WO2014127546A1 - 主动矩阵式有机发光二极管显示装置及其制作方法 - Google Patents

主动矩阵式有机发光二极管显示装置及其制作方法 Download PDF

Info

Publication number
WO2014127546A1
WO2014127546A1 PCT/CN2013/071901 CN2013071901W WO2014127546A1 WO 2014127546 A1 WO2014127546 A1 WO 2014127546A1 CN 2013071901 W CN2013071901 W CN 2013071901W WO 2014127546 A1 WO2014127546 A1 WO 2014127546A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film transistor
thin film
active
organic light
Prior art date
Application number
PCT/CN2013/071901
Other languages
English (en)
French (fr)
Inventor
吴元均
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/985,954 priority Critical patent/US8890160B2/en
Publication of WO2014127546A1 publication Critical patent/WO2014127546A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • the present invention relates to the field of flat display, and in particular to an active matrix organic light emitting diode display device and a method of fabricating the same. Background technique
  • Organic Light Emitting Diode Display also known as organic light emitting diode
  • OLED Organic Light Emitting Diode Display
  • the structure of the organic light emitting diode generally comprises: a substrate, an anode, a cathode and an organic functional layer.
  • the principle of light emission is a very thin multilayer organic material vapor-deposited between the anode and the cathode, and is injected into the organic semiconductor film by a positive carrier. Glowing.
  • the organic functional layer of the organic light emitting diode is generally composed of three functional layers, namely, a hole transport layer (HTL), an emission function layer (EML), and an electron transport function layer (Electron Transport Layer). , ETL).
  • Each functional layer may be a layer, or more than one layer, such as a hole transport functional layer, sometimes subdivided into a hole injection layer and a hole transport layer; an electron transport functional layer, which may be subdivided into an electron transport layer and electron injection Layers, but their functions are similar, so they are collectively referred to as hole transport functional layers and electron transport functional layers.
  • the production method of full-color organic light-emitting diodes is mainly composed of red, green and blue (RGB) three-color parallel independent illuminating method, white light plus color filter method and color conversion method, among which red, green and blue three colors are juxtaposed independently.
  • RGB red, green and blue
  • the method has the most potential and is the most practical application.
  • the production method is that the red, green and blue light materials of different subjects and objects are selected.
  • Organic light-emitting diodes can be divided into two categories: passive driving and active driving, namely direct addressing and thin film transistor (TFT) matrix addressing.
  • the active driving organic light emitting diode is an Active Matrix/Organic Light Emitting Diode (AMOLED), which is also called an active matrix organic light emitting diode.
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • a conventional active matrix OLED display device generally includes: an OLED 100 and a thin film transistor 300 electrically connected to the OLED 100 , which is generally formed by forming a thin film transistor 300 first.
  • a pixel electrode of the thin film transistor 300 is used as the anode 102 of the organic light emitting diode 100, and a hole transport layer (HTL) 104 is formed on the anode 102 to form a light-emitting function on the hole transport layer 104.
  • An Emissive Layer (EML) 106, an Electron Transport Layer (ETL) 108 is formed on the light-emitting function layer 106, and an E-transmission function layer 108 J-shaped/Ge cathode 110 is formed.
  • the conventional thin film transistor 300 generally requires a 7-10 reticle process, which is generally formed by forming a first insulating layer 302 on the substrate 301 and an active layer formed on the first insulating layer 302. 303, and forming a predetermined pattern by a mask process, forming a second insulating layer 304 on the active layer 303, forming a first metal layer on the second insulating layer 304, and forming a gate electrode 305 through the mask process, a third insulating layer 306 is formed on a metal layer, a second metal layer is formed on the third insulating layer 306, and a source/drain 307 is formed through a mask process, and a fourth insulating layer 308 is formed on the second metal layer.
  • a pixel electrode (anode) 102 is formed on the fourth insulating layer 308, a fifth insulating layer 309 is formed on the pixel electrode 102, and a predetermined pattern is formed by a photomask process, thereby producing a thin film transistor 300.
  • the pixel design space also becomes insufficient.
  • those skilled in the art add a third metal layer to the fourth insulating layer 308 of the existing thin film transistor 300.
  • a third insulating layer 311 is formed on the third metal layer 310.
  • the third metal layer 310 is electrically connected to the anode 102 of the organic light emitting diode 100, and the other end is electrically connected to the other end.
  • the source/drain 307 of the thin film transistor 300 assists in the conduction of the thin film transistor 300 and the organic light emitting diode 100, thereby reducing the space required for the pixel design.
  • the object of the present invention is to provide an active matrix type organic light emitting diode display device which has a simple structure, high resolution and low production cost.
  • Another object of the present invention is to provide a method for fabricating an active matrix OLED display device which is simple in process, low in cost, and can effectively improve the resolution of the active matrix OLED display device.
  • the present invention provides an active matrix OLED display device, including: a substrate, and a first thin film transistor and a second thin film transistor respectively disposed on the substrate, wherein the first thin film transistor includes a substrate disposed on the substrate a first gate, a first active layer disposed on the first gate, and a first source/drain disposed on the first active layer, the second thin film transistor including the same layer as the first active layer a second active layer, a second gate disposed on the second active layer, and a second source/drain disposed on the second active layer.
  • a first gate insulating layer is disposed between the first gate and the first active layer and the second active layer, and the second gate is respectively disposed between the first active layer and the second active layer.
  • the first gate at least partially overlaps the first active layer, and the second gate and the second active layer at least partially overlap.
  • the substrate has a plurality of pixel regions, and the first thin film transistor and the second thin film transistor are respectively disposed in each pixel region.
  • the storage capacitor and the organic light emitting device are disposed on the substrate, the storage capacitor is disposed on the substrate, and the organic light emitting device includes a first electrode disposed on the second thin film transistor and electrically connected to the second thin film transistor, and disposed on the first electrode An organic light-emitting layer on the first electrode and a second electrode on the organic light-emitting layer.
  • the first thin film transistor is a switching thin film transistor
  • the second thin film transistor is a driving thin film transistor and is electrically connected to the first thin film transistor
  • the first active layer includes a polysilicon layer
  • the second active layer includes a polysilicon layer
  • the present invention also provides an active matrix OLED display device, including: a substrate, a first thin film transistor and a second thin film transistor respectively disposed on the substrate, the first thin film transistor including a first gate disposed on the substrate, a first active layer disposed on the first gate, and a first source/drain disposed on the first active layer, the second thin film transistor including a second active layer in the same layer as the first active layer a second gate disposed on the second active layer, and a second source/drain disposed on the second active layer;
  • the first gate is respectively provided with a first gate insulating layer between the first active layer and the second active layer, and the second gate is respectively connected to the first active layer and the second active layer a second olive insulating layer is disposed therebetween, and a first interlayer insulating layer is disposed on the second gate insulating layer;
  • the first gate and the first active layer at least partially overlap, and the second gate and the second active layer at least partially overlap;
  • the substrate has a plurality of pixel regions, and the first thin film transistor and the second thin film transistor are respectively disposed in each pixel region;
  • the storage capacitor and the organic light emitting device are disposed on the substrate, the storage capacitor is disposed on the substrate, and the organic light emitting device includes a first electrode disposed on the second thin film transistor and electrically connected to the second thin film transistor, and disposed on the first electrode An organic light emitting layer on the first electrode; and a second electrode disposed on the organic light emitting layer;
  • the first thin film transistor is a switching thin film transistor
  • the second thin film transistor is a driving thin film transistor and is electrically connected to the first thin film transistor
  • the first active layer comprises a polysilicon layer
  • the second active layer comprises polysilicon Floor
  • the invention also provides a method for fabricating an active matrix organic light emitting diode display device, comprising the following steps:
  • Step L provides a substrate, and defines a first thin film transistor region and a second thin film transistor region on the substrate;
  • Step 2 forming a first metal layer on the substrate, patterning the first metal layer to form a first gate in the first thin film transistor region;
  • Step 3 forming a first drain insulating layer on the first gate and the substrate;
  • Step 4 forming an active region layer on the first gate insulating layer, and patterning the active region layer to form a first active layer and a second active layer in the first thin film transistor region and the second thin film transistor region, respectively ;
  • Step 5 forming a second drain insulating layer on the first active layer and the second active layer; Step 6. Forming a second metal layer on the second drain insulating layer, and patterning the second metal layer in the second Forming a second gate in the thin film transistor region;
  • Step 7 forming a first interlayer insulating layer on the second gate and the second gate insulating layer, and patterning the first interlayer insulating layer;
  • Step 8 forming a third metal layer on the first interlayer insulating layer, and patterning the third metal layer to form first source/drain and second source in the first thin film transistor region and the second thin film transistor region, respectively /Drain.
  • Step 9 forming a second interlayer insulating layer on the first source Z drain and the second source/drain, and patterning the second interlayer insulating layer by a mask process;
  • Step 10 forming a transparent conductive layer on the second interlayer insulating layer, and forming a first electrode through a mask process;
  • Step 11 forming a third interlayer insulating layer on the first electrode, and patterning the third interlayer insulating layer by a mask process;
  • step! 2 2. forming an organic light-emitting layer on the third interlayer insulating layer;
  • Step 13 forming a second electrode on the organic light emitting layer.
  • the first active layer and the second active layer are further subjected to an annealing and doping process.
  • the active matrix type organic light emitting diode display device of the present invention and the manufacturing method thereof are prepared by adding a metal layer to separate the first and second gate electrodes, thereby effectively improving the active matrix organic
  • the resolution of the LED display device is relatively small compared to the prior art, thereby effectively reducing the production cost.
  • FIG. 1 is a schematic structural view of a conventional active matrix organic light emitting diode display device
  • FIG. 2 is a schematic structural view of a conventional high resolution active matrix organic light emitting diode display device
  • FIG. 3 is a schematic structural view of an active matrix organic light emitting diode display device according to the present invention
  • FIG. 4 is a flow chart of a method for fabricating an active matrix organic light emitting diode display device according to the present invention
  • FIG. 5 to FIG. 16 are structural diagrams corresponding to respective production stages of the active matrix organic light emitting diode display device of the present invention.
  • the substrate 200 includes a first thin film transistor 400 and a second thin film transistor 600 respectively disposed on the substrate 200.
  • the substrate 200 has a plurality of pixel regions (not shown), and the first thin film transistor 400 and the second The thin film transistors 600 are respectively disposed in each of the pixel regions, wherein the first thin film transistor 400 is a switching thin film transistor, the second thin film transistor 600 is a driving thin film transistor, and the second thin film transistor 600 is electrically connected to the first thin film transistor 400. connection.
  • the first thin film transistor 400 includes a first gate 402 disposed on the substrate 200, a first active layer 404 disposed on the first gate 402, and a first source/drain disposed on the first active layer 404.
  • the pole 406, the first gate 402 and the first active layer 404 at least partially overlap.
  • the second thin film transistor 600 includes a second active layer 602 in the same layer as the first active layer 404, a second gate 604 disposed on the second active layer 602, and a second active layer 602.
  • the second source/drain 606, the second pole 604 and the second active layer 602 at least partially overlap.
  • a first gate insulating layer 408 is disposed between the first active layer and the first active layer 404 and the second active layer 602, and the second gate 604 is respectively connected to the first active layer 404 and the first Two active layers
  • a second gate insulating layer 608 is disposed between 602, and a first interlayer insulating layer 460 is disposed on the second gate insulating layer 608.
  • the substrate 200 is a glass or plastic substrate, preferably a glass substrate; the first and second sump-poles 402, 604 and the first and second source/drain electrodes 406, 606 have a molybdenum layer, One of an aluminum layer, a titanium layer and a copper layer or a laminate thereof, which are all formed by a photomask process such as deposition, yellow light, and etching, wherein the deposition process is generally a sputtering process; A gate insulating layer 408 and a second drain insulating layer 608 are generally SiNx layers formed by chemical vapor deposition (CVD); the first interlayer insulating layer 460 is a silicon nitride (SiNx) layer.
  • CVD chemical vapor deposition
  • the converted polysilicon layer (Polysilicon) is preferably a low temperature poly-silicon (LTPS) layer.
  • the active matrix OLED display device further includes: a storage capacitor (not shown) disposed in the pixel region and the organic light emitting device 800, the storage capacitor is disposed on the substrate 200, and the organic light emitting device 800 is disposed in the second a first electrode 802 on the thin film transistor 600 electrically connected to the second thin film transistor 600, an organic light emitting layer 804 disposed on the first electrode 802, and a second electrode 806 disposed on the organic light emitting layer 804.
  • a storage capacitor (not shown) disposed in the pixel region and the organic light emitting device 800, the storage capacitor is disposed on the substrate 200, and the organic light emitting device 800 is disposed in the second a first electrode 802 on the thin film transistor 600 electrically connected to the second thin film transistor 600, an organic light emitting layer 804 disposed on the first electrode 802, and a second electrode 806 disposed on the organic light emitting layer 804.
  • the present invention further provides a method for fabricating an active matrix organic light emitting diode display device, comprising the following steps:
  • Step 1 Providing a substrate 200, and defining a first thin film transistor region and a second thin film transistor region on the substrate 200.
  • Step 2 Form a first metal layer on the substrate 200, and pattern the first metal layer to form a first shed-pole 402 in the region of the first thin film transistor 400.
  • the substrate 200 is a glass or plastic substrate, preferably a glass substrate;
  • the first metal layer is a molybdenum layer, an aluminum layer, one of a titanium layer and a copper layer or a laminate thereof, the first metal
  • the layers are typically formed on the substrate 200 by a sputtering process.
  • the mask process generally includes an exposure, development, and etching process, and the specific operation may be: coating a first metal layer with a photo-sensitive material, the layer is a so-called photoresist layer, and then The light is caused to illuminate the photoresist layer through a gray scale mask or a half gray mask to expose the photoresist layer. Due to the pattern of the active area on the gray-scale mask or the half-gray mask, part of the light will be irradiated onto the photoresist layer through the gray-scale mask or the half-gray mask, so that the light is caused.
  • the exposure of the resist layer is selective, whereby the pattern on the grayscale mask or the half-gray mask is completely copied onto the photoresist layer.
  • a portion of the photoresist is removed using a suitable developer to cause the photoresist layer to appear in the desired pattern.
  • a portion of the first metal layer is removed by an etching process, and the etching process may be performed by using a wet type, a thousand type, or both.
  • the remaining patterned photoresist layers are all removed, thereby forming a first gate 402 of a predetermined pattern.
  • Step 3 Form a first slab-pole insulating layer 408 on the first sump-pole 402 and the substrate 200.
  • the first gate insulating layer 408 is generally a SiNx layer which is deposited by chemical vapor deposition.
  • CVD Chemical vapor deposition
  • Step 4 forming an active region layer on the first gate insulating layer 408, and patterning the active region layer to form a first active layer 404 and a second layer in the first thin film transistor region and the second thin film transistor region, respectively Source layer 602.
  • the first active layer 404 and the second active layer 602 are generally a polysilicon layer (Polysilicon) which is converted into a laser anneal and a doping process by an amorphous silicon material (a-Si).
  • a-Si amorphous silicon material
  • LTPS low temperature poly-silicon
  • Step 5 Form a second gate insulating layer 608 on the first active layer 404 and the second active layer 602.
  • the second gate insulating layer 608 can also be selected from a SiNx layer formed on the first active layer 404 and the second active layer 602 by chemical vapor deposition.
  • Step 6 forming a second metal layer on the second drain insulating layer 608, and patterning the second metal layer to form a second gate 604 in the second thin film transistor region.
  • the second metal layer is also one of a molybdenum layer, an aluminum layer, a titanium layer and a copper layer or a laminate thereof, and the second metal layer is generally formed on the second gate insulating layer 608 by a sputtering process.
  • Step 7 Form a first interlayer insulating layer 460 on the second gate 604 and the second gate insulating layer 462 to pattern the first interlayer insulating layer 460.
  • the first interlayer insulating layer 460 is one of a silicon nitride (SiNx) layer and a silicon oxide (SiOx) layer or a laminate thereof.
  • Step 8 Form a third metal layer on the first interlayer insulating layer 460, and pattern the third metal layer to form a first source/drain 406 and a first layer in the first thin film transistor region and the second thin film transistor region, respectively.
  • the third metal layer is also one of a molybdenum layer, an aluminum layer, a titanium layer and a copper layer or a laminate thereof, and the third metal layer is generally formed on the first interlayer insulating layer 460 by a sputtering process.
  • Step 9 Form a second interlayer insulating layer 462 on the first source/drain 406 and the second source/drain 606, and pattern the second interlayer insulating layer 462 by a mask process.
  • the second interlayer insulating layer 462 is one of a silicon nitride (SiNx) layer and a silicon oxide (SiOx) layer or a laminate thereof. Step 10, forming a transparent conductive layer on the second interlayer insulating layer 462, and forming a first electrode 802 by a mask process.
  • the transparent conductive layer is an Indium Tin Oxide (ITO) layer, an Indium Zinc Oxide (IZO) layer, an Aluminum Zinc Oxide (AZO) layer, and a zinc gallium oxide (GZO) layer.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • AZO Aluminum Zinc Oxide
  • GZO zinc gallium oxide
  • Step 11 Form a third interlayer insulating layer 464 on the first electrode 802, and pattern the third interlayer insulating layer 464 by a mask process.
  • the third interlayer insulating layer 464 is one of a silicon nitride (SiNx) layer and a silicon oxide (Si(3x) layer or a laminate thereof.
  • An organic light-emitting layer 804 is formed on the third interlayer insulating layer 464.
  • Step 13 forming a second electrode 806 on the organic light-emitting layer 804.
  • the active matrix organic light emitting diode display device of the present invention and the manufacturing method thereof are formed by adding a metal layer to separate the first and second gates, thereby effectively improving the active matrix organic light emitting diode.
  • the resolution of the display device is relatively small compared to the prior art, and the production cost is effectively reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种主动矩阵式有机发光二极管显示装置及其制作方法。显示装置包括:基板(200)、及分别设于基板(200)上的第一薄膜晶体管(400)及第二薄膜晶体管(600),第一薄膜晶体管(400)包括设于基板(200)上的第一栅极(408)、设于第一栅极(408)上的第一有源层(404)、及设于第一有源层(404)上的第一源/漏极(406),第二薄膜晶体管(600)包括与第一有源层(404)同层的第二有源层(602)、设于第二有源层(602)上的第二栅极(604)、及设于第二有源层(602)上的第二源/漏极(606)。显示装置的制造方法,通过增加一层金属层使第一栅极(408)与第二栅极(604)分开制成。

Description

技术领域
本发明涉及平面显示领域, 尤其涉及一种主动矩阵式有机发光二极管 显示装置及其制作方法。 背景技术
有机发光显示器 ( Organic Light Emitting Diode Display, OLED ) 又称 为有机发光二极管, 是自 20 世纪中期发展起来的一种新型显示技术。 与 液晶显示器相比, 有机发光二极管具有全固态、 主动发光、 高亮度、 高对 比度, 超薄、 低成本、 低功耗、 快速响应, 宽视角、 工作温度范围宽、 易 于柔性显示等诸多优点。 有机发光二极管的结构一般包括: 基板、 阳极、 阴极和有机功能层, 其发光原理是通过阳极和阴极间蒸镀的非常薄的多层 有机材料, 由正负载流子注入有机半导体薄膜后复合产生发光。 有机发光 二极管的有机功能层, 一般由三个功能层构成, 分别为空穴传输功能层 ( Hole Transport Layer, HTL ) 、 .发光功能层 ( Emissive Layer, EML ) , 电子传输功能层(Electron Transport Layer, ETL ) 。 每个功能层可以是 层, 或者一层以上, 例如空穴传输功能层, 有时可以细分为空穴注入层和 空穴传输层; 电子传输功能层, 可以细分为电子传输层和电子注入层, 但 其功能相近, 故统称为空穴传输功能层, 电子传输功能层。
目前, 全彩有机发光二极管的制作方法以红绿蓝 (RGB )三色并列独 立发光法、 白光加彩色滤光片法, 色转换法三种方式为主, 其中红绿蓝三 色并列独立发光法最有潜力, 实际应用最多, 其制作方法是红绿蓝选用不 同主体和客体的发光材料。
有机发光二极管, 根据其驱动方式, 可以分为无源驱动和有源驱动两 大类, 即直接寻址和薄膜晶体管 (TFT ) 矩阵寻址两类。 所述有源驱动类 有机发光二极管即是有源矩阵式有机发光二极管 ( Active Matrix/Organic Light Emitting Diode, AMOLED ) , 也称主动矩阵式有机发光二极管。
请参阅图 1, 现有的主动矩阵式有机发光二极管显示装置一般包括: 有机发光二极管 100及电性连接于该有机发光二极管 100 的薄膜晶体管 300, 其制作方式一般为, 先形成薄膜晶体管 300, 以薄膜晶体管 300的像 素电极作为有机发光二极管 100的阳极 102, 在该阳极 102上形成空穴传 输层(Hole Transport Layer, HTL ) 104, 在空穴传输层 104上形成发光功 能层(Emissive Layer, EML ) 106, 在发光功能层 106上形成电子传输功 能层 ( Electron Transport Layer, ETL ) 108, 在.电子专输功能层 108 J形 /戈 阴极 110。
现有的薄膜晶体管 300—般需要 7〜10道光罩制程可以完成, 其形成 方式一般为, 在基板 301上形成第一绝缘层 302, 在第一绝缘层 302上形 成的有源层(active layer ) 303, 并通过光罩制程形成预定图案, 在有源层 303 上形成第二绝缘层 304, 在第二绝缘层 304上形成第一金属层, 并通 过光罩制程形成栅极 305, 在第一金属层上形成第三绝缘层 306, 在第三 绝缘层 306上形成第二金属层, 并通过光罩制程形成源 /漏极 307, 在第二 金属层上形成第四绝缘层 308, 在第四绝缘层 308 上形成像素电极(阳 极) 102, 在像素电极 102上形成第五绝缘层 309, 并通过光罩制程形成预 定图案, 进而制得薄膜晶体管 300。
然而随着分辨率的增加 (Mgh ρρι), 画素设计空间亦趋不足, 为了克服 该缺陷, 本领域技术人员通过在现有的薄膜晶体管 300 的第四绝缘层 308 上增加一层第三金属层 310 (如图 2所示) , 并在该第三金属层 310上形 成第六绝缘层 311 , 该第三金属层 310 一端电性连接于有机发光二极管 100的阳极 102, 另一端电性连接于薄膜晶体管 300的源. /漏极 307, 以协 助薄膜晶体管 300与有机发.光二极管 100的传导, 借以降低画素设计所需 的空间。
然而, 该种方式却需要增加两道光罩制程, 使得薄膜晶体管的制程更 为复杂, 极大地增加了生产成本。
' 本发明的目的在于提供一种主动矩阵式有机发光二极管显示装置, 其 结构简单, 分辨率高, 生产成本低。
本发明的另一目的在于提供一种主动矩阵式有机发光二极管显示装置 的制作方法, 其制程简单, 成本低, 且能有效提高制得的主动矩阵式有机 发光二极管显示装置的分辨率。
为实现上述目的, 本发明提供一种主动矩阵式有机发光二极管显示装 置, 包括: 基板、 及分別设于基板上的第一薄膜晶体管及第二薄膜晶体 管, 第一薄膜晶体管包括设于基板上的第一栅极、 设于第一栅极上的第一 有源层、 及设于第一有源层上的第一源 /漏极, 第二薄膜晶体管包括与第一 有源层同层的第二有源层、 设于第二有源层上的第二栅极、 及设于第二有 源层上的第二源 /漏极。 所述第一柵极分別与第一有源层及第二有源层之间设有第一栅极绝缘 层, 第二柵极分别与第一有源层及第二有源层之间设有第二栅极绝缘层, 第二柵极绝缘层上设有第一层间绝缘层。
所述第一柵极与第一有源层至少部分重叠, 所述第二栅极与第二有源 层至少部分重叠。
所述.基板上具有数个像素区, 第一薄膜晶体管及第二薄膜晶体管分别 设于每一像素区内。
还包括设于像素区的存储电容及有机发光元件, 该存储电容设于基板 上, 该有机发光元件包括设于第二薄膜晶体管上并与第二薄膜晶体管电性 连接的第一电极、 设于第一电极上的有机发光层、 及设于有机发光层上的 第二电极。
所述第一薄膜晶体管为开关薄膜晶体管, 第二薄膜晶体管为驱动薄膜 晶体管并与第一薄膜晶体管电性连接。
所述第一有源层包括多晶硅层, 所述第二有源层包括多晶硅层。
本发明还提供一种主动矩阵式有机发光二极管显示装置, 包括: 基 板、 分别设于基板上的第一薄膜晶体管及第二薄膜晶体管, 第一薄膜晶体 管包括设于基板上的第一栅极、 设于第一栅极上的第一有源层、 及设于第 一有源层上的第一源 /漏极, 第二薄膜晶体管包括与第一有源层同层的第二 有源层、 设于第二有源层上的第二栅极、 及设于第二有源层上的第二源 /漏 极;
其中, 所述第一柵极分别与第一有源层及第二有源层之间设有第一栅 极绝缘层, 第二柵极分别与第一有源层及第二有源层之间设有第二橄极绝 缘层, 第二栅极绝缘层上设有第一层间绝缘层;
其中, 所述第一栅极与第一有源层至少部分重叠, 所述第二栅极与第 二有源层至少部分重叠;
其中, 所述基板上具有数个像素区, 第一薄膜晶体管及第二薄膜晶体 管分别设于每一像素区内;
还包括设于像素区的存储电容及有机发光元件, 该存储电容设于基板 上, 该有机发光元件包括设于第二薄膜晶体管上并与第二薄膜晶体管电性 连接的第一电极、 设于第一电极上的有机发光层、 及设于有机发光层上的 第二电极;
其中, 所述第一薄膜晶体管为开关薄膜晶体管, 第二薄膜晶体管为驱 动薄膜晶体管并与第一薄膜晶体管电性连接;
其中, 所述第一有源层包括多晶硅层, 所述第二有源层包括多晶硅 层。
本发明还提供一种主动矩阵式有机发光二极管显示装置的制作方法, 包括以下步驟:
步骤 L 提供基板, 并在基板上定义第一薄膜晶体管区域及第二薄膜 晶体管区域;
步骤 2、 在基板上形成第一金属层, 图案化第一金属层以在第一薄膜 晶体管区域形成第一柵极;
步骤 3、 在第一栅极及基板上形成第一輾极绝缘层;
步骤 4、 在第一柵极绝缘层上形成有源区域层, 图案化该有源区域层 以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一有源层及第 二有源层;
步驟 5、 在第一有源层及第二有源层上形成第二櫪极绝缘层; 步骤 6、 在第二櫪极绝缘层形成第二金属层, 图案化第二金属层以在 第二薄膜晶体管区域形成第二栅极;
步驟 7、 在第二栅极及第二栅极绝缘层上形成第一层间绝缘层, 图案 化该第一层间绝缘层;
步骤 8 , 在该第一层间绝缘层上形成第三金属层, 图案化该第三金属 层以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一源 /漏极及 第二源 /漏极。
还包舌:
步骤 9、 在该第一源 Z漏极及第二源 /漏极上形成第二层间绝缘层, 并通 过光罩制程图案化该第二层间绝缘层;
步驟 10 , 在该第二层间绝缘层上形成透明导电层, 并通过光罩制程形 成第一电极;
步骤 11、 在第一电极上形成第三层间绝缘层, 并通过光罩制程图案化 该第三层间绝缘层;
步驟! 2、 在第三层间绝缘层上形成有机发光层;
步驟 13 , 在有机发光层上形成第二电极。
所述步骤 4 中, 还包括对第一有源层和第二有源层进行退火与掺杂工 艺处理。
本发明的有益效杲: 本发明的主动矩阵式有机发光二极管显示装置及 其制作方法, 其通过增加一层金属层使得第一与第二栅极分开制成, 有效 的提高了主动矩阵式有机发光二极管显示装置的分辨率, 相比现有技术, 本发明的制程相对较少, 进而有效的降低了生产成本。 为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然 附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为现有的主动矩阵式有机发光二极管显示装置的结构示意图; 图 2为现有的高分辨率的主动矩阵式有机发光二极管显示装置的结构 示意图;
图 3为本发明主动矩阵式有机发光二极管显示装置的结构示意图; 图 4为本发明主动矩阵式有机发光二极管显示装置的制作方法的流程 图;
图 5 至图 16 为本发明主动矩阵式有机发光二极管显示装置各个制作 阶段对应的结构示意图。
一步阐述本发明所釆取的技术手段及其效果, 以下结合本发明
Figure imgf000007_0001
包括: 基板 200、 及分別设于基板 200上的第一薄膜晶体管 400及第二薄 膜晶体管 600, 所述.基板 200上具有数个像素区 (未图示) , 第一薄膜晶 体管 400及第二薄膜晶体管 600分别设于每一像素区内, 其中, 所述第一 薄膜晶体管 400为开关薄膜晶体管, 第二薄膜晶体管 600为驱动薄膜晶体 管, 该第二薄膜晶体管 600与第一薄膜晶体管 400电性连接。
第一薄膜晶体管 400包括设于基板 200上的第一柵极 402、 设于第一 栅极 402 上的第一有源层 404、 及设于第一有源层 404 上的第一源 /漏极 406, 所述第一栅极 402与第一有源层 404至少部分重叠。
第二薄膜晶体管 600包括与第一有源层 404同层的第二有源层 602、 设于第二有源层 602上的第二柵极 604 > 及设于第二有源层 602上的第二 源 /漏极 606, 所述第二极极 604与第二有源层 602至少部分重叠。
所述第一棚 -极 402分别与第一有源层 404及第二有源层 602之间设有 第一柵极绝缘层 408, 第二柵极 604分別与第一有源层 404及第二有源层 602之间设有第二柵极绝缘层 608, 第二栅极绝缘层 608 上设有第一层间 绝缘层 460。
在本实施例中, 所述基板 200为玻璃或塑胶基板, 优选玻璃基板; 所 述第一、 第二棚-极 402、 604及第一与第二源 /漏极 406、 606含有钼层、 铝 层、 钛层与铜层其中之一或其叠层, 其均通过沉积、 黄光及蚀刻等光罩制 程制得, 其中, 所述沉积制程一般为溅射(Sputtering )制程; 所述第一栅 极绝缘层 408、 第二櫪极绝缘层 608—般为 SiNx层, 其通过化学气相沉积 ( Chemical vapor deposition, CVD )形成; 所述第 层间绝缘层 460为氮 化硅(SiNx )层、 氧化硅(SiOx )层其中之一或其叠层; 所述第一与第二 有源层 404、 602—般为非晶硅材料 ( a Si )经过激光退火 ( Laser anneal ) 及掺杂工艺转变成的多晶硅层 ( Polysilicon ) , 优选的, 为低温多晶硅 ( low temperature poly- silicon, LTPS )层。
所述主动矩阵式有机发光二极管显示装置还包括: 设于像素区的存储 电容(未图示)及有机发光元件 800, 该存储电容设于基板 200上, 该有 机发光元件 800 包括设于第二薄膜晶体管 600上并与第二薄膜晶体管 600 电性连接的第一电极 802、 设于第一电极 802 上的有机发光层 804、 及设 于有机发光层 804上的第二电极 806。
请参阅图 4至图 16, 本发明还提供一种主动矩阵式有机发光二极管显 示装置的制作方法, 包括以下步驟:
步骤 1、 提供基板 200, 并在基板 200上定义第一薄膜晶体管区域及 第二薄膜晶体管区域。
步骤 2、 在基板 200上形成第一金属层, 图案化第一金属层以在第一 薄膜晶体管 400区域形成第一棚-极 402。
在本实施例中, 所述基板 200为玻璃或塑胶基板, 优选玻璃基板; 所 述第一金属层为鉬层、 铝层、 钛层与铜层其中之一或其叠层, 该第一金属 层一般通过溅射 ( Sputtering )工艺形成于基板 200上。
所述光罩制程一般包括曝光、 显影及蚀刻工艺, 其具体操作可为, 在 第一金属层上覆一层感光( photo- sensitive ) 材料, 该层即所谓的光致抗蚀 剂层, 然后使得光线通过灰阶掩膜或半灰阶掩膜照射于光致抗蚀剂层上以 将该光致抗蚀剂层曝光。 由于灰阶掩膜或半灰阶掩膜上具有有源区域的图 案, 将使部分光线得以穿过灰阶掩膜或半灰阶掩膜而照射于光致抗蚀剂层 上, 使 光致抗蚀剂层的曝光具有选择性, 同时借此将灰阶掩膜或半灰阶 掩膜上的图案完整的复印至光致抗 剂层上。 然后, 利用合适的显影液剂 ( developer ) 除去部分光致抗 剂, 使得光致抗蚀剂层显现所需要的图 案。 接着, 通过蚀刻工艺将部分第一金属层去除, 在此的蚀刻工艺可选用 湿式牲刻、 千式牲刻或两者配合使用。 最后, 将剩余的图案化的光致抗蚀 剂层全部去除, 进而形成预定图案的第一栅极 402。
步骤 3、 在第一棚 -极 402及基板 200上形成第一棚 -极绝缘层 408。 所述第一柵极绝缘层 408 —般为 SiNx 层, 其通过化学气相沉积
( Chemical vapor deposition, CVD )形成于第一栅极 402及基板 200上。
步骤 4、 在第一栅极绝缘层 408上形成有源区域层, 图案化该有源区 域层以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一有源层 404及第二有源层 602。
所述第一有源层 404及第二有源层 602—般为非晶硅材料(a- Si ) 经 过激光退火 ( Laser anneal ) 及掺杂工艺转变成的 多 晶硅层 ( Polysilicon ) , 优选的, 为低温多晶 i: ( low temperature poly-silicon , LTPS )层。
步驟 5、 在第一有源层 404及第二有源层 602上形成第二栅极绝缘层 608。
该第二栅极绝缘层 608也可选用 SiNx层, 其通过化学气相沉积形成 于第一有源层 404及第二有源层 602上。
步骤 6 , 在第二櫪极绝缘层 608形成第二金属层, 图案化第二金属层 以在第二薄膜晶体管区域形成第二栅极 604。
所述第二金属层也为钼层、 铝层、 钛层与铜层其中之一或其叠层, 该 第二金属层一般通过溅射工艺形成于第二柵极绝缘层 608上。
步骤 7、 在第二栅极 604及第二柵极绝缘层 462上形成第一层间绝缘 层 460, 图案化该第一层间绝缘层 460。
所述第一层间绝缘层 460为氮化硅(SiNx )层, 氧化硅(SiOx )层其 中之一或其叠层。
步骤 8、 在该第一层间绝缘层 460上形成第三金属层, 图案化该第三 金属层以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一源 /漏 极 406及第二源 /漏极 606。
该第三金属层也为钼层、 铝层、 钛层与铜层其中之一或其叠层, 该第 三金属层一般通过溅射工艺形成于第一层间绝缘层 460上。
步骤 9、 在该第一源 /漏极 406及第二源 /漏极 606上形成第二层间绝缘 层 462, 并通过光罩制程图案化该第二层间绝缘层 462。
所述第二层间绝缘层 462为氮化硅(SiNx )层、 与氧化硅(SiOx )层 其中之一或其叠层。 步骤 10、 在该第二层间绝缘层 462上形成透明导电层, 并通过光罩制 程形成第一电极 802。
所述透明导电层为氧化铟锡 ( Indium Tin Oxide, ITO )层、 氧化铟锌 ( Indium Zinc Oxide , IZO ) 层 ·· 氧化 4吕辞 ( Aluminum Zinc Oxide , AZO )层与氧化锌镓(GZO )层其中之一或其叠层。
步骤 11、 在第一电极 802上形成第三层间绝缘层 464, 并通过光罩制 程图案化该第三层间绝缘层 464。
所述第三层间绝缘层 464为氮化硅 ( SiNx )层、 与氧化硅 ( Si(3x )层 其中之一或其叠层。
步驟! 2、 在第三层间绝缘层 464上形成有机发光层 804。
步驟 13 , 在有机发光层 804上形成第二电极 806。
综上所述, 本发明的主动矩阵式有机发光二极管显示装置及其制作方 法, 其通过增加一层金属层使得第一与第二栅极分开制成, 有效的提高了 主动矩阵式有机发光二极管显示装置的分辨率, 相比现有技术, 本发明的 制程相对较少, 进而有效的降低了生产成本。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

—种主动矩阵式有机发光二极管显示装置, 包括: 基板、 分别设 于基板上的第一薄膜晶体管及第二薄膜晶体管, 第一薄膜晶体管包括设于 基板上的第一櫪极、 设于第一栅极上的第一有源层, 及设于第一有源层上 的第一源 /漏极, 第二薄膜晶体管包括与第一有源层同层的第二有源层、 设 于第二有源层上的第二栅极、 及 于第二有源层上的第二源 /漏极。
2、 如权利要求 1 所述的主动矩阵式有机发光二极管显示装置, 其 中, 所述第一栅极分别与第一有源层及第二有源层之间设有第一栅极绝缘 层, 第二橄极分别与第一有源层及第二有源层之间设有第二柵极绝缘层, 第二柵极绝缘层上设有第一层间绝缘层。
3、 如权利要求 2 所述的主动矩阵式有机发光二极管显示装置, 其 中, 所述第一栅极与第一有源层至少部分重叠, 所述第二柵极与第二有源 层至少部分重叠。
4、 如权利要求 1 所述的主动矩阵式有机发光二极管显示装置, 其 中, 所述基板上具有数个像素区, 第一薄膜晶体管及第二薄膜晶体管分别 设于每一像素区内。
5、 如权利要求 4 所述的主动矩阵式有机发光二极管显示装置, 还包 括设于像素区的存储电容及有机发光元件, 该存储电容" &于基板上, 该有 机发光元件包括设于第二薄膜晶体管上并与第二薄膜晶体管电性连接的第 一电极, 设于第一电极上的有机发光层、 及设于有机发光层上的第二电 极。
6、 如权利要求 5 所述的主动矩阵式有机发光二极管显示装置, 其 中, 所述第一薄膜晶体管为开关薄膜晶体管, 第二薄膜晶体管为驱动薄膜 晶体管并与第一薄膜晶体管电性连接。
7、 如权利要求 5 所述的主动矩阵式有机发光二极管显示装置, 其 中, 所述第一有源层包括多晶硅层, 所述第二有源层包括多晶硅层。
8、 一种主动矩阵式有机发光二极管显示装置, 包括: 基板、 分别设 于基板上的第一薄膜晶体管及第二薄膜晶体管, 第一薄膜晶体管包括设于 基板上的第一栅极、 设于第一栅极上的第一有源层、 及设于第一有源层上 的第一源 /漏极, 第二薄膜晶体管包括与第一有源层同层的第二有源层、 设 于第二有源层上的第二柵极、 及设于第二有源层上的第二源 /漏极;
其中, 所述第一柵极分别与第一有源层及第二有源层之间设有第一栅 极绝缘层, 第二栅极分别与第一有源层及第二有源层之间设有第二柵极绝 缘层, 第二柵极绝缘层上设有第一层间绝缘层;
其中, 所述第一栅极与第一有源层至少部分重叠, 所述第二栅极与第 二有源层至少部分重叠;
其中, 所述基板上具有数个像素区, 第一薄膜晶体管及第二薄膜晶体 管分别设于每一像素区内;
还包括设于像素区的存储电容及有机发光元件, 该存储电容设于基板 上, 该有机发光元件包括设于第二薄膜晶体管上并与第二薄膜晶体管电性 连接的第一电极、 设于第一电极上的有机发光层、 及设于有机发光层上的 第―二电极;
其中, 所述第一薄膜晶体管为开关薄膜晶体管, 第二薄膜晶体管为驱 动薄膜晶体管并与第一薄膜晶体管电性连接;
其中, 所述第一有源层包括多晶硅层, 所述第二有源层包括多晶硅 层。
9、 一种主动矩阵式有机发光二极管显示装置的制作方法, 包括以下 步骤 I , 提供基板, 并在基板上定义第一薄膜晶体管区域及第二薄膜 晶体管区域;
步驟 2、 在基板上形成第一金属层, 图案化第一金属层以在第一薄膜 晶体管区域形成第一輾极;
步骤 3、 在第一棚 ·极及基板上形成第一极极绝缘层;
步骤 4 , 在第一柵极绝缘层上形成有源区域层, 图案化该有源区域层 以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一有源层及第 二有源层;
步骤 5、 在第一有源层及第二有源层上形成第二栅极绝缘层; 步骤 6、 在第二柵极绝缘层形成第二金属层, 图案化第二金属层以在 第二薄膜晶体管区域形成第二栅极;
步驟 7、 在第二栅极及第二柵极绝缘层上形成第一层间绝缘层, 图案 化该第一层间绝缘层;
步骤 8、 在该第一层间绝缘层上形成第三金属层, 图案化该第三金属 层以分别在第一薄膜晶体管区域及第二薄膜晶体管区域形成第一源 Z漏极及 第二源 /漏极。
10、 如权利要求 9所述的主动矩阵式有机发光二极管显示装置的制作 方法, 还包括: 步骤 9 , 在该第一源/漏极及第二源 /漏极上形成第二层间绝缘层, 并通 过光罩制程图案化该第二层间绝缘层;
步骤 10、 在该第二层间绝缘层上形成透明导电层, 并通过光罩制程形 成第一电极;
步骤 11、 在第一电极上形成第三层间绝缘层, 并通过光罩制程图案化 该第三层间绝缘层;
步驟 12、 在第三层间绝缘层上形成有机发光层;
步骤 13、 在有机发光层上形成第二电极。
11、 如权利要求 9 所述的主动矩阵式有机发光二极管显示装置的制作 方法, 其中, 所述步驟 4 中, 还包括对第一有源层和第二有源层进行退火 与掺杂工艺处理。
PCT/CN2013/071901 2013-02-22 2013-02-26 主动矩阵式有机发光二极管显示装置及其制作方法 WO2014127546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/985,954 US8890160B2 (en) 2013-02-22 2013-02-26 AMOLED display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310057684.4 2013-02-22
CN201310057684.4A CN103077957B (zh) 2013-02-22 2013-02-22 主动矩阵式有机发光二极管显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2014127546A1 true WO2014127546A1 (zh) 2014-08-28

Family

ID=48154437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071901 WO2014127546A1 (zh) 2013-02-22 2013-02-26 主动矩阵式有机发光二极管显示装置及其制作方法

Country Status (3)

Country Link
US (1) US8890160B2 (zh)
CN (1) CN103077957B (zh)
WO (1) WO2014127546A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282728B (zh) * 2014-10-10 2017-03-15 深圳市华星光电技术有限公司 一种白光oled显示器及其封装方法
KR102226236B1 (ko) * 2014-10-13 2021-03-11 엘지디스플레이 주식회사 유기 발광 표시 장치
CN106024838B (zh) * 2016-06-21 2019-04-30 武汉华星光电技术有限公司 基于混合tft结构的显示元件
US10283531B2 (en) * 2016-07-29 2019-05-07 Lg Display Co., Ltd. Thin film transistor, method for manufacturing the same, and display device including the same
CN106229329A (zh) * 2016-08-22 2016-12-14 华南理工大学 一种金属氧化物薄膜晶体管驱动背板及其制备方法
CN106229297B (zh) * 2016-09-18 2019-04-02 深圳市华星光电技术有限公司 Amoled像素驱动电路的制作方法
CN106449706B (zh) * 2016-10-17 2019-05-03 昆山国显光电有限公司 显示面板及其制造方法
KR20180061723A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 멀티 타입의 박막 트랜지스터를 포함하는 유기발광 표시장치
KR102630641B1 (ko) 2018-01-25 2024-01-30 삼성디스플레이 주식회사 표시장치 및 그의 제조방법
KR20200079894A (ko) * 2018-12-26 2020-07-06 엘지디스플레이 주식회사 서로 다른 타입의 박막 트랜지스터들을 포함하는 표시장치 및 그 제조방법
US11171159B2 (en) 2019-01-03 2021-11-09 Boe Technology Group Co., Ltd. Display backplane and method for manufacturing the same, display panel and display device
CN110828527B (zh) 2019-11-21 2023-12-15 京东方科技集团股份有限公司 阵列基板及其制作方法、三维显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315451A1 (en) * 2008-06-23 2009-12-24 Min-Hyuk Choi Organic Light Emitting Diode Display And Method Of Manufacturing The Same
US20090321725A1 (en) * 2007-05-31 2009-12-31 Panasonic Corporation Organic el device and manufacturing method thereof
CN101681931A (zh) * 2007-08-09 2010-03-24 夏普株式会社 电路基板和显示装置
CN101958339A (zh) * 2009-07-15 2011-01-26 三星移动显示器株式会社 有机发光显示装置及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281167B1 (ko) * 2006-11-22 2013-07-02 삼성전자주식회사 유기발광 디스플레이의 단위 화소부 구동소자 및 그제조방법
TWI402982B (zh) * 2009-03-02 2013-07-21 Innolux Corp 影像顯示系統及其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321725A1 (en) * 2007-05-31 2009-12-31 Panasonic Corporation Organic el device and manufacturing method thereof
CN101681931A (zh) * 2007-08-09 2010-03-24 夏普株式会社 电路基板和显示装置
US20090315451A1 (en) * 2008-06-23 2009-12-24 Min-Hyuk Choi Organic Light Emitting Diode Display And Method Of Manufacturing The Same
CN101958339A (zh) * 2009-07-15 2011-01-26 三星移动显示器株式会社 有机发光显示装置及其制造方法

Also Published As

Publication number Publication date
CN103077957A (zh) 2013-05-01
CN103077957B (zh) 2015-09-02
US20140246653A1 (en) 2014-09-04
US8890160B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
WO2014127546A1 (zh) 主动矩阵式有机发光二极管显示装置及其制作方法
US10916611B2 (en) Organic light emitting display device and fabricating method thereof
JP6460582B2 (ja) Amoledバックパネルの製造方法
US9401390B2 (en) Array substrate, method for fabricating the same, and OLED display device
WO2018107524A1 (zh) Tft背板及其制作方法
CN104966723B (zh) 一种有机发光二极管阵列基板、制备方法及显示装置
CN103489894B (zh) 有源矩阵有机电致发光显示器件、显示装置及其制作方法
US20140159021A1 (en) Array substrate, method for fabricating the same, and oled display device
TWI627744B (zh) 有機發光顯示裝置及製造該有機發光顯示裝置的方法
WO2015085703A1 (zh) Oled阵列基板及其制备方法、显示面板及显示装置
US9679953B2 (en) WOLED back panel and method of manufacturing the same
US9214476B1 (en) Pixel structure
CN103000580A (zh) 阵列基板及其制作方法
WO2022012235A1 (zh) 显示基板及其制备方法、显示装置
JP6373382B2 (ja) 有機発光ダイオードの陽極接続構造の製造方法
US9312276B2 (en) Method for manufacturing array substrate
WO2014047964A1 (zh) 有源矩阵式有机电致发光二极管及其制备方法
WO2022017394A1 (zh) 显示基板及其制备方法、显示装置
CN104393026A (zh) Oled显示基板及其制作方法、显示装置
TW201334040A (zh) 用於有機發光顯示器之畫素結構之製造方法
US8710508B2 (en) Organic light emitting diode display device and method of fabricating the same
US9159775B1 (en) Anode connection structure of organic light-emitting diode and manufacturing method thereof
CN204216048U (zh) Oled 显示基板、显示装置
KR101450905B1 (ko) 유기발광다이오드 표시소자와 그 제조방법
CN103560211B (zh) 有机电致发光器件的制作方法及制作的有机电致发光器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13985954

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875948

Country of ref document: EP

Kind code of ref document: A1