JP6257302B2 - POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD - Google Patents

POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP6257302B2
JP6257302B2 JP2013260008A JP2013260008A JP6257302B2 JP 6257302 B2 JP6257302 B2 JP 6257302B2 JP 2013260008 A JP2013260008 A JP 2013260008A JP 2013260008 A JP2013260008 A JP 2013260008A JP 6257302 B2 JP6257302 B2 JP 6257302B2
Authority
JP
Japan
Prior art keywords
pmda
polyimide
derived
mmol
polyimide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013260008A
Other languages
Japanese (ja)
Other versions
JP2014139302A (en
Inventor
康史 飯塚
康史 飯塚
珠莉 岩間
珠莉 岩間
省三 高田
省三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013260008A priority Critical patent/JP6257302B2/en
Publication of JP2014139302A publication Critical patent/JP2014139302A/en
Application granted granted Critical
Publication of JP6257302B2 publication Critical patent/JP6257302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば、フレキシブルデバイスのための基板に用いられる、ポリイミド前駆体及びそれを含有する樹脂組成物、ポリイミドフィルム及びその製造方法、並びに、積層体及びその製造方法に関する。   The present invention relates to, for example, a polyimide precursor and a resin composition containing the polyimide precursor, a polyimide film and a manufacturing method thereof, and a laminate and a manufacturing method thereof, which are used for a substrate for a flexible device.

一般に、ポリイミド(PI)フィルムは、ポリイミド樹脂のフィルムである。ポリイミド樹脂は、芳香族酸二無水物と芳香族ジアミンとを溶液重合し、ポリイミド前駆体を製造した後、高温で閉環脱水させ、熱イミド化して、又は、触媒を用いて化学イミド化して、製造される高耐熱樹脂である。   Generally, a polyimide (PI) film is a polyimide resin film. Polyimide resin is a solution polymerization of an aromatic dianhydride and an aromatic diamine, and after producing a polyimide precursor, ring closure dehydration at high temperature, thermal imidization, or chemical imidization using a catalyst, It is a highly heat-resistant resin that is manufactured.

ポリイミド樹脂は、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有しており、絶縁コーティング剤、絶縁膜、半導体、TFT−LCDの電極保護膜等の電子材料を含む広範囲な分野で用いられ、最近は、光ファイバーや液晶配向膜のようなディスプレイ材料等にも用いられている。   Polyimide resin is an insoluble and infusible super heat-resistant resin, and has excellent characteristics such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, chemical resistance, etc. It is used in a wide range of fields including electronic materials such as films, semiconductors, and electrode protection films for TFT-LCDs, and recently, it is also used for display materials such as optical fibers and liquid crystal alignment films.

しかしながら、ポリイミド樹脂は、高い芳香環密度により、茶色又は黄色に着色し、可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。   However, polyimide resins are colored brown or yellow due to high aromatic ring density, have low transmittance in the visible light region, and have been difficult to use in fields where transparency is required.

特許文献1には、特定の構造を含む酸二無水物及びジアミンを用いることで、透過率及び色相の透明度を向上させた新規な構造のポリイミドを製造した報告がある。   Patent Document 1 reports that a polyimide having a novel structure in which transmittance and hue transparency are improved by using an acid dianhydride and a diamine containing a specific structure.

一方、特許文献2及び特許文献3には、透明性を付与するため、脂環構造を導入したポリイミドフィルムが開示されている。   On the other hand, Patent Document 2 and Patent Document 3 disclose a polyimide film into which an alicyclic structure is introduced in order to impart transparency.

特開2000−198843号公報JP 2000-198843 A 特開2005−336243号公報JP 2005-336243 A 特開2001−353113号公報JP 2001-353113 A

しかしながら、特許文献1に記載されたポリイミドの機械的特性及び熱特性は、例えば、半導体絶縁膜、TFT−LCD絶縁膜、電極保護膜及びフレキシブルディスプレイ基板として用いるのに十分ではなかった。   However, the mechanical characteristics and thermal characteristics of polyimide described in Patent Document 1 are not sufficient for use as, for example, a semiconductor insulating film, a TFT-LCD insulating film, an electrode protective film, and a flexible display substrate.

特に、特許文献1に記載されたポリイミドは線膨張係数(以下、CTEとも記す)が高いことを特徴としている。CTEが高い場合、TFT工程等で温度変化に応じたフィルムの膨張及び収縮の程度が大きくなり、素子に用いられる無機物膜に損傷が生じ、素子能力が低下する。このため、TFTを形成する基板、カラーフィルターを形成する基板、配向膜、フレキシブルディスプレイ用透明基板等にポリイミド樹脂を用いるためには、無色透明で且つCTEが低くなければならない。   In particular, the polyimide described in Patent Document 1 is characterized by a high coefficient of linear expansion (hereinafter also referred to as CTE). When the CTE is high, the degree of expansion and contraction of the film in response to a temperature change in the TFT process or the like increases, resulting in damage to the inorganic film used in the device, resulting in a reduction in device capability. For this reason, in order to use a polyimide resin for a substrate for forming a TFT, a substrate for forming a color filter, an alignment film, a transparent substrate for flexible display, etc., it must be colorless and transparent and have a low CTE.

また、特許文献2に記載されたポリイミドでは、透明性を有するもののCTEが高く、破断伸び率が低いという懸念があった。破断伸び率が低い場合、フレキシブルデバイスを取り扱う際にフレキシブル基板に損傷が生じ、デバイスとして使用できない。特許文献3に記載されたポリイミドでは、多環の芳香族ジアミンを使うことで靱性を付与しているが、CTEが高くなり、半導体絶縁膜、TFT−LCD絶縁膜、電極保護膜及びフレキシブルディスプレイ基板として用いるのに十分ではなかった。   Moreover, although the polyimide described in Patent Document 2 has transparency, there is a concern that the CTE is high and the elongation at break is low. When the elongation at break is low, the flexible substrate is damaged when the flexible device is handled and cannot be used as a device. In the polyimide described in Patent Document 3, toughness is imparted by using a polycyclic aromatic diamine, but the CTE increases, and a semiconductor insulating film, a TFT-LCD insulating film, an electrode protective film, and a flexible display substrate It was not enough to use as.

本発明は、上記説明した問題点に鑑みてなされたものであり、無色透明であると共に、CTEが低く、且つ、伸度に優れたポリイミドフィルムを製造することができるポリイミド前駆体及びそれを含有する樹脂組成物、ポリイミドフィルム及びその製造方法、並びに、積層体及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and includes a polyimide precursor that can produce a polyimide film that is colorless and transparent, has a low CTE, and is excellent in elongation. An object of the present invention is to provide a resin composition, a polyimide film and a production method thereof, and a laminate and a production method thereof.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定構造のポリイミド前駆体をイミド化したポリイミドが、優れた透明性、低線膨張係数、高い伸度を示すことを見出し、この知見に基づいて本発明をなすに至った。すなわち、本発明は、以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have shown that polyimide obtained by imidizing a polyimide precursor having a specific structure exhibits excellent transparency, low linear expansion coefficient, and high elongation. Based on the finding and this finding, the present invention has been made. That is, the present invention is as follows.

本発明のポリイミド前駆体は、ジアミン由来構造として、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)に由来する構造と、酸二無水物由来構造として、ピロメリット酸二無水物(PMDA)及び4,4’−オキシジフタル酸二無水物(ODPA)に由来する構造と、1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA)及び/又は1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)に由来する構造を有することを特徴とする。   The polyimide precursor of the present invention has a structure derived from 2,2′-bis (trifluoromethyl) benzidine (TFMB) as a diamine-derived structure, and pyromellitic dianhydride (PMDA) as an acid dianhydride-derived structure. ) And 4,4′-oxydiphthalic dianhydride (ODPA) and 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and / or 1,2,4,5- It has a structure derived from cyclohexanetetracarboxylic dianhydride (H-PMDA).

この構成により、無色透明であると共に、線膨張係数が低く、さらに伸度が高いポリイミドフィルムを製造することができる。   With this configuration, it is possible to produce a polyimide film that is colorless and transparent, has a low coefficient of linear expansion, and has a high elongation.

本発明のポリイミド前駆体において、前記TFMB由来の構造を全ジアミン由来構造中60モル%以上含み、前記PMDA、前記ODPA、前記CBDA、及び前記H−PMDA由来の構造を、合わせて全酸二無水物由来構造中60モル%以上含むことが好ましい。   In the polyimide precursor of the present invention, the TFMB-derived structure contains 60 mol% or more of the total diamine-derived structure, and the PMDA, the ODPA, the CBDA, and the H-PMDA-derived structure are combined in total acid dianhydride. It is preferable to contain 60 mol% or more in the product-derived structure.

また、本発明のポリイミド前駆体において、前記PMDAに由来する構造を、全酸二無水物由来構造中1〜70モル%、前記ODPAに由来する構造を、全酸二無水物由来構造中1〜50モル%有することが好ましい。   In the polyimide precursor of the present invention, the PMDA-derived structure is 1 to 70 mol% in the total acid dianhydride-derived structure, and the structure derived from the ODPA is 1 to 2 in the total acid dianhydride-derived structure. It is preferable to have 50 mol%.

また、本発明のポリイミド前駆体において、前記PMDA、前記ODPA、前記CBDA及び前記H−PMDA由来の構造のモル数の和と、前記TFMB由来の構造のモル数との比{(PMDA+ODPA+CBDA+H−PMDA)/TFMB}が、100/99.9〜100/95であることが好ましい。また、本発明のポリイミド前駆体において、前記酸二無水物由来構造として、前記PMDA及び前記ODPAに由来する構造と、少なくとも前記CBDAに由来する構造と、を具備し、前記PMDAを、全酸二無水物中10〜50モル%、前記ODPAを、全酸二無水物中10〜40モル%、前記CBDAを、全酸二無水物中10〜80モル%有することが好ましい。また、本発明のポリイミド前駆体において、前記酸二無水物由来構造として、前記PMDA及び前記ODPAに由来する構造と、少なくとも前記H−PMDAに由来する構造と、を具備し、前記PMDAを、全酸二無水物中30〜65モル%、前記ODPAを、全酸二無水物中10〜40モル%、前記H−PMDAを、全酸二無水物中4〜60モル%有することが好ましい。また、本発明のポリイミド前駆体において、重量平均分子量が50000以上であることが好ましい。 Further, in the polyimide precursor of the present invention, the ratio of the sum of the number of moles of the structure derived from PMDA, ODPA, CBDA and H-PMDA to the number of moles of the structure derived from TFMB {(PMDA + ODPA + CBDA + H-PMDA) / TFMB} is preferably 100 / 99.9 to 100/95. Further, the polyimide precursor of the present invention comprises, as the acid dianhydride-derived structure, a structure derived from the PMDA and the ODPA, and a structure derived from at least the CBDA. It is preferable to have 10 to 50 mol% in the anhydride, 10 to 40 mol% in the total acid dianhydride, and 10 to 80 mol% in the total acid dianhydride. Further, in the polyimide precursor of the present invention, as the structure derived from the acid dianhydride, the structure derived from the PMDA and the ODPA, and the structure derived from at least the H-PMDA, It is preferable to have 30 to 65 mol% in acid dianhydride, 10 to 40 mol% in total acid dianhydride, and 4 to 60 mol% in H2PMDA in all acid dianhydrides. Moreover, in the polyimide precursor of this invention, it is preferable that a weight average molecular weight is 50000 or more.

本発明のポリイミド前駆体において、溶媒に溶解して支持体の表面に展開した後、窒素雰囲気下での熱処理でイミド化して得られるポリイミドフィルムの黄色度が10以下、線膨張係数が25ppm以下、且つ、破断伸び率が15%以上であることが好ましい。   In the polyimide precursor of the present invention, after dissolving in a solvent and spreading on the surface of the support, the polyimide film obtained by imidization by heat treatment in a nitrogen atmosphere has a yellowness of 10 or less, a linear expansion coefficient of 25 ppm or less, And it is preferable that elongation at break is 15% or more.

また、本発明のポリイミド前駆体において、フレキシブルデバイスの製造に用いられることが好ましい。   Moreover, it is preferable that the polyimide precursor of this invention is used for manufacture of a flexible device.

本発明の樹脂組成物は、上記記載の本発明のポリイミド前駆体と、溶媒と、を含有することを特徴とする。   The resin composition of the present invention comprises the polyimide precursor of the present invention described above and a solvent.

本発明のポリイミドフィルムは、上記記載の本発明の樹脂組成物を支持体の表面上に展開し、次いで、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化して形成されることを特徴とする。   The polyimide film of the present invention is formed by developing the resin composition of the present invention described above on the surface of a support, and then imidizing the polyimide precursor by heating the support and the resin composition. It is characterized by that.

本発明のポリイミドフィルムの製造方法は、上記記載の本発明の樹脂組成物を支持体の表面上に展開する工程と、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する工程と、前記ポリイミドフィルムを前記支持体から剥離して前記ポリイミドフィルムを得る工程と、を具備することを特徴とする。   The method for producing a polyimide film of the present invention comprises the steps of developing the resin composition of the present invention described above on the surface of a support, and imidizing the polyimide precursor by heating the support and the resin composition. Forming a polyimide film and peeling the polyimide film from the support to obtain the polyimide film.

本発明の積層体は、支持体及びポリイミド膜を具備し、前記支持体の表面上に上記記載の本発明の樹脂組成物を展開し、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化して前記ポリイミド膜を形成して得られることを特徴とする。   The laminate of the present invention comprises a support and a polyimide film, the resin composition of the present invention described above is developed on the surface of the support, and the polyimide is heated by heating the support and the resin composition. It is obtained by imidizing a precursor to form the polyimide film.

本発明の積層体の製造方法は、支持体の表面上に上記記載の本発明の樹脂組成物を展開する工程と、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化してポリイミド膜を形成し、前記支持体及び前記ポリイミド膜で構成された積層体を得る工程と、を具備することを特徴とする。   The method for producing a laminate of the present invention comprises the steps of developing the resin composition of the present invention described above on the surface of a support, and imidizing the polyimide precursor by heating the support and the resin composition. Forming a polyimide film and obtaining a laminate composed of the support and the polyimide film.

本発明によれば、無色透明であると共に、線膨張係数が低く、且つ、伸度に優れたポリイミドフィルムを製造することができる。   According to the present invention, it is possible to produce a polyimide film that is colorless and transparent, has a low coefficient of linear expansion, and is excellent in elongation.

以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, an embodiment of the present invention (hereinafter abbreviated as “embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態に係るポリイミド前駆体は、ジアミン由来構造として、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)に由来する構造と、酸二無水物由来構造として、ピロメリット酸二無水物(PMDA)及び4,4’−オキシジフタル酸二無水物(ODPA)に由来する構造と、1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA)及び/又は1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)に由来する構造を有する。   The polyimide precursor according to the present embodiment has a structure derived from 2,2′-bis (trifluoromethyl) benzidine (TFMB) as a diamine-derived structure, and pyromellitic dianhydride as a structure derived from an acid dianhydride. Structure (PMDA) and 4,4′-oxydiphthalic dianhydride (ODPA), and 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and / or 1,2,4 , 5-cyclohexanetetracarboxylic dianhydride (H-PMDA).

以下、各構造について詳細に説明する。
<酸二無水物由来構造>
本実施の形態に係るポリイミド前駆体は、酸二無水物由来構造として、ピロメリット酸二無水物(以下、PMDAともいう)由来の構造、及び、4,4’−オキシジフタル酸二無水物(以下、ODPAともいう)由来の構造と、1,2,3,4−シクロブタンテトラカルボン酸二無水物(以下、CBDAともいう)及び/又は1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(以下、H−PMDAともいう)由来の構造を有する。
Hereinafter, each structure will be described in detail.
<Acid dianhydride-derived structure>
The polyimide precursor according to the present embodiment has a structure derived from pyromellitic dianhydride (hereinafter also referred to as PMDA) and a 4,4′-oxydiphthalic dianhydride (hereinafter referred to as “acid dianhydride derived structure”). And ODPA), 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as CBDA) and / or 1,2,4,5-cyclohexanetetracarboxylic dianhydride (Hereinafter also referred to as H-PMDA).

すなわち、脂環式酸二無水物としてCBDA由来の構造及びH−PMDA由来の構造の少なくとも一方と、他の酸二無水物由来構造としてPMDA由来の構造及びODPM由来の構造と、を有する。   That is, it has at least one of a structure derived from CBDA and a structure derived from H-PMDA as an alicyclic acid dianhydride, and a structure derived from PMDA and a structure derived from ODPM as another acid dianhydride derived structure.

ここで、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)は下記一般式(1)〜(3)で表わされる異性体があるが、いずれであっても、混合物であってもよい。   Here, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA) includes isomers represented by the following general formulas (1) to (3). It may be.

Figure 0006257302
Figure 0006257302

Figure 0006257302
Figure 0006257302

Figure 0006257302
Figure 0006257302

本実施の形態に係るポリイミド前駆体は、ポリイミドフィルムの好適な黄色度、CTE及び破断強度を得る観点から、ピロメリット酸二無水物(PMDA)に由来する構造を、全酸二無水物由来構造中1〜70モル%、4,4’−オキシジフタル酸二無水物(ODPA)に由来する構造を、全酸二無水物由来構造中1〜50モル%有することが好ましい。   The polyimide precursor according to the present embodiment has a structure derived from pyromellitic dianhydride (PMDA), a structure derived from total acid dianhydride, from the viewpoint of obtaining a suitable yellowness, CTE and breaking strength of the polyimide film. It is preferable to have 1 to 70 mol% of the structure derived from 4,4′-oxydiphthalic dianhydride (ODPA) in the total acid dianhydride derived structure.

<ジアミン由来構造>
また、本実施の形態に係るポリイミド前駆体は、ジアミン由来構造として、2,2’−ビス(トリフルオロメチル)ベンジジン(以下、TFMBともいう)に由来する構造を有する。
<Diamine-derived structure>
Further, the polyimide precursor according to the present embodiment has a structure derived from 2,2′-bis (trifluoromethyl) benzidine (hereinafter also referred to as TFMB) as a diamine-derived structure.

<酸二無水物由来成分とジアミン由来成分との比>
上記酸二無水物由来成分、すなわち、PMDA、ODPA、CBDA及びH−PMDA由来の構造、のモル数の和と、TFMB由来の構造のモル数との比{(PMDA+ODPA+CBDA+H−PMDA)/TFMB}が、100/99.9〜100/95であることが、ポリイミドフィルムにおいて、好適な黄色度、CTE及び破断強度を得る観点で好ましい。
<Ratio of acid dianhydride-derived component and diamine-derived component>
The ratio {(PMDA + ODPA + CBDA + H-PMDA) / TFMB} of the sum of the number of moles of the acid dianhydride-derived component, that is, the structure derived from PMDA, ODPA, CBDA and H-PMDA, and the number of moles of the structure derived from TFMB is 100 / 99.9 to 100/95 is preferable from the viewpoint of obtaining suitable yellowness, CTE, and breaking strength in the polyimide film.

<樹脂組成物>
上述のような本実施の形態に係るポリイミド前駆体は、これを溶媒に溶解した樹脂組成物(ワニス)として用いられる。
<Resin composition>
The polyimide precursor which concerns on this Embodiment as mentioned above is used as a resin composition (varnish) which melt | dissolved this in the solvent.

より好ましい態様としては、樹脂組成物は、上述の酸二無水物成分及びジアミン成分を、溶媒、例えば有機溶媒に溶解して反応させ、ポリイミド前駆体の一態様であるポリアミド酸及び溶媒を含有するポリアミド酸溶液として製造することができる。ここで、反応時の条件は、特に限定されないが、例えば、反応温度は−20〜100℃、反応時間は2〜48時間である。また、反応時、アルゴンや窒素等の不活性雰囲気であることが好ましい。   As a more preferred embodiment, the resin composition contains the above-mentioned acid dianhydride component and diamine component dissolved in a solvent, for example, an organic solvent, and reacted to contain the polyamic acid which is one embodiment of the polyimide precursor and the solvent. It can be produced as a polyamic acid solution. Here, the conditions during the reaction are not particularly limited. For example, the reaction temperature is −20 to 100 ° C., and the reaction time is 2 to 48 hours. Moreover, it is preferable that it is inert atmosphere, such as argon and nitrogen, at the time of reaction.

また、本実施の形態に係るポリイミド前駆体は、その構造の一部又は全部を溶媒に溶解する範囲でイミド化し、ポリイミド溶液、又はポリイミド−ポリアミド酸溶液とすることが可能である。   Moreover, the polyimide precursor which concerns on this Embodiment can be imidized in the range which melt | dissolves a part or all of the structure in a solvent, and can be set as a polyimide solution or a polyimide-polyamic acid solution.

ポリイミド部位を合成する工程としては特に限定されず、公知の方法を適用することができる。より具体的には、以下の方法により得られる。まずジアミンを重合溶媒に溶解及び/又は分散し、これに酸二無水物粉末を添加し、水と共沸する溶媒を加える。メカニカルスターラーを用い、副生する水を共沸除去しながら、0.5時間〜96時間、好ましくは0.5時間〜30時間加熱撹拌する。この際、モノマー濃度は0.5質量%以上、95質量%以下、好ましくは1質量%以上、90質量%以下である。   The step of synthesizing the polyimide moiety is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method. First, diamine is dissolved and / or dispersed in a polymerization solvent, acid dianhydride powder is added thereto, and a solvent azeotroped with water is added. Using a mechanical stirrer, the mixture is heated and stirred for 0.5 to 96 hours, preferably 0.5 to 30 hours, while removing by-product water azeotropically. In this case, the monomer concentration is 0.5% by mass or more and 95% by mass or less, preferably 1% by mass or more and 90% by mass or less.

ポリイミド部位は、公知のイミド化触媒を添加して合成してもよく、無触媒で合成してもよい。イミド化触媒としては特に制限されないが、無水酢酸のような酸無水物、γ−バレロラクトン、γ−ブチロラクトン、γ−テトロン酸、γ−フタリド、γ−クマリン、γ−フタリド酸のようなラクトン化合物、ピリジン、キノリン、N−メチルモルホリン、トリエチルアミンのような三級アミン等が挙げられる。また、イミド化触媒は、必要に応じて1種、あるいは2種以上の混合物であってもよい。この中でも特に、反応性の高さの観点からγ−バレロラクトンとピリジンとの混合系が特に好ましく、次反応への影響の観点から無触媒が特に好ましい。   The polyimide portion may be synthesized by adding a known imidation catalyst or may be synthesized without a catalyst. The imidization catalyst is not particularly limited, but an acid anhydride such as acetic anhydride, a lactone compound such as γ-valerolactone, γ-butyrolactone, γ-tetronic acid, γ-phthalide, γ-coumarin, and γ-phthalido acid. , Tertiary amines such as pyridine, quinoline, N-methylmorpholine, triethylamine, and the like. Moreover, the imidation catalyst may be one kind or a mixture of two or more kinds as necessary. Among these, a mixed system of γ-valerolactone and pyridine is particularly preferable from the viewpoint of high reactivity, and no catalyst is particularly preferable from the viewpoint of influence on the next reaction.

イミド化触媒の添加量としては、ポリアミド酸を100質量部とすると、50質量部以下が好ましく、30質量部以下がより好ましい。   The amount of the imidization catalyst added is preferably 50 parts by mass or less, and more preferably 30 parts by mass or less when the polyamic acid is 100 parts by mass.

また、溶媒は、ポリイミド、ポリアミド酸、又は、ポリイミドとポリアミド酸の重合体を溶解する溶媒であれば、特に限定されない。公知の反応溶媒として、m−クレゾール、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトン、及び、ジエチルアセテートから選ばれる1種以上の極性溶媒が有用である。このうち、好ましくは、NMP及びDMAcである。その他、テトラヒドロフラン(THF)、クロロホルムのような低沸点溶液、又は、γ−ブチロラクトンのような低吸収性溶媒を用いてもよい。   The solvent is not particularly limited as long as it is a solvent that dissolves polyimide, polyamic acid, or a polymer of polyimide and polyamic acid. As a known reaction solvent, one kind selected from m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, and diethyl acetate The above polar solvents are useful. Of these, NMP and DMAc are preferable. In addition, a low-boiling solution such as tetrahydrofuran (THF) or chloroform, or a low-absorbing solvent such as γ-butyrolactone may be used.

ポリイミド前駆体の重量平均分子量は、5000以上1000000以下であることが好ましく、50000以上500000以下であることがより好ましく、70000以上250000以下であることがさらに好ましい。重量平均分子量が5000以上であると、樹脂組成物を用いて得られる樹脂層の強伸度が改善され、機械物性に優れる。重量平均分子量が1000000以下であると、塗工等の加工の際に所望する膜厚にて滲み無く塗工できる。特に、低CTE、低黄色度(YI値)を得る観点から、分子量は50000以上であることが好ましい。ここで、重量平均分子量とは、既知の数平均分子量のポリスチレンを標準として、ゲルパーミエーションクロマトグラフィーによって測定される分子量をいう。   The weight average molecular weight of the polyimide precursor is preferably 5000 or more and 1000000 or less, more preferably 50000 or more and 500000 or less, and further preferably 70000 or more and 250,000 or less. When the weight average molecular weight is 5000 or more, the strength and elongation of the resin layer obtained using the resin composition is improved, and the mechanical properties are excellent. When the weight average molecular weight is 1,000,000 or less, coating can be performed without bleeding at a desired film thickness during processing such as coating. In particular, from the viewpoint of obtaining low CTE and low yellowness (YI value), the molecular weight is preferably 50,000 or more. Here, the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known number average molecular weight as a standard.

<ポリイミドフィルム>
本実施の形態に係るポリイミドフィルムは、上述の本実施の形態に係るポリイミド前駆体及び溶媒を含有する樹脂組成物(以下、ポリイミド前駆体溶液ともいう)を、支持体の表面上に展開し、次いで、支持体及び樹脂組成物を加熱してポリイミド前駆体をイミド化して形成される。より具体的には、上述のように、酸二無水物成分及びジアミン成分を有機溶媒中に溶解して反応させて得られるポリアミド酸溶液を用いることができる。
<Polyimide film>
The polyimide film according to the present embodiment develops the resin composition containing the polyimide precursor and the solvent according to the above-described embodiment (hereinafter also referred to as a polyimide precursor solution) on the surface of the support, Next, the support and the resin composition are heated to imidize the polyimide precursor. More specifically, as described above, a polyamic acid solution obtained by dissolving and reacting an acid dianhydride component and a diamine component in an organic solvent can be used.

ここで、支持体は、例えば、無アルカリガラス基板等のガラス基板のような無機基板であるが、特に限定されるものではない。   Here, the support is, for example, an inorganic substrate such as a glass substrate such as an alkali-free glass substrate, but is not particularly limited.

より具体的には、上述のポリイミド前駆体溶液を、無機基板の主面上に形成された接着層上に展開・乾燥し、不活性雰囲気下で250〜500℃の温度にて硬化して、ポリイミドフィルムを形成することができる。   More specifically, the polyimide precursor solution described above is spread and dried on the adhesive layer formed on the main surface of the inorganic substrate, and cured at a temperature of 250 to 500 ° C. in an inert atmosphere. A polyimide film can be formed.

ここで、展開方法としては、例えば、スピンコート、スリットコート及びブレードコートの公知の塗工方法が挙げられる。また、熱処理は、ポリアミド酸溶液を接着層上に展開した後に、主として脱溶媒を目的として250℃以下の温度で1分間〜300分間熱処理し、さらに窒素等の不活性雰囲気下で250℃〜550℃の温度で1分間〜300分間熱処理してポリイミド前駆体をポリイミド化させる。   Here, examples of the developing method include known coating methods such as spin coating, slit coating, and blade coating. In addition, after the polyamic acid solution is spread on the adhesive layer, the heat treatment is heat-treated at a temperature of 250 ° C. or lower for 1 to 300 minutes mainly for the purpose of solvent removal, and further 250 to 550 ° C. under an inert atmosphere such as nitrogen A polyimide precursor is converted into a polyimide by heat treatment at a temperature of 1 ° C. for 1 minute to 300 minutes.

また、本実施の形態に係るポリイミドフィルムの厚さは、特に限定されず、10〜50μmの範囲であることが好ましく、より好ましくは15〜25μmである。   Moreover, the thickness of the polyimide film according to the present embodiment is not particularly limited, and is preferably in the range of 10 to 50 μm, more preferably 15 to 25 μm.

<積層体>
本実施の形態に係る積層体は、支持体及びポリイミド膜を具備し、支持体の表面上に本実施の形態に係る樹脂組成物を展開し、支持体及び樹脂組成物を加熱してポリイミド前駆体をイミド化してポリイミド膜を形成して得られる。
<Laminated body>
The laminate according to the present embodiment includes a support and a polyimide film, the resin composition according to the present embodiment is developed on the surface of the support, and the support and the resin composition are heated to obtain a polyimide precursor. It is obtained by imidizing the body to form a polyimide film.

この積層体は、例えば、フレキシブルデバイスの製造に用いられる。より具体的には、ポリイミド膜の上に半導体デバイスを形成し、その後、支持体を剥離してポリイミド膜からなるフレキシブル透明基板を具備するフレキシブルデバイスを得ることができる。   This laminated body is used for manufacturing a flexible device, for example. More specifically, a semiconductor device can be formed on a polyimide film, and then a support can be peeled off to obtain a flexible device including a flexible transparent substrate made of a polyimide film.

以上説明したように、本実施の形態に係るポリイミド前駆体は、(1)酸二無水物由来構造として、CBDA及びH−PMDAから選ばれる少なくとも1種の脂環式酸二無水物、PMDA及びOPDAのそれぞれに由来の構造と、(2)ジアミン由来構造としてTFMB由来の構造を有しているので、これを用いて製造したポリイミドフィルムが、無色透明であると共に、CTEが低く、さらに伸度に優れるため、フレキシブルディスプレイの透明基板における使用に適している。   As described above, the polyimide precursor according to the present embodiment includes (1) at least one alicyclic acid dianhydride selected from CBDA and H-PMDA as the structure derived from acid dianhydride, PMDA, and Since it has a structure derived from each of OPDA and (2) a structure derived from TFMB as a structure derived from diamine, a polyimide film produced using this structure is colorless and transparent, has a low CTE, and further exhibits elongation. Therefore, it is suitable for use on a transparent substrate of a flexible display.

さらに具体的に説明すると、フレキシブルディスプレイを形成する場合、ガラス基板を支持体として用いてその上にフレキシブル基板を形成し、その上にTFT等の形成を行う。TFTを基板上に形成する工程は、典型的には、150〜650℃の広い範囲の温度で実施されるが、実際に所望する性能具現のためには、主に250℃から400℃の温度範囲で、無機物材料を用いて、TFT−IGZO(InGaZnO)酸化物半導体やTFT(a−Si−TFT、poly−Si−TFT)を形成する。   More specifically, when a flexible display is formed, a flexible substrate is formed thereon using a glass substrate as a support, and a TFT or the like is formed thereon. The process of forming the TFT on the substrate is typically performed at a wide temperature range of 150 to 650 ° C. However, in order to actually realize the desired performance, the temperature is mainly from 250 ° C. to 400 ° C. Within a range, a TFT-IGZO (InGaZnO) oxide semiconductor or a TFT (a-Si-TFT, poly-Si-TFT) is formed using an inorganic material.

この際、フレキシブル基板のCTEがガラス基板に比べて高ければ、高温のTFT工程で膨張した後、常温冷却時に収縮する際、ガラス基板の反りや破損、フレキシブル基板のガラス基板からの剥離等の問題が生じる。一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、フレキシブル基板の線膨張係数が低いほど好ましく、本実施の形態に係るポリイミドフィルムは、この点を考慮して、フィルムの厚さ15〜25μmを基準として、TMA法に従って、100〜300℃で測定した平均線膨張係数(CTE)が25.0ppm/℃以下であることが好ましい。   At this time, if the CTE of the flexible substrate is higher than that of the glass substrate, problems such as warpage or breakage of the glass substrate, peeling of the flexible substrate from the glass substrate when shrinking during normal temperature cooling after expansion in a high temperature TFT process Occurs. In general, since the thermal expansion coefficient of the glass substrate is smaller than that of the resin, the lower the linear expansion coefficient of the flexible substrate, the better. The polyimide film according to the present embodiment takes into account this point, It is preferable that an average linear expansion coefficient (CTE) measured at 100 to 300 ° C. is 25.0 ppm / ° C. or less according to the TMA method on the basis of 15 to 25 μm.

また、本実施の形態に係るポリイミドフィルムは、黄色度(YI値)が10以下であり、且つ、フィルムの厚さ15〜25μmを基準として、紫外分光光度計で透過率を測定した場合、550nmでの透過率が85%以上であることが好ましい。   In addition, the polyimide film according to the present embodiment has a yellowness (YI value) of 10 or less, and a transmittance of 550 nm when measured with an ultraviolet spectrophotometer on the basis of the film thickness of 15 to 25 μm. The transmittance is preferably 85% or more.

また、本実施の形態に係るポリイミドフィルムは、フレキシブル基板を取り扱う際に破断強度に優れることにより、歩留まりを向上させる観点から、フィルムの厚さ15〜25μmを基準として、伸度が15%以上であることが好ましい。   In addition, the polyimide film according to the present embodiment has an elongation of 15% or more on the basis of the film thickness of 15 to 25 μm from the viewpoint of improving yield by being excellent in breaking strength when handling a flexible substrate. Preferably there is.

上記物性を満たす本実施の形態に係るポリイミドフィルムは、既存のポリイミドフィルムが有する黄色により使用が制限された用途、特にフレキシブルディスプレイ用透明基板として使用される。さらには、例えば、保護膜又はTFT−LCD等での散光シート及び塗膜(例えば、TFT−LCDのインターレイヤー、ゲイト絶縁膜、及び液晶配向膜)等の透明性が要求される分野で使用可能である。液晶配向膜として本実施の形態に係るポリイミドを適用するとき、開口率の増加に寄与し、高コントラスト比のTFT−LCDの製造が可能である。   The polyimide film according to the present embodiment satisfying the above physical properties is used as a transparent substrate for flexible displays, in particular, the use of which is limited by the yellow color of the existing polyimide film. Furthermore, for example, it can be used in fields requiring transparency such as a protective film or a light-diffusing sheet and a coating film (for example, TFT-LCD interlayer, gate insulating film, and liquid crystal alignment film) in TFT-LCD. It is. When the polyimide according to this embodiment is applied as the liquid crystal alignment film, it contributes to an increase in the aperture ratio, and a TFT-LCD with a high contrast ratio can be manufactured.

本実施の形態に係るポリイミド前駆体を用いて製造されるポリイミドフィルム及び積層体は、例えば、半導体絶縁膜、TFT−LCD絶縁膜、電極保護膜、及び、フレキシブルデバイスの製造に、特に基板として好適に利用することができる。ここで、フレキシブルデバイスとは、例えば、フレキシブルディスプレイ、フレキシブル太陽電池、フレキシブル照明、及び、フレキシブルバッテリーを挙げることができる。   The polyimide film and laminate produced using the polyimide precursor according to the present embodiment are particularly suitable as a substrate, for example, for the production of semiconductor insulation films, TFT-LCD insulation films, electrode protection films, and flexible devices. Can be used. Here, examples of the flexible device include a flexible display, a flexible solar cell, flexible lighting, and a flexible battery.

以下、本発明について、実施例に基づきさらに詳述するが、これらは説明のために記述されるものであって、本発明の範囲が下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is further explained in full detail based on an Example, these are described for description and the range of this invention is not limited to the following Example.

実施例及び比較例における各種評価は次の通り行った。
(重量平均分子量の測定)
重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。溶媒としては、N,N−ジメチルホルムアミド(和光純薬工業社製、高速液体クロマトグラフ用)を用い、測定前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えたものを使用した。また、重量平均分子量を算出するための検量線は、スタンダードポリスチレン(東ソー社製)を用いて作成した。
カラム:Shodex KD−806M(昭和電工社製)
流速:1.0mL/分
カラム温度:40℃
ポンプ:PU−2080Plus(JASCO社製)
検出器:RI−2031Plus(RI:示差屈折計、JASCO社製)、UV―2075Plus(UV−VIS:紫外可視吸光計、JASCO社製)
Various evaluations in Examples and Comparative Examples were performed as follows.
(Measurement of weight average molecular weight)
The weight average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions. As the solvent, N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) was used, and 24.8 mmol / L lithium bromide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) before the measurement. , Purity 99.5%) and 63.2 mmol / L phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) were used. A calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Tosoh Corporation).
Column: Shodex KD-806M (manufactured by Showa Denko KK)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Pump: PU-2080 Plus (manufactured by JASCO)
Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO), UV-2075Plus (UV-VIS: UV-visible light spectrometer, manufactured by JASCO)

(積層体及び単離フィルムの作製)
ポリイミド前駆体をバーコーターで無アルカリガラス基板(厚さ0.7mm)に塗工し、室温で5分間〜10分間レベリングを行い、熱風オーブンにて140℃にて60分間加熱し、さらに窒素雰囲気下で所定の温度にて60分間加熱し積層体を作製した。積層体の樹脂組成物の膜厚は、20μmとした。所定の温度でキュア(硬化処理)した後、積層体を室温に24時間静置し、ポリイミドフィルムをガラスから剥離しフィルムを単離した。以下の破断強度、黄色度及び線膨張係数の評価では、この所定の温度でキュアしたポリイミドフィルムをサンプルとして用いた。
(Production of laminate and isolated film)
The polyimide precursor is coated on a non-alkali glass substrate (thickness 0.7 mm) with a bar coater, leveled at room temperature for 5 to 10 minutes, heated in a hot air oven at 140 ° C. for 60 minutes, and further in a nitrogen atmosphere Under heating at a predetermined temperature for 60 minutes, a laminate was produced. The film thickness of the resin composition of the laminate was 20 μm. After curing (curing treatment) at a predetermined temperature, the laminate was allowed to stand at room temperature for 24 hours, and the polyimide film was peeled off from the glass to isolate the film. In the following evaluation of breaking strength, yellowness, and linear expansion coefficient, a polyimide film cured at the predetermined temperature was used as a sample.

(伸度の評価)
所定の温度でキュアした、サンプル長5×50mm、厚み20μmのポリイミドフィルムを引張り試験機(株式会社エーアンドディ製:RTG−1210)を用いて、速度100mm/分で引張り測定した。破断伸度が20%以上を◎、15%以上20%未満を○、10%以上15%未満を△、10%未満を×とした。
(Evaluation of elongation)
A polyimide film having a sample length of 5 × 50 mm and a thickness of 20 μm cured at a predetermined temperature was subjected to tensile measurement at a speed of 100 mm / min using a tensile tester (manufactured by A & D Co., Ltd .: RTG-1210). A breaking elongation of 20% or more was evaluated as ◎, 15% or more and less than 20% as ○, 10% or more and less than 15% as Δ, and less than 10% as ×.

(黄色度(YI値)の評価)
所定の温度でキュアした、厚み20μmのポリイミドフィルムを日本電色工業(株)製(Spectrophotometer:SE600)にてD65光源で測定した。YI値が8.0以下を◎、8.0超10.0以下を○、10.0超15.0以下を△、15.0超を×とした。
(Evaluation of yellowness (YI value))
A polyimide film having a thickness of 20 μm cured at a predetermined temperature was measured with a D65 light source by Nippon Denshoku Industries Co., Ltd. (Spectrophotometer: SE600). A YI value of 8.0 or less was evaluated as “◎”, a value of more than 8.0 or less than 10.0 was evaluated as “◯”, a value of 10.0 or higher as 15.0 or less as “Δ”, and a value of more than 15.0 as “X”.

(線膨張係数(CTE)の評価)
所定の温度でキュアしたポリイミドフィルムについて、島津製作所製熱機械分析装置(TMA−50)を用いて、熱機械分析により、荷重5g、昇温速度10℃/分、窒素雰囲気下(流量20ml/分)、温度50〜450℃の範囲における試験片伸びの測定を行い、100〜300℃のポリイミドフィルムのCTEを求めた。CTEが20ppm/℃以下を◎、20ppm/℃超25ppm/℃以下を○、25ppm/℃超30ppm/℃以下を△、30ppm/℃超を×とした。
(Evaluation of linear expansion coefficient (CTE))
The polyimide film cured at a predetermined temperature was subjected to a thermomechanical analysis using a thermomechanical analyzer (TMA-50) manufactured by Shimadzu Corporation under a load of 5 g, a heating rate of 10 ° C./min, and under a nitrogen atmosphere (flow rate 20 ml / min). ), The specimen elongation in the temperature range of 50 to 450 ° C. was measured, and the CTE of the polyimide film at 100 to 300 ° C. was determined. CTE of 20 ppm / ° C. or less was evaluated as “◎”, 20 ppm / ° C. or more and 25 ppm / ° C. or less as “◯”, 25 ppm / ° C. or more as 30 ppm / ° C. or less as “Δ”, and 30 ppm / ° C. or more as “X”.

[実施例1]
窒素雰囲気下、500mlセパラブルフラスコに、2,2’‐ビス(トリフルオロメチル)ベンジジン(TFMB)を15.69g(49.00mmol)、N−メチル−2−ピロリドン(NMP)を178.95g入れ、TFMBを撹拌溶解させた。その後、ピロメリット酸二無水物(PMDA)を1.09g(5.0mmol)、4,4’−オキシジフタル酸二無水物(ODPA)を3.10g(10.0mmol)、1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA)を6.86g(35.0mmol)入れ80℃で4時間撹拌し、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は、116,500であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 1]
In a 500 ml separable flask under nitrogen atmosphere, 15.69 g (49.00 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and 178.95 g of N-methyl-2-pyrrolidone (NMP) were placed. TFMB was stirred and dissolved. Thereafter, 1.09 g (5.0 mmol) of pyromellitic dianhydride (PMDA), 3.10 g (10.0 mmol) of 4,4′-oxydiphthalic dianhydride (ODPA), 1, 2, 3, 4.86 g (35.0 mmol) of 4-cyclobutanetetracarboxylic dianhydride (CBDA) was added and stirred at 80 ° C. for 4 hours to obtain an NMP solution of polyamic acid (hereinafter also referred to as varnish). The obtained polyamic acid had a weight average molecular weight (Mw) of 116,500. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例2]
TFMBを15.69g(49.0mmol)、NMPを180.42g、PMDAを3.27g(15.0mmol)、ODPAを3.10g(10.0mmol)、CBDAを4.90g(25.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は120,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 2]
TFMB 15.69 g (49.0 mmol), NMP 180.42 g, PMDA 3.27 g (15.0 mmol), ODPA 3.10 g (10.0 mmol), CBDA 4.90 g (25.0 mmol) A varnish was obtained in the same manner as in Example 1 except for the change. The resulting polyamic acid had a weight average molecular weight (Mw) of 120,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例3]
TFMBを15.69g(49.0mmol)、NMPを186.58g、PMDAを1.09g(5.00mmol)、ODPAを6.20g(20.0mmol)、CBDAを4.90g(25.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は128,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 3]
TFMB 15.69 g (49.0 mmol), NMP 188.68 g, PMDA 1.09 g (5.00 mmol), ODPA 6.20 g (20.0 mmol), CBDA 4.90 g (25.0 mmol) A varnish was obtained in the same manner as in Example 1 except for the change. The obtained polyamic acid had a weight average molecular weight (Mw) of 128,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例4]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)を2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを168.43g、PMDAを6.54g(30.0mmol)、ODPAを3.10g(10.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は82,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 4]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA) was added and refluxed at 180 ° C. for 2 hours, followed by azeotropy over 3 hours. The solvent toluene was removed. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 168.43 g of NMP, 6.54 g (30.0 mmol) of PMDA, and 3.10 g (10.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The obtained polyimide-polyamic acid polymerization composition had a weight average molecular weight (Mw) of 82,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例5]
TFMBを15.69g(49.0mmol)、NMPを178.14g、PMDAを5.45g(25.0mmol)、ODPAを1.55g(5.0mmol)、CBDAを3.92g(20mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は119,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 5]
TFMB was changed to 15.69 g (49.0 mmol), NMP was 178.14 g, PMDA was changed to 5.45 g (25.0 mmol), ODPA was changed to 1.55 g (5.0 mmol), and CBDA was changed to 3.92 g (20 mmol). Except for the above, a varnish was obtained in the same manner as in Example 1. The obtained polyamic acid had a weight average molecular weight (Mw) of 119,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例6]
TFMBを15.69g(49.0mmol)、NMPを187.38g、PMDAを2.18g(10.0mmol)、ODPAを6.20g(20.0mmol)、CBDAを3.92g(20.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は123,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 6]
TFMB 15.69 g (49.0 mmol), NMP 187.38 g, PMDA 2.18 g (10.0 mmol), ODPA 6.20 g (20.0 mmol), CBDA 3.92 g (20.0 mmol) A varnish was obtained in the same manner as in Example 1 except for the change. The resulting polyamic acid had a weight average molecular weight (Mw) of 123,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例7]
TFMBを15.69g(49.0mmol)、NMPを175.19g、PMDAを1.09g(5.0mmol)、ODPAを1.55g(5.0mmol)、CBDAを7.84g(40.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は123,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 7]
TFMB 15.69 g (49.0 mmol), NMP 175.19 g, PMDA 1.09 g (5.0 mmol), ODPA 1.55 g (5.0 mmol), CBDA 7.84 g (40.0 mmol) A varnish was obtained in the same manner as in Example 1 except for the change. The resulting polyamic acid had a weight average molecular weight (Mw) of 123,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例8]
TFMBを15.69g(49.0mmol)、NMPを189.59g、PMDAを5.45g(25.0mmol)、ODPAを6.20g(20.0mmol)、CBDAを0.98g(5.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたポリアミド酸の重量平均分子量(Mw)は103,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 8]
TFMB 15.69 g (49.0 mmol), NMP 189.59 g, PMDA 5.45 g (25.0 mmol), ODPA 6.20 g (20.0 mmol), CBDA 0.98 g (5.0 mmol) A varnish was obtained in the same manner as in Example 1 except for the change. The resulting polyamic acid had a weight average molecular weight (Mw) of 103,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[実施例9]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを171.51g、PMDAを5.45g(25.0mmol)、ODPAを4.65g(15.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は123,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 9]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 171.51 g of NMP, 5.45 g (25.0 mmol) of PMDA, and 4.65 g (15.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 123,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例10]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを174.59g、PMDAを4.36g(20.0mmol)、ODPAを6.20g(20.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は81,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 10]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 174.59 g of NMP, 4.36 g (20.0 mmol) of PMDA, and 6.20 g (20.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The resulting polyimide-polyamic acid polymerization composition had a weight average molecular weight (Mw) of 81,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例11]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを6.28g(19.6mmol)、NMPを32.28g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを4.48g(20.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを9.42g(29.4mmol)、NMPを76.44g、PMDAを5.45g(25.0mmol)、ODPAを1.55g(5.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は68,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 11]
Under a nitrogen atmosphere, 6.28 g (19.6 mmol) of TFMB, 32.28 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. To this, 4.48 g (20.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 9.42 g (29.4 mmol) of TFMB, 76.44 g of NMP, 5.45 g (25.0 mmol) of PMDA, and 1.55 g (5.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 68,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例12]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを6.28g(19.6mmol)、NMPを32.28g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを4.48g(20.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを9.42g(29.4mmol)、NMPを78.28g、PMDAを4.36g(20.0mmol)、ODPAを3.10g(10.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は68,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 12]
Under a nitrogen atmosphere, 6.28 g (19.6 mmol) of TFMB, 32.28 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. To this, 4.48 g (20.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 9.42 g (29.4 mmol) of TFMB, 78.28 g of NMP, 4.36 g (20.0 mmol) of PMDA, and 3.10 g (10.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 68,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例13]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを0.63g(1.96mmol)、NMPを3.22g、トルエンを30g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを0.45g(2.00mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを15.06g(47.0mmol)、NMPを186.57g、PMDAを6.33g(29.0mmol)、ODPAを5.89g(19.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は112,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 13]
Under a nitrogen atmosphere, 0.63 g (1.96 mmol) of TFMB, 3.22 g of NMP, and 30 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 0.45 g (2.00 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 15.06 g (47.0 mmol) of TFMB, 186.57 g of NMP, 6.33 g (29.0 mmol) of PMDA, and 5.89 g (19.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 112,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例14]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを166.88g、PMDAを7.09g(32.5mmol)、ODPAを2.33g(7.5mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は79,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 14]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 166.88 g of NMP, 7.09 g (32.5 mmol) of PMDA, and 2.33 g (7.5 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The obtained polyimide-polyamic acid polymerization composition had a weight average molecular weight (Mw) of 79,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例15]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを9.42g(29.4mmol)、NMPを48.42g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを6.78g(30.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを6.28g(19.6mmol)、NMPを60.54g、PMDAを3.27g(15.0mmol)、ODPAを1.55g(5.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は56,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 15]
Under a nitrogen atmosphere, 9.42 g (29.4 mmol) of TFMB, 48.42 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 6.78 g (30.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 6.28 g (19.6 mmol) of TFMB, 60.54 g of NMP, 3.27 g (15.0 mmol) of PMDA, and 1.55 g (5.0 mmol) of ODPA were added at 80 ° C. The mixture was stirred for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 56,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[実施例16]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.80mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを168.43g、PMDAを4.36g(20.0mmol)、ODPAを3.10g(10.0mmol)、CBDAを1.96g(10.0mmol)入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は71,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Example 16]
Under a nitrogen atmosphere, 3.14 g (9.80 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 168.43 g of NMP, 4.36 g (20.0 mmol) of PMDA, 3.10 g (10.0 mmol) of ODPA, and 1.10 g of CBDA. 96 g (10.0 mmol) was added and stirred at 80 ° C. for 4 hours to obtain a varnish of a polyimide-polyamic acid polymerization composition. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 71,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例1]
TFMBを14.39g(44.9mmol)、NMPを163.23g、PMDAを10.0g(45.8mmol)、ODPAを0g(0mmol)、CBDAを0g(0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニス中のポリアミド酸の重量平均分子量(Mw)は47,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 1]
Example 1 except that 14.39 g (44.9 mmol) of TFMB, 163.23 g of NMP, 10.0 g (45.8 mmol) of PMDA, 0 g (0 mmol) of ODPA, and 0 g (0 mmol) of CBDA were changed. In the same manner, a varnish was obtained. The weight average molecular weight (Mw) of the polyamic acid in the obtained varnish was 47,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例2]
TFMBを10.12g(31.6mmol)、NMPを134.65g、PMDAを0g(0mmol)、ODPAを10.0g(32.2mmol)、CBDAを0g(0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニス中のポリアミド酸の重量平均分子量(Mw)は65,500であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 2]
Example 1 except that 10.12 g (31.6 mmol) of TFMB, 134.65 g of NMP, 0 g (0 mmol) of PMDA, 10.0 g (32.2 mmol) of ODPA, and 0 g (0 mmol) of CBDA were changed. In the same manner, a varnish was obtained. The weight average molecular weight (Mw) of the polyamic acid in the obtained varnish was 65,500. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例3]
TFMBを16.00g(50.0mmol)、NMPを174.00g、PMDAを0g(0mmol)、ODPAを0g(0mmol)、CBDAを10.00g(51.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニス中のポリアミド酸の重量平均分子量(Mw)は221,000であった。330℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 3]
Example 1 except that TFMB was changed to 16.00 g (50.0 mmol), NMP was 174.00 g, PMDA was changed to 0 g (0 mmol), ODPA was changed to 0 g (0 mmol), and CBDA was changed to 10.00 g (51.0 mmol). In the same manner, a varnish was obtained. The weight average molecular weight (Mw) of the polyamic acid in the obtained varnish was 221,000. Table 1 shows the CTE, YI value and elongation of the film cured at 330 ° C.

[比較例4]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを14.00g(43.7mmol)、NMPを160.62g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを10.00g(44.6mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。その後室温まで冷却しポリイミドのワニスを得た。得られたワニス中のポリイミドの重量平均分子量(Mw)は50,600であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 4]
Under a nitrogen atmosphere, 14.00 g (43.7 mmol) of TFMB, 160.62 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 10.00 g (44.6 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. Thereafter, it was cooled to room temperature to obtain a polyimide varnish. The weight average molecular weight (Mw) of the polyimide in the obtained varnish was 50,600. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例5]
TFMBを8.79g(27.4mmol)、NMPを60.6g、PMDAを5.50g(25.2mmol)、ODPAを0.87g(2.8mmol)、CBDAを0g(0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は47,000であった。350℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 5]
Except for changing TFMB to 8.79 g (27.4 mmol), NMP to 60.6 g, PMDA to 5.50 g (25.2 mmol), ODPA to 0.87 g (2.8 mmol), and CBDA to 0 g (0 mmol). A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 47,000. Table 1 shows the CTE, YI value and breaking strength of the film cured at 350 ° C.

[比較例6]
TFMBを16.44g(51.3mmol)、NMPを184.18g、PMDAを8.00g(36.7mmol)、ODPAを0g(0mmol)、CBDAを3.08g(15.7mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は121,900であった。330℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 6]
TFMB was changed to 16.44 g (51.3 mmol), NMP was 184.18 g, PMDA was 8.00 g (36.7 mmol), ODPA was changed to 0 g (0 mmol), and CBDA was changed to 3.08 g (15.7 mmol). A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 121,900. Table 1 shows the CTE, YI value and breaking strength of the film cured at 330 ° C.

[比較例7]
TFMBを14.17g(44.2mmol)、NMPを171.31g、PMDAを0g(0mmol)、ODPAを7.00g(22.6mmol)、CBDAを4.43g(22.6mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は105,000であった。330℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 7]
TFMB was changed to 14.17 g (44.2 mmol), NMP was 171.31 g, PMDA was changed to 0 g (0 mmol), ODPA was changed to 7.00 g (22.6 mmol), and CBDA was changed to 4.43 g (22.6 mmol). A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 105,000. Table 1 shows the CTE, YI value and breaking strength of the film cured at 330 ° C.

[比較例8]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを186.91g、ODPAを12.41g(40.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は66,700であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 8]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 186.91 g of NMP and 12.41 g (40.0 mmol) of ODPA were added and stirred at 80 ° C. for 4 hours, and polyimide-polyamic acid polymerization composition A varnish was obtained. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 66,700. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例9]
TFMBを15.69g(49.0mmol)、NMPを175.05g、PMDAを6.54g(30.0mmol)、ODPAを0g(0mmol)、CBDAを3.92g(20.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は91,200であった。330℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 9]
TFMB was changed to 15.69 g (49.0 mmol), NMP was 175.05 g, PMDA was 6.54 g (30.0 mmol), ODPA was changed to 0 g (0 mmol), and CBDA was changed to 3.92 g (20.0 mmol). A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 91,200. Table 1 shows the CTE, YI value and breaking strength of the film cured at 330 ° C.

[比較例10]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを3.14g(9.8mmol)、NMPを16.14g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを2.24g(10.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを12.55g(39.2mmol)、NMPを162.26g、PMDAを8.72g(40.0mmol)入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は226,000であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 10]
Under a nitrogen atmosphere, 3.14 g (9.8 mmol) of TFMB, 16.14 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. Thereto, 2.24 g (10.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 12.55 g (39.2 mmol) of TFMB, 162.26 g of NMP, and 8.72 g (40.0 mmol) of PMDA were added and stirred at 80 ° C. for 4 hours to obtain a polyimide-polyamic acid polymerization composition. The varnish was obtained. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 226,000. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

[比較例11]
TFMBを15.69g(49.0mmol)、NMPを193.54g、PMDAを0g(0mmol)、ODPAを9.31g(30.0mmol)、CBDAを3.92g(20.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は125,100であった。330℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 11]
Except for changing TFMB to 15.69 g (49.0 mmol), NMP to 193.54 g, PMDA to 0 g (0 mmol), ODPA to 9.31 g (30.0 mmol), and CBDA to 3.92 g (20.0 mmol) A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 125,100. Table 1 shows the CTE, YI value and breaking strength of the film cured at 330 ° C.

[比較例12]
TFMBを15.69g(49.0mmol)、NMPを178.27g、PMDAを0g(0mmol)、ODPAを3.10g(10.0mmol)、CBDAを7.84g(40.0mmol)に変更した以外は、実施例1と同様にしてワニスを得た。得られたワニスの重量平均分子量(Mw)は120,900であった。330℃キュアしたフィルムのCTE、YI値及び破断強度を表1に示す。
[Comparative Example 12]
TFMB was changed to 15.69 g (49.0 mmol), NMP was 178.27 g, PMDA was changed to 0 g (0 mmol), ODPA was changed to 3.10 g (10.0 mmol), and CBDA was changed to 7.84 g (40.0 mmol). A varnish was obtained in the same manner as in Example 1. The weight average molecular weight (Mw) of the obtained varnish was 120,900. Table 1 shows the CTE, YI value and breaking strength of the film cured at 330 ° C.

[比較例13]
ディーンシュタルク装置及び還流器をつけたセパラブルフラスコに、窒素雰囲気下、TFMBを12.55g(39.2mmol)、NMPを64.56g、トルエンを50g入れ、TFMBを撹拌溶解させた。そこに、H−PMDAを8.97g(40.0mmol)加えて、180℃で2時間還流した後、3時間かけて共沸溶媒であるトルエンを除去した。40℃まで冷却した後に、TFMBを3.14g(9.8mmol)、NMPを46.48g、ODPAを3.1g(10.0mmol)を入れ80℃で4時間撹拌し、ポリイミド−ポリアミド酸重合組成物のワニスを得た。得られたポリイミド−ポリアミド酸重合組成物の重量平均分子量(Mw)は49,800であった。350℃キュアしたフィルムのCTE、YI値及び伸度を表1に示す。
[Comparative Example 13]
Under a nitrogen atmosphere, 12.55 g (39.2 mmol) of TFMB, 64.56 g of NMP, and 50 g of toluene were placed in a separable flask equipped with a Dean Stark apparatus and a refluxer, and TFMB was stirred and dissolved. To this, 8.97 g (40.0 mmol) of H-PMDA was added and refluxed at 180 ° C. for 2 hours, and then toluene as an azeotropic solvent was removed over 3 hours. After cooling to 40 ° C., 3.14 g (9.8 mmol) of TFMB, 46.48 g of NMP and 3.1 g (10.0 mmol) of ODPA were added and stirred for 4 hours at 80 ° C., and polyimide-polyamic acid polymerization composition A varnish was obtained. The weight average molecular weight (Mw) of the obtained polyimide-polyamic acid polymerization composition was 49,800. Table 1 shows the CTE, YI value and elongation of the film cured at 350 ° C.

Figure 0006257302
Figure 0006257302

表1に示すように、実施例1〜16の評価結果から、脂環式酸二無水物、PMDA、及びODPAに由来する構造を有するポリイミド前駆体を用いたポリイミドフィルムは、膜物性において、以下の条件を同時に満たすことが確認された。
(1)CTEが25ppm以下
(2)YI値が10以下
(3)伸度が15%以上
As shown in Table 1, from the evaluation results of Examples 1 to 16, a polyimide film using a polyimide precursor having a structure derived from alicyclic acid dianhydride, PMDA, and ODPA is as follows. It was confirmed that the above conditions were satisfied at the same time.
(1) CTE is 25 ppm or less (2) YI value is 10 or less (3) Elongation is 15% or more

また比較例1〜4の評価結果から、1種類の酸二無水物に由来する構造を有するポリイミド前駆体を用いたポリイミドフィルムは、上記(1)〜(3)すべての膜物性を満たすことはできず、比較例5〜13の評価結果から、2種類の酸二無水物に由来する構造を有するポリイミド前駆体を用いたポリイミドフィルムにおいても、上記(1)〜(3)すべての膜物性について、十分な性能を付与するに至らないことが確認された。   Moreover, from the evaluation results of Comparative Examples 1 to 4, the polyimide film using the polyimide precursor having a structure derived from one kind of acid dianhydride satisfies all the above film properties (1) to (3). In the polyimide film using the polyimide precursor which has the structure derived from two types of acid dianhydrides from the evaluation result of Comparative Examples 5-13, about (1)-(3) all the film | membrane physical properties. It was confirmed that sufficient performance was not achieved.

この結果から、ポリイミド前駆体が脂環式酸二無水物、PMDA、及びODPAに由来する構造を有する場合に、無色透明であると共に、線膨張係数が低く、さらに伸度に優れたポリイミドフィルムを製造することができることが確認された。   From this result, when the polyimide precursor has a structure derived from alicyclic dianhydride, PMDA, and ODPA, a polyimide film that is colorless and transparent, has a low coefficient of linear expansion, and is excellent in elongation. It was confirmed that it could be manufactured.

本発明は、例えば、半導体絶縁膜、TFT−LCD絶縁膜、電極保護膜、フレキシブルディスプレイの製造に、特に基板として好適に利用することができる。   The present invention can be suitably used as a substrate, for example, in the production of semiconductor insulating films, TFT-LCD insulating films, electrode protective films, and flexible displays.

Claims (14)

ジアミン由来構造として、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)に由来する構造と、
酸二無水物由来構造として、ピロメリット酸二無水物(PMDA)及び4,4’−オキシジフタル酸二無水物(ODPA)に由来する構造と、1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA)及び/又は1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)に由来する構造と、
を具備することを特徴とするポリイミド前駆体。
As a diamine-derived structure, a structure derived from 2,2′-bis (trifluoromethyl) benzidine (TFMB);
As a structure derived from acid dianhydride, a structure derived from pyromellitic dianhydride (PMDA) and 4,4′-oxydiphthalic dianhydride (ODPA), and 1,2,3,4-cyclobutanetetracarboxylic acid A structure derived from anhydride (CBDA) and / or 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA);
A polyimide precursor characterized by comprising:
前記TFMB由来の構造を全ジアミン由来構造中60モル%以上含み、前記PMDA、前記ODPA、前記CBDA、及び前記H−PMDA由来の構造を、合わせて全酸二無水物由来構造中60モル%以上含むことを特徴とする請求項1記載のポリイミド前駆体。   The TFMB-derived structure contains 60 mol% or more of the total diamine-derived structure, and the PMDA, the ODPA, the CBDA, and the H-PMDA-derived structure are combined in a total acid dianhydride-derived structure of 60 mol% or more. The polyimide precursor according to claim 1, comprising: 前記PMDAに由来する構造を、全酸二無水物由来構造中1〜70モル%、前記ODPAに由来する構造を、全酸二無水物由来構造中1〜50モル%有することを特徴とする請求項1又は請求項2記載のポリイミド前駆体。   The structure derived from the PMDA has 1 to 70 mol% in the total acid dianhydride-derived structure, and the structure derived from the ODPA has 1 to 50 mol% in the total acid dianhydride-derived structure. Item 3. The polyimide precursor according to item 1 or 2. 前記PMDA、前記ODPA、前記CBDA及び前記H−PMDA由来の構造のモル数の和と、前記TFMB由来の構造のモル数との比{(PMDA+ODPA+CBDA+H−PMDA)/TFMB}が、100/99.9〜100/95であることを特徴とする請求項1から請求項3のいずれかに記載のポリイミド前駆体。   The ratio {(PMDA + ODPA + CBDA + H-PMDA) / TFMB} of the sum of the number of moles of the structure derived from PMDA, ODPA, CBDA and H-PMDA to the number of moles of the structure derived from TFMB is 100 / 99.9. It is -100/95, The polyimide precursor in any one of Claims 1-3 characterized by the above-mentioned. 前記酸二無水物由来構造として、前記PMDA及び前記ODPAに由来する構造と、少なくとも前記CBDAに由来する構造と、を具備し、The acid dianhydride-derived structure comprises a structure derived from the PMDA and the ODPA, and a structure derived from at least the CBDA,
前記PMDAを、全酸二無水物中10〜50モル%、前記ODPAを、全酸二無水物中10〜40モル%、前記CBDAを、全酸二無水物中10〜80モル%有することを特徴とする請求項1から請求項4のいずれかに記載のポリイミド前駆体。The PMDA has 10 to 50 mol% in total acid dianhydride, the ODPA has 10 to 40 mol% in total acid dianhydride, and the CBDA has 10 to 80 mol% in total acid dianhydride. The polyimide precursor according to any one of claims 1 to 4, wherein the polyimide precursor is characterized.
前記酸二無水物由来構造として、前記PMDA及び前記ODPAに由来する構造と、少なくとも前記H−PMDAに由来する構造と、を具備し、The acid dianhydride-derived structure comprises a structure derived from the PMDA and the ODPA, and a structure derived from at least the H-PMDA,
前記PMDAを、全酸二無水物中30〜65モル%、前記ODPAを、全酸二無水物中10〜40モル%、前記H−PMDAを、全酸二無水物中4〜60モル%有することを特徴とする請求項1から請求項4のいずれかに記載のポリイミド前駆体。The PMDA has 30-65 mol% in total acid dianhydride, the ODPA has 10-40 mol% in total acid dianhydride, and the H-PMDA has 4-60 mol% in total acid dianhydride. The polyimide precursor according to any one of claims 1 to 4, characterized in that:
重量平均分子量が50000以上であることを特徴とする請求項1から請求項6のいずれかに記載のポリイミド前駆体。The weight average molecular weight is 50000 or more, The polyimide precursor in any one of Claims 1-6 characterized by the above-mentioned. 溶媒に溶解して支持体の表面に展開した後、窒素雰囲気下での加熱でイミド化して得られるポリイミドフィルムの黄色度が10以下、線膨張係数が25ppm以下、且つ、20μm膜厚におけるフィルムの伸度が15%以上であることを特徴とする請求項1から請求項のいずれかに記載のポリイミド前駆体。 After dissolving in a solvent and spreading on the surface of the support, the polyimide film obtained by imidization by heating in a nitrogen atmosphere has a yellowness of 10 or less, a linear expansion coefficient of 25 ppm or less, and a film thickness of 20 μm. the polyimide precursor according to any one of claims 1 to 7 in which the elongation is equal to or 15% or more. フレキシブルデバイスの製造に用いられることを特徴とする請求項1から請求項のいずれかに記載のポリイミド前駆体。 It is used for manufacture of a flexible device, The polyimide precursor in any one of Claims 1-8 characterized by the above-mentioned. 請求項1から請求項のいずれかに記載のポリイミド前駆体と、溶媒と、を含有することを特徴とする樹脂組成物。 A resin composition comprising the polyimide precursor according to any one of claims 1 to 9 and a solvent. 請求項10記載の樹脂組成物を支持体の表面上に展開し、次いで、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化して形成されることを特徴とするポリイミドフィルム。 A polyimide film formed by spreading the resin composition according to claim 10 on a surface of a support, and then imidizing the polyimide precursor by heating the support and the resin composition. . 請求項10記載の樹脂組成物を支持体の表面上に展開する工程と、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する工程と、前記ポリイミドフィルムを前記支持体から剥離して前記ポリイミドフィルムを得る工程と、を具備することを特徴とするポリイミドフィルムの製造方法。 A step of spreading the resin composition according to claim 10 on a surface of a support, a step of heating the support and the resin composition to imidize the polyimide precursor to form a polyimide film, and the polyimide And a step of peeling the film from the support to obtain the polyimide film. 支持体及びポリイミド膜を具備し、前記支持体の表面上に請求項10記載の樹脂組成物を展開し、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化して前記ポリイミド膜を形成して得られることを特徴とする積層体。 A support and a polyimide film are provided, and the resin composition according to claim 10 is spread on the surface of the support, and the polyimide precursor is imidized by heating the support and the resin composition. A laminate obtained by forming a film. 支持体の表面上に請求項10記載の樹脂組成物を展開する工程と、前記支持体及び前記樹脂組成物を加熱して前記ポリイミド前駆体をイミド化してポリイミド膜を形成し、前記支持体及び前記ポリイミド膜で構成された積層体を得る工程と、を具備することを特徴とする積層体の製造方法。 The step of developing the resin composition according to claim 10 on the surface of the support, heating the support and the resin composition to imidize the polyimide precursor to form a polyimide film, and the support and And a step of obtaining a laminate composed of the polyimide film.
JP2013260008A 2012-12-20 2013-12-17 POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD Active JP6257302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260008A JP6257302B2 (en) 2012-12-20 2013-12-17 POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012278039 2012-12-20
JP2012278039 2012-12-20
JP2013260008A JP6257302B2 (en) 2012-12-20 2013-12-17 POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2014139302A JP2014139302A (en) 2014-07-31
JP6257302B2 true JP6257302B2 (en) 2018-01-10

Family

ID=51416167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260008A Active JP6257302B2 (en) 2012-12-20 2013-12-17 POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP6257302B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254197B2 (en) * 2014-02-14 2017-12-27 旭化成株式会社 Polyimide precursor and resin composition containing the same
US20170313821A1 (en) 2014-10-23 2017-11-02 Ube Industries, Ltd. Polyimide precursor, polyimide, and polyimide film
KR102482608B1 (en) 2014-10-23 2022-12-30 유비이 가부시키가이샤 Polyimide film, polyimide precursor, and polyimide
KR102394341B1 (en) * 2016-08-10 2022-05-03 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
KR20190082281A (en) 2016-11-11 2019-07-09 우베 고산 가부시키가이샤 A laminate comprising a polyimide film and a hard coat layer
KR20180071007A (en) * 2016-12-19 2018-06-27 주식회사 두산 Colorless polyimide film
JP2018103392A (en) * 2016-12-22 2018-07-05 コニカミノルタ株式会社 Transparent polyimide film laminate
JP2019214642A (en) * 2018-06-11 2019-12-19 Imitex株式会社 Polyimide film for coverlay film, and manufacturing method therefor
KR20220156808A (en) * 2020-03-23 2022-11-28 도요보 가부시키가이샤 laminate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299777B2 (en) * 1992-05-21 2002-07-08 鐘淵化学工業株式会社 Polyimide film and method for producing the same
JP3934335B2 (en) * 2000-11-30 2007-06-20 セントラル硝子株式会社 Polyimide and method for producing the same
JP4788108B2 (en) * 2004-05-25 2011-10-05 日産化学工業株式会社 Polyimide and its precursor with low dielectric constant, low linear thermal expansion coefficient, high transparency, and high glass transition temperature
JP4639697B2 (en) * 2004-08-31 2011-02-23 新日本理化株式会社 Imide group-containing diamine, imide group-containing polyimide precursor, positive photosensitive resin composition containing the precursor, method for producing positive pattern, and electronic component
JP2006206756A (en) * 2005-01-28 2006-08-10 Sony Chem Corp Polyimide compound and flexible wiring board
JP2009015038A (en) * 2007-07-05 2009-01-22 Chisso Corp Composition for liquid crystal alignment layer, and display element using the same
KR101225842B1 (en) * 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 Colorless polyimide film
JP5325460B2 (en) * 2008-05-27 2013-10-23 和光純薬工業株式会社 Novel (1R, 2S, 4S, 5R) -cyclohexanetetracarboxylic dianhydride and use thereof
JP5180814B2 (en) * 2008-12-26 2013-04-10 新日鉄住金化学株式会社 Laminated body for flexible wiring board
JP5469578B2 (en) * 2010-10-01 2014-04-16 日本化薬株式会社 Copper-clad laminate having primer layer and wiring board using the same
JP2012146905A (en) * 2011-01-14 2012-08-02 Kaneka Corp Utilization of soluble polyimide resin film
WO2012118020A1 (en) * 2011-02-28 2012-09-07 Jsr株式会社 Resin composition and film formation method using same
JP6016561B2 (en) * 2012-09-28 2016-10-26 旭化成株式会社 POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2014139302A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP6257302B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
US10815378B2 (en) Polyamic acid resin and polyamideimide film
JP6435298B2 (en) RESIN PRECURSOR AND RESIN COMPOSITION CONTAINING THE SAME, RESIN FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
US10662290B2 (en) Polyamide-imide precursor, polyamide-imide film and display device comprising same
CN108431086B (en) Polyamide acid composition using alicyclic monomer and transparent polyimide film using same
JP6254197B2 (en) Polyimide precursor and resin composition containing the same
JP6016561B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
JP6615226B2 (en) Polyimide resin and film using the same
US11130844B2 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
JP6831424B2 (en) Polyamic acid, polyimide resin and polyimide film
JP2018522105A (en) Polyamide-imide precursor, polyamide-imide film, and display element including the same
WO2014098235A1 (en) Polyimide precursor and resin composition containing same
WO2019188305A1 (en) Polyimide resin, polyimide varnish, and polyimide film
TWI462952B (en) Low chroma polyimide film and manufacturing method thereof
JP2006336009A (en) New polyimide copolymer and molded article of polyimide obtained by molding the same
KR20140049382A (en) Polyimide film and method for preparing same
JP2022159241A (en) Polyimide block copolymerization based polymer, polyimide block copolymerization based film, polyamic acid-imide copolymer, and resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350