WO2014129273A1 - 表面被覆切削工具およびその製造方法 - Google Patents

表面被覆切削工具およびその製造方法 Download PDF

Info

Publication number
WO2014129273A1
WO2014129273A1 PCT/JP2014/051908 JP2014051908W WO2014129273A1 WO 2014129273 A1 WO2014129273 A1 WO 2014129273A1 JP 2014051908 W JP2014051908 W JP 2014051908W WO 2014129273 A1 WO2014129273 A1 WO 2014129273A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cutting tool
coated cutting
residual stress
coating
Prior art date
Application number
PCT/JP2014/051908
Other languages
English (en)
French (fr)
Inventor
秀明 金岡
パサート・アノンサック
晋 奥野
喬啓 市川
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to KR1020157022792A priority Critical patent/KR101906658B1/ko
Priority to EP14754770.7A priority patent/EP2959994B1/en
Priority to US14/769,378 priority patent/US9920423B2/en
Priority to CN201480010033.2A priority patent/CN105142831B/zh
Publication of WO2014129273A1 publication Critical patent/WO2014129273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/144Wear indicators

Definitions

  • the present invention relates to a surface-coated cutting tool comprising a base material and a film formed on the base material, and a method for producing the same.
  • Patent Document 1 discloses a coated tool in which a boron-containing film is coated on the tool surface side of an aluminum oxide film.
  • Patent Document 2 discloses a cutting tool in which a titanium diboride layer is formed on a substrate material.
  • CVD Chemical Vapor Deposition
  • physical vapor deposition such as ion plating and ion sputtering are used.
  • the film formed by the chemical vapor deposition method has a high adhesion strength with the cemented carbide, which is the base material, and is excellent in wear resistance.
  • the coating has a tendency to become thicker due to demands for high speed cutting and high efficiency, and therefore, the adhesion strength between the substrate and the coating is very important. Therefore, from such a viewpoint, it is preferable to form a film by a chemical vapor deposition method.
  • a surface-coated cutting tool having a plurality of edge ridges can be used by changing the direction many times on the same seating surface. That is, by installing an unused blade edge ridge line portion at the cutting position, it can be used at another cutting position. Moreover, an unused cutting edge ridgeline part can also be utilized by reattaching a cutting edge ridgeline part to another bearing surface.
  • the coated tool disclosed in Patent Document 1 makes it easy to determine whether or not the tool has been used by disposing a colored boron-containing film on the outermost layer portion of the tool. And since this boron containing film
  • the color of the outermost layer may be impaired and it may be difficult to determine the state of use if the tensile residual stress is to be eliminated.
  • the cutting tool disclosed in Patent Document 2 does not provide a sufficient solution to the above-mentioned problem from the viewpoint of determining the usage state of the tool.
  • the wear resistance of the tool may be reduced due to abrasion of the outermost layer.
  • the present invention has been made in view of the current situation as described above, and the object of the present invention is to have excellent wear resistance and fracture resistance, and it is very easy to determine the usage state of the edge portion of the blade edge. It is an object of the present invention to provide a surface-coated cutting tool having a warning function that can be performed.
  • the present inventor has constituted the outermost layer of a coating composed of a plurality of layers from a specific compound, and has been further post-treated on the coating under conditions stronger than those conventionally known. As a result, it was found that it is possible to leave a layer in which the state of use can be easily discriminated while improving the wear resistance and the like.
  • the present invention has been completed by further study based on this finding.
  • the surface-coated cutting tool of the present invention is a surface-coated cutting tool comprising a base material and a coating film formed on the base material, the coating film including a plurality of layers, of the plurality of layers.
  • the coating preferably includes an Al oxide layer made of Al oxide as a lower layer of the outermost surface layer.
  • the coating film has an intermediate layer between the outermost surface layer and the Al oxide layer, and the intermediate layer is composed of a group 4 element, a group 5 element, a group 6 element, Al and Si in the periodic table. It is preferable to include one or more layers composed of a compound of one or more elements selected from the group consisting of and one or more elements selected from the group consisting of carbon, nitrogen and oxygen.
  • the intermediate layer preferably includes at least one of a TiCN layer and a TiN layer.
  • the intermediate layer may include a TiC layer.
  • the present invention also relates to a method for manufacturing the above surface-coated cutting tool, which is a method for manufacturing a surface-coated cutting tool comprising a base material and a coating film formed on the base material.
  • a compressive residual stress of 0.1 GPa or more, wherein the outermost surface layer is Ti x B y (x and y are atomic%, 1.5 ⁇ y / x ⁇ 2.5 Is a titanium boride layer.
  • the surface-coated cutting tool according to the present invention has the above-described configuration, so that it has excellent wear resistance and fracture resistance, and can be used to determine the state of use of the edge of the cutting edge extremely easily. It has the effect of having a function.
  • a surface-coated cutting tool includes a base material and a coating formed on the base material.
  • the coating is composed of a plurality of layers, and the outermost surface layer of the plurality of layers is Ti x B y (x and y indicate atomic%, and 1.5 ⁇ y / x ⁇ 2. 5) and a compressive residual stress having an absolute value of 0.1 GPa or more.
  • the surface-coated cutting tool of the present invention has a coating on at least a part of the rake face and the flank, and has a titanium boride layer that is particularly excellent in wear resistance as the outermost surface layer of the coating. . Since the titanium boride layer has high hardness and Young's modulus, even if the film is subjected to mechanical post-treatment under the same or stronger conditions as in the prior art, the color and the like may be impaired. There is no problem in determining the usage state of the edge portion of the cutting edge.
  • the tensile residual stress of the coating can be eliminated and compressive residual stress can be applied.
  • the wear resistance and fracture resistance of the lower layer portion of the coating can be improved, and this is combined with the high hardness and Young's modulus of the outermost surface layer to improve the resistance of the cutting tool. Abrasion and fracture resistance are dramatically improved.
  • the surface-coated cutting tool of the present invention has a warning function that makes it possible to very easily determine the state of use of the edge portion of the cutting edge by providing the above-described configuration.
  • the surface-coated cutting tool of the present invention is silver or white when not in use. Then, when the cutting by the cutting edge ridge line portion is started, the area adjacent to the cutting edge ridge line portion is discolored, and a relatively large initial change occurs in a portion of the tool rake face adjacent to the cutting edge ridge line portion.
  • the discolored area exhibits a completely different color from silver or white, and depending on how the tool is used, a lower layer that is much darker than the original color can be seen. Therefore, the operator can determine whether or not the tool is unused very easily.
  • the mechanism by which the tool changes color is based on changes in color contrast or brightness contrast, as well as those caused by exposure of the lower layer as described above, and changes due to heat, for example, as a result of oxidation phenomena. It may be a thing.
  • the discoloration referred to here includes a case where the appearance looks as if the discoloration has occurred due to adhesion of chips or cutting oil.
  • the rake face and the flank face have the above-described appearance, and a clear trace remains.
  • An unused blade edge ridge line portion and a used blade edge ridge line portion can be distinguished.
  • a layer having a function of identifying the use state of the tool that is, an alerting function
  • a use state display layer a layer having a function of identifying the use state of the tool (that is, an alerting function) by changing or changing the color in this way.
  • the surface-coated cutting tool of the present invention preferably has a plurality of cutting edge ridge lines.
  • the surface-coated cutting tool of the present invention has an excellent alerting function that it is possible to easily determine the usage state of the edge edge portion. Therefore, even if there are a plurality of usable edge ridge lines, the respective edge ridge lines are not replaced while not being used. Therefore, the maintenance of the tool can be greatly simplified, which is extremely useful.
  • examples of the cutting tool include a drill, an end mill, a cutting edge exchange type cutting tip for milling, a cutting edge exchange type cutting tip for turning, a metal saw, a gear cutting tool, a reamer, or a tap.
  • ⁇ Base material> As the base material of the surface-coated cutting tool of the present invention, a conventionally known material can be used without particular limitation as the base material of such a cutting tool. Examples of such a substrate include tungsten carbide (WC) based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, and the like.
  • WC tungsten carbide
  • the cemented carbide when the base material is composed of a WC-based cemented carbide, the cemented carbide preferably includes a hard phase and a binder phase. That is, the cemented carbide preferably includes a hard phase composed of WC and a binder phase composed of one or more of iron group elements (referred to as Fe, Co, Ni, also referred to as iron-based metal).
  • Fe, Co, Ni also referred to as iron-based metal
  • the cemented carbide is composed of Group 4 elements (Ti, Zr, Hf, etc.), Group 5 elements (V, Nb, Ta, etc.), and Group 6 elements (Cr, Mo, W, etc.) of the periodic table.
  • the “compound phase or solid solution phase” means that the compound constituting such a phase may form a solid solution or may exist as an individual compound without forming a solid solution. .
  • the cemented carbide may have a ⁇ -free layer, a Co-enriched layer, or a hardened surface layer formed on the surface thereof, and the effect of the present invention is exhibited even if the surface is modified in this way.
  • the coating film of the present invention is composed of a plurality of layers formed by chemical vapor deposition. And this coating film is provided with a titanium boride layer as the outermost surface layer of a plurality of layers, and the titanium boride layer is later given a compressive residual stress having an absolute value of 0.1 GPa or more. Yes.
  • the coating of the present invention needs to be formed on at least a part of the rake face and flank face of the surface-coated cutting tool.
  • the plurality of layers are preferably composed of three or more layers, but the upper limit of the number of layers is not particularly limited.
  • the thickness of the soot film (when it is formed of two or more layers, the total thickness) is 3 ⁇ m or more and 40 ⁇ m or less. If the thickness is less than 3 ⁇ m, the effect of improving the wear resistance is not sufficiently exhibited. On the other hand, if the thickness exceeds 40 ⁇ m, no further improvement in various properties is observed, which is not economically advantageous. However, as long as economic efficiency is ignored, the thickness may exceed 40 ⁇ m, and the effect of the present invention is shown.
  • the thickness of such a coating is measured by, for example, cutting a substrate (that is, a surface-coated cutting tool) on which the coating is formed, and observing the cross section with a scanning electron microscope (SEM). To do.
  • the composition of the coating is measured by an energy dispersive X-ray analyzer (EDS: Energy Dispersive x-ray Spectroscopy).
  • EDS Energy Dispersive x-ray Spectroscopy
  • Tiboride layer of the present invention is formed on the outermost surface of the coating and has an extremely high hardness, the wear resistance of the surface-coated cutting tool can be enhanced.
  • the titanium boride layer exhibits a vivid color such as white or silver, the coating has a lower layer having a different color under the titanium boride layer, thereby providing a function as a use state display layer. It can be demonstrated.
  • such an external appearance is excellent in design, it contributes to the improvement of commercial value.
  • the titanium boride layer is formed on at least a part of a part involved in cutting among the rake face and flank face of the tool.
  • parts involved in cutting specifically include not only the edge portion of the cutting edge but also the vicinity of the edge portion of the cutting edge.
  • the “vicinity part of the cutting edge ridge line part” refers to a region extending from the cutting edge ridge line part toward the center of the rake face with a distance of about 0 mm to 3 mm.
  • the excellent wear resistance of the titanium boride layer at the time of cutting works extremely effectively, and the use state of the edge line of the blade edge becomes clear, and the tool It is possible to reliably determine whether or not is unused.
  • Borides of titanium constituting the titanium boride layer can be represented by the formula Ti x B y.
  • x and y represent atomic%, and it is necessary to satisfy the relationship of 1.5 ⁇ y / x ⁇ 2.5. More preferably, x and y satisfy the relationship of 1.9 ⁇ y / x ⁇ 2.1. When x and y satisfy the above relationship, the hardness and Young's modulus of the titanium boride layer can be further increased.
  • the thickness of the titanium hexaboride layer is preferably 0.05 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the thickness of the titanium boride layer is less than 0.05 ⁇ m, there is a possibility that sufficient wear resistance may not be exhibited, and when applying the compressive residual stress, part of the layer is worn away, This is not preferable because it may harm the appearance.
  • the thickness of the titanium boride layer exceeds 3 ⁇ m, it is not preferable because sufficient compressive residual stress may not be applied to the lower layer portion of the coating.
  • the titanium boride layer of the present invention is characterized in that a compressive residual stress is subsequently applied by post-treatment after film formation.
  • the compressive residual stress is required to have an absolute value of 0.1 GPa or more.
  • compressive residual stress is a kind of internal stress (intrinsic strain) existing in the film, and is represented by a numerical value of “ ⁇ ” (minus) (unit: “GPa” is used in the present invention). It refers to stress.
  • the concept that the compressive residual stress is large indicates that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small indicates that the absolute value of the numerical value is small.
  • the tensile residual stress is a kind of internal stress (intrinsic strain) existing in the film, and means a stress represented by a numerical value “+” (plus). Note that the term “residual stress” includes both compressive residual stress and tensile residual stress.
  • Such compressive residual stress can be measured by the sin 2 ⁇ method using an X-ray stress measurement apparatus.
  • Such compressive residual stress is an arbitrary point (1 point, preferably 2 points, more preferably 3 to 5 points, still more preferably 10 points (multiple points) included in the layer to which the compressive residual stress in the coating is applied. each point stress is preferred)) selecting at a distance of more than 0.1mm from each other to allow a representative stress of the layer when measured at a point determined by the sin 2 [psi method, the average value It can measure by calculating
  • the sin 2 ⁇ method using X-rays is widely used as a method for measuring the residual stress of a polycrystalline material.
  • “X-ray stress measurement method” Japanese Society of Materials, 1981 stock
  • the method described in detail on pages 54 to 67 of Yokendo may be used.
  • the compressive residual stress can be measured by using a method using Raman spectroscopy.
  • Raman spectroscopy has the merit that local measurement can be performed in a narrow range, for example, a spot diameter of 1 ⁇ m.
  • the measurement of the residual stress using such Raman spectroscopy is a general one.
  • “Thin film mechanical property evaluation technique” Sipec (currently renamed Realize Science and Technology Center), 1992 (Published yearly), pages 264 to 271 can be employed.
  • the compressive residual stress can be measured using synchrotron radiation. In this case, there is a merit that the distribution of residual stress can be obtained in the thickness direction of the coating.
  • the absolute value of the compressive residual stress that is subsequently applied to the titanium boride layer of the present invention is 0.1 GPa or more.
  • the absolute value of such compressive residual stress is more preferably 0.2 GPa or more, and further preferably 0.5 GPa or more. If the absolute value of the compressive residual stress is less than 0.1 GPa, sufficient toughness may not be obtained. From the viewpoint of increasing the toughness of the surface-coated cutting tool, the absolute value of the compressive residual stress is preferably as large as possible. However, if the absolute value exceeds 10 GPa, the titanium boride layer may be peeled off, which is not preferable.
  • the “lower layer” of the present invention refers to a layer formed below the outermost surface layer among a plurality of layers formed on the substrate, and may be a single layer or a multilayer.
  • the lower layer exhibits a color different from that of the titanium boride layer, and is preferably formed on the entire surface of the substrate.
  • the thickness of the underlayer is preferably 2 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the lower layer is less than 2 ⁇ m, the wear resistance may not be sufficiently exhibited, which is not preferable. Further, even if the thickness of the lower layer exceeds 30 ⁇ m, no further improvement in wear resistance is observed, which is not economically advantageous. However, as long as economic efficiency is ignored, the thickness may exceed 30 ⁇ m, and the effect of the present invention is shown.
  • the surface-coated cutting tool of the present invention includes the titanium boride layer as described above as the outermost surface layer of the coating, only the outermost surface layer is obtained by subjecting the coating to mechanical post-treatment under conditions stronger than those of the prior art.
  • compressive residual stress can be applied to the lower layer.
  • the compressive residual stress which a lower layer has is provided in at least one part of the site
  • the “parts involved in cutting” are different depending on the shape of the tool, the type and size of the work material, and the mode of cutting, but usually contact with the work material (or It shows an area having a width of 3 mm from the edge of the edge of the cutting edge (which is closest) to the rake face side and the flank face side.
  • the compressive residual stress is applied over the entire region related to cutting, there is a case where the compressive residual stress is not applied in a part of such a region due to various circumstances.
  • the compressive residual stress is applied to at least a part of the parts involved in cutting, there is no problem in the expression of the above-mentioned effect, and the cutting edge is prevented very effectively. Can do.
  • the absolute value of the compressive residual stress of the underlayer is preferably 0.1 GPa or more, more preferably 0.2 GPa or more, and further preferably 0.5 GPa or more. If the absolute value of the compressive residual stress of the lower layer is less than 0.1 GPa, sufficient toughness may not be obtained. From the viewpoint of increasing the toughness of the surface-coated cutting tool, the absolute value of the compressive residual stress is preferably as large as possible. However, if the absolute value exceeds 10 GPa, peeling may occur between the lower layers, which is not preferable.
  • the layer configuration of such a lower layer is not particularly limited, but preferably includes an Al oxide layer made of Al oxide.
  • the Al oxide layer is preferably formed as the outermost layer of the multilayer.
  • the Al oxide layer is a layer made of Al oxide as described above. Since such an Al oxide layer is excellent in abrasion resistance, it can also have a function as an abrasion resistant layer in the coating. By providing such an Al oxide layer, the hardness of the titanium boride layer constituting the outermost surface layer and the wear resistance of the Al oxide layer act synergistically, and the tool life is greatly extended. In addition, it has an excellent effect that it can be applied to harsh usage environments such as high-speed cutting.
  • the Al oxide layer can exhibit a dark color.
  • the surface-coated cutting tool of the present invention includes a titanium boride layer that exhibits a vivid color such as silver or white as the outermost surface layer. Therefore, by providing an Al oxide layer that has a dark color in the lower layer, it is possible to form an outstanding contrast with the outermost surface layer, and to further enhance the alert function of the surface-coated cutting tool. it can.
  • the Al oxide layer is formed as the lowermost outermost layer, it is more preferable because a particularly outstanding contrast can be formed.
  • the Al oxide layer does not exhibit a blackish color, but has a color close to black due to the influence of the color of the layer formed below the Al oxide layer. However, in this specification, even in such a case, it may be expressed as a dark color or simply black.
  • the crystal structure of the Al oxide constituting the Al oxide layer is not particularly limited.
  • ⁇ -alumina ⁇ -Al 2 O 3
  • ⁇ -alumina ⁇ -Al 2 O 3
  • ⁇ -alumina ⁇ -Al 2 O 3
  • amorphous alumina Al 2 O 3
  • Al oxide layer made of Al oxide means that at least an Al oxide is included as a part of the layer, that is, 50% by mass or more of Al oxide is included.
  • the remainder may be composed of ZrO 2 , Y 2 O 3 or the like, and may further contain elements such as chlorine (Cl), carbon (C), boron (B), and nitrogen (N). .
  • the Al oxide layer contains ZrO 2 , Y 2 O 3, or the like, it can also be regarded as a layer made of Al oxide added with Zr, Y, or the like.
  • a layer made of a compound such as TiCN, TiN, TiCNO, TiBN, ZrO 2 , or AlN may be included in addition to the Al oxide layer.
  • a TiN layer having a thickness of several ⁇ m is first formed on the entire surface of the substrate, a TiCN layer having a thickness of several ⁇ m is formed thereon, and an Al oxide layer having a thickness of several ⁇ m is further formed thereon.
  • What was formed into a film can be mentioned as a suitable example of a lower layer.
  • Such a lower layer as a whole exhibits excellent wear resistance and can also function as a wear-resistant layer.
  • the lower layer of the present invention is a compound of Ti and one or more elements selected from the group consisting of nitrogen (N), oxygen (O) and boron (B) as a layer below the Al oxide layer. It is more preferable that a layer composed of By adopting such a configuration, particularly excellent adhesion can be obtained between the Al oxide layer and the underlying layer, and the wear resistance of the surface-coated cutting tool can be further enhanced. Examples of such compounds include TiN, TiBN, TiBNO, TiCBN, and TiCNO. In addition to these, AlON, AlCNO, and the like can also be cited as examples of compounds that exhibit similar effects.
  • the coating of the present invention can have an intermediate layer between the outermost surface layer and the lower layer.
  • Examples of the structure of such an intermediate layer include one or more elements selected from the group consisting of group 4 elements, group 5 elements, group 6 elements, Al and Si in the periodic table, carbon (C), nitrogen Mention may be made of one or more layers composed of a compound with one or more elements selected from the group consisting of (N) and oxygen (O).
  • the compounds as described above for example, TiCN, TiN, TiCNO, TiO 2, TiNO, TiC, TiBN, TiSiN, TiSiCN, TiAlN, TiAlCrN, TiAlSiN, TiAlSiCrN, AlCrN, AlCrCN, AlCrVN, TiAlBN, TiBCN, TiAlBCN, TiSiBCN AlN, AlCN, Al 2 O 3 , ZrN, ZrCN, ZrN, ZrO 2 , HfC, HfN, HfCN, NbC, NbCN, NbN, Mo 2 C, WC, W 2 C and the like.
  • each atomic ratio follows the above general formula.
  • the compound when represented by the chemical formula as described above, it is assumed that all the conventionally known atomic ratios are included unless the atomic ratio is particularly limited, and are not necessarily limited to those in the stoichiometric range. .
  • the atomic ratio of “Ti”, “C”, and “N” when simply described as “TiCN”, the atomic ratio of “Ti”, “C”, and “N” is not limited to 50:25:25, and also when expressed as “TiN”, “Ti”
  • the atomic ratio of “N” is not limited to 50:50, and any conventionally known atomic ratio is included.
  • the adhesion between the Al oxide layer and the titanium boride layer can be enhanced.
  • the intermediate layer at least one of a TiCN layer and a TiN layer is particularly suitable.
  • the intermediate layer is formed between the outermost surface layer and the lower layer, the effect of improving the adhesion between the Al oxide layer and the titanium boride layer is shown. That is, the intermediate layer does not need to be formed in direct contact with the Al oxide layer and the titanium boride layer, for example, between the intermediate layer and the Al oxide layer or between the intermediate layer and the titanium boride layer. Another layer may be formed between them.
  • middle layer also has a compressive residual stress like an outermost surface layer and a lower layer.
  • the absolute value of the compressive residual stress of the intermediate layer is preferably 0.1 GPa or more, more preferably 0.2 GPa or more, and further preferably 0.5 GPa or more. If the absolute value of the compressive residual stress of the intermediate layer is less than 0.1 GPa, sufficient toughness may not be obtained. Further, from the viewpoint of increasing the toughness of the surface-coated cutting tool, the absolute value of the compressive residual stress is preferably as large as possible. However, if the absolute value exceeds 10 GPa, peeling may occur between the intermediate layer and other layers. This is not preferable.
  • the intermediate layer may be a layer that reduces the adhesion between the Al oxide layer and the titanium boride layer.
  • welding resistance can be imparted to the surface-coated cutting tool. That is, when the adhesiveness between the Al oxide layer and the titanium boride layer is reduced, the titanium boride layer can be easily peeled off at the initial stage of cutting to expose the Al oxide layer.
  • the Al oxide layer has low reactivity with the iron-based work material and is excellent in welding resistance. Therefore, by making the Al oxide layer easy to be exposed, the welding resistance of the surface-coated cutting tool is increased.
  • examples of the intermediate layer that lowers the adhesion between the Al oxide layer and the titanium boride layer include a TiC layer.
  • the surface-coated cutting tool of the present invention described above can be manufactured by the following manufacturing method. That is, the surface-coated cutting tool manufactured by the following manufacturing method has excellent wear resistance and fracture resistance, and can be used to determine the state of use of the edge of the cutting edge extremely easily. It has the effect of providing.
  • a method for producing a surface-coated cutting tool according to the present invention is a method for producing a surface-coated cutting tool comprising a base material and a coating film formed on the base material, and a plurality of chemical vapor deposition methods are used on the base material.
  • a compressive residual stress having an absolute value of 0.1 GPa or more is applied to the outermost surface layer among a plurality of layers by a method selected from a blast method, a brush method, a barrel method, and an ion implantation method.
  • the outermost surface layer is a titanium boride layer made of Ti x B y (x, y represents atomic%, 1.5 ⁇ y / x ⁇ 2.5).
  • a chemical vapor deposition method for forming a plurality of layers a conventionally known CVD method can be used, but at least one of the plurality of layers is formed using an MT-CVD (Medium Temperature-CVD) method. It is preferable that Preferable examples of the layer formed by the MT-CVD method include a titanium carbonitride (TiCN) layer having excellent wear resistance.
  • TiCN titanium carbonitride
  • the conventional CVD method forms a film at about 1020 ° C. to 1030 ° C.
  • the MT-CVD method can be performed at a relatively low temperature of about 850 ° C. to 950 ° C. It is possible to reduce the damage to the substrate due to the above. Therefore, the layer formed by the MT-CVD method is preferably formed close to the substrate.
  • a gas used for film formation it is preferable to use a nitrile gas, particularly acetonitrile (CH 3 CN), because it is excellent in mass productivity.
  • a coating film is formed by forming a layered structure in which a layer formed by the MT-CVD method as described above and a layer formed by an HT-CVD (High Temperature-CVD) method are stacked. The adhesion between the layers may be improved and may be preferable.
  • the HT-CVD method indicates the conventional CVD method described above.
  • the method for producing a surface-coated cutting tool of the present invention includes a step of subsequently applying compressive residual stress to the outermost surface layer of a plurality of layers formed by chemical vapor deposition, and the outermost surface layer is a titanium boride layer. It is characterized by being.
  • a method of applying compressive residual stress a method selected from a blast method, a brush method, a barrel method, and an ion implantation method can be used. Of these methods, the brush method, blast method, barrel method and the like, which are mechanical methods, are particularly preferable.
  • a general type of particles for the abrasive material to be used can be used.
  • steel grids, steel shots, cut wires, alumina, zirconia, glass beads, silica sand and the like can be used.
  • the intermediate layer includes a layer (for example, a TiC layer) that reduces the adhesion between the outermost surface layer and the lower layer, it is preferable to employ a known brush method as a method for imparting compressive residual stress.
  • compressive residual stress can be imparted to the layers other than the outermost surface layer among the plurality of layers.
  • the method illustrated as a method of providing a compressive residual stress to an outermost surface layer can be used suitably.
  • a TiN layer is first formed on a substrate by a CVD method, a TiCN layer is formed thereon by an MT-CVD method, and an Al oxide layer is further formed thereon by a CVD method.
  • a TiCN layer is formed as an intermediate layer on the lower layer by a CVD method, and then a titanium boride layer is formed as a top surface layer by a CVD method.
  • a surface-coated cutting tool can be obtained by applying a compressive residual stress of 0.1 GPa or more to the titanium boride layer that is the outermost surface layer later by a blast method. At this time, compressive residual stress may be applied not only to the outermost surface layer but also to the intermediate layer and the lower layer.
  • the thickness of each layer of the surface-coated cutting tool is measured by SEM observation of the cross section of the surface-coated cutting tool as described above.
  • a cemented carbide base material having a cutting tool shape of JIS B 4120 (1998) CNMG120408 defined by JIS (Japanese Industrial Standard) was prepared as a base material for a surface-coated cutting tool.
  • This cemented carbide base material was composed of 89.0 wt% WC, 8.0 wt% Co, and 3.0 wt% TiC.
  • a film was formed over the entire surface of the base material subjected to the honing process by the CVD method. That is, in order from the surface side of the base material, as a lower layer, a 0.5 ⁇ m TiN layer, a 7.0 ⁇ m TiCN layer (MT-CVD), and a 2.0 ⁇ m Al made of ⁇ -alumina (Al 2 O 3 ). An oxide layer was laminated.
  • a film containing a plurality of layers on the substrate is formed by laminating a TiCN layer of 0.3 ⁇ m as an intermediate layer and a titanium boride layer made of 0.7 ⁇ m of TiB 2 as an outermost layer thereon. Formed.
  • This coating composition is designated as coating No. Set to 1.
  • TiCN layer which is an intermediate layer and a titanium boride layer which is TiB 2 which is an outermost surface layer constitute a use state display layer.
  • TiCN layer (MT-CVD) indicates a TiCN layer formed by MT-CVD.
  • the Al oxide layer ( ⁇ -Al 2 O 3 (2.0 ⁇ m) or ⁇ -Al 2 O 3 (2.0 ⁇ m)), which is the outermost lower layer, is all black regardless of the type of coating. It was presented. Moreover, the outermost surface layer which is a titanium boride layer was silver or white.
  • post-treatment shown in Table 2 was performed on each of the base materials on which the coating film was formed, and compressive residual stress was applied to the outermost surface layer.
  • post-treatment conditions B to D post-treatment was performed at a projection pressure shown in Table 2 using a known blast method.
  • the projection time in the post-processing conditions B to D was 5 seconds.
  • post-processing conditions E processing by a known brush method was performed.
  • the surface-coated cutting tool No. 1-26 were obtained.
  • Table 3 shows combinations of coatings and post-treatment conditions for each surface-coated cutting tool.
  • the surface-coated cutting tool No. marked with “*” is shown.
  • 4, 7, 8 and 26 are the surface-coated cutting tools of the examples.
  • the column “Identification of use state of cutting edge” shows the evaluation result of the ease of identification of whether or not the cutting edge has been used. In other words, by visual confirmation after the cutting test, those that are clearly discolored and can be identified at a glance compared to unused products are ⁇ easy '' and those that are slightly discolored are ⁇ slightly discolored '' “Difficult” was evaluated as “difficult” when there was little discoloration before and after use and it was difficult to identify the presence or absence of use.
  • the welding resistance of the tool was additionally evaluated by visually observing the cutting edge of the tool and the processed surface of the work material after the end of the cutting test.
  • Table 3 “None” in the column of “Welding state of the work material to the cutting edge” and “Glossy” in the “State of work surface of the work material” are excellent in welding resistance.
  • No. 1 having a TiC layer as an intermediate layer.
  • the surface-coated cutting tool No. 26 was in a state in which the work surface of the work material was close to a mirror surface, and was particularly excellent in welding resistance. Therefore, it can be said that it is particularly preferable that the intermediate layer includes a TiC layer from the viewpoint of welding resistance.
  • a surface-coated cutting tool comprising a substrate and a coating formed on the substrate, the coating including a plurality of layers, and the outermost surface layer among the plurality of layers is, Ti x B y (x, y represents an atomic%, 1.5 ⁇ y / x ⁇ 2.5) a titanium boride layer made of, and the residual compressive stress absolute value is not less than 0.1GPa
  • the surface-coated cutting tool of the example having the above has excellent wear resistance and fracture resistance as compared with the surface-coated cutting tool of the comparative example that does not satisfy such conditions, and determines the usage state of the edge line portion of the blade edge. It was confirmed that it has an excellent alerting function that can be performed very easily.
  • a cemented carbide base material having a cutting tool shape of JIS B 4120 (1998) CNMG120408 defined by JIS (Japanese Industrial Standard) was prepared as a base material for a surface-coated cutting tool.
  • This cemented carbide base material was composed of 90.0 wt% WC, 7.0 wt% Co, and 3.0 wt% TiC.
  • a film was formed over the entire surface of the base material subjected to the honing process by the CVD method. That is, in order from the surface side of the base material, as a lower layer, a 0.3 ⁇ m TiN layer, a 3.0 ⁇ m TiCN layer (MT-CVD), and 2.0 ⁇ m Al composed of ⁇ -alumina (Al 2 O 3 ). An oxide layer was laminated.
  • a film containing a plurality of layers on the substrate is formed by laminating a 0.2 ⁇ m TiCN layer as an intermediate layer and a titanium boride layer made of 0.6 ⁇ m TiB 2 as the outermost layer thereon. Formed.
  • This coating composition is designated as coating No. Eight.
  • film No. in FIG. 8 a TiCN layer as an intermediate layer and a titanium boride layer composed of TiB 2 as an outermost surface layer constitute a use state display layer.
  • the Al oxide layer ( ⁇ -Al 2 O 3 (2.0 ⁇ m)) which is the outermost lower layer was all black regardless of the type of coating. Moreover, the outermost surface layer which is a titanium boride layer was silver or white.
  • each base material on which the film was formed was post-treated with a projection time shown in Table 5 using a known blasting method, and compressive residual stress was applied to the outermost surface layer.
  • the projection pressure was 0.15 MPa.
  • Table 6 shows combinations of coatings and post-treatment conditions for each surface-coated cutting tool.
  • the surface coated cutting tool No. marked with “*” is shown.
  • Reference numerals 29 and 30 are surface-coated cutting tools of the examples.
  • a surface-coated cutting tool comprising a substrate and a coating formed on the substrate, the coating including a plurality of layers, and the outermost surface layer of the plurality of layers is, Ti x B y (x, y represents an atomic%, 1.5 ⁇ y / x ⁇ 2.5) a titanium boride layer made of, and the residual compressive stress absolute value is not less than 0.1GPa
  • the surface-coated cutting tool of the example having the above has excellent wear resistance and fracture resistance as compared with the surface-coated cutting tool of the comparative example that does not satisfy such conditions, and determines the usage state of the edge line portion of the blade edge. It was confirmed that it has an excellent alerting function that can be performed very easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)
  • Drilling Tools (AREA)

Abstract

優れた耐摩耗性および耐欠損性を兼ね備えるとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる注意喚起機能を備える表面被覆切削工具を提供する。本発明の実施形態に係る表面被覆切削工具は、基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、該被膜は複数の層を含み、該複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する。

Description

表面被覆切削工具およびその製造方法
  本発明は、基材と該基材上に形成された被膜とを備える表面被覆切削工具およびその製造方法に関する。
  従来から、超硬合金などからなる切削工具を用いて、鋼や鋳物の切削加工が行なわれている。このような切削工具の刃先は、切削加工時に800℃以上の高温となるため、加工時の熱により切削工具が塑性変形したり、逃げ面摩耗量が多くなったりするなどの課題を有していた。
  そこで、高温における切削性能の改善を目的として、超硬合金のような基材の表面に各種被膜を形成した表面被覆切削工具が提案されている。たとえば、特許文献1には、ホウ素含有膜を酸化アルミニウム膜よりも工具表面側に被覆した被覆工具が開示されている。また、たとえば、特許文献2には、基板材料上に二ホウ化チタン層を形成した切削加工工具が開示されている。
特開2003-266213号公報 特表2011-505261号公報
  上記のような被膜の形成には、CVD(Chemical Vapor Deposition)法などの化学蒸着法、イオンプレーティング法やイオンスパッタ法などの物理蒸着法が用いられている。
  このような方法で形成された被膜のうち、とりわけ化学蒸着法によって形成された被膜は、母材である超硬合金との密着強度が高く、耐摩耗性にも優れている。近年、切削加工の高速化および高能率化の要望から、被膜は益々厚くなる傾向にあるため、基材と被膜との密着強度は非常に重要である。したがって、このような観点からは、化学蒸着法によって被膜を形成することが好ましい。
  ところが、化学蒸着法によって成膜を行なうと、成膜時に被膜が1000℃程度の高温に曝されるため、かかる被膜を成膜後に室温まで冷却すると、母材である超硬合金と被膜との熱膨張係数の差に起因して、被膜に引張応力が残留してしまう。
  このように、被膜に引張応力が残留すると、切削加工時に被膜の表面を起点として亀裂が発生した場合、この引張応力によって亀裂が伝播しやすいという側面がある。したがって、このような切削工具では被膜の脱落やチッピングの発生を十分に抑制できない。
  また、被膜の厚みを厚くするほど耐摩耗性は向上するものの、その反面、被膜に引張応力が残留しやすくなるため、工具が異常損傷する頻度が高まり、耐欠損性が低下する。すなわち、化学蒸着法によって被膜を形成した場合、耐摩耗性と耐欠損性とを両立させることは極めて困難であった。
  ところで、切削工具のうち、旋削加工用工具やフライス加工用工具などは、単数または複数の表面被覆切削工具を備えている。このような表面被覆切削工具は、工具寿命に達したときに刃先を交換しなければならない。このとき、刃先稜線部が1個のみである工具にあっては、その工具自体を交換しなければならない。これに対して、複数個の刃先稜線部を有する表面被覆切削工具は、同じ座面で何回も向きを変えて使用することができる。すなわち、未使用の刃先稜線部を切削位置に設置することにより、別の切削位置で使用することができる。また、刃先稜線部を別の座面に付け直すことにより、未使用の刃先稜線部を利用することもできる。
  しかしながら、実際の切削作業現場では、刃先稜線部が未使用であるにも拘わらず、表面被覆切削工具が取り替えられたり向きを変えられたりする事象がしばしば発生している。この原因は、刃先交換の際や刃先稜線部の方向転換の際に、刃先稜線部が使用済みであるか否かを、現場作業者が容易に判別できないことにある。したがって、このような交換作業は、刃先稜線部が使用済みであるか否かを慎重かつ十分に確認して行なわれているのが現状である。
  特許文献1に開示される被覆工具は、有色のホウ素含有膜を工具の最外層部分に配置することにより、工具として使用済みか否かを判別しやすくするものである。そして、該ホウ素含有膜が引張残留応力を有することにより、ホウ素含有膜と下地膜との密着性を高め、耐摩耗性を向上させている。しかしながら、上述のように、最外層部分に引張残留応力を有する工具は、耐欠損性が十分ではないという問題がある。
  そして、このような被覆工具の表面に機械的な処理を付すことにより、引張残留応力を解消しようとすると、最外層の色彩が損なわれ、使用状態の判別が難しくなることもある。
  他方、特許文献2に開示される切削加工工具は、工具の使用状態を判別するという観点から、上記のような課題に対して十分な解決手段を提供するものではない。
  さらには、特許文献1または特許文献2に開示されるような工具の表面に機械的な処理を付すと最外層の摩滅により工具としての耐摩耗性が低下する場合もあった。
  本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、優れた耐摩耗性および耐欠損性を兼ね備えるとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる注意喚起機能を備える表面被覆切削工具を提供することにある。
  本発明者は、上記課題を解決すべく、鋭意検討した結果、複数の層からなる被膜の最外層を特定の化合物から構成するとともに、ことさら従来知られた条件よりも強い条件で被膜に後処理を付すことによって、耐摩耗性などを向上させつつ、被膜に使用状態の判別がしやすい層を残すことができるのではないかとの知見を得た。そして、この知見に基づきさらに検討を重ねることによって本発明を完成させたものである。
  すなわち、本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、該被膜は複数の層を含み、該複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する。
  ここで、上記被膜は、上記最表面層の下層として、Al酸化物からなるAl酸化物層を含むことが好ましい。
  さらに、上記被膜は、上記最表面層と上記Al酸化物層との間に中間層を有し、該中間層は、周期律表の4族元素、5族元素、6族元素、AlおよびSiからなる群より選ばれる1種以上の元素と、炭素、窒素および酸素からなる群より選ばれる1種以上の元素との化合物から構成される1以上の層を含むことが好ましい。
  また、上記中間層は、TiCN層およびTiN層の少なくともいずれかを含むことが好ましい。また、上記中間層は、TiC層を含むものであってもよい。
  また、本発明は、上記の表面被覆切削工具の製造方法にも係わり、該製造方法は、基材と、該基材上に形成された被膜とを備える表面被覆切削工具の製造方法であって、該基材上に化学蒸着法によって複数の層を形成する工程と、該複数の層のうち最表面層に、ブラスト法、ブラシ法、バレル法およびイオン注入法より選ばれる方法によって、絶対値が0.1GPa以上である圧縮残留応力を付与する工程と、を有し、該最表面層はTixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層である。
  本発明の表面被覆切削工具は、上記のような構成を有することにより、優れた耐摩耗性および耐欠損性を兼ね備えるとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる注意喚起機能を備えるという効果を有する。
  以下、本発明の実施の形態についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
  <表面被覆切削工具>
  本発明の実施の形態の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備えている。そして、該被膜は、複数の層から構成されており、該複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する。
  本発明の表面被覆切削工具は、すくい面および逃げ面の少なくとも一部に被膜を有しており、該被膜の最表面層として、耐摩耗性などに特別に優れるホウ化チタン層を備えている。当該ホウ化チタン層は、高い硬度およびヤング率を有するものであるため、従来技術と同様、またはそれよりも強い条件で被膜に機械的な後処理を付しても、色彩などが損なわれることがなく、刃先稜線部の使用状態の判別に何ら支障をきたすことがない。
  そして、従来よりも強い条件で機械的な後処理を付すことにより、被膜の引張残留応力が解消され、圧縮残留応力を付与することができる。これにより、被膜の最表面層のみならず、被膜の下層部分における耐摩耗性や耐欠損性をも高めることができ、これと最表面層の高い硬度およびヤング率とが相まって、切削工具の耐摩耗性および耐欠損性が飛躍的に向上するものである。
  また、本発明の表面被覆切削工具は、上記のような構成を備えることにより、刃先稜線部の使用状態の判別を極めて容易に行なうことができる注意喚起機能を有している。
  本発明の表面被覆切削工具は、未使用状態では銀色または白色を呈している。そして、刃先稜線部による切削が開始されると、刃先稜線部に隣接する領域が変色して、工具のすくい面のうち、刃先稜線部の隣接部分に比較的大きな初期変化が生じる。このように変色した領域は、銀色または白色とは、全く異なる色を呈するものであり、工具の使用具合によっては、元の色より遥かに黒ずんだ下層が見えるようになる。したがって、作業者は、極めて容易に工具が未使用であるか否かを判別することが可能である。
  ここで、工具が変色するメカニズムは、色彩コントラストの変化または明るさコントラストの変化に基づくものの他、前述のように下層が露出することにより生じるものや、熱による変化、たとえば酸化現象の結果として起こるものであっても良い。
  酸化現象の結果として起こるものとしては、工具と被削材との摩擦熱によって、刃先稜線部の温度が上昇し、刃先稜線部に隣接する領域が酸化して、焼き戻し色を呈するものなどを例示することができる。
  また、ここでいう変色には、切りくずや切削油などが付着することによって、あたかも変色したかのような外観を呈する場合も含まれるものとする。
  このように、本発明の表面被覆切削工具は、短時間でも使用されると、すくい面および逃げ面が上記のような外観を呈し、明りょうな痕跡が残るため、作業者は一見して、未使用の刃先稜線部と使用後の刃先稜線部とを判別することができる。なお、本明細書において、このように変色または変質することによって、工具の使用状態を識別させる機能(すなわち、注意喚起機能)を有する層を「使用状態表示層」と記すこともある。
  そして、本発明の表面被覆切削工具は、複数の刃先稜線部を有することが好ましい。上記のように、本発明の表面被覆切削工具は、刃先稜線部の使用状態の判別を容易に行なうことができるという優れた注意喚起機能を有する。そのため、複数の利用可能な刃先稜線部を有していても、それぞれの刃先稜線部が未使用のまま交換されることがない。したがって、工具の保守を大幅に簡素化することができるため、極めて有用性が高い。
  また、切削工具としては、たとえば、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマ、またはタップなどを挙げることができる。
  以下、本発明の表面被覆切削工具を構成する各部について説明する。
  <基材>
  本発明の表面被覆切削工具の基材としては、このような切削工具の基材として従来公知のものを特に限定なく用いることができる。そのような基材としては、たとえば、炭化タングステン(WC)基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化ホウ素焼結体、ダイヤモンド焼結体などを挙げることができる。
  ここで、基材がWC基超硬合金から構成される場合は、かかる超硬合金は、硬質相と結合相とを含むことが好ましい。すなわち、超硬合金は、WCからなる硬質相と、鉄族元素(Fe、Co、Niをいい、鉄系金属ともいう)の1種以上からなる結合相とを含むことが好ましい。
  また、たとえば、上記超硬合金は、周期律表の4族元素(Ti、Zr、Hfなど)、5族元素(V、Nb、Taなど)、および6族元素(Cr、Mo、Wなど)からなる群より選ばれる少なくとも1種の元素と、炭素(C)、窒素(N)、酸素(O)およびホウ素(B)からなる群より選ばれる少なくとも1種の元素とから構成される化合物の1種以上からなる化合物相または固溶体相や、不可避不純物などを含んでいても良い。なお、ここで、「化合物相または固溶体相」とはかかる相を構成する化合物が固溶体を形成していてもよいし、固溶体を形成せず、個々の化合物として存在していてもよいことを示す。
  さらに、上記超硬合金は、組織中に局所的に遊離炭素と呼ばれる異常相を含んでいても本発明の効果は示される。また、上記超硬合金は、その表面に脱β層やCo富化層や表面硬化層が形成されていても良く、このように表面が改質されていても本発明の効果は示される。
  <被膜>
  本発明の被膜は、化学蒸着法によって形成された複数の層から構成されている。そして、かかる被膜は複数の層の最表面層として、ホウ化チタン層を備えており、該ホウ化チタン層には、後発的に絶対値が0.1GPa以上である圧縮残留応力が付与されている。
  本発明の被膜は、表面被覆切削工具のすくい面および逃げ面の少なくとも一部に形成されていることを要する。ここで、複数の層は、3層以上の層から構成されていることが好ましいが、その層数の上限については特に限定されない。
  被膜の厚み(2層以上で形成される場合はその全体の厚み)は、3μm以上40μm以下であることが好ましい。その厚みが3μm未満の場合、耐摩耗性の向上作用が十分に示されないためであり、一方40μmを超えてもそれ以上の諸特性の向上が認められないことから経済的に有利ではない。しかし、経済性を無視する限りその厚みは40μmを超えるものとしても何等差し支えなく、本発明の効果は示される。
  このような被膜の厚みは、たとえば被膜を形成した基材(すなわち、表面被覆切削工具)を切断し、その断面を走査型電子顕微鏡(SEM:Scanning  Electron  Microscope)で観察することにより測定するものとする。また、被膜の組成は、エネルギー分散型X線分析装置(EDS:Energy  Dispersive  x-ray  Spectroscopy)により測定するものとする。なお、この測定方法は、被膜を構成する各層の厚みおよび組成の測定方法としても適用される。
  <ホウ化チタン層>
  本発明のホウ化チタン層は、被膜の最表面に形成されており、極めて高い硬度を有するため、表面被覆切削工具の耐摩耗性を高めることができる。また、ホウ化チタン層は、白色または銀色などの鮮やかな色彩を呈するため、被膜がホウ化チタン層の下に、これと異なる色彩を有する下層を備えることによって、使用状態表示層としての機能を発揮することができる。また、このような外観は意匠性に優れるため商品価値の向上にも資するものである。
  ホウ化チタン層は、工具のすくい面および逃げ面のうち、切削に関与する部位の少なくとも1部に形成されていることが特に好ましい。ここで、「切削に関与する部位」とは、具体的には刃先稜線部だけではなく、刃先稜線部の近傍部を含む。ここで、「刃先稜線部の近傍部」とは、刃先稜線部からすくい面の中心部に向かって0mm~3mm程度の距離をもって広がった領域を示す。このような部位に、ホウ化チタン層が形成されることにより、切削時にホウ化チタン層が有する優れた耐摩耗性が極めて有効に作用するとともに、刃先稜線部の使用状態が明りょうとなり、工具が未使用か否かを確実に判別することができる。
  ホウ化チタン層を構成するチタンのホウ化物は、化学式Tixyで表わすことができる。ここで、式中、x、yは原子%を示し、1.5<y/x<2.5の関係を満たすことを要する。また、より好ましくは、x、yが1.9<y/x<2.1の関係を満たすことが好適である。x、yが上記のような関係を満たすことにより、ホウ化チタン層の硬度およびヤング率をより一層高いものとすることができる。
  ホウ化チタン層の厚みは、0.05μm以上3μm以下であることが好ましく、0.1μm以上2μm以下であればさらに好適である。ホウ化チタン層の厚みが0.05μm未満である場合には、十分な耐摩耗性を発揮できない可能性があり、また圧縮残留応力を付与する際に層の一部が摩滅して、工具の外観を害する可能性があるため好ましくない。また、ホウ化チタン層の厚みが3μmを超える場合には、被膜の下層部分に十分な圧縮残留応力を付与することができない可能性があるため好ましくない。
  <圧縮残留応力>
  本発明のホウ化チタン層は、成膜後の後処理により、後発的に圧縮残留応力が付与されていることを特徴としている。そして、該圧縮残留応力は、絶対値が0.1GPa以上であることを要するものである。
  ここで、「圧縮残留応力」とは、被膜に存する内部応力(固有ひずみ)の一種であって、「-」(マイナス)の数値(単位:本発明では「GPa」を使う)で表される応力をいう。このため、圧縮残留応力が大きいという概念は、上記数値の絶対値が大きくなることを示し、また、圧縮残留応力が小さいという概念は、上記数値の絶対値が小さくなることを示す。因みに、引張残留応力とは、被膜に存する内部応力(固有ひずみ)の一種であって、「+」(プラス)の数値で表される応力をいう。なお、単に残留応力という場合は、圧縮残留応力と引張残留応力との両者を含むものとする。
  なお、このような圧縮残留応力(残留応力)は、X線応力測定装置を用いたsin2ψ法により測定することができる。そして、このような圧縮残留応力は被膜中の圧縮残留応力が付与される層に含まれる任意の点(1点、好ましくは2点、より好ましくは3~5点、さらに好ましくは10点(複数点で測定する場合の各点は当該層の応力を代表できるように互いに0.1mm以上の距離を離して選択することが好ましい))の応力を該sin2ψ法により測定し、その平均値を求めることにより測定することができる。
  このようなX線を用いたsin2ψ法は、多結晶材料の残留応力の測定方法として広く用いられているものであり、たとえば、「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54~67頁に詳細に説明されている方法を用いれば良い。
  また、上記圧縮残留応力は、ラマン分光法を用いた方法を利用することにより測定することも可能である。このようなラマン分光法は、狭い範囲、たとえばスポット径1μmといった局所的な測定ができるというメリットを有している。このようなラマン分光法を用いた残留応力の測定は、一般的なものであるが、たとえば、「薄膜の力学的特性評価技術」(サイぺック(現在リアライズ理工センターに社名変更)、1992年発行)の264~271頁に記載の方法を採用することができる。
  さらに、上記圧縮残留応力は、放射光を用いて測定することもできる。この場合、被膜の厚み方向で残留応力の分布を求めることができるというメリットがある。
  前述のように、本発明のホウ化チタン層に、後発的に付与されている圧縮残留応力は、その絶対値が0.1GPa以上である。これにより、本発明の表面被覆切削工具の靭性が顕著に向上する。かかる圧縮残留応力の絶対値は、より好ましくは、0.2GPa以上であり、さらに好ましくは0.5GPa以上である。圧縮残留応力の絶対値が0.1GPa未満である場合には、十分な靭性が得られない場合がある。また、表面被覆切削工具の靭性を高める観点から、圧縮残留応力の絶対値は大きいほど好ましいが、その絶対値が10GPaを超えるとホウ化チタン層が剥離する場合があるため好ましくない。
  <下層>
  本発明の「下層」とは、基材上に形成された複数の層のうち、最表面層の下に形成された層を示し、単層であっても複層であっても良い。下層はホウ化チタン層とは異なった色を呈するものであり、基材の全面に形成されていることが好ましい。
  下層の厚みは、2μm以上30μm以下であることが好ましく、より好ましくは2μm以上25μm以下である。下層の厚みが2μm未満である場合、耐摩耗性を十分に発揮することができないことがあるため好ましくない。また、下層の厚みが30μmを超えてもそれ以上の耐摩耗性の向上が認められないことから経済的に有利ではない。しかし、経済性を無視する限りその厚みは30μmを超えるものとしても何ら差し支えなく、本発明の効果は示される。
  本発明の表面被覆切削工具は、前述のようなホウ化チタン層を被膜の最表面層として備えるため、従来技術よりも強い条件で被膜に機械的な後処理を付すことによって、最表面層のみならず、下層にも圧縮残留応力を付与することができる。ここで、下層が有する圧縮残留応力は、切削に関与する部位の少なくとも一部において付与されていることが好ましい。これにより、靭性が付与された刃先の欠損を極めて有効に防止することができる。
  なお、ここで、「切削に関与する部位」とは、工具の形状、被削材の種類や大きさ、切削加工の態様により異なるものであるが、通常、被削材と接触する(または、最近接する)刃先稜線部から、すくい面側および逃げ面側に各々3mmの幅を有して広がった領域を示す。
  圧縮残留応力は、切削に関与する部位の全域に亘って付与されていることが好ましいが、種々の事情により、そのような部位の一部において付与されていない場合がある。しかし、上記のように、切削に関与する部位の少なくとも一部において圧縮残留応力が付与されている限り、上記のような効果の発現に何ら支障はなく、刃先の欠損を極めて有効に防止することができる。
  下層が有する圧縮残留応力は、その絶対値が0.1GPa以上であることが好ましく、より好ましくは0.2GPa以上であり、さらに好ましくは0.5GPa以上である。下層の有する圧縮残留応力の絶対値が0.1GPa未満である場合には、十分な靭性が得られない場合がある。また、表面被覆切削工具の靭性を高める観点から、圧縮残留応力の絶対値は大きいほど好ましいが、その絶対値が10GPaを超えると、下層の層間に剥離が発生する場合があるため好ましくない。
  このような下層の層構成は特に限定されないが、Al酸化物からなるAl酸化物層を含んでいることが好ましい。そして、下層が複層である場合には、Al酸化物層は、かかる複層の最外層として形成されていることが好適である。
  <Al酸化物層>
  Al酸化物層は、前述のようにAl酸化物からなる層である。このようなAl酸化物層は、耐摩耗性に優れているため、被膜中において耐摩耗層としての機能を有することもできる。このようなAl酸化物層を備えることにより、最表面層を構成するホウ化チタン層の硬度と、Al酸化物層の耐摩耗性とが相乗的に作用し、工具寿命を飛躍的に延長させることができるとともに、高速切削などの過酷な使用環境にも適用できるという優れた効果を示す。
  また、Al酸化物層は、黒ずんだ色を呈することができる。上述のように本発明の表面被覆切削工具は、最表面層として、銀色または白色などの鮮やかな色彩を呈するホウ化チタン層を備えている。したがって、下層が黒ずんだ色を呈するAl酸化物層を備えることによって、最表面層との間で、際立ったコントラストを形成することができ、表面被覆切削工具の注意喚起機能をより一層高めることができる。そして、Al酸化物層が下層の最外層として形成されている場合には、特に際立ったコントラストを形成することができるため、さらに好ましい。
  なお、Al酸化物層は、正確にはそれ自身が黒ずんだ色を呈するものではなく、Al酸化物層よりも下に形成されている層の色の影響を受けて、黒色に近い色彩を呈するものであるが、本明細書では、このような場合にも、黒ずんだ色または単に黒色と表現することもある。
  Al酸化物層を構成するAl酸化物の結晶構造は特に限定されない。たとえば、α-アルミナ(α‐Al23)、κ-アルミナ(κ‐Al23)、γ-アルミナ(γ‐Al23)またはアモルファス状態のアルミナ(Al23)などを挙げることができ、または、これらが混在した状態であっても良い。
  ここで、「Al酸化物からなるAl酸化物層」とは、その層の一部として、少なくともAl酸化物を含んでいること、すなわちAl酸化物が50質量%以上含まれていることを示し、その残部は、ZrO2、Y23などによって構成することもでき、さらに塩素(Cl)、炭素(C)、ホウ素(B)、窒素(N)などの元素が含まれていても良い。これは、たとえばAl酸化物層がZrO2やY23などを含む場合には、Al酸化物にZrやYなどが添加されたものからなる層であるとみなすこともできるからである。
  <その他>
  本発明の下層には、Al酸化物層以外にも、たとえば、TiCN、TiN、TiCNO、TiBN、ZrO2、AlNなどの化合物からなる層が含まれていても良い。たとえば、基材の全面に、まず厚みが数μmのTiN層を成膜し、その上に厚みが数μmのTiCN層を成膜し、さらにその上に厚みが数μmのAl酸化物層を成膜したものを下層の好適な例として挙げることができる。このような下層は全体として、優れた耐摩耗性を示し、耐摩耗層としての機能を有することもできる。
  また、本発明の下層が、Al酸化物層よりも下の層として、Tiと、窒素(N)、酸素(O)およびホウ素(B)からなる群より選ばれる1種以上の元素との化合物から構成される層を備えている場合は、さらに好適である。このような構成を採用することにより、Al酸化物層とその下の層との間で特に優れた密着性を得ることができ、表面被覆切削工具の耐摩耗性をより一層高めることができる。このような化合物としては、たとえば、TiN、TiBN、TiBNO、TiCBN、TiCNOなどを挙げることができる。また、これら以外にも、同様の効果を示す化合物の例として、AlON、AlCNOなどを挙げることもできる。
  <中間層>
  本発明の被膜は、最表面層と下層との間に、中間層を有することができる。このような中間層の構成としては、たとえば、周期律表の4族元素、5族元素、6族元素、AlおよびSiからなる群より選ばれる1種以上の元素と、炭素(C)、窒素(N)および酸素(O)からなる群より選ばれる1種以上の元素との化合物から構成される1以上の層を挙げることができる。
  上記のような化合物としては、たとえば、TiCN、TiN、TiCNO、TiO2、TiNO、TiC、TiBN、TiSiN、TiSiCN、TiAlN、TiAlCrN、TiAlSiN、TiAlSiCrN、AlCrN、AlCrCN、AlCrVN、TiAlBN、TiBCN、TiAlBCN、TiSiBCN、AlN、AlCN、Al23、ZrN、ZrCN、ZrN、ZrO2、HfC、HfN、HfCN、NbC、NbCN、NbN、Mo2C、WC、W2Cなどを挙げることができる。また、上記の化合物に対し、他の元素が微量にドープされたものであってもよい。これらの組成中、各原子比は上記一般式に倣うものとする。
  なお、本発明において上記のように化合物を化学式で表わす場合、原子比を特に限定しない場合は従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば、単に「TiCN」と記す場合、「Ti」と「C」と「N」の原子比は50:25:25の場合のみに限られず、また、「TiN」と記す場合も「Ti」と「N」の原子比は50:50の場合のみに限られず、従来公知のあらゆる原子比が含まれるものとする。
  理由の詳細は不明ながら、このような中間層を備えることにより、Al酸化物層とホウ化チタン層との密着性を高めることができる。ここで、中間層としては、TiCN層およびTiN層の少なくともいずれかが特に好適であり、このような構成とすることにより、Al酸化物層とホウ化チタン層との密着性は極めて高いものとなり、これにより表面被覆切削工具に優れた耐摩耗性が付与される。
  なお、中間層が最表面層と下層との間に形成されている限り、上記のようなAl酸化物層とホウ化チタン層との密着性を高める効果は示される。すなわち、中間層がAl酸化物層とホウ化チタン層に直に接して形成されている必要はなく、たとえば、中間層とAl酸化物層との間や、中間層とホウ化チタン層との間にさらに別の層が形成されていても良い。
  また、中間層も、最表面層および下層と同様に、圧縮残留応力を有することが好ましい。中間層の有する圧縮残留応力は、その絶対値が0.1GPa以上であることが好ましく、より好ましくは0.2GPa以上であり、さらに好ましくは0.5GPa以上である。
中間層の有する圧縮残留応力の絶対値が0.1GPa未満である場合には、十分な靭性が得られない場合がある。また、表面被覆切削工具の靭性を高める観点から、圧縮残留応力の絶対値は大きいほど好ましいが、その絶対値が10GPaを超えると、中間層とその他の層との間に剥離が発生する場合があるため好ましくない。
  <耐溶着性>
  また中間層は、Al酸化物層とホウ化チタン層との密着性を低下させる層であってもよい。この場合は、表面被覆切削工具に耐溶着性を付与することができる。すなわち、Al酸化物層とホウ化チタン層との密着性が低下することにより、切削初期にホウ化チタン層を容易に剥離させ、Al酸化物層を露出させることができる。Al酸化物層は鉄系被削材との反応性が低く、耐溶着性に優れている。したがって、Al酸化物層が露出されやすくすることにより、表面被覆切削工具の耐溶着性が高まることになる。ここで、Al酸化物層とホウ化チタン層との密着性を低下させる中間層としては、たとえばTiC層を挙げることができる。
  <製造方法>
  以上に説明した本発明の表面被覆切削工具は、次のような製造方法によって製造することができる。すなわち、次のような製造方法によって製造される表面被覆切削工具は、優れた耐摩耗性および耐欠損性を兼ね備えるとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる注意喚起機能を備えるという効果を有する。
  本発明の表面被覆切削工具の製造方法は、基材と、該基材上に形成された被膜とを備える表面被覆切削工具の製造方法であって、該基材上に化学蒸着法によって複数の層を形成する工程と、複数の層のうち最表面層に、ブラスト法、ブラシ法、バレル法およびイオン注入法より選ばれる方法によって、絶対値が0.1GPa以上である圧縮残留応力を付与する工程と、を有しており、該最表面層はTixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層である。
  <化学蒸着法によって複数の層を形成する工程>
  複数の層を形成する化学蒸着法としては、従来公知のCVD法を用いることができるが、複数の層のうち少なくとも1層はMT-CVD(Medium Temperature-CVD)法を用いて成膜されていることが好適である。MT-CVD法によって成膜される層の好適例としては、たとえば、耐摩耗性に優れる炭窒化チタン(TiCN)層などを挙げることができる。
  従来のCVD法は、約1020℃~1030℃で成膜を行なうのに対して、MT-CVD法は約850℃~950℃という比較的低温で行なうことができるため、成膜の際に加熱による基材へのダメージを低減することができる。したがって、MT-CVD法によって成膜される層は、基材に近接させて形成されていることが好ましい。
  また、成膜の際に使用するガスとしては、ニトリル系のガス、特にアセトニトリル(CH3CN)を用いると量産性に優れるため好ましい。なお、上記のようなMT-CVD法により成膜される層と、HT-CVD(High Temperature-CVD)法により成膜される層とを積層させた積層構造とすることによって、被膜を構成する層と層との密着力が向上することがあり、好ましい場合もある。
  なお、ここでの説明において、HT-CVD法とは上記でいう従来のCVD法を示している。
  <圧縮残留応力を付与する工程>
  本発明の表面被覆切削工具の製造方法は、化学蒸着法によって形成された複数の層の最表面層に、後発的に圧縮残留応力を付与する工程を含み、該最表面層はホウ化チタン層であることを特徴としている。ここで、圧縮残留応力を付与する方法としては、ブラスト法、ブラシ法、バレル法およびイオン注入法より選ばれる方法を用いることができる。これらの方法のうち、機械的方法であるブラシ法、ブラスト法、バレル法などが特に好ましい。
  圧縮残留応力を付与する方法としてブラスト法を採用する場合、使用する研磨材の粒子の種類として、このような用途に対して一般的なものを使用することができる。たとえば、スチールグリッド、スチールショット、カットワイヤー、アルミナ、ジルコニア、ガラスビーズ、珪砂などを使用することができる。また、中間層が最表面層と下層との密着性を低下させる層(たとえばTiC層)を含む場合には、圧縮残留応力を付与する方法として、公知のブラシ法を採用することが好ましい。
  なお、複数の層のうち、最表面層以外の層についても圧縮残留応力を付与することができる。その際にも、最表面層に圧縮残留応力を付与する方法として例示した方法を好適に用いることができる。また、最表面層に圧縮残留応力を付与する際に、適宜条件を調整して、最表面層の下層に対しても同時に圧縮残留応力を付与することも可能である。
  本発明の表面被覆切削工具の製造方法の好適な一例としては、次のような態様を挙げることができる。すなわち、基材上にまずCVD法によりTiN層を成膜し、その上にMT-CVD法によりTiCN層を成膜し、さらにその上にCVD法によりAl酸化物層を成膜して、下層を形成する。次いで、該下層の上に中間層として、CVD法によりTiCN層を成膜した後、最表面層として、CVD法によりホウ化チタン層を成膜する。そして、後発的にブラスト法によって、最表面層であるホウ化チタン層に0.1GPa以上の圧縮残留応力を付与することにより、表面被覆切削工具とすることができる。また、このとき、最表面層のみならず、中間層および下層にも圧縮残留応力を付与しても良い。
  以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の説明において、表面被覆切削工具の各層の厚みは、前述のように、表面被覆切削工具の断面をSEM観察することにより測定したものである。
  <実施例1>
  まず、表面被覆切削工具の基材として、JIS(Japanese Industrial Standard)に規定されるJIS  B  4120(1998)CNMG120408の切削工具形状を有する超硬合金母材を準備した。この超硬合金母材は、89.0wt%のWCと、8.0wt%のCoと、3.0wt%のTiCとから構成されていた。
  次いで、ホーニング処理された基材の表面上に、CVD法により基材全面に亘って成膜を行ない、被膜を形成した。すなわち、基材の表面側から順に、下層として、0.5μmのTiN層と、7.0μmのTiCN層(MT-CVD)と、α-アルミナ(Al23)からなる2.0μmのAl酸化物層とを積層した。
  そして、その上に、中間層として0.3μmのTiCN層と、最表面層として0.7μmのTiB2からなるホウ化チタン層とを積層することにより、基材上に複数の層を含む被膜を形成した。この被膜構成を被膜No.1とする。
  なお、被膜No.1において、中間層であるTiCN層および最表面層であるTiB2からなるホウ化チタン層が使用状態表示層を構成している。また、「TiCN層(MT-CVD)」とはMT-CVD法によって成膜したTiCN層であることを示している。
  上記と同様にして、全面に表1に示す被膜No.2~7を形成した超硬合金基材をそれぞれ作製した。
Figure JPOXMLDOC01-appb-T000001
  表1中、下層の最外層であるAl酸化物層(α-Al23(2.0μm)またはκ-Al23(2.0μm))は被膜の種類に係わらず、すべて黒色を呈するものであった。また、ホウ化チタン層である最表面層は銀色または白色を呈していた。
  次いで、被膜を形成した基材それぞれに対して、表2に示す後処理を行ない最表面層に対して圧縮残留応力を付与した。後処理条件B~Dでは公知のブラスト法を用いて、表2に示す投射圧で後処理を行なった。なお、後処理条件B~Dにおける投射時間は5秒間とした。また、後処理条件Eでは公知のブラシ法による処理を行なった。
Figure JPOXMLDOC01-appb-T000002
  以上のようにして、表面被覆切削工具No.1~26を得た。各表面被覆切削工具の被膜と後処理条件との組み合わせを表3に示す。表3中、「※」の印が付された表面被覆切削工具No.3、4、7、8および26が実施例の表面被覆切削工具である。
  <残留応力の測定>
  以上のようにして得られた表面被覆切削工具No.1~26の最表面層の残留応力を、X線応力測定装置を用いたsin2ψ法により測定した。その結果を表3に示す。表3中、「残留応力」の欄の数値が、「-」(マイナス)の数値のものは、圧縮残留応力を有していたことを示し、「+」(プラス)の数値のものは引張残留応力を有していたことを示している。
  <切削性能評価>
  さらに、表面被覆切削工具No.1~26の切削性能を耐摩耗性試験および耐欠損性試験により評価した。それぞれの試験条件を以下に示す。また、評価結果を表3に示す。
  <耐摩耗性試験条件>
  被削材:SCM435(JIS)
  切削速度:250m/min.
  送り:0.30mm/rev.
  切込み:1.5mm
  切削油:湿式
  切削時間:25分
  評価:逃げ面摩耗量。
  <耐欠損性試験条件>
  被削材:SCM435(JIS)溝入材
  切削速度:150m/min.
  送り:0.25mm/rev.
  切込み:1.5mm
  切削油:湿式
  評価:チッピングまたは欠損するまでの時間(工具寿命)。
Figure JPOXMLDOC01-appb-T000003
  表3中、「逃げ面摩耗量」が少ないほど、耐摩耗性に優れている。また、表3中、「切れ刃の使用状態の識別」の欄には、切れ刃が使用済みか否かの識別のしやすさの評価結果を示している。すなわち、切削試験後の目視確認によって、未使用品と比較して、明りょうに変色しており使用の有無が一見して識別できるものを「容易」とし、やや変色しているものを「やや困難」とし、使用前後で変色が少なく使用の有無の識別が難しいものを「困難」として評価した。
  さらに、切削試験終了後の工具の刃先および被削材の加工面を目視観察することにより、工具の耐溶着性を追加評価した。表3中、「刃先への被削材の溶着状態」の欄が「無し」であり、「被削材加工面の状態」が「光沢有り」であるものは耐溶着性に優れている。
なお、耐溶着性に優れる工具のうち中間層としてTiC層を備えるNo.26の表面被覆切削工具は、被削材加工面が鏡面に近い状態であり特に耐溶着性に優れるものであった。
したがって耐溶着性の観点から、中間層はTiC層を含むことが特に好ましいと言える。
  他方、工具の刃先に被削材が溶着しているものは、被削材の加工面も白濁しており、加工面の仕上げ粗さが大きいものであった。
  表3より明らかなように、基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、該被膜は複数の層を含み、該複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する、実施例の表面被覆切削工具は、かかる条件を満たさない比較例の表面被覆切削工具に比し、優れた耐摩耗性および耐欠損性を有するとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる優れた注意喚起機能を備えるものであることが確認できた。
  <実施例2>
  まず、表面被覆切削工具の基材として、JIS(Japanese Industrial Standard)に規定されるJIS  B  4120(1998)CNMG120408の切削工具形状を有する超硬合金母材を準備した。この超硬合金母材は、90.0wt%のWCと、7.0wt%のCoと、3.0wt%のTiCとから構成されていた。
  次いで、ホーニング処理された基材の表面上に、CVD法により基材全面に亘って成膜を行ない、被膜を形成した。すなわち、基材の表面側から順に、下層として、0.3μmのTiN層と、3.0μmのTiCN層(MT-CVD)と、α-アルミナ(Al23)からなる2.0μmのAl酸化物層とを積層した。
  そして、その上に、中間層として0.2μmのTiCN層と、最表面層として0.6μmのTiB2からなるホウ化チタン層とを積層することにより、基材上に複数の層を含む被膜を形成した。この被膜構成を被膜No.8とする。
  なお、被膜No.8において、中間層であるTiCN層および最表面層であるTiB2からなるホウ化チタン層が使用状態表示層を構成している。
  上記と同様にして、全面に表4に示す被膜No.9を形成した超硬合金基材を作製した。
Figure JPOXMLDOC01-appb-T000004
  表4中、下層の最外層であるAl酸化物層(α-Al23(2.0μm))は被膜の種類に係わらず、すべて黒色を呈するものであった。また、ホウ化チタン層である最表面層は銀色または白色を呈していた。
  次いで、被膜を形成した基材それぞれに対して、公知のブラスト法を用いて、表5に示す投射時間で後処理を行ない、最表面層に対して圧縮残留応力を付与した。なお、すべての処理において投射圧は0.15MPaとした。
Figure JPOXMLDOC01-appb-T000005
  以上のようにして、表面被覆切削工具No.27~34を得た。各表面被覆切削工具の被膜と後処理条件との組み合わせを表6に示す。表6中、「※」の印が付された表面被覆切削工具No.29および30が実施例の表面被覆切削工具である。
  <残留応力の測定>
  表面被覆切削工具No.27~34の最表面層の残留応力を、X線応力測定装置を用いたsin2ψ法により測定した。その結果を表6に示す。表6中、「残留応力」の欄の数値が、「-」(マイナス)の数値のものは、圧縮残留応力を有していたことを示し、「+」(プラス)の数値のものは引張残留応力を有していたことを示している。
  <切削性能評価>
  さらに、表面被覆切削工具No.27~34の切削性能を耐摩耗性試験および耐欠損性試験により評価した。それぞれの試験条件を以下に示す。また、評価結果を表6に示す。
  <耐摩耗性試験条件>
  被削材:SUS304(JIS)
  切削速度:150m/min.
  送り:0.20mm/rev.
  切込み:1.5mm
  切削油:湿式
  切削時間:25分
  評価:逃げ面摩耗量。
  <耐欠損性試験条件>
  被削材:SUS304(JIS)溝入材
  切削速度:100m/min.
  送り:0.25mm/rev.
  切込み:1.5mm
  切削油:湿式
  評価:チッピングまたは欠損するまでの時間(工具寿命)。
Figure JPOXMLDOC01-appb-T000006
  表6中、「逃げ面摩耗量」が少ないほど、耐摩耗性に優れている。また、表6中、「切れ刃の使用状態の識別」の欄には、切れ刃が使用済みか否かの識別のしやすさの評価結果を示している。すなわち、切削試験後の目視確認によって、未使用品と比較して、明りょうに変色しており使用の有無が一見して識別できるものを「容易」とし、やや変色しているものを「やや困難」とし、使用前後で変色が少なく使用の有無の識別が難しいものを「困難」として評価した。
  表6より明らかなように、基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、該被膜は複数の層を含み、該複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する、実施例の表面被覆切削工具は、かかる条件を満たさない比較例の表面被覆切削工具に比し、優れた耐摩耗性および耐欠損性を有するとともに、刃先稜線部の使用状態の判別を極めて容易に行なうことができる優れた注意喚起機能を備えるものであることが確認できた。
  以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
  今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。

Claims (6)

  1.   基材と、前記基材上に形成された被膜とを備える表面被覆切削工具であって、
      前記被膜は複数の層を含み、
      前記複数の層のうち最表面層は、Tixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層であり、且つ絶対値が0.1GPa以上である圧縮残留応力を有する、表面被覆切削工具。
  2.   前記被膜は、前記最表面層の下層として、Al酸化物からなるAl酸化物層を含む、請求項1に記載の表面被覆切削工具。
  3.   前記被膜は、前記最表面層と前記Al酸化物層との間に中間層を有し、
      前記中間層は、周期律表の4族元素、5族元素、6族元素、AlおよびSiからなる群より選ばれる1種以上の元素と、炭素、窒素および酸素からなる群より選ばれる1種以上の元素との化合物から構成される1以上の層を含む、請求項2に記載の表面被覆切削工具。
  4.   前記中間層は、TiCN層およびTiN層の少なくともいずれかを含む、請求項3に記載の表面被覆切削工具。
  5.   前記中間層は、TiC層を含む、請求項3に記載の表面被覆切削工具。
  6.   基材と、前記基材上に形成された被膜とを備える表面被覆切削工具の製造方法であって、
      前記基材上に化学蒸着法によって複数の層を形成する工程と、
      前記複数の層のうち最表面層に、ブラスト法、ブラシ法、バレル法およびイオン注入法より選ばれる方法によって、絶対値が0.1GPa以上である圧縮残留応力を付与する工程と、を有し、
      前記最表面層はTixy(x、yは原子%を示し、1.5<y/x<2.5)からなるホウ化チタン層である、表面被覆切削工具の製造方法。
PCT/JP2014/051908 2013-02-21 2014-01-29 表面被覆切削工具およびその製造方法 WO2014129273A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157022792A KR101906658B1 (ko) 2013-02-21 2014-01-29 표면 피복 절삭 공구 및 그 제조방법
EP14754770.7A EP2959994B1 (en) 2013-02-21 2014-01-29 Surface-coated cutting tool and process for producing same
US14/769,378 US9920423B2 (en) 2013-02-21 2014-01-29 Surface-coated cutting tool and process for producing same
CN201480010033.2A CN105142831B (zh) 2013-02-21 2014-01-29 表面被覆切削工具及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-032160 2013-02-21
JP2013032160 2013-02-21
JP2013207289A JP6213867B2 (ja) 2013-02-21 2013-10-02 表面被覆切削工具およびその製造方法
JP2013-207289 2013-10-02

Publications (1)

Publication Number Publication Date
WO2014129273A1 true WO2014129273A1 (ja) 2014-08-28

Family

ID=51391069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051908 WO2014129273A1 (ja) 2013-02-21 2014-01-29 表面被覆切削工具およびその製造方法

Country Status (6)

Country Link
US (1) US9920423B2 (ja)
EP (1) EP2959994B1 (ja)
JP (1) JP6213867B2 (ja)
KR (1) KR101906658B1 (ja)
CN (1) CN105142831B (ja)
WO (1) WO2014129273A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505252B1 (ko) * 2016-12-30 2023-03-03 코닝 인코포레이티드 잔류 압축 응력을 갖는 광학 코팅(optical coating)이 있는 코팅된 제품
AT15677U1 (de) * 2017-01-31 2018-04-15 Ceratizit Austria Gmbh Beschichtetes Werkzeug
JP7195043B2 (ja) 2017-03-31 2022-12-23 株式会社吉野工業所 外ケース付き二重容器
KR102359266B1 (ko) * 2017-08-31 2022-02-07 삼성전자주식회사 반도체 소자
JP7070240B2 (ja) * 2018-08-23 2022-05-18 トヨタ自動車株式会社 ハイブリッド車両
JP7555360B2 (ja) 2019-06-28 2024-09-24 エイブイエックス・アンテナ・インコーポレーテッド 無線コンテンツを配信するための能動アンテナ・システム
CN110359029B (zh) * 2019-08-15 2021-06-29 株洲华锐精密工具股份有限公司 用于刀具的涂覆涂层及其制备方法
CN116604057B (zh) * 2023-07-17 2023-10-20 赣州澳克泰工具技术有限公司 一种复合涂层刀具及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148713A (en) * 1975-06-06 1976-12-21 Krupp Gmbh Antiiabrasive molding member comprising superhard alloy base and surface layer
JP2002355704A (ja) * 2001-03-28 2002-12-10 Seco Tools Ab 切削工具インサート
JP2003266213A (ja) 2002-03-19 2003-09-24 Hitachi Tool Engineering Ltd 硼素含有膜被覆工具
JP2004001215A (ja) * 2002-05-21 2004-01-08 Barta Ag 切削体、その製造方法およびその使用
WO2009047867A1 (ja) * 2007-10-12 2009-04-16 Hitachi Tool Engineering, Ltd. 硬質皮膜被覆部材、及びその製造方法
JP2011505261A (ja) 2007-12-06 2011-02-24 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング 被覆物品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH632944A5 (fr) * 1978-06-22 1982-11-15 Stellram Sa Piece d'usure en metal dur.
US4357382A (en) * 1980-11-06 1982-11-02 Fansteel Inc. Coated cemented carbide bodies
EP0732423B1 (en) * 1994-10-04 2001-06-20 Sumitomo Electric Industries, Ltd Coated hard alloy
SE9502687D0 (sv) * 1995-07-24 1995-07-24 Sandvik Ab CVD coated titanium based carbonitride cutting tool insert
CN1151446A (zh) * 1996-08-21 1997-06-11 大港石油管理局总机械厂 柱塞泵泵头内壁强化工艺方法
KR100373280B1 (ko) * 2000-07-18 2003-02-25 기아자동차주식회사 에어노즐 숏피이닝을 이용한 기어가공방법
DE10048899B4 (de) * 2000-10-02 2004-04-08 Walter Ag Schneidplatte mit Verschleißerkennung
US6884496B2 (en) * 2001-03-27 2005-04-26 Widia Gmbh Method for increasing compression stress or reducing internal tension stress of a CVD, PCVD or PVD layer and cutting insert for machining
US8003234B2 (en) * 2005-03-29 2011-08-23 Sumitomo Electric Hardmetal Corp. Coated cutting insert and manufacturing method thereof
JP2008238281A (ja) * 2007-03-26 2008-10-09 Hitachi Tool Engineering Ltd 被覆工具
JP5804354B2 (ja) * 2011-04-21 2015-11-04 住友電気工業株式会社 表面処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148713A (en) * 1975-06-06 1976-12-21 Krupp Gmbh Antiiabrasive molding member comprising superhard alloy base and surface layer
JP2002355704A (ja) * 2001-03-28 2002-12-10 Seco Tools Ab 切削工具インサート
JP2003266213A (ja) 2002-03-19 2003-09-24 Hitachi Tool Engineering Ltd 硼素含有膜被覆工具
JP2004001215A (ja) * 2002-05-21 2004-01-08 Barta Ag 切削体、その製造方法およびその使用
WO2009047867A1 (ja) * 2007-10-12 2009-04-16 Hitachi Tool Engineering, Ltd. 硬質皮膜被覆部材、及びその製造方法
JP2011505261A (ja) 2007-12-06 2011-02-24 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング 被覆物品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Technology for Evaluation of Kinetic Characteristics of Thin Films", REALIZE SCIENCE & ENGINEERING, 1992, pages 264 - 271
"X-Ray Stress Measurement", 1981, SOCIETY OF MATERIALS SCIENCE, pages: 54 - 67
See also references of EP2959994A4

Also Published As

Publication number Publication date
EP2959994B1 (en) 2019-05-01
CN105142831A (zh) 2015-12-09
JP6213867B2 (ja) 2017-10-18
KR101906658B1 (ko) 2018-10-10
US20160002772A1 (en) 2016-01-07
EP2959994A4 (en) 2016-09-21
CN105142831B (zh) 2018-02-09
JP2014184546A (ja) 2014-10-02
EP2959994A1 (en) 2015-12-30
US9920423B2 (en) 2018-03-20
KR20150107882A (ko) 2015-09-23

Similar Documents

Publication Publication Date Title
JP6213867B2 (ja) 表面被覆切削工具およびその製造方法
JP4739321B2 (ja) 刃先交換型切削チップ
JP4783153B2 (ja) 刃先交換型切削チップ
US8968866B2 (en) Surface-coated cutting tool
EP2208561A1 (en) Edge replacement-type cutting chip
JP5729777B2 (ja) 表面被覆切削工具
JP2006192543A (ja) 表面被覆切削工具およびその製造方法
JP4921984B2 (ja) 表面被覆切削工具
JP2006192531A (ja) 表面被覆切削工具およびその製造方法
JP5240605B2 (ja) 表面被覆切削工具
JP5070621B2 (ja) 表面被覆切削工具
JP2007319964A (ja) 刃先交換型切削チップ
JP5896326B2 (ja) 表面被覆切削工具およびその製造方法
JP4865513B2 (ja) 表面被覆切削工具
JP4878808B2 (ja) 刃先交換型切削チップ
JP2007253316A (ja) 刃先交換型切削チップ
JP5240604B2 (ja) 表面被覆切削工具
JP2009090417A (ja) 刃先交換型切削チップ
JP2006175560A (ja) 表面被覆切削工具
JP2006181645A (ja) 表面被覆切削工具
JP2010036276A (ja) 表面被覆切削工具
WO2014054321A1 (ja) 表面被覆切削工具およびその製造方法
JP2012030359A (ja) 刃先交換型切削チップ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010033.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014754770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14769378

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157022792

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE