WO2014129441A1 - カップリング - Google Patents
カップリング Download PDFInfo
- Publication number
- WO2014129441A1 WO2014129441A1 PCT/JP2014/053720 JP2014053720W WO2014129441A1 WO 2014129441 A1 WO2014129441 A1 WO 2014129441A1 JP 2014053720 W JP2014053720 W JP 2014053720W WO 2014129441 A1 WO2014129441 A1 WO 2014129441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hub
- coupling
- claw portions
- rubber
- inner end
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/02—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
- F16D3/12—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/50—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
- F16D3/64—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
- F16D3/68—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/06—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
- F16D1/08—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
- F16D1/0852—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
- F16D1/0864—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to tangential loading of the hub, e.g. a split hub
Definitions
- the present invention relates to a coupling that is used in a servo motor and can increase the speed control gain to improve the response and shorten the settling time.
- Torque transmission from the drive-side rotary shaft to the driven-side rotary shaft in the servo motor is performed via a coupling.
- This coupling is composed of a pair of hubs and a rubber spacer interposed between the hubs.
- the rubber spacer silicone rubber, urethane rubber, chloroprene rubber, styrene-butadiene copolymer rubber (SBR) or the like is used. This rubber spacer is required to have a certain rigidity, suppress the amplitude due to vibration, and improve the torque transmission performance.
- Non-Patent Document 1 The problem of this type of servo motor is disclosed in Non-Patent Document 1. That is, in order to avoid resonance, the resonance angular frequency must be increased and separated from the input angular frequency. However, in that case, at least the torsional rigidity of the shaft coupling representing the mechanical system must be increased. When a resonance relationship due to low torsional rigidity is encountered, the control gain of the control system, particularly the servo motor, must be lowered to a level where resonance does not occur, or a selective band filter must be used to eliminate the resonance.
- Non-Patent Document 1 there is a limit to increase the responsiveness by increasing the speed control gain of the servo motor only by increasing the torsional rigidity of the coupling as the shaft coupling.
- the torsional rigidity of the coupling there is no suggestion of characteristics related to speed control gain and responsiveness.
- An object of the present invention is to provide a coupling capable of increasing the speed control gain and reducing the settling time.
- a coupling is provided, and the coupling is a pair of hubs including a first hub and a second hub, and the first hub is a first hub.
- One inner end surface and a plurality of first claw portions that are arranged on the first inner end surface at intervals in the circumferential direction and project in the axial direction of the first hub;
- a plurality of second claws are provided between the second inner end face and the second inner end face and spaced in the circumferential direction and projecting in the axial direction of the second hub.
- a second gap is provided between two adjacent second claw portions, the first inner end surface and the second inner end surface are opposed to each other, and each of the plurality of first claw portions is second.
- the loss tangent tan ⁇ of the rubber material forming the rubber spacer is preferably 0.2 to 1.3.
- the cross-sectional area of the rubber spacer between the inner periphery and the outer periphery of the plurality of first claw portions and the plurality of second claw portions in the cross section orthogonal to the axis of the pair of hubs is the plurality of first claw portions in the cross section. 20 to 50% of the total cross-sectional area of the rubber spacer between the inner periphery and the outer periphery of the one claw portion and the plurality of second claw portions, and the plurality of first claw portions and the plurality of second claw portions. Is preferred.
- the damping ratio ⁇ is preferably 0.07 to 0.27.
- the square root K 1/2 of the dynamic torsion spring constant K is preferably 12.2 to 58.3.
- the relationship between the square root K 1/2 of damping ratio ⁇ and dynamic torsion spring constant K is represented by the attenuation curve, the attenuation ratio ⁇ becomes large small square root K 1/2 of the dynamic torsional spring constant K, the dynamic As the square root K 1/2 of the torsional spring constant K increases, the damping ratio ⁇ decreases.
- the speed control gain indicating the response in coupling increases as the square root K 1/2 of the dynamic torsion spring constant K and the damping ratio ⁇ increase.
- the product of the square root K 1/2 of the dynamic torsion spring constant K and the damping ratio ⁇ is 1.3 to 12.0.
- the speed control gain can be increased and the settling time can be shortened.
- the perspective view which shows the coupling in 1st Embodiment of this invention Sectional drawing in the part of the rubber spacer of the coupling of 1st Embodiment.
- the coupling 10 of the first embodiment includes a pair of cylindrical hubs including a first hub 111 and a second hub 112 as constituent elements.
- the first hub 111 and the second hub 112 each have an inner end surface 11a, and these inner end surfaces 11a face each other.
- On each inner end surface 11a three claw portions 12 for connection are arranged at equal intervals in the circumferential direction. Each claw portion 12 protrudes in the axis x direction of the first hub 111 and the second hub 112.
- a rubber spacer 13 that is a component of the coupling 10 is disposed between the first hub 111 and the second hub 112, a rubber spacer 13 that is a component of the coupling 10 is disposed.
- An insertion hole 14 is formed in the center of each of the first hub 111 and the second hub 112 so as to penetrate in the axis x direction.
- the rubber spacer 13 is formed with a through hole 15 communicating with the insertion hole 14 of the first hub 111 and the second hub 112.
- a drive-side rotary shaft 16 such as a servomotor is inserted into one insertion hole 14 of the first hub 111 and the second hub 112, and the other insertion hole 14 is inserted into the other insertion hole 14.
- the driven rotation shaft 17 is inserted and connected to the rotation shaft 16.
- the metal forming the first hub 111 and the second hub 112 aluminum (aluminum alloy), cast iron, steel (stainless steel), copper alloy, or the like is used.
- the rubber material forming the rubber spacer includes fluorine rubber, acrylonitrile-butadiene-copolymer rubber hydride (HNBR), natural rubber (NR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), Urethane rubber (U), silicone rubber (Q), etc. are used.
- fluorine-based rubber is preferable from the viewpoints of hardness, damping properties, and the like.
- Examples of the fluorine rubber include vinylidene fluoride rubber (FKM).
- the loss tangent tan ⁇ of the rubber material is preferably 0.2 to 1.3, and more preferably 0.2 to 0.7.
- the loss tangent tan ⁇ represents the ratio of the loss shear modulus to the storage shear modulus, and indicates the level of energy absorbed by the rubber material when the rubber material is deformed, that is, the conversion level to heat.
- the loss tangent tan ⁇ is within the above range, it becomes easier to increase both the damping ratio ⁇ and the rigidity of the coupling 10.
- the damping ratio ⁇ of the coupling 10 is preferably 0.07 to 0.27.
- the damping ratio ⁇ is a coefficient representing the damping characteristic, and the amplitude of the damping free vibration waveform is attenuated exponentially, and the logarithmic damping factor obtained by taking the logarithm of the ratio of adjacent amplitudes is always a constant value. Calculated.
- the magnitude and rigidity of the coupling 10 can be set to preferable values.
- the outer end surfaces of the first hub 111 and the second hub 112 are provided with a notch 11c cut into a semicylindrical shape.
- a tightening member 18 is attached to the notches 11c.
- the first hub 111 and the second hub 112 are formed with a pair of through holes 11b extending in a direction orthogonal to the axis x.
- a pair of screw holes 18 a are formed in the tightening member 18.
- the drive-side rotary shaft 16 is inserted through the insertion hole 14 of the first hub 111, and the driven-side rotary shaft 17 is inserted through the insertion hole 14 of the second hub 112.
- the pair of hexagon socket head bolts 19 pass through the through holes 11b of the first hub 111 and the second hub 112, and are screwed and tightened to the screw holes 18a of the tightening member 18 with a hexagonal bar spanner (not shown).
- the rotating shaft 16 and the driven rotating shaft 17 are connected by the coupling 10. In this state, torque is transmitted from the drive-side rotating shaft 16 to the driven-side rotating shaft 17 through the coupling 10.
- the coupling 10 is manufactured as follows. First, the first hub 111 and the second hub 112 are arranged in the mold so as to face each other. At this time, the first claw portions 12a are adjacent to each other so that the first claw portions 12a of the first hub 111 and the second claw portions 12b of the second hub 112 are arranged at equal intervals in the circumferential direction. It positions in the clearance gap 20 between the two 2nd nail
- the molten rubber material is injected into the space 21 formed between the inner end surfaces 11a of the first hub 111 and the second hub 112 to perform molding. Thereafter, the mold is cooled, the mold is opened, and the molded product is taken out, whereby the coupling 10 in which the rubber spacer 13 is interposed between the first hub 111 and the second hub 112 is manufactured.
- the rubber spacer 13 has a first claw portion 12a of the first hub 111 and a second claw portion 12b of the second hub 112 arranged at equal intervals in the circumferential direction.
- the first hub 111 and the second hub 112 are interposed in a space portion 21 formed between the opposed inner end surfaces 11a.
- the cross-sectional area of the rubber spacer 13 between the inner periphery and the outer periphery of the claw portion 12 in the cross section orthogonal to the axis x of the first hub 111 and the second hub 112 is the inner periphery of the claw portion 12 and the claw portion 12 in the cross section.
- the total cross-sectional area of the rubber spacer 13 between the outer periphery and the outer periphery is preferably 20 to 50%.
- the cross-sectional area of the rubber spacer 13 is within the above range, it is easier to suppress vibration and increase the square root K 1/2 of the dynamic torsion spring constant K by the rubber spacer 13.
- the ratio of the cross-sectional area of the claw portion 12 is 53%, in other words, the rubber spacer 13
- the ratio of the cross-sectional area can be 47%.
- the ratio of the cross-sectional area of the claw portion 12 is 61%, in other words, the ratio of the cross-sectional area of the rubber spacer 13 is It can be 39%.
- the square root K 1/2 of the dynamic torsion spring constant K of the coupling 10 is preferably 12.2 to 58.3 in order to increase the resonance frequency of the coupling 10. When K 1/2 is in the above range, it is easy to obtain a sufficient gain.
- the relationship between the square root K 1/2 of the dynamic torsion spring constant K and the damping ratio ⁇ is shown by a damping curve, and when K 1/2 is small, ⁇ is large. As 1 ⁇ 2 increases, ⁇ gradually decreases.
- the product of ⁇ and K 1/2 is set to 1.3 to 12.0, preferably 2.5 to 12.0.
- the attenuation curve (1) shows a case where the product of ⁇ and K 1/2 is 1.3.
- the attenuation curve (2) shows a case where the product of ⁇ and K 1/2 is 12.0. Therefore, the product of the damping ratio ⁇ and the square root K 1/2 of the dynamic torsion spring constant K is in the range of 1.3 to 12.0, and the damping curve (1) indicated by the hatching in FIG. Represented by region R between curve (2).
- the value of the product of ⁇ and K 1/2 is affected by the outer diameter of the coupling 10.
- the outer diameter of the coupling 10 is preferably in the range of 15 to 40 mm. When the outer diameter of the coupling 10 is within the above range, a sufficient gain can be obtained while keeping the usage range of the coupling 10 wide.
- the rubber spacer 13 can exhibit the torsional rigidity and the damping property in a well-balanced manner, and can improve the torque transmission performance.
- the coupling 10 of the first embodiment has an effect that the speed control gain can be increased and the settling time can be shortened.
- the loss tangent tan ⁇ of the rubber material forming the rubber spacer 13 is 0.2 to 1.3. For this reason, the rubber material can easily absorb vibration energy and the like, and the amplitude due to vibration can be reduced.
- the total cross-sectional area of the rubber spacer 13 between the inner periphery and the outer periphery of 12 is 20 to 50%. For this reason, it is possible to improve the gain while maintaining the torsional rigidity of the coupling 10.
- the damping ratio ⁇ of the coupling 10 is 0.07 to 0.27. Therefore, the amplitude at the resonance frequency of the coupling 10 can be effectively suppressed.
- the square root K 1/2 of the dynamic torsion spring constant K of the coupling 10 is 12.2 to 58.3. Therefore, the coupling 10 has a sufficient torsional rigidity, can suppress hunting, improve the gain, and shorten the settling time.
- first claw portions 12a and five second claw portions 12b for connection at equal intervals in the circumferential direction, respectively.
- the first claw portion 12 a and the second claw portion 12 b protrude in the axis x direction of the first hub 111 and the second hub 112.
- the first claw portions 12a are adjacent to each other so that the five first claw portions 12a of the first hub 111 and the five second claw portions 12b of the second hub 112 are arranged at equal intervals in the circumferential direction. It is positioned in the gap 20 between the two second claw portions 12b.
- a rubber spacer 13 is interposed in the space 21 between the inner end surfaces 11a of the first hub 111 and the second hub 112 facing each other.
- the cross-sectional area of the claw portion 12 As shown in FIG. 6, when the outer diameter of the first hub 111 and the second hub 112 is 25 mm and the diameter of the insertion hole 14 of the first hub 111 and the second hub 112 is 5 mm, the cross-sectional area of the claw portion 12
- the ratio of the cross-sectional area of the rubber spacer 13 can be 31%. Further, when the outer diameter of the first hub 111 and the second hub 112 is 25 mm and the diameter of the insertion hole 14 of the first hub 111 and the second hub 112 is 12 mm, the ratio of the cross-sectional area of the claw portion 12 is 79%. In other words, the ratio of the cross-sectional area of the rubber spacer 13 can be 21%.
- the coupling 10 of the second embodiment there are five first claws 12a of the first hub 111 and five second claws 12b of the second hub 112, respectively. Therefore, the ratio of the cross-sectional area of the rubber spacer 13 is smaller than that in the first embodiment. For this reason, the coupling 10 of the second embodiment has higher torsional rigidity than the coupling 10 of the first embodiment, and can more effectively suppress the amplitude due to vibration. Therefore, when torque is transmitted from the drive-side rotation shaft to the driven-side rotation shaft 17 via the coupling 10, the gain can be further increased and the settling time can be shortened compared to the case of the first embodiment. be able to.
- Example 1 to 12 and Comparative Examples 1 to 7 In Examples 1 to 10 and Comparative Examples 1 to 7, the outer diameter of the coupling 10 was 25 mm, and the rubber spacer 13 was formed using the rubber material shown below. In Examples 11 and 12, the outer diameter of the coupling 10 was 39 mm, and the rubber spacer 13 was formed using the rubber material shown below.
- Example 1 NBR rubber (loss tangent tan ⁇ is 0.20, curve (1) in FIG. 4),
- Example 2 NR rubber (tan ⁇ is 0.28, curve (2) in FIG. 4),
- Example 3 SBR rubber (tan ⁇ is 0.26, curve (3) in FIG. 4),
- Example 4 BR rubber (tan ⁇ is 0.21, curve (4) in FIG. 4),
- Example 5 CR rubber (tan ⁇ is 0.28, curve (5) in FIG. 4),
- Example 6 Fluorine rubber (tan ⁇ is 0.50, curve (6) in FIG. 4),
- Example 7 Fluorine rubber (tan ⁇ is 0.48, curve (7) in FIG.
- Example 8 Hanenite (registered trademark) rubber (tan ⁇ is 1.30, curve (8) in FIG. 4) manufactured by Inner and Outer Rubber Co., Ltd.
- Example 9 Fluorine rubber (tan ⁇ is 0.50, curve (9) in FIG. 4)
- Example 10 Fluorine rubber (tan ⁇ is 0.50, curve (10) in FIG. 4)
- Example 11 Hydrogenated NBR rubber (tan ⁇ is 0.20, curve (21) in FIG. 4)
- Example 12 Fluoro rubber (tan ⁇ is 0.50, curve (22) in FIG. 4).
- Comparative Example 1 NR rubber (tan ⁇ is 0.21, curve (11) in FIG. 4), Comparative Example 2: SBR rubber (tan ⁇ is 0.22, curve (12) in FIG. 4), Comparative Example 3: BR rubber (tan ⁇ is 0.12, curve (13) in FIG. 4), Comparative Example 4: CR rubber (tan ⁇ is 0.17, curve (14) in FIG. 4), Comparative Example 5: Urethane rubber (tan ⁇ is 0.08, curve (15) in FIG. 4), Comparative Example 6: Silicone rubber (tan ⁇ is 0.07, curve (16) in FIG. 4), Comparative Example 7: Silicone rubber (tan ⁇ is 0.18, curve (17) in FIG. 4).
- each rubber material is a value obtained from a dynamic viscoelasticity test at a temperature of 20 ° C. and a frequency (frequency) of 10 Hz.
- Example 1 to 12 and Comparative Examples 1 to 7 the driving-side rotary shaft 16 and the driven-side rotary shaft 17 were connected to the coupling 10 assembled with the rubber spacer 13. Thereafter, torque was transmitted from the drive-side rotary shaft 16 connected to the motor to the driven-side rotary shaft 17.
- the operating conditions were set as follows, and the speed control gain (rad / s) and the settling time (ms) obtained under these operating conditions were measured according to a conventional method.
- Motor rotation speed 3000 (min ⁇ 1 ), Acceleration time until the motor speed reaches 0 to 3000 (min ⁇ 1 ): 50 (ms), Deceleration time until the rotational speed of the motor returns from 3000 to 0 (min ⁇ 1 ): 50 (ms), Stroke of the work placed on the ball screw on the driven side: 100 (mm) Load inertia moment ratio representing inertia ratio of driven side to driven side: 3.5 (times).
- FIG. 4 is a graph showing the relationship between the square root K1 / 2 of the dynamic torsion spring constant K and the damping ratio ⁇ .
- the attenuation curves of Examples 1 to 12 are both attenuation curve (1) and attenuation curve ( 2).
- the decay curves [(11) to (17) in FIG. 4] of Comparative Examples 1 to 7 are all located outside the region R between the decay curves (1) and (2). .
- Each of the first hub 111 and the second hub 112 may include two, four, or six or more claw portions 12.
- the outer diameter of the coupling 10 (the outer diameter of the rubber spacer 13) may be smaller than 25 mm or larger than 39 mm.
- the length of the rubber spacer 13 in the axis x direction may be changed as appropriate by adjusting the lengths of the claw portions 12 of the first hub 111 and the second hub 112.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
以下、本発明を具体化した第1実施形態を図1~図4に基づいて詳細に説明する。
(1)カップリング10における応答性を示すゲインは、動的ねじりばね定数Kの平方根K1/2及び減衰比ζが大きいほど高くなる。このため、K1/2とζとの積を1.3~12.0となるように設定することにより、K1/2とζとを共に大きくすることができる。このことは、ハンチングを抑えてゲインの向上に寄与する。
(2)前記ゴムスペーサ13を形成するゴム材料の損失正接tanδは0.2~1.3である。このため、ゴム材料は振動エネルギー等を吸収しやすく、振動による振幅を小さくすることができる。
(3)第1ハブ111及び第2ハブ112の軸線xと直交する断面において、爪部12の内周と外周との間のゴムスペーサ13の断面積は、その断面における爪部12及び爪部12の内周と外周との間のゴムスペーサ13の合計断面積に対して20~50%である。このため、カップリング10のねじり剛性を維持しつつ、ゲインの向上を図ることができる。
(4)前記カップリング10の減衰比ζは0.07~0.27である。従って、カップリング10の共振周波数における振幅を有効に抑制することができる。
(5)前記カップリング10の動的ねじりばね定数Kの平方根K1/2は、12.2~58.3である。従って、カップリング10は十分なねじり剛性を有し、ハンチングを抑制してゲインの向上を図ることができるとともに、整定時間を短縮することができる。
(第2実施形態)
次に、本発明を具体化した第2実施形態を図5及び図6に基づいて説明する。この第2実施形態では、主に前記第1実施形態と相違する部分について説明し、同一部分については説明を省略する。
(実施例1~12及び比較例1~7)
実施例1~10及び比較例1~7では、カップリング10の外径は25mmであり、ゴムスペーサ13は以下に示すゴム材料を使用して形成された。実施例11及び12では、カップリング10の外径は39mmであり、ゴムスペーサ13は以下に示すゴム材料を使用して形成された。
実施例2:NR系ゴム(tanδは0.28、図4の曲線(2))、
実施例3:SBR系ゴム(tanδは0.26、図4の曲線(3))、
実施例4:BR系ゴム(tanδは0.21、図4の曲線(4))、
実施例5:CR系ゴム(tanδは0.28、図4の曲線(5))、
実施例6:フッ素系ゴム(tanδは0.50、図4の曲線(6))、
実施例7:フッ素系ゴム(tanδは0.48、図4の曲線(7))、
実施例8:内外ゴム株式会社製ハネナイト(HANENITE)(登録商標)ゴム(tanδは1.30、図4の曲線(8))、
実施例9:フッ素系ゴム(tanδは0.50、図4の曲線(9))、
実施例10:フッ素系ゴム(tanδは0.50、図4の曲線(10))、
実施例11:水素化NBR系ゴム(tanδは0.20、図4の曲線(21))、
実施例12:フッ素系ゴム(tanδは0.50、図4の曲線(22))。
比較例2:SBR系ゴム(tanδは0.22、図4の曲線(12))、
比較例3:BR系ゴム(tanδは0.12、図4の曲線(13))、
比較例4:CR系ゴム(tanδは0.17、図4の曲線(14))、
比較例5:ウレタン系ゴム(tanδは0.08、図4の曲線(15))、
比較例6:シリコーン系ゴム(tanδは0.07、図4の曲線(16))、
比較例7:シリコーン系ゴム(tanδは0.18、図4の曲線(17))。
モータの回転数が0から3000(min-1)に到るまでの加速時間:50(ms)、
モータの回転数が3000から0(min-1)に戻るまでの減速時間:50(ms)、
従動側のボールねじ上に配置されたワークのストローク:100(mm)、
駆動側に対する従動側のイナーシャ比を表す負荷慣性モーメント比:3.5(倍)。
Claims (5)
- カップリングであって、
第1ハブ及び第2ハブからなる一対のハブであって、前記第1ハブは、第1内端面及び前記第1内端面上に周方向に間隔をおいて配置されるとともに前記第1ハブの軸線方向に突出する複数の第1爪部を有し、隣接する2つの第1爪部の間に第1隙間が設けられ、前記第2ハブは第2内端面及び前記第2内端面上に周方向に間隔をおいて配置されるとともに前記第2ハブの軸線方向に突出する複数の第2爪部を有し、隣接する2つの第2爪部の間に第2隙間が設けられ、前記第1内端面及び前記第2内端面は互いに対向しており、前記複数の第1爪部の各々が前記第2隙間に配置され、前記複数の第2爪部の各々が前記第1隙間に配置されている一対のハブと、
前記第1内端面及び前記第2内端面の間に配置されたゴムスペーサと
を備え、
減衰比(ζ)と、動的ねじりばね定数(K)の平方根(K1/2)との積が1.3~12.0であることを特徴とするカップリング。 - 前記ゴムスペーサを形成するゴム材料の損失正接(tanδ)は0.2~1.3であることを特徴とする請求項1に記載のカップリング。
- 前記一対のハブの軸線と直交する断面における前記複数の第1爪部及び前記複数の第2爪部の内周と外周との間のゴムスペーサの断面積は、その断面における前記複数の第1爪部及び前記複数の第2爪部、ならびに前記複数の第1爪部及び前記複数の第2爪部の内周と外周との間のゴムスペーサの合計断面積に対して20~50%であることを特徴とする請求項1又は2に記載のカップリング。
- 前記減衰比(ζ)は0.07~0.27であることを特徴とする請求項1~3のいずれか一項に記載のカップリング。
- 前記動的ねじりばね定数(K)の平方根(K1/2)は、12.2~58.3であることを特徴とする請求項1~4のいずれか一項に記載のカップリング。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480009179.5A CN105008742A (zh) | 2013-02-22 | 2014-02-18 | 联结器 |
EP14754121.3A EP2960536A4 (en) | 2013-02-22 | 2014-02-18 | COUPLING |
JP2015501449A JP5923656B2 (ja) | 2013-02-22 | 2014-02-18 | カップリング |
KR1020157021926A KR20150120355A (ko) | 2013-02-22 | 2014-02-18 | 커플링 |
US14/760,168 US20150354636A1 (en) | 2013-02-22 | 2014-02-18 | Coupling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-033002 | 2013-02-22 | ||
JP2013033002 | 2013-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129441A1 true WO2014129441A1 (ja) | 2014-08-28 |
Family
ID=51391231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053720 WO2014129441A1 (ja) | 2013-02-22 | 2014-02-18 | カップリング |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150354636A1 (ja) |
EP (1) | EP2960536A4 (ja) |
JP (1) | JP5923656B2 (ja) |
KR (1) | KR20150120355A (ja) |
CN (1) | CN105008742A (ja) |
WO (1) | WO2014129441A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047188A1 (ja) * | 2014-09-26 | 2016-03-31 | 日本精工株式会社 | トルク伝達用継手及び電動式パワーステアリング装置 |
JP2016060294A (ja) * | 2014-09-16 | 2016-04-25 | 株式会社ジェイテクト | パワーステアリング装置 |
US10288126B2 (en) | 2014-09-26 | 2019-05-14 | Nsk Ltd. | Torque transmission joint and electric power steering device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105397837B (zh) * | 2015-12-16 | 2017-05-03 | 哈尔滨工业大学 | 一种单向串联弹性驱动器 |
CN109563885B (zh) * | 2016-08-08 | 2021-07-02 | 日本精工株式会社 | 扭矩传递用联轴器和电动式助力转向装置 |
CN106112705A (zh) * | 2016-08-10 | 2016-11-16 | 中山市泰帝科技有限公司 | 一种低振动磨刀器 |
WO2018070485A1 (ja) * | 2016-10-13 | 2018-04-19 | 日本精工株式会社 | トルク伝達用継手及び電動式パワーステアリング装置 |
KR101925596B1 (ko) * | 2017-10-30 | 2018-12-05 | 한국항공우주연구원 | 진동 저감 축 |
US20190170195A1 (en) * | 2017-12-01 | 2019-06-06 | Jerry L. Hauck | Compression mode flexible couplings |
JP7162913B2 (ja) * | 2018-05-17 | 2022-10-31 | 鍋屋バイテック株式会社 | 軸継手 |
US11149767B2 (en) * | 2018-10-03 | 2021-10-19 | Robotzone, Llc | Clamping hub |
US11994171B2 (en) | 2018-10-10 | 2024-05-28 | Robotzone, Llc | Clamping shaft coupler |
DE102018126616B4 (de) * | 2018-10-25 | 2020-08-27 | MÄDLER GmbH | Wellenkupplung |
CN114787526B (zh) * | 2019-12-04 | 2024-09-24 | 日本精工株式会社 | 扭矩传递接头以及带蜗杆减速器的电动马达 |
US12066072B1 (en) * | 2020-04-10 | 2024-08-20 | Samuel Carter Tatum | Breakaway axle coupling assembly for off-road vehicles |
USD1017390S1 (en) * | 2020-12-23 | 2024-03-12 | Valmont Industries, Inc. | Reversible saddle for driveline coupler |
KR102649994B1 (ko) * | 2021-12-24 | 2024-03-21 | 주식회사 티에스알 | 코드를 이용한 전동파워스티어링용 커플링 및 그 제조공정 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04341617A (ja) * | 1991-05-17 | 1992-11-27 | Tokai Rubber Ind Ltd | ステアリングカップリング |
JP2006342886A (ja) * | 2005-06-09 | 2006-12-21 | Nabeya Bi-Tech Kk | 撓み軸継手 |
JP2011093061A (ja) * | 2009-10-30 | 2011-05-12 | Waida Seisakusho:Kk | トルク検出機能をもった回転スピンドル |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3552145A (en) * | 1968-07-31 | 1971-01-05 | North American Rockwell | Flexible shaft coupling |
DE2201425A1 (de) * | 1972-01-13 | 1973-07-19 | Erich Rosenthal | Elastische stoss- und schwingungsdaempfende hochleistungskupplung |
US4172369A (en) * | 1978-03-13 | 1979-10-30 | Hayes Charles J | Flexible coupling |
US4483685A (en) * | 1983-03-21 | 1984-11-20 | The Singer Company | Motor isolator pulley |
US4583912A (en) * | 1984-03-16 | 1986-04-22 | Allis-Chalmers Corporation | Damped dynamic vibration absorber |
DE4128868A1 (de) * | 1991-08-30 | 1993-03-04 | Fichtel & Sachs Ag | Zweimassenschwungrad mit gleitschuh |
US6342011B1 (en) * | 1999-04-01 | 2002-01-29 | The Falk Corporation | Flexible shaft coupling with improved elastomeric element |
JP4336923B2 (ja) * | 2000-04-28 | 2009-09-30 | Nok株式会社 | フレキシブルカップリング |
US6648763B2 (en) * | 2000-09-14 | 2003-11-18 | The Falk Corporation | Reduction of axial thrust reaction in toothed shear-type flexible couplings |
JP4709496B2 (ja) * | 2004-04-02 | 2011-06-22 | 株式会社デルタツーリング | シート構造 |
US7763336B2 (en) * | 2004-05-20 | 2010-07-27 | The Gates Corporation | Flexible coupling sleeve and a flexible shaft coupling incorporating same |
JP2006221576A (ja) * | 2005-02-14 | 2006-08-24 | Toshiba Corp | 表示装置及び携帯情報処理装置 |
US20070209899A1 (en) * | 2006-03-09 | 2007-09-13 | Keming Liu | Decoupling vibration isolator |
US20080064506A1 (en) * | 2006-09-12 | 2008-03-13 | Chao Yang Enterprise Co., Ltd. | Connector structure for a gearbox linked to a motor |
US7658678B2 (en) * | 2007-01-17 | 2010-02-09 | The Gates Corporation | Pronged sleeve-type flexible shaft coupling |
JP5708981B2 (ja) * | 2010-09-09 | 2015-04-30 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
JP5267530B2 (ja) * | 2010-10-01 | 2013-08-21 | トヨタ自動車株式会社 | 配管の支持構造 |
JP5483466B2 (ja) * | 2011-04-15 | 2014-05-07 | アサ電子工業株式会社 | カップリング |
-
2014
- 2014-02-18 US US14/760,168 patent/US20150354636A1/en not_active Abandoned
- 2014-02-18 JP JP2015501449A patent/JP5923656B2/ja active Active
- 2014-02-18 WO PCT/JP2014/053720 patent/WO2014129441A1/ja active Application Filing
- 2014-02-18 CN CN201480009179.5A patent/CN105008742A/zh active Pending
- 2014-02-18 EP EP14754121.3A patent/EP2960536A4/en not_active Withdrawn
- 2014-02-18 KR KR1020157021926A patent/KR20150120355A/ko not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04341617A (ja) * | 1991-05-17 | 1992-11-27 | Tokai Rubber Ind Ltd | ステアリングカップリング |
JP2006342886A (ja) * | 2005-06-09 | 2006-12-21 | Nabeya Bi-Tech Kk | 撓み軸継手 |
JP2011093061A (ja) * | 2009-10-30 | 2011-05-12 | Waida Seisakusho:Kk | トルク検出機能をもった回転スピンドル |
Non-Patent Citations (2)
Title |
---|
"Next-Generation Precision Positioning Technology", 25 April 2000, FUJI TECHNOSYSTEM, pages: 359 - 361 |
See also references of EP2960536A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016060294A (ja) * | 2014-09-16 | 2016-04-25 | 株式会社ジェイテクト | パワーステアリング装置 |
WO2016047188A1 (ja) * | 2014-09-26 | 2016-03-31 | 日本精工株式会社 | トルク伝達用継手及び電動式パワーステアリング装置 |
US10288126B2 (en) | 2014-09-26 | 2019-05-14 | Nsk Ltd. | Torque transmission joint and electric power steering device |
Also Published As
Publication number | Publication date |
---|---|
EP2960536A1 (en) | 2015-12-30 |
EP2960536A4 (en) | 2016-11-09 |
US20150354636A1 (en) | 2015-12-10 |
KR20150120355A (ko) | 2015-10-27 |
JPWO2014129441A1 (ja) | 2017-02-02 |
CN105008742A (zh) | 2015-10-28 |
JP5923656B2 (ja) | 2016-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5923656B2 (ja) | カップリング | |
JP6147753B2 (ja) | 改良ガイド装置を備えた振り子式振動子タイプのダンパシステム | |
US9739340B2 (en) | Damper apparatus | |
JP5483466B2 (ja) | カップリング | |
CN109641279B (zh) | 可旋转组件、加工杆组件及其方法 | |
KR102051686B1 (ko) | 개선된 듀얼 매스 플라이휠 | |
CN105422733A (zh) | 扭转减振器及工程车辆 | |
TW201542947A (zh) | 聯結器 | |
JPWO2007046227A1 (ja) | クロスグルーブ型等速自在継手 | |
JP2009257543A (ja) | 回転軸連結構造及びギヤドモータ | |
JP2007247848A (ja) | クロスグルーブ型等速自在継手 | |
JP5742089B2 (ja) | 動力工具 | |
US11840114B2 (en) | Wheel bearing unit for a motor vehicle as well as method for producing a wheel bearing unit | |
US9587682B2 (en) | Damper structure for clutch | |
CN109210144B (zh) | 预加载部件,预加载组件,双质量飞轮和机动车辆 | |
US10047804B2 (en) | Damper for use in clutch | |
JP2007205379A (ja) | プーリ | |
JP2014088898A (ja) | 捩り振動減衰装置 | |
JP6027957B2 (ja) | 自転車用駆動装置 | |
KR101824437B1 (ko) | 압축기용 전자클러치의 디스크 및 허브 조립체 | |
JP2019113114A (ja) | 車両用のダイナミックダンパ | |
JP2019019918A (ja) | 減衰機構 | |
JP2010255665A (ja) | 鉄道車両用ブレーキディスクの締結構造及び鉄道車両用輪軸 | |
JP4968119B2 (ja) | 鉄道車両用ブレーキディスク | |
JP6528655B2 (ja) | 振動低減装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754121 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015501449 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014754121 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14760168 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157021926 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |