてTFMB、テトラカルボン酸二無水物としてNTCDA(a1)とBPDA(a3)とを含み、かつNTCDAとPMDAの合計量(a1+a2)が所定の範囲にあるポリアミド酸ワニス2、3および5~15から得られるポリイミドフィルムは、b値を低く維持しつつ、低CTEと高い屈曲性を両立できることがわかる。 As shown in Table 2, polyamic acid containing TFMB as a diamine, NTCDA (a1) and BPDA (a3) as tetracarboxylic dianhydrides, and the total amount of NTCDA and PMDA (a1 + a2) is within a predetermined range. It can be seen that the polyimide films obtained from varnishes 2, 3 and 5-15 can achieve both low CTE and high flexibility while maintaining a low b * value.
 これに対し、テトラカルボン酸二無水物がNTCDA(a1)を含むが、PMDA(a2)およびBPDA(a3)の両方を含まないポリアミド酸ワニス1および15から得られるポリイミドフィルムは、屈曲性が悪いことがわかる。また、テトラカルボン酸二無水物がPMDA(a2)のみからなるポリアミド酸ワニス13から得られるポリイミドフィルムは、屈曲性が悪いことがわかる。また、テトラカルボン酸二無水物がBPDA(a3)を含まないポリアミド酸ワニス4から得られるポリイミドフィルムは、屈曲性が悪いことがわかる。 In contrast, polyimide films obtained from polyamic acid varnishes 1 and 15, in which the tetracarboxylic dianhydride contains NTCDA (a1) but does not contain both PMDA (a2) and BPDA (a3), have poor flexibility. I understand. It is also found that the polyimide film obtained from the polyamic acid varnish 13 in which the tetracarboxylic dianhydride is composed only of PMDA (a2) has poor flexibility. Moreover, it can be seen that the polyimide film obtained from the polyamic acid varnish 4 in which the tetracarboxylic dianhydride does not contain BPDA (a3) has poor flexibility.
 3.試験2
 3-1.ポリイミドフィルムの作製
 表3で示したポリアミド酸ワニスを用いて、ガラス基板(無アルカリガラス、 NEG製 OA11、厚さ0.5mm)へスピンコートしたものを、イナートオーブン(光洋サーモシステム製、型式 INH21CD)を用いて、庫内の酸素濃度が20ppm以下となるように調整して、下記の条件A)または条件B)の焼成条件で、ガラス基板と、表3または4に示される厚みのポリイミド樹脂膜(ポリイミドフィルム)の積層体を作製した。
 条件A)昇温速度2℃/minで50℃から430℃まで昇温し、さらに430℃で30分間保持
 条件B)昇温速度2℃/minで50℃から450℃まで昇温し、さらに450℃で30分間保持
3. test 2
3-1. Preparation of polyimide film Using the polyamic acid varnish shown in Table 3, a glass substrate (non-alkali glass, OA11 made by NEG, thickness 0.5 mm) was spin-coated and placed in an inert oven (manufactured by Koyo Thermo Systems, model INH21CD). ) is used to adjust the oxygen concentration in the chamber to 20 ppm or less, and the glass substrate and the polyimide resin having a thickness shown in Table 3 or 4 are baked under the following conditions A) or B). A laminate of membranes (polyimide films) was produced.
Condition A) The temperature was raised from 50°C to 430°C at a temperature elevation rate of 2°C/min, and the temperature was maintained at 430°C for 30 minutes. Condition B) The temperature was raised from 50°C to 450°C at a temperature elevation rate of 2°C/min. Hold at 450°C for 30 minutes
 3-2.評価
 (1)熱物性、(2)光学物性および(3)機械物性
 得られた積層体を蒸留水に浸漬させて、ガラス基板からポリイミドフィルムを剥離した。得られたポリイミドフィルムの(1)熱物性(CTEおよびtanδ)、(2)光学物性(T@450nm、全光線透過率、b値)、(3)機械物性(引張強度、引張伸び、引張弾性率およびMIT耐折性)を上記と同様の方法で測定した。
3-2. Evaluation (1) Thermophysical properties, (2) Optical properties and (3) Mechanical properties The obtained laminate was immersed in distilled water, and the polyimide film was peeled off from the glass substrate. (1) Thermophysical properties (CTE and tan δ), (2) Optical properties (T @ 450 nm, total light transmittance, b * value), (3) Mechanical properties (tensile strength, tensile elongation, tensile Elastic modulus and MIT folding endurance) were measured in the same manner as above.
 条件A)で作製したポリイミドフィルムの評価結果を表3に、条件B)で作製したポリイミドフィルムの評価結果を表4に示す。なお、表3および4において、「-」は、未測定であることを示す。 Table 3 shows the evaluation results of the polyimide film produced under condition A), and Table 4 shows the evaluation result of the polyimide film produced under condition B). In Tables 3 and 4, "-" indicates unmeasured.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表3および4に示されるように、ジアミンとしてTFMB、テトラカルボン酸二無水物としてNTCDA(a1)とBPDA(a3)とを含み、かつNTCDAとPMDAの合計量(a1+a2)が所定の範囲にあるポリアミド酸ワニス5、6、8、15(実施例)から得られたポリイミドフィルムは、ポリアミド酸ワニス1(比較例)から得られたポリイミドフィルムよりもb値が低く、ポリアミド酸ワニス15(比較例)から得られたポリイミドフィルムよりもCTEが低いことがわかる。中でも、ポリアミド酸ワニス6から得られたポリイミドフィルムでは、MIT耐折性が100万回超となり、優れた屈曲性を示した。 As shown in Tables 3 and 4, TFMB as a diamine, NTCDA (a1) and BPDA (a3) as tetracarboxylic dianhydrides, and the total amount of NTCDA and PMDA (a1 + a2) is within a predetermined range The polyimide films obtained from polyamic acid varnishes 5, 6, 8, 15 (examples) had lower b * values than the polyimide films obtained from polyamic acid varnish 1 (comparative example), and polyamic acid varnish 15 (comparative It can be seen that the CTE is lower than that of the polyimide film obtained from Example). Among them, the polyimide film obtained from polyamic acid varnish 6 had an MIT folding endurance of more than 1,000,000 times, showing excellent flexibility.
 4.試験3
 上記条件A)で得られた積層体の一部について、LLO剥離試験およびLLO剥離試験後の特性を評価した。
4. test 3
Some of the laminates obtained under the condition A) were evaluated for the LLO peel test and the properties after the LLO peel test.
 (1)LLO剥離試験
 上記条件A)で得られた積層体のガラス基板側を用いて、UV固体レーザー剥離装置(オプトピア製LSL40F、波長:355nm、ビームサイズ:45mm×0.4mm、焦点深度:±1mm、レーザー繰り返し:20Hz、ビームオーバーラップ:50%)による剥離試験を行った。
(1) LLO peeling test Using the glass substrate side of the laminate obtained under the above condition A), a UV solid-state laser peeling device (LSL40F manufactured by Optopia, wavelength: 355 nm, beam size: 45 mm × 0.4 mm, depth of focus: ±1 mm, laser repetition: 20 Hz, beam overlap: 50%).
 (2)LLO剥離後の特性
 LLO剥離後のフィルムを、島津製作所製Multi spec-1500を使用し、波長300~800nm領域のUV-可視スペクトル測定を行った。そして、LLO剥離前後の波長390~800nmの10μm厚換算の平均透過率(Tavg.%)を下記式に当てはめて、LLO剥離前後の変化率を求めた。
 変化率(%)={(LLO剥離後のTavg.%)-(LLO剥離前のTavg.%)/(LLO剥離前のTavg.%)}×100
 なお、LLO剥離前のTavg.%は、上記3-2の評価で作製したポリイミドフィルムについて、島津製作所製Multi spec-1500を用いて上記と同様に算出した。
(2) Properties after LLO Peeling The film after LLO peeling was subjected to UV-visible spectrum measurement in the wavelength range of 300 to 800 nm using Multi spec-1500 manufactured by Shimadzu Corporation. Then, the average transmittance (Tavg.%) converted to a thickness of 10 μm at a wavelength of 390 to 800 nm before and after LLO peeling was applied to the following formula to obtain the rate of change before and after LLO peeling.
Change rate (%) = {(Tavg.% after LLO peeling) - (Tavg.% before LLO peeling) / (Tavg.% before LLO peeling)} × 100
Note that the Tavg. % was calculated in the same manner as above using Multi spec-1500 manufactured by Shimadzu Corporation for the polyimide film produced in the evaluation of 3-2 above.
 さらに、LLO剥離後のフィルムの機械物性(引張強度、引張伸びおよび引張弾性率)を、上記と同様の方法で測定した。 Furthermore, the mechanical properties (tensile strength, tensile elongation and tensile modulus) of the film after LLO peeling were measured in the same manner as above.
 これらの評価結果を、表5に示す。 These evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 LLO剥離試験では、いずれのポリイミドフィルムも、照射エネルギー135~150mJ/cmで剥離可能であることがわかった。
 また、レーザー照射によるポリイミドフィルムのダメージが懸念されたが、表5に示すように、LLO剥離後のフィルムの平均透過率の変化率に著しい低下はみられなかった。さらに、表5と表3の対比からも示されるように、引張試験による機械物性にも著しい低下がみられなかった。これらの結果から、良好なLLO耐性を示すことも確認された。
In the LLO peeling test, it was found that any polyimide film can be peeled off with an irradiation energy of 135 to 150 mJ/cm 2 .
In addition, although there was concern about damage to the polyimide film due to laser irradiation, as shown in Table 5, no significant decrease in the rate of change in average transmittance of the film after LLO peeling was observed. Furthermore, as shown by comparing Tables 5 and 3, no significant deterioration in mechanical properties was observed in the tensile test. These results also confirmed that good LLO resistance was exhibited.
 本出願は、2021年8月6日出願の特願2021-130236に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-130236 filed on August 6, 2021. All contents described in the specification of the application are incorporated herein by reference.
 本開示のポリアミド酸組成物は、b値を増大させることなく、十分な低熱膨張性と曲げ耐性とを両有するポリイミドフィルムを付与しうる。そのようなフィルムは、各種電子機器用の基板に適用可能である。 The polyamic acid compositions of the present disclosure can impart polyimide films with both sufficiently low thermal expansion and bending resistance without increasing the b * value. Such films are applicable to substrates for various electronic devices.

Claims (18)

  1.  ポリアミド酸を含むポリアミド酸組成物であって、
     前記ポリアミド酸は、テトラカルボン酸二無水物に由来する構造単位と、ジアミンに由来する構造単位とを含み、
     前記テトラカルボン酸二無水物は、
     式(a1)で表される化合物と、
     式(a2)で表される化合物および/または式(a3)で表される化合物と、
     を含み、
    Figure JPOXMLDOC01-appb-C000001
    (式(a1)において、
     RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
     mおよびnは、それぞれ0~2の整数であり、かつm+nは3以下である)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(a3)において、
     RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
     oおよびpは、それぞれ0~3の整数であり、かつo+pは、3以下である)
     前記ジアミンは、式(b1)で表される化合物を含み、
    Figure JPOXMLDOC01-appb-C000004
     前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10モル%以上であり、
     前記式(a1)で表される化合物および式(a2)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である、
     ポリアミド酸組成物。
    A polyamic acid composition containing a polyamic acid,
    The polyamic acid includes a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine,
    The tetracarboxylic dianhydride is
    a compound represented by formula (a1);
    a compound represented by formula (a2) and/or a compound represented by formula (a3);
    including
    Figure JPOXMLDOC01-appb-C000001
    (In formula (a1),
    R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms,
    m and n are each an integer of 0 to 2, and m+n is 3 or less)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In formula (a3),
    R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms,
    o and p are each an integer of 0 to 3, and o+p is 3 or less)
    The diamine contains a compound represented by formula (b1),
    Figure JPOXMLDOC01-appb-C000004
    The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the total amount of the tetracarboxylic dianhydride,
    The total amount of the compound represented by the formula (a1) and the compound represented by the formula (a2) is 30 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride.
    A polyamic acid composition.
  2.  前記テトラカルボン酸二無水物は、前記式(a3)で表される化合物を含む、
     請求項1に記載のポリアミド酸組成物。
    The tetracarboxylic dianhydride contains the compound represented by the formula (a3),
    The polyamic acid composition according to claim 1.
  3.  前記式(a3)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、
     請求項2に記載のポリアミド酸組成物。
    The content of the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride.
    3. The polyamic acid composition according to claim 2.
  4.  前記式(a1)で表される化合物の含有量は、前記式(a2)で表される化合物の含有量よりも多い、
     請求項1に記載のポリアミド酸組成物。
    The content of the compound represented by the formula (a1) is greater than the content of the compound represented by the formula (a2).
    The polyamic acid composition according to claim 1.
  5.  前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である、
     請求項1に記載のポリアミド酸組成物。
    The content of the compound represented by the formula (a1) is 30 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride.
    The polyamic acid composition according to claim 1.
  6.  前記式(a2)で表される化合物および前記式(a3)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して10~70モル%である、
     請求項1に記載のポリアミド酸組成物。
    The total amount of the compound represented by the formula (a2) and the compound represented by the formula (a3) is 10 to 70 mol% with respect to the total amount of the tetracarboxylic dianhydride.
    The polyamic acid composition according to claim 1.
  7.  前記テトラカルボン酸二無水物は、式(a4)で表される化合物をさらに含むか、または
    Figure JPOXMLDOC01-appb-C000005
     前記ジアミンは、式(b2)で表される化合物をさらに含む、
    Figure JPOXMLDOC01-appb-C000006
    (式(a4)および(b2)において、
     R、R、RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
     q、r、sおよびtは、それぞれ0~3の整数であり、かつq+rおよびs+tは、それぞれ3以下である)
     請求項1に記載のポリアミド酸組成物。
    The tetracarboxylic dianhydride further comprises a compound represented by formula (a4), or
    Figure JPOXMLDOC01-appb-C000005
    The diamine further comprises a compound represented by formula (b2),
    Figure JPOXMLDOC01-appb-C000006
    (In formulas (a4) and (b2),
    R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 to 4 carbon atoms,
    q, r, s and t are each an integer from 0 to 3, and q+r and s+t are each 3 or less)
    The polyamic acid composition according to claim 1.
  8.  前記式(a4)で表される化合物および前記式(b2)で表される化合物の合計量は、ジアミンとテトラカルボン酸二無水物の合計に対して0.5~15モル%である、
     請求項7に記載のポリアミド酸組成物。
    The total amount of the compound represented by the formula (a4) and the compound represented by the formula (b2) is 0.5 to 15 mol% with respect to the total of the diamine and the tetracarboxylic dianhydride.
    The polyamic acid composition according to claim 7.
  9.  前記式(b1)で表される化合物の含有量は、前記ジアミンの全量に対して80モル%以上である、
     請求項1に記載のポリアミド酸組成物。
    The content of the compound represented by the formula (b1) is 80 mol% or more with respect to the total amount of the diamine.
    The polyamic acid composition according to claim 1.
  10.  前記ポリアミド酸組成物を350℃で熱イミド化して、厚み10μmのポリイミドフィルムにしたときのL表色系におけるb値は8.0以下である、
     請求項1~9のいずれか一項に記載のポリアミド酸組成物。
    When the polyamic acid composition is thermally imidized at 350 ° C. to form a polyimide film having a thickness of 10 μm, the b * value in the L * a * b * color system is 8.0 or less.
    Polyamic acid composition according to any one of claims 1 to 9.
  11.  前記ポリアミド酸組成物を350℃で熱イミド化して、厚み10μmのポリイミドフィルムにしたときのJIS P8115に準拠して測定されるMIT耐折性試験の耐折回数は、1万回以上である、
     請求項1~9のいずれか一項に記載のポリアミド酸組成物。
    When the polyamic acid composition is thermally imidized at 350° C. to form a polyimide film having a thickness of 10 μm, the folding endurance in the MIT folding endurance test measured in accordance with JIS P8115 is 10,000 times or more.
    Polyamic acid composition according to any one of claims 1 to 9.
  12.  ポリイミドを含むポリイミド組成物であって、
     前記ポリイミドは、テトラカルボン酸二無水物に由来する構造単位と、ジアミンに由来する構造単位とを含み、
     前記テトラカルボン酸二無水物は、
     式(a1)で表される化合物と、
     式(a2)で表される化合物および/または式(a3)で表される化合物と、
     を含み、
    Figure JPOXMLDOC01-appb-C000007
    (式(a1)において、
     RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
     mおよびnは、それぞれ0~2の整数であり、かつm+nは3以下である)
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (式(a3)において、
     RおよびRは、それぞれ独立して炭素数1~4のアルキル基であり、
     oおよびpは、それぞれ0~3の整数であり、かつo+pは3以下である)
     前記ジアミンは、式(b1)で表される化合物を含み、
    Figure JPOXMLDOC01-appb-C000010
     前記式(a1)で表される化合物の含有量は、前記テトラカルボン酸二無水物の全量に対して10モル%以上であり、
     前記式(a1)で表される化合物および式(a2)で表される化合物の合計量は、前記テトラカルボン酸二無水物の全量に対して30~80モル%である、
     ポリイミド組成物。
    A polyimide composition comprising a polyimide,
    The polyimide includes a structural unit derived from a tetracarboxylic dianhydride and a structural unit derived from a diamine,
    The tetracarboxylic dianhydride is
    a compound represented by formula (a1);
    a compound represented by formula (a2) and/or a compound represented by formula (a3);
    including
    Figure JPOXMLDOC01-appb-C000007
    (In formula (a1),
    R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms,
    m and n are each an integer of 0 to 2, and m+n is 3 or less)
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (In formula (a3),
    R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms,
    o and p are each an integer of 0 to 3, and o+p is 3 or less)
    The diamine contains a compound represented by formula (b1),
    Figure JPOXMLDOC01-appb-C000010
    The content of the compound represented by the formula (a1) is 10 mol% or more with respect to the total amount of the tetracarboxylic dianhydride,
    The total amount of the compound represented by the formula (a1) and the compound represented by the formula (a2) is 30 to 80 mol% with respect to the total amount of the tetracarboxylic dianhydride.
    Polyimide composition.
  13.  フィルムにしたときの100~350℃の線熱膨張係数は、-10~30ppm/Kである、
     請求項12に記載のポリイミド組成物。
    The linear thermal expansion coefficient at 100 to 350 ° C. when made into a film is -10 to 30 ppm / K.
    13. The polyimide composition of claim 12.
  14.  フィルムにしたときの、波長633nmにおける厚み方向の複屈折△nは0.19以下である、
     請求項12または13に記載のポリイミド組成物。
    When made into a film, the birefringence Δn in the thickness direction at a wavelength of 633 nm is 0.19 or less.
    14. The polyimide composition according to claim 12 or 13.
  15.  請求項12または13に記載のポリイミド組成物を含む、
     ポリイミドフィルム。
    comprising the polyimide composition of claim 12 or 13,
    polyimide film.
  16.  JIS P8115に準拠して測定されるMIT耐折性試験の耐折回数は、1万回以上である、
     請求項15に記載のポリイミドフィルム。
    The folding endurance number of the MIT folding endurance test measured in accordance with JIS P8115 is 10,000 times or more.
    The polyimide film according to claim 15.
  17.  L表色系におけるb値は16以下である、
     請求項15に記載のポリイミドフィルム。
    The b * value in the L * a * b * color system is 16 or less,
    The polyimide film according to claim 15.
  18.  請求項17に記載のポリイミドフィルムを含む、
     ディスプレイパネル基板。
    comprising the polyimide film of claim 17,
    display panel substrate.
PCT/JP2022/028046 2021-08-06 2022-07-19 Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate WO2023013401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540232A JPWO2023013401A1 (en) 2021-08-06 2022-07-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130236 2021-08-06
JP2021130236 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013401A1 true WO2023013401A1 (en) 2023-02-09

Family

ID=85155886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028046 WO2023013401A1 (en) 2021-08-06 2022-07-19 Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate

Country Status (3)

Country Link
JP (1) JPWO2023013401A1 (en)
TW (1) TW202321349A (en)
WO (1) WO2023013401A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216039A (en) * 1992-02-05 1993-08-27 Canon Inc Liquid crystal element
CN101591521A (en) * 2009-07-08 2009-12-02 北京航空航天大学 A kind of fluorene-containing polyimide adhesive and preparation method thereof
WO2014097633A1 (en) * 2012-12-21 2014-06-26 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor, photosensitive resin composition containing said polyimide precursor, and cured-pattern-film manufacturing method and semiconductor device using said photosensitive resin composition
WO2014129464A1 (en) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body
JP2016204457A (en) * 2015-04-17 2016-12-08 Jfeケミカル株式会社 Polyamide acid composition and polyimide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216039A (en) * 1992-02-05 1993-08-27 Canon Inc Liquid crystal element
CN101591521A (en) * 2009-07-08 2009-12-02 北京航空航天大学 A kind of fluorene-containing polyimide adhesive and preparation method thereof
WO2014097633A1 (en) * 2012-12-21 2014-06-26 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor, photosensitive resin composition containing said polyimide precursor, and cured-pattern-film manufacturing method and semiconductor device using said photosensitive resin composition
WO2014129464A1 (en) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 Laminate body, solar cell member, solar cell, display device member, display device, and method for manufacturing laminate body
JP2016204457A (en) * 2015-04-17 2016-12-08 Jfeケミカル株式会社 Polyamide acid composition and polyimide composition

Also Published As

Publication number Publication date
JPWO2023013401A1 (en) 2023-02-09
TW202321349A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP7304338B2 (en) Method for producing polyimide film and method for producing electronic device
JP6435298B2 (en) RESIN PRECURSOR AND RESIN COMPOSITION CONTAINING THE SAME, RESIN FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
CN108431086B (en) Polyamide acid composition using alicyclic monomer and transparent polyimide film using same
CN109897180B (en) Polyamide acid solution, transparent polyimide resin film using same, and transparent substrate
CN109642026B (en) Polyamic acid and solution thereof, polyimide and film thereof, laminate, flexible device, and method for producing polyimide film
JP6016561B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
JP6257302B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
US20210009760A1 (en) Polyamic acid and method for producing same, polyamic acid solution, polyimide, polyimide film, laminate and method for producing same, and flexible device and method for producing same
JP7084755B2 (en) A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film.
TWI807056B (en) Polymer film, polyamide acid, polyamide acid varnish, method for producing polyimide laminate, method for producing polyimide film, touch panel display, liquid crystal display, organic electroluminescent display
JP7349253B2 (en) A polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate, a flexible device, and a method for producing a polyimide film.
JP5325491B2 (en) Novel coating type optical compensation film and method for producing the same
JP2006336009A (en) New polyimide copolymer and molded article of polyimide obtained by molding the same
CN111770949A (en) Polyimide, polyimide solution composition, polyimide film, and substrate
WO2023013401A1 (en) Polyamic acid composition and polyimide composition, polyimide film, and display panel substrate
JP5015070B2 (en) Novel coating type optical compensation film and method for producing the same
JP2024065610A (en) Polyimide film manufacturing method
JP6846148B2 (en) Polyimide precursor solution and its production method, polyimide film production method and laminate production method
JP7225427B2 (en) Polyimide film, polyamic acid and varnish containing the same, polyimide laminate and method for producing the same
WO2022118794A1 (en) Polyamic acid, varnish including same, method for producing polyamic acid, polyimide, film including same, and display panel substrate
JP2022068709A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, as well as production method of polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540232

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE