WO2014126255A1 - 基地局及び通信制御方法 - Google Patents

基地局及び通信制御方法 Download PDF

Info

Publication number
WO2014126255A1
WO2014126255A1 PCT/JP2014/053739 JP2014053739W WO2014126255A1 WO 2014126255 A1 WO2014126255 A1 WO 2014126255A1 JP 2014053739 W JP2014053739 W JP 2014053739W WO 2014126255 A1 WO2014126255 A1 WO 2014126255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellular
communication
base station
radio resource
allocation priority
Prior art date
Application number
PCT/JP2014/053739
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015500339A priority Critical patent/JP6147843B2/ja
Priority to US14/767,868 priority patent/US20160021676A1/en
Publication of WO2014126255A1 publication Critical patent/WO2014126255A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a base station and a communication control method used in a mobile communication system that supports D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct communication without going through the core network. That is, the data path of D2D communication does not go through the core network.
  • the data path of normal communication (cellular communication) of the mobile communication system passes through the core network.
  • radio resources used for communication are different between cellular communication and D2D communication.
  • the present invention provides a base station and a communication control method that can improve the utilization efficiency of radio resources while reducing the influence of interference.
  • the base station is used in a mobile communication system that supports cellular communication in which a data path passes through a core network and D2D communication that is direct terminal-to-terminal communication in which a data path does not pass through a core network.
  • the base station includes a control unit that allocates a dedicated radio resource not shared with the D2D communication or a shared radio resource shared with the D2D communication to each of a plurality of cellular terminals performing the cellular communication.
  • the control unit includes a scheduler that selects a cellular terminal to which the shared radio resource is allocated from the plurality of cellular terminals according to an allocation priority of the shared radio resource. The scheduler calculates the allocation priority for each of the plurality of cellular terminals so that the influence of interference between the cellular communication and the D2D communication is reduced.
  • LTE system It is a block diagram of the LTE system which concerns on embodiment. It is a block diagram of UE which concerns on embodiment. It is a block diagram of eNB which concerns on embodiment. It is a protocol stack figure of the radio
  • the base station supports cellular communication in which the data path passes through the core network and D2D communication that is direct terminal-to-terminal communication in which the data path does not pass through the core network. Used in mobile communication systems.
  • the base station includes a control unit that allocates a dedicated radio resource not shared with the D2D communication or a shared radio resource shared with the D2D communication to each of a plurality of cellular terminals performing the cellular communication.
  • the control unit includes a scheduler that selects a cellular terminal to which the shared radio resource is allocated from the plurality of cellular terminals according to an allocation priority of the shared radio resource.
  • the scheduler calculates the allocation priority for each of the plurality of cellular terminals so that the influence of interference between the cellular communication and the D2D communication is reduced.
  • the scheduler calculates the allocation priority for each of the plurality of cellular terminals so that the shared radio resource is not continuously allocated to the same cellular terminal.
  • the scheduler calculates the allocation priority for each of the plurality of cellular terminals so that the shared radio resource is not periodically allocated to the same cellular terminal.
  • the scheduler calculates the allocation priority for each of the plurality of cellular terminals based on the elapsed time since the shared radio resource was last allocated. As the elapsed time is shorter, the allocation priority is adjusted to be lower.
  • the scheduler assigns the allocation priority to each of the plurality of cellular terminals so that the shared radio resource is preferentially allocated to a cellular terminal in the vicinity of the base station among the plurality of cellular terminals. Calculate the degree.
  • the scheduler calculates the allocation priority for each of the plurality of cellular terminals based on a path loss with the base station. The smaller the path loss is, the higher the allocation priority is adjusted.
  • the scheduler for each of the plurality of cellular terminals, based on a path loss with the base station and a path loss with another base station located in the vicinity of the base station.
  • the allocation priority is calculated. The smaller the path loss between the path loss with the base station and the path loss with the other base station, the higher the allocation priority.
  • the allocation priority for a cellular terminal in which the base station and the other base station function as a CoMP cooperating set in the uplink is between the base station and the base station.
  • the path loss is adjusted to be higher as the path loss between the path loss and the path loss between the other base stations is smaller.
  • the allocation priority of a cellular terminal whose transmission power is controlled according to a path loss with the other base station among the plurality of cellular terminals is a path loss with the base station. And the adjustment is made such that the smaller the path loss of any of the path losses with the other base station is, the higher it is.
  • the scheduler calculates the allocation priority based on uplink transmission power for each of the plurality of cellular terminals. The lower the uplink transmission power, the higher the allocation priority.
  • a scheduling algorithm different from the scheduling algorithm used for calculating the allocation priority of the dedicated radio resource is used for calculating the allocation priority of the shared radio resource.
  • the communication control method supports cellular communication in which the data path passes through the core network and D2D communication that is direct terminal-to-terminal communication in which the data path does not pass through the core network. Used in a mobile communication system.
  • a base station that allocates a dedicated radio resource not shared with the D2D communication or a shared radio resource shared with the D2D communication to each of a plurality of cellular terminals that perform the cellular communication includes: Selecting a cellular terminal to which the shared radio resource is allocated from the plurality of cellular terminals in accordance with an allocation priority; In the step A, the base station calculates the allocation priority for each of the plurality of cellular terminals so that the influence of interference between the cellular communication and the D2D communication is reduced.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 corresponds to a radio access network
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile communication device, and performs wireless communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 configures one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the EPC 20 configured by the MME / S-GW 300 accommodates the eNB 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the processor 240 has the scheduler function described above.
  • the memory 230 may be integrated with the processor 240, and this set (ie, chip set) may be used as the processor.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.
  • PHY Physical
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a scheduler that determines uplink / downlink transport formats (transport block size, modulation / coding scheme (MCS)) and allocated resource blocks.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connected state When there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a frequency resource can be specified by a resource block
  • a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is a control region used mainly as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining section of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting user data.
  • a reference signal such as a cell-specific reference signal (CRS) is distributed and arranged in each subframe.
  • the PDCCH carries a control signal.
  • the control signal includes, for example, uplink SI (Scheduling Information), downlink SI, and TPC bits.
  • the uplink SI is information indicating allocation of uplink radio resources
  • the downlink SI is information indicating allocation of downlink radio resources.
  • the TPC bit is information instructing increase / decrease in uplink transmission power. These pieces of information are referred to as downlink control information (DCI).
  • DCI downlink control information
  • the PDSCH carries control signals and / or user data.
  • the downlink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the central portion in the frequency direction in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting user data.
  • the PUCCH carries a control signal.
  • the control signal includes, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), ACK / NACK, and the like.
  • CQI is information indicating downlink channel quality, and is used for determining a recommended modulation scheme and coding rate to be used for downlink transmission.
  • PMI is information indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is information indicating the number of layers (number of streams) that can be used for downlink transmission.
  • SR is information for requesting allocation of uplink radio resources (resource blocks).
  • ACK / NACK is information indicating whether or not a signal transmitted via a downlink physical channel (for example, PDSCH) has been successfully decoded.
  • the PUSCH carries control signals and / or user data. For example, the uplink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • the LTE system supports D2D communication that is direct UE-to-UE communication.
  • D2D communication will be described in comparison with normal communication (cellular communication) of the LTE system.
  • the data path passes through the core network EPC 20.
  • a data path is a communication path for user data (user plane).
  • D2D communication a data path set between UEs does not pass through the EPC 20. Therefore, the traffic load of the EPC 20 can be reduced.
  • the UE 100 discovers another UE 100 existing in the vicinity and starts D2D communication (communication).
  • the D2D communication includes a direct communication mode and a local relay mode (Locally Routed mode).
  • FIG. 6 is a diagram for explaining a direct communication mode in D2D communication.
  • the data path does not pass through the eNB 200.
  • the UE 100-1D and the UE 100-2D that are close to each other directly perform radio communication with low transmission power in the cell of the eNB 200. Therefore, advantages such as a reduction in power consumption of the UE 100 and a reduction in interference with adjacent cells can be obtained.
  • FIG. 7 is a diagram for explaining a local relay mode in D2D communication.
  • the data path passes through the eNB 200 but does not pass through the EPC 20. That is, the UE 100-1D and the UE 100-2D perform radio communication in the cell of the eNB 200 via the eNB 200 without passing through the EPC 20.
  • the local relay mode can reduce the traffic load of the EPC 20, but has less merit than the direct communication mode. Therefore, in the first embodiment, the direct communication mode is mainly assumed.
  • FIG. 8 is a diagram for explaining the operating environment according to the first embodiment.
  • UE 100-C is a cellular UE (cellular terminal) that performs cellular communication in a cell of eNB 200.
  • the cellular UE 100-C in the connected state performs cellular communication using radio resources allocated from the eNB 200.
  • the cellular UE 100-C transmits and receives user data and control signals to and from the eNB 200.
  • one cellular UE is illustrated, but in an actual operating environment, a plurality of cellular UEs are present in the cell of the eNB 200.
  • UE 100-1D and UE 100-2D are D2D UEs (D2D terminals) that perform D2D communication in the cell of eNB 200.
  • the connected D2D UE 100-1D and D2D UE 100-2D perform D2D communication (communication) using radio resources allocated from the eNB 200.
  • the D2D UE 100-1D and the D2D UE 100-2D transmit / receive user data to / from each other and transmit / receive control signals to / from the eNB 200.
  • the cellular UE 100-C and the D2D UE 100-D are located in the same cell.
  • some D2D UEs included in the D2D UE group that performs D2D communication may be in another cell or out of the service area.
  • radio resources D2D radio resources
  • a dedicated resource allocation method a dedicated resource allocation method and a shared resource allocation method.
  • FIG. 9 is a diagram for explaining the dedicated resource allocation method.
  • the dedicated resource allocation scheme is a scheme that does not share D2D radio resources with radio resources allocated to cellular communication (cellular radio resources).
  • the central several resource blocks in the central subframe are reserved as the D2D radio resources.
  • the D2D radio resource is a radio resource dedicated to D2D communication.
  • the dedicated resource allocation method although interference between cellular communication and D2D communication can be avoided, there is a problem in that the use efficiency of radio resources is poor because cellular radio resources are relatively reduced.
  • FIG. 10 is a diagram for explaining the shared resource allocation method.
  • the shared resource allocation scheme is a scheme for sharing D2D radio resources with cellular radio resources.
  • the central number resource block in the central subframe is used not only as a cellular radio resource but also as a D2D radio resource.
  • the D2D radio resource is a radio resource shared with cellular communication.
  • D2D radio resources are spatially separated from cellular radio resources. According to the shared resource allocation method, although the use efficiency of radio resources is high, there is a problem that interference is likely to occur between cellular communication and D2D communication, that is, communication quality is likely to deteriorate.
  • the eNB 200 improves the utilization efficiency of radio resources while reducing the influence of interference by devising scheduling for a plurality of cellular UEs 100-C on the premise that the shared resource allocation method is applied.
  • cellular radio resources that are not shared with D2D communication are referred to as “cellular dedicated radio resources”, and cellular radio resources that are shared with D2D communication are referred to as “D2D shared radio resources”.
  • the D2D shared radio resource is a cellular radio resource that hardly causes interference with D2D communication.
  • the cellular dedicated radio resource is a cellular radio resource that is likely to cause interference with D2D communication.
  • the scheduler of the eNB 200 allocates a cellular dedicated radio resource or a D2D shared radio resource to each of a plurality of cellular UEs 100-C that perform cellular communication.
  • the scheduler selects the cellular UE 100-C to which the cellular dedicated radio resource is allocated from the plurality of cellular UEs 100-C according to the allocation priority P1 of the cellular dedicated radio resource.
  • the first scheduling algorithm is used for calculating the allocation priority P1 of the cellular dedicated radio resource.
  • the first scheduling algorithm is, for example, proportional fairness, or Max. CIR (Maximum Carrier to Interference power Ratio).
  • Proportional fairness is a scheduling algorithm that increases the allocation priority of a radio resource for a UE whose instantaneous throughput expected when the radio resource is allocated is larger than the average throughput so far.
  • Max. CIR is a scheduling algorithm for increasing the allocation priority for a radio resource for a UE having a high CIR of the radio resource.
  • the scheduler uses the first scheduling algorithm to assign the allocation priority for each of the plurality of cellular UEs 100-C.
  • the degree P1 is calculated.
  • the cellular dedicated radio resource is allocated to the cellular UE 100-C having the highest allocation priority P1 among the plurality of cellular UEs 100-C.
  • the scheduler selects the cellular UE 100-C to which the D2D shared radio resource is allocated from the plurality of cellular UEs 100-C according to the allocation priority P2 of the D2D shared radio resource.
  • the scheduler calculates the allocation priority P2 for each of the plurality of cellular UEs 100-C so that the influence of interference between the cellular communication and the D2D communication is reduced.
  • the scheduler calculates the allocation priority P2 for each of the plurality of cellular UEs 100-C so that the D2D shared radio resources are not continuously allocated to the same cellular UE 100-C.
  • the scheduler uses the second scheduling algorithm to allocate priority for each of the plurality of cellular UEs 100-C.
  • the degree P2 is calculated.
  • the D2D shared radio resource is allocated to the cellular UE 100-C having the highest allocation priority P2.
  • the second scheduling algorithm is a scheduling algorithm that takes into account the elapsed time since the D2D shared radio resource was last allocated for each of the plurality of cellular UEs 100-C.
  • the scheduler manages the elapsed time from the last allocation of the D2D shared radio resource for each of the plurality of cellular UEs 100-C.
  • the allocation priority P2 of the D2D shared radio resource is calculated by the following calculation formula.
  • P1 is an allocation priority calculated by the first scheduling algorithm for the D2D shared radio resource.
  • ⁇ 1 is an adjustment value (correction value) indicating an elapsed time since the D2D shared radio resource was last allocated.
  • the cellular UE 100-C having a long elapsed time since the last allocation of the D2D shared radio resource is adjusted so that the allocation priority P2 becomes high.
  • the cellular UE 100-C having the short elapsed time is adjusted so that the allocation priority P2 is relatively low. That is, adjustment is performed so that the D2D shared radio resources are not continuously allocated to the same cellular UE 100-C.
  • the second embodiment differs from the first embodiment in the scheduling method for D2D shared radio resources. Other points are the same as in the first embodiment.
  • the scheduler of the eNB 200 is configured for each of the plurality of cellular UEs 100-C so that the D2D shared radio resource is preferentially allocated to the cellular UE 100-C in the vicinity of the eNB 200 among the plurality of cellular UEs 100-C.
  • the allocation priority P2 of the D2D shared radio resource is calculated.
  • the scheduler uses the second scheduling algorithm to allocate priority for each of the plurality of cellular UEs 100-C.
  • the degree P2 is calculated.
  • the D2D shared radio resource is allocated to the cellular UE 100-C having the highest allocation priority P2.
  • the second scheduling algorithm is a scheduling algorithm that takes into account path loss (propagation loss) with the eNB 200 for each of the plurality of cellular UEs 100-C.
  • the scheduler manages path loss with the eNB 200 for each of the plurality of cellular UEs 100-C.
  • the path loss is obtained from the difference between the known transmission power and the measured reception power.
  • the cellular UE 100-C in the vicinity of the eNB 200 usually has a small path loss with the eNB 200.
  • the allocation priority P2 of the D2D shared radio resource is calculated by the following calculation formula.
  • P1 is an allocation priority calculated by the first scheduling algorithm for the D2D shared radio resource.
  • ⁇ 2 is an adjustment value (correction value) indicating a path loss with the eNB 200.
  • the cellular UE 100-C having a large path loss with the eNB 200 is adjusted so that the allocation priority P2 becomes low.
  • the cellular UE 100-C having a small path loss with the eNB 200 is adjusted so that the allocation priority P2 is relatively high. That is, adjustment is performed so that the D2D shared radio resource is preferentially allocated to the cellular UE 100-C in the vicinity of the eNB 200.
  • the transmission power (downlink transmission power) of the eNB 200 in the D2D shared radio resource is allocated by allocating the D2D shared radio resource to the cellular UE 100-C in the vicinity of the eNB 200. ) Can be kept low. Thereby, the influence of the interference between D2D communication and cellular communication can be reduced.
  • the transmission power (uplink) of the cellular UE 100-C in the D2D shared radio resource is allocated by allocating the D2D shared radio resource to the cellular UE 100-C in the vicinity of the eNB 200.
  • Link transmission power can be kept low. Thereby, the influence of the interference between D2D communication and cellular communication can be reduced.
  • the second scheduling algorithm is a scheduling algorithm that considers uplink transmission power for each of the plurality of cellular UEs 100-C.
  • the scheduler manages the uplink transmission power for each of the plurality of cellular UEs 100-C.
  • the cellular UE 100-C in the vicinity of the eNB 200 usually has low uplink transmission power.
  • the allocation priority P2 of the D2D shared radio resource is calculated by the following calculation formula.
  • P1 is an allocation priority calculated by the first scheduling algorithm for the D2D shared radio resource.
  • ⁇ 3 is an adjustment value (correction value) indicating uplink transmission power.
  • the cellular UE 100-C having a high uplink transmission power is adjusted so that the allocation priority P2 becomes low.
  • the cellular UE 100-C having a small uplink transmission power is adjusted so that the allocation priority P2 is relatively high. That is, adjustment is performed so that the D2D shared radio resource is preferentially allocated to the cellular UE 100-C in the vicinity of the eNB 200.
  • a radio resource (D2D radio resource) that the eNB 200 allocates to the UE 100 for D2D communication a radio resource (communication radio resource) used for transmission / reception of user data has been described as an example.
  • the D2D radio resource may be a radio resource for other uses related to D2D communication.
  • the D2D radio resource may be a radio resource (radio resource for discovery / discoverable) used for discovering (or discovering) another UE 100 present in the vicinity of the UE 100.
  • the D2D radio resource may be a radio resource used for transmission of a synchronization signal for synchronizing D2D UEs for D2D communication, or user data for D2D communication scheduled by the D2D UE 100 It may be a radio resource used for transmission / reception of allocation information (Scheduling Assignment) indicating the allocation position of the.
  • Scheduling Assignment allocation information
  • a modified version of the first scheduling algorithm is used as the second scheduling algorithm.
  • the second scheduling algorithm may be completely different from the first scheduling algorithm.
  • the scheduler calculates the allocation priority P2 for each of the plurality of cellular UEs 100-C so that the D2D shared radio resources are not continuously allocated to the same cellular UE 100-C.
  • the scheduler may calculate the allocation priority P2 for each of the plurality of cellular UEs 100-C so that the D2D shared radio resources are not periodically and continuously allocated to the same cellular UE 100-C.
  • the allocation priority P2 of the D2D shared radio resource is calculated by the following calculation formula.
  • P1 is an allocation priority calculated by the first scheduling algorithm for the D2D shared radio resource.
  • ⁇ 1 ′ is an adjustment value (correction value) indicating the period of the D2D shared radio resource allocated to the cellular UE 100-C (that is, the interval between the D2D shared radio resources allocated to the same cellular UE 100-C).
  • the second scheduling algorithm is a scheduling algorithm that takes into account the path loss with the eNB 200 for each of the plurality of cellular UEs 100-C, but is not limited thereto. Specifically, not only the path loss between each of the plurality of cellular UEs 100-C and the eNB 200 (hereinafter referred to as the first path loss), but also each of the plurality of cellular UEs 100-C is another eNB 200 located in the vicinity of the eNB 200. A scheduling algorithm that takes into account a path loss between the two (hereinafter referred to as a second path loss) may be used.
  • the allocation priority P2 of the D2D shared radio resource is calculated by the following calculation formula.
  • ⁇ 2 ′ is an adjustment value (correction value) indicating the smaller path loss of the first path loss and the second path loss.
  • the eNB 200 obtains information indicating the second path loss from the other eNB 200 and calculates ⁇ 2 ′.
  • the cellular UE 100-C having a large path loss of both the first path loss and the second path loss is adjusted so that the allocation priority P2 becomes low.
  • the cellular UE 100-C having a small path loss of either the first path loss or the second path loss is adjusted so that the allocation priority P2 is relatively high. That is, adjustment is performed so that the D2D shared radio resource is preferentially allocated to the cellular UE 100-C in the vicinity of either the eNB 200 or another eNB 200. Therefore, even when the shared resource allocation method is applied, the influence of interference can be reduced, so that the utilization efficiency of radio resources can be improved while reducing the influence of interference.
  • the scheduling algorithm considering the first path loss and the second path loss described above may be used only for the following cellular UE 100-C.
  • the scheduling algorithm described above for -C may be used.
  • the eNB 200 and another eNB 200 receive the uplink signal from the cellular UE 100-C in cooperation, it is sufficient that either the eNB 200 or the other eNB 200 can receive the uplink signal from the cellular UE 100-C.
  • the cellular UE 100-C having a small path loss of either the path loss or the second path loss can be adjusted so that the allocation priority P2 is relatively high.
  • the scheduling algorithm described above is used for cellular UE 100-C to which JR-CoMP (Joint reception CoMP) in which an uplink signal from cellular UE 100-C is jointly received by eNB 200 and another eNB 200 is applied. It is preferable.
  • JR-CoMP Joint reception CoMP
  • the eNB 200 may transmit an instruction for controlling transmission power to the cellular UE 100-1 in which the above-described scheduling algorithm is used.
  • the cellular UE 100-C reduces the transmission power according to the second path loss when the second path loss is small.
  • the cellular UE 100-C having a small path loss can be adjusted so that the allocation priority P2 is relatively high.
  • the eNB 200 may transmit an instruction for controlling transmission power to the cellular UE 100-C in which the above-described scheduling algorithm is used.
  • an algorithm that considers uplink transmission power to another eNB 200 in addition to uplink transmission power to the eNB 200 may be used.
  • the scheduler calculates the allocation priority for each of the plurality of cellular UEs 100-C based on the uplink transmission power to the eNB 200 and the uplink transmission power to the other eNB 200.
  • the eNB 200 adjusts the allocation priority such that the allocation priority increases as the transmission power of either the uplink transmission power to the eNB 200 or the uplink transmission power to the other eNB 200 decreases.
  • the other eNB 200 can use the same frequency band as the eNB 200.
  • the other eNB 200 is, for example, an adjacent eNB 200 or an eNB 200 that is arranged in a cell managed by the eNB 200 and manages a small cell.
  • the eNB 200 and the other eNB 200 may be able to use a dual connection (Dual Connectivity) scheme in which the UE 100 establishes a data path used for transmitting user data with each of the eNB 200 and the other eNB 200.
  • the eNB 200 and the other eNB 200 may be a CoMP cooperating set (CoMP cooperating set) that performs communication with the UE 100 in cooperation using one time / frequency resource.
  • eNB200 may use the frequency band (carrier) which other eNB200 can use as a component carrier in a carrier aggregation (Carrier Aggregation).
  • the scheduler of the eNB 200 allocates radio resources using each scheduling algorithm described above, but the present invention is not limited to this.
  • a cluster head that is a UE that controls D2D communication (specifically, a control unit of a CHUE having a schedule function)
  • the above-described scheduling algorithms may be used.
  • a dedicated cluster D2D radio resource that is, a D2D radio resource that is not shared with other clusters
  • a shared cluster D2D radio that is shared by a plurality of clusters are used as D2D radio resources.
  • the CHUE 100-1 calculates the allocation priority (P1, P2), and assigns the dedicated cluster D2D radio resource or the shared cluster D2D radio resource to the cluster of the CHUE 100-1 in the same manner as the scheduling described above.
  • Each D2D UE 100 (including CHUE 100-1). According to this, even when a plurality of clusters share and use the D2D radio resource, the influence of interference between the clusters can be reduced, so that the utilization efficiency of the D2D radio resource can be improved while reducing the influence of the interference.
  • the “dedicated cluster D2D radio resource” corresponds to the above “cellular dedicated radio resource”
  • the “shared cluster D2D radio resource” is “D2D shared radio resource” described above corresponds to “SCHUE 100-1 scheduler” corresponds to “scheduler of eNB 200” described above
  • a plurality of D2D UEs 100 belonging to the cluster of CHUE 100-1” include “ This corresponds to a plurality of cellular UEs 100-C.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the base station and the communication control method according to the present invention are useful in the mobile communication field because they can improve the utilization efficiency of radio resources while reducing the influence of interference.

Abstract

 データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる基地局は、前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる制御部を有する。前記制御部は、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するスケジューラを含む。前記スケジューラは、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。

Description

基地局及び通信制御方法
 本発明は、D2D通信をサポートする移動通信システムにおいて用いられる基地局及び通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末が、コアネットワークを介さずに直接的な通信を行う。すなわち、D2D通信のデータパスはコアネットワークを経由しない。一方、移動通信システムの通常の通信(セルラ通信)のデータパスはコアネットワークを経由する。
3GPP技術報告 「TR 22.803 V12.0.0」 2012年12月
 移動通信システムにおいてセルラ通信とD2D通信との間の干渉を防止するためには、通信に使用する無線リソースをセルラ通信とD2D通信とで異ならせることが考えられる。
 しかしながら、そのような方法では、移動通信システムにおける無線リソースの利用効率を改善することが困難である。
 そこで、本発明は、干渉の影響を軽減しつつ、無線リソースの利用効率を改善できる基地局及び通信制御方法を提供する。
 実施形態に係る基地局は、データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる。前記基地局は、前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる制御部を有する。前記制御部は、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するスケジューラを含む。前記スケジューラは、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
実施形態に係るLTEシステムの構成図である。 実施形態に係るUEのブロック図である。 実施形態に係るeNBのブロック図である。 LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 LTEシステムで使用される無線フレームの構成図である。 D2D通信における直接通信モードを説明するための図である。 D2D通信における局所中継モードを説明するための図である。 実施形態に係る動作環境を説明するための図である。 専用リソース割当方式を説明するための図である。 共用リソース割当方式を説明するための図である。
 [実施形態の概要]
 第1実施形態及び第2実施形態に係る基地局は、データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる。前記基地局は、前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる制御部を有する。前記制御部は、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するスケジューラを含む。前記スケジューラは、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
 第1実施形態では、前記スケジューラは、前記共用無線リソースが同一のセルラ端末に連続的に割り当てられないように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
 その他の実施形態では、前記スケジューラは、前記共用無線リソースが前記同一のセルラ端末に周期的に連続的に割り当てられないように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
 第1実施形態では、前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記共用無線リソースが最後に割り当てられてからの経過時間に基づいて前記割当優先度を算出する。前記経過時間が短いほど、前記割当優先度が低くなるよう調整される。
 第2実施形態では、前記スケジューラは、前記複数のセルラ端末のうち前記基地局の近傍のセルラ端末に優先的に前記共用無線リソースが割り当てられるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
 第2実施形態では、前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記基地局との間のパスロスに基づいて前記割当優先度を算出する。前記パスロスが小さいほど、前記割当優先度が高くなるよう調整される。
 その他の実施形態では、前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記基地局との間のパスロスと、前記基地局の近傍に位置する他の基地局との間のパスロスとに基づいて前記割当優先度を算出する。前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、前記割当優先度が高くなるよう調整される。
 その他の実施形態では、前記複数のユーザ端末のうち前記基地局と前記他の基地局とが上りリンクにおいてCoMP協働セットとして機能するセルラ端末についての前記割当優先度が、前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、高くなるよう調整される。
 その他の実施形態では、前記複数のセルラ端末のうち前記他の基地局との間のパスロスに応じて送信電力が制御されるセルラ端末についての前記割当優先度が、前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、高くなるよう調整される。
 第2実施形態の変更例では、前記スケジューラは、前記複数のセルラ端末のそれぞれについて、上りリンクの送信電力に基づいて前記割当優先度を算出する。前記上りリンク送信電力が小さいほど、前記割当優先度が高くなるよう調整される。
 第1実施形態及び第2実施形態では、前記共用無線リソースの割当優先度の算出には、前記専用無線リソースの割当優先度の算出に使用されるスケジューリングアルゴリズムとは異なるスケジューリングアルゴリズムが使用される。
 第1実施形態及び第2実施形態に係る通信制御方法は、データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる基地局が、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するステップAを有する。前記ステップAにおいて、前記基地局は、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出する。
 [第1実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成される移動通信システム(LTEシステム)にD2D通信を導入する場合の実施形態を説明する。
 (LTEシステム)
 図1は、第1実施形態に係るLTEシステムの構成図である。図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10は無線アクセスネットワークに相当し、EPC20はコアネットワークに相当する。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、1又は複数のセルを構成しており、自セルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、複数のMME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。MME/S-GW300により構成されるEPC20は、eNB200を収容する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。第1実施形態において、プロセッサ240は、上述したスケジューラの機能を有する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサとしてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及び割当リソースブロックを決定するスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。リソースブロックは、周波数方向に複数個のサブキャリアを含む。UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。また、下りリンクにおいて、各サブフレームには、セル固有参照信号(CRS)などの参照信号が分散して配置される。PDCCHは、制御信号を搬送する。制御信号は、例えば、上りリンクSI(Scheduling Information)、下りリンクSI、TPCビットを含む。上りリンクSIは上りリンク無線リソースの割当てを示す情報であり、下りリンクSIは、下りリンク無線リソースの割当てを示す情報である。TPCビットは、上りリンクの送信電力の増減を指示する情報である。これらの情報は、下りリンク制御情報(DCI)と称される。PDSCHは、制御信号及び/又はユーザデータを搬送する。例えば、下りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。PUCCHは、制御信号を搬送する。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、ACK/NACKなどである。CQIは、下りリンクのチャネル品質を示す情報であり、下りリンク伝送に使用すべき推奨変調方式及び符号化速度の決定等に使用される。PMIは、下りリンクの伝送の為に使用することが望ましいプリコーダマトリックスを示す情報である。RIは、下りリンクの伝送に使用可能なレイヤ数(ストリーム数)を示す情報である。SRは、上りリンク無線リソース(リソースブロック)の割当てを要求する情報である。ACK/NACKは、下りリンクの物理チャネル(例えば、PDSCH)を介して送信される信号の復号に成功したか否かを示す情報である。PUSCHは、制御信号及び/又はユーザデータを搬送する。例えば、上りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 (D2D通信)
 第1実施形態に係るLTEシステムは、直接的なUE間通信であるD2D通信をサポートする。ここでは、D2D通信を、LTEシステムの通常の通信(セルラ通信)と比較して説明する。
 セルラ通信は、コアネットワークであるEPC20をデータパスが経由する。データパスとは、ユーザデータ(ユーザプレーン)の通信経路である。これに対し、D2D通信は、UE間に設定されるデータパスがEPC20を経由しない。よって、EPC20のトラフィック負荷を削減できる。
 UE100は、近傍に存在する他のUE100を発見し、D2D通信(communication)を開始する。D2D通信には、直接通信モード及び局所中継モード(Locally Routedモード)が存在する。
 図6は、D2D通信における直接通信モードを説明するための図である。図6に示すように、直接通信モードは、データパスがeNB200を経由しない。相互に近接するUE100-1D及びUE100-2Dは、eNB200のセルにおいて、低送信電力で直接的に無線通信を行う。よって、UE100の消費電力の削減、及び隣接セルへの干渉の低減といったメリットを得られる。
 図7は、D2D通信における局所中継モードを説明するための図である。図7に示すように、局所中継モードは、データパスがeNB200を経由するもののEPC20を経由しない。すなわち、UE100-1D及びUE100-2Dは、eNB200のセルにおいて、EPC20を介さずにeNB200を介して無線通信を行う。局所中継モードは、EPC20のトラフィック負荷を削減できるものの、直接通信モードに比べてメリットが少ない。よって、第1実施形態では、直接通信モードを主として想定する。
 (第1実施形態に係る動作)
 第1実施形態では、周波数利用効率を改善する観点から、D2D通信がLTEシステムの周波数帯域(ライセンスバンド)内で行われるケースを想定する。このようなケースでは、ネットワークの管理下でD2D通信が行われる。
 図8は、第1実施形態に係る動作環境を説明するための図である。図8に示すように、UE100-Cは、eNB200のセルにおいてセルラ通信を行うセルラUE(セルラ端末)である。接続状態にあるセルラUE100-Cは、eNB200から割り当てられる無線リソースを用いて、セルラ通信を行う。セルラUE100-Cは、ユーザデータ及び制御信号をeNB200と送受信する。なお、図8では、1つのセルラUEを図示しているが、実動作環境では、eNB200のセルに複数のセルラUEが在圏する。
 UE100-1D及びUE100-2Dは、eNB200のセルにおいてD2D通信を行うD2D UE(D2D端末)である。接続状態にあるD2D UE100-1D及びD2D UE100-2Dは、eNB200から割り当てられる無線リソースを用いて、D2D通信(communication)を行う。具体的には、D2D UE100-1D及びD2D UE100-2Dは、ユーザデータを相互に送受信し、制御信号をeNB200と送受信する。
 このように、第1実施形態では、セルラUE100-CとD2D UE100-D(UE100-1D及びUE100-2D)とが同一セルに在圏する。ただし、D2D通信を行うD2D UE群に含まれる一部のD2D UEは、他のセルに在圏してもよく、圏外であってもよい。
 LTEシステムの周波数帯域内でD2D通信を行う場合に、D2D通信に割り当てる無線リソース(D2D無線リソース)を確保するためには、専用リソース割当方式及び共用リソース割当方式の2通りの方式がある。
 図9は、専用リソース割当方式を説明するための図である。図9に示すように、専用リソース割当方式は、D2D無線リソースを、セルラ通信に割り当てる無線リソース(セルラ無線リソース)と共用させない方式である。図9の例では、3サブフレーム分の無線リソース(具体的には、時間・周波数リソース)のうち、中央のサブフレームにおける中央の数リソースブロックがD2D無線リソースとして確保されている。この場合、D2D無線リソースは、D2D通信に専用の無線リソースである。専用リソース割当方式によれば、セルラ通信とD2D通信との間の干渉を回避できるものの、セルラ無線リソースが相対的に減少するため、無線リソースの利用効率が悪いという問題がある。
 図10は、共用リソース割当方式を説明するための図である。図10に示すように、共用リソース割当方式は、D2D無線リソースをセルラ無線リソースと共用させる方式である。図10の例では、3サブフレーム分の無線リソースのうち、中央のサブフレームにおける中央の数リソースブロックは、セルラ無線リソースとして使用されるだけでなく、D2D無線リソースとしても使用される。この場合、D2D無線リソースは、セルラ通信と共用の無線リソースである。D2D無線リソースは、セルラ無線リソースと空間的に分離される。共用リソース割当方式によれば、無線リソースの利用効率が高いものの、セルラ通信とD2D通信との間で干渉が生じ易い、すなわち、通信品質が劣化し易いという問題がある。
 そこで、第1実施形態に係るeNB200は、共用リソース割当方式の適用を前提として、複数のセルラUE100-Cに対するスケジューリングを工夫することにより、干渉の影響を軽減しつつ、無線リソースの利用効率を改善する。以下において、D2D通信と共用しないセルラ無線リソースを「セルラ専用無線リソース」と称し、D2D通信と共用するセルラ無線リソースを「D2D共用無線リソース」と称する。D2D共用無線リソースは、D2D通信との間で干渉が生じ難いセルラ無線リソースである。これに対し、セルラ専用無線リソースは、D2D通信との間で干渉が生じ易いセルラ無線リソースである。
 eNB200のスケジューラは、セルラ専用無線リソース又はD2D共用無線リソースを、セルラ通信を行う複数のセルラUE100-Cのそれぞれに割り当てる。
 スケジューラは、セルラ専用無線リソースの割当優先度P1に従って、セルラ専用無線リソースが割り当てられるセルラUE100-Cを複数のセルラUE100-Cの中から選択する。セルラ専用無線リソースの割当優先度P1の算出には、第1のスケジューリングアルゴリズムが使用される。第1のスケジューリングアルゴリズムは、例えば、プロポーショナル・フェアネス、又はMax.CIR(Maximum Carrier to Interference power Ratio)などである。プロポーショナル・フェアネスは、無線リソースを割り当てたときに期待される瞬時スループットが、それまでの平均スループットと比較して大きくなるUEに対して、当該無線リソースについての割当優先度を高くするスケジューリングアルゴリズムである。Max.CIRは、無線リソースのCIRが高いUEに対して、当該無線リソースについての割当優先度を高くするスケジューリングアルゴリズムである。
 あるセルラ専用無線リソースが割り当てられるセルラUE100-Cを複数のセルラUE100-Cの中から選択する場合、スケジューラは、第1のスケジューリングアルゴリズムを使用して、複数のセルラUE100-Cのそれぞれについて割当優先度P1を算出する。そして、複数のセルラUE100-Cのうち、割当優先度P1が最高となるセルラUE100-Cに対して、当該セルラ専用無線リソースを割り当てる。
 また、スケジューラは、D2D共用無線リソースの割当優先度P2に従って、D2D共用無線リソースが割り当てられるセルラUE100-Cを複数のセルラUE100-Cの中から選択する。ここで、スケジューラは、セルラ通信とD2D通信との間の干渉の影響が軽減されるように、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出する。第1実施形態では、スケジューラは、D2D共用無線リソースが同一のセルラUE100-Cに連続的に割り当てられないように、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出する。
 D2D共用無線リソースの割当優先度P2の算出には、上述した第1のスケジューリングアルゴリズムとは異なる第2のスケジューリングアルゴリズムが使用される。ここでは、第1のスケジューリングアルゴリズムを変形したものを第2のスケジューリングアルゴリズムとして使用する一例を説明する。
 あるD2D共用無線リソースが割り当てられるセルラUE100-Cを複数のセルラUE100-Cの中から選択する場合、スケジューラは、第2のスケジューリングアルゴリズムを使用して、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出する。そして、複数のセルラUE100-Cのうち、割当優先度P2が最高となるセルラUE100-Cに対して、当該D2D共用無線リソースを割り当てる。
 第1実施形態では、第2のスケジューリングアルゴリズムは、複数のセルラUE100-Cのそれぞれについて、D2D共用無線リソースが最後に割り当てられてからの経過時間を考慮したスケジューリングアルゴリズムである。この場合、スケジューラは、複数のセルラUE100-Cのそれぞれについて、D2D共用無線リソースが最後に割り当てられてからの経過時間を管理している。
 例えば、第2のスケジューリングアルゴリズムでは、複数のセルラUE100-Cのそれぞれについて、以下の計算式でD2D共用無線リソースの割当優先度P2を算出する。
   P2=P1+α1
 ここで、P1は、D2D共用無線リソースについて第1のスケジューリングアルゴリズムにより算出される割当優先度である。α1は、D2D共用無線リソースが最後に割り当てられてからの経過時間を示す調整値(補正値)である。
 このような第2のスケジューリングアルゴリズムによれば、D2D共用無線リソースが最後に割り当てられてからの経過時間が長いセルラUE100-Cは、割当優先度P2が高くなるよう調整される。これに対し、当該経過時間が短いセルラUE100-Cは、割当優先度P2が相対的に低くなるよう調整される。すなわち、D2D共用無線リソースが同一のセルラUE100-Cに連続的に割り当てられないように調整される。
 これにより、セルラ通信とD2D通信との間の干渉の影響が同一のセルラUE100-C(及びその周辺のD2D UE100-D)に集中することを防止できる。言い換えると、セルラ通信とD2D通信との間の干渉の影響を分散させることができる。
 従って、共用リソース割当方式を適用する場合でも干渉の影響を軽減できるため、干渉の影響を軽減しつつ無線リソースの利用効率を改善できる。
 [第2実施形態]
 以下、第2実施形態について、上述した第1実施形態との相違点を説明する。第2実施形態は、D2D共用無線リソースのスケジューリング方法が第1実施形態とは異なる。その他の点については、第1実施形態と同様である。
 第2実施形態では、eNB200のスケジューラは、複数のセルラUE100-CのうちeNB200の近傍のセルラUE100-Cに優先的にD2D共用無線リソースが割り当てられるように、複数のセルラUE100-CのそれぞれについてD2D共用無線リソースの割当優先度P2を算出する。
 D2D共用無線リソースの割当優先度P2の算出には、上述した第1のスケジューリングアルゴリズムとは異なる第2のスケジューリングアルゴリズムが使用される。ここでは、第1のスケジューリングアルゴリズムを変形したものを第2のスケジューリングアルゴリズムとして使用する一例を説明する。
 あるD2D共用無線リソースが割り当てられるセルラUE100-Cを複数のセルラUE100-Cの中から選択する場合、スケジューラは、第2のスケジューリングアルゴリズムを使用して、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出する。そして、複数のセルラUE100-Cのうち、割当優先度P2が最高となるセルラUE100-Cに対して、当該D2D共用無線リソースを割り当てる。
 第2実施形態では、第2のスケジューリングアルゴリズムは、複数のセルラUE100-Cのそれぞれについて、eNB200との間のパスロス(伝搬損失)を考慮したスケジューリングアルゴリズムである。この場合、スケジューラは、複数のセルラUE100-Cのそれぞれについて、eNB200との間のパスロスを管理している。パスロスは、既知の送信電力と、測定された受信電力と、の差分により求められる。eNB200の近傍のセルラUE100-Cは、通常、eNB200との間のパスロスが小さい。
 例えば、第2のスケジューリングアルゴリズムでは、複数のセルラUE100-Cのそれぞれについて、以下の計算式でD2D共用無線リソースの割当優先度P2を算出する。
   P2=P1-α2
 ここで、P1は、D2D共用無線リソースについて第1のスケジューリングアルゴリズムにより算出される割当優先度である。α2は、eNB200との間のパスロスを示す調整値(補正値)である。
 このような第2のスケジューリングアルゴリズムによれば、eNB200との間のパスロスが大きいセルラUE100-Cは、割当優先度P2が低くなるよう調整される。これに対し、eNB200との間のパスロスが小さいセルラUE100-Cは、割当優先度P2が相対的に高くなるよう調整される。すなわち、eNB200の近傍のセルラUE100-Cに優先的にD2D共用無線リソースが割り当てられるように調整される。
 下りリンクのセルラ無線リソースにD2D共用無線リソースが設けられる場合には、eNB200の近傍のセルラUE100-CにD2D共用無線リソースを割り当てることにより、D2D共用無線リソースにおけるeNB200の送信電力(下りリンク送信電力)を低く抑えることができる。これにより、D2D通信とセルラ通信との間の干渉の影響を低減できる。
 上りリンクのセルラ無線リソースにD2D共用無線リソースが設けられる場合には、eNB200の近傍のセルラUE100-CにD2D共用無線リソースを割り当てることにより、D2D共用無線リソースにおけるセルラUE100-Cの送信電力(上りリンク送信電力)を低く抑えることができる。これにより、D2D通信とセルラ通信との間の干渉の影響を低減できる。
 従って、共用リソース割当方式を適用する場合でも干渉の影響を軽減できるため、干渉の影響を軽減しつつ無線リソースの利用効率を改善できる。
 [第2実施形態の変更例]
 第2実施形態の変更例では、第2のスケジューリングアルゴリズムは、複数のセルラUE100-Cのそれぞれについて、上りリンクの送信電力を考慮したスケジューリングアルゴリズムである。この場合、スケジューラは、複数のセルラUE100-Cのそれぞれについて、上りリンクの送信電力を管理している。eNB200の近傍のセルラUE100-Cは、通常、上りリンクの送信電力が小さい。
 本変更例に係る第2のスケジューリングアルゴリズムでは、複数のセルラUE100-Cのそれぞれについて、例えば以下の計算式でD2D共用無線リソースの割当優先度P2を算出する。
   P2=P1-α3
 ここで、P1は、D2D共用無線リソースについて第1のスケジューリングアルゴリズムにより算出される割当優先度である。α3は、上りリンクの送信電力を示す調整値(補正値)である。
 このような第2のスケジューリングアルゴリズムによれば、上りリンクの送信電力が大きいセルラUE100-Cは、割当優先度P2が低くなるよう調整される。これに対し、上りリンクの送信電力が小さいセルラUE100-Cは、割当優先度P2が相対的に高くなるよう調整される。すなわち、eNB200の近傍のセルラUE100-Cに優先的にD2D共用無線リソースが割り当てられるように調整される。
 従って、上述した第2実施形態と同様に、共用リソース割当方式を適用する場合でも干渉の影響を軽減できるため、干渉の影響を軽減しつつ無線リソースの利用効率を改善できる。
 [その他の実施形態]
 上述した各実施形態では、eNB200がD2D通信のためにUE100に割り当てる無線リソース(D2D無線リソース)として、ユーザデータの送受信に用いられる無線リソース(commucnication用の無線リソース)を例に説明したが、これに限られない。D2D無線リソースは、D2D通信に関する他の用途のための無線リソースであってもよい。例えば、D2D無線リソースは、UE100の近傍に存在する他のUE100を発見するため(又は発見されるため)に用いられる無線リソース(discovery/discoverable用の無線リソース)であってもよい。また、D2D無線リソースは、D2D UEどうしがD2D通信のために同期を取るための同期信号の送信に用いられる無線リソースであってもよいし、D2D UE100がスケジューリングを行ったD2D通信用のユーザデータの割当位置を示す割当情報(Scheduling Assignment)の送受信に用いられる無線リソースであってもよい。
 上述した各実施形態では、第1のスケジューリングアルゴリズムを変形したものを第2のスケジューリングアルゴリズムとして使用していた。しかしながら、第2のスケジューリングアルゴリズムは、第1のスケジューリングアルゴリズムとは全く異なるものであってもよい。
 上述した第1実施形態では、スケジューラは、D2D共用無線リソースが同一のセルラUE100-Cに連続的に割り当てられないように、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出していたが、スケジューラは、D2D共用無線リソースが同一のセルラUE100-Cに周期的に連続的に割り当てられないように、複数のセルラUE100-Cのそれぞれについて割当優先度P2を算出してもよい。例えば、以下の計算式でD2D共用無線リソースの割当優先度P2を算出する。
   P2=P1+α1’
 ここで、P1は、D2D共用無線リソースについて第1のスケジューリングアルゴリズムにより算出される割当優先度である。α1’は、セルラUE100-Cに割り当てられるD2D共用無線リソースの周期(すなわち、同一のセルラUE100-Cに割り当てられたD2D共用無線リソースの間隔)を示す調整値(補正値)である。
 従って、例えば、セミパーシステントスケジューリング(Semi-Persistent Scheduling)によって割り当てられる周期的に連続する無線リソース(例えば、VoIPの無線リソース)と、同一のセルラUE100-Cに割り当てられたD2D共用無線リソースとが連続して重複することを避けることができる。その結果、セルラ通信とD2D通信との間の干渉の影響が同一のセルラUE100-C(及びその周辺のD2D UE100-D)に集中することを防止できる。
 上述した第2実施形態では、第2のスケジューリングアルゴリズムは、複数のセルラUE100-Cのそれぞれについて、eNB200との間のパスロスを考慮したスケジューリングアルゴリズムであったが、これに限られない。具体的には、複数のセルラUE100-CのそれぞれとeNB200との間のパスロス(以下、第1パスロス)だけでなく、複数のセルラUE100-Cのそれぞれについて、eNB200の近傍に位置する他のeNB200との間のパスロス(以下、第2パスロス)を考慮したスケジューリングアルゴリズムが使用されてもよい。
 例えば、以下の計算式でD2D共用無線リソースの割当優先度P2を算出する。
   P2=P1+α2’
 ここで、P1は、D2D共用無線リソースについて第1のスケジューリングアルゴリズムにより算出される割当優先度である。α2’は、第1パスロス及び第2パスロスのうち小さい方のパスロスを示す調整値(補正値)である。例えば、eNB200は、他のeNB200から第2パスロスを示す情報を取得して、α2’を算出する。
 上述のスケジューリングアルゴリズムが使用された場合、第1パスロス及び第2パスロスの両方のパスロスが大きいセルラUE100-Cは、割当優先度P2が低くなるよう調整される。これに対し、第1パスロス及び第2パスロスのいずれかのパスロスが小さいセルラUE100-Cは、割当優先度P2が相対的に高くなるよう調整される。すなわち、eNB200又は他のeNB200のいずれかに近傍しているセルラUE100-Cに優先的にD2D共用無線リソースが割り当てられるように調整される。従って、共用リソース割当方式を適用する場合でも干渉の影響を軽減できるため、干渉の影響を軽減しつつ無線リソースの利用効率を改善できる。
 上述の第1パスロス及び第2パスロスを考慮したスケジューリングアルゴリズムは、以下のセルラUE100-Cにのみ使用されてもよい。
 第1に、複数のセルラUE100-Cのうち、eNB200(が管理するセル)と他のeNB200(が管理するセル)とが上りリンクにおいてCoMP(Coordinated Multi-Point)協働セットとして機能するセルラUE100-Cに上述のスケジューリングアルゴリズムが使用されてもよい。セルラUE100-Cからの上りリンク信号をeNB200及び他のeNB200が協調して受信する場合、eNB200及び他のeNB200のいずれかが当該セルラUE100-Cからの上りリンク信号を受信できればよいため、第1パスロス及び第2パスロスのいずれかのパスロスが小さい当該セルラUE100-Cは、割当優先度P2が相対的に高くなるよう調整できる。特に、セルラUE100-Cからの上りリンク信号をeNB200と他のeNB200とが共同受信するJR-CoMP(Joint reception CoMP)が適用されるセルラUE100-Cに対して、上述のスケジューリングアルゴリズムが使用されることが好ましい。
 なお、eNB200は、上述のスケジューリングアルゴリズムが使用されたセルラUE100-1に対して、送信電力を制御するための指示を送信してもよい。
 第2に、複数のセルラUE100-Cのうち、他のeNB200(が管理するセル)との間のパスロスに応じて送信電力が制御されるセルラUE100-Cに上述のスケジューリングアルゴリズムが使用されてもよい。セルラUE100-Cと他のeNB200との間のパスロスが小さい場合、当該セルラUE100-Cは、第2パスロスが小さい場合、第2パスロスに応じて送信電力を下げるため、第1パスロス及び第2パスロスのいずれかのパスロスが小さい当該セルラUE100-Cは、割当優先度P2が相対的に高くなるよう調整できる。
 なお、eNB200は、上述のスケジューリングアルゴリズムが使用されたセルラUE100-Cに対して、送信電力を制御するための指示を送信してもよい。
 また、上述した第2実施形態の変更例と同様に、eNB200への上りリンクの送信電力に加えて、他のeNB200への上りリンクの送信電力を考慮したアルゴリズムが使用されてもよい。この場合、スケジューラは、複数のセルラUE100-Cのそれぞれについて、eNB200への上りリンクの送信電力と、他のeNB200への上りリンクの送信電力とに基づいて、割当優先度を算出する。eNB200は、eNB200への上りリンクの送信電力及び他のeNB200への上りリンクの送信電力のいずれかの送信電力が小さいほど、割当優先度が高くなるように、割当優先度を調整する。
 なお、他のeNB200は、eNB200と同じ周波数帯域を使用可能である。他のeNB200とは、例えば、隣接eNB200、又は、eNB200が管理するセル内に配置され、小セルを管理するeNB200である。
 また、eNB200と他のeNB200とは、UE100がeNB200及び他のeNB200のそれぞれと、ユーザデータの伝送に用いられるデータパスを確立する二重接続(Dual Connectivity)方式を利用可能であってもよい。また、eNB200と他のeNB200とは、1つの時間・周波数リソースを用いて、協調してUE100と通信を行うCoMP協調セット(CoMP cooperating set)であってもよい。また、eNB200は、他のeNB200が使用可能な周波数帯(キャリア)を、キャリアアグリゲーション(Carrier Aggregation)におけるコンポーネントキャリアとして使用してもよい。
 また、上述した各実施形態では、eNB200のスケジューラが上述の各スケジューリングアルゴリズムを使用して、無線リソースを割り当てていたが、これに限られない。例えば、相互に近接する複数のUE100からなるD2D UE群(クラスタ)において、D2D通信を制御するUEであるクラスタヘッド(CHUE)(具体的には、スケジュール機能を有するCHUEの制御部)が、当該クラスタに属するD2D UE100に対して、D2D無線リソースを割り当てる場合、上述の各スケジューリングアルゴリズムを使用してもよい。
 具体的には、D2D無線リソースが、1つのクラスタが専用で使用する専用クラスタD2D無線リソース(すなわち、他のクラスタと共用しないD2D無線リソース)と、複数のクラスタが共用で使用する共用クラスタD2D無線リソース(すなわち、他のクラスタと共用するD2D無線リソース)とに分かれているケースを想定する。このケースにおいて、CHUE100-1は、上述のスケジューリングと同様に、割当優先度(P1、P2)を算出して、専用クラスタD2D無線リソース又は共用クラスタD2D無線リソースを、CHUE100-1のクラスタに属する複数のD2D UE100(CHUE100-1を含む)のそれぞれに割り当てることができる。これによれば、複数のクラスタが共用でD2D無線リソースを使用する場合でも、クラスタ間における干渉の影響を軽減できるため、干渉の影響を軽減しつつD2D無線リソースの利用効率を改善できる。
 なお、CHUEのスケジューリングに上述の各実施形態に係るスケジューリング方法を適用する場合、「専用クラスタD2D無線リソース」は、上述の「セルラ専用無線リソース」に該当し、「共用クラスタD2D無線リソース」は、上述の「D2D共用無線リソース」に該当し、「CHUE100-1のスケジューラ」は、上述の「eNB200のスケジューラ」に該当し、「CHUE100-1のクラスタに属する複数のD2D UE100」は、上述の「複数のセルラUE100-C」に該当する。
 上述した各実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、米国仮出願第61/765901号(2013年2月18日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る基地局及び通信制御方法は、干渉の影響を軽減しつつ、無線リソースの利用効率を改善できるため、移動通信分野において有用である。

Claims (12)

  1.  データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる基地局であって、
     前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる制御部を有し、
     前記制御部は、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するスケジューラを含み、
     前記スケジューラは、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出することを特徴とする基地局。
  2.  前記スケジューラは、前記共用無線リソースが同一のセルラ端末に連続的に割り当てられないように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出することを特徴とする請求項1に記載の基地局。
  3.  前記スケジューラは、前記共用無線リソースが前記同一のセルラ端末に周期的に連続的に割り当てられないように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出することを特徴とする請求項2に記載の基地局。
  4.  前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記共用無線リソースが最後に割り当てられてからの経過時間に基づいて前記割当優先度を算出しており、
     前記経過時間が短いほど、前記割当優先度が低くなるよう調整されることを特徴とする請求項2に記載の基地局。
  5.  前記スケジューラは、前記複数のセルラ端末のうち前記基地局の近傍のセルラ端末に優先的に前記共用無線リソースが割り当てられるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出することを特徴とする請求項1に記載の基地局。
  6.  前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記基地局との間のパスロスに基づいて前記割当優先度を算出しており、
     前記パスロスが小さいほど、前記割当優先度が高くなるよう調整されることを特徴とする請求項5に記載の基地局。
  7.  前記スケジューラは、前記複数のセルラ端末のそれぞれについて、前記基地局との間のパスロスと、前記基地局の近傍に位置する他の基地局との間のパスロスとに基づいて前記割当優先度を算出しており、
     前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、前記割当優先度が高くなるよう調整されることを特徴とする請求項5に記載の基地局。
  8.  前記複数のユーザ端末のうち前記基地局と前記他の基地局とが上りリンクにおいてCoMP協働セットとして機能するセルラ端末についての前記割当優先度が、前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、高くなるよう調整されることを特徴とする請求項1に記載の基地局。
  9.  前記複数のセルラ端末のうち前記他の基地局との間のパスロスに応じて送信電力が制御されるセルラ端末についての前記割当優先度が、前記基地局との間のパスロス及び前記他の基地局との間のパスロスのいずれかのパスロスが小さいほど、高くなるよう調整されることを特徴とする請求項1に記載の基地局。
  10.  前記スケジューラは、前記複数のセルラ端末のそれぞれについて、上りリンクの送信電力に基づいて前記割当優先度を算出しており、
     前記上りリンク送信電力が小さいほど、前記割当優先度が高くなるよう調整されることを特徴とする請求項5に記載の基地局。
  11.  前記共用無線リソースの割当優先度の算出には、前記専用無線リソースの割当優先度の算出に使用されるスケジューリングアルゴリズムとは異なるスケジューリングアルゴリズムが使用されることを特徴とする請求項1に記載の基地局。
  12.  データパスがコアネットワークを経由するセルラ通信と、データパスがコアネットワークを経由しない直接的な端末間通信であるD2D通信と、をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記D2D通信と共用しない専用無線リソース、又は前記D2D通信と共用する共用無線リソースを、前記セルラ通信を行う複数のセルラ端末のそれぞれに割り当てる基地局が、前記共用無線リソースの割当優先度に従って、前記共用無線リソースが割り当てられるセルラ端末を前記複数のセルラ端末の中から選択するステップAを有し、
     前記ステップAにおいて、前記基地局は、前記セルラ通信と前記D2D通信との間の干渉の影響が軽減されるように、前記複数のセルラ端末のそれぞれについて前記割当優先度を算出することを特徴とする通信制御方法。
PCT/JP2014/053739 2013-02-18 2014-02-18 基地局及び通信制御方法 WO2014126255A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015500339A JP6147843B2 (ja) 2013-02-18 2014-02-18 基地局及び通信制御方法
US14/767,868 US20160021676A1 (en) 2013-02-18 2014-02-18 Base station and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361765901P 2013-02-18 2013-02-18
US61/765,901 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126255A1 true WO2014126255A1 (ja) 2014-08-21

Family

ID=51354253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053739 WO2014126255A1 (ja) 2013-02-18 2014-02-18 基地局及び通信制御方法

Country Status (3)

Country Link
US (1) US20160021676A1 (ja)
JP (1) JP6147843B2 (ja)
WO (1) WO2014126255A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025113A1 (en) * 2015-08-07 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Conflict indication for radio transmission control by multiple devices
US10568110B2 (en) 2015-03-30 2020-02-18 Sony Corporation Apparatus and method for wireless communications, base station, and apparatus at user equipment side

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019177A (ja) * 2013-07-09 2015-01-29 京セラ株式会社 ネットワーク装置及び通信制御方法
WO2015051504A1 (zh) * 2013-10-09 2015-04-16 华为技术有限公司 半静态共享资源调度方法和装置
JP6404344B2 (ja) 2013-10-28 2018-10-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける装置対装置端末の信号送受信方法及び装置
US20170195905A1 (en) * 2014-05-07 2017-07-06 Lg Electronics Inc. Terminal-executed method for determining cell coverage in wireless communication system, and terminal using the method
KR102311755B1 (ko) * 2014-08-06 2021-10-14 인터디지탈 패튼 홀딩스, 인크 디바이스-대-디바이스(d2d) 선점 및 액세스 제어
US9516652B2 (en) * 2014-08-11 2016-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Pre-emption and resource allocation prioritization for D2D communications
US10154512B2 (en) * 2016-06-10 2018-12-11 Alcatel Lucent System and methods for MAC layer scheduling in wireless communication networks
CN109792720B (zh) 2016-09-30 2021-10-15 华为技术有限公司 时频资源确定方法及装置
WO2018126403A1 (en) * 2017-01-05 2018-07-12 Motorola Mobility Llc Resource reservation
US11540270B2 (en) * 2017-08-18 2022-12-27 Nokia Technologies Oy Methods and apparatuses for coexistence of two modes of vehicle-to-vehicle communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090279496A1 (en) * 2008-05-07 2009-11-12 Majid Raissi-Dehkordi Dedicated and priority based allocation in multi-hop wireless systems
US20100093364A1 (en) * 2008-09-12 2010-04-15 Nokia Corporation Method and apparatus for providing interference measurements for device-to-device communication
WO2011143496A1 (en) * 2010-05-12 2011-11-17 Qualcomm Incorporated Resource coordination for peer-to-peer groups through distributed negotiation
WO2012129806A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Method and apparatus for facilitating device-to-device communication

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046437A (ja) * 2001-07-31 2003-02-14 Ntt Docomo Inc 移動通信システム、基地局装置、及び、移動通信システムの制御方法
CN101147334B (zh) * 2005-03-30 2012-07-18 富士通株式会社 无线通信系统以及无线通信方法
WO2009025592A1 (en) * 2007-08-21 2009-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in wireless networks
KR101296021B1 (ko) * 2008-10-29 2013-08-12 노키아 코포레이션 무선 통신 시스템에서의 디바이스 대 디바이스 통신을 위한 동적 통신 자원 할당을 위한 장치 및 방법
JP5059798B2 (ja) * 2009-03-03 2012-10-31 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される基地局装置及び方法
WO2011088609A1 (en) * 2010-01-19 2011-07-28 Nokia Corporation Evolved node b controlled centralized resource reuse for device-to-device and cellular users
US9622131B2 (en) * 2010-03-05 2017-04-11 Nokia Technologies Oy Handover of direct peer to peer communication
CN103155682B (zh) * 2010-10-14 2017-05-31 诺基亚技术有限公司 设备到设备以及连接模式切换
GB2485236B (en) * 2010-11-08 2015-05-27 Sca Ipla Holdings Inc Infrastructure equipment and method
EP2712234A4 (en) * 2011-05-16 2015-04-29 Lg Electronics Inc METHOD FOR CARRYING OUT A TRANSMISSION IN A WIRELESS ACCESS SYSTEM TO SUPPORT COMMUNICATION BETWEEN DEVICES AND A DEVICE SUPPORTING THIS METHOD
WO2013012225A2 (ko) * 2011-07-15 2013-01-24 엘지전자 주식회사 무선 접속 시스템에서 장치 간 통신 중 핸드오버 수행 방법 및 이를 위한 장치
CN103891172B (zh) * 2011-08-30 2017-02-15 Lg电子株式会社 在蜂窝网络中支持设备到设备通信的方法和装置
KR20130027965A (ko) * 2011-09-08 2013-03-18 삼성전자주식회사 단말간 직접 통신을 위한 복수개의 연결들을 포함하는 근거리 통신망에서 간섭을 제어하는 방법 및 장치
KR20130070661A (ko) * 2011-12-14 2013-06-28 한국전자통신연구원 단말간 직접 통신을 위한 제어 방법
US9485794B2 (en) * 2012-05-23 2016-11-01 Qualcomm Incorporated Methods and apparatus for using device to device communications to support IMS based services
US9723621B2 (en) * 2012-10-19 2017-08-01 Qualcomm Incorporated Priority assignment in FlashLinQ distributed scheduling algorithm to fine-tune performance
WO2014089745A1 (en) * 2012-12-10 2014-06-19 Nec (China) Co., Ltd. Methods and apparatuses of allocating resources for device-to-device communication
CN104938008B (zh) * 2013-01-23 2020-07-28 瑞典爱立信有限公司 用于无线通信网络中的资源分配的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090279496A1 (en) * 2008-05-07 2009-11-12 Majid Raissi-Dehkordi Dedicated and priority based allocation in multi-hop wireless systems
US20100093364A1 (en) * 2008-09-12 2010-04-15 Nokia Corporation Method and apparatus for providing interference measurements for device-to-device communication
WO2011143496A1 (en) * 2010-05-12 2011-11-17 Qualcomm Incorporated Resource coordination for peer-to-peer groups through distributed negotiation
WO2012129806A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Method and apparatus for facilitating device-to-device communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Device to Device Proximity Services - Deployment Scenarios", 3GPP TSG RAN WG1 MEETING #72 R1- 130502, 18 January 2013 (2013-01-18) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568110B2 (en) 2015-03-30 2020-02-18 Sony Corporation Apparatus and method for wireless communications, base station, and apparatus at user equipment side
WO2017025113A1 (en) * 2015-08-07 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Conflict indication for radio transmission control by multiple devices
CN108141846A (zh) * 2015-08-07 2018-06-08 瑞典爱立信有限公司 用于通过多个装置的无线电传输控制的冲突指示

Also Published As

Publication number Publication date
JP6147843B2 (ja) 2017-06-14
US20160021676A1 (en) 2016-01-21
JPWO2014126255A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6147843B2 (ja) 基地局及び通信制御方法
JP5997411B1 (ja) ユーザ端末、基地局、プロセッサ及び通信制御方法
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
US9719383B2 (en) Network device and communication control method
JP6143524B2 (ja) 移動通信システム、無線基地局及びユーザ端末
WO2015005316A1 (ja) ネットワーク装置及び通信制御方法
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
WO2018030228A1 (ja) 移動通信方法、基地局及びユーザ端末
US20170150503A1 (en) Communication control method, radio communication apparatus, and resource management apparatus
JP6158309B2 (ja) 基地局、プロセッサ、及び通信制御方法
JP2015008378A (ja) 基地局、通信制御方法、及びプロセッサ
WO2015002232A1 (ja) ネットワーク装置及びユーザ端末
JP6034956B2 (ja) 移動通信システム、基地局及びユーザ端末
EP3065458B1 (en) Base station
JP2015012345A (ja) 基地局、通信制御方法、及びプロセッサ
JP6398032B2 (ja) 移動通信システム、ユーザ端末、基地局、及びプロセッサ
WO2015170723A1 (ja) ユーザ端末
WO2014129456A1 (ja) 通信制御方法、基地局及びユーザ端末
JP2014220777A (ja) 通信制御方法及びセルラ基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500339

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751598

Country of ref document: EP

Kind code of ref document: A1